zfs_vfsops.c revision 12633:9f2cda0ed938
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25/* Portions Copyright 2010 Robert Milkowski */
26
27#include <sys/types.h>
28#include <sys/param.h>
29#include <sys/systm.h>
30#include <sys/sysmacros.h>
31#include <sys/kmem.h>
32#include <sys/pathname.h>
33#include <sys/vnode.h>
34#include <sys/vfs.h>
35#include <sys/vfs_opreg.h>
36#include <sys/mntent.h>
37#include <sys/mount.h>
38#include <sys/cmn_err.h>
39#include "fs/fs_subr.h"
40#include <sys/zfs_znode.h>
41#include <sys/zfs_dir.h>
42#include <sys/zil.h>
43#include <sys/fs/zfs.h>
44#include <sys/dmu.h>
45#include <sys/dsl_prop.h>
46#include <sys/dsl_dataset.h>
47#include <sys/dsl_deleg.h>
48#include <sys/spa.h>
49#include <sys/zap.h>
50#include <sys/sa.h>
51#include <sys/varargs.h>
52#include <sys/policy.h>
53#include <sys/atomic.h>
54#include <sys/mkdev.h>
55#include <sys/modctl.h>
56#include <sys/refstr.h>
57#include <sys/zfs_ioctl.h>
58#include <sys/zfs_ctldir.h>
59#include <sys/zfs_fuid.h>
60#include <sys/bootconf.h>
61#include <sys/sunddi.h>
62#include <sys/dnlc.h>
63#include <sys/dmu_objset.h>
64#include <sys/spa_boot.h>
65#include <sys/sa.h>
66#include "zfs_comutil.h"
67
68int zfsfstype;
69vfsops_t *zfs_vfsops = NULL;
70static major_t zfs_major;
71static minor_t zfs_minor;
72static kmutex_t	zfs_dev_mtx;
73
74extern int sys_shutdown;
75
76static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
77static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
78static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
79static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
80static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
81static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
82static void zfs_freevfs(vfs_t *vfsp);
83
84static const fs_operation_def_t zfs_vfsops_template[] = {
85	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
86	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
87	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
88	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
89	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
90	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
91	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
92	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
93	NULL,			NULL
94};
95
96static const fs_operation_def_t zfs_vfsops_eio_template[] = {
97	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
98	NULL,			NULL
99};
100
101/*
102 * We need to keep a count of active fs's.
103 * This is necessary to prevent our module
104 * from being unloaded after a umount -f
105 */
106static uint32_t	zfs_active_fs_count = 0;
107
108static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
109static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
110static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
111static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
112
113/*
114 * MO_DEFAULT is not used since the default value is determined
115 * by the equivalent property.
116 */
117static mntopt_t mntopts[] = {
118	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
119	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
120	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
121	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
122};
123
124static mntopts_t zfs_mntopts = {
125	sizeof (mntopts) / sizeof (mntopt_t),
126	mntopts
127};
128
129/*ARGSUSED*/
130int
131zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
132{
133	/*
134	 * Data integrity is job one.  We don't want a compromised kernel
135	 * writing to the storage pool, so we never sync during panic.
136	 */
137	if (panicstr)
138		return (0);
139
140	/*
141	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
142	 * to sync metadata, which they would otherwise cache indefinitely.
143	 * Semantically, the only requirement is that the sync be initiated.
144	 * The DMU syncs out txgs frequently, so there's nothing to do.
145	 */
146	if (flag & SYNC_ATTR)
147		return (0);
148
149	if (vfsp != NULL) {
150		/*
151		 * Sync a specific filesystem.
152		 */
153		zfsvfs_t *zfsvfs = vfsp->vfs_data;
154		dsl_pool_t *dp;
155
156		ZFS_ENTER(zfsvfs);
157		dp = dmu_objset_pool(zfsvfs->z_os);
158
159		/*
160		 * If the system is shutting down, then skip any
161		 * filesystems which may exist on a suspended pool.
162		 */
163		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
164			ZFS_EXIT(zfsvfs);
165			return (0);
166		}
167
168		if (zfsvfs->z_log != NULL)
169			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
170
171		ZFS_EXIT(zfsvfs);
172	} else {
173		/*
174		 * Sync all ZFS filesystems.  This is what happens when you
175		 * run sync(1M).  Unlike other filesystems, ZFS honors the
176		 * request by waiting for all pools to commit all dirty data.
177		 */
178		spa_sync_allpools();
179	}
180
181	return (0);
182}
183
184static int
185zfs_create_unique_device(dev_t *dev)
186{
187	major_t new_major;
188
189	do {
190		ASSERT3U(zfs_minor, <=, MAXMIN32);
191		minor_t start = zfs_minor;
192		do {
193			mutex_enter(&zfs_dev_mtx);
194			if (zfs_minor >= MAXMIN32) {
195				/*
196				 * If we're still using the real major
197				 * keep out of /dev/zfs and /dev/zvol minor
198				 * number space.  If we're using a getudev()'ed
199				 * major number, we can use all of its minors.
200				 */
201				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
202					zfs_minor = ZFS_MIN_MINOR;
203				else
204					zfs_minor = 0;
205			} else {
206				zfs_minor++;
207			}
208			*dev = makedevice(zfs_major, zfs_minor);
209			mutex_exit(&zfs_dev_mtx);
210		} while (vfs_devismounted(*dev) && zfs_minor != start);
211		if (zfs_minor == start) {
212			/*
213			 * We are using all ~262,000 minor numbers for the
214			 * current major number.  Create a new major number.
215			 */
216			if ((new_major = getudev()) == (major_t)-1) {
217				cmn_err(CE_WARN,
218				    "zfs_mount: Can't get unique major "
219				    "device number.");
220				return (-1);
221			}
222			mutex_enter(&zfs_dev_mtx);
223			zfs_major = new_major;
224			zfs_minor = 0;
225
226			mutex_exit(&zfs_dev_mtx);
227		} else {
228			break;
229		}
230		/* CONSTANTCONDITION */
231	} while (1);
232
233	return (0);
234}
235
236static void
237atime_changed_cb(void *arg, uint64_t newval)
238{
239	zfsvfs_t *zfsvfs = arg;
240
241	if (newval == TRUE) {
242		zfsvfs->z_atime = TRUE;
243		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
244		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
245	} else {
246		zfsvfs->z_atime = FALSE;
247		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
248		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
249	}
250}
251
252static void
253xattr_changed_cb(void *arg, uint64_t newval)
254{
255	zfsvfs_t *zfsvfs = arg;
256
257	if (newval == TRUE) {
258		/* XXX locking on vfs_flag? */
259		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
260		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
261		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
262	} else {
263		/* XXX locking on vfs_flag? */
264		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
265		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
266		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
267	}
268}
269
270static void
271blksz_changed_cb(void *arg, uint64_t newval)
272{
273	zfsvfs_t *zfsvfs = arg;
274
275	if (newval < SPA_MINBLOCKSIZE ||
276	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
277		newval = SPA_MAXBLOCKSIZE;
278
279	zfsvfs->z_max_blksz = newval;
280	zfsvfs->z_vfs->vfs_bsize = newval;
281}
282
283static void
284readonly_changed_cb(void *arg, uint64_t newval)
285{
286	zfsvfs_t *zfsvfs = arg;
287
288	if (newval) {
289		/* XXX locking on vfs_flag? */
290		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
291		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
292		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
293	} else {
294		/* XXX locking on vfs_flag? */
295		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
296		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
297		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
298	}
299}
300
301static void
302devices_changed_cb(void *arg, uint64_t newval)
303{
304	zfsvfs_t *zfsvfs = arg;
305
306	if (newval == FALSE) {
307		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
308		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
309		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
310	} else {
311		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
312		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
313		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
314	}
315}
316
317static void
318setuid_changed_cb(void *arg, uint64_t newval)
319{
320	zfsvfs_t *zfsvfs = arg;
321
322	if (newval == FALSE) {
323		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
324		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
325		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
326	} else {
327		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
328		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
329		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
330	}
331}
332
333static void
334exec_changed_cb(void *arg, uint64_t newval)
335{
336	zfsvfs_t *zfsvfs = arg;
337
338	if (newval == FALSE) {
339		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
340		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
341		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
342	} else {
343		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
344		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
345		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
346	}
347}
348
349/*
350 * The nbmand mount option can be changed at mount time.
351 * We can't allow it to be toggled on live file systems or incorrect
352 * behavior may be seen from cifs clients
353 *
354 * This property isn't registered via dsl_prop_register(), but this callback
355 * will be called when a file system is first mounted
356 */
357static void
358nbmand_changed_cb(void *arg, uint64_t newval)
359{
360	zfsvfs_t *zfsvfs = arg;
361	if (newval == FALSE) {
362		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
363		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
364	} else {
365		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
366		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
367	}
368}
369
370static void
371snapdir_changed_cb(void *arg, uint64_t newval)
372{
373	zfsvfs_t *zfsvfs = arg;
374
375	zfsvfs->z_show_ctldir = newval;
376}
377
378static void
379vscan_changed_cb(void *arg, uint64_t newval)
380{
381	zfsvfs_t *zfsvfs = arg;
382
383	zfsvfs->z_vscan = newval;
384}
385
386static void
387acl_inherit_changed_cb(void *arg, uint64_t newval)
388{
389	zfsvfs_t *zfsvfs = arg;
390
391	zfsvfs->z_acl_inherit = newval;
392}
393
394static int
395zfs_register_callbacks(vfs_t *vfsp)
396{
397	struct dsl_dataset *ds = NULL;
398	objset_t *os = NULL;
399	zfsvfs_t *zfsvfs = NULL;
400	uint64_t nbmand;
401	int readonly, do_readonly = B_FALSE;
402	int setuid, do_setuid = B_FALSE;
403	int exec, do_exec = B_FALSE;
404	int devices, do_devices = B_FALSE;
405	int xattr, do_xattr = B_FALSE;
406	int atime, do_atime = B_FALSE;
407	int error = 0;
408
409	ASSERT(vfsp);
410	zfsvfs = vfsp->vfs_data;
411	ASSERT(zfsvfs);
412	os = zfsvfs->z_os;
413
414	/*
415	 * The act of registering our callbacks will destroy any mount
416	 * options we may have.  In order to enable temporary overrides
417	 * of mount options, we stash away the current values and
418	 * restore them after we register the callbacks.
419	 */
420	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
421		readonly = B_TRUE;
422		do_readonly = B_TRUE;
423	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
424		readonly = B_FALSE;
425		do_readonly = B_TRUE;
426	}
427	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
428		devices = B_FALSE;
429		setuid = B_FALSE;
430		do_devices = B_TRUE;
431		do_setuid = B_TRUE;
432	} else {
433		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
434			devices = B_FALSE;
435			do_devices = B_TRUE;
436		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
437			devices = B_TRUE;
438			do_devices = B_TRUE;
439		}
440
441		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
442			setuid = B_FALSE;
443			do_setuid = B_TRUE;
444		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
445			setuid = B_TRUE;
446			do_setuid = B_TRUE;
447		}
448	}
449	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
450		exec = B_FALSE;
451		do_exec = B_TRUE;
452	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
453		exec = B_TRUE;
454		do_exec = B_TRUE;
455	}
456	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
457		xattr = B_FALSE;
458		do_xattr = B_TRUE;
459	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
460		xattr = B_TRUE;
461		do_xattr = B_TRUE;
462	}
463	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
464		atime = B_FALSE;
465		do_atime = B_TRUE;
466	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
467		atime = B_TRUE;
468		do_atime = B_TRUE;
469	}
470
471	/*
472	 * nbmand is a special property.  It can only be changed at
473	 * mount time.
474	 *
475	 * This is weird, but it is documented to only be changeable
476	 * at mount time.
477	 */
478	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
479		nbmand = B_FALSE;
480	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
481		nbmand = B_TRUE;
482	} else {
483		char osname[MAXNAMELEN];
484
485		dmu_objset_name(os, osname);
486		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
487		    NULL)) {
488			return (error);
489		}
490	}
491
492	/*
493	 * Register property callbacks.
494	 *
495	 * It would probably be fine to just check for i/o error from
496	 * the first prop_register(), but I guess I like to go
497	 * overboard...
498	 */
499	ds = dmu_objset_ds(os);
500	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
501	error = error ? error : dsl_prop_register(ds,
502	    "xattr", xattr_changed_cb, zfsvfs);
503	error = error ? error : dsl_prop_register(ds,
504	    "recordsize", blksz_changed_cb, zfsvfs);
505	error = error ? error : dsl_prop_register(ds,
506	    "readonly", readonly_changed_cb, zfsvfs);
507	error = error ? error : dsl_prop_register(ds,
508	    "devices", devices_changed_cb, zfsvfs);
509	error = error ? error : dsl_prop_register(ds,
510	    "setuid", setuid_changed_cb, zfsvfs);
511	error = error ? error : dsl_prop_register(ds,
512	    "exec", exec_changed_cb, zfsvfs);
513	error = error ? error : dsl_prop_register(ds,
514	    "snapdir", snapdir_changed_cb, zfsvfs);
515	error = error ? error : dsl_prop_register(ds,
516	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
517	error = error ? error : dsl_prop_register(ds,
518	    "vscan", vscan_changed_cb, zfsvfs);
519	if (error)
520		goto unregister;
521
522	/*
523	 * Invoke our callbacks to restore temporary mount options.
524	 */
525	if (do_readonly)
526		readonly_changed_cb(zfsvfs, readonly);
527	if (do_setuid)
528		setuid_changed_cb(zfsvfs, setuid);
529	if (do_exec)
530		exec_changed_cb(zfsvfs, exec);
531	if (do_devices)
532		devices_changed_cb(zfsvfs, devices);
533	if (do_xattr)
534		xattr_changed_cb(zfsvfs, xattr);
535	if (do_atime)
536		atime_changed_cb(zfsvfs, atime);
537
538	nbmand_changed_cb(zfsvfs, nbmand);
539
540	return (0);
541
542unregister:
543	/*
544	 * We may attempt to unregister some callbacks that are not
545	 * registered, but this is OK; it will simply return ENOMSG,
546	 * which we will ignore.
547	 */
548	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
549	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
550	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
551	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
552	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
553	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
554	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
555	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
556	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
557	    zfsvfs);
558	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
559	return (error);
560
561}
562
563static int
564zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
565    uint64_t *userp, uint64_t *groupp)
566{
567	znode_phys_t *znp = data;
568	int error = 0;
569
570	/*
571	 * Is it a valid type of object to track?
572	 */
573	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
574		return (ENOENT);
575
576	/*
577	 * If we have a NULL data pointer
578	 * then assume the id's aren't changing and
579	 * return EEXIST to the dmu to let it know to
580	 * use the same ids
581	 */
582	if (data == NULL)
583		return (EEXIST);
584
585	if (bonustype == DMU_OT_ZNODE) {
586		*userp = znp->zp_uid;
587		*groupp = znp->zp_gid;
588	} else {
589		int hdrsize;
590
591		ASSERT(bonustype == DMU_OT_SA);
592		hdrsize = sa_hdrsize(data);
593
594		if (hdrsize != 0) {
595			*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
596			    SA_UID_OFFSET));
597			*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
598			    SA_GID_OFFSET));
599		} else {
600			/*
601			 * This should only happen for newly created
602			 * files that haven't had the znode data filled
603			 * in yet.
604			 */
605			*userp = 0;
606			*groupp = 0;
607		}
608	}
609	return (error);
610}
611
612static void
613fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
614    char *domainbuf, int buflen, uid_t *ridp)
615{
616	uint64_t fuid;
617	const char *domain;
618
619	fuid = strtonum(fuidstr, NULL);
620
621	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
622	if (domain)
623		(void) strlcpy(domainbuf, domain, buflen);
624	else
625		domainbuf[0] = '\0';
626	*ridp = FUID_RID(fuid);
627}
628
629static uint64_t
630zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
631{
632	switch (type) {
633	case ZFS_PROP_USERUSED:
634		return (DMU_USERUSED_OBJECT);
635	case ZFS_PROP_GROUPUSED:
636		return (DMU_GROUPUSED_OBJECT);
637	case ZFS_PROP_USERQUOTA:
638		return (zfsvfs->z_userquota_obj);
639	case ZFS_PROP_GROUPQUOTA:
640		return (zfsvfs->z_groupquota_obj);
641	}
642	return (0);
643}
644
645int
646zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
647    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
648{
649	int error;
650	zap_cursor_t zc;
651	zap_attribute_t za;
652	zfs_useracct_t *buf = vbuf;
653	uint64_t obj;
654
655	if (!dmu_objset_userspace_present(zfsvfs->z_os))
656		return (ENOTSUP);
657
658	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
659	if (obj == 0) {
660		*bufsizep = 0;
661		return (0);
662	}
663
664	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
665	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
666	    zap_cursor_advance(&zc)) {
667		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
668		    *bufsizep)
669			break;
670
671		fuidstr_to_sid(zfsvfs, za.za_name,
672		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
673
674		buf->zu_space = za.za_first_integer;
675		buf++;
676	}
677	if (error == ENOENT)
678		error = 0;
679
680	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
681	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
682	*cookiep = zap_cursor_serialize(&zc);
683	zap_cursor_fini(&zc);
684	return (error);
685}
686
687/*
688 * buf must be big enough (eg, 32 bytes)
689 */
690static int
691id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
692    char *buf, boolean_t addok)
693{
694	uint64_t fuid;
695	int domainid = 0;
696
697	if (domain && domain[0]) {
698		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
699		if (domainid == -1)
700			return (ENOENT);
701	}
702	fuid = FUID_ENCODE(domainid, rid);
703	(void) sprintf(buf, "%llx", (longlong_t)fuid);
704	return (0);
705}
706
707int
708zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
709    const char *domain, uint64_t rid, uint64_t *valp)
710{
711	char buf[32];
712	int err;
713	uint64_t obj;
714
715	*valp = 0;
716
717	if (!dmu_objset_userspace_present(zfsvfs->z_os))
718		return (ENOTSUP);
719
720	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
721	if (obj == 0)
722		return (0);
723
724	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
725	if (err)
726		return (err);
727
728	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
729	if (err == ENOENT)
730		err = 0;
731	return (err);
732}
733
734int
735zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
736    const char *domain, uint64_t rid, uint64_t quota)
737{
738	char buf[32];
739	int err;
740	dmu_tx_t *tx;
741	uint64_t *objp;
742	boolean_t fuid_dirtied;
743
744	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
745		return (EINVAL);
746
747	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
748		return (ENOTSUP);
749
750	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
751	    &zfsvfs->z_groupquota_obj;
752
753	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
754	if (err)
755		return (err);
756	fuid_dirtied = zfsvfs->z_fuid_dirty;
757
758	tx = dmu_tx_create(zfsvfs->z_os);
759	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
760	if (*objp == 0) {
761		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
762		    zfs_userquota_prop_prefixes[type]);
763	}
764	if (fuid_dirtied)
765		zfs_fuid_txhold(zfsvfs, tx);
766	err = dmu_tx_assign(tx, TXG_WAIT);
767	if (err) {
768		dmu_tx_abort(tx);
769		return (err);
770	}
771
772	mutex_enter(&zfsvfs->z_lock);
773	if (*objp == 0) {
774		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
775		    DMU_OT_NONE, 0, tx);
776		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
777		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
778	}
779	mutex_exit(&zfsvfs->z_lock);
780
781	if (quota == 0) {
782		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
783		if (err == ENOENT)
784			err = 0;
785	} else {
786		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
787	}
788	ASSERT(err == 0);
789	if (fuid_dirtied)
790		zfs_fuid_sync(zfsvfs, tx);
791	dmu_tx_commit(tx);
792	return (err);
793}
794
795boolean_t
796zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
797{
798	char buf[32];
799	uint64_t used, quota, usedobj, quotaobj;
800	int err;
801
802	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
803	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
804
805	if (quotaobj == 0 || zfsvfs->z_replay)
806		return (B_FALSE);
807
808	(void) sprintf(buf, "%llx", (longlong_t)fuid);
809	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
810	if (err != 0)
811		return (B_FALSE);
812
813	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
814	if (err != 0)
815		return (B_FALSE);
816	return (used >= quota);
817}
818
819boolean_t
820zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
821{
822	uint64_t fuid;
823	uint64_t quotaobj;
824	uid_t id;
825
826	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
827
828	id = isgroup ? zp->z_gid : zp->z_uid;
829
830	if (quotaobj == 0 || zfsvfs->z_replay)
831		return (B_FALSE);
832
833	if (IS_EPHEMERAL(id)) {
834		VERIFY(0 == sa_lookup(zp->z_sa_hdl,
835		    isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs),
836		    &fuid, sizeof (fuid)));
837	} else {
838		fuid = (uint64_t)id;
839	}
840
841	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
842}
843
844int
845zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
846{
847	objset_t *os;
848	zfsvfs_t *zfsvfs;
849	uint64_t zval;
850	int i, error;
851	uint64_t sa_obj;
852
853	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
854
855	/*
856	 * We claim to always be readonly so we can open snapshots;
857	 * other ZPL code will prevent us from writing to snapshots.
858	 */
859	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
860	if (error) {
861		kmem_free(zfsvfs, sizeof (zfsvfs_t));
862		return (error);
863	}
864
865	/*
866	 * Initialize the zfs-specific filesystem structure.
867	 * Should probably make this a kmem cache, shuffle fields,
868	 * and just bzero up to z_hold_mtx[].
869	 */
870	zfsvfs->z_vfs = NULL;
871	zfsvfs->z_parent = zfsvfs;
872	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
873	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
874	zfsvfs->z_os = os;
875
876	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
877	if (error) {
878		goto out;
879	} else if (zfsvfs->z_version >
880	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
881		(void) printf("Can't mount a version %lld file system "
882		    "on a version %lld pool\n. Pool must be upgraded to mount "
883		    "this file system.", (u_longlong_t)zfsvfs->z_version,
884		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
885		error = ENOTSUP;
886		goto out;
887	}
888	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
889		goto out;
890	zfsvfs->z_norm = (int)zval;
891
892	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
893		goto out;
894	zfsvfs->z_utf8 = (zval != 0);
895
896	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
897		goto out;
898	zfsvfs->z_case = (uint_t)zval;
899
900	/*
901	 * Fold case on file systems that are always or sometimes case
902	 * insensitive.
903	 */
904	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
905	    zfsvfs->z_case == ZFS_CASE_MIXED)
906		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
907
908	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
909	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
910
911	if (zfsvfs->z_use_sa) {
912		/* should either have both of these objects or none */
913		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
914		    &sa_obj);
915		if (error)
916			return (error);
917	} else {
918		/*
919		 * Pre SA versions file systems should never touch
920		 * either the attribute registration or layout objects.
921		 */
922		sa_obj = 0;
923	}
924
925	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
926	    &zfsvfs->z_attr_table);
927	if (error)
928		goto out;
929
930	if (zfsvfs->z_version >= ZPL_VERSION_SA)
931		sa_register_update_callback(os, zfs_sa_upgrade);
932
933	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
934	    &zfsvfs->z_root);
935	if (error)
936		goto out;
937	ASSERT(zfsvfs->z_root != 0);
938
939	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
940	    &zfsvfs->z_unlinkedobj);
941	if (error)
942		goto out;
943
944	error = zap_lookup(os, MASTER_NODE_OBJ,
945	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
946	    8, 1, &zfsvfs->z_userquota_obj);
947	if (error && error != ENOENT)
948		goto out;
949
950	error = zap_lookup(os, MASTER_NODE_OBJ,
951	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
952	    8, 1, &zfsvfs->z_groupquota_obj);
953	if (error && error != ENOENT)
954		goto out;
955
956	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
957	    &zfsvfs->z_fuid_obj);
958	if (error && error != ENOENT)
959		goto out;
960
961	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
962	    &zfsvfs->z_shares_dir);
963	if (error && error != ENOENT)
964		goto out;
965
966	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
967	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
968	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
969	    offsetof(znode_t, z_link_node));
970	rrw_init(&zfsvfs->z_teardown_lock);
971	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
972	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
973	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
974		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
975
976	*zfvp = zfsvfs;
977	return (0);
978
979out:
980	dmu_objset_disown(os, zfsvfs);
981	*zfvp = NULL;
982	kmem_free(zfsvfs, sizeof (zfsvfs_t));
983	return (error);
984}
985
986static int
987zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
988{
989	int error;
990
991	error = zfs_register_callbacks(zfsvfs->z_vfs);
992	if (error)
993		return (error);
994
995	/*
996	 * Set the objset user_ptr to track its zfsvfs.
997	 */
998	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
999	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1000	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1001
1002	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1003
1004	/*
1005	 * If we are not mounting (ie: online recv), then we don't
1006	 * have to worry about replaying the log as we blocked all
1007	 * operations out since we closed the ZIL.
1008	 */
1009	if (mounting) {
1010		boolean_t readonly;
1011
1012		/*
1013		 * During replay we remove the read only flag to
1014		 * allow replays to succeed.
1015		 */
1016		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1017		if (readonly != 0)
1018			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1019		else
1020			zfs_unlinked_drain(zfsvfs);
1021
1022		/*
1023		 * Parse and replay the intent log.
1024		 *
1025		 * Because of ziltest, this must be done after
1026		 * zfs_unlinked_drain().  (Further note: ziltest
1027		 * doesn't use readonly mounts, where
1028		 * zfs_unlinked_drain() isn't called.)  This is because
1029		 * ziltest causes spa_sync() to think it's committed,
1030		 * but actually it is not, so the intent log contains
1031		 * many txg's worth of changes.
1032		 *
1033		 * In particular, if object N is in the unlinked set in
1034		 * the last txg to actually sync, then it could be
1035		 * actually freed in a later txg and then reallocated
1036		 * in a yet later txg.  This would write a "create
1037		 * object N" record to the intent log.  Normally, this
1038		 * would be fine because the spa_sync() would have
1039		 * written out the fact that object N is free, before
1040		 * we could write the "create object N" intent log
1041		 * record.
1042		 *
1043		 * But when we are in ziltest mode, we advance the "open
1044		 * txg" without actually spa_sync()-ing the changes to
1045		 * disk.  So we would see that object N is still
1046		 * allocated and in the unlinked set, and there is an
1047		 * intent log record saying to allocate it.
1048		 */
1049		if (zil_replay_disable) {
1050			zil_destroy(zfsvfs->z_log, B_FALSE);
1051		} else {
1052			zfsvfs->z_replay = B_TRUE;
1053			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1054			zfsvfs->z_replay = B_FALSE;
1055		}
1056		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1057	}
1058
1059	return (0);
1060}
1061
1062void
1063zfsvfs_free(zfsvfs_t *zfsvfs)
1064{
1065	int i;
1066	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1067
1068	/*
1069	 * This is a barrier to prevent the filesystem from going away in
1070	 * zfs_znode_move() until we can safely ensure that the filesystem is
1071	 * not unmounted. We consider the filesystem valid before the barrier
1072	 * and invalid after the barrier.
1073	 */
1074	rw_enter(&zfsvfs_lock, RW_READER);
1075	rw_exit(&zfsvfs_lock);
1076
1077	zfs_fuid_destroy(zfsvfs);
1078
1079	mutex_destroy(&zfsvfs->z_znodes_lock);
1080	mutex_destroy(&zfsvfs->z_lock);
1081	list_destroy(&zfsvfs->z_all_znodes);
1082	rrw_destroy(&zfsvfs->z_teardown_lock);
1083	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1084	rw_destroy(&zfsvfs->z_fuid_lock);
1085	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1086		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1087	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1088}
1089
1090static void
1091zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1092{
1093	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1094	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1095		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1096		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1097		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1098		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1099		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1100		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1101	}
1102	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1103}
1104
1105static int
1106zfs_domount(vfs_t *vfsp, char *osname)
1107{
1108	dev_t mount_dev;
1109	uint64_t recordsize, fsid_guid;
1110	int error = 0;
1111	zfsvfs_t *zfsvfs;
1112
1113	ASSERT(vfsp);
1114	ASSERT(osname);
1115
1116	error = zfsvfs_create(osname, &zfsvfs);
1117	if (error)
1118		return (error);
1119	zfsvfs->z_vfs = vfsp;
1120
1121	/* Initialize the generic filesystem structure. */
1122	vfsp->vfs_bcount = 0;
1123	vfsp->vfs_data = NULL;
1124
1125	if (zfs_create_unique_device(&mount_dev) == -1) {
1126		error = ENODEV;
1127		goto out;
1128	}
1129	ASSERT(vfs_devismounted(mount_dev) == 0);
1130
1131	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1132	    NULL))
1133		goto out;
1134
1135	vfsp->vfs_dev = mount_dev;
1136	vfsp->vfs_fstype = zfsfstype;
1137	vfsp->vfs_bsize = recordsize;
1138	vfsp->vfs_flag |= VFS_NOTRUNC;
1139	vfsp->vfs_data = zfsvfs;
1140
1141	/*
1142	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1143	 * separates our fsid from any other filesystem types, and a
1144	 * 56-bit objset unique ID.  The objset unique ID is unique to
1145	 * all objsets open on this system, provided by unique_create().
1146	 * The 8-bit fs type must be put in the low bits of fsid[1]
1147	 * because that's where other Solaris filesystems put it.
1148	 */
1149	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1150	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1151	vfsp->vfs_fsid.val[0] = fsid_guid;
1152	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1153	    zfsfstype & 0xFF;
1154
1155	/*
1156	 * Set features for file system.
1157	 */
1158	zfs_set_fuid_feature(zfsvfs);
1159	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1160		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1161		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1162		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1163	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1164		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1165		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1166	}
1167	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1168
1169	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1170		uint64_t pval;
1171
1172		atime_changed_cb(zfsvfs, B_FALSE);
1173		readonly_changed_cb(zfsvfs, B_TRUE);
1174		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1175			goto out;
1176		xattr_changed_cb(zfsvfs, pval);
1177		zfsvfs->z_issnap = B_TRUE;
1178		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1179
1180		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1181		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1182		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1183	} else {
1184		error = zfsvfs_setup(zfsvfs, B_TRUE);
1185	}
1186
1187	if (!zfsvfs->z_issnap)
1188		zfsctl_create(zfsvfs);
1189out:
1190	if (error) {
1191		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1192		zfsvfs_free(zfsvfs);
1193	} else {
1194		atomic_add_32(&zfs_active_fs_count, 1);
1195	}
1196
1197	return (error);
1198}
1199
1200void
1201zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1202{
1203	objset_t *os = zfsvfs->z_os;
1204	struct dsl_dataset *ds;
1205
1206	/*
1207	 * Unregister properties.
1208	 */
1209	if (!dmu_objset_is_snapshot(os)) {
1210		ds = dmu_objset_ds(os);
1211		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1212		    zfsvfs) == 0);
1213
1214		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1215		    zfsvfs) == 0);
1216
1217		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1218		    zfsvfs) == 0);
1219
1220		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1221		    zfsvfs) == 0);
1222
1223		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1224		    zfsvfs) == 0);
1225
1226		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1227		    zfsvfs) == 0);
1228
1229		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1230		    zfsvfs) == 0);
1231
1232		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1233		    zfsvfs) == 0);
1234
1235		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1236		    acl_inherit_changed_cb, zfsvfs) == 0);
1237
1238		VERIFY(dsl_prop_unregister(ds, "vscan",
1239		    vscan_changed_cb, zfsvfs) == 0);
1240	}
1241}
1242
1243/*
1244 * Convert a decimal digit string to a uint64_t integer.
1245 */
1246static int
1247str_to_uint64(char *str, uint64_t *objnum)
1248{
1249	uint64_t num = 0;
1250
1251	while (*str) {
1252		if (*str < '0' || *str > '9')
1253			return (EINVAL);
1254
1255		num = num*10 + *str++ - '0';
1256	}
1257
1258	*objnum = num;
1259	return (0);
1260}
1261
1262/*
1263 * The boot path passed from the boot loader is in the form of
1264 * "rootpool-name/root-filesystem-object-number'. Convert this
1265 * string to a dataset name: "rootpool-name/root-filesystem-name".
1266 */
1267static int
1268zfs_parse_bootfs(char *bpath, char *outpath)
1269{
1270	char *slashp;
1271	uint64_t objnum;
1272	int error;
1273
1274	if (*bpath == 0 || *bpath == '/')
1275		return (EINVAL);
1276
1277	(void) strcpy(outpath, bpath);
1278
1279	slashp = strchr(bpath, '/');
1280
1281	/* if no '/', just return the pool name */
1282	if (slashp == NULL) {
1283		return (0);
1284	}
1285
1286	/* if not a number, just return the root dataset name */
1287	if (str_to_uint64(slashp+1, &objnum)) {
1288		return (0);
1289	}
1290
1291	*slashp = '\0';
1292	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1293	*slashp = '/';
1294
1295	return (error);
1296}
1297
1298/*
1299 * zfs_check_global_label:
1300 *	Check that the hex label string is appropriate for the dataset
1301 *	being mounted into the global_zone proper.
1302 *
1303 *	Return an error if the hex label string is not default or
1304 *	admin_low/admin_high.  For admin_low labels, the corresponding
1305 *	dataset must be readonly.
1306 */
1307int
1308zfs_check_global_label(const char *dsname, const char *hexsl)
1309{
1310	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1311		return (0);
1312	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1313		return (0);
1314	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1315		/* must be readonly */
1316		uint64_t rdonly;
1317
1318		if (dsl_prop_get_integer(dsname,
1319		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1320			return (EACCES);
1321		return (rdonly ? 0 : EACCES);
1322	}
1323	return (EACCES);
1324}
1325
1326/*
1327 * zfs_mount_label_policy:
1328 *	Determine whether the mount is allowed according to MAC check.
1329 *	by comparing (where appropriate) label of the dataset against
1330 *	the label of the zone being mounted into.  If the dataset has
1331 *	no label, create one.
1332 *
1333 *	Returns:
1334 *		 0 :	access allowed
1335 *		>0 :	error code, such as EACCES
1336 */
1337static int
1338zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1339{
1340	int		error, retv;
1341	zone_t		*mntzone = NULL;
1342	ts_label_t	*mnt_tsl;
1343	bslabel_t	*mnt_sl;
1344	bslabel_t	ds_sl;
1345	char		ds_hexsl[MAXNAMELEN];
1346
1347	retv = EACCES;				/* assume the worst */
1348
1349	/*
1350	 * Start by getting the dataset label if it exists.
1351	 */
1352	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1353	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1354	if (error)
1355		return (EACCES);
1356
1357	/*
1358	 * If labeling is NOT enabled, then disallow the mount of datasets
1359	 * which have a non-default label already.  No other label checks
1360	 * are needed.
1361	 */
1362	if (!is_system_labeled()) {
1363		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1364			return (0);
1365		return (EACCES);
1366	}
1367
1368	/*
1369	 * Get the label of the mountpoint.  If mounting into the global
1370	 * zone (i.e. mountpoint is not within an active zone and the
1371	 * zoned property is off), the label must be default or
1372	 * admin_low/admin_high only; no other checks are needed.
1373	 */
1374	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1375	if (mntzone->zone_id == GLOBAL_ZONEID) {
1376		uint64_t zoned;
1377
1378		zone_rele(mntzone);
1379
1380		if (dsl_prop_get_integer(osname,
1381		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1382			return (EACCES);
1383		if (!zoned)
1384			return (zfs_check_global_label(osname, ds_hexsl));
1385		else
1386			/*
1387			 * This is the case of a zone dataset being mounted
1388			 * initially, before the zone has been fully created;
1389			 * allow this mount into global zone.
1390			 */
1391			return (0);
1392	}
1393
1394	mnt_tsl = mntzone->zone_slabel;
1395	ASSERT(mnt_tsl != NULL);
1396	label_hold(mnt_tsl);
1397	mnt_sl = label2bslabel(mnt_tsl);
1398
1399	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1400		/*
1401		 * The dataset doesn't have a real label, so fabricate one.
1402		 */
1403		char *str = NULL;
1404
1405		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1406		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1407		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1408			retv = 0;
1409		if (str != NULL)
1410			kmem_free(str, strlen(str) + 1);
1411	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1412		/*
1413		 * Now compare labels to complete the MAC check.  If the
1414		 * labels are equal then allow access.  If the mountpoint
1415		 * label dominates the dataset label, allow readonly access.
1416		 * Otherwise, access is denied.
1417		 */
1418		if (blequal(mnt_sl, &ds_sl))
1419			retv = 0;
1420		else if (bldominates(mnt_sl, &ds_sl)) {
1421			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1422			retv = 0;
1423		}
1424	}
1425
1426	label_rele(mnt_tsl);
1427	zone_rele(mntzone);
1428	return (retv);
1429}
1430
1431static int
1432zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1433{
1434	int error = 0;
1435	static int zfsrootdone = 0;
1436	zfsvfs_t *zfsvfs = NULL;
1437	znode_t *zp = NULL;
1438	vnode_t *vp = NULL;
1439	char *zfs_bootfs;
1440	char *zfs_devid;
1441
1442	ASSERT(vfsp);
1443
1444	/*
1445	 * The filesystem that we mount as root is defined in the
1446	 * boot property "zfs-bootfs" with a format of
1447	 * "poolname/root-dataset-objnum".
1448	 */
1449	if (why == ROOT_INIT) {
1450		if (zfsrootdone++)
1451			return (EBUSY);
1452		/*
1453		 * the process of doing a spa_load will require the
1454		 * clock to be set before we could (for example) do
1455		 * something better by looking at the timestamp on
1456		 * an uberblock, so just set it to -1.
1457		 */
1458		clkset(-1);
1459
1460		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1461			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1462			    "bootfs name");
1463			return (EINVAL);
1464		}
1465		zfs_devid = spa_get_bootprop("diskdevid");
1466		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1467		if (zfs_devid)
1468			spa_free_bootprop(zfs_devid);
1469		if (error) {
1470			spa_free_bootprop(zfs_bootfs);
1471			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1472			    error);
1473			return (error);
1474		}
1475		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1476			spa_free_bootprop(zfs_bootfs);
1477			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1478			    error);
1479			return (error);
1480		}
1481
1482		spa_free_bootprop(zfs_bootfs);
1483
1484		if (error = vfs_lock(vfsp))
1485			return (error);
1486
1487		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1488			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1489			goto out;
1490		}
1491
1492		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1493		ASSERT(zfsvfs);
1494		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1495			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1496			goto out;
1497		}
1498
1499		vp = ZTOV(zp);
1500		mutex_enter(&vp->v_lock);
1501		vp->v_flag |= VROOT;
1502		mutex_exit(&vp->v_lock);
1503		rootvp = vp;
1504
1505		/*
1506		 * Leave rootvp held.  The root file system is never unmounted.
1507		 */
1508
1509		vfs_add((struct vnode *)0, vfsp,
1510		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1511out:
1512		vfs_unlock(vfsp);
1513		return (error);
1514	} else if (why == ROOT_REMOUNT) {
1515		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1516		vfsp->vfs_flag |= VFS_REMOUNT;
1517
1518		/* refresh mount options */
1519		zfs_unregister_callbacks(vfsp->vfs_data);
1520		return (zfs_register_callbacks(vfsp));
1521
1522	} else if (why == ROOT_UNMOUNT) {
1523		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1524		(void) zfs_sync(vfsp, 0, 0);
1525		return (0);
1526	}
1527
1528	/*
1529	 * if "why" is equal to anything else other than ROOT_INIT,
1530	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1531	 */
1532	return (ENOTSUP);
1533}
1534
1535/*ARGSUSED*/
1536static int
1537zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1538{
1539	char		*osname;
1540	pathname_t	spn;
1541	int		error = 0;
1542	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1543	    UIO_SYSSPACE : UIO_USERSPACE;
1544	int		canwrite;
1545
1546	if (mvp->v_type != VDIR)
1547		return (ENOTDIR);
1548
1549	mutex_enter(&mvp->v_lock);
1550	if ((uap->flags & MS_REMOUNT) == 0 &&
1551	    (uap->flags & MS_OVERLAY) == 0 &&
1552	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1553		mutex_exit(&mvp->v_lock);
1554		return (EBUSY);
1555	}
1556	mutex_exit(&mvp->v_lock);
1557
1558	/*
1559	 * ZFS does not support passing unparsed data in via MS_DATA.
1560	 * Users should use the MS_OPTIONSTR interface; this means
1561	 * that all option parsing is already done and the options struct
1562	 * can be interrogated.
1563	 */
1564	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1565		return (EINVAL);
1566
1567	/*
1568	 * Get the objset name (the "special" mount argument).
1569	 */
1570	if (error = pn_get(uap->spec, fromspace, &spn))
1571		return (error);
1572
1573	osname = spn.pn_path;
1574
1575	/*
1576	 * Check for mount privilege?
1577	 *
1578	 * If we don't have privilege then see if
1579	 * we have local permission to allow it
1580	 */
1581	error = secpolicy_fs_mount(cr, mvp, vfsp);
1582	if (error) {
1583		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1584			vattr_t		vattr;
1585
1586			/*
1587			 * Make sure user is the owner of the mount point
1588			 * or has sufficient privileges.
1589			 */
1590
1591			vattr.va_mask = AT_UID;
1592
1593			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1594				goto out;
1595			}
1596
1597			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1598			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1599				goto out;
1600			}
1601			secpolicy_fs_mount_clearopts(cr, vfsp);
1602		} else {
1603			goto out;
1604		}
1605	}
1606
1607	/*
1608	 * Refuse to mount a filesystem if we are in a local zone and the
1609	 * dataset is not visible.
1610	 */
1611	if (!INGLOBALZONE(curproc) &&
1612	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1613		error = EPERM;
1614		goto out;
1615	}
1616
1617	error = zfs_mount_label_policy(vfsp, osname);
1618	if (error)
1619		goto out;
1620
1621	/*
1622	 * When doing a remount, we simply refresh our temporary properties
1623	 * according to those options set in the current VFS options.
1624	 */
1625	if (uap->flags & MS_REMOUNT) {
1626		/* refresh mount options */
1627		zfs_unregister_callbacks(vfsp->vfs_data);
1628		error = zfs_register_callbacks(vfsp);
1629		goto out;
1630	}
1631
1632	error = zfs_domount(vfsp, osname);
1633
1634	/*
1635	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1636	 * disappear due to a forced unmount.
1637	 */
1638	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1639		VFS_HOLD(mvp->v_vfsp);
1640
1641out:
1642	pn_free(&spn);
1643	return (error);
1644}
1645
1646static int
1647zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1648{
1649	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1650	dev32_t d32;
1651	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1652
1653	ZFS_ENTER(zfsvfs);
1654
1655	dmu_objset_space(zfsvfs->z_os,
1656	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1657
1658	/*
1659	 * The underlying storage pool actually uses multiple block sizes.
1660	 * We report the fragsize as the smallest block size we support,
1661	 * and we report our blocksize as the filesystem's maximum blocksize.
1662	 */
1663	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1664	statp->f_bsize = zfsvfs->z_max_blksz;
1665
1666	/*
1667	 * The following report "total" blocks of various kinds in the
1668	 * file system, but reported in terms of f_frsize - the
1669	 * "fragment" size.
1670	 */
1671
1672	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1673	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1674	statp->f_bavail = statp->f_bfree; /* no root reservation */
1675
1676	/*
1677	 * statvfs() should really be called statufs(), because it assumes
1678	 * static metadata.  ZFS doesn't preallocate files, so the best
1679	 * we can do is report the max that could possibly fit in f_files,
1680	 * and that minus the number actually used in f_ffree.
1681	 * For f_ffree, report the smaller of the number of object available
1682	 * and the number of blocks (each object will take at least a block).
1683	 */
1684	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1685	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1686	statp->f_files = statp->f_ffree + usedobjs;
1687
1688	(void) cmpldev(&d32, vfsp->vfs_dev);
1689	statp->f_fsid = d32;
1690
1691	/*
1692	 * We're a zfs filesystem.
1693	 */
1694	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1695
1696	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1697
1698	statp->f_namemax = ZFS_MAXNAMELEN;
1699
1700	/*
1701	 * We have all of 32 characters to stuff a string here.
1702	 * Is there anything useful we could/should provide?
1703	 */
1704	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1705
1706	ZFS_EXIT(zfsvfs);
1707	return (0);
1708}
1709
1710static int
1711zfs_root(vfs_t *vfsp, vnode_t **vpp)
1712{
1713	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1714	znode_t *rootzp;
1715	int error;
1716
1717	ZFS_ENTER(zfsvfs);
1718
1719	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1720	if (error == 0)
1721		*vpp = ZTOV(rootzp);
1722
1723	ZFS_EXIT(zfsvfs);
1724	return (error);
1725}
1726
1727/*
1728 * Teardown the zfsvfs::z_os.
1729 *
1730 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1731 * and 'z_teardown_inactive_lock' held.
1732 */
1733static int
1734zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1735{
1736	znode_t	*zp;
1737
1738	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1739
1740	if (!unmounting) {
1741		/*
1742		 * We purge the parent filesystem's vfsp as the parent
1743		 * filesystem and all of its snapshots have their vnode's
1744		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1745		 * 'z_parent' is self referential for non-snapshots.
1746		 */
1747		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1748	}
1749
1750	/*
1751	 * Close the zil. NB: Can't close the zil while zfs_inactive
1752	 * threads are blocked as zil_close can call zfs_inactive.
1753	 */
1754	if (zfsvfs->z_log) {
1755		zil_close(zfsvfs->z_log);
1756		zfsvfs->z_log = NULL;
1757	}
1758
1759	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1760
1761	/*
1762	 * If we are not unmounting (ie: online recv) and someone already
1763	 * unmounted this file system while we were doing the switcheroo,
1764	 * or a reopen of z_os failed then just bail out now.
1765	 */
1766	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1767		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1768		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1769		return (EIO);
1770	}
1771
1772	/*
1773	 * At this point there are no vops active, and any new vops will
1774	 * fail with EIO since we have z_teardown_lock for writer (only
1775	 * relavent for forced unmount).
1776	 *
1777	 * Release all holds on dbufs.
1778	 */
1779	mutex_enter(&zfsvfs->z_znodes_lock);
1780	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1781	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1782		if (zp->z_sa_hdl) {
1783			ASSERT(ZTOV(zp)->v_count > 0);
1784			zfs_znode_dmu_fini(zp);
1785		}
1786	mutex_exit(&zfsvfs->z_znodes_lock);
1787
1788	/*
1789	 * If we are unmounting, set the unmounted flag and let new vops
1790	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1791	 * other vops will fail with EIO.
1792	 */
1793	if (unmounting) {
1794		zfsvfs->z_unmounted = B_TRUE;
1795		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1796		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1797	}
1798
1799	/*
1800	 * z_os will be NULL if there was an error in attempting to reopen
1801	 * zfsvfs, so just return as the properties had already been
1802	 * unregistered and cached data had been evicted before.
1803	 */
1804	if (zfsvfs->z_os == NULL)
1805		return (0);
1806
1807	/*
1808	 * Unregister properties.
1809	 */
1810	zfs_unregister_callbacks(zfsvfs);
1811
1812	/*
1813	 * Evict cached data
1814	 */
1815	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1816		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1817		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1818	}
1819
1820	return (0);
1821}
1822
1823/*ARGSUSED*/
1824static int
1825zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1826{
1827	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1828	objset_t *os;
1829	int ret;
1830
1831	ret = secpolicy_fs_unmount(cr, vfsp);
1832	if (ret) {
1833		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1834		    ZFS_DELEG_PERM_MOUNT, cr))
1835			return (ret);
1836	}
1837
1838	/*
1839	 * We purge the parent filesystem's vfsp as the parent filesystem
1840	 * and all of its snapshots have their vnode's v_vfsp set to the
1841	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1842	 * referential for non-snapshots.
1843	 */
1844	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1845
1846	/*
1847	 * Unmount any snapshots mounted under .zfs before unmounting the
1848	 * dataset itself.
1849	 */
1850	if (zfsvfs->z_ctldir != NULL &&
1851	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1852		return (ret);
1853	}
1854
1855	if (!(fflag & MS_FORCE)) {
1856		/*
1857		 * Check the number of active vnodes in the file system.
1858		 * Our count is maintained in the vfs structure, but the
1859		 * number is off by 1 to indicate a hold on the vfs
1860		 * structure itself.
1861		 *
1862		 * The '.zfs' directory maintains a reference of its
1863		 * own, and any active references underneath are
1864		 * reflected in the vnode count.
1865		 */
1866		if (zfsvfs->z_ctldir == NULL) {
1867			if (vfsp->vfs_count > 1)
1868				return (EBUSY);
1869		} else {
1870			if (vfsp->vfs_count > 2 ||
1871			    zfsvfs->z_ctldir->v_count > 1)
1872				return (EBUSY);
1873		}
1874	}
1875
1876	vfsp->vfs_flag |= VFS_UNMOUNTED;
1877
1878	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1879	os = zfsvfs->z_os;
1880
1881	/*
1882	 * z_os will be NULL if there was an error in
1883	 * attempting to reopen zfsvfs.
1884	 */
1885	if (os != NULL) {
1886		/*
1887		 * Unset the objset user_ptr.
1888		 */
1889		mutex_enter(&os->os_user_ptr_lock);
1890		dmu_objset_set_user(os, NULL);
1891		mutex_exit(&os->os_user_ptr_lock);
1892
1893		/*
1894		 * Finally release the objset
1895		 */
1896		dmu_objset_disown(os, zfsvfs);
1897	}
1898
1899	/*
1900	 * We can now safely destroy the '.zfs' directory node.
1901	 */
1902	if (zfsvfs->z_ctldir != NULL)
1903		zfsctl_destroy(zfsvfs);
1904
1905	return (0);
1906}
1907
1908static int
1909zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1910{
1911	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1912	znode_t		*zp;
1913	uint64_t	object = 0;
1914	uint64_t	fid_gen = 0;
1915	uint64_t	gen_mask;
1916	uint64_t	zp_gen;
1917	int 		i, err;
1918
1919	*vpp = NULL;
1920
1921	ZFS_ENTER(zfsvfs);
1922
1923	if (fidp->fid_len == LONG_FID_LEN) {
1924		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1925		uint64_t	objsetid = 0;
1926		uint64_t	setgen = 0;
1927
1928		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1929			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1930
1931		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1932			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1933
1934		ZFS_EXIT(zfsvfs);
1935
1936		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1937		if (err)
1938			return (EINVAL);
1939		ZFS_ENTER(zfsvfs);
1940	}
1941
1942	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1943		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1944
1945		for (i = 0; i < sizeof (zfid->zf_object); i++)
1946			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1947
1948		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1949			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1950	} else {
1951		ZFS_EXIT(zfsvfs);
1952		return (EINVAL);
1953	}
1954
1955	/* A zero fid_gen means we are in the .zfs control directories */
1956	if (fid_gen == 0 &&
1957	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1958		*vpp = zfsvfs->z_ctldir;
1959		ASSERT(*vpp != NULL);
1960		if (object == ZFSCTL_INO_SNAPDIR) {
1961			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1962			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1963		} else {
1964			VN_HOLD(*vpp);
1965		}
1966		ZFS_EXIT(zfsvfs);
1967		return (0);
1968	}
1969
1970	gen_mask = -1ULL >> (64 - 8 * i);
1971
1972	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1973	if (err = zfs_zget(zfsvfs, object, &zp)) {
1974		ZFS_EXIT(zfsvfs);
1975		return (err);
1976	}
1977	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1978	    sizeof (uint64_t));
1979	zp_gen = zp_gen & gen_mask;
1980	if (zp_gen == 0)
1981		zp_gen = 1;
1982	if (zp->z_unlinked || zp_gen != fid_gen) {
1983		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1984		VN_RELE(ZTOV(zp));
1985		ZFS_EXIT(zfsvfs);
1986		return (EINVAL);
1987	}
1988
1989	*vpp = ZTOV(zp);
1990	ZFS_EXIT(zfsvfs);
1991	return (0);
1992}
1993
1994/*
1995 * Block out VOPs and close zfsvfs_t::z_os
1996 *
1997 * Note, if successful, then we return with the 'z_teardown_lock' and
1998 * 'z_teardown_inactive_lock' write held.
1999 */
2000int
2001zfs_suspend_fs(zfsvfs_t *zfsvfs)
2002{
2003	int error;
2004
2005	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2006		return (error);
2007	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2008
2009	return (0);
2010}
2011
2012/*
2013 * Reopen zfsvfs_t::z_os and release VOPs.
2014 */
2015int
2016zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2017{
2018	int err, err2;
2019
2020	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2021	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2022
2023	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2024	    &zfsvfs->z_os);
2025	if (err) {
2026		zfsvfs->z_os = NULL;
2027	} else {
2028		znode_t *zp;
2029		uint64_t sa_obj = 0;
2030
2031		err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2032		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2033
2034		if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA)
2035			goto bail;
2036
2037
2038		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2039		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2040			goto bail;
2041
2042		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2043
2044		/*
2045		 * Attempt to re-establish all the active znodes with
2046		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2047		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2048		 * when they try to use their znode.
2049		 */
2050		mutex_enter(&zfsvfs->z_znodes_lock);
2051		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2052		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2053			(void) zfs_rezget(zp);
2054		}
2055		mutex_exit(&zfsvfs->z_znodes_lock);
2056
2057	}
2058
2059bail:
2060	/* release the VOPs */
2061	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2062	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2063
2064	if (err) {
2065		/*
2066		 * Since we couldn't reopen zfsvfs::z_os, force
2067		 * unmount this file system.
2068		 */
2069		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2070			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2071	}
2072	return (err);
2073}
2074
2075static void
2076zfs_freevfs(vfs_t *vfsp)
2077{
2078	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2079
2080	/*
2081	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2082	 * from zfs_mount().  Release it here.  If we came through
2083	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2084	 * skip the VFS_RELE for rootvfs.
2085	 */
2086	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2087		VFS_RELE(zfsvfs->z_parent->z_vfs);
2088
2089	zfsvfs_free(zfsvfs);
2090
2091	atomic_add_32(&zfs_active_fs_count, -1);
2092}
2093
2094/*
2095 * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2096 * so we can't safely do any non-idempotent initialization here.
2097 * Leave that to zfs_init() and zfs_fini(), which are called
2098 * from the module's _init() and _fini() entry points.
2099 */
2100/*ARGSUSED*/
2101static int
2102zfs_vfsinit(int fstype, char *name)
2103{
2104	int error;
2105
2106	zfsfstype = fstype;
2107
2108	/*
2109	 * Setup vfsops and vnodeops tables.
2110	 */
2111	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2112	if (error != 0) {
2113		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2114	}
2115
2116	error = zfs_create_op_tables();
2117	if (error) {
2118		zfs_remove_op_tables();
2119		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2120		(void) vfs_freevfsops_by_type(zfsfstype);
2121		return (error);
2122	}
2123
2124	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2125
2126	/*
2127	 * Unique major number for all zfs mounts.
2128	 * If we run out of 32-bit minors, we'll getudev() another major.
2129	 */
2130	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2131	zfs_minor = ZFS_MIN_MINOR;
2132
2133	return (0);
2134}
2135
2136void
2137zfs_init(void)
2138{
2139	/*
2140	 * Initialize .zfs directory structures
2141	 */
2142	zfsctl_init();
2143
2144	/*
2145	 * Initialize znode cache, vnode ops, etc...
2146	 */
2147	zfs_znode_init();
2148
2149	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2150}
2151
2152void
2153zfs_fini(void)
2154{
2155	zfsctl_fini();
2156	zfs_znode_fini();
2157}
2158
2159int
2160zfs_busy(void)
2161{
2162	return (zfs_active_fs_count != 0);
2163}
2164
2165int
2166zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2167{
2168	int error;
2169	objset_t *os = zfsvfs->z_os;
2170	dmu_tx_t *tx;
2171
2172	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2173		return (EINVAL);
2174
2175	if (newvers < zfsvfs->z_version)
2176		return (EINVAL);
2177
2178	if (zfs_spa_version_map(newvers) >
2179	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2180		return (ENOTSUP);
2181
2182	tx = dmu_tx_create(os);
2183	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2184	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2185		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2186		    ZFS_SA_ATTRS);
2187		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2188	}
2189	error = dmu_tx_assign(tx, TXG_WAIT);
2190	if (error) {
2191		dmu_tx_abort(tx);
2192		return (error);
2193	}
2194
2195	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2196	    8, 1, &newvers, tx);
2197
2198	if (error) {
2199		dmu_tx_commit(tx);
2200		return (error);
2201	}
2202
2203	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2204		uint64_t sa_obj;
2205
2206		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2207		    SPA_VERSION_SA);
2208		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2209		    DMU_OT_NONE, 0, tx);
2210
2211		error = zap_add(os, MASTER_NODE_OBJ,
2212		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2213		ASSERT3U(error, ==, 0);
2214
2215		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2216		sa_register_update_callback(os, zfs_sa_upgrade);
2217	}
2218
2219	spa_history_log_internal(LOG_DS_UPGRADE,
2220	    dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2221	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2222
2223	dmu_tx_commit(tx);
2224
2225	zfsvfs->z_version = newvers;
2226
2227	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2228		zfs_set_fuid_feature(zfsvfs);
2229
2230	return (0);
2231}
2232
2233/*
2234 * Read a property stored within the master node.
2235 */
2236int
2237zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2238{
2239	const char *pname;
2240	int error = ENOENT;
2241
2242	/*
2243	 * Look up the file system's value for the property.  For the
2244	 * version property, we look up a slightly different string.
2245	 */
2246	if (prop == ZFS_PROP_VERSION)
2247		pname = ZPL_VERSION_STR;
2248	else
2249		pname = zfs_prop_to_name(prop);
2250
2251	if (os != NULL)
2252		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2253
2254	if (error == ENOENT) {
2255		/* No value set, use the default value */
2256		switch (prop) {
2257		case ZFS_PROP_VERSION:
2258			*value = ZPL_VERSION;
2259			break;
2260		case ZFS_PROP_NORMALIZE:
2261		case ZFS_PROP_UTF8ONLY:
2262			*value = 0;
2263			break;
2264		case ZFS_PROP_CASE:
2265			*value = ZFS_CASE_SENSITIVE;
2266			break;
2267		default:
2268			return (error);
2269		}
2270		error = 0;
2271	}
2272	return (error);
2273}
2274
2275static vfsdef_t vfw = {
2276	VFSDEF_VERSION,
2277	MNTTYPE_ZFS,
2278	zfs_vfsinit,
2279	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2280	    VSW_XID|VSW_ZMOUNT,
2281	&zfs_mntopts
2282};
2283
2284struct modlfs zfs_modlfs = {
2285	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2286};
2287