space_map.c revision 8241:5a60f16123ba
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/spa.h>
28#include <sys/dmu.h>
29#include <sys/zio.h>
30#include <sys/space_map.h>
31
32/*
33 * Space map routines.
34 * NOTE: caller is responsible for all locking.
35 */
36static int
37space_map_seg_compare(const void *x1, const void *x2)
38{
39	const space_seg_t *s1 = x1;
40	const space_seg_t *s2 = x2;
41
42	if (s1->ss_start < s2->ss_start) {
43		if (s1->ss_end > s2->ss_start)
44			return (0);
45		return (-1);
46	}
47	if (s1->ss_start > s2->ss_start) {
48		if (s1->ss_start < s2->ss_end)
49			return (0);
50		return (1);
51	}
52	return (0);
53}
54
55void
56space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift,
57	kmutex_t *lp)
58{
59	bzero(sm, sizeof (*sm));
60
61	cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL);
62
63	avl_create(&sm->sm_root, space_map_seg_compare,
64	    sizeof (space_seg_t), offsetof(struct space_seg, ss_node));
65
66	sm->sm_start = start;
67	sm->sm_size = size;
68	sm->sm_shift = shift;
69	sm->sm_lock = lp;
70}
71
72void
73space_map_destroy(space_map_t *sm)
74{
75	ASSERT(!sm->sm_loaded && !sm->sm_loading);
76	VERIFY3U(sm->sm_space, ==, 0);
77	avl_destroy(&sm->sm_root);
78	cv_destroy(&sm->sm_load_cv);
79}
80
81void
82space_map_add(space_map_t *sm, uint64_t start, uint64_t size)
83{
84	avl_index_t where;
85	space_seg_t ssearch, *ss_before, *ss_after, *ss;
86	uint64_t end = start + size;
87	int merge_before, merge_after;
88
89	ASSERT(MUTEX_HELD(sm->sm_lock));
90	VERIFY(size != 0);
91	VERIFY3U(start, >=, sm->sm_start);
92	VERIFY3U(end, <=, sm->sm_start + sm->sm_size);
93	VERIFY(sm->sm_space + size <= sm->sm_size);
94	VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
95	VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
96
97	ssearch.ss_start = start;
98	ssearch.ss_end = end;
99	ss = avl_find(&sm->sm_root, &ssearch, &where);
100
101	if (ss != NULL && ss->ss_start <= start && ss->ss_end >= end) {
102		zfs_panic_recover("zfs: allocating allocated segment"
103		    "(offset=%llu size=%llu)\n",
104		    (longlong_t)start, (longlong_t)size);
105		return;
106	}
107
108	/* Make sure we don't overlap with either of our neighbors */
109	VERIFY(ss == NULL);
110
111	ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE);
112	ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER);
113
114	merge_before = (ss_before != NULL && ss_before->ss_end == start);
115	merge_after = (ss_after != NULL && ss_after->ss_start == end);
116
117	if (merge_before && merge_after) {
118		avl_remove(&sm->sm_root, ss_before);
119		ss_after->ss_start = ss_before->ss_start;
120		kmem_free(ss_before, sizeof (*ss_before));
121	} else if (merge_before) {
122		ss_before->ss_end = end;
123	} else if (merge_after) {
124		ss_after->ss_start = start;
125	} else {
126		ss = kmem_alloc(sizeof (*ss), KM_SLEEP);
127		ss->ss_start = start;
128		ss->ss_end = end;
129		avl_insert(&sm->sm_root, ss, where);
130	}
131
132	sm->sm_space += size;
133}
134
135void
136space_map_remove(space_map_t *sm, uint64_t start, uint64_t size)
137{
138	avl_index_t where;
139	space_seg_t ssearch, *ss, *newseg;
140	uint64_t end = start + size;
141	int left_over, right_over;
142
143	ASSERT(MUTEX_HELD(sm->sm_lock));
144	VERIFY(size != 0);
145	VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
146	VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
147
148	ssearch.ss_start = start;
149	ssearch.ss_end = end;
150	ss = avl_find(&sm->sm_root, &ssearch, &where);
151
152	/* Make sure we completely overlap with someone */
153	if (ss == NULL) {
154		zfs_panic_recover("zfs: freeing free segment "
155		    "(offset=%llu size=%llu)",
156		    (longlong_t)start, (longlong_t)size);
157		return;
158	}
159	VERIFY3U(ss->ss_start, <=, start);
160	VERIFY3U(ss->ss_end, >=, end);
161	VERIFY(sm->sm_space - size <= sm->sm_size);
162
163	left_over = (ss->ss_start != start);
164	right_over = (ss->ss_end != end);
165
166	if (left_over && right_over) {
167		newseg = kmem_alloc(sizeof (*newseg), KM_SLEEP);
168		newseg->ss_start = end;
169		newseg->ss_end = ss->ss_end;
170		ss->ss_end = start;
171		avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER);
172	} else if (left_over) {
173		ss->ss_end = start;
174	} else if (right_over) {
175		ss->ss_start = end;
176	} else {
177		avl_remove(&sm->sm_root, ss);
178		kmem_free(ss, sizeof (*ss));
179	}
180
181	sm->sm_space -= size;
182}
183
184boolean_t
185space_map_contains(space_map_t *sm, uint64_t start, uint64_t size)
186{
187	avl_index_t where;
188	space_seg_t ssearch, *ss;
189	uint64_t end = start + size;
190
191	ASSERT(MUTEX_HELD(sm->sm_lock));
192	VERIFY(size != 0);
193	VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
194	VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
195
196	ssearch.ss_start = start;
197	ssearch.ss_end = end;
198	ss = avl_find(&sm->sm_root, &ssearch, &where);
199
200	return (ss != NULL && ss->ss_start <= start && ss->ss_end >= end);
201}
202
203void
204space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
205{
206	space_seg_t *ss;
207	void *cookie = NULL;
208
209	ASSERT(MUTEX_HELD(sm->sm_lock));
210
211	while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
212		if (func != NULL)
213			func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
214		kmem_free(ss, sizeof (*ss));
215	}
216	sm->sm_space = 0;
217}
218
219void
220space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
221{
222	space_seg_t *ss;
223
224	ASSERT(MUTEX_HELD(sm->sm_lock));
225
226	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
227		func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
228}
229
230/*
231 * Wait for any in-progress space_map_load() to complete.
232 */
233void
234space_map_load_wait(space_map_t *sm)
235{
236	ASSERT(MUTEX_HELD(sm->sm_lock));
237
238	while (sm->sm_loading)
239		cv_wait(&sm->sm_load_cv, sm->sm_lock);
240}
241
242/*
243 * Note: space_map_load() will drop sm_lock across dmu_read() calls.
244 * The caller must be OK with this.
245 */
246int
247space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype,
248	space_map_obj_t *smo, objset_t *os)
249{
250	uint64_t *entry, *entry_map, *entry_map_end;
251	uint64_t bufsize, size, offset, end, space;
252	uint64_t mapstart = sm->sm_start;
253	int error = 0;
254
255	ASSERT(MUTEX_HELD(sm->sm_lock));
256
257	space_map_load_wait(sm);
258
259	if (sm->sm_loaded)
260		return (0);
261
262	sm->sm_loading = B_TRUE;
263	end = smo->smo_objsize;
264	space = smo->smo_alloc;
265
266	ASSERT(sm->sm_ops == NULL);
267	VERIFY3U(sm->sm_space, ==, 0);
268
269	if (maptype == SM_FREE) {
270		space_map_add(sm, sm->sm_start, sm->sm_size);
271		space = sm->sm_size - space;
272	}
273
274	bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT;
275	entry_map = zio_buf_alloc(bufsize);
276
277	mutex_exit(sm->sm_lock);
278	if (end > bufsize)
279		dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize);
280	mutex_enter(sm->sm_lock);
281
282	for (offset = 0; offset < end; offset += bufsize) {
283		size = MIN(end - offset, bufsize);
284		VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
285		VERIFY(size != 0);
286
287		dprintf("object=%llu  offset=%llx  size=%llx\n",
288		    smo->smo_object, offset, size);
289
290		mutex_exit(sm->sm_lock);
291		error = dmu_read(os, smo->smo_object, offset, size, entry_map);
292		mutex_enter(sm->sm_lock);
293		if (error != 0)
294			break;
295
296		entry_map_end = entry_map + (size / sizeof (uint64_t));
297		for (entry = entry_map; entry < entry_map_end; entry++) {
298			uint64_t e = *entry;
299
300			if (SM_DEBUG_DECODE(e))		/* Skip debug entries */
301				continue;
302
303			(SM_TYPE_DECODE(e) == maptype ?
304			    space_map_add : space_map_remove)(sm,
305			    (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart,
306			    SM_RUN_DECODE(e) << sm->sm_shift);
307		}
308	}
309
310	if (error == 0) {
311		VERIFY3U(sm->sm_space, ==, space);
312
313		sm->sm_loaded = B_TRUE;
314		sm->sm_ops = ops;
315		if (ops != NULL)
316			ops->smop_load(sm);
317	} else {
318		space_map_vacate(sm, NULL, NULL);
319	}
320
321	zio_buf_free(entry_map, bufsize);
322
323	sm->sm_loading = B_FALSE;
324
325	cv_broadcast(&sm->sm_load_cv);
326
327	return (error);
328}
329
330void
331space_map_unload(space_map_t *sm)
332{
333	ASSERT(MUTEX_HELD(sm->sm_lock));
334
335	if (sm->sm_loaded && sm->sm_ops != NULL)
336		sm->sm_ops->smop_unload(sm);
337
338	sm->sm_loaded = B_FALSE;
339	sm->sm_ops = NULL;
340
341	space_map_vacate(sm, NULL, NULL);
342}
343
344uint64_t
345space_map_alloc(space_map_t *sm, uint64_t size)
346{
347	uint64_t start;
348
349	start = sm->sm_ops->smop_alloc(sm, size);
350	if (start != -1ULL)
351		space_map_remove(sm, start, size);
352	return (start);
353}
354
355void
356space_map_claim(space_map_t *sm, uint64_t start, uint64_t size)
357{
358	sm->sm_ops->smop_claim(sm, start, size);
359	space_map_remove(sm, start, size);
360}
361
362void
363space_map_free(space_map_t *sm, uint64_t start, uint64_t size)
364{
365	space_map_add(sm, start, size);
366	sm->sm_ops->smop_free(sm, start, size);
367}
368
369/*
370 * Note: space_map_sync() will drop sm_lock across dmu_write() calls.
371 */
372void
373space_map_sync(space_map_t *sm, uint8_t maptype,
374	space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
375{
376	spa_t *spa = dmu_objset_spa(os);
377	void *cookie = NULL;
378	space_seg_t *ss;
379	uint64_t bufsize, start, size, run_len;
380	uint64_t *entry, *entry_map, *entry_map_end;
381
382	ASSERT(MUTEX_HELD(sm->sm_lock));
383
384	if (sm->sm_space == 0)
385		return;
386
387	dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n",
388	    smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa),
389	    maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root),
390	    sm->sm_space);
391
392	if (maptype == SM_ALLOC)
393		smo->smo_alloc += sm->sm_space;
394	else
395		smo->smo_alloc -= sm->sm_space;
396
397	bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t);
398	bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT);
399	entry_map = zio_buf_alloc(bufsize);
400	entry_map_end = entry_map + (bufsize / sizeof (uint64_t));
401	entry = entry_map;
402
403	*entry++ = SM_DEBUG_ENCODE(1) |
404	    SM_DEBUG_ACTION_ENCODE(maptype) |
405	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
406	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
407
408	while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
409		size = ss->ss_end - ss->ss_start;
410		start = (ss->ss_start - sm->sm_start) >> sm->sm_shift;
411
412		sm->sm_space -= size;
413		size >>= sm->sm_shift;
414
415		while (size) {
416			run_len = MIN(size, SM_RUN_MAX);
417
418			if (entry == entry_map_end) {
419				mutex_exit(sm->sm_lock);
420				dmu_write(os, smo->smo_object, smo->smo_objsize,
421				    bufsize, entry_map, tx);
422				mutex_enter(sm->sm_lock);
423				smo->smo_objsize += bufsize;
424				entry = entry_map;
425			}
426
427			*entry++ = SM_OFFSET_ENCODE(start) |
428			    SM_TYPE_ENCODE(maptype) |
429			    SM_RUN_ENCODE(run_len);
430
431			start += run_len;
432			size -= run_len;
433		}
434		kmem_free(ss, sizeof (*ss));
435	}
436
437	if (entry != entry_map) {
438		size = (entry - entry_map) * sizeof (uint64_t);
439		mutex_exit(sm->sm_lock);
440		dmu_write(os, smo->smo_object, smo->smo_objsize,
441		    size, entry_map, tx);
442		mutex_enter(sm->sm_lock);
443		smo->smo_objsize += size;
444	}
445
446	zio_buf_free(entry_map, bufsize);
447
448	VERIFY3U(sm->sm_space, ==, 0);
449}
450
451void
452space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
453{
454	VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0);
455
456	smo->smo_objsize = 0;
457	smo->smo_alloc = 0;
458}
459
460/*
461 * Space map reference trees.
462 *
463 * A space map is a collection of integers.  Every integer is either
464 * in the map, or it's not.  A space map reference tree generalizes
465 * the idea: it allows its members to have arbitrary reference counts,
466 * as opposed to the implicit reference count of 0 or 1 in a space map.
467 * This representation comes in handy when computing the union or
468 * intersection of multiple space maps.  For example, the union of
469 * N space maps is the subset of the reference tree with refcnt >= 1.
470 * The intersection of N space maps is the subset with refcnt >= N.
471 *
472 * [It's very much like a Fourier transform.  Unions and intersections
473 * are hard to perform in the 'space map domain', so we convert the maps
474 * into the 'reference count domain', where it's trivial, then invert.]
475 *
476 * vdev_dtl_reassess() uses computations of this form to determine
477 * DTL_MISSING and DTL_OUTAGE for interior vdevs -- e.g. a RAID-Z vdev
478 * has an outage wherever refcnt >= vdev_nparity + 1, and a mirror vdev
479 * has an outage wherever refcnt >= vdev_children.
480 */
481static int
482space_map_ref_compare(const void *x1, const void *x2)
483{
484	const space_ref_t *sr1 = x1;
485	const space_ref_t *sr2 = x2;
486
487	if (sr1->sr_offset < sr2->sr_offset)
488		return (-1);
489	if (sr1->sr_offset > sr2->sr_offset)
490		return (1);
491
492	if (sr1 < sr2)
493		return (-1);
494	if (sr1 > sr2)
495		return (1);
496
497	return (0);
498}
499
500void
501space_map_ref_create(avl_tree_t *t)
502{
503	avl_create(t, space_map_ref_compare,
504	    sizeof (space_ref_t), offsetof(space_ref_t, sr_node));
505}
506
507void
508space_map_ref_destroy(avl_tree_t *t)
509{
510	space_ref_t *sr;
511	void *cookie = NULL;
512
513	while ((sr = avl_destroy_nodes(t, &cookie)) != NULL)
514		kmem_free(sr, sizeof (*sr));
515
516	avl_destroy(t);
517}
518
519static void
520space_map_ref_add_node(avl_tree_t *t, uint64_t offset, int64_t refcnt)
521{
522	space_ref_t *sr;
523
524	sr = kmem_alloc(sizeof (*sr), KM_SLEEP);
525	sr->sr_offset = offset;
526	sr->sr_refcnt = refcnt;
527
528	avl_add(t, sr);
529}
530
531void
532space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end,
533	int64_t refcnt)
534{
535	space_map_ref_add_node(t, start, refcnt);
536	space_map_ref_add_node(t, end, -refcnt);
537}
538
539/*
540 * Convert (or add) a space map into a reference tree.
541 */
542void
543space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt)
544{
545	space_seg_t *ss;
546
547	ASSERT(MUTEX_HELD(sm->sm_lock));
548
549	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
550		space_map_ref_add_seg(t, ss->ss_start, ss->ss_end, refcnt);
551}
552
553/*
554 * Convert a reference tree into a space map.  The space map will contain
555 * all members of the reference tree for which refcnt >= minref.
556 */
557void
558space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref)
559{
560	uint64_t start = -1ULL;
561	int64_t refcnt = 0;
562	space_ref_t *sr;
563
564	ASSERT(MUTEX_HELD(sm->sm_lock));
565
566	space_map_vacate(sm, NULL, NULL);
567
568	for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) {
569		refcnt += sr->sr_refcnt;
570		if (refcnt >= minref) {
571			if (start == -1ULL) {
572				start = sr->sr_offset;
573			}
574		} else {
575			if (start != -1ULL) {
576				uint64_t end = sr->sr_offset;
577				ASSERT(start <= end);
578				if (end > start)
579					space_map_add(sm, start, end - start);
580				start = -1ULL;
581			}
582		}
583	}
584	ASSERT(refcnt == 0);
585	ASSERT(start == -1ULL);
586}
587