socksubr.c revision 8348:4137e18bfaf0
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#include <sys/types.h>
28#include <sys/t_lock.h>
29#include <sys/param.h>
30#include <sys/systm.h>
31#include <sys/buf.h>
32#include <sys/conf.h>
33#include <sys/cred.h>
34#include <sys/kmem.h>
35#include <sys/sysmacros.h>
36#include <sys/vfs.h>
37#include <sys/vfs_opreg.h>
38#include <sys/vnode.h>
39#include <sys/debug.h>
40#include <sys/errno.h>
41#include <sys/time.h>
42#include <sys/file.h>
43#include <sys/open.h>
44#include <sys/user.h>
45#include <sys/uio.h>
46#include <sys/termios.h>
47#include <sys/stream.h>
48#include <sys/strsubr.h>
49#include <sys/strsun.h>
50#include <sys/esunddi.h>
51#include <sys/flock.h>
52#include <sys/modctl.h>
53#include <sys/cmn_err.h>
54#include <sys/mkdev.h>
55#include <sys/pathname.h>
56#include <sys/ddi.h>
57#include <sys/stat.h>
58#include <sys/fs/snode.h>
59#include <sys/fs/dv_node.h>
60#include <sys/zone.h>
61
62#include <sys/socket.h>
63#include <sys/socketvar.h>
64#include <netinet/in.h>
65#include <sys/un.h>
66
67#include <sys/ucred.h>
68
69#include <sys/tiuser.h>
70#define	_SUN_TPI_VERSION	2
71#include <sys/tihdr.h>
72
73#include <c2/audit.h>
74
75#include <fs/sockfs/nl7c.h>
76#include <fs/sockfs/sockcommon.h>
77#include <fs/sockfs/socktpi.h>
78#include <fs/sockfs/socktpi_impl.h>
79
80/*
81 * Macros that operate on struct cmsghdr.
82 * The CMSG_VALID macro does not assume that the last option buffer is padded.
83 */
84#define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
85#define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
86#define	CMSG_VALID(cmsg, start, end)					\
87	(ISALIGNED_cmsghdr(cmsg) &&					\
88	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
89	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
90	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
91	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
92#define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
93
94dev_t sockdev;	/* For fsid in getattr */
95int sockfs_defer_nl7c_init = 0;
96
97struct socklist socklist;
98
99struct kmem_cache *socket_cache;
100
101static int sockfs_update(kstat_t *, int);
102static int sockfs_snapshot(kstat_t *, void *, int);
103extern smod_info_t *sotpi_smod_create(void);
104
105extern void sendfile_init();
106
107extern void nl7c_init(void);
108
109extern int sostr_init();
110
111extern int modrootloaded;
112
113#define	ADRSTRLEN (2 * sizeof (void *) + 1)
114/*
115 * kernel structure for passing the sockinfo data back up to the user.
116 * the strings array allows us to convert AF_UNIX addresses into strings
117 * with a common method regardless of which n-bit kernel we're running.
118 */
119struct k_sockinfo {
120	struct sockinfo	ks_si;
121	char		ks_straddr[3][ADRSTRLEN];
122};
123
124/*
125 * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
126 * Returns with the vnode held.
127 */
128int
129sogetvp(char *devpath, vnode_t **vpp, int uioflag)
130{
131	struct snode *csp;
132	vnode_t *vp, *dvp;
133	major_t maj;
134	int error;
135
136	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
137
138	/*
139	 * Lookup the underlying filesystem vnode.
140	 */
141	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
142	if (error)
143		return (error);
144
145	/* Check that it is the correct vnode */
146	if (vp->v_type != VCHR) {
147		VN_RELE(vp);
148		return (ENOTSOCK);
149	}
150
151	/*
152	 * If devpath went through devfs, the device should already
153	 * be configured. If devpath is a mknod file, however, we
154	 * need to make sure the device is properly configured.
155	 * To do this, we do something similar to spec_open()
156	 * except that we resolve to the minor/leaf level since
157	 * we need to return a vnode.
158	 */
159	csp = VTOS(VTOS(vp)->s_commonvp);
160	if (!(csp->s_flag & SDIPSET)) {
161		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
162		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
163		if (error == 0)
164			error = devfs_lookupname(pathname, NULLVPP, &dvp);
165		VN_RELE(vp);
166		kmem_free(pathname, MAXPATHLEN);
167		if (error != 0)
168			return (ENXIO);
169		vp = dvp;	/* use the devfs vp */
170	}
171
172	/* device is configured at this point */
173	maj = getmajor(vp->v_rdev);
174	if (!STREAMSTAB(maj)) {
175		VN_RELE(vp);
176		return (ENOSTR);
177	}
178
179	*vpp = vp;
180	return (0);
181}
182
183/*
184 * Update the accessed, updated, or changed times in an sonode
185 * with the current time.
186 *
187 * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
188 * attributes in a fstat call. (They return the current time and 0 for
189 * all timestamps, respectively.) We maintain the current timestamps
190 * here primarily so that should sockmod be popped the resulting
191 * file descriptor will behave like a stream w.r.t. the timestamps.
192 */
193void
194so_update_attrs(struct sonode *so, int flag)
195{
196	time_t now = gethrestime_sec();
197
198	if (SOCK_IS_NONSTR(so))
199		return;
200
201	mutex_enter(&so->so_lock);
202	so->so_flag |= flag;
203	if (flag & SOACC)
204		SOTOTPI(so)->sti_atime = now;
205	if (flag & SOMOD)
206		SOTOTPI(so)->sti_mtime = now;
207	mutex_exit(&so->so_lock);
208}
209
210extern so_create_func_t sock_comm_create_function;
211extern so_destroy_func_t sock_comm_destroy_function;
212/*
213 * Init function called when sockfs is loaded.
214 */
215int
216sockinit(int fstype, char *name)
217{
218	static const fs_operation_def_t sock_vfsops_template[] = {
219		NULL, NULL
220	};
221	int error;
222	major_t dev;
223	char *err_str;
224
225	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
226	if (error != 0) {
227		zcmn_err(GLOBAL_ZONEID, CE_WARN,
228		    "sockinit: bad vfs ops template");
229		return (error);
230	}
231
232	error = vn_make_ops(name, socket_vnodeops_template,
233	    &socket_vnodeops);
234	if (error != 0) {
235		err_str = "sockinit: bad socket vnode ops template";
236		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
237		socket_vnodeops = NULL;
238		goto failure;
239	}
240
241	socket_cache = kmem_cache_create("socket_cache",
242	    sizeof (struct sonode), 0, sonode_constructor,
243	    sonode_destructor, NULL, NULL, NULL, 0);
244
245	error = socktpi_init();
246	if (error != 0) {
247		err_str = NULL;
248		goto failure;
249	}
250
251	error = sostr_init();
252	if (error != 0) {
253		err_str = NULL;
254		goto failure;
255	}
256
257	/*
258	 * Set up the default create and destroy functions
259	 */
260	sock_comm_create_function = socket_sonode_create;
261	sock_comm_destroy_function = socket_sonode_destroy;
262
263	/*
264	 * Build initial list mapping socket parameters to vnode.
265	 */
266	smod_init();
267	smod_add(sotpi_smod_create());
268
269	sockparams_init();
270
271	/*
272	 * If sockets are needed before init runs /sbin/soconfig
273	 * it is possible to preload the sockparams list here using
274	 * calls like:
275	 *	sockconfig(1,2,3, "/dev/tcp", 0);
276	 */
277
278	/*
279	 * Create a unique dev_t for use in so_fsid.
280	 */
281
282	if ((dev = getudev()) == (major_t)-1)
283		dev = 0;
284	sockdev = makedevice(dev, 0);
285
286	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
287	sendfile_init();
288	if (!modrootloaded) {
289		sockfs_defer_nl7c_init = 1;
290	} else {
291		nl7c_init();
292	}
293
294	return (0);
295
296failure:
297	(void) vfs_freevfsops_by_type(fstype);
298	if (socket_vnodeops != NULL)
299		vn_freevnodeops(socket_vnodeops);
300	if (err_str != NULL)
301		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
302	return (error);
303}
304
305/*
306 * Caller must hold the mutex. Used to set SOLOCKED.
307 */
308void
309so_lock_single(struct sonode *so)
310{
311	ASSERT(MUTEX_HELD(&so->so_lock));
312
313	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
314		so->so_flag |= SOWANT;
315		cv_wait_stop(&so->so_want_cv, &so->so_lock,
316		    SO_LOCK_WAKEUP_TIME);
317	}
318	so->so_flag |= SOLOCKED;
319}
320
321/*
322 * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
323 * Used to clear SOLOCKED or SOASYNC_UNBIND.
324 */
325void
326so_unlock_single(struct sonode *so, int flag)
327{
328	ASSERT(MUTEX_HELD(&so->so_lock));
329	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
330	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
331	ASSERT(so->so_flag & flag);
332	/*
333	 * Process the T_DISCON_IND on sti_discon_ind_mp.
334	 *
335	 * Call to so_drain_discon_ind will result in so_lock
336	 * being dropped and re-acquired later.
337	 */
338	if (!SOCK_IS_NONSTR(so)) {
339		sotpi_info_t *sti = SOTOTPI(so);
340
341		if (sti->sti_discon_ind_mp != NULL)
342			so_drain_discon_ind(so);
343	}
344
345	if (so->so_flag & SOWANT)
346		cv_broadcast(&so->so_want_cv);
347	so->so_flag &= ~(SOWANT|flag);
348}
349
350/*
351 * Caller must hold the mutex. Used to set SOREADLOCKED.
352 * If the caller wants nonblocking behavior it should set fmode.
353 */
354int
355so_lock_read(struct sonode *so, int fmode)
356{
357	ASSERT(MUTEX_HELD(&so->so_lock));
358
359	while (so->so_flag & SOREADLOCKED) {
360		if (fmode & (FNDELAY|FNONBLOCK))
361			return (EWOULDBLOCK);
362		so->so_flag |= SOWANT;
363		cv_wait_stop(&so->so_want_cv, &so->so_lock,
364		    SO_LOCK_WAKEUP_TIME);
365	}
366	so->so_flag |= SOREADLOCKED;
367	return (0);
368}
369
370/*
371 * Like so_lock_read above but allows signals.
372 */
373int
374so_lock_read_intr(struct sonode *so, int fmode)
375{
376	ASSERT(MUTEX_HELD(&so->so_lock));
377
378	while (so->so_flag & SOREADLOCKED) {
379		if (fmode & (FNDELAY|FNONBLOCK))
380			return (EWOULDBLOCK);
381		so->so_flag |= SOWANT;
382		if (!cv_wait_sig(&so->so_want_cv, &so->so_lock))
383			return (EINTR);
384	}
385	so->so_flag |= SOREADLOCKED;
386	return (0);
387}
388
389/*
390 * Caller must hold the mutex. Used to clear SOREADLOCKED,
391 * set in so_lock_read() or so_lock_read_intr().
392 */
393void
394so_unlock_read(struct sonode *so)
395{
396	ASSERT(MUTEX_HELD(&so->so_lock));
397	ASSERT(so->so_flag & SOREADLOCKED);
398
399	if (so->so_flag & SOWANT)
400		cv_broadcast(&so->so_want_cv);
401	so->so_flag &= ~(SOWANT|SOREADLOCKED);
402}
403
404/*
405 * Verify that the specified offset falls within the mblk and
406 * that the resulting pointer is aligned.
407 * Returns NULL if not.
408 */
409void *
410sogetoff(mblk_t *mp, t_uscalar_t offset,
411    t_uscalar_t length, uint_t align_size)
412{
413	uintptr_t ptr1, ptr2;
414
415	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
416	ptr1 = (uintptr_t)mp->b_rptr + offset;
417	ptr2 = (uintptr_t)ptr1 + length;
418	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
419		eprintline(0);
420		return (NULL);
421	}
422	if ((ptr1 & (align_size - 1)) != 0) {
423		eprintline(0);
424		return (NULL);
425	}
426	return ((void *)ptr1);
427}
428
429/*
430 * Return the AF_UNIX underlying filesystem vnode matching a given name.
431 * Makes sure the sending and the destination sonodes are compatible.
432 * The vnode is returned held.
433 *
434 * The underlying filesystem VSOCK vnode has a v_stream pointer that
435 * references the actual stream head (hence indirectly the actual sonode).
436 */
437static int
438so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
439		vnode_t **vpp)
440{
441	vnode_t		*vp;	/* Underlying filesystem vnode */
442	vnode_t		*rvp;	/* real vnode */
443	vnode_t		*svp;	/* sockfs vnode */
444	struct sonode	*so2;
445	int		error;
446
447	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
448	    soun->sun_path));
449
450	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
451	if (error) {
452		eprintsoline(so, error);
453		return (error);
454	}
455
456	/*
457	 * Traverse lofs mounts get the real vnode
458	 */
459	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
460		VN_HOLD(rvp);		/* hold the real vnode */
461		VN_RELE(vp);		/* release hold from lookup */
462		vp = rvp;
463	}
464
465	if (vp->v_type != VSOCK) {
466		error = ENOTSOCK;
467		eprintsoline(so, error);
468		goto done2;
469	}
470
471	if (checkaccess) {
472		/*
473		 * Check that we have permissions to access the destination
474		 * vnode. This check is not done in BSD but it is required
475		 * by X/Open.
476		 */
477		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
478			eprintsoline(so, error);
479			goto done2;
480		}
481	}
482
483	/*
484	 * Check if the remote socket has been closed.
485	 *
486	 * Synchronize with vn_rele_stream by holding v_lock while traversing
487	 * v_stream->sd_vnode.
488	 */
489	mutex_enter(&vp->v_lock);
490	if (vp->v_stream == NULL) {
491		mutex_exit(&vp->v_lock);
492		if (so->so_type == SOCK_DGRAM)
493			error = EDESTADDRREQ;
494		else
495			error = ECONNREFUSED;
496
497		eprintsoline(so, error);
498		goto done2;
499	}
500	ASSERT(vp->v_stream->sd_vnode);
501	svp = vp->v_stream->sd_vnode;
502	/*
503	 * holding v_lock on underlying filesystem vnode and acquiring
504	 * it on sockfs vnode. Assumes that no code ever attempts to
505	 * acquire these locks in the reverse order.
506	 */
507	VN_HOLD(svp);
508	mutex_exit(&vp->v_lock);
509
510	if (svp->v_type != VSOCK) {
511		error = ENOTSOCK;
512		eprintsoline(so, error);
513		goto done;
514	}
515
516	so2 = VTOSO(svp);
517
518	if (so->so_type != so2->so_type) {
519		error = EPROTOTYPE;
520		eprintsoline(so, error);
521		goto done;
522	}
523
524	VN_RELE(svp);
525	*vpp = vp;
526	return (0);
527
528done:
529	VN_RELE(svp);
530done2:
531	VN_RELE(vp);
532	return (error);
533}
534
535/*
536 * Verify peer address for connect and sendto/sendmsg.
537 * Since sendto/sendmsg would not get synchronous errors from the transport
538 * provider we have to do these ugly checks in the socket layer to
539 * preserve compatibility with SunOS 4.X.
540 */
541int
542so_addr_verify(struct sonode *so, const struct sockaddr *name,
543    socklen_t namelen)
544{
545	int		family;
546
547	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
548	    (void *)so, (void *)name, namelen));
549
550	ASSERT(name != NULL);
551
552	family = so->so_family;
553	switch (family) {
554	case AF_INET:
555		if (name->sa_family != family) {
556			eprintsoline(so, EAFNOSUPPORT);
557			return (EAFNOSUPPORT);
558		}
559		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
560			eprintsoline(so, EINVAL);
561			return (EINVAL);
562		}
563		break;
564	case AF_INET6: {
565#ifdef DEBUG
566		struct sockaddr_in6 *sin6;
567#endif /* DEBUG */
568
569		if (name->sa_family != family) {
570			eprintsoline(so, EAFNOSUPPORT);
571			return (EAFNOSUPPORT);
572		}
573		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
574			eprintsoline(so, EINVAL);
575			return (EINVAL);
576		}
577#ifdef DEBUG
578		/* Verify that apps don't forget to clear sin6_scope_id etc */
579		sin6 = (struct sockaddr_in6 *)name;
580		if (sin6->sin6_scope_id != 0 &&
581		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
582			zcmn_err(getzoneid(), CE_WARN,
583			    "connect/send* with uninitialized sin6_scope_id "
584			    "(%d) on socket. Pid = %d\n",
585			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
586		}
587#endif /* DEBUG */
588		break;
589	}
590	case AF_UNIX:
591		if (SOTOTPI(so)->sti_faddr_noxlate) {
592			return (0);
593		}
594		if (namelen < (socklen_t)sizeof (short)) {
595			eprintsoline(so, ENOENT);
596			return (ENOENT);
597		}
598		if (name->sa_family != family) {
599			eprintsoline(so, EAFNOSUPPORT);
600			return (EAFNOSUPPORT);
601		}
602		/* MAXPATHLEN + soun_family + nul termination */
603		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
604			eprintsoline(so, ENAMETOOLONG);
605			return (ENAMETOOLONG);
606		}
607
608		break;
609
610	default:
611		/*
612		 * Default is don't do any length or sa_family check
613		 * to allow non-sockaddr style addresses.
614		 */
615		break;
616	}
617
618	return (0);
619}
620
621
622/*
623 * Translate an AF_UNIX sockaddr_un to the transport internal name.
624 * Assumes caller has called so_addr_verify first.
625 */
626/*ARGSUSED*/
627int
628so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
629    socklen_t namelen, int checkaccess,
630    void **addrp, socklen_t *addrlenp)
631{
632	int			error;
633	struct sockaddr_un	*soun;
634	vnode_t			*vp;
635	void			*addr;
636	socklen_t		addrlen;
637	sotpi_info_t		*sti = SOTOTPI(so);
638
639	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
640	    (void *)so, (void *)name, namelen, checkaccess));
641
642	ASSERT(name != NULL);
643	ASSERT(so->so_family == AF_UNIX);
644	ASSERT(!sti->sti_faddr_noxlate);
645	ASSERT(namelen >= (socklen_t)sizeof (short));
646	ASSERT(name->sa_family == AF_UNIX);
647	soun = (struct sockaddr_un *)name;
648	/*
649	 * Lookup vnode for the specified path name and verify that
650	 * it is a socket.
651	 */
652	error = so_ux_lookup(so, soun, checkaccess, &vp);
653	if (error) {
654		eprintsoline(so, error);
655		return (error);
656	}
657	/*
658	 * Use the address of the peer vnode as the address to send
659	 * to. We release the peer vnode here. In case it has been
660	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
661	 * transport the message will get an error or be dropped.
662	 */
663	sti->sti_ux_faddr.soua_vp = vp;
664	sti->sti_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
665	addr = &sti->sti_ux_faddr;
666	addrlen = (socklen_t)sizeof (sti->sti_ux_faddr);
667	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
668	    addrlen, (void *)vp));
669	VN_RELE(vp);
670	*addrp = addr;
671	*addrlenp = (socklen_t)addrlen;
672	return (0);
673}
674
675/*
676 * Esballoc free function for messages that contain SO_FILEP option.
677 * Decrement the reference count on the file pointers using closef.
678 */
679void
680fdbuf_free(struct fdbuf *fdbuf)
681{
682	int	i;
683	struct file *fp;
684
685	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
686	for (i = 0; i < fdbuf->fd_numfd; i++) {
687		/*
688		 * We need pointer size alignment for fd_fds. On a LP64
689		 * kernel, the required alignment is 8 bytes while
690		 * the option headers and values are only 4 bytes
691		 * aligned. So its safer to do a bcopy compared to
692		 * assigning fdbuf->fd_fds[i] to fp.
693		 */
694		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
695		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
696		(void) closef(fp);
697	}
698	if (fdbuf->fd_ebuf != NULL)
699		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
700	kmem_free(fdbuf, fdbuf->fd_size);
701}
702
703/*
704 * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
705 * Waits if memory is not available.
706 */
707mblk_t *
708fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
709{
710	uchar_t	*buf;
711	mblk_t	*mp;
712
713	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
714	buf = kmem_alloc(size, KM_SLEEP);
715	fdbuf->fd_ebuf = (caddr_t)buf;
716	fdbuf->fd_ebuflen = size;
717	fdbuf->fd_frtn.free_func = fdbuf_free;
718	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
719
720	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
721	mp->b_datap->db_type = M_PROTO;
722	return (mp);
723}
724
725/*
726 * Extract file descriptors from a fdbuf.
727 * Return list in rights/rightslen.
728 */
729/*ARGSUSED*/
730static int
731fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
732{
733	int	i, fd;
734	int	*rp;
735	struct file *fp;
736	int	numfd;
737
738	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
739	    fdbuf->fd_numfd, rightslen));
740
741	numfd = fdbuf->fd_numfd;
742	ASSERT(rightslen == numfd * (int)sizeof (int));
743
744	/*
745	 * Allocate a file descriptor and increment the f_count.
746	 * The latter is needed since we always call fdbuf_free
747	 * which performs a closef.
748	 */
749	rp = (int *)rights;
750	for (i = 0; i < numfd; i++) {
751		if ((fd = ufalloc(0)) == -1)
752			goto cleanup;
753		/*
754		 * We need pointer size alignment for fd_fds. On a LP64
755		 * kernel, the required alignment is 8 bytes while
756		 * the option headers and values are only 4 bytes
757		 * aligned. So its safer to do a bcopy compared to
758		 * assigning fdbuf->fd_fds[i] to fp.
759		 */
760		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
761		mutex_enter(&fp->f_tlock);
762		fp->f_count++;
763		mutex_exit(&fp->f_tlock);
764		setf(fd, fp);
765		*rp++ = fd;
766		if (audit_active)
767			audit_fdrecv(fd, fp);
768		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
769		    i, fd, (void *)fp, fp->f_count));
770	}
771	return (0);
772
773cleanup:
774	/*
775	 * Undo whatever partial work the loop above has done.
776	 */
777	{
778		int j;
779
780		rp = (int *)rights;
781		for (j = 0; j < i; j++) {
782			dprint(0,
783			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
784			(void) closeandsetf(*rp++, NULL);
785		}
786	}
787
788	return (EMFILE);
789}
790
791/*
792 * Insert file descriptors into an fdbuf.
793 * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
794 * by calling fdbuf_free().
795 */
796int
797fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
798{
799	int		numfd, i;
800	int		*fds;
801	struct file	*fp;
802	struct fdbuf	*fdbuf;
803	int		fdbufsize;
804
805	dprint(1, ("fdbuf_create: len %d\n", rightslen));
806
807	numfd = rightslen / (int)sizeof (int);
808
809	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
810	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
811	fdbuf->fd_size = fdbufsize;
812	fdbuf->fd_numfd = 0;
813	fdbuf->fd_ebuf = NULL;
814	fdbuf->fd_ebuflen = 0;
815	fds = (int *)rights;
816	for (i = 0; i < numfd; i++) {
817		if ((fp = getf(fds[i])) == NULL) {
818			fdbuf_free(fdbuf);
819			return (EBADF);
820		}
821		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
822		    i, fds[i], (void *)fp, fp->f_count));
823		mutex_enter(&fp->f_tlock);
824		fp->f_count++;
825		mutex_exit(&fp->f_tlock);
826		/*
827		 * The maximum alignment for fdbuf (or any option header
828		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
829		 * is not sufficient for pointers (fd_fds in this case). Since
830		 * we just did a kmem_alloc (we get a double word alignment),
831		 * we don't need to do anything on the send side (we loose
832		 * the double word alignment because fdbuf goes after an
833		 * option header (eg T_unitdata_req) which is only 4 byte
834		 * aligned). We take care of this when we extract the file
835		 * descriptor in fdbuf_extract or fdbuf_free.
836		 */
837		fdbuf->fd_fds[i] = fp;
838		fdbuf->fd_numfd++;
839		releasef(fds[i]);
840		if (audit_active)
841			audit_fdsend(fds[i], fp, 0);
842	}
843	*fdbufp = fdbuf;
844	return (0);
845}
846
847static int
848fdbuf_optlen(int rightslen)
849{
850	int numfd;
851
852	numfd = rightslen / (int)sizeof (int);
853
854	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
855}
856
857static t_uscalar_t
858fdbuf_cmsglen(int fdbuflen)
859{
860	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
861	    (int)sizeof (struct file *) * (int)sizeof (int));
862}
863
864
865/*
866 * Return non-zero if the mblk and fdbuf are consistent.
867 */
868static int
869fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
870{
871	if (fdbuflen >= FDBUF_HDRSIZE &&
872	    fdbuflen == fdbuf->fd_size) {
873		frtn_t *frp = mp->b_datap->db_frtnp;
874		/*
875		 * Check that the SO_FILEP portion of the
876		 * message has not been modified by
877		 * the loopback transport. The sending sockfs generates
878		 * a message that is esballoc'ed with the free function
879		 * being fdbuf_free() and where free_arg contains the
880		 * identical information as the SO_FILEP content.
881		 *
882		 * If any of these constraints are not satisfied we
883		 * silently ignore the option.
884		 */
885		ASSERT(mp);
886		if (frp != NULL &&
887		    frp->free_func == fdbuf_free &&
888		    frp->free_arg != NULL &&
889		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
890			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
891			    (void *)fdbuf, fdbuflen));
892			return (1);
893		} else {
894			zcmn_err(getzoneid(), CE_WARN,
895			    "sockfs: mismatched fdbuf content (%p)",
896			    (void *)mp);
897			return (0);
898		}
899	} else {
900		zcmn_err(getzoneid(), CE_WARN,
901		    "sockfs: mismatched fdbuf len %d, %d\n",
902		    fdbuflen, fdbuf->fd_size);
903		return (0);
904	}
905}
906
907/*
908 * When the file descriptors returned by sorecvmsg can not be passed
909 * to the application this routine will cleanup the references on
910 * the files. Start at startoff bytes into the buffer.
911 */
912static void
913close_fds(void *fdbuf, int fdbuflen, int startoff)
914{
915	int *fds = (int *)fdbuf;
916	int numfd = fdbuflen / (int)sizeof (int);
917	int i;
918
919	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
920
921	for (i = 0; i < numfd; i++) {
922		if (startoff < 0)
923			startoff = 0;
924		if (startoff < (int)sizeof (int)) {
925			/*
926			 * This file descriptor is partially or fully after
927			 * the offset
928			 */
929			dprint(0,
930			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
931			(void) closeandsetf(fds[i], NULL);
932		}
933		startoff -= (int)sizeof (int);
934	}
935}
936
937/*
938 * Close all file descriptors contained in the control part starting at
939 * the startoffset.
940 */
941void
942so_closefds(void *control, t_uscalar_t controllen, int oldflg,
943    int startoff)
944{
945	struct cmsghdr *cmsg;
946
947	if (control == NULL)
948		return;
949
950	if (oldflg) {
951		close_fds(control, controllen, startoff);
952		return;
953	}
954	/* Scan control part for file descriptors. */
955	for (cmsg = (struct cmsghdr *)control;
956	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
957	    cmsg = CMSG_NEXT(cmsg)) {
958		if (cmsg->cmsg_level == SOL_SOCKET &&
959		    cmsg->cmsg_type == SCM_RIGHTS) {
960			close_fds(CMSG_CONTENT(cmsg),
961			    (int)CMSG_CONTENTLEN(cmsg),
962			    startoff - (int)sizeof (struct cmsghdr));
963		}
964		startoff -= cmsg->cmsg_len;
965	}
966}
967
968/*
969 * Returns a pointer/length for the file descriptors contained
970 * in the control buffer. Returns with *fdlenp == -1 if there are no
971 * file descriptor options present. This is different than there being
972 * a zero-length file descriptor option.
973 * Fail if there are multiple SCM_RIGHT cmsgs.
974 */
975int
976so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
977    void **fdsp, int *fdlenp)
978{
979	struct cmsghdr *cmsg;
980	void *fds;
981	int fdlen;
982
983	if (control == NULL) {
984		*fdsp = NULL;
985		*fdlenp = -1;
986		return (0);
987	}
988
989	if (oldflg) {
990		*fdsp = control;
991		if (controllen == 0)
992			*fdlenp = -1;
993		else
994			*fdlenp = controllen;
995		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
996		return (0);
997	}
998
999	fds = NULL;
1000	fdlen = 0;
1001
1002	for (cmsg = (struct cmsghdr *)control;
1003	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1004	    cmsg = CMSG_NEXT(cmsg)) {
1005		if (cmsg->cmsg_level == SOL_SOCKET &&
1006		    cmsg->cmsg_type == SCM_RIGHTS) {
1007			if (fds != NULL)
1008				return (EINVAL);
1009			fds = CMSG_CONTENT(cmsg);
1010			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1011			dprint(1, ("so_getfdopt: new %lu\n",
1012			    (size_t)CMSG_CONTENTLEN(cmsg)));
1013		}
1014	}
1015	if (fds == NULL) {
1016		dprint(1, ("so_getfdopt: NONE\n"));
1017		*fdlenp = -1;
1018	} else
1019		*fdlenp = fdlen;
1020	*fdsp = fds;
1021	return (0);
1022}
1023
1024/*
1025 * Return the length of the options including any file descriptor options.
1026 */
1027t_uscalar_t
1028so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1029{
1030	struct cmsghdr *cmsg;
1031	t_uscalar_t optlen = 0;
1032	t_uscalar_t len;
1033
1034	if (control == NULL)
1035		return (0);
1036
1037	if (oldflg)
1038		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1039		    fdbuf_optlen(controllen)));
1040
1041	for (cmsg = (struct cmsghdr *)control;
1042	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1043	    cmsg = CMSG_NEXT(cmsg)) {
1044		if (cmsg->cmsg_level == SOL_SOCKET &&
1045		    cmsg->cmsg_type == SCM_RIGHTS) {
1046			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1047		} else {
1048			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1049		}
1050		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1051		    sizeof (struct T_opthdr));
1052	}
1053	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1054	    controllen, oldflg, optlen));
1055	return (optlen);
1056}
1057
1058/*
1059 * Copy options from control to the mblk. Skip any file descriptor options.
1060 */
1061void
1062so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1063{
1064	struct T_opthdr toh;
1065	struct cmsghdr *cmsg;
1066
1067	if (control == NULL)
1068		return;
1069
1070	if (oldflg) {
1071		/* No real options - caller has handled file descriptors */
1072		return;
1073	}
1074	for (cmsg = (struct cmsghdr *)control;
1075	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1076	    cmsg = CMSG_NEXT(cmsg)) {
1077		/*
1078		 * Note: The caller handles file descriptors prior
1079		 * to calling this function.
1080		 */
1081		t_uscalar_t len;
1082
1083		if (cmsg->cmsg_level == SOL_SOCKET &&
1084		    cmsg->cmsg_type == SCM_RIGHTS)
1085			continue;
1086
1087		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1088		toh.level = cmsg->cmsg_level;
1089		toh.name = cmsg->cmsg_type;
1090		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1091		toh.status = 0;
1092
1093		soappendmsg(mp, &toh, sizeof (toh));
1094		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1095		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1096		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1097	}
1098}
1099
1100/*
1101 * Return the length of the control message derived from the options.
1102 * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1103 * When oldflg is set only include SO_FILEP.
1104 * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1105 * allocates the space that so_opt2cmsg fills. If one changes, the other should
1106 * also be checked for any possible impacts.
1107 */
1108t_uscalar_t
1109so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1110{
1111	t_uscalar_t cmsglen = 0;
1112	struct T_opthdr *tohp;
1113	t_uscalar_t len;
1114	t_uscalar_t last_roundup = 0;
1115
1116	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1117
1118	for (tohp = (struct T_opthdr *)opt;
1119	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1120	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1121		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1122		    tohp->level, tohp->name, tohp->len));
1123		if (tohp->level == SOL_SOCKET &&
1124		    (tohp->name == SO_SRCADDR ||
1125		    tohp->name == SO_UNIX_CLOSE)) {
1126			continue;
1127		}
1128		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1129			struct fdbuf *fdbuf;
1130			int fdbuflen;
1131
1132			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1133			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1134
1135			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1136				continue;
1137			if (oldflg) {
1138				cmsglen += fdbuf_cmsglen(fdbuflen);
1139				continue;
1140			}
1141			len = fdbuf_cmsglen(fdbuflen);
1142		} else if (tohp->level == SOL_SOCKET &&
1143		    tohp->name == SCM_TIMESTAMP) {
1144			if (oldflg)
1145				continue;
1146
1147			if (get_udatamodel() == DATAMODEL_NATIVE) {
1148				len = sizeof (struct timeval);
1149			} else {
1150				len = sizeof (struct timeval32);
1151			}
1152		} else {
1153			if (oldflg)
1154				continue;
1155			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1156		}
1157		/*
1158		 * Exclude roundup for last option to not set
1159		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1160		 */
1161		last_roundup = (t_uscalar_t)
1162		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1163		    (len + (int)sizeof (struct cmsghdr)));
1164		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1165		    last_roundup;
1166	}
1167	cmsglen -= last_roundup;
1168	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1169	    optlen, oldflg, cmsglen));
1170	return (cmsglen);
1171}
1172
1173/*
1174 * Copy options from options to the control. Convert SO_FILEP to
1175 * file descriptors.
1176 * Returns errno or zero.
1177 * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1178 * allocates the space that so_opt2cmsg fills. If one changes, the other should
1179 * also be checked for any possible impacts.
1180 */
1181int
1182so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1183    void *control, t_uscalar_t controllen)
1184{
1185	struct T_opthdr *tohp;
1186	struct cmsghdr *cmsg;
1187	struct fdbuf *fdbuf;
1188	int fdbuflen;
1189	int error;
1190#if defined(DEBUG) || defined(__lint)
1191	struct cmsghdr *cend = (struct cmsghdr *)
1192	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1193#endif
1194	cmsg = (struct cmsghdr *)control;
1195
1196	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1197
1198	for (tohp = (struct T_opthdr *)opt;
1199	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1200	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1201		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1202		    tohp->level, tohp->name, tohp->len));
1203
1204		if (tohp->level == SOL_SOCKET &&
1205		    (tohp->name == SO_SRCADDR ||
1206		    tohp->name == SO_UNIX_CLOSE)) {
1207			continue;
1208		}
1209		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1210		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1211			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1212			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1213
1214			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1215				return (EPROTO);
1216			if (oldflg) {
1217				error = fdbuf_extract(fdbuf, control,
1218				    (int)controllen);
1219				if (error != 0)
1220					return (error);
1221				continue;
1222			} else {
1223				int fdlen;
1224
1225				fdlen = (int)fdbuf_cmsglen(
1226				    (int)_TPI_TOPT_DATALEN(tohp));
1227
1228				cmsg->cmsg_level = tohp->level;
1229				cmsg->cmsg_type = SCM_RIGHTS;
1230				cmsg->cmsg_len = (socklen_t)(fdlen +
1231				    sizeof (struct cmsghdr));
1232
1233				error = fdbuf_extract(fdbuf,
1234				    CMSG_CONTENT(cmsg), fdlen);
1235				if (error != 0)
1236					return (error);
1237			}
1238		} else if (tohp->level == SOL_SOCKET &&
1239		    tohp->name == SCM_TIMESTAMP) {
1240			timestruc_t *timestamp;
1241
1242			if (oldflg)
1243				continue;
1244
1245			cmsg->cmsg_level = tohp->level;
1246			cmsg->cmsg_type = tohp->name;
1247
1248			timestamp =
1249			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1250			    sizeof (intptr_t));
1251
1252			if (get_udatamodel() == DATAMODEL_NATIVE) {
1253				struct timeval tv;
1254
1255				cmsg->cmsg_len = sizeof (struct timeval) +
1256				    sizeof (struct cmsghdr);
1257				tv.tv_sec = timestamp->tv_sec;
1258				tv.tv_usec = timestamp->tv_nsec /
1259				    (NANOSEC / MICROSEC);
1260				/*
1261				 * on LP64 systems, the struct timeval in
1262				 * the destination will not be 8-byte aligned,
1263				 * so use bcopy to avoid alignment trouble
1264				 */
1265				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1266			} else {
1267				struct timeval32 *time32;
1268
1269				cmsg->cmsg_len = sizeof (struct timeval32) +
1270				    sizeof (struct cmsghdr);
1271				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1272				time32->tv_sec = (time32_t)timestamp->tv_sec;
1273				time32->tv_usec =
1274				    (int32_t)(timestamp->tv_nsec /
1275				    (NANOSEC / MICROSEC));
1276			}
1277
1278		} else {
1279			if (oldflg)
1280				continue;
1281
1282			cmsg->cmsg_level = tohp->level;
1283			cmsg->cmsg_type = tohp->name;
1284			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1285			    sizeof (struct cmsghdr));
1286
1287			/* copy content to control data part */
1288			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1289			    CMSG_CONTENTLEN(cmsg));
1290		}
1291		/* move to next CMSG structure! */
1292		cmsg = CMSG_NEXT(cmsg);
1293	}
1294	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1295	    control, controllen, (void *)cend, (void *)cmsg));
1296	ASSERT(cmsg <= cend);
1297	return (0);
1298}
1299
1300/*
1301 * Extract the SO_SRCADDR option value if present.
1302 */
1303void
1304so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1305    t_uscalar_t *srclenp)
1306{
1307	struct T_opthdr		*tohp;
1308
1309	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1310
1311	ASSERT(srcp != NULL && srclenp != NULL);
1312	*srcp = NULL;
1313	*srclenp = 0;
1314
1315	for (tohp = (struct T_opthdr *)opt;
1316	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1317	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1318		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1319		    tohp->level, tohp->name, tohp->len));
1320		if (tohp->level == SOL_SOCKET &&
1321		    tohp->name == SO_SRCADDR) {
1322			*srcp = _TPI_TOPT_DATA(tohp);
1323			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1324		}
1325	}
1326}
1327
1328/*
1329 * Verify if the SO_UNIX_CLOSE option is present.
1330 */
1331int
1332so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1333{
1334	struct T_opthdr		*tohp;
1335
1336	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1337
1338	for (tohp = (struct T_opthdr *)opt;
1339	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1340	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1341		dprint(1,
1342		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1343		    tohp->level, tohp->name, tohp->len));
1344		if (tohp->level == SOL_SOCKET &&
1345		    tohp->name == SO_UNIX_CLOSE)
1346			return (1);
1347	}
1348	return (0);
1349}
1350
1351/*
1352 * Allocate an M_PROTO message.
1353 *
1354 * If allocation fails the behavior depends on sleepflg:
1355 *	_ALLOC_NOSLEEP	fail immediately
1356 *	_ALLOC_INTR	sleep for memory until a signal is caught
1357 *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1358 */
1359mblk_t *
1360soallocproto(size_t size, int sleepflg)
1361{
1362	mblk_t	*mp;
1363
1364	/* Round up size for reuse */
1365	size = MAX(size, 64);
1366	mp = allocb(size, BPRI_MED);
1367	if (mp == NULL) {
1368		int error;	/* Dummy - error not returned to caller */
1369
1370		switch (sleepflg) {
1371		case _ALLOC_SLEEP:
1372			mp = allocb_wait(size, BPRI_MED, STR_NOSIG, &error);
1373			ASSERT(mp);
1374			break;
1375		case _ALLOC_INTR:
1376			mp = allocb_wait(size, BPRI_MED, 0, &error);
1377			if (mp == NULL) {
1378				/* Caught signal while sleeping for memory */
1379				eprintline(ENOBUFS);
1380				return (NULL);
1381			}
1382			break;
1383		case _ALLOC_NOSLEEP:
1384		default:
1385			eprintline(ENOBUFS);
1386			return (NULL);
1387		}
1388	}
1389	DB_TYPE(mp) = M_PROTO;
1390	return (mp);
1391}
1392
1393/*
1394 * Allocate an M_PROTO message with a single component.
1395 * len is the length of buf. size is the amount to allocate.
1396 *
1397 * buf can be NULL with a non-zero len.
1398 * This results in a bzero'ed chunk being placed the message.
1399 */
1400mblk_t *
1401soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg)
1402{
1403	mblk_t	*mp;
1404
1405	if (size == 0)
1406		size = len;
1407
1408	ASSERT(size >= len);
1409	/* Round up size for reuse */
1410	size = MAX(size, 64);
1411	mp = soallocproto(size, sleepflg);
1412	if (mp == NULL)
1413		return (NULL);
1414	mp->b_datap->db_type = M_PROTO;
1415	if (len != 0) {
1416		if (buf != NULL)
1417			bcopy(buf, mp->b_wptr, len);
1418		else
1419			bzero(mp->b_wptr, len);
1420		mp->b_wptr += len;
1421	}
1422	return (mp);
1423}
1424
1425/*
1426 * Append buf/len to mp.
1427 * The caller has to ensure that there is enough room in the mblk.
1428 *
1429 * buf can be NULL with a non-zero len.
1430 * This results in a bzero'ed chunk being placed the message.
1431 */
1432void
1433soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1434{
1435	ASSERT(mp);
1436
1437	if (len != 0) {
1438		/* Assert for room left */
1439		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1440		if (buf != NULL)
1441			bcopy(buf, mp->b_wptr, len);
1442		else
1443			bzero(mp->b_wptr, len);
1444	}
1445	mp->b_wptr += len;
1446}
1447
1448/*
1449 * Create a message using two kernel buffers.
1450 * If size is set that will determine the allocation size (e.g. for future
1451 * soappendmsg calls). If size is zero it is derived from the buffer
1452 * lengths.
1453 */
1454mblk_t *
1455soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1456    ssize_t size, int sleepflg)
1457{
1458	mblk_t *mp;
1459
1460	if (size == 0)
1461		size = len1 + len2;
1462	ASSERT(size >= len1 + len2);
1463
1464	mp = soallocproto1(buf1, len1, size, sleepflg);
1465	if (mp)
1466		soappendmsg(mp, buf2, len2);
1467	return (mp);
1468}
1469
1470/*
1471 * Create a message using three kernel buffers.
1472 * If size is set that will determine the allocation size (for future
1473 * soappendmsg calls). If size is zero it is derived from the buffer
1474 * lengths.
1475 */
1476mblk_t *
1477soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1478    const void *buf3, ssize_t len3, ssize_t size, int sleepflg)
1479{
1480	mblk_t *mp;
1481
1482	if (size == 0)
1483		size = len1 + len2 +len3;
1484	ASSERT(size >= len1 + len2 + len3);
1485
1486	mp = soallocproto1(buf1, len1, size, sleepflg);
1487	if (mp != NULL) {
1488		soappendmsg(mp, buf2, len2);
1489		soappendmsg(mp, buf3, len3);
1490	}
1491	return (mp);
1492}
1493
1494#ifdef DEBUG
1495char *
1496pr_state(uint_t state, uint_t mode)
1497{
1498	static char buf[1024];
1499
1500	buf[0] = 0;
1501	if (state & SS_ISCONNECTED)
1502		(void) strcat(buf, "ISCONNECTED ");
1503	if (state & SS_ISCONNECTING)
1504		(void) strcat(buf, "ISCONNECTING ");
1505	if (state & SS_ISDISCONNECTING)
1506		(void) strcat(buf, "ISDISCONNECTING ");
1507	if (state & SS_CANTSENDMORE)
1508		(void) strcat(buf, "CANTSENDMORE ");
1509
1510	if (state & SS_CANTRCVMORE)
1511		(void) strcat(buf, "CANTRCVMORE ");
1512	if (state & SS_ISBOUND)
1513		(void) strcat(buf, "ISBOUND ");
1514	if (state & SS_NDELAY)
1515		(void) strcat(buf, "NDELAY ");
1516	if (state & SS_NONBLOCK)
1517		(void) strcat(buf, "NONBLOCK ");
1518
1519	if (state & SS_ASYNC)
1520		(void) strcat(buf, "ASYNC ");
1521	if (state & SS_ACCEPTCONN)
1522		(void) strcat(buf, "ACCEPTCONN ");
1523	if (state & SS_SAVEDEOR)
1524		(void) strcat(buf, "SAVEDEOR ");
1525
1526	if (state & SS_RCVATMARK)
1527		(void) strcat(buf, "RCVATMARK ");
1528	if (state & SS_OOBPEND)
1529		(void) strcat(buf, "OOBPEND ");
1530	if (state & SS_HAVEOOBDATA)
1531		(void) strcat(buf, "HAVEOOBDATA ");
1532	if (state & SS_HADOOBDATA)
1533		(void) strcat(buf, "HADOOBDATA ");
1534
1535	if (mode & SM_PRIV)
1536		(void) strcat(buf, "PRIV ");
1537	if (mode & SM_ATOMIC)
1538		(void) strcat(buf, "ATOMIC ");
1539	if (mode & SM_ADDR)
1540		(void) strcat(buf, "ADDR ");
1541	if (mode & SM_CONNREQUIRED)
1542		(void) strcat(buf, "CONNREQUIRED ");
1543
1544	if (mode & SM_FDPASSING)
1545		(void) strcat(buf, "FDPASSING ");
1546	if (mode & SM_EXDATA)
1547		(void) strcat(buf, "EXDATA ");
1548	if (mode & SM_OPTDATA)
1549		(void) strcat(buf, "OPTDATA ");
1550	if (mode & SM_BYTESTREAM)
1551		(void) strcat(buf, "BYTESTREAM ");
1552	return (buf);
1553}
1554
1555char *
1556pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1557{
1558	static char buf[1024];
1559
1560	if (addr == NULL || addrlen == 0) {
1561		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1562		return (buf);
1563	}
1564	switch (family) {
1565	case AF_INET: {
1566		struct sockaddr_in sin;
1567
1568		bcopy(addr, &sin, sizeof (sin));
1569
1570		(void) sprintf(buf, "(len %d) %x/%d",
1571		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1572		break;
1573	}
1574	case AF_INET6: {
1575		struct sockaddr_in6 sin6;
1576		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1577
1578		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1579		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1580		    addrlen,
1581		    ntohs(piece[0]), ntohs(piece[1]),
1582		    ntohs(piece[2]), ntohs(piece[3]),
1583		    ntohs(piece[4]), ntohs(piece[5]),
1584		    ntohs(piece[6]), ntohs(piece[7]),
1585		    ntohs(sin6.sin6_port));
1586		break;
1587	}
1588	case AF_UNIX: {
1589		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1590
1591		(void) sprintf(buf, "(len %d) %s", addrlen,
1592		    (soun == NULL) ? "(none)" : soun->sun_path);
1593		break;
1594	}
1595	default:
1596		(void) sprintf(buf, "(unknown af %d)", family);
1597		break;
1598	}
1599	return (buf);
1600}
1601
1602/* The logical equivalence operator (a if-and-only-if b) */
1603#define	EQUIV(a, b)	(((a) && (b)) || (!(a) && (!(b))))
1604
1605/*
1606 * Verify limitations and invariants on oob state.
1607 * Return 1 if OK, otherwise 0 so that it can be used as
1608 *	ASSERT(verify_oobstate(so));
1609 */
1610int
1611so_verify_oobstate(struct sonode *so)
1612{
1613	boolean_t havemark;
1614
1615	ASSERT(MUTEX_HELD(&so->so_lock));
1616
1617	/*
1618	 * The possible state combinations are:
1619	 *	0
1620	 *	SS_OOBPEND
1621	 *	SS_OOBPEND|SS_HAVEOOBDATA
1622	 *	SS_OOBPEND|SS_HADOOBDATA
1623	 *	SS_HADOOBDATA
1624	 */
1625	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1626	case 0:
1627	case SS_OOBPEND:
1628	case SS_OOBPEND|SS_HAVEOOBDATA:
1629	case SS_OOBPEND|SS_HADOOBDATA:
1630	case SS_HADOOBDATA:
1631		break;
1632	default:
1633		printf("Bad oob state 1 (%p): state %s\n",
1634		    (void *)so, pr_state(so->so_state, so->so_mode));
1635		return (0);
1636	}
1637
1638	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1639	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1640		printf("Bad oob state 2 (%p): state %s\n",
1641		    (void *)so, pr_state(so->so_state, so->so_mode));
1642		return (0);
1643	}
1644
1645	/*
1646	 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1647	 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1648	 */
1649	havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1650	    SOTOTPI(so)->sti_oobsigcnt > 0;
1651
1652	if (!EQUIV(havemark || (so->so_state & SS_RCVATMARK),
1653	    so->so_state & SS_OOBPEND)) {
1654		printf("Bad oob state 3 (%p): state %s\n",
1655		    (void *)so, pr_state(so->so_state, so->so_mode));
1656		return (0);
1657	}
1658
1659	/*
1660	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1661	 */
1662	if (!(so->so_options & SO_OOBINLINE) &&
1663	    !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1664		printf("Bad oob state 4 (%p): state %s\n",
1665		    (void *)so, pr_state(so->so_state, so->so_mode));
1666		return (0);
1667	}
1668
1669	if (!SOCK_IS_NONSTR(so) &&
1670	    SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1671		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1672		    (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1673		    SOTOTPI(so)->sti_oobcnt,
1674		    pr_state(so->so_state, so->so_mode));
1675		return (0);
1676	}
1677
1678	return (1);
1679}
1680#undef	EQUIV
1681#endif /* DEBUG */
1682
1683/* initialize sockfs zone specific kstat related items			*/
1684void *
1685sock_kstat_init(zoneid_t zoneid)
1686{
1687	kstat_t	*ksp;
1688
1689	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1690	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1691
1692	if (ksp != NULL) {
1693		ksp->ks_update = sockfs_update;
1694		ksp->ks_snapshot = sockfs_snapshot;
1695		ksp->ks_lock = &socklist.sl_lock;
1696		ksp->ks_private = (void *)(uintptr_t)zoneid;
1697		kstat_install(ksp);
1698	}
1699
1700	return (ksp);
1701}
1702
1703/* tear down sockfs zone specific kstat related items			*/
1704/*ARGSUSED*/
1705void
1706sock_kstat_fini(zoneid_t zoneid, void *arg)
1707{
1708	kstat_t *ksp = (kstat_t *)arg;
1709
1710	if (ksp != NULL) {
1711		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1712		kstat_delete(ksp);
1713	}
1714}
1715
1716/*
1717 * Zones:
1718 * Note that nactive is going to be different for each zone.
1719 * This means we require kstat to call sockfs_update and then sockfs_snapshot
1720 * for the same zone, or sockfs_snapshot will be taken into the wrong size
1721 * buffer. This is safe, but if the buffer is too small, user will not be
1722 * given details of all sockets. However, as this kstat has a ks_lock, kstat
1723 * driver will keep it locked between the update and the snapshot, so no
1724 * other process (zone) can currently get inbetween resulting in a wrong size
1725 * buffer allocation.
1726 */
1727static int
1728sockfs_update(kstat_t *ksp, int rw)
1729{
1730	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
1731	struct sonode	*so;		/* current sonode on socklist	*/
1732	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1733
1734	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1735
1736	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1737		return (EACCES);
1738	}
1739
1740	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1741		if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1742			nactive++;
1743		}
1744	}
1745	ksp->ks_ndata = nactive;
1746	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
1747
1748	return (0);
1749}
1750
1751static int
1752sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1753{
1754	int			ns;	/* # of sonodes we've copied	*/
1755	struct sonode		*so;	/* current sonode on socklist	*/
1756	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
1757	t_uscalar_t		sn_len;	/* soa_len			*/
1758	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1759	sotpi_info_t 		*sti;
1760
1761	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1762
1763	ksp->ks_snaptime = gethrtime();
1764
1765	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1766		return (EACCES);
1767	}
1768
1769	/*
1770	 * for each sonode on the socklist, we massage the important
1771	 * info into buf, in k_sockinfo format.
1772	 */
1773	pksi = (struct k_sockinfo *)buf;
1774	ns = 0;
1775	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1776		/* only stuff active sonodes and the same zone:		*/
1777		if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1778			continue;
1779		}
1780
1781		/*
1782		 * If the sonode was activated between the update and the
1783		 * snapshot, we're done - as this is only a snapshot.
1784		 */
1785		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
1786			break;
1787		}
1788
1789		sti = SOTOTPI(so);
1790		/* copy important info into buf:			*/
1791		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
1792		pksi->ks_si.si_family = so->so_family;
1793		pksi->ks_si.si_type = so->so_type;
1794		pksi->ks_si.si_flag = so->so_flag;
1795		pksi->ks_si.si_state = so->so_state;
1796		pksi->ks_si.si_serv_type = sti->sti_serv_type;
1797		pksi->ks_si.si_ux_laddr_sou_magic =
1798		    sti->sti_ux_laddr.soua_magic;
1799		pksi->ks_si.si_ux_faddr_sou_magic =
1800		    sti->sti_ux_faddr.soua_magic;
1801		pksi->ks_si.si_laddr_soa_len = sti->sti_laddr.soa_len;
1802		pksi->ks_si.si_faddr_soa_len = sti->sti_faddr.soa_len;
1803		pksi->ks_si.si_szoneid = so->so_zoneid;
1804		pksi->ks_si.si_faddr_noxlate = sti->sti_faddr_noxlate;
1805
1806		mutex_enter(&so->so_lock);
1807
1808		if (sti->sti_laddr_sa != NULL) {
1809			ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1810			sn_len = sti->sti_laddr_len;
1811			ASSERT(sn_len <= sizeof (short) +
1812			    sizeof (pksi->ks_si.si_laddr_sun_path));
1813
1814			pksi->ks_si.si_laddr_family =
1815			    sti->sti_laddr_sa->sa_family;
1816			if (sn_len != 0) {
1817				/* AF_UNIX socket names are NULL terminated */
1818				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
1819				    sti->sti_laddr_sa->sa_data,
1820				    sizeof (pksi->ks_si.si_laddr_sun_path));
1821				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
1822			}
1823			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
1824		}
1825
1826		if (sti->sti_faddr_sa != NULL) {
1827			ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1828			sn_len = sti->sti_faddr_len;
1829			ASSERT(sn_len <= sizeof (short) +
1830			    sizeof (pksi->ks_si.si_faddr_sun_path));
1831
1832			pksi->ks_si.si_faddr_family =
1833			    sti->sti_faddr_sa->sa_family;
1834			if (sn_len != 0) {
1835				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
1836				    sti->sti_faddr_sa->sa_data,
1837				    sizeof (pksi->ks_si.si_faddr_sun_path));
1838				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
1839			}
1840			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
1841		}
1842
1843		mutex_exit(&so->so_lock);
1844
1845		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
1846		(void) sprintf(pksi->ks_straddr[1], "%p",
1847		    (void *)sti->sti_ux_laddr.soua_vp);
1848		(void) sprintf(pksi->ks_straddr[2], "%p",
1849		    (void *)sti->sti_ux_faddr.soua_vp);
1850
1851		ns++;
1852		pksi++;
1853	}
1854
1855	ksp->ks_ndata = ns;
1856	return (0);
1857}
1858
1859ssize_t
1860soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1861{
1862	struct uio auio;
1863	struct iovec aiov[MSG_MAXIOVLEN];
1864	register vnode_t *vp;
1865	int ioflag, rwflag;
1866	ssize_t cnt;
1867	int error = 0;
1868	int iovcnt = 0;
1869	short fflag;
1870
1871	vp = fp->f_vnode;
1872	fflag = fp->f_flag;
1873
1874	rwflag = 0;
1875	aiov[0].iov_base = (caddr_t)buf;
1876	aiov[0].iov_len = size;
1877	iovcnt = 1;
1878	cnt = (ssize_t)size;
1879	(void) VOP_RWLOCK(vp, rwflag, NULL);
1880
1881	auio.uio_loffset = fileoff;
1882	auio.uio_iov = aiov;
1883	auio.uio_iovcnt = iovcnt;
1884	auio.uio_resid = cnt;
1885	auio.uio_segflg = UIO_SYSSPACE;
1886	auio.uio_llimit = MAXOFFSET_T;
1887	auio.uio_fmode = fflag;
1888	auio.uio_extflg = UIO_COPY_CACHED;
1889
1890	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1891
1892	/* If read sync is not asked for, filter sync flags */
1893	if ((ioflag & FRSYNC) == 0)
1894		ioflag &= ~(FSYNC|FDSYNC);
1895	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1896	cnt -= auio.uio_resid;
1897
1898	VOP_RWUNLOCK(vp, rwflag, NULL);
1899
1900	if (error == EINTR && cnt != 0)
1901		error = 0;
1902out:
1903	if (error != 0) {
1904		*err = error;
1905		return (0);
1906	} else {
1907		*err = 0;
1908		return (cnt);
1909	}
1910}
1911
1912int
1913so_copyin(const void *from, void *to, size_t size, int fromkernel)
1914{
1915	if (fromkernel) {
1916		bcopy(from, to, size);
1917		return (0);
1918	}
1919	return (xcopyin(from, to, size));
1920}
1921
1922int
1923so_copyout(const void *from, void *to, size_t size, int tokernel)
1924{
1925	if (tokernel) {
1926		bcopy(from, to, size);
1927		return (0);
1928	}
1929	return (xcopyout(from, to, size));
1930}
1931