vdev_queue.c revision 11066:cebb50cbe4f9
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/vdev_impl.h>
28#include <sys/zio.h>
29#include <sys/avl.h>
30
31/*
32 * These tunables are for performance analysis.
33 */
34/*
35 * zfs_vdev_max_pending is the maximum number of i/os concurrently
36 * pending to each device.  zfs_vdev_min_pending is the initial number
37 * of i/os pending to each device (before it starts ramping up to
38 * max_pending).
39 */
40int zfs_vdev_max_pending = 10;
41int zfs_vdev_min_pending = 4;
42
43/* deadline = pri + ddi_get_lbolt64() >> time_shift) */
44int zfs_vdev_time_shift = 6;
45
46/* exponential I/O issue ramp-up rate */
47int zfs_vdev_ramp_rate = 2;
48
49/*
50 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
51 * For read I/Os, we also aggregate across small adjacency gaps; for writes
52 * we include spans of optional I/Os to aid aggregation at the disk even when
53 * they aren't able to help us aggregate at this level.
54 */
55int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
56int zfs_vdev_read_gap_limit = 32 << 10;
57int zfs_vdev_write_gap_limit = 4 << 10;
58
59/*
60 * Virtual device vector for disk I/O scheduling.
61 */
62int
63vdev_queue_deadline_compare(const void *x1, const void *x2)
64{
65	const zio_t *z1 = x1;
66	const zio_t *z2 = x2;
67
68	if (z1->io_deadline < z2->io_deadline)
69		return (-1);
70	if (z1->io_deadline > z2->io_deadline)
71		return (1);
72
73	if (z1->io_offset < z2->io_offset)
74		return (-1);
75	if (z1->io_offset > z2->io_offset)
76		return (1);
77
78	if (z1 < z2)
79		return (-1);
80	if (z1 > z2)
81		return (1);
82
83	return (0);
84}
85
86int
87vdev_queue_offset_compare(const void *x1, const void *x2)
88{
89	const zio_t *z1 = x1;
90	const zio_t *z2 = x2;
91
92	if (z1->io_offset < z2->io_offset)
93		return (-1);
94	if (z1->io_offset > z2->io_offset)
95		return (1);
96
97	if (z1 < z2)
98		return (-1);
99	if (z1 > z2)
100		return (1);
101
102	return (0);
103}
104
105void
106vdev_queue_init(vdev_t *vd)
107{
108	vdev_queue_t *vq = &vd->vdev_queue;
109
110	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
111
112	avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
113	    sizeof (zio_t), offsetof(struct zio, io_deadline_node));
114
115	avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
116	    sizeof (zio_t), offsetof(struct zio, io_offset_node));
117
118	avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
119	    sizeof (zio_t), offsetof(struct zio, io_offset_node));
120
121	avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
122	    sizeof (zio_t), offsetof(struct zio, io_offset_node));
123}
124
125void
126vdev_queue_fini(vdev_t *vd)
127{
128	vdev_queue_t *vq = &vd->vdev_queue;
129
130	avl_destroy(&vq->vq_deadline_tree);
131	avl_destroy(&vq->vq_read_tree);
132	avl_destroy(&vq->vq_write_tree);
133	avl_destroy(&vq->vq_pending_tree);
134
135	mutex_destroy(&vq->vq_lock);
136}
137
138static void
139vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
140{
141	avl_add(&vq->vq_deadline_tree, zio);
142	avl_add(zio->io_vdev_tree, zio);
143}
144
145static void
146vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
147{
148	avl_remove(&vq->vq_deadline_tree, zio);
149	avl_remove(zio->io_vdev_tree, zio);
150}
151
152static void
153vdev_queue_agg_io_done(zio_t *aio)
154{
155	zio_t *pio;
156
157	while ((pio = zio_walk_parents(aio)) != NULL)
158		if (aio->io_type == ZIO_TYPE_READ)
159			bcopy((char *)aio->io_data + (pio->io_offset -
160			    aio->io_offset), pio->io_data, pio->io_size);
161
162	zio_buf_free(aio->io_data, aio->io_size);
163}
164
165/*
166 * Compute the range spanned by two i/os, which is the endpoint of the last
167 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
168 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
169 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
170 */
171#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
172#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
173
174static zio_t *
175vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
176{
177	zio_t *fio, *lio, *aio, *dio, *nio, *mio;
178	avl_tree_t *t;
179	int flags;
180	uint64_t maxspan = zfs_vdev_aggregation_limit;
181	uint64_t maxgap;
182	int stretch;
183
184again:
185	ASSERT(MUTEX_HELD(&vq->vq_lock));
186
187	if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
188	    avl_numnodes(&vq->vq_deadline_tree) == 0)
189		return (NULL);
190
191	fio = lio = avl_first(&vq->vq_deadline_tree);
192
193	t = fio->io_vdev_tree;
194	flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
195	maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
196
197	if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
198		/*
199		 * We can aggregate I/Os that are sufficiently adjacent and of
200		 * the same flavor, as expressed by the AGG_INHERIT flags.
201		 * The latter requirement is necessary so that certain
202		 * attributes of the I/O, such as whether it's a normal I/O
203		 * or a scrub/resilver, can be preserved in the aggregate.
204		 * We can include optional I/Os, but don't allow them
205		 * to begin a range as they add no benefit in that situation.
206		 */
207
208		/*
209		 * We keep track of the last non-optional I/O.
210		 */
211		mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
212
213		/*
214		 * Walk backwards through sufficiently contiguous I/Os
215		 * recording the last non-option I/O.
216		 */
217		while ((dio = AVL_PREV(t, fio)) != NULL &&
218		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
219		    IO_SPAN(dio, lio) <= maxspan &&
220		    IO_GAP(dio, fio) <= maxgap) {
221			fio = dio;
222			if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
223				mio = fio;
224		}
225
226		/*
227		 * Skip any initial optional I/Os.
228		 */
229		while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
230			fio = AVL_NEXT(t, fio);
231			ASSERT(fio != NULL);
232		}
233
234		/*
235		 * Walk forward through sufficiently contiguous I/Os.
236		 */
237		while ((dio = AVL_NEXT(t, lio)) != NULL &&
238		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
239		    IO_SPAN(fio, dio) <= maxspan &&
240		    IO_GAP(lio, dio) <= maxgap) {
241			lio = dio;
242			if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
243				mio = lio;
244		}
245
246		/*
247		 * Now that we've established the range of the I/O aggregation
248		 * we must decide what to do with trailing optional I/Os.
249		 * For reads, there's nothing to do. While we are unable to
250		 * aggregate further, it's possible that a trailing optional
251		 * I/O would allow the underlying device to aggregate with
252		 * subsequent I/Os. We must therefore determine if the next
253		 * non-optional I/O is close enough to make aggregation
254		 * worthwhile.
255		 */
256		stretch = B_FALSE;
257		if (t != &vq->vq_read_tree && mio != NULL) {
258			nio = lio;
259			while ((dio = AVL_NEXT(t, nio)) != NULL &&
260			    IO_GAP(nio, dio) == 0 &&
261			    IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
262				nio = dio;
263				if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
264					stretch = B_TRUE;
265					break;
266				}
267			}
268		}
269
270		if (stretch) {
271			/* This may be a no-op. */
272			VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
273			dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
274		} else {
275			while (lio != mio && lio != fio) {
276				ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
277				lio = AVL_PREV(t, lio);
278				ASSERT(lio != NULL);
279			}
280		}
281	}
282
283	if (fio != lio) {
284		uint64_t size = IO_SPAN(fio, lio);
285		ASSERT(size <= zfs_vdev_aggregation_limit);
286
287		aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
288		    zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_NOW,
289		    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
290		    vdev_queue_agg_io_done, NULL);
291
292		nio = fio;
293		do {
294			dio = nio;
295			nio = AVL_NEXT(t, dio);
296			ASSERT(dio->io_type == aio->io_type);
297			ASSERT(dio->io_vdev_tree == t);
298
299			if (dio->io_flags & ZIO_FLAG_NODATA) {
300				ASSERT(dio->io_type == ZIO_TYPE_WRITE);
301				bzero((char *)aio->io_data + (dio->io_offset -
302				    aio->io_offset), dio->io_size);
303			} else if (dio->io_type == ZIO_TYPE_WRITE) {
304				bcopy(dio->io_data, (char *)aio->io_data +
305				    (dio->io_offset - aio->io_offset),
306				    dio->io_size);
307			}
308
309			zio_add_child(dio, aio);
310			vdev_queue_io_remove(vq, dio);
311			zio_vdev_io_bypass(dio);
312			zio_execute(dio);
313		} while (dio != lio);
314
315		avl_add(&vq->vq_pending_tree, aio);
316
317		return (aio);
318	}
319
320	ASSERT(fio->io_vdev_tree == t);
321	vdev_queue_io_remove(vq, fio);
322
323	/*
324	 * If the I/O is or was optional and therefore has no data, we need to
325	 * simply discard it. We need to drop the vdev queue's lock to avoid a
326	 * deadlock that we could encounter since this I/O will complete
327	 * immediately.
328	 */
329	if (fio->io_flags & ZIO_FLAG_NODATA) {
330		mutex_exit(&vq->vq_lock);
331		zio_vdev_io_bypass(fio);
332		zio_execute(fio);
333		mutex_enter(&vq->vq_lock);
334		goto again;
335	}
336
337	avl_add(&vq->vq_pending_tree, fio);
338
339	return (fio);
340}
341
342zio_t *
343vdev_queue_io(zio_t *zio)
344{
345	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
346	zio_t *nio;
347
348	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
349
350	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
351		return (zio);
352
353	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
354
355	if (zio->io_type == ZIO_TYPE_READ)
356		zio->io_vdev_tree = &vq->vq_read_tree;
357	else
358		zio->io_vdev_tree = &vq->vq_write_tree;
359
360	mutex_enter(&vq->vq_lock);
361
362	zio->io_deadline = (ddi_get_lbolt64() >> zfs_vdev_time_shift) +
363	    zio->io_priority;
364
365	vdev_queue_io_add(vq, zio);
366
367	nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
368
369	mutex_exit(&vq->vq_lock);
370
371	if (nio == NULL)
372		return (NULL);
373
374	if (nio->io_done == vdev_queue_agg_io_done) {
375		zio_nowait(nio);
376		return (NULL);
377	}
378
379	return (nio);
380}
381
382void
383vdev_queue_io_done(zio_t *zio)
384{
385	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
386
387	mutex_enter(&vq->vq_lock);
388
389	avl_remove(&vq->vq_pending_tree, zio);
390
391	for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
392		zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
393		if (nio == NULL)
394			break;
395		mutex_exit(&vq->vq_lock);
396		if (nio->io_done == vdev_queue_agg_io_done) {
397			zio_nowait(nio);
398		} else {
399			zio_vdev_io_reissue(nio);
400			zio_execute(nio);
401		}
402		mutex_enter(&vq->vq_lock);
403	}
404
405	mutex_exit(&vq->vq_lock);
406}
407