vfs.c revision 12633:9f2cda0ed938
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25/*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
26/*	  All Rights Reserved  	*/
27
28/*
29 * University Copyright- Copyright (c) 1982, 1986, 1988
30 * The Regents of the University of California
31 * All Rights Reserved
32 *
33 * University Acknowledgment- Portions of this document are derived from
34 * software developed by the University of California, Berkeley, and its
35 * contributors.
36 */
37
38#include <sys/types.h>
39#include <sys/t_lock.h>
40#include <sys/param.h>
41#include <sys/errno.h>
42#include <sys/user.h>
43#include <sys/fstyp.h>
44#include <sys/kmem.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/mount.h>
48#include <sys/vfs.h>
49#include <sys/vfs_opreg.h>
50#include <sys/fem.h>
51#include <sys/mntent.h>
52#include <sys/stat.h>
53#include <sys/statvfs.h>
54#include <sys/statfs.h>
55#include <sys/cred.h>
56#include <sys/vnode.h>
57#include <sys/rwstlock.h>
58#include <sys/dnlc.h>
59#include <sys/file.h>
60#include <sys/time.h>
61#include <sys/atomic.h>
62#include <sys/cmn_err.h>
63#include <sys/buf.h>
64#include <sys/swap.h>
65#include <sys/debug.h>
66#include <sys/vnode.h>
67#include <sys/modctl.h>
68#include <sys/ddi.h>
69#include <sys/pathname.h>
70#include <sys/bootconf.h>
71#include <sys/dumphdr.h>
72#include <sys/dc_ki.h>
73#include <sys/poll.h>
74#include <sys/sunddi.h>
75#include <sys/sysmacros.h>
76#include <sys/zone.h>
77#include <sys/policy.h>
78#include <sys/ctfs.h>
79#include <sys/objfs.h>
80#include <sys/console.h>
81#include <sys/reboot.h>
82#include <sys/attr.h>
83#include <sys/zio.h>
84#include <sys/spa.h>
85#include <sys/lofi.h>
86#include <sys/bootprops.h>
87
88#include <vm/page.h>
89
90#include <fs/fs_subr.h>
91/* Private interfaces to create vopstats-related data structures */
92extern void		initialize_vopstats(vopstats_t *);
93extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
94extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
95
96static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
97static void vfs_setmntopt_nolock(mntopts_t *, const char *,
98    const char *, int, int);
99static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
100static void vfs_freemnttab(struct vfs *);
101static void vfs_freeopt(mntopt_t *);
102static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
103static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
104static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
105static void vfs_createopttbl_extend(mntopts_t *, const char *,
106    const mntopts_t *);
107static char **vfs_copycancelopt_extend(char **const, int);
108static void vfs_freecancelopt(char **);
109static void getrootfs(char **, char **);
110static int getmacpath(dev_info_t *, void *);
111static void vfs_mnttabvp_setup(void);
112
113struct ipmnt {
114	struct ipmnt	*mip_next;
115	dev_t		mip_dev;
116	struct vfs	*mip_vfsp;
117};
118
119static kmutex_t		vfs_miplist_mutex;
120static struct ipmnt	*vfs_miplist = NULL;
121static struct ipmnt	*vfs_miplist_end = NULL;
122
123static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
124
125/*
126 * VFS global data.
127 */
128vnode_t *rootdir;		/* pointer to root inode vnode. */
129vnode_t *devicesdir;		/* pointer to inode of devices root */
130vnode_t	*devdir;		/* pointer to inode of dev root */
131
132char *server_rootpath;		/* root path for diskless clients */
133char *server_hostname;		/* hostname of diskless server */
134
135static struct vfs root;
136static struct vfs devices;
137static struct vfs dev;
138struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
139rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
140int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
141				/* must be power of 2!	*/
142timespec_t vfs_mnttab_ctime;	/* mnttab created time */
143timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
144char *vfs_dummyfstype = "\0";
145struct pollhead vfs_pollhd;	/* for mnttab pollers */
146struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
147int	mntfstype;		/* will be set once mnt fs is mounted */
148
149/*
150 * Table for generic options recognized in the VFS layer and acted
151 * on at this level before parsing file system specific options.
152 * The nosuid option is stronger than any of the devices and setuid
153 * options, so those are canceled when nosuid is seen.
154 *
155 * All options which are added here need to be added to the
156 * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
157 */
158/*
159 * VFS Mount options table
160 */
161static char *ro_cancel[] = { MNTOPT_RW, NULL };
162static char *rw_cancel[] = { MNTOPT_RO, NULL };
163static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
164static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
165    MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
166static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
167static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
168static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
169static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
170static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
171static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
172static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
173static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
174
175static const mntopt_t mntopts[] = {
176/*
177 *	option name		cancel options		default arg	flags
178 */
179	{ MNTOPT_REMOUNT,	NULL,			NULL,
180		MO_NODISPLAY, (void *)0 },
181	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
182		(void *)0 },
183	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
184		(void *)0 },
185	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
186		(void *)0 },
187	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
188		(void *)0 },
189	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
190		(void *)0 },
191	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
192		(void *)0 },
193	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
194		(void *)0 },
195	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
196		(void *)0 },
197	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
198		(void *)0 },
199	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
200		(void *)0 },
201	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
202		(void *)0 },
203	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
204		(void *)0 },
205};
206
207const mntopts_t vfs_mntopts = {
208	sizeof (mntopts) / sizeof (mntopt_t),
209	(mntopt_t *)&mntopts[0]
210};
211
212/*
213 * File system operation dispatch functions.
214 */
215
216int
217fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
218{
219	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
220}
221
222int
223fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
224{
225	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
226}
227
228int
229fsop_root(vfs_t *vfsp, vnode_t **vpp)
230{
231	refstr_t *mntpt;
232	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
233	/*
234	 * Make sure this root has a path.  With lofs, it is possible to have
235	 * a NULL mountpoint.
236	 */
237	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
238		mntpt = vfs_getmntpoint(vfsp);
239		vn_setpath_str(*vpp, refstr_value(mntpt),
240		    strlen(refstr_value(mntpt)));
241		refstr_rele(mntpt);
242	}
243
244	return (ret);
245}
246
247int
248fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
249{
250	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
251}
252
253int
254fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
255{
256	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
257}
258
259int
260fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
261{
262	/*
263	 * In order to handle system attribute fids in a manner
264	 * transparent to the underlying fs, we embed the fid for
265	 * the sysattr parent object in the sysattr fid and tack on
266	 * some extra bytes that only the sysattr layer knows about.
267	 *
268	 * This guarantees that sysattr fids are larger than other fids
269	 * for this vfs. If the vfs supports the sysattr view interface
270	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
271	 * collision with XATTR_FIDSZ.
272	 */
273	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
274	    fidp->fid_len == XATTR_FIDSZ)
275		return (xattr_dir_vget(vfsp, vpp, fidp));
276
277	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
278}
279
280int
281fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
282{
283	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
284}
285
286void
287fsop_freefs(vfs_t *vfsp)
288{
289	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
290}
291
292int
293fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
294{
295	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
296}
297
298int
299fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
300{
301	ASSERT((fstype >= 0) && (fstype < nfstype));
302
303	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
304		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
305	else
306		return (ENOTSUP);
307}
308
309/*
310 * File system initialization.  vfs_setfsops() must be called from a file
311 * system's init routine.
312 */
313
314static int
315fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
316    int *unused_ops)
317{
318	static const fs_operation_trans_def_t vfs_ops_table[] = {
319		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
320			fs_nosys, fs_nosys,
321
322		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
323			fs_nosys, fs_nosys,
324
325		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
326			fs_nosys, fs_nosys,
327
328		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
329			fs_nosys, fs_nosys,
330
331		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
332			(fs_generic_func_p) fs_sync,
333			(fs_generic_func_p) fs_sync,	/* No errors allowed */
334
335		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
336			fs_nosys, fs_nosys,
337
338		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
339			fs_nosys, fs_nosys,
340
341		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
342			(fs_generic_func_p)fs_freevfs,
343			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
344
345		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
346			(fs_generic_func_p)fs_nosys,
347			(fs_generic_func_p)fs_nosys,
348
349		NULL, 0, NULL, NULL
350	};
351
352	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
353}
354
355void
356zfs_boot_init() {
357
358	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
359		spa_boot_init();
360}
361
362int
363vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
364{
365	int error;
366	int unused_ops;
367
368	/*
369	 * Verify that fstype refers to a valid fs.  Note that
370	 * 0 is valid since it's used to set "stray" ops.
371	 */
372	if ((fstype < 0) || (fstype >= nfstype))
373		return (EINVAL);
374
375	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
376		return (EINVAL);
377
378	/* Set up the operations vector. */
379
380	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
381
382	if (error != 0)
383		return (error);
384
385	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
386
387	if (actual != NULL)
388		*actual = &vfssw[fstype].vsw_vfsops;
389
390#if DEBUG
391	if (unused_ops != 0)
392		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
393		    "but not used", vfssw[fstype].vsw_name, unused_ops);
394#endif
395
396	return (0);
397}
398
399int
400vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
401{
402	int error;
403	int unused_ops;
404
405	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
406
407	error = fs_copyfsops(template, *actual, &unused_ops);
408	if (error != 0) {
409		kmem_free(*actual, sizeof (vfsops_t));
410		*actual = NULL;
411		return (error);
412	}
413
414	return (0);
415}
416
417/*
418 * Free a vfsops structure created as a result of vfs_makefsops().
419 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
420 * vfs_freevfsops_by_type().
421 */
422void
423vfs_freevfsops(vfsops_t *vfsops)
424{
425	kmem_free(vfsops, sizeof (vfsops_t));
426}
427
428/*
429 * Since the vfsops structure is part of the vfssw table and wasn't
430 * really allocated, we're not really freeing anything.  We keep
431 * the name for consistency with vfs_freevfsops().  We do, however,
432 * need to take care of a little bookkeeping.
433 * NOTE: For a vfsops structure created by vfs_setfsops(), use
434 * vfs_freevfsops_by_type().
435 */
436int
437vfs_freevfsops_by_type(int fstype)
438{
439
440	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
441	if ((fstype <= 0) || (fstype >= nfstype))
442		return (EINVAL);
443
444	WLOCK_VFSSW();
445	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
446		WUNLOCK_VFSSW();
447		return (EINVAL);
448	}
449
450	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
451	WUNLOCK_VFSSW();
452
453	return (0);
454}
455
456/* Support routines used to reference vfs_op */
457
458/* Set the operations vector for a vfs */
459void
460vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
461{
462	vfsops_t	*op;
463
464	ASSERT(vfsp != NULL);
465	ASSERT(vfsops != NULL);
466
467	op = vfsp->vfs_op;
468	membar_consumer();
469	if (vfsp->vfs_femhead == NULL &&
470	    casptr(&vfsp->vfs_op, op, vfsops) == op) {
471		return;
472	}
473	fsem_setvfsops(vfsp, vfsops);
474}
475
476/* Retrieve the operations vector for a vfs */
477vfsops_t *
478vfs_getops(vfs_t *vfsp)
479{
480	vfsops_t	*op;
481
482	ASSERT(vfsp != NULL);
483
484	op = vfsp->vfs_op;
485	membar_consumer();
486	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
487		return (op);
488	} else {
489		return (fsem_getvfsops(vfsp));
490	}
491}
492
493/*
494 * Returns non-zero (1) if the vfsops matches that of the vfs.
495 * Returns zero (0) if not.
496 */
497int
498vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
499{
500	return (vfs_getops(vfsp) == vfsops);
501}
502
503/*
504 * Returns non-zero (1) if the file system has installed a non-default,
505 * non-error vfs_sync routine.  Returns zero (0) otherwise.
506 */
507int
508vfs_can_sync(vfs_t *vfsp)
509{
510	/* vfs_sync() routine is not the default/error function */
511	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
512}
513
514/*
515 * Initialize a vfs structure.
516 */
517void
518vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
519{
520	/* Other initialization has been moved to vfs_alloc() */
521	vfsp->vfs_count = 0;
522	vfsp->vfs_next = vfsp;
523	vfsp->vfs_prev = vfsp;
524	vfsp->vfs_zone_next = vfsp;
525	vfsp->vfs_zone_prev = vfsp;
526	vfsp->vfs_lofi_minor = 0;
527	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
528	vfsimpl_setup(vfsp);
529	vfsp->vfs_data = (data);
530	vfs_setops((vfsp), (op));
531}
532
533/*
534 * Allocate and initialize the vfs implementation private data
535 * structure, vfs_impl_t.
536 */
537void
538vfsimpl_setup(vfs_t *vfsp)
539{
540	int i;
541
542	if (vfsp->vfs_implp != NULL) {
543		return;
544	}
545
546	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
547	/* Note that these are #define'd in vfs.h */
548	vfsp->vfs_vskap = NULL;
549	vfsp->vfs_fstypevsp = NULL;
550
551	/* Set size of counted array, then zero the array */
552	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
553	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
554		vfsp->vfs_featureset[i] = 0;
555	}
556}
557
558/*
559 * Release the vfs_impl_t structure, if it exists. Some unbundled
560 * filesystems may not use the newer version of vfs and thus
561 * would not contain this implementation private data structure.
562 */
563void
564vfsimpl_teardown(vfs_t *vfsp)
565{
566	vfs_impl_t	*vip = vfsp->vfs_implp;
567
568	if (vip == NULL)
569		return;
570
571	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
572	vfsp->vfs_implp = NULL;
573}
574
575/*
576 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
577 * fstatvfs, and sysfs moved to common/syscall.
578 */
579
580/*
581 * Update every mounted file system.  We call the vfs_sync operation of
582 * each file system type, passing it a NULL vfsp to indicate that all
583 * mounted file systems of that type should be updated.
584 */
585void
586vfs_sync(int flag)
587{
588	struct vfssw *vswp;
589	RLOCK_VFSSW();
590	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
591		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
592			vfs_refvfssw(vswp);
593			RUNLOCK_VFSSW();
594			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
595			    CRED());
596			vfs_unrefvfssw(vswp);
597			RLOCK_VFSSW();
598		}
599	}
600	RUNLOCK_VFSSW();
601}
602
603void
604sync(void)
605{
606	vfs_sync(0);
607}
608
609/*
610 * External routines.
611 */
612
613krwlock_t vfssw_lock;	/* lock accesses to vfssw */
614
615/*
616 * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
617 * but otherwise should be accessed only via vfs_list_lock() and
618 * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
619 */
620static krwlock_t vfslist;
621
622/*
623 * Mount devfs on /devices. This is done right after root is mounted
624 * to provide device access support for the system
625 */
626static void
627vfs_mountdevices(void)
628{
629	struct vfssw *vsw;
630	struct vnode *mvp;
631	struct mounta mounta = {	/* fake mounta for devfs_mount() */
632		NULL,
633		NULL,
634		MS_SYSSPACE,
635		NULL,
636		NULL,
637		0,
638		NULL,
639		0
640	};
641
642	/*
643	 * _init devfs module to fill in the vfssw
644	 */
645	if (modload("fs", "devfs") == -1)
646		panic("Cannot _init devfs module");
647
648	/*
649	 * Hold vfs
650	 */
651	RLOCK_VFSSW();
652	vsw = vfs_getvfsswbyname("devfs");
653	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
654	VFS_HOLD(&devices);
655
656	/*
657	 * Locate mount point
658	 */
659	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
660		panic("Cannot find /devices");
661
662	/*
663	 * Perform the mount of /devices
664	 */
665	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
666		panic("Cannot mount /devices");
667
668	RUNLOCK_VFSSW();
669
670	/*
671	 * Set appropriate members and add to vfs list for mnttab display
672	 */
673	vfs_setresource(&devices, "/devices");
674	vfs_setmntpoint(&devices, "/devices");
675
676	/*
677	 * Hold the root of /devices so it won't go away
678	 */
679	if (VFS_ROOT(&devices, &devicesdir))
680		panic("vfs_mountdevices: not devices root");
681
682	if (vfs_lock(&devices) != 0) {
683		VN_RELE(devicesdir);
684		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
685		return;
686	}
687
688	if (vn_vfswlock(mvp) != 0) {
689		vfs_unlock(&devices);
690		VN_RELE(devicesdir);
691		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
692		return;
693	}
694
695	vfs_add(mvp, &devices, 0);
696	vn_vfsunlock(mvp);
697	vfs_unlock(&devices);
698	VN_RELE(devicesdir);
699}
700
701/*
702 * mount the first instance of /dev  to root and remain mounted
703 */
704static void
705vfs_mountdev1(void)
706{
707	struct vfssw *vsw;
708	struct vnode *mvp;
709	struct mounta mounta = {	/* fake mounta for sdev_mount() */
710		NULL,
711		NULL,
712		MS_SYSSPACE | MS_OVERLAY,
713		NULL,
714		NULL,
715		0,
716		NULL,
717		0
718	};
719
720	/*
721	 * _init dev module to fill in the vfssw
722	 */
723	if (modload("fs", "dev") == -1)
724		cmn_err(CE_PANIC, "Cannot _init dev module\n");
725
726	/*
727	 * Hold vfs
728	 */
729	RLOCK_VFSSW();
730	vsw = vfs_getvfsswbyname("dev");
731	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
732	VFS_HOLD(&dev);
733
734	/*
735	 * Locate mount point
736	 */
737	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
738		cmn_err(CE_PANIC, "Cannot find /dev\n");
739
740	/*
741	 * Perform the mount of /dev
742	 */
743	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
744		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
745
746	RUNLOCK_VFSSW();
747
748	/*
749	 * Set appropriate members and add to vfs list for mnttab display
750	 */
751	vfs_setresource(&dev, "/dev");
752	vfs_setmntpoint(&dev, "/dev");
753
754	/*
755	 * Hold the root of /dev so it won't go away
756	 */
757	if (VFS_ROOT(&dev, &devdir))
758		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
759
760	if (vfs_lock(&dev) != 0) {
761		VN_RELE(devdir);
762		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
763		return;
764	}
765
766	if (vn_vfswlock(mvp) != 0) {
767		vfs_unlock(&dev);
768		VN_RELE(devdir);
769		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
770		return;
771	}
772
773	vfs_add(mvp, &dev, 0);
774	vn_vfsunlock(mvp);
775	vfs_unlock(&dev);
776	VN_RELE(devdir);
777}
778
779/*
780 * Mount required filesystem. This is done right after root is mounted.
781 */
782static void
783vfs_mountfs(char *module, char *spec, char *path)
784{
785	struct vnode *mvp;
786	struct mounta mounta;
787	vfs_t *vfsp;
788
789	mounta.flags = MS_SYSSPACE | MS_DATA;
790	mounta.fstype = module;
791	mounta.spec = spec;
792	mounta.dir = path;
793	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
794		cmn_err(CE_WARN, "Cannot find %s", path);
795		return;
796	}
797	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
798		cmn_err(CE_WARN, "Cannot mount %s", path);
799	else
800		VFS_RELE(vfsp);
801	VN_RELE(mvp);
802}
803
804/*
805 * vfs_mountroot is called by main() to mount the root filesystem.
806 */
807void
808vfs_mountroot(void)
809{
810	struct vnode	*rvp = NULL;
811	char		*path;
812	size_t		plen;
813	struct vfssw	*vswp;
814	proc_t		*p;
815
816	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
817	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
818
819	/*
820	 * Alloc the vfs hash bucket array and locks
821	 */
822	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
823
824	/*
825	 * Call machine-dependent routine "rootconf" to choose a root
826	 * file system type.
827	 */
828	if (rootconf())
829		panic("vfs_mountroot: cannot mount root");
830	/*
831	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
832	 * to point to it.  These are used by lookuppn() so that it
833	 * knows where to start from ('/' or '.').
834	 */
835	vfs_setmntpoint(rootvfs, "/");
836	if (VFS_ROOT(rootvfs, &rootdir))
837		panic("vfs_mountroot: no root vnode");
838
839	/*
840	 * At this point, the process tree consists of p0 and possibly some
841	 * direct children of p0.  (i.e. there are no grandchildren)
842	 *
843	 * Walk through them all, setting their current directory.
844	 */
845	mutex_enter(&pidlock);
846	for (p = practive; p != NULL; p = p->p_next) {
847		ASSERT(p == &p0 || p->p_parent == &p0);
848
849		PTOU(p)->u_cdir = rootdir;
850		VN_HOLD(PTOU(p)->u_cdir);
851		PTOU(p)->u_rdir = NULL;
852	}
853	mutex_exit(&pidlock);
854
855	/*
856	 * Setup the global zone's rootvp, now that it exists.
857	 */
858	global_zone->zone_rootvp = rootdir;
859	VN_HOLD(global_zone->zone_rootvp);
860
861	/*
862	 * Notify the module code that it can begin using the
863	 * root filesystem instead of the boot program's services.
864	 */
865	modrootloaded = 1;
866
867	/*
868	 * Special handling for a ZFS root file system.
869	 */
870	zfs_boot_init();
871
872	/*
873	 * Set up mnttab information for root
874	 */
875	vfs_setresource(rootvfs, rootfs.bo_name);
876
877	/*
878	 * Notify cluster software that the root filesystem is available.
879	 */
880	clboot_mountroot();
881
882	/* Now that we're all done with the root FS, set up its vopstats */
883	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
884		/* Set flag for statistics collection */
885		if (vswp->vsw_flag & VSW_STATS) {
886			initialize_vopstats(&rootvfs->vfs_vopstats);
887			rootvfs->vfs_flag |= VFS_STATS;
888			rootvfs->vfs_fstypevsp =
889			    get_fstype_vopstats(rootvfs, vswp);
890			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
891		}
892		vfs_unrefvfssw(vswp);
893	}
894
895	/*
896	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
897	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
898	 */
899	vfs_mountdevices();
900	vfs_mountdev1();
901
902	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
903	vfs_mountfs("proc", "/proc", "/proc");
904	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
905	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
906	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
907
908	if (getzoneid() == GLOBAL_ZONEID) {
909		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
910	}
911
912#ifdef __sparc
913	/*
914	 * This bit of magic can go away when we convert sparc to
915	 * the new boot architecture based on ramdisk.
916	 *
917	 * Booting off a mirrored root volume:
918	 * At this point, we have booted and mounted root on a
919	 * single component of the mirror.  Complete the boot
920	 * by configuring SVM and converting the root to the
921	 * dev_t of the mirrored root device.  This dev_t conversion
922	 * only works because the underlying device doesn't change.
923	 */
924	if (root_is_svm) {
925		if (svm_rootconf()) {
926			panic("vfs_mountroot: cannot remount root");
927		}
928
929		/*
930		 * mnttab should reflect the new root device
931		 */
932		vfs_lock_wait(rootvfs);
933		vfs_setresource(rootvfs, rootfs.bo_name);
934		vfs_unlock(rootvfs);
935	}
936#endif /* __sparc */
937
938	/*
939	 * Look up the root device via devfs so that a dv_node is
940	 * created for it. The vnode is never VN_RELE()ed.
941	 * We allocate more than MAXPATHLEN so that the
942	 * buffer passed to i_ddi_prompath_to_devfspath() is
943	 * exactly MAXPATHLEN (the function expects a buffer
944	 * of that length).
945	 */
946	plen = strlen("/devices");
947	path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
948	(void) strcpy(path, "/devices");
949
950	if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
951	    != DDI_SUCCESS ||
952	    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
953
954		/* NUL terminate in case "path" has garbage */
955		path[plen + MAXPATHLEN - 1] = '\0';
956#ifdef	DEBUG
957		cmn_err(CE_WARN, "!Cannot lookup root device: %s", path);
958#endif
959	}
960	kmem_free(path, plen + MAXPATHLEN);
961	vfs_mnttabvp_setup();
962}
963
964/*
965 * If remount failed and we're in a zone we need to check for the zone
966 * root path and strip it before the call to vfs_setpath().
967 *
968 * If strpath doesn't begin with the zone_rootpath the original
969 * strpath is returned unchanged.
970 */
971static const char *
972stripzonepath(const char *strpath)
973{
974	char *str1, *str2;
975	int i;
976	zone_t *zonep = curproc->p_zone;
977
978	if (zonep->zone_rootpath == NULL || strpath == NULL) {
979		return (NULL);
980	}
981
982	/*
983	 * we check for the end of the string at one past the
984	 * current position because the zone_rootpath always
985	 * ends with "/" but we don't want to strip that off.
986	 */
987	str1 = zonep->zone_rootpath;
988	str2 = (char *)strpath;
989	ASSERT(str1[0] != '\0');
990	for (i = 0; str1[i + 1] != '\0'; i++) {
991		if (str1[i] != str2[i])
992			return ((char *)strpath);
993	}
994	return (&str2[i]);
995}
996
997/*
998 * Check to see if our "block device" is actually a file.  If so,
999 * automatically add a lofi device, and keep track of this fact.
1000 */
1001static int
1002lofi_add(const char *fsname, struct vfs *vfsp,
1003    mntopts_t *mntopts, struct mounta *uap)
1004{
1005	int fromspace = (uap->flags & MS_SYSSPACE) ?
1006	    UIO_SYSSPACE : UIO_USERSPACE;
1007	struct lofi_ioctl *li = NULL;
1008	struct vnode *vp = NULL;
1009	struct pathname	pn = { NULL };
1010	ldi_ident_t ldi_id;
1011	ldi_handle_t ldi_hdl;
1012	vfssw_t *vfssw;
1013	int minor;
1014	int err = 0;
1015
1016	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
1017		return (0);
1018
1019	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1020		vfs_unrefvfssw(vfssw);
1021		return (0);
1022	}
1023
1024	vfs_unrefvfssw(vfssw);
1025	vfssw = NULL;
1026
1027	if (pn_get(uap->spec, fromspace, &pn) != 0)
1028		return (0);
1029
1030	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1031		goto out;
1032
1033	if (vp->v_type != VREG)
1034		goto out;
1035
1036	/* OK, this is a lofi mount. */
1037
1038	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1039	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1040	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1041	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1042		err = EINVAL;
1043		goto out;
1044	}
1045
1046	ldi_id = ldi_ident_from_anon();
1047	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1048	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1049
1050	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1051	    &ldi_hdl, ldi_id);
1052
1053	if (err)
1054		goto out2;
1055
1056	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1057	    FREAD | FWRITE | FKIOCTL, kcred, &minor);
1058
1059	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1060
1061	if (!err)
1062		vfsp->vfs_lofi_minor = minor;
1063
1064out2:
1065	ldi_ident_release(ldi_id);
1066out:
1067	if (li != NULL)
1068		kmem_free(li, sizeof (*li));
1069	if (vp != NULL)
1070		VN_RELE(vp);
1071	pn_free(&pn);
1072	return (err);
1073}
1074
1075static void
1076lofi_remove(struct vfs *vfsp)
1077{
1078	struct lofi_ioctl *li = NULL;
1079	ldi_ident_t ldi_id;
1080	ldi_handle_t ldi_hdl;
1081	int err;
1082
1083	if (vfsp->vfs_lofi_minor == 0)
1084		return;
1085
1086	ldi_id = ldi_ident_from_anon();
1087
1088	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1089	li->li_minor = vfsp->vfs_lofi_minor;
1090	li->li_cleanup = B_TRUE;
1091
1092	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1093	    &ldi_hdl, ldi_id);
1094
1095	if (err)
1096		goto out;
1097
1098	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1099	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1100
1101	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1102
1103	if (!err)
1104		vfsp->vfs_lofi_minor = 0;
1105
1106out:
1107	ldi_ident_release(ldi_id);
1108	if (li != NULL)
1109		kmem_free(li, sizeof (*li));
1110}
1111
1112/*
1113 * Common mount code.  Called from the system call entry point, from autofs,
1114 * nfsv4 trigger mounts, and from pxfs.
1115 *
1116 * Takes the effective file system type, mount arguments, the mount point
1117 * vnode, flags specifying whether the mount is a remount and whether it
1118 * should be entered into the vfs list, and credentials.  Fills in its vfspp
1119 * parameter with the mounted file system instance's vfs.
1120 *
1121 * Note that the effective file system type is specified as a string.  It may
1122 * be null, in which case it's determined from the mount arguments, and may
1123 * differ from the type specified in the mount arguments; this is a hook to
1124 * allow interposition when instantiating file system instances.
1125 *
1126 * The caller is responsible for releasing its own hold on the mount point
1127 * vp (this routine does its own hold when necessary).
1128 * Also note that for remounts, the mount point vp should be the vnode for
1129 * the root of the file system rather than the vnode that the file system
1130 * is mounted on top of.
1131 */
1132int
1133domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1134	struct vfs **vfspp)
1135{
1136	struct vfssw	*vswp;
1137	vfsops_t	*vfsops;
1138	struct vfs	*vfsp;
1139	struct vnode	*bvp;
1140	dev_t		bdev = 0;
1141	mntopts_t	mnt_mntopts;
1142	int		error = 0;
1143	int		copyout_error = 0;
1144	int		ovflags;
1145	char		*opts = uap->optptr;
1146	char		*inargs = opts;
1147	int		optlen = uap->optlen;
1148	int		remount;
1149	int		rdonly;
1150	int		nbmand = 0;
1151	int		delmip = 0;
1152	int		addmip = 0;
1153	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1154	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1155	    UIO_SYSSPACE : UIO_USERSPACE;
1156	char		*resource = NULL, *mountpt = NULL;
1157	refstr_t	*oldresource, *oldmntpt;
1158	struct pathname	pn, rpn;
1159	vsk_anchor_t	*vskap;
1160	char fstname[FSTYPSZ];
1161
1162	/*
1163	 * The v_flag value for the mount point vp is permanently set
1164	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1165	 * for mount point locking.
1166	 */
1167	mutex_enter(&vp->v_lock);
1168	vp->v_flag |= VVFSLOCK;
1169	mutex_exit(&vp->v_lock);
1170
1171	mnt_mntopts.mo_count = 0;
1172	/*
1173	 * Find the ops vector to use to invoke the file system-specific mount
1174	 * method.  If the fsname argument is non-NULL, use it directly.
1175	 * Otherwise, dig the file system type information out of the mount
1176	 * arguments.
1177	 *
1178	 * A side effect is to hold the vfssw entry.
1179	 *
1180	 * Mount arguments can be specified in several ways, which are
1181	 * distinguished by flag bit settings.  The preferred way is to set
1182	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1183	 * type supplied as a character string and the last two arguments
1184	 * being a pointer to a character buffer and the size of the buffer.
1185	 * On entry, the buffer holds a null terminated list of options; on
1186	 * return, the string is the list of options the file system
1187	 * recognized. If MS_DATA is set arguments five and six point to a
1188	 * block of binary data which the file system interprets.
1189	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1190	 * consistently with these conventions.  To handle them, we check to
1191	 * see whether the pointer to the file system name has a numeric value
1192	 * less than 256.  If so, we treat it as an index.
1193	 */
1194	if (fsname != NULL) {
1195		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1196			return (EINVAL);
1197		}
1198	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1199		size_t n;
1200		uint_t fstype;
1201
1202		fsname = fstname;
1203
1204		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1205			RLOCK_VFSSW();
1206			if (fstype == 0 || fstype >= nfstype ||
1207			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1208				RUNLOCK_VFSSW();
1209				return (EINVAL);
1210			}
1211			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1212			RUNLOCK_VFSSW();
1213			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1214				return (EINVAL);
1215		} else {
1216			/*
1217			 * Handle either kernel or user address space.
1218			 */
1219			if (uap->flags & MS_SYSSPACE) {
1220				error = copystr(uap->fstype, fsname,
1221				    FSTYPSZ, &n);
1222			} else {
1223				error = copyinstr(uap->fstype, fsname,
1224				    FSTYPSZ, &n);
1225			}
1226			if (error) {
1227				if (error == ENAMETOOLONG)
1228					return (EINVAL);
1229				return (error);
1230			}
1231			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1232				return (EINVAL);
1233		}
1234	} else {
1235		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1236			return (EINVAL);
1237		fsname = vswp->vsw_name;
1238	}
1239	if (!VFS_INSTALLED(vswp))
1240		return (EINVAL);
1241
1242	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1243		vfs_unrefvfssw(vswp);
1244		return (error);
1245	}
1246
1247	vfsops = &vswp->vsw_vfsops;
1248
1249	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1250	/*
1251	 * Fetch mount options and parse them for generic vfs options
1252	 */
1253	if (uap->flags & MS_OPTIONSTR) {
1254		/*
1255		 * Limit the buffer size
1256		 */
1257		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1258			error = EINVAL;
1259			goto errout;
1260		}
1261		if ((uap->flags & MS_SYSSPACE) == 0) {
1262			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1263			inargs[0] = '\0';
1264			if (optlen) {
1265				error = copyinstr(opts, inargs, (size_t)optlen,
1266				    NULL);
1267				if (error) {
1268					goto errout;
1269				}
1270			}
1271		}
1272		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1273	}
1274	/*
1275	 * Flag bits override the options string.
1276	 */
1277	if (uap->flags & MS_REMOUNT)
1278		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1279	if (uap->flags & MS_RDONLY)
1280		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1281	if (uap->flags & MS_NOSUID)
1282		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1283
1284	/*
1285	 * Check if this is a remount; must be set in the option string and
1286	 * the file system must support a remount option.
1287	 */
1288	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1289	    MNTOPT_REMOUNT, NULL)) {
1290		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1291			error = ENOTSUP;
1292			goto errout;
1293		}
1294		uap->flags |= MS_REMOUNT;
1295	}
1296
1297	/*
1298	 * uap->flags and vfs_optionisset() should agree.
1299	 */
1300	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1301		uap->flags |= MS_RDONLY;
1302	}
1303	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1304		uap->flags |= MS_NOSUID;
1305	}
1306	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1307	ASSERT(splice || !remount);
1308	/*
1309	 * If we are splicing the fs into the namespace,
1310	 * perform mount point checks.
1311	 *
1312	 * We want to resolve the path for the mount point to eliminate
1313	 * '.' and ".." and symlinks in mount points; we can't do the
1314	 * same for the resource string, since it would turn
1315	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1316	 * this before grabbing vn_vfswlock(), because otherwise we
1317	 * would deadlock with lookuppn().
1318	 */
1319	if (splice) {
1320		ASSERT(vp->v_count > 0);
1321
1322		/*
1323		 * Pick up mount point and device from appropriate space.
1324		 */
1325		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1326			resource = kmem_alloc(pn.pn_pathlen + 1,
1327			    KM_SLEEP);
1328			(void) strcpy(resource, pn.pn_path);
1329			pn_free(&pn);
1330		}
1331		/*
1332		 * Do a lookupname prior to taking the
1333		 * writelock. Mark this as completed if
1334		 * successful for later cleanup and addition to
1335		 * the mount in progress table.
1336		 */
1337		if ((uap->flags & MS_GLOBAL) == 0 &&
1338		    lookupname(uap->spec, fromspace,
1339		    FOLLOW, NULL, &bvp) == 0) {
1340			addmip = 1;
1341		}
1342
1343		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1344			pathname_t *pnp;
1345
1346			if (*pn.pn_path != '/') {
1347				error = EINVAL;
1348				pn_free(&pn);
1349				goto errout;
1350			}
1351			pn_alloc(&rpn);
1352			/*
1353			 * Kludge to prevent autofs from deadlocking with
1354			 * itself when it calls domount().
1355			 *
1356			 * If autofs is calling, it is because it is doing
1357			 * (autofs) mounts in the process of an NFS mount.  A
1358			 * lookuppn() here would cause us to block waiting for
1359			 * said NFS mount to complete, which can't since this
1360			 * is the thread that was supposed to doing it.
1361			 */
1362			if (fromspace == UIO_USERSPACE) {
1363				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1364				    NULL)) == 0) {
1365					pnp = &rpn;
1366				} else {
1367					/*
1368					 * The file disappeared or otherwise
1369					 * became inaccessible since we opened
1370					 * it; might as well fail the mount
1371					 * since the mount point is no longer
1372					 * accessible.
1373					 */
1374					pn_free(&rpn);
1375					pn_free(&pn);
1376					goto errout;
1377				}
1378			} else {
1379				pnp = &pn;
1380			}
1381			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1382			(void) strcpy(mountpt, pnp->pn_path);
1383
1384			/*
1385			 * If the addition of the zone's rootpath
1386			 * would push us over a total path length
1387			 * of MAXPATHLEN, we fail the mount with
1388			 * ENAMETOOLONG, which is what we would have
1389			 * gotten if we were trying to perform the same
1390			 * mount in the global zone.
1391			 *
1392			 * strlen() doesn't count the trailing
1393			 * '\0', but zone_rootpathlen counts both a
1394			 * trailing '/' and the terminating '\0'.
1395			 */
1396			if ((curproc->p_zone->zone_rootpathlen - 1 +
1397			    strlen(mountpt)) > MAXPATHLEN ||
1398			    (resource != NULL &&
1399			    (curproc->p_zone->zone_rootpathlen - 1 +
1400			    strlen(resource)) > MAXPATHLEN)) {
1401				error = ENAMETOOLONG;
1402			}
1403
1404			pn_free(&rpn);
1405			pn_free(&pn);
1406		}
1407
1408		if (error)
1409			goto errout;
1410
1411		/*
1412		 * Prevent path name resolution from proceeding past
1413		 * the mount point.
1414		 */
1415		if (vn_vfswlock(vp) != 0) {
1416			error = EBUSY;
1417			goto errout;
1418		}
1419
1420		/*
1421		 * Verify that it's legitimate to establish a mount on
1422		 * the prospective mount point.
1423		 */
1424		if (vn_mountedvfs(vp) != NULL) {
1425			/*
1426			 * The mount point lock was obtained after some
1427			 * other thread raced through and established a mount.
1428			 */
1429			vn_vfsunlock(vp);
1430			error = EBUSY;
1431			goto errout;
1432		}
1433		if (vp->v_flag & VNOMOUNT) {
1434			vn_vfsunlock(vp);
1435			error = EINVAL;
1436			goto errout;
1437		}
1438	}
1439	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1440		uap->dataptr = NULL;
1441		uap->datalen = 0;
1442	}
1443
1444	/*
1445	 * If this is a remount, we don't want to create a new VFS.
1446	 * Instead, we pass the existing one with a remount flag.
1447	 */
1448	if (remount) {
1449		/*
1450		 * Confirm that the mount point is the root vnode of the
1451		 * file system that is being remounted.
1452		 * This can happen if the user specifies a different
1453		 * mount point directory pathname in the (re)mount command.
1454		 *
1455		 * Code below can only be reached if splice is true, so it's
1456		 * safe to do vn_vfsunlock() here.
1457		 */
1458		if ((vp->v_flag & VROOT) == 0) {
1459			vn_vfsunlock(vp);
1460			error = ENOENT;
1461			goto errout;
1462		}
1463		/*
1464		 * Disallow making file systems read-only unless file system
1465		 * explicitly allows it in its vfssw.  Ignore other flags.
1466		 */
1467		if (rdonly && vn_is_readonly(vp) == 0 &&
1468		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1469			vn_vfsunlock(vp);
1470			error = EINVAL;
1471			goto errout;
1472		}
1473		/*
1474		 * Disallow changing the NBMAND disposition of the file
1475		 * system on remounts.
1476		 */
1477		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1478		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1479			vn_vfsunlock(vp);
1480			error = EINVAL;
1481			goto errout;
1482		}
1483		vfsp = vp->v_vfsp;
1484		ovflags = vfsp->vfs_flag;
1485		vfsp->vfs_flag |= VFS_REMOUNT;
1486		vfsp->vfs_flag &= ~VFS_RDONLY;
1487	} else {
1488		vfsp = vfs_alloc(KM_SLEEP);
1489		VFS_INIT(vfsp, vfsops, NULL);
1490	}
1491
1492	VFS_HOLD(vfsp);
1493
1494	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1495		if (!remount) {
1496			if (splice)
1497				vn_vfsunlock(vp);
1498			vfs_free(vfsp);
1499		} else {
1500			vn_vfsunlock(vp);
1501			VFS_RELE(vfsp);
1502		}
1503		goto errout;
1504	}
1505
1506	/*
1507	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1508	 */
1509	if (vfsp->vfs_lofi_minor != 0) {
1510		uap->flags |= MS_NOSUID;
1511		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1512	}
1513
1514	/*
1515	 * The vfs_reflock is not used anymore the code below explicitly
1516	 * holds it preventing others accesing it directly.
1517	 */
1518	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1519	    !(vfsp->vfs_flag & VFS_REMOUNT))
1520		cmn_err(CE_WARN,
1521		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1522
1523	/*
1524	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1525	 * failures that happen as a side-effect of fsflush() and other mount
1526	 * and unmount operations that might be going on simultaneously and
1527	 * may have locked the vfs currently. To not return EBUSY immediately
1528	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1529	 */
1530	if (!remount) {
1531		if (error = vfs_lock(vfsp)) {
1532			vfsp->vfs_flag = ovflags;
1533
1534			lofi_remove(vfsp);
1535
1536			if (splice)
1537				vn_vfsunlock(vp);
1538			vfs_free(vfsp);
1539			goto errout;
1540		}
1541	} else {
1542		vfs_lock_wait(vfsp);
1543	}
1544
1545	/*
1546	 * Add device to mount in progress table, global mounts require special
1547	 * handling. It is possible that we have already done the lookupname
1548	 * on a spliced, non-global fs. If so, we don't want to do it again
1549	 * since we cannot do a lookupname after taking the
1550	 * wlock above. This case is for a non-spliced, non-global filesystem.
1551	 */
1552	if (!addmip) {
1553		if ((uap->flags & MS_GLOBAL) == 0 &&
1554		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1555			addmip = 1;
1556		}
1557	}
1558
1559	if (addmip) {
1560		vnode_t *lvp = NULL;
1561
1562		error = vfs_get_lofi(vfsp, &lvp);
1563		if (error > 0) {
1564			lofi_remove(vfsp);
1565
1566			if (splice)
1567				vn_vfsunlock(vp);
1568			vfs_unlock(vfsp);
1569
1570			if (remount) {
1571				VFS_RELE(vfsp);
1572			} else {
1573				vfs_free(vfsp);
1574			}
1575
1576			goto errout;
1577		} else if (error == -1) {
1578			bdev = bvp->v_rdev;
1579			VN_RELE(bvp);
1580		} else {
1581			bdev = lvp->v_rdev;
1582			VN_RELE(lvp);
1583			VN_RELE(bvp);
1584		}
1585
1586		vfs_addmip(bdev, vfsp);
1587		addmip = 0;
1588		delmip = 1;
1589	}
1590	/*
1591	 * Invalidate cached entry for the mount point.
1592	 */
1593	if (splice)
1594		dnlc_purge_vp(vp);
1595
1596	/*
1597	 * If have an option string but the filesystem doesn't supply a
1598	 * prototype options table, create a table with the global
1599	 * options and sufficient room to accept all the options in the
1600	 * string.  Then parse the passed in option string
1601	 * accepting all the options in the string.  This gives us an
1602	 * option table with all the proper cancel properties for the
1603	 * global options.
1604	 *
1605	 * Filesystems that supply a prototype options table are handled
1606	 * earlier in this function.
1607	 */
1608	if (uap->flags & MS_OPTIONSTR) {
1609		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1610			mntopts_t tmp_mntopts;
1611
1612			tmp_mntopts.mo_count = 0;
1613			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1614			    &mnt_mntopts);
1615			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1616			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1617			vfs_freeopttbl(&tmp_mntopts);
1618		}
1619	}
1620
1621	/*
1622	 * Serialize with zone creations.
1623	 */
1624	mount_in_progress();
1625	/*
1626	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1627	 * splice it into the file system name space.
1628	 *
1629	 * We want VFS_MOUNT() to be able to override the vfs_resource
1630	 * string if necessary (ie, mntfs), and also for a remount to
1631	 * change the same (necessary when remounting '/' during boot).
1632	 * So we set up vfs_mntpt and vfs_resource to what we think they
1633	 * should be, then hand off control to VFS_MOUNT() which can
1634	 * override this.
1635	 *
1636	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1637	 * a vfs which is on the vfs list (i.e. during a remount), we must
1638	 * never set those fields to NULL. Several bits of code make
1639	 * assumptions that the fields are always valid.
1640	 */
1641	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1642	if (remount) {
1643		if ((oldresource = vfsp->vfs_resource) != NULL)
1644			refstr_hold(oldresource);
1645		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1646			refstr_hold(oldmntpt);
1647	}
1648	vfs_setresource(vfsp, resource);
1649	vfs_setmntpoint(vfsp, mountpt);
1650
1651	/*
1652	 * going to mount on this vnode, so notify.
1653	 */
1654	vnevent_mountedover(vp, NULL);
1655	error = VFS_MOUNT(vfsp, vp, uap, credp);
1656
1657	if (uap->flags & MS_RDONLY)
1658		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1659	if (uap->flags & MS_NOSUID)
1660		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1661	if (uap->flags & MS_GLOBAL)
1662		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1663
1664	if (error) {
1665		lofi_remove(vfsp);
1666
1667		if (remount) {
1668			/* put back pre-remount options */
1669			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1670			vfs_setmntpoint(vfsp, (stripzonepath(
1671			    refstr_value(oldmntpt))));
1672			if (oldmntpt)
1673				refstr_rele(oldmntpt);
1674			vfs_setresource(vfsp, (stripzonepath(
1675			    refstr_value(oldresource))));
1676			if (oldresource)
1677				refstr_rele(oldresource);
1678			vfsp->vfs_flag = ovflags;
1679			vfs_unlock(vfsp);
1680			VFS_RELE(vfsp);
1681		} else {
1682			vfs_unlock(vfsp);
1683			vfs_freemnttab(vfsp);
1684			vfs_free(vfsp);
1685		}
1686	} else {
1687		/*
1688		 * Set the mount time to now
1689		 */
1690		vfsp->vfs_mtime = ddi_get_time();
1691		if (remount) {
1692			vfsp->vfs_flag &= ~VFS_REMOUNT;
1693			if (oldresource)
1694				refstr_rele(oldresource);
1695			if (oldmntpt)
1696				refstr_rele(oldmntpt);
1697		} else if (splice) {
1698			/*
1699			 * Link vfsp into the name space at the mount
1700			 * point. Vfs_add() is responsible for
1701			 * holding the mount point which will be
1702			 * released when vfs_remove() is called.
1703			 */
1704			vfs_add(vp, vfsp, uap->flags);
1705		} else {
1706			/*
1707			 * Hold the reference to file system which is
1708			 * not linked into the name space.
1709			 */
1710			vfsp->vfs_zone = NULL;
1711			VFS_HOLD(vfsp);
1712			vfsp->vfs_vnodecovered = NULL;
1713		}
1714		/*
1715		 * Set flags for global options encountered
1716		 */
1717		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1718			vfsp->vfs_flag |= VFS_RDONLY;
1719		else
1720			vfsp->vfs_flag &= ~VFS_RDONLY;
1721		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1722			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1723		} else {
1724			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1725				vfsp->vfs_flag |= VFS_NODEVICES;
1726			else
1727				vfsp->vfs_flag &= ~VFS_NODEVICES;
1728			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1729				vfsp->vfs_flag |= VFS_NOSETUID;
1730			else
1731				vfsp->vfs_flag &= ~VFS_NOSETUID;
1732		}
1733		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1734			vfsp->vfs_flag |= VFS_NBMAND;
1735		else
1736			vfsp->vfs_flag &= ~VFS_NBMAND;
1737
1738		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1739			vfsp->vfs_flag |= VFS_XATTR;
1740		else
1741			vfsp->vfs_flag &= ~VFS_XATTR;
1742
1743		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1744			vfsp->vfs_flag |= VFS_NOEXEC;
1745		else
1746			vfsp->vfs_flag &= ~VFS_NOEXEC;
1747
1748		/*
1749		 * Now construct the output option string of options
1750		 * we recognized.
1751		 */
1752		if (uap->flags & MS_OPTIONSTR) {
1753			vfs_list_read_lock();
1754			copyout_error = vfs_buildoptionstr(
1755			    &vfsp->vfs_mntopts, inargs, optlen);
1756			vfs_list_unlock();
1757			if (copyout_error == 0 &&
1758			    (uap->flags & MS_SYSSPACE) == 0) {
1759				copyout_error = copyoutstr(inargs, opts,
1760				    optlen, NULL);
1761			}
1762		}
1763
1764		/*
1765		 * If this isn't a remount, set up the vopstats before
1766		 * anyone can touch this. We only allow spliced file
1767		 * systems (file systems which are in the namespace) to
1768		 * have the VFS_STATS flag set.
1769		 * NOTE: PxFS mounts the underlying file system with
1770		 * MS_NOSPLICE set and copies those vfs_flags to its private
1771		 * vfs structure. As a result, PxFS should never have
1772		 * the VFS_STATS flag or else we might access the vfs
1773		 * statistics-related fields prior to them being
1774		 * properly initialized.
1775		 */
1776		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1777			initialize_vopstats(&vfsp->vfs_vopstats);
1778			/*
1779			 * We need to set vfs_vskap to NULL because there's
1780			 * a chance it won't be set below.  This is checked
1781			 * in teardown_vopstats() so we can't have garbage.
1782			 */
1783			vfsp->vfs_vskap = NULL;
1784			vfsp->vfs_flag |= VFS_STATS;
1785			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1786		}
1787
1788		if (vswp->vsw_flag & VSW_XID)
1789			vfsp->vfs_flag |= VFS_XID;
1790
1791		vfs_unlock(vfsp);
1792	}
1793	mount_completed();
1794	if (splice)
1795		vn_vfsunlock(vp);
1796
1797	if ((error == 0) && (copyout_error == 0)) {
1798		if (!remount) {
1799			/*
1800			 * Don't call get_vskstat_anchor() while holding
1801			 * locks since it allocates memory and calls
1802			 * VFS_STATVFS().  For NFS, the latter can generate
1803			 * an over-the-wire call.
1804			 */
1805			vskap = get_vskstat_anchor(vfsp);
1806			/* Only take the lock if we have something to do */
1807			if (vskap != NULL) {
1808				vfs_lock_wait(vfsp);
1809				if (vfsp->vfs_flag & VFS_STATS) {
1810					vfsp->vfs_vskap = vskap;
1811				}
1812				vfs_unlock(vfsp);
1813			}
1814		}
1815		/* Return vfsp to caller. */
1816		*vfspp = vfsp;
1817	}
1818errout:
1819	vfs_freeopttbl(&mnt_mntopts);
1820	if (resource != NULL)
1821		kmem_free(resource, strlen(resource) + 1);
1822	if (mountpt != NULL)
1823		kmem_free(mountpt, strlen(mountpt) + 1);
1824	/*
1825	 * It is possible we errored prior to adding to mount in progress
1826	 * table. Must free vnode we acquired with successful lookupname.
1827	 */
1828	if (addmip)
1829		VN_RELE(bvp);
1830	if (delmip)
1831		vfs_delmip(vfsp);
1832	ASSERT(vswp != NULL);
1833	vfs_unrefvfssw(vswp);
1834	if (inargs != opts)
1835		kmem_free(inargs, MAX_MNTOPT_STR);
1836	if (copyout_error) {
1837		lofi_remove(vfsp);
1838		VFS_RELE(vfsp);
1839		error = copyout_error;
1840	}
1841	return (error);
1842}
1843
1844static void
1845vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath)
1846{
1847	size_t len;
1848	refstr_t *ref;
1849	zone_t *zone = curproc->p_zone;
1850	char *sp;
1851	int have_list_lock = 0;
1852
1853	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1854
1855	/*
1856	 * New path must be less than MAXPATHLEN because mntfs
1857	 * will only display up to MAXPATHLEN bytes. This is currently
1858	 * safe, because domount() uses pn_get(), and other callers
1859	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1860	 */
1861
1862	ASSERT(strlen(newpath) < MAXPATHLEN);
1863
1864	/* mntfs requires consistency while vfs list lock is held */
1865
1866	if (VFS_ON_LIST(vfsp)) {
1867		have_list_lock = 1;
1868		vfs_list_lock();
1869	}
1870
1871	if (*refp != NULL)
1872		refstr_rele(*refp);
1873
1874	/* Do we need to modify the path? */
1875
1876	if (zone == global_zone || *newpath != '/') {
1877		ref = refstr_alloc(newpath);
1878		goto out;
1879	}
1880
1881	/*
1882	 * Truncate the trailing '/' in the zoneroot, and merge
1883	 * in the zone's rootpath with the "newpath" (resource
1884	 * or mountpoint) passed in.
1885	 *
1886	 * The size of the required buffer is thus the size of
1887	 * the buffer required for the passed-in newpath
1888	 * (strlen(newpath) + 1), plus the size of the buffer
1889	 * required to hold zone_rootpath (zone_rootpathlen)
1890	 * minus one for one of the now-superfluous NUL
1891	 * terminations, minus one for the trailing '/'.
1892	 *
1893	 * That gives us:
1894	 *
1895	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1896	 *
1897	 * Which is what we have below.
1898	 */
1899
1900	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1901	sp = kmem_alloc(len, KM_SLEEP);
1902
1903	/*
1904	 * Copy everything including the trailing slash, which
1905	 * we then overwrite with the NUL character.
1906	 */
1907
1908	(void) strcpy(sp, zone->zone_rootpath);
1909	sp[zone->zone_rootpathlen - 2] = '\0';
1910	(void) strcat(sp, newpath);
1911
1912	ref = refstr_alloc(sp);
1913	kmem_free(sp, len);
1914out:
1915	*refp = ref;
1916
1917	if (have_list_lock) {
1918		vfs_mnttab_modtimeupd();
1919		vfs_list_unlock();
1920	}
1921}
1922
1923/*
1924 * Record a mounted resource name in a vfs structure.
1925 * If vfsp is already mounted, caller must hold the vfs lock.
1926 */
1927void
1928vfs_setresource(struct vfs *vfsp, const char *resource)
1929{
1930	if (resource == NULL || resource[0] == '\0')
1931		resource = VFS_NORESOURCE;
1932	vfs_setpath(vfsp, &vfsp->vfs_resource, resource);
1933}
1934
1935/*
1936 * Record a mount point name in a vfs structure.
1937 * If vfsp is already mounted, caller must hold the vfs lock.
1938 */
1939void
1940vfs_setmntpoint(struct vfs *vfsp, const char *mntpt)
1941{
1942	if (mntpt == NULL || mntpt[0] == '\0')
1943		mntpt = VFS_NOMNTPT;
1944	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt);
1945}
1946
1947/* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1948
1949refstr_t *
1950vfs_getresource(const struct vfs *vfsp)
1951{
1952	refstr_t *resource;
1953
1954	vfs_list_read_lock();
1955	resource = vfsp->vfs_resource;
1956	refstr_hold(resource);
1957	vfs_list_unlock();
1958
1959	return (resource);
1960}
1961
1962/* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1963
1964refstr_t *
1965vfs_getmntpoint(const struct vfs *vfsp)
1966{
1967	refstr_t *mntpt;
1968
1969	vfs_list_read_lock();
1970	mntpt = vfsp->vfs_mntpt;
1971	refstr_hold(mntpt);
1972	vfs_list_unlock();
1973
1974	return (mntpt);
1975}
1976
1977/*
1978 * Create an empty options table with enough empty slots to hold all
1979 * The options in the options string passed as an argument.
1980 * Potentially prepend another options table.
1981 *
1982 * Note: caller is responsible for locking the vfs list, if needed,
1983 *       to protect mops.
1984 */
1985static void
1986vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1987    const mntopts_t *mtmpl)
1988{
1989	const char *s = opts;
1990	uint_t count;
1991
1992	if (opts == NULL || *opts == '\0') {
1993		count = 0;
1994	} else {
1995		count = 1;
1996
1997		/*
1998		 * Count number of options in the string
1999		 */
2000		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2001			count++;
2002			s++;
2003		}
2004	}
2005	vfs_copyopttbl_extend(mtmpl, mops, count);
2006}
2007
2008/*
2009 * Create an empty options table with enough empty slots to hold all
2010 * The options in the options string passed as an argument.
2011 *
2012 * This function is *not* for general use by filesystems.
2013 *
2014 * Note: caller is responsible for locking the vfs list, if needed,
2015 *       to protect mops.
2016 */
2017void
2018vfs_createopttbl(mntopts_t *mops, const char *opts)
2019{
2020	vfs_createopttbl_extend(mops, opts, NULL);
2021}
2022
2023
2024/*
2025 * Swap two mount options tables
2026 */
2027static void
2028vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2029{
2030	uint_t tmpcnt;
2031	mntopt_t *tmplist;
2032
2033	tmpcnt = optbl2->mo_count;
2034	tmplist = optbl2->mo_list;
2035	optbl2->mo_count = optbl1->mo_count;
2036	optbl2->mo_list = optbl1->mo_list;
2037	optbl1->mo_count = tmpcnt;
2038	optbl1->mo_list = tmplist;
2039}
2040
2041static void
2042vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2043{
2044	vfs_list_lock();
2045	vfs_swapopttbl_nolock(optbl1, optbl2);
2046	vfs_mnttab_modtimeupd();
2047	vfs_list_unlock();
2048}
2049
2050static char **
2051vfs_copycancelopt_extend(char **const moc, int extend)
2052{
2053	int i = 0;
2054	int j;
2055	char **result;
2056
2057	if (moc != NULL) {
2058		for (; moc[i] != NULL; i++)
2059			/* count number of options to cancel */;
2060	}
2061
2062	if (i + extend == 0)
2063		return (NULL);
2064
2065	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2066
2067	for (j = 0; j < i; j++) {
2068		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2069		(void) strcpy(result[j], moc[j]);
2070	}
2071	for (; j <= i + extend; j++)
2072		result[j] = NULL;
2073
2074	return (result);
2075}
2076
2077static void
2078vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2079{
2080	char *sp, *dp;
2081
2082	d->mo_flags = s->mo_flags;
2083	d->mo_data = s->mo_data;
2084	sp = s->mo_name;
2085	if (sp != NULL) {
2086		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2087		(void) strcpy(dp, sp);
2088		d->mo_name = dp;
2089	} else {
2090		d->mo_name = NULL; /* should never happen */
2091	}
2092
2093	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2094
2095	sp = s->mo_arg;
2096	if (sp != NULL) {
2097		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2098		(void) strcpy(dp, sp);
2099		d->mo_arg = dp;
2100	} else {
2101		d->mo_arg = NULL;
2102	}
2103}
2104
2105/*
2106 * Copy a mount options table, possibly allocating some spare
2107 * slots at the end.  It is permissible to copy_extend the NULL table.
2108 */
2109static void
2110vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2111{
2112	uint_t i, count;
2113	mntopt_t *motbl;
2114
2115	/*
2116	 * Clear out any existing stuff in the options table being initialized
2117	 */
2118	vfs_freeopttbl(dmo);
2119	count = (smo == NULL) ? 0 : smo->mo_count;
2120	if ((count + extra) == 0)	/* nothing to do */
2121		return;
2122	dmo->mo_count = count + extra;
2123	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2124	dmo->mo_list = motbl;
2125	for (i = 0; i < count; i++) {
2126		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2127	}
2128	for (i = count; i < count + extra; i++) {
2129		motbl[i].mo_flags = MO_EMPTY;
2130	}
2131}
2132
2133/*
2134 * Copy a mount options table.
2135 *
2136 * This function is *not* for general use by filesystems.
2137 *
2138 * Note: caller is responsible for locking the vfs list, if needed,
2139 *       to protect smo and dmo.
2140 */
2141void
2142vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2143{
2144	vfs_copyopttbl_extend(smo, dmo, 0);
2145}
2146
2147static char **
2148vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2149{
2150	int c1 = 0;
2151	int c2 = 0;
2152	char **result;
2153	char **sp1, **sp2, **dp;
2154
2155	/*
2156	 * First we count both lists of cancel options.
2157	 * If either is NULL or has no elements, we return a copy of
2158	 * the other.
2159	 */
2160	if (mop1->mo_cancel != NULL) {
2161		for (; mop1->mo_cancel[c1] != NULL; c1++)
2162			/* count cancel options in mop1 */;
2163	}
2164
2165	if (c1 == 0)
2166		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2167
2168	if (mop2->mo_cancel != NULL) {
2169		for (; mop2->mo_cancel[c2] != NULL; c2++)
2170			/* count cancel options in mop2 */;
2171	}
2172
2173	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2174
2175	if (c2 == 0)
2176		return (result);
2177
2178	/*
2179	 * When we get here, we've got two sets of cancel options;
2180	 * we need to merge the two sets.  We know that the result
2181	 * array has "c1+c2+1" entries and in the end we might shrink
2182	 * it.
2183	 * Result now has a copy of the c1 entries from mop1; we'll
2184	 * now lookup all the entries of mop2 in mop1 and copy it if
2185	 * it is unique.
2186	 * This operation is O(n^2) but it's only called once per
2187	 * filesystem per duplicate option.  This is a situation
2188	 * which doesn't arise with the filesystems in ON and
2189	 * n is generally 1.
2190	 */
2191
2192	dp = &result[c1];
2193	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2194		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2195			if (strcmp(*sp1, *sp2) == 0)
2196				break;
2197		}
2198		if (*sp1 == NULL) {
2199			/*
2200			 * Option *sp2 not found in mop1, so copy it.
2201			 * The calls to vfs_copycancelopt_extend()
2202			 * guarantee that there's enough room.
2203			 */
2204			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2205			(void) strcpy(*dp++, *sp2);
2206		}
2207	}
2208	if (dp != &result[c1+c2]) {
2209		size_t bytes = (dp - result + 1) * sizeof (char *);
2210		char **nres = kmem_alloc(bytes, KM_SLEEP);
2211
2212		bcopy(result, nres, bytes);
2213		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2214		result = nres;
2215	}
2216	return (result);
2217}
2218
2219/*
2220 * Merge two mount option tables (outer and inner) into one.  This is very
2221 * similar to "merging" global variables and automatic variables in C.
2222 *
2223 * This isn't (and doesn't have to be) fast.
2224 *
2225 * This function is *not* for general use by filesystems.
2226 *
2227 * Note: caller is responsible for locking the vfs list, if needed,
2228 *       to protect omo, imo & dmo.
2229 */
2230void
2231vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2232{
2233	uint_t i, count;
2234	mntopt_t *mop, *motbl;
2235	uint_t freeidx;
2236
2237	/*
2238	 * First determine how much space we need to allocate.
2239	 */
2240	count = omo->mo_count;
2241	for (i = 0; i < imo->mo_count; i++) {
2242		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2243			continue;
2244		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2245			count++;
2246	}
2247	ASSERT(count >= omo->mo_count &&
2248	    count <= omo->mo_count + imo->mo_count);
2249	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2250	for (i = 0; i < omo->mo_count; i++)
2251		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2252	freeidx = omo->mo_count;
2253	for (i = 0; i < imo->mo_count; i++) {
2254		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2255			continue;
2256		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2257			char **newcanp;
2258			uint_t index = mop - omo->mo_list;
2259
2260			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2261
2262			vfs_freeopt(&motbl[index]);
2263			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2264
2265			vfs_freecancelopt(motbl[index].mo_cancel);
2266			motbl[index].mo_cancel = newcanp;
2267		} else {
2268			/*
2269			 * If it's a new option, just copy it over to the first
2270			 * free location.
2271			 */
2272			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2273		}
2274	}
2275	dmo->mo_count = count;
2276	dmo->mo_list = motbl;
2277}
2278
2279/*
2280 * Functions to set and clear mount options in a mount options table.
2281 */
2282
2283/*
2284 * Clear a mount option, if it exists.
2285 *
2286 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2287 * the vfs list.
2288 */
2289static void
2290vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2291{
2292	struct mntopt *mop;
2293	uint_t i, count;
2294
2295	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2296
2297	count = mops->mo_count;
2298	for (i = 0; i < count; i++) {
2299		mop = &mops->mo_list[i];
2300
2301		if (mop->mo_flags & MO_EMPTY)
2302			continue;
2303		if (strcmp(opt, mop->mo_name))
2304			continue;
2305		mop->mo_flags &= ~MO_SET;
2306		if (mop->mo_arg != NULL) {
2307			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2308		}
2309		mop->mo_arg = NULL;
2310		if (update_mnttab)
2311			vfs_mnttab_modtimeupd();
2312		break;
2313	}
2314}
2315
2316void
2317vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2318{
2319	int gotlock = 0;
2320
2321	if (VFS_ON_LIST(vfsp)) {
2322		gotlock = 1;
2323		vfs_list_lock();
2324	}
2325	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2326	if (gotlock)
2327		vfs_list_unlock();
2328}
2329
2330
2331/*
2332 * Set a mount option on.  If it's not found in the table, it's silently
2333 * ignored.  If the option has MO_IGNORE set, it is still set unless the
2334 * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2335 * bits can be used to toggle the MO_NODISPLAY bit for the option.
2336 * If the VFS_CREATEOPT flag bit is set then the first option slot with
2337 * MO_EMPTY set is created as the option passed in.
2338 *
2339 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2340 * the vfs list.
2341 */
2342static void
2343vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2344    const char *arg, int flags, int update_mnttab)
2345{
2346	mntopt_t *mop;
2347	uint_t i, count;
2348	char *sp;
2349
2350	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2351
2352	if (flags & VFS_CREATEOPT) {
2353		if (vfs_hasopt(mops, opt) != NULL) {
2354			flags &= ~VFS_CREATEOPT;
2355		}
2356	}
2357	count = mops->mo_count;
2358	for (i = 0; i < count; i++) {
2359		mop = &mops->mo_list[i];
2360
2361		if (mop->mo_flags & MO_EMPTY) {
2362			if ((flags & VFS_CREATEOPT) == 0)
2363				continue;
2364			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2365			(void) strcpy(sp, opt);
2366			mop->mo_name = sp;
2367			if (arg != NULL)
2368				mop->mo_flags = MO_HASVALUE;
2369			else
2370				mop->mo_flags = 0;
2371		} else if (strcmp(opt, mop->mo_name)) {
2372			continue;
2373		}
2374		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2375			break;
2376		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2377			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2378			(void) strcpy(sp, arg);
2379		} else {
2380			sp = NULL;
2381		}
2382		if (mop->mo_arg != NULL)
2383			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2384		mop->mo_arg = sp;
2385		if (flags & VFS_DISPLAY)
2386			mop->mo_flags &= ~MO_NODISPLAY;
2387		if (flags & VFS_NODISPLAY)
2388			mop->mo_flags |= MO_NODISPLAY;
2389		mop->mo_flags |= MO_SET;
2390		if (mop->mo_cancel != NULL) {
2391			char **cp;
2392
2393			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2394				vfs_clearmntopt_nolock(mops, *cp, 0);
2395		}
2396		if (update_mnttab)
2397			vfs_mnttab_modtimeupd();
2398		break;
2399	}
2400}
2401
2402void
2403vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2404{
2405	int gotlock = 0;
2406
2407	if (VFS_ON_LIST(vfsp)) {
2408		gotlock = 1;
2409		vfs_list_lock();
2410	}
2411	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2412	if (gotlock)
2413		vfs_list_unlock();
2414}
2415
2416
2417/*
2418 * Add a "tag" option to a mounted file system's options list.
2419 *
2420 * Note: caller is responsible for locking the vfs list, if needed,
2421 *       to protect mops.
2422 */
2423static mntopt_t *
2424vfs_addtag(mntopts_t *mops, const char *tag)
2425{
2426	uint_t count;
2427	mntopt_t *mop, *motbl;
2428
2429	count = mops->mo_count + 1;
2430	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2431	if (mops->mo_count) {
2432		size_t len = (count - 1) * sizeof (mntopt_t);
2433
2434		bcopy(mops->mo_list, motbl, len);
2435		kmem_free(mops->mo_list, len);
2436	}
2437	mops->mo_count = count;
2438	mops->mo_list = motbl;
2439	mop = &motbl[count - 1];
2440	mop->mo_flags = MO_TAG;
2441	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2442	(void) strcpy(mop->mo_name, tag);
2443	return (mop);
2444}
2445
2446/*
2447 * Allow users to set arbitrary "tags" in a vfs's mount options.
2448 * Broader use within the kernel is discouraged.
2449 */
2450int
2451vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2452    cred_t *cr)
2453{
2454	vfs_t *vfsp;
2455	mntopts_t *mops;
2456	mntopt_t *mop;
2457	int found = 0;
2458	dev_t dev = makedevice(major, minor);
2459	int err = 0;
2460	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2461
2462	/*
2463	 * Find the desired mounted file system
2464	 */
2465	vfs_list_lock();
2466	vfsp = rootvfs;
2467	do {
2468		if (vfsp->vfs_dev == dev &&
2469		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2470			found = 1;
2471			break;
2472		}
2473		vfsp = vfsp->vfs_next;
2474	} while (vfsp != rootvfs);
2475
2476	if (!found) {
2477		err = EINVAL;
2478		goto out;
2479	}
2480	err = secpolicy_fs_config(cr, vfsp);
2481	if (err != 0)
2482		goto out;
2483
2484	mops = &vfsp->vfs_mntopts;
2485	/*
2486	 * Add tag if it doesn't already exist
2487	 */
2488	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2489		int len;
2490
2491		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2492		len = strlen(buf);
2493		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2494			err = ENAMETOOLONG;
2495			goto out;
2496		}
2497		mop = vfs_addtag(mops, tag);
2498	}
2499	if ((mop->mo_flags & MO_TAG) == 0) {
2500		err = EINVAL;
2501		goto out;
2502	}
2503	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2504out:
2505	vfs_list_unlock();
2506	kmem_free(buf, MAX_MNTOPT_STR);
2507	return (err);
2508}
2509
2510/*
2511 * Allow users to remove arbitrary "tags" in a vfs's mount options.
2512 * Broader use within the kernel is discouraged.
2513 */
2514int
2515vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2516    cred_t *cr)
2517{
2518	vfs_t *vfsp;
2519	mntopt_t *mop;
2520	int found = 0;
2521	dev_t dev = makedevice(major, minor);
2522	int err = 0;
2523
2524	/*
2525	 * Find the desired mounted file system
2526	 */
2527	vfs_list_lock();
2528	vfsp = rootvfs;
2529	do {
2530		if (vfsp->vfs_dev == dev &&
2531		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2532			found = 1;
2533			break;
2534		}
2535		vfsp = vfsp->vfs_next;
2536	} while (vfsp != rootvfs);
2537
2538	if (!found) {
2539		err = EINVAL;
2540		goto out;
2541	}
2542	err = secpolicy_fs_config(cr, vfsp);
2543	if (err != 0)
2544		goto out;
2545
2546	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2547		err = EINVAL;
2548		goto out;
2549	}
2550	if ((mop->mo_flags & MO_TAG) == 0) {
2551		err = EINVAL;
2552		goto out;
2553	}
2554	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2555out:
2556	vfs_list_unlock();
2557	return (err);
2558}
2559
2560/*
2561 * Function to parse an option string and fill in a mount options table.
2562 * Unknown options are silently ignored.  The input option string is modified
2563 * by replacing separators with nulls.  If the create flag is set, options
2564 * not found in the table are just added on the fly.  The table must have
2565 * an option slot marked MO_EMPTY to add an option on the fly.
2566 *
2567 * This function is *not* for general use by filesystems.
2568 *
2569 * Note: caller is responsible for locking the vfs list, if needed,
2570 *       to protect mops..
2571 */
2572void
2573vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2574{
2575	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2576	int setflg = VFS_NOFORCEOPT;
2577
2578	if (osp == NULL)
2579		return;
2580	while (*s != '\0') {
2581		p = strchr(s, ',');	/* find next option */
2582		if (p == NULL) {
2583			cp = NULL;
2584			p = s + strlen(s);
2585		} else {
2586			cp = p;		/* save location of comma */
2587			*p++ = '\0';	/* mark end and point to next option */
2588		}
2589		nextop = p;
2590		p = strchr(s, '=');	/* look for value */
2591		if (p == NULL) {
2592			valp = NULL;	/* no value supplied */
2593		} else {
2594			ep = p;		/* save location of equals */
2595			*p++ = '\0';	/* end option and point to value */
2596			valp = p;
2597		}
2598		/*
2599		 * set option into options table
2600		 */
2601		if (create)
2602			setflg |= VFS_CREATEOPT;
2603		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2604		if (cp != NULL)
2605			*cp = ',';	/* restore the comma */
2606		if (valp != NULL)
2607			*ep = '=';	/* restore the equals */
2608		s = nextop;
2609	}
2610}
2611
2612/*
2613 * Function to inquire if an option exists in a mount options table.
2614 * Returns a pointer to the option if it exists, else NULL.
2615 *
2616 * This function is *not* for general use by filesystems.
2617 *
2618 * Note: caller is responsible for locking the vfs list, if needed,
2619 *       to protect mops.
2620 */
2621struct mntopt *
2622vfs_hasopt(const mntopts_t *mops, const char *opt)
2623{
2624	struct mntopt *mop;
2625	uint_t i, count;
2626
2627	count = mops->mo_count;
2628	for (i = 0; i < count; i++) {
2629		mop = &mops->mo_list[i];
2630
2631		if (mop->mo_flags & MO_EMPTY)
2632			continue;
2633		if (strcmp(opt, mop->mo_name) == 0)
2634			return (mop);
2635	}
2636	return (NULL);
2637}
2638
2639/*
2640 * Function to inquire if an option is set in a mount options table.
2641 * Returns non-zero if set and fills in the arg pointer with a pointer to
2642 * the argument string or NULL if there is no argument string.
2643 */
2644static int
2645vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2646{
2647	struct mntopt *mop;
2648	uint_t i, count;
2649
2650	count = mops->mo_count;
2651	for (i = 0; i < count; i++) {
2652		mop = &mops->mo_list[i];
2653
2654		if (mop->mo_flags & MO_EMPTY)
2655			continue;
2656		if (strcmp(opt, mop->mo_name))
2657			continue;
2658		if ((mop->mo_flags & MO_SET) == 0)
2659			return (0);
2660		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2661			*argp = mop->mo_arg;
2662		return (1);
2663	}
2664	return (0);
2665}
2666
2667
2668int
2669vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2670{
2671	int ret;
2672
2673	vfs_list_read_lock();
2674	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2675	vfs_list_unlock();
2676	return (ret);
2677}
2678
2679
2680/*
2681 * Construct a comma separated string of the options set in the given
2682 * mount table, return the string in the given buffer.  Return non-zero if
2683 * the buffer would overflow.
2684 *
2685 * This function is *not* for general use by filesystems.
2686 *
2687 * Note: caller is responsible for locking the vfs list, if needed,
2688 *       to protect mp.
2689 */
2690int
2691vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2692{
2693	char *cp;
2694	uint_t i;
2695
2696	buf[0] = '\0';
2697	cp = buf;
2698	for (i = 0; i < mp->mo_count; i++) {
2699		struct mntopt *mop;
2700
2701		mop = &mp->mo_list[i];
2702		if (mop->mo_flags & MO_SET) {
2703			int optlen, comma = 0;
2704
2705			if (buf[0] != '\0')
2706				comma = 1;
2707			optlen = strlen(mop->mo_name);
2708			if (strlen(buf) + comma + optlen + 1 > len)
2709				goto err;
2710			if (comma)
2711				*cp++ = ',';
2712			(void) strcpy(cp, mop->mo_name);
2713			cp += optlen;
2714			/*
2715			 * Append option value if there is one
2716			 */
2717			if (mop->mo_arg != NULL) {
2718				int arglen;
2719
2720				arglen = strlen(mop->mo_arg);
2721				if (strlen(buf) + arglen + 2 > len)
2722					goto err;
2723				*cp++ = '=';
2724				(void) strcpy(cp, mop->mo_arg);
2725				cp += arglen;
2726			}
2727		}
2728	}
2729	return (0);
2730err:
2731	return (EOVERFLOW);
2732}
2733
2734static void
2735vfs_freecancelopt(char **moc)
2736{
2737	if (moc != NULL) {
2738		int ccnt = 0;
2739		char **cp;
2740
2741		for (cp = moc; *cp != NULL; cp++) {
2742			kmem_free(*cp, strlen(*cp) + 1);
2743			ccnt++;
2744		}
2745		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2746	}
2747}
2748
2749static void
2750vfs_freeopt(mntopt_t *mop)
2751{
2752	if (mop->mo_name != NULL)
2753		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2754
2755	vfs_freecancelopt(mop->mo_cancel);
2756
2757	if (mop->mo_arg != NULL)
2758		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2759}
2760
2761/*
2762 * Free a mount options table
2763 *
2764 * This function is *not* for general use by filesystems.
2765 *
2766 * Note: caller is responsible for locking the vfs list, if needed,
2767 *       to protect mp.
2768 */
2769void
2770vfs_freeopttbl(mntopts_t *mp)
2771{
2772	uint_t i, count;
2773
2774	count = mp->mo_count;
2775	for (i = 0; i < count; i++) {
2776		vfs_freeopt(&mp->mo_list[i]);
2777	}
2778	if (count) {
2779		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2780		mp->mo_count = 0;
2781		mp->mo_list = NULL;
2782	}
2783}
2784
2785
2786/* ARGSUSED */
2787static int
2788vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2789	caller_context_t *ct)
2790{
2791	return (0);
2792}
2793
2794/* ARGSUSED */
2795static int
2796vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2797	caller_context_t *ct)
2798{
2799	return (0);
2800}
2801
2802/*
2803 * The dummy vnode is currently used only by file events notification
2804 * module which is just interested in the timestamps.
2805 */
2806/* ARGSUSED */
2807static int
2808vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2809    caller_context_t *ct)
2810{
2811	bzero(vap, sizeof (vattr_t));
2812	vap->va_type = VREG;
2813	vap->va_nlink = 1;
2814	vap->va_ctime = vfs_mnttab_ctime;
2815	/*
2816	 * it is ok to just copy mtime as the time will be monotonically
2817	 * increasing.
2818	 */
2819	vap->va_mtime = vfs_mnttab_mtime;
2820	vap->va_atime = vap->va_mtime;
2821	return (0);
2822}
2823
2824static void
2825vfs_mnttabvp_setup(void)
2826{
2827	vnode_t *tvp;
2828	vnodeops_t *vfs_mntdummyvnops;
2829	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2830		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2831		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2832		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2833		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2834		NULL,			NULL
2835	};
2836
2837	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2838	    &vfs_mntdummyvnops) != 0) {
2839		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2840		/* Shouldn't happen, but not bad enough to panic */
2841		return;
2842	}
2843
2844	/*
2845	 * A global dummy vnode is allocated to represent mntfs files.
2846	 * The mntfs file (/etc/mnttab) can be monitored for file events
2847	 * and receive an event when mnttab changes. Dummy VOP calls
2848	 * will be made on this vnode. The file events notification module
2849	 * intercepts this vnode and delivers relevant events.
2850	 */
2851	tvp = vn_alloc(KM_SLEEP);
2852	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2853	vn_setops(tvp, vfs_mntdummyvnops);
2854	tvp->v_type = VREG;
2855	/*
2856	 * The mnt dummy ops do not reference v_data.
2857	 * No other module intercepting this vnode should either.
2858	 * Just set it to point to itself.
2859	 */
2860	tvp->v_data = (caddr_t)tvp;
2861	tvp->v_vfsp = rootvfs;
2862	vfs_mntdummyvp = tvp;
2863}
2864
2865/*
2866 * performs fake read/write ops
2867 */
2868static void
2869vfs_mnttab_rwop(int rw)
2870{
2871	struct uio	uio;
2872	struct iovec	iov;
2873	char	buf[1];
2874
2875	if (vfs_mntdummyvp == NULL)
2876		return;
2877
2878	bzero(&uio, sizeof (uio));
2879	bzero(&iov, sizeof (iov));
2880	iov.iov_base = buf;
2881	iov.iov_len = 0;
2882	uio.uio_iov = &iov;
2883	uio.uio_iovcnt = 1;
2884	uio.uio_loffset = 0;
2885	uio.uio_segflg = UIO_SYSSPACE;
2886	uio.uio_resid = 0;
2887	if (rw) {
2888		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2889	} else {
2890		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2891	}
2892}
2893
2894/*
2895 * Generate a write operation.
2896 */
2897void
2898vfs_mnttab_writeop(void)
2899{
2900	vfs_mnttab_rwop(1);
2901}
2902
2903/*
2904 * Generate a read operation.
2905 */
2906void
2907vfs_mnttab_readop(void)
2908{
2909	vfs_mnttab_rwop(0);
2910}
2911
2912/*
2913 * Free any mnttab information recorded in the vfs struct.
2914 * The vfs must not be on the vfs list.
2915 */
2916static void
2917vfs_freemnttab(struct vfs *vfsp)
2918{
2919	ASSERT(!VFS_ON_LIST(vfsp));
2920
2921	/*
2922	 * Free device and mount point information
2923	 */
2924	if (vfsp->vfs_mntpt != NULL) {
2925		refstr_rele(vfsp->vfs_mntpt);
2926		vfsp->vfs_mntpt = NULL;
2927	}
2928	if (vfsp->vfs_resource != NULL) {
2929		refstr_rele(vfsp->vfs_resource);
2930		vfsp->vfs_resource = NULL;
2931	}
2932	/*
2933	 * Now free mount options information
2934	 */
2935	vfs_freeopttbl(&vfsp->vfs_mntopts);
2936}
2937
2938/*
2939 * Return the last mnttab modification time
2940 */
2941void
2942vfs_mnttab_modtime(timespec_t *ts)
2943{
2944	ASSERT(RW_LOCK_HELD(&vfslist));
2945	*ts = vfs_mnttab_mtime;
2946}
2947
2948/*
2949 * See if mnttab is changed
2950 */
2951void
2952vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2953{
2954	int changed;
2955
2956	*phpp = (struct pollhead *)NULL;
2957
2958	/*
2959	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2960	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2961	 * to not grab the vfs list lock because tv_sec is monotonically
2962	 * increasing.
2963	 */
2964
2965	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2966	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2967	if (!changed) {
2968		*phpp = &vfs_pollhd;
2969	}
2970}
2971
2972/* Provide a unique and monotonically-increasing timestamp. */
2973void
2974vfs_mono_time(timespec_t *ts)
2975{
2976	static volatile hrtime_t hrt;		/* The saved time. */
2977	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
2978	timespec_t	newts;
2979
2980	/*
2981	 * Try gethrestime() first, but be prepared to fabricate a sensible
2982	 * answer at the first sign of any trouble.
2983	 */
2984	gethrestime(&newts);
2985	newhrt = ts2hrt(&newts);
2986	for (;;) {
2987		oldhrt = hrt;
2988		if (newhrt <= hrt)
2989			newhrt = hrt + 1;
2990		if (cas64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2991			break;
2992	}
2993	hrt2ts(newhrt, ts);
2994}
2995
2996/*
2997 * Update the mnttab modification time and wake up any waiters for
2998 * mnttab changes
2999 */
3000void
3001vfs_mnttab_modtimeupd()
3002{
3003	hrtime_t oldhrt, newhrt;
3004
3005	ASSERT(RW_WRITE_HELD(&vfslist));
3006	oldhrt = ts2hrt(&vfs_mnttab_mtime);
3007	gethrestime(&vfs_mnttab_mtime);
3008	newhrt = ts2hrt(&vfs_mnttab_mtime);
3009	if (oldhrt == (hrtime_t)0)
3010		vfs_mnttab_ctime = vfs_mnttab_mtime;
3011	/*
3012	 * Attempt to provide unique mtime (like uniqtime but not).
3013	 */
3014	if (newhrt == oldhrt) {
3015		newhrt++;
3016		hrt2ts(newhrt, &vfs_mnttab_mtime);
3017	}
3018	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3019	vfs_mnttab_writeop();
3020}
3021
3022int
3023dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3024{
3025	vnode_t *coveredvp;
3026	int error;
3027	extern void teardown_vopstats(vfs_t *);
3028
3029	/*
3030	 * Get covered vnode. This will be NULL if the vfs is not linked
3031	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3032	 */
3033	coveredvp = vfsp->vfs_vnodecovered;
3034	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3035
3036	/*
3037	 * Purge all dnlc entries for this vfs.
3038	 */
3039	(void) dnlc_purge_vfsp(vfsp, 0);
3040
3041	/* For forcible umount, skip VFS_SYNC() since it may hang */
3042	if ((flag & MS_FORCE) == 0)
3043		(void) VFS_SYNC(vfsp, 0, cr);
3044
3045	/*
3046	 * Lock the vfs to maintain fs status quo during unmount.  This
3047	 * has to be done after the sync because ufs_update tries to acquire
3048	 * the vfs_reflock.
3049	 */
3050	vfs_lock_wait(vfsp);
3051
3052	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3053		vfs_unlock(vfsp);
3054		if (coveredvp != NULL)
3055			vn_vfsunlock(coveredvp);
3056	} else if (coveredvp != NULL) {
3057		teardown_vopstats(vfsp);
3058		/*
3059		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3060		 * when it frees vfsp so we do a VN_HOLD() so we can
3061		 * continue to use coveredvp afterwards.
3062		 */
3063		VN_HOLD(coveredvp);
3064		vfs_remove(vfsp);
3065		vn_vfsunlock(coveredvp);
3066		VN_RELE(coveredvp);
3067	} else {
3068		teardown_vopstats(vfsp);
3069		/*
3070		 * Release the reference to vfs that is not linked
3071		 * into the name space.
3072		 */
3073		vfs_unlock(vfsp);
3074		VFS_RELE(vfsp);
3075	}
3076	return (error);
3077}
3078
3079
3080/*
3081 * Vfs_unmountall() is called by uadmin() to unmount all
3082 * mounted file systems (except the root file system) during shutdown.
3083 * It follows the existing locking protocol when traversing the vfs list
3084 * to sync and unmount vfses. Even though there should be no
3085 * other thread running while the system is shutting down, it is prudent
3086 * to still follow the locking protocol.
3087 */
3088void
3089vfs_unmountall(void)
3090{
3091	struct vfs *vfsp;
3092	struct vfs *prev_vfsp = NULL;
3093	int error;
3094
3095	/*
3096	 * Toss all dnlc entries now so that the per-vfs sync
3097	 * and unmount operations don't have to slog through
3098	 * a bunch of uninteresting vnodes over and over again.
3099	 */
3100	dnlc_purge();
3101
3102	vfs_list_lock();
3103	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3104		prev_vfsp = vfsp->vfs_prev;
3105
3106		if (vfs_lock(vfsp) != 0)
3107			continue;
3108		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3109		vfs_unlock(vfsp);
3110		if (error)
3111			continue;
3112
3113		vfs_list_unlock();
3114
3115		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3116		(void) dounmount(vfsp, 0, CRED());
3117
3118		/*
3119		 * Since we dropped the vfslist lock above we must
3120		 * verify that next_vfsp still exists, else start over.
3121		 */
3122		vfs_list_lock();
3123		for (vfsp = rootvfs->vfs_prev;
3124		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3125			if (vfsp == prev_vfsp)
3126				break;
3127		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3128			prev_vfsp = rootvfs->vfs_prev;
3129	}
3130	vfs_list_unlock();
3131}
3132
3133/*
3134 * Called to add an entry to the end of the vfs mount in progress list
3135 */
3136void
3137vfs_addmip(dev_t dev, struct vfs *vfsp)
3138{
3139	struct ipmnt *mipp;
3140
3141	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3142	mipp->mip_next = NULL;
3143	mipp->mip_dev = dev;
3144	mipp->mip_vfsp = vfsp;
3145	mutex_enter(&vfs_miplist_mutex);
3146	if (vfs_miplist_end != NULL)
3147		vfs_miplist_end->mip_next = mipp;
3148	else
3149		vfs_miplist = mipp;
3150	vfs_miplist_end = mipp;
3151	mutex_exit(&vfs_miplist_mutex);
3152}
3153
3154/*
3155 * Called to remove an entry from the mount in progress list
3156 * Either because the mount completed or it failed.
3157 */
3158void
3159vfs_delmip(struct vfs *vfsp)
3160{
3161	struct ipmnt *mipp, *mipprev;
3162
3163	mutex_enter(&vfs_miplist_mutex);
3164	mipprev = NULL;
3165	for (mipp = vfs_miplist;
3166	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3167		mipprev = mipp;
3168	}
3169	if (mipp == NULL)
3170		return; /* shouldn't happen */
3171	if (mipp == vfs_miplist_end)
3172		vfs_miplist_end = mipprev;
3173	if (mipprev == NULL)
3174		vfs_miplist = mipp->mip_next;
3175	else
3176		mipprev->mip_next = mipp->mip_next;
3177	mutex_exit(&vfs_miplist_mutex);
3178	kmem_free(mipp, sizeof (struct ipmnt));
3179}
3180
3181/*
3182 * vfs_add is called by a specific filesystem's mount routine to add
3183 * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3184 * The vfs should already have been locked by the caller.
3185 *
3186 * coveredvp is NULL if this is the root.
3187 */
3188void
3189vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3190{
3191	int newflag;
3192
3193	ASSERT(vfs_lock_held(vfsp));
3194	VFS_HOLD(vfsp);
3195	newflag = vfsp->vfs_flag;
3196	if (mflag & MS_RDONLY)
3197		newflag |= VFS_RDONLY;
3198	else
3199		newflag &= ~VFS_RDONLY;
3200	if (mflag & MS_NOSUID)
3201		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3202	else
3203		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3204	if (mflag & MS_NOMNTTAB)
3205		newflag |= VFS_NOMNTTAB;
3206	else
3207		newflag &= ~VFS_NOMNTTAB;
3208
3209	if (coveredvp != NULL) {
3210		ASSERT(vn_vfswlock_held(coveredvp));
3211		coveredvp->v_vfsmountedhere = vfsp;
3212		VN_HOLD(coveredvp);
3213	}
3214	vfsp->vfs_vnodecovered = coveredvp;
3215	vfsp->vfs_flag = newflag;
3216
3217	vfs_list_add(vfsp);
3218}
3219
3220/*
3221 * Remove a vfs from the vfs list, null out the pointer from the
3222 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3223 * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3224 * reference to the vfs and to the covered vnode.
3225 *
3226 * Called from dounmount after it's confirmed with the file system
3227 * that the unmount is legal.
3228 */
3229void
3230vfs_remove(struct vfs *vfsp)
3231{
3232	vnode_t *vp;
3233
3234	ASSERT(vfs_lock_held(vfsp));
3235
3236	/*
3237	 * Can't unmount root.  Should never happen because fs will
3238	 * be busy.
3239	 */
3240	if (vfsp == rootvfs)
3241		panic("vfs_remove: unmounting root");
3242
3243	vfs_list_remove(vfsp);
3244
3245	/*
3246	 * Unhook from the file system name space.
3247	 */
3248	vp = vfsp->vfs_vnodecovered;
3249	ASSERT(vn_vfswlock_held(vp));
3250	vp->v_vfsmountedhere = NULL;
3251	vfsp->vfs_vnodecovered = NULL;
3252	VN_RELE(vp);
3253
3254	/*
3255	 * Release lock and wakeup anybody waiting.
3256	 */
3257	vfs_unlock(vfsp);
3258	VFS_RELE(vfsp);
3259}
3260
3261/*
3262 * Lock a filesystem to prevent access to it while mounting,
3263 * unmounting and syncing.  Return EBUSY immediately if lock
3264 * can't be acquired.
3265 */
3266int
3267vfs_lock(vfs_t *vfsp)
3268{
3269	vn_vfslocks_entry_t *vpvfsentry;
3270
3271	vpvfsentry = vn_vfslocks_getlock(vfsp);
3272	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3273		return (0);
3274
3275	vn_vfslocks_rele(vpvfsentry);
3276	return (EBUSY);
3277}
3278
3279int
3280vfs_rlock(vfs_t *vfsp)
3281{
3282	vn_vfslocks_entry_t *vpvfsentry;
3283
3284	vpvfsentry = vn_vfslocks_getlock(vfsp);
3285
3286	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3287		return (0);
3288
3289	vn_vfslocks_rele(vpvfsentry);
3290	return (EBUSY);
3291}
3292
3293void
3294vfs_lock_wait(vfs_t *vfsp)
3295{
3296	vn_vfslocks_entry_t *vpvfsentry;
3297
3298	vpvfsentry = vn_vfslocks_getlock(vfsp);
3299	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3300}
3301
3302void
3303vfs_rlock_wait(vfs_t *vfsp)
3304{
3305	vn_vfslocks_entry_t *vpvfsentry;
3306
3307	vpvfsentry = vn_vfslocks_getlock(vfsp);
3308	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3309}
3310
3311/*
3312 * Unlock a locked filesystem.
3313 */
3314void
3315vfs_unlock(vfs_t *vfsp)
3316{
3317	vn_vfslocks_entry_t *vpvfsentry;
3318
3319	/*
3320	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3321	 * And these changes should remain for the patch changes as it is.
3322	 */
3323	if (panicstr)
3324		return;
3325
3326	/*
3327	 * ve_refcount needs to be dropped twice here.
3328	 * 1. To release refernce after a call to vfs_locks_getlock()
3329	 * 2. To release the reference from the locking routines like
3330	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3331	 */
3332
3333	vpvfsentry = vn_vfslocks_getlock(vfsp);
3334	vn_vfslocks_rele(vpvfsentry);
3335
3336	rwst_exit(&vpvfsentry->ve_lock);
3337	vn_vfslocks_rele(vpvfsentry);
3338}
3339
3340/*
3341 * Utility routine that allows a filesystem to construct its
3342 * fsid in "the usual way" - by munging some underlying dev_t and
3343 * the filesystem type number into the 64-bit fsid.  Note that
3344 * this implicitly relies on dev_t persistence to make filesystem
3345 * id's persistent.
3346 *
3347 * There's nothing to prevent an individual fs from constructing its
3348 * fsid in a different way, and indeed they should.
3349 *
3350 * Since we want fsids to be 32-bit quantities (so that they can be
3351 * exported identically by either 32-bit or 64-bit APIs, as well as
3352 * the fact that fsid's are "known" to NFS), we compress the device
3353 * number given down to 32-bits, and panic if that isn't possible.
3354 */
3355void
3356vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3357{
3358	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3359		panic("device number too big for fsid!");
3360	fsi->val[1] = val;
3361}
3362
3363int
3364vfs_lock_held(vfs_t *vfsp)
3365{
3366	int held;
3367	vn_vfslocks_entry_t *vpvfsentry;
3368
3369	/*
3370	 * vfs_lock_held will mimic sema_held behaviour
3371	 * if panicstr is set. And these changes should remain
3372	 * for the patch changes as it is.
3373	 */
3374	if (panicstr)
3375		return (1);
3376
3377	vpvfsentry = vn_vfslocks_getlock(vfsp);
3378	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3379
3380	vn_vfslocks_rele(vpvfsentry);
3381	return (held);
3382}
3383
3384struct _kthread *
3385vfs_lock_owner(vfs_t *vfsp)
3386{
3387	struct _kthread *owner;
3388	vn_vfslocks_entry_t *vpvfsentry;
3389
3390	/*
3391	 * vfs_wlock_held will mimic sema_held behaviour
3392	 * if panicstr is set. And these changes should remain
3393	 * for the patch changes as it is.
3394	 */
3395	if (panicstr)
3396		return (NULL);
3397
3398	vpvfsentry = vn_vfslocks_getlock(vfsp);
3399	owner = rwst_owner(&vpvfsentry->ve_lock);
3400
3401	vn_vfslocks_rele(vpvfsentry);
3402	return (owner);
3403}
3404
3405/*
3406 * vfs list locking.
3407 *
3408 * Rather than manipulate the vfslist lock directly, we abstract into lock
3409 * and unlock routines to allow the locking implementation to be changed for
3410 * clustering.
3411 *
3412 * Whenever the vfs list is modified through its hash links, the overall list
3413 * lock must be obtained before locking the relevant hash bucket.  But to see
3414 * whether a given vfs is on the list, it suffices to obtain the lock for the
3415 * hash bucket without getting the overall list lock.  (See getvfs() below.)
3416 */
3417
3418void
3419vfs_list_lock()
3420{
3421	rw_enter(&vfslist, RW_WRITER);
3422}
3423
3424void
3425vfs_list_read_lock()
3426{
3427	rw_enter(&vfslist, RW_READER);
3428}
3429
3430void
3431vfs_list_unlock()
3432{
3433	rw_exit(&vfslist);
3434}
3435
3436/*
3437 * Low level worker routines for adding entries to and removing entries from
3438 * the vfs list.
3439 */
3440
3441static void
3442vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3443{
3444	int vhno;
3445	struct vfs **hp;
3446	dev_t dev;
3447
3448	ASSERT(RW_WRITE_HELD(&vfslist));
3449
3450	dev = expldev(vfsp->vfs_fsid.val[0]);
3451	vhno = VFSHASH(getmajor(dev), getminor(dev));
3452
3453	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3454
3455	/*
3456	 * Link into the hash table, inserting it at the end, so that LOFS
3457	 * with the same fsid as UFS (or other) file systems will not hide the
3458	 * UFS.
3459	 */
3460	if (insert_at_head) {
3461		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3462		rvfs_list[vhno].rvfs_head = vfsp;
3463	} else {
3464		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3465		    hp = &(*hp)->vfs_hash)
3466			continue;
3467		/*
3468		 * hp now contains the address of the pointer to update
3469		 * to effect the insertion.
3470		 */
3471		vfsp->vfs_hash = NULL;
3472		*hp = vfsp;
3473	}
3474
3475	rvfs_list[vhno].rvfs_len++;
3476	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3477}
3478
3479
3480static void
3481vfs_hash_remove(struct vfs *vfsp)
3482{
3483	int vhno;
3484	struct vfs *tvfsp;
3485	dev_t dev;
3486
3487	ASSERT(RW_WRITE_HELD(&vfslist));
3488
3489	dev = expldev(vfsp->vfs_fsid.val[0]);
3490	vhno = VFSHASH(getmajor(dev), getminor(dev));
3491
3492	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3493
3494	/*
3495	 * Remove from hash.
3496	 */
3497	if (rvfs_list[vhno].rvfs_head == vfsp) {
3498		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3499		rvfs_list[vhno].rvfs_len--;
3500		goto foundit;
3501	}
3502	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3503	    tvfsp = tvfsp->vfs_hash) {
3504		if (tvfsp->vfs_hash == vfsp) {
3505			tvfsp->vfs_hash = vfsp->vfs_hash;
3506			rvfs_list[vhno].rvfs_len--;
3507			goto foundit;
3508		}
3509	}
3510	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3511
3512foundit:
3513
3514	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3515}
3516
3517
3518void
3519vfs_list_add(struct vfs *vfsp)
3520{
3521	zone_t *zone;
3522
3523	/*
3524	 * Typically, the vfs_t will have been created on behalf of the file
3525	 * system in vfs_init, where it will have been provided with a
3526	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3527	 * by an unbundled file system. We therefore check for such an example
3528	 * before stamping the vfs_t with its creation time for the benefit of
3529	 * mntfs.
3530	 */
3531	if (vfsp->vfs_implp == NULL)
3532		vfsimpl_setup(vfsp);
3533	vfs_mono_time(&vfsp->vfs_hrctime);
3534
3535	/*
3536	 * The zone that owns the mount is the one that performed the mount.
3537	 * Note that this isn't necessarily the same as the zone mounted into.
3538	 * The corresponding zone_rele() will be done when the vfs_t is
3539	 * being free'd.
3540	 */
3541	vfsp->vfs_zone = curproc->p_zone;
3542	zone_hold(vfsp->vfs_zone);
3543
3544	/*
3545	 * Find the zone mounted into, and put this mount on its vfs list.
3546	 */
3547	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3548	ASSERT(zone != NULL);
3549	/*
3550	 * Special casing for the root vfs.  This structure is allocated
3551	 * statically and hooked onto rootvfs at link time.  During the
3552	 * vfs_mountroot call at system startup time, the root file system's
3553	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3554	 * as argument.  The code below must detect and handle this special
3555	 * case.  The only apparent justification for this special casing is
3556	 * to ensure that the root file system appears at the head of the
3557	 * list.
3558	 *
3559	 * XXX:	I'm assuming that it's ok to do normal list locking when
3560	 *	adding the entry for the root file system (this used to be
3561	 *	done with no locks held).
3562	 */
3563	vfs_list_lock();
3564	/*
3565	 * Link into the vfs list proper.
3566	 */
3567	if (vfsp == &root) {
3568		/*
3569		 * Assert: This vfs is already on the list as its first entry.
3570		 * Thus, there's nothing to do.
3571		 */
3572		ASSERT(rootvfs == vfsp);
3573		/*
3574		 * Add it to the head of the global zone's vfslist.
3575		 */
3576		ASSERT(zone == global_zone);
3577		ASSERT(zone->zone_vfslist == NULL);
3578		zone->zone_vfslist = vfsp;
3579	} else {
3580		/*
3581		 * Link to end of list using vfs_prev (as rootvfs is now a
3582		 * doubly linked circular list) so list is in mount order for
3583		 * mnttab use.
3584		 */
3585		rootvfs->vfs_prev->vfs_next = vfsp;
3586		vfsp->vfs_prev = rootvfs->vfs_prev;
3587		rootvfs->vfs_prev = vfsp;
3588		vfsp->vfs_next = rootvfs;
3589
3590		/*
3591		 * Do it again for the zone-private list (which may be NULL).
3592		 */
3593		if (zone->zone_vfslist == NULL) {
3594			ASSERT(zone != global_zone);
3595			zone->zone_vfslist = vfsp;
3596		} else {
3597			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3598			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3599			zone->zone_vfslist->vfs_zone_prev = vfsp;
3600			vfsp->vfs_zone_next = zone->zone_vfslist;
3601		}
3602	}
3603
3604	/*
3605	 * Link into the hash table, inserting it at the end, so that LOFS
3606	 * with the same fsid as UFS (or other) file systems will not hide
3607	 * the UFS.
3608	 */
3609	vfs_hash_add(vfsp, 0);
3610
3611	/*
3612	 * update the mnttab modification time
3613	 */
3614	vfs_mnttab_modtimeupd();
3615	vfs_list_unlock();
3616	zone_rele(zone);
3617}
3618
3619void
3620vfs_list_remove(struct vfs *vfsp)
3621{
3622	zone_t *zone;
3623
3624	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3625	ASSERT(zone != NULL);
3626	/*
3627	 * Callers are responsible for preventing attempts to unmount the
3628	 * root.
3629	 */
3630	ASSERT(vfsp != rootvfs);
3631
3632	vfs_list_lock();
3633
3634	/*
3635	 * Remove from hash.
3636	 */
3637	vfs_hash_remove(vfsp);
3638
3639	/*
3640	 * Remove from vfs list.
3641	 */
3642	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3643	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3644	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3645
3646	/*
3647	 * Remove from zone-specific vfs list.
3648	 */
3649	if (zone->zone_vfslist == vfsp)
3650		zone->zone_vfslist = vfsp->vfs_zone_next;
3651
3652	if (vfsp->vfs_zone_next == vfsp) {
3653		ASSERT(vfsp->vfs_zone_prev == vfsp);
3654		ASSERT(zone->zone_vfslist == vfsp);
3655		zone->zone_vfslist = NULL;
3656	}
3657
3658	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3659	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3660	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3661
3662	/*
3663	 * update the mnttab modification time
3664	 */
3665	vfs_mnttab_modtimeupd();
3666	vfs_list_unlock();
3667	zone_rele(zone);
3668}
3669
3670struct vfs *
3671getvfs(fsid_t *fsid)
3672{
3673	struct vfs *vfsp;
3674	int val0 = fsid->val[0];
3675	int val1 = fsid->val[1];
3676	dev_t dev = expldev(val0);
3677	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3678	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3679
3680	mutex_enter(hmp);
3681	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3682		if (vfsp->vfs_fsid.val[0] == val0 &&
3683		    vfsp->vfs_fsid.val[1] == val1) {
3684			VFS_HOLD(vfsp);
3685			mutex_exit(hmp);
3686			return (vfsp);
3687		}
3688	}
3689	mutex_exit(hmp);
3690	return (NULL);
3691}
3692
3693/*
3694 * Search the vfs mount in progress list for a specified device/vfs entry.
3695 * Returns 0 if the first entry in the list that the device matches has the
3696 * given vfs pointer as well.  If the device matches but a different vfs
3697 * pointer is encountered in the list before the given vfs pointer then
3698 * a 1 is returned.
3699 */
3700
3701int
3702vfs_devmounting(dev_t dev, struct vfs *vfsp)
3703{
3704	int retval = 0;
3705	struct ipmnt *mipp;
3706
3707	mutex_enter(&vfs_miplist_mutex);
3708	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3709		if (mipp->mip_dev == dev) {
3710			if (mipp->mip_vfsp != vfsp)
3711				retval = 1;
3712			break;
3713		}
3714	}
3715	mutex_exit(&vfs_miplist_mutex);
3716	return (retval);
3717}
3718
3719/*
3720 * Search the vfs list for a specified device.  Returns 1, if entry is found
3721 * or 0 if no suitable entry is found.
3722 */
3723
3724int
3725vfs_devismounted(dev_t dev)
3726{
3727	struct vfs *vfsp;
3728	int found;
3729
3730	vfs_list_read_lock();
3731	vfsp = rootvfs;
3732	found = 0;
3733	do {
3734		if (vfsp->vfs_dev == dev) {
3735			found = 1;
3736			break;
3737		}
3738		vfsp = vfsp->vfs_next;
3739	} while (vfsp != rootvfs);
3740
3741	vfs_list_unlock();
3742	return (found);
3743}
3744
3745/*
3746 * Search the vfs list for a specified device.  Returns a pointer to it
3747 * or NULL if no suitable entry is found. The caller of this routine
3748 * is responsible for releasing the returned vfs pointer.
3749 */
3750struct vfs *
3751vfs_dev2vfsp(dev_t dev)
3752{
3753	struct vfs *vfsp;
3754	int found;
3755
3756	vfs_list_read_lock();
3757	vfsp = rootvfs;
3758	found = 0;
3759	do {
3760		/*
3761		 * The following could be made more efficient by making
3762		 * the entire loop use vfs_zone_next if the call is from
3763		 * a zone.  The only callers, however, ustat(2) and
3764		 * umount2(2), don't seem to justify the added
3765		 * complexity at present.
3766		 */
3767		if (vfsp->vfs_dev == dev &&
3768		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3769		    curproc->p_zone)) {
3770			VFS_HOLD(vfsp);
3771			found = 1;
3772			break;
3773		}
3774		vfsp = vfsp->vfs_next;
3775	} while (vfsp != rootvfs);
3776	vfs_list_unlock();
3777	return (found ? vfsp: NULL);
3778}
3779
3780/*
3781 * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3782 * or NULL if no suitable entry is found. The caller of this routine
3783 * is responsible for releasing the returned vfs pointer.
3784 *
3785 * Note that if multiple mntpoints match, the last one matching is
3786 * returned in an attempt to return the "top" mount when overlay
3787 * mounts are covering the same mount point.  This is accomplished by starting
3788 * at the end of the list and working our way backwards, stopping at the first
3789 * matching mount.
3790 */
3791struct vfs *
3792vfs_mntpoint2vfsp(const char *mp)
3793{
3794	struct vfs *vfsp;
3795	struct vfs *retvfsp = NULL;
3796	zone_t *zone = curproc->p_zone;
3797	struct vfs *list;
3798
3799	vfs_list_read_lock();
3800	if (getzoneid() == GLOBAL_ZONEID) {
3801		/*
3802		 * The global zone may see filesystems in any zone.
3803		 */
3804		vfsp = rootvfs->vfs_prev;
3805		do {
3806			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3807				retvfsp = vfsp;
3808				break;
3809			}
3810			vfsp = vfsp->vfs_prev;
3811		} while (vfsp != rootvfs->vfs_prev);
3812	} else if ((list = zone->zone_vfslist) != NULL) {
3813		const char *mntpt;
3814
3815		vfsp = list->vfs_zone_prev;
3816		do {
3817			mntpt = refstr_value(vfsp->vfs_mntpt);
3818			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3819			if (strcmp(mntpt, mp) == 0) {
3820				retvfsp = vfsp;
3821				break;
3822			}
3823			vfsp = vfsp->vfs_zone_prev;
3824		} while (vfsp != list->vfs_zone_prev);
3825	}
3826	if (retvfsp)
3827		VFS_HOLD(retvfsp);
3828	vfs_list_unlock();
3829	return (retvfsp);
3830}
3831
3832/*
3833 * Search the vfs list for a specified vfsops.
3834 * if vfs entry is found then return 1, else 0.
3835 */
3836int
3837vfs_opsinuse(vfsops_t *ops)
3838{
3839	struct vfs *vfsp;
3840	int found;
3841
3842	vfs_list_read_lock();
3843	vfsp = rootvfs;
3844	found = 0;
3845	do {
3846		if (vfs_getops(vfsp) == ops) {
3847			found = 1;
3848			break;
3849		}
3850		vfsp = vfsp->vfs_next;
3851	} while (vfsp != rootvfs);
3852	vfs_list_unlock();
3853	return (found);
3854}
3855
3856/*
3857 * Allocate an entry in vfssw for a file system type
3858 */
3859struct vfssw *
3860allocate_vfssw(const char *type)
3861{
3862	struct vfssw *vswp;
3863
3864	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3865		/*
3866		 * The vfssw table uses the empty string to identify an
3867		 * available entry; we cannot add any type which has
3868		 * a leading NUL. The string length is limited to
3869		 * the size of the st_fstype array in struct stat.
3870		 */
3871		return (NULL);
3872	}
3873
3874	ASSERT(VFSSW_WRITE_LOCKED());
3875	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3876		if (!ALLOCATED_VFSSW(vswp)) {
3877			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3878			(void) strcpy(vswp->vsw_name, type);
3879			ASSERT(vswp->vsw_count == 0);
3880			vswp->vsw_count = 1;
3881			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3882			return (vswp);
3883		}
3884	return (NULL);
3885}
3886
3887/*
3888 * Impose additional layer of translation between vfstype names
3889 * and module names in the filesystem.
3890 */
3891static const char *
3892vfs_to_modname(const char *vfstype)
3893{
3894	if (strcmp(vfstype, "proc") == 0) {
3895		vfstype = "procfs";
3896	} else if (strcmp(vfstype, "fd") == 0) {
3897		vfstype = "fdfs";
3898	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3899		vfstype = "nfs";
3900	}
3901
3902	return (vfstype);
3903}
3904
3905/*
3906 * Find a vfssw entry given a file system type name.
3907 * Try to autoload the filesystem if it's not found.
3908 * If it's installed, return the vfssw locked to prevent unloading.
3909 */
3910struct vfssw *
3911vfs_getvfssw(const char *type)
3912{
3913	struct vfssw *vswp;
3914	const char *modname;
3915
3916	RLOCK_VFSSW();
3917	vswp = vfs_getvfsswbyname(type);
3918	modname = vfs_to_modname(type);
3919
3920	if (rootdir == NULL) {
3921		/*
3922		 * If we haven't yet loaded the root file system, then our
3923		 * _init won't be called until later. Allocate vfssw entry,
3924		 * because mod_installfs won't be called.
3925		 */
3926		if (vswp == NULL) {
3927			RUNLOCK_VFSSW();
3928			WLOCK_VFSSW();
3929			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3930				if ((vswp = allocate_vfssw(type)) == NULL) {
3931					WUNLOCK_VFSSW();
3932					return (NULL);
3933				}
3934			}
3935			WUNLOCK_VFSSW();
3936			RLOCK_VFSSW();
3937		}
3938		if (!VFS_INSTALLED(vswp)) {
3939			RUNLOCK_VFSSW();
3940			(void) modloadonly("fs", modname);
3941		} else
3942			RUNLOCK_VFSSW();
3943		return (vswp);
3944	}
3945
3946	/*
3947	 * Try to load the filesystem.  Before calling modload(), we drop
3948	 * our lock on the VFS switch table, and pick it up after the
3949	 * module is loaded.  However, there is a potential race:  the
3950	 * module could be unloaded after the call to modload() completes
3951	 * but before we pick up the lock and drive on.  Therefore,
3952	 * we keep reloading the module until we've loaded the module
3953	 * _and_ we have the lock on the VFS switch table.
3954	 */
3955	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3956		RUNLOCK_VFSSW();
3957		if (modload("fs", modname) == -1)
3958			return (NULL);
3959		RLOCK_VFSSW();
3960		if (vswp == NULL)
3961			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3962				break;
3963	}
3964	RUNLOCK_VFSSW();
3965
3966	return (vswp);
3967}
3968
3969/*
3970 * Find a vfssw entry given a file system type name.
3971 */
3972struct vfssw *
3973vfs_getvfsswbyname(const char *type)
3974{
3975	struct vfssw *vswp;
3976
3977	ASSERT(VFSSW_LOCKED());
3978	if (type == NULL || *type == '\0')
3979		return (NULL);
3980
3981	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3982		if (strcmp(type, vswp->vsw_name) == 0) {
3983			vfs_refvfssw(vswp);
3984			return (vswp);
3985		}
3986	}
3987
3988	return (NULL);
3989}
3990
3991/*
3992 * Find a vfssw entry given a set of vfsops.
3993 */
3994struct vfssw *
3995vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3996{
3997	struct vfssw *vswp;
3998
3999	RLOCK_VFSSW();
4000	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4001		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4002			vfs_refvfssw(vswp);
4003			RUNLOCK_VFSSW();
4004			return (vswp);
4005		}
4006	}
4007	RUNLOCK_VFSSW();
4008
4009	return (NULL);
4010}
4011
4012/*
4013 * Reference a vfssw entry.
4014 */
4015void
4016vfs_refvfssw(struct vfssw *vswp)
4017{
4018
4019	mutex_enter(&vswp->vsw_lock);
4020	vswp->vsw_count++;
4021	mutex_exit(&vswp->vsw_lock);
4022}
4023
4024/*
4025 * Unreference a vfssw entry.
4026 */
4027void
4028vfs_unrefvfssw(struct vfssw *vswp)
4029{
4030
4031	mutex_enter(&vswp->vsw_lock);
4032	vswp->vsw_count--;
4033	mutex_exit(&vswp->vsw_lock);
4034}
4035
4036int sync_timeout = 30;		/* timeout for syncing a page during panic */
4037int sync_timeleft;		/* portion of sync_timeout remaining */
4038
4039static int sync_retries = 20;	/* number of retries when not making progress */
4040static int sync_triesleft;	/* portion of sync_retries remaining */
4041
4042static pgcnt_t old_pgcnt, new_pgcnt;
4043static int new_bufcnt, old_bufcnt;
4044
4045/*
4046 * Sync all of the mounted filesystems, and then wait for the actual i/o to
4047 * complete.  We wait by counting the number of dirty pages and buffers,
4048 * pushing them out using bio_busy() and page_busy(), and then counting again.
4049 * This routine is used during both the uadmin A_SHUTDOWN code as well as
4050 * the SYNC phase of the panic code (see comments in panic.c).  It should only
4051 * be used after some higher-level mechanism has quiesced the system so that
4052 * new writes are not being initiated while we are waiting for completion.
4053 *
4054 * To ensure finite running time, our algorithm uses two timeout mechanisms:
4055 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4056 * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4057 * Together these ensure that syncing completes if our i/o paths are stuck.
4058 * The counters are declared above so they can be found easily in the debugger.
4059 *
4060 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4061 * vfs_syncprogress() subroutine whenever we make progress through the lists of
4062 * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4063 * When vfs_syncall() decides it is done, we disable the deadman() counter by
4064 * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4065 * deadlocking or hanging inside of a broken filesystem or driver routine.
4066 *
4067 * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4068 * sync_retries consecutive calls to bio_busy() and page_busy() without
4069 * decreasing either the number of dirty buffers or dirty pages below the
4070 * lowest count we have seen so far, we give up and return from vfs_syncall().
4071 *
4072 * Each loop iteration ends with a call to delay() one second to allow time for
4073 * i/o completion and to permit the user time to read our progress messages.
4074 */
4075void
4076vfs_syncall(void)
4077{
4078	if (rootdir == NULL && !modrootloaded)
4079		return; /* panic during boot - no filesystems yet */
4080
4081	printf("syncing file systems...");
4082	vfs_syncprogress();
4083	sync();
4084
4085	vfs_syncprogress();
4086	sync_triesleft = sync_retries;
4087
4088	old_bufcnt = new_bufcnt = INT_MAX;
4089	old_pgcnt = new_pgcnt = ULONG_MAX;
4090
4091	while (sync_triesleft > 0) {
4092		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4093		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4094
4095		new_bufcnt = bio_busy(B_TRUE);
4096		new_pgcnt = page_busy(B_TRUE);
4097		vfs_syncprogress();
4098
4099		if (new_bufcnt == 0 && new_pgcnt == 0)
4100			break;
4101
4102		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4103			sync_triesleft = sync_retries;
4104		else
4105			sync_triesleft--;
4106
4107		if (new_bufcnt)
4108			printf(" [%d]", new_bufcnt);
4109		if (new_pgcnt)
4110			printf(" %lu", new_pgcnt);
4111
4112		delay(hz);
4113	}
4114
4115	if (new_bufcnt != 0 || new_pgcnt != 0)
4116		printf(" done (not all i/o completed)\n");
4117	else
4118		printf(" done\n");
4119
4120	sync_timeleft = 0;
4121	delay(hz);
4122}
4123
4124/*
4125 * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4126 * sync_timeout to indicate that we are making progress and the deadman()
4127 * omnipresent cyclic should not yet time us out.  Note that it is safe to
4128 * store to sync_timeleft here since the deadman() is firing at high-level
4129 * on top of us.  If we are racing with the deadman(), either the deadman()
4130 * will decrement the old value and then we will reset it, or we will
4131 * reset it and then the deadman() will immediately decrement it.  In either
4132 * case, correct behavior results.
4133 */
4134void
4135vfs_syncprogress(void)
4136{
4137	if (panicstr)
4138		sync_timeleft = sync_timeout;
4139}
4140
4141/*
4142 * Map VFS flags to statvfs flags.  These shouldn't really be separate
4143 * flags at all.
4144 */
4145uint_t
4146vf_to_stf(uint_t vf)
4147{
4148	uint_t stf = 0;
4149
4150	if (vf & VFS_RDONLY)
4151		stf |= ST_RDONLY;
4152	if (vf & VFS_NOSETUID)
4153		stf |= ST_NOSUID;
4154	if (vf & VFS_NOTRUNC)
4155		stf |= ST_NOTRUNC;
4156
4157	return (stf);
4158}
4159
4160/*
4161 * Entries for (illegal) fstype 0.
4162 */
4163/* ARGSUSED */
4164int
4165vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4166{
4167	cmn_err(CE_PANIC, "stray vfs operation");
4168	return (0);
4169}
4170
4171/*
4172 * Entries for (illegal) fstype 0.
4173 */
4174int
4175vfsstray(void)
4176{
4177	cmn_err(CE_PANIC, "stray vfs operation");
4178	return (0);
4179}
4180
4181/*
4182 * Support for dealing with forced UFS unmount and its interaction with
4183 * LOFS. Could be used by any filesystem.
4184 * See bug 1203132.
4185 */
4186int
4187vfs_EIO(void)
4188{
4189	return (EIO);
4190}
4191
4192/*
4193 * We've gotta define the op for sync separately, since the compiler gets
4194 * confused if we mix and match ANSI and normal style prototypes when
4195 * a "short" argument is present and spits out a warning.
4196 */
4197/*ARGSUSED*/
4198int
4199vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4200{
4201	return (EIO);
4202}
4203
4204vfs_t EIO_vfs;
4205vfsops_t *EIO_vfsops;
4206
4207/*
4208 * Called from startup() to initialize all loaded vfs's
4209 */
4210void
4211vfsinit(void)
4212{
4213	struct vfssw *vswp;
4214	int error;
4215	extern int vopstats_enabled;
4216	extern void vopstats_startup();
4217
4218	static const fs_operation_def_t EIO_vfsops_template[] = {
4219		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4220		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4221		VFSNAME_ROOT,		{ .error = vfs_EIO },
4222		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4223		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4224		VFSNAME_VGET,		{ .error = vfs_EIO },
4225		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4226		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4227		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4228		NULL, NULL
4229	};
4230
4231	static const fs_operation_def_t stray_vfsops_template[] = {
4232		VFSNAME_MOUNT,		{ .error = vfsstray },
4233		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4234		VFSNAME_ROOT,		{ .error = vfsstray },
4235		VFSNAME_STATVFS,	{ .error = vfsstray },
4236		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4237		VFSNAME_VGET,		{ .error = vfsstray },
4238		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4239		VFSNAME_FREEVFS,	{ .error = vfsstray },
4240		VFSNAME_VNSTATE,	{ .error = vfsstray },
4241		NULL, NULL
4242	};
4243
4244	/* Create vfs cache */
4245	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4246	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4247
4248	/* Initialize the vnode cache (file systems may use it during init). */
4249	vn_create_cache();
4250
4251	/* Setup event monitor framework */
4252	fem_init();
4253
4254	/* Initialize the dummy stray file system type. */
4255	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4256
4257	/* Initialize the dummy EIO file system. */
4258	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4259	if (error != 0) {
4260		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4261		/* Shouldn't happen, but not bad enough to panic */
4262	}
4263
4264	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4265
4266	/*
4267	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4268	 * on this vfs can immediately notice it's invalid.
4269	 */
4270	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4271
4272	/*
4273	 * Call the init routines of non-loadable filesystems only.
4274	 * Filesystems which are loaded as separate modules will be
4275	 * initialized by the module loading code instead.
4276	 */
4277
4278	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4279		RLOCK_VFSSW();
4280		if (vswp->vsw_init != NULL)
4281			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4282		RUNLOCK_VFSSW();
4283	}
4284
4285	vopstats_startup();
4286
4287	if (vopstats_enabled) {
4288		/* EIO_vfs can collect stats, but we don't retrieve them */
4289		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4290		EIO_vfs.vfs_fstypevsp = NULL;
4291		EIO_vfs.vfs_vskap = NULL;
4292		EIO_vfs.vfs_flag |= VFS_STATS;
4293	}
4294
4295	xattr_init();
4296
4297	reparse_point_init();
4298}
4299
4300vfs_t *
4301vfs_alloc(int kmflag)
4302{
4303	vfs_t *vfsp;
4304
4305	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4306
4307	/*
4308	 * Do the simplest initialization here.
4309	 * Everything else gets done in vfs_init()
4310	 */
4311	bzero(vfsp, sizeof (vfs_t));
4312	return (vfsp);
4313}
4314
4315void
4316vfs_free(vfs_t *vfsp)
4317{
4318	/*
4319	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4320	 * The problem is that this gets called out of domount() with
4321	 * a partially initialized vfs and a vfs_count of 1.  This is
4322	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4323	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4324	 * returned.  This is because VFS_MOUNT() fully initializes the
4325	 * vfs structure and its associated data.  VFS_RELE() will call
4326	 * VFS_FREEVFS() which may panic the system if the data structures
4327	 * aren't fully initialized from a successful VFS_MOUNT()).
4328	 */
4329
4330	/* If FEM was in use, make sure everything gets cleaned up */
4331	if (vfsp->vfs_femhead) {
4332		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4333		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4334		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4335		vfsp->vfs_femhead = NULL;
4336	}
4337
4338	if (vfsp->vfs_implp)
4339		vfsimpl_teardown(vfsp);
4340	sema_destroy(&vfsp->vfs_reflock);
4341	kmem_cache_free(vfs_cache, vfsp);
4342}
4343
4344/*
4345 * Increments the vfs reference count by one atomically.
4346 */
4347void
4348vfs_hold(vfs_t *vfsp)
4349{
4350	atomic_add_32(&vfsp->vfs_count, 1);
4351	ASSERT(vfsp->vfs_count != 0);
4352}
4353
4354/*
4355 * Decrements the vfs reference count by one atomically. When
4356 * vfs reference count becomes zero, it calls the file system
4357 * specific vfs_freevfs() to free up the resources.
4358 */
4359void
4360vfs_rele(vfs_t *vfsp)
4361{
4362	ASSERT(vfsp->vfs_count != 0);
4363	if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) {
4364		VFS_FREEVFS(vfsp);
4365		lofi_remove(vfsp);
4366		if (vfsp->vfs_zone)
4367			zone_rele(vfsp->vfs_zone);
4368		vfs_freemnttab(vfsp);
4369		vfs_free(vfsp);
4370	}
4371}
4372
4373/*
4374 * Generic operations vector support.
4375 *
4376 * This is used to build operations vectors for both the vfs and vnode.
4377 * It's normally called only when a file system is loaded.
4378 *
4379 * There are many possible algorithms for this, including the following:
4380 *
4381 *   (1) scan the list of known operations; for each, see if the file system
4382 *       includes an entry for it, and fill it in as appropriate.
4383 *
4384 *   (2) set up defaults for all known operations.  scan the list of ops
4385 *       supplied by the file system; for each which is both supplied and
4386 *       known, fill it in.
4387 *
4388 *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4389 *       in entries as we go.
4390 *
4391 * we choose (1) for simplicity, and because performance isn't critical here.
4392 * note that (2) could be sped up using a precomputed hash table on known ops.
4393 * (3) could be faster than either, but only if the lists were very large or
4394 * supplied in sorted order.
4395 *
4396 */
4397
4398int
4399fs_build_vector(void *vector, int *unused_ops,
4400    const fs_operation_trans_def_t *translation,
4401    const fs_operation_def_t *operations)
4402{
4403	int i, num_trans, num_ops, used;
4404
4405	/*
4406	 * Count the number of translations and the number of supplied
4407	 * operations.
4408	 */
4409
4410	{
4411		const fs_operation_trans_def_t *p;
4412
4413		for (num_trans = 0, p = translation;
4414		    p->name != NULL;
4415		    num_trans++, p++)
4416			;
4417	}
4418
4419	{
4420		const fs_operation_def_t *p;
4421
4422		for (num_ops = 0, p = operations;
4423		    p->name != NULL;
4424		    num_ops++, p++)
4425			;
4426	}
4427
4428	/* Walk through each operation known to our caller.  There will be */
4429	/* one entry in the supplied "translation table" for each. */
4430
4431	used = 0;
4432
4433	for (i = 0; i < num_trans; i++) {
4434		int j, found;
4435		char *curname;
4436		fs_generic_func_p result;
4437		fs_generic_func_p *location;
4438
4439		curname = translation[i].name;
4440
4441		/* Look for a matching operation in the list supplied by the */
4442		/* file system. */
4443
4444		found = 0;
4445
4446		for (j = 0; j < num_ops; j++) {
4447			if (strcmp(operations[j].name, curname) == 0) {
4448				used++;
4449				found = 1;
4450				break;
4451			}
4452		}
4453
4454		/*
4455		 * If the file system is using a "placeholder" for default
4456		 * or error functions, grab the appropriate function out of
4457		 * the translation table.  If the file system didn't supply
4458		 * this operation at all, use the default function.
4459		 */
4460
4461		if (found) {
4462			result = operations[j].func.fs_generic;
4463			if (result == fs_default) {
4464				result = translation[i].defaultFunc;
4465			} else if (result == fs_error) {
4466				result = translation[i].errorFunc;
4467			} else if (result == NULL) {
4468				/* Null values are PROHIBITED */
4469				return (EINVAL);
4470			}
4471		} else {
4472			result = translation[i].defaultFunc;
4473		}
4474
4475		/* Now store the function into the operations vector. */
4476
4477		location = (fs_generic_func_p *)
4478		    (((char *)vector) + translation[i].offset);
4479
4480		*location = result;
4481	}
4482
4483	*unused_ops = num_ops - used;
4484
4485	return (0);
4486}
4487
4488/* Placeholder functions, should never be called. */
4489
4490int
4491fs_error(void)
4492{
4493	cmn_err(CE_PANIC, "fs_error called");
4494	return (0);
4495}
4496
4497int
4498fs_default(void)
4499{
4500	cmn_err(CE_PANIC, "fs_default called");
4501	return (0);
4502}
4503
4504#ifdef __sparc
4505
4506/*
4507 * Part of the implementation of booting off a mirrored root
4508 * involves a change of dev_t for the root device.  To
4509 * accomplish this, first remove the existing hash table
4510 * entry for the root device, convert to the new dev_t,
4511 * then re-insert in the hash table at the head of the list.
4512 */
4513void
4514vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4515{
4516	vfs_list_lock();
4517
4518	vfs_hash_remove(vfsp);
4519
4520	vfsp->vfs_dev = ndev;
4521	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4522
4523	vfs_hash_add(vfsp, 1);
4524
4525	vfs_list_unlock();
4526}
4527
4528#else /* x86 NEWBOOT */
4529
4530#if defined(__x86)
4531extern int hvmboot_rootconf();
4532#endif /* __x86 */
4533
4534extern ib_boot_prop_t *iscsiboot_prop;
4535
4536int
4537rootconf()
4538{
4539	int error;
4540	struct vfssw *vsw;
4541	extern void pm_init();
4542	char *fstyp, *fsmod;
4543	int ret = -1;
4544
4545	getrootfs(&fstyp, &fsmod);
4546
4547#if defined(__x86)
4548	/*
4549	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4550	 * which lives in /platform/i86hvm, and hence is only available when
4551	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4552	 * is not available then the modstub for this function will return 0.
4553	 * If the hvm_bootstrap misc module is available it will be loaded
4554	 * and hvmboot_rootconf() will be invoked.
4555	 */
4556	if (error = hvmboot_rootconf())
4557		return (error);
4558#endif /* __x86 */
4559
4560	if (error = clboot_rootconf())
4561		return (error);
4562
4563	if (modload("fs", fsmod) == -1)
4564		panic("Cannot _init %s module", fsmod);
4565
4566	RLOCK_VFSSW();
4567	vsw = vfs_getvfsswbyname(fstyp);
4568	RUNLOCK_VFSSW();
4569	if (vsw == NULL) {
4570		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4571		return (ENXIO);
4572	}
4573	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4574	VFS_HOLD(rootvfs);
4575
4576	/* always mount readonly first */
4577	rootvfs->vfs_flag |= VFS_RDONLY;
4578
4579	pm_init();
4580
4581	if (netboot && iscsiboot_prop) {
4582		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4583		    " shouldn't happen in the same time");
4584		return (EINVAL);
4585	}
4586
4587	if (netboot || iscsiboot_prop) {
4588		ret = strplumb();
4589		if (ret != 0) {
4590			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4591			return (EFAULT);
4592		}
4593	}
4594
4595	if ((ret == 0) && iscsiboot_prop) {
4596		ret = modload("drv", "iscsi");
4597		/* -1 indicates fail */
4598		if (ret == -1) {
4599			cmn_err(CE_WARN, "Failed to load iscsi module");
4600			iscsi_boot_prop_free();
4601			return (EINVAL);
4602		} else {
4603			if (!i_ddi_attach_pseudo_node("iscsi")) {
4604				cmn_err(CE_WARN,
4605				    "Failed to attach iscsi driver");
4606				iscsi_boot_prop_free();
4607				return (ENODEV);
4608			}
4609		}
4610	}
4611
4612	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4613	vfs_unrefvfssw(vsw);
4614	rootdev = rootvfs->vfs_dev;
4615
4616	if (error)
4617		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4618		    rootfs.bo_name, fstyp);
4619	else
4620		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4621		    rootfs.bo_name, fstyp);
4622	return (error);
4623}
4624
4625/*
4626 * XXX this is called by nfs only and should probably be removed
4627 * If booted with ASKNAME, prompt on the console for a filesystem
4628 * name and return it.
4629 */
4630void
4631getfsname(char *askfor, char *name, size_t namelen)
4632{
4633	if (boothowto & RB_ASKNAME) {
4634		printf("%s name: ", askfor);
4635		console_gets(name, namelen);
4636	}
4637}
4638
4639/*
4640 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4641 * property.
4642 *
4643 * Filesystem types starting with the prefix "nfs" are diskless clients;
4644 * init the root filename name (rootfs.bo_name), too.
4645 *
4646 * If we are booting via NFS we currently have these options:
4647 *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4648 *	nfs2 -	force NFS V2
4649 *	nfs3 -	force NFS V3
4650 *	nfs4 -	force NFS V4
4651 * Because we need to maintain backward compatibility with the naming
4652 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4653 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4654 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4655 * This is only for root filesystems, all other uses such as cachefs
4656 * will expect that "nfs" == NFS V2.
4657 */
4658static void
4659getrootfs(char **fstypp, char **fsmodp)
4660{
4661	extern char *strplumb_get_netdev_path(void);
4662	char *propstr = NULL;
4663
4664	/*
4665	 * Check fstype property; for diskless it should be one of "nfs",
4666	 * "nfs2", "nfs3" or "nfs4".
4667	 */
4668	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4669	    DDI_PROP_DONTPASS, "fstype", &propstr)
4670	    == DDI_SUCCESS) {
4671		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4672		ddi_prop_free(propstr);
4673
4674	/*
4675	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4676	 * assume the type of this root filesystem is 'zfs'.
4677	 */
4678	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4679	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4680	    == DDI_SUCCESS) {
4681		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4682		ddi_prop_free(propstr);
4683	}
4684
4685	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4686		*fstypp = *fsmodp = rootfs.bo_fstype;
4687		return;
4688	}
4689
4690	++netboot;
4691
4692	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4693		(void) strcpy(rootfs.bo_fstype, "nfs");
4694	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4695		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4696
4697	/*
4698	 * check if path to network interface is specified in bootpath
4699	 * or by a hypervisor domain configuration file.
4700	 * XXPV - enable strlumb_get_netdev_path()
4701	 */
4702	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4703	    "xpv-nfsroot")) {
4704		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4705	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4706	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4707	    == DDI_SUCCESS) {
4708		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4709		ddi_prop_free(propstr);
4710	} else {
4711		/* attempt to determine netdev_path via boot_mac address */
4712		netdev_path = strplumb_get_netdev_path();
4713		if (netdev_path == NULL)
4714			panic("cannot find boot network interface");
4715		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4716	}
4717	*fstypp = rootfs.bo_fstype;
4718	*fsmodp = "nfs";
4719}
4720#endif
4721
4722/*
4723 * VFS feature routines
4724 */
4725
4726#define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4727#define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4728
4729/* Register a feature in the vfs */
4730void
4731vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4732{
4733	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4734	if (vfsp->vfs_implp == NULL)
4735		return;
4736
4737	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4738}
4739
4740/*
4741 * Query a vfs for a feature.
4742 * Returns 1 if feature is present, 0 if not
4743 */
4744int
4745vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4746{
4747	int	ret = 0;
4748
4749	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4750	if (vfsp->vfs_implp == NULL)
4751		return (ret);
4752
4753	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4754		ret = 1;
4755
4756	return (ret);
4757}
4758
4759/*
4760 * Propagate feature set from one vfs to another
4761 */
4762void
4763vfs_propagate_features(vfs_t *from, vfs_t *to)
4764{
4765	int i;
4766
4767	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4768		return;
4769
4770	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4771		to->vfs_featureset[i] = from->vfs_featureset[i];
4772	}
4773}
4774
4775#define	LOFINODE_PATH "/dev/lofi/%d"
4776
4777/*
4778 * Return the vnode for the lofi node if there's a lofi mount in place.
4779 * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4780 * failure.
4781 */
4782int
4783vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4784{
4785	char *path = NULL;
4786	int strsize;
4787	int err;
4788
4789	if (vfsp->vfs_lofi_minor == 0) {
4790		*vpp = NULL;
4791		return (-1);
4792	}
4793
4794	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4795	path = kmem_alloc(strsize + 1, KM_SLEEP);
4796	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4797
4798	/*
4799	 * We may be inside a zone, so we need to use the /dev path, but
4800	 * it's created asynchronously, so we wait here.
4801	 */
4802	for (;;) {
4803		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4804
4805		if (err != ENOENT)
4806			break;
4807
4808		if ((err = delay_sig(hz / 8)) == EINTR)
4809			break;
4810	}
4811
4812	if (err)
4813		*vpp = NULL;
4814
4815	kmem_free(path, strsize + 1);
4816	return (err);
4817}
4818