socksubr.c revision 6712:79afecec3f3c
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#pragma ident	"%Z%%M%	%I%	%E% SMI"
28
29#include <sys/types.h>
30#include <sys/t_lock.h>
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/buf.h>
34#include <sys/conf.h>
35#include <sys/cred.h>
36#include <sys/kmem.h>
37#include <sys/sysmacros.h>
38#include <sys/vfs.h>
39#include <sys/vfs_opreg.h>
40#include <sys/vnode.h>
41#include <sys/debug.h>
42#include <sys/errno.h>
43#include <sys/time.h>
44#include <sys/file.h>
45#include <sys/open.h>
46#include <sys/user.h>
47#include <sys/uio.h>
48#include <sys/termios.h>
49#include <sys/stream.h>
50#include <sys/strsubr.h>
51#include <sys/strsun.h>
52#include <sys/esunddi.h>
53#include <sys/flock.h>
54#include <sys/modctl.h>
55#include <sys/cmn_err.h>
56#include <sys/mkdev.h>
57#include <sys/pathname.h>
58#include <sys/ddi.h>
59#include <sys/stat.h>
60#include <sys/fs/snode.h>
61#include <sys/fs/dv_node.h>
62#include <sys/zone.h>
63
64#include <sys/socket.h>
65#include <sys/socketvar.h>
66#include <netinet/in.h>
67#include <sys/un.h>
68
69#include <sys/ucred.h>
70
71#include <sys/tiuser.h>
72#define	_SUN_TPI_VERSION	2
73#include <sys/tihdr.h>
74
75#include <c2/audit.h>
76
77#include <fs/sockfs/nl7c.h>
78
79/*
80 * Macros that operate on struct cmsghdr.
81 * The CMSG_VALID macro does not assume that the last option buffer is padded.
82 */
83#define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
84#define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
85#define	CMSG_VALID(cmsg, start, end)					\
86	(ISALIGNED_cmsghdr(cmsg) &&					\
87	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
88	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
89	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
90	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
91#define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
92
93static struct kmem_cache *socktpi_cache, *socktpi_unix_cache;
94struct kmem_cache *socktpi_sod_cache;
95
96dev_t sockdev;	/* For fsid in getattr */
97
98struct sockparams *sphead;
99krwlock_t splist_lock;
100
101struct socklist socklist;
102
103static int sockfs_update(kstat_t *, int);
104static int sockfs_snapshot(kstat_t *, void *, int);
105
106extern void sendfile_init();
107
108extern void nl7c_init(void);
109
110extern int sostr_init();
111
112#define	ADRSTRLEN (2 * sizeof (void *) + 1)
113/*
114 * kernel structure for passing the sockinfo data back up to the user.
115 * the strings array allows us to convert AF_UNIX addresses into strings
116 * with a common method regardless of which n-bit kernel we're running.
117 */
118struct k_sockinfo {
119	struct sockinfo	ks_si;
120	char		ks_straddr[3][ADRSTRLEN];
121};
122
123/*
124 * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
125 * Returns with the vnode held.
126 */
127static int
128sogetvp(char *devpath, vnode_t **vpp, int uioflag)
129{
130	struct snode *csp;
131	vnode_t *vp, *dvp;
132	major_t maj;
133	int error;
134
135	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
136	/*
137	 * Lookup the underlying filesystem vnode.
138	 */
139	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
140	if (error)
141		return (error);
142
143	/* Check that it is the correct vnode */
144	if (vp->v_type != VCHR) {
145		VN_RELE(vp);
146		return (ENOTSOCK);
147	}
148
149	/*
150	 * If devpath went through devfs, the device should already
151	 * be configured. If devpath is a mknod file, however, we
152	 * need to make sure the device is properly configured.
153	 * To do this, we do something similar to spec_open()
154	 * except that we resolve to the minor/leaf level since
155	 * we need to return a vnode.
156	 */
157	csp = VTOS(VTOS(vp)->s_commonvp);
158	if (!(csp->s_flag & SDIPSET)) {
159		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
160		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
161		if (error == 0)
162			error = devfs_lookupname(pathname, NULLVPP, &dvp);
163		VN_RELE(vp);
164		kmem_free(pathname, MAXPATHLEN);
165		if (error != 0)
166			return (ENXIO);
167		vp = dvp;	/* use the devfs vp */
168	}
169
170	/* device is configured at this point */
171	maj = getmajor(vp->v_rdev);
172	if (!STREAMSTAB(maj)) {
173		VN_RELE(vp);
174		return (ENOSTR);
175	}
176
177	*vpp = vp;
178	return (0);
179}
180
181/*
182 * Add or delete (latter if devpath is NULL) an enter to the sockparams
183 * table. If devpathlen is zero the devpath with not be kmem_freed. Otherwise
184 * this routine assumes that the caller has kmem_alloced devpath/devpathlen
185 * for this routine to consume.
186 * The zero devpathlen could be used if the kernel wants to create entries
187 * itself by calling sockconfig(1,2,3, "/dev/tcp", 0);
188 */
189int
190soconfig(int domain, int type, int protocol,
191    char *devpath, int devpathlen)
192{
193	struct sockparams **spp;
194	struct sockparams *sp;
195	int error = 0;
196
197	dprint(0, ("soconfig(%d,%d,%d,%s,%d)\n",
198	    domain, type, protocol, devpath, devpathlen));
199
200	/*
201	 * Look for an existing match.
202	 */
203	rw_enter(&splist_lock, RW_WRITER);
204	for (spp = &sphead; (sp = *spp) != NULL; spp = &sp->sp_next) {
205		if (sp->sp_domain == domain &&
206		    sp->sp_type == type &&
207		    sp->sp_protocol == protocol) {
208			break;
209		}
210	}
211	if (devpath == NULL) {
212		ASSERT(devpathlen == 0);
213
214		/* Delete existing entry */
215		if (sp == NULL) {
216			error = ENXIO;
217			goto done;
218		}
219		/* Unlink and free existing entry */
220		*spp = sp->sp_next;
221		ASSERT(sp->sp_vnode);
222		VN_RELE(sp->sp_vnode);
223		if (sp->sp_devpathlen != 0)
224			kmem_free(sp->sp_devpath, sp->sp_devpathlen);
225		kmem_free(sp, sizeof (*sp));
226	} else {
227		vnode_t *vp;
228
229		/* Add new entry */
230		if (sp != NULL) {
231			error = EEXIST;
232			goto done;
233		}
234
235		error = sogetvp(devpath, &vp, UIO_SYSSPACE);
236		if (error) {
237			dprint(0, ("soconfig: vp %s failed with %d\n",
238			    devpath, error));
239			goto done;
240		}
241
242		dprint(0, ("soconfig: %s => vp %p, dev 0x%lx\n",
243		    devpath, vp, vp->v_rdev));
244
245		sp = kmem_alloc(sizeof (*sp), KM_SLEEP);
246		sp->sp_domain = domain;
247		sp->sp_type = type;
248		sp->sp_protocol = protocol;
249		sp->sp_devpath = devpath;
250		sp->sp_devpathlen = devpathlen;
251		sp->sp_vnode = vp;
252		sp->sp_next = NULL;
253		*spp = sp;
254	}
255done:
256	rw_exit(&splist_lock);
257	if (error) {
258		if (devpath != NULL)
259			kmem_free(devpath, devpathlen);
260#ifdef SOCK_DEBUG
261		eprintline(error);
262#endif /* SOCK_DEBUG */
263	}
264	return (error);
265}
266
267/*
268 * Lookup an entry in the sockparams list based on the triple.
269 * If no entry is found and devpath is not NULL translate devpath to a
270 * vnode. Note that devpath is a pointer to a user address!
271 * Returns with the vnode held.
272 *
273 * When this routine uses devpath it does not create an entry in the sockparams
274 * list since this routine can run on behalf of any user and one user
275 * should not be able to effect the transport used by another user.
276 *
277 * In order to return the correct error this routine has to do wildcard scans
278 * of the list. The errors are (in decreasing precedence):
279 *	EAFNOSUPPORT - address family not in list
280 *	EPROTONOSUPPORT - address family supported but not protocol.
281 *	EPROTOTYPE - address family and protocol supported but not socket type.
282 */
283vnode_t *
284solookup(int domain, int type, int protocol, char *devpath, int *errorp)
285{
286	struct sockparams *sp;
287	int error;
288	vnode_t *vp;
289
290	rw_enter(&splist_lock, RW_READER);
291	for (sp = sphead; sp != NULL; sp = sp->sp_next) {
292		if (sp->sp_domain == domain &&
293		    sp->sp_type == type &&
294		    sp->sp_protocol == protocol) {
295			break;
296		}
297	}
298	if (sp == NULL) {
299		dprint(0, ("solookup(%d,%d,%d) not found\n",
300		    domain, type, protocol));
301		if (devpath == NULL) {
302			/* Determine correct error code */
303			int found = 0;
304
305			for (sp = sphead; sp != NULL; sp = sp->sp_next) {
306				if (sp->sp_domain == domain && found < 1)
307					found = 1;
308				if (sp->sp_domain == domain &&
309				    sp->sp_protocol == protocol && found < 2)
310					found = 2;
311			}
312			rw_exit(&splist_lock);
313			switch (found) {
314			case 0:
315				*errorp = EAFNOSUPPORT;
316				break;
317			case 1:
318				*errorp = EPROTONOSUPPORT;
319				break;
320			case 2:
321				*errorp = EPROTOTYPE;
322				break;
323			}
324			return (NULL);
325		}
326		rw_exit(&splist_lock);
327
328		/*
329		 * Return vp based on devpath.
330		 * Do not enter into table to avoid random users
331		 * modifying the sockparams list.
332		 */
333		error = sogetvp(devpath, &vp, UIO_USERSPACE);
334		if (error) {
335			dprint(0, ("solookup: vp %p failed with %d\n",
336			    devpath, error));
337			*errorp = EPROTONOSUPPORT;
338			return (NULL);
339		}
340		dprint(0, ("solookup: %p => vp %p, dev 0x%lx\n",
341		    devpath, vp, vp->v_rdev));
342
343		return (vp);
344	}
345	dprint(0, ("solookup(%d,%d,%d) vp %p devpath %s\n",
346	    domain, type, protocol, sp->sp_vnode, sp->sp_devpath));
347
348	vp = sp->sp_vnode;
349	VN_HOLD(vp);
350	rw_exit(&splist_lock);
351	return (vp);
352}
353
354/*
355 * Return a socket vnode.
356 *
357 * Assumes that the caller is "passing" an VN_HOLD for accessvp i.e.
358 * when the socket is freed a VN_RELE will take place.
359 *
360 * Note that sockets assume that the driver will clone (either itself
361 * or by using the clone driver) i.e. a socket() call will always
362 * result in a new vnode being created.
363 */
364struct vnode *
365makesockvp(struct vnode *accessvp, int domain, int type, int protocol)
366{
367	kmem_cache_t *cp;
368	struct sonode *so;
369	struct vnode *vp;
370	time_t now;
371	dev_t dev;
372
373	cp = (domain == AF_UNIX) ? socktpi_unix_cache : socktpi_cache;
374	so = kmem_cache_alloc(cp, KM_SLEEP);
375	so->so_cache = cp;
376	so->so_obj = so;
377	vp = SOTOV(so);
378	now = gethrestime_sec();
379
380	so->so_flag	= 0;
381	ASSERT(so->so_accessvp == NULL);
382	so->so_accessvp	= accessvp;
383	dev = accessvp->v_rdev;
384
385	/*
386	 * Record in so_flag that it is a clone.
387	 */
388	if (getmajor(dev) == clone_major) {
389		so->so_flag |= SOCLONE;
390	}
391	so->so_dev = dev;
392
393	so->so_state	= 0;
394	so->so_mode	= 0;
395
396	so->so_fsid	= sockdev;
397	so->so_atime	= now;
398	so->so_mtime	= now;
399	so->so_ctime	= now;		/* Never modified */
400	so->so_count	= 0;
401
402	so->so_family	= (short)domain;
403	so->so_type	= (short)type;
404	so->so_protocol	= (short)protocol;
405	so->so_pushcnt	= 0;
406
407	so->so_options	= 0;
408	so->so_linger.l_onoff	= 0;
409	so->so_linger.l_linger = 0;
410	so->so_sndbuf	= 0;
411	so->so_rcvbuf	= 0;
412	so->so_sndlowat	= 0;
413	so->so_rcvlowat	= 0;
414#ifdef notyet
415	so->so_sndtimeo	= 0;
416	so->so_rcvtimeo	= 0;
417#endif /* notyet */
418	so->so_error	= 0;
419	so->so_delayed_error = 0;
420
421	ASSERT(so->so_oobmsg == NULL);
422	so->so_oobcnt	= 0;
423	so->so_oobsigcnt = 0;
424	so->so_pgrp	= 0;
425	so->so_provinfo = NULL;
426
427	ASSERT(so->so_laddr_sa == NULL && so->so_faddr_sa == NULL);
428	so->so_laddr_len = so->so_faddr_len = 0;
429	so->so_laddr_maxlen = so->so_faddr_maxlen = 0;
430	so->so_eaddr_mp = NULL;
431	so->so_priv = NULL;
432
433	so->so_peercred = NULL;
434
435	ASSERT(so->so_ack_mp == NULL);
436	ASSERT(so->so_conn_ind_head == NULL);
437	ASSERT(so->so_conn_ind_tail == NULL);
438	ASSERT(so->so_ux_bound_vp == NULL);
439	ASSERT(so->so_unbind_mp == NULL);
440
441	vn_reinit(vp);
442	vp->v_vfsp	= rootvfs;
443	vp->v_type	= VSOCK;
444	vp->v_rdev	= so->so_dev;
445	vn_exists(vp);
446
447	return (vp);
448}
449
450void
451sockfree(struct sonode *so)
452{
453	mblk_t *mp;
454	vnode_t *vp;
455
456	ASSERT(so->so_count == 0);
457	ASSERT(so->so_accessvp);
458	ASSERT(so->so_discon_ind_mp == NULL);
459
460	vp = so->so_accessvp;
461	VN_RELE(vp);
462
463	/*
464	 * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely
465	 * indirect them.  It also uses so_accessvp as a validity test.
466	 */
467	mutex_enter(&so->so_lock);
468
469	so->so_accessvp = NULL;
470
471	if (so->so_laddr_sa) {
472		ASSERT((caddr_t)so->so_faddr_sa ==
473		    (caddr_t)so->so_laddr_sa + so->so_laddr_maxlen);
474		ASSERT(so->so_faddr_maxlen == so->so_laddr_maxlen);
475		so->so_state &= ~(SS_LADDR_VALID | SS_FADDR_VALID);
476		kmem_free(so->so_laddr_sa, so->so_laddr_maxlen * 2);
477		so->so_laddr_sa = NULL;
478		so->so_laddr_len = so->so_laddr_maxlen = 0;
479		so->so_faddr_sa = NULL;
480		so->so_faddr_len = so->so_faddr_maxlen = 0;
481	}
482
483	mutex_exit(&so->so_lock);
484
485	if ((mp = so->so_eaddr_mp) != NULL) {
486		freemsg(mp);
487		so->so_eaddr_mp = NULL;
488		so->so_delayed_error = 0;
489	}
490	if ((mp = so->so_ack_mp) != NULL) {
491		freemsg(mp);
492		so->so_ack_mp = NULL;
493	}
494	if ((mp = so->so_conn_ind_head) != NULL) {
495		mblk_t *mp1;
496
497		while (mp) {
498			mp1 = mp->b_next;
499			mp->b_next = NULL;
500			freemsg(mp);
501			mp = mp1;
502		}
503		so->so_conn_ind_head = so->so_conn_ind_tail = NULL;
504		so->so_state &= ~SS_HASCONNIND;
505	}
506#ifdef DEBUG
507	mutex_enter(&so->so_lock);
508	ASSERT(so_verify_oobstate(so));
509	mutex_exit(&so->so_lock);
510#endif /* DEBUG */
511	if ((mp = so->so_oobmsg) != NULL) {
512		freemsg(mp);
513		so->so_oobmsg = NULL;
514		so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA);
515	}
516
517	if ((mp = so->so_nl7c_rcv_mp) != NULL) {
518		so->so_nl7c_rcv_mp = NULL;
519		freemsg(mp);
520	}
521	so->so_nl7c_rcv_rval = 0;
522	if (so->so_nl7c_uri != NULL) {
523		nl7c_urifree(so);
524		/* urifree() cleared nl7c_uri */
525	}
526	if (so->so_nl7c_flags) {
527		so->so_nl7c_flags = 0;
528	}
529
530	if (so->so_direct != NULL) {
531		sodirect_t *sodp = so->so_direct;
532
533		ASSERT(sodp->sod_uioafh == NULL);
534
535		so->so_direct = NULL;
536		kmem_cache_free(socktpi_sod_cache, sodp);
537	}
538
539	ASSERT(so->so_ux_bound_vp == NULL);
540	if ((mp = so->so_unbind_mp) != NULL) {
541		freemsg(mp);
542		so->so_unbind_mp = NULL;
543	}
544	vn_invalid(SOTOV(so));
545
546	if (so->so_peercred != NULL)
547		crfree(so->so_peercred);
548
549	kmem_cache_free(so->so_cache, so->so_obj);
550}
551
552/*
553 * Update the accessed, updated, or changed times in an sonode
554 * with the current time.
555 *
556 * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
557 * attributes in a fstat call. (They return the current time and 0 for
558 * all timestamps, respectively.) We maintain the current timestamps
559 * here primarily so that should sockmod be popped the resulting
560 * file descriptor will behave like a stream w.r.t. the timestamps.
561 */
562void
563so_update_attrs(struct sonode *so, int flag)
564{
565	time_t now = gethrestime_sec();
566
567	mutex_enter(&so->so_lock);
568	so->so_flag |= flag;
569	if (flag & SOACC)
570		so->so_atime = now;
571	if (flag & SOMOD)
572		so->so_mtime = now;
573	mutex_exit(&so->so_lock);
574}
575
576/*ARGSUSED*/
577static int
578socktpi_constructor(void *buf, void *cdrarg, int kmflags)
579{
580	struct sonode *so = buf;
581	struct vnode *vp;
582
583	vp = so->so_vnode = vn_alloc(kmflags);
584	if (vp == NULL) {
585		return (-1);
586	}
587	vn_setops(vp, socktpi_vnodeops);
588	vp->v_data = so;
589
590	so->so_direct		= NULL;
591
592	so->so_nl7c_flags	= 0;
593	so->so_nl7c_uri		= NULL;
594	so->so_nl7c_rcv_mp	= NULL;
595
596	so->so_oobmsg		= NULL;
597	so->so_ack_mp		= NULL;
598	so->so_conn_ind_head	= NULL;
599	so->so_conn_ind_tail	= NULL;
600	so->so_discon_ind_mp	= NULL;
601	so->so_ux_bound_vp	= NULL;
602	so->so_unbind_mp	= NULL;
603	so->so_accessvp		= NULL;
604	so->so_laddr_sa		= NULL;
605	so->so_faddr_sa		= NULL;
606	so->so_ops		= &sotpi_sonodeops;
607
608	mutex_init(&so->so_lock, NULL, MUTEX_DEFAULT, NULL);
609	mutex_init(&so->so_plumb_lock, NULL, MUTEX_DEFAULT, NULL);
610	cv_init(&so->so_state_cv, NULL, CV_DEFAULT, NULL);
611	cv_init(&so->so_ack_cv, NULL, CV_DEFAULT, NULL);
612	cv_init(&so->so_connind_cv, NULL, CV_DEFAULT, NULL);
613	cv_init(&so->so_want_cv, NULL, CV_DEFAULT, NULL);
614
615	return (0);
616}
617
618/*ARGSUSED1*/
619static void
620socktpi_destructor(void *buf, void *cdrarg)
621{
622	struct sonode *so = buf;
623	struct vnode *vp = SOTOV(so);
624
625	ASSERT(so->so_direct == NULL);
626
627	ASSERT(so->so_nl7c_flags == 0);
628	ASSERT(so->so_nl7c_uri == NULL);
629	ASSERT(so->so_nl7c_rcv_mp == NULL);
630
631	ASSERT(so->so_oobmsg == NULL);
632	ASSERT(so->so_ack_mp == NULL);
633	ASSERT(so->so_conn_ind_head == NULL);
634	ASSERT(so->so_conn_ind_tail == NULL);
635	ASSERT(so->so_discon_ind_mp == NULL);
636	ASSERT(so->so_ux_bound_vp == NULL);
637	ASSERT(so->so_unbind_mp == NULL);
638	ASSERT(so->so_ops == &sotpi_sonodeops);
639
640	ASSERT(vn_matchops(vp, socktpi_vnodeops));
641	ASSERT(vp->v_data == so);
642
643	vn_free(vp);
644
645	mutex_destroy(&so->so_lock);
646	mutex_destroy(&so->so_plumb_lock);
647	cv_destroy(&so->so_state_cv);
648	cv_destroy(&so->so_ack_cv);
649	cv_destroy(&so->so_connind_cv);
650	cv_destroy(&so->so_want_cv);
651}
652
653static int
654socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags)
655{
656	int retval;
657
658	if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) {
659		struct sonode *so = (struct sonode *)buf;
660
661		mutex_enter(&socklist.sl_lock);
662
663		so->so_next = socklist.sl_list;
664		so->so_prev = NULL;
665		if (so->so_next != NULL)
666			so->so_next->so_prev = so;
667		socklist.sl_list = so;
668
669		mutex_exit(&socklist.sl_lock);
670
671	}
672	return (retval);
673}
674
675static void
676socktpi_unix_destructor(void *buf, void *cdrarg)
677{
678	struct sonode	*so	= (struct sonode *)buf;
679
680	mutex_enter(&socklist.sl_lock);
681
682	if (so->so_next != NULL)
683		so->so_next->so_prev = so->so_prev;
684	if (so->so_prev != NULL)
685		so->so_prev->so_next = so->so_next;
686	else
687		socklist.sl_list = so->so_next;
688
689	mutex_exit(&socklist.sl_lock);
690
691	socktpi_destructor(buf, cdrarg);
692}
693
694/*
695 * Init function called when sockfs is loaded.
696 */
697int
698sockinit(int fstype, char *name)
699{
700	static const fs_operation_def_t sock_vfsops_template[] = {
701		NULL, NULL
702	};
703	int error;
704	major_t dev;
705	char *err_str;
706
707	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
708	if (error != 0) {
709		zcmn_err(GLOBAL_ZONEID, CE_WARN,
710		    "sockinit: bad vfs ops template");
711		return (error);
712	}
713
714	error = vn_make_ops(name, socktpi_vnodeops_template, &socktpi_vnodeops);
715	if (error != 0) {
716		err_str = "sockinit: bad sock vnode ops template";
717		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
718		socktpi_vnodeops = NULL;
719		goto failure;
720	}
721
722	error = sosctp_init();
723	if (error != 0) {
724		err_str = NULL;
725		goto failure;
726	}
727
728	error = sosdp_init();
729	if (error != 0) {
730		err_str = NULL;
731		goto failure;
732	}
733
734	error = sostr_init();
735	if (error != 0) {
736		err_str = NULL;
737		goto failure;
738	}
739
740	/*
741	 * Create sonode caches.  We create a special one for AF_UNIX so
742	 * that we can track them for netstat(1m).
743	 */
744	socktpi_cache = kmem_cache_create("socktpi_cache",
745	    sizeof (struct sonode), 0, socktpi_constructor,
746	    socktpi_destructor, NULL, NULL, NULL, 0);
747
748	socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache",
749	    sizeof (struct sonode), 0, socktpi_unix_constructor,
750	    socktpi_unix_destructor, NULL, NULL, NULL, 0);
751
752	/*
753	 * Build initial list mapping socket parameters to vnode.
754	 */
755	rw_init(&splist_lock, NULL, RW_DEFAULT, NULL);
756
757	/*
758	 * If sockets are needed before init runs /sbin/soconfig
759	 * it is possible to preload the sockparams list here using
760	 * calls like:
761	 *	sockconfig(1,2,3, "/dev/tcp", 0);
762	 */
763
764	/*
765	 * Create a unique dev_t for use in so_fsid.
766	 */
767
768	if ((dev = getudev()) == (major_t)-1)
769		dev = 0;
770	sockdev = makedevice(dev, 0);
771
772	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
773	sendfile_init();
774	nl7c_init();
775
776	return (0);
777
778failure:
779	(void) vfs_freevfsops_by_type(fstype);
780	if (socktpi_vnodeops != NULL)
781		vn_freevnodeops(socktpi_vnodeops);
782	if (err_str != NULL)
783		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
784	return (error);
785}
786
787/*
788 * Caller must hold the mutex. Used to set SOLOCKED.
789 */
790void
791so_lock_single(struct sonode *so)
792{
793	ASSERT(MUTEX_HELD(&so->so_lock));
794
795	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
796		so->so_flag |= SOWANT;
797		cv_wait_stop(&so->so_want_cv, &so->so_lock,
798		    SO_LOCK_WAKEUP_TIME);
799	}
800	so->so_flag |= SOLOCKED;
801}
802
803/*
804 * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
805 * Used to clear SOLOCKED or SOASYNC_UNBIND.
806 */
807void
808so_unlock_single(struct sonode *so, int flag)
809{
810	ASSERT(MUTEX_HELD(&so->so_lock));
811	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
812	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
813	ASSERT(so->so_flag & flag);
814
815	/*
816	 * Process the T_DISCON_IND on so_discon_ind_mp.
817	 *
818	 * Call to so_drain_discon_ind will result in so_lock
819	 * being dropped and re-acquired later.
820	 */
821	if (so->so_discon_ind_mp != NULL)
822		so_drain_discon_ind(so);
823
824	if (so->so_flag & SOWANT)
825		cv_broadcast(&so->so_want_cv);
826	so->so_flag &= ~(SOWANT|flag);
827}
828
829/*
830 * Caller must hold the mutex. Used to set SOREADLOCKED.
831 * If the caller wants nonblocking behavior it should set fmode.
832 */
833int
834so_lock_read(struct sonode *so, int fmode)
835{
836	ASSERT(MUTEX_HELD(&so->so_lock));
837
838	while (so->so_flag & SOREADLOCKED) {
839		if (fmode & (FNDELAY|FNONBLOCK))
840			return (EWOULDBLOCK);
841		so->so_flag |= SOWANT;
842		cv_wait_stop(&so->so_want_cv, &so->so_lock,
843		    SO_LOCK_WAKEUP_TIME);
844	}
845	so->so_flag |= SOREADLOCKED;
846	return (0);
847}
848
849/*
850 * Like so_lock_read above but allows signals.
851 */
852int
853so_lock_read_intr(struct sonode *so, int fmode)
854{
855	ASSERT(MUTEX_HELD(&so->so_lock));
856
857	while (so->so_flag & SOREADLOCKED) {
858		if (fmode & (FNDELAY|FNONBLOCK))
859			return (EWOULDBLOCK);
860		so->so_flag |= SOWANT;
861		if (!cv_wait_sig(&so->so_want_cv, &so->so_lock))
862			return (EINTR);
863	}
864	so->so_flag |= SOREADLOCKED;
865	return (0);
866}
867
868/*
869 * Caller must hold the mutex. Used to clear SOREADLOCKED,
870 * set in so_lock_read() or so_lock_read_intr().
871 */
872void
873so_unlock_read(struct sonode *so)
874{
875	ASSERT(MUTEX_HELD(&so->so_lock));
876	ASSERT(so->so_flag & SOREADLOCKED);
877
878	if (so->so_flag & SOWANT)
879		cv_broadcast(&so->so_want_cv);
880	so->so_flag &= ~(SOWANT|SOREADLOCKED);
881}
882
883/*
884 * Verify that the specified offset falls within the mblk and
885 * that the resulting pointer is aligned.
886 * Returns NULL if not.
887 */
888void *
889sogetoff(mblk_t *mp, t_uscalar_t offset,
890    t_uscalar_t length, uint_t align_size)
891{
892	uintptr_t ptr1, ptr2;
893
894	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
895	ptr1 = (uintptr_t)mp->b_rptr + offset;
896	ptr2 = (uintptr_t)ptr1 + length;
897	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
898		eprintline(0);
899		return (NULL);
900	}
901	if ((ptr1 & (align_size - 1)) != 0) {
902		eprintline(0);
903		return (NULL);
904	}
905	return ((void *)ptr1);
906}
907
908/*
909 * Return the AF_UNIX underlying filesystem vnode matching a given name.
910 * Makes sure the sending and the destination sonodes are compatible.
911 * The vnode is returned held.
912 *
913 * The underlying filesystem VSOCK vnode has a v_stream pointer that
914 * references the actual stream head (hence indirectly the actual sonode).
915 */
916static int
917so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
918		vnode_t **vpp)
919{
920	vnode_t		*vp;	/* Underlying filesystem vnode */
921	vnode_t		*svp;	/* sockfs vnode */
922	struct sonode	*so2;
923	int		error;
924
925	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", so, soun->sun_path));
926
927	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
928	if (error) {
929		eprintsoline(so, error);
930		return (error);
931	}
932	if (vp->v_type != VSOCK) {
933		error = ENOTSOCK;
934		eprintsoline(so, error);
935		goto done2;
936	}
937
938	if (checkaccess) {
939		/*
940		 * Check that we have permissions to access the destination
941		 * vnode. This check is not done in BSD but it is required
942		 * by X/Open.
943		 */
944		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
945			eprintsoline(so, error);
946			goto done2;
947		}
948	}
949
950	/*
951	 * Check if the remote socket has been closed.
952	 *
953	 * Synchronize with vn_rele_stream by holding v_lock while traversing
954	 * v_stream->sd_vnode.
955	 */
956	mutex_enter(&vp->v_lock);
957	if (vp->v_stream == NULL) {
958		mutex_exit(&vp->v_lock);
959		if (so->so_type == SOCK_DGRAM)
960			error = EDESTADDRREQ;
961		else
962			error = ECONNREFUSED;
963
964		eprintsoline(so, error);
965		goto done2;
966	}
967	ASSERT(vp->v_stream->sd_vnode);
968	svp = vp->v_stream->sd_vnode;
969	/*
970	 * holding v_lock on underlying filesystem vnode and acquiring
971	 * it on sockfs vnode. Assumes that no code ever attempts to
972	 * acquire these locks in the reverse order.
973	 */
974	VN_HOLD(svp);
975	mutex_exit(&vp->v_lock);
976
977	if (svp->v_type != VSOCK) {
978		error = ENOTSOCK;
979		eprintsoline(so, error);
980		goto done;
981	}
982
983	so2 = VTOSO(svp);
984
985	if (so->so_type != so2->so_type) {
986		error = EPROTOTYPE;
987		eprintsoline(so, error);
988		goto done;
989	}
990
991	VN_RELE(svp);
992	*vpp = vp;
993	return (0);
994
995done:
996	VN_RELE(svp);
997done2:
998	VN_RELE(vp);
999	return (error);
1000}
1001
1002/*
1003 * Verify peer address for connect and sendto/sendmsg.
1004 * Since sendto/sendmsg would not get synchronous errors from the transport
1005 * provider we have to do these ugly checks in the socket layer to
1006 * preserve compatibility with SunOS 4.X.
1007 */
1008int
1009so_addr_verify(struct sonode *so, const struct sockaddr *name,
1010    socklen_t namelen)
1011{
1012	int		family;
1013
1014	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n", so, name, namelen));
1015
1016	ASSERT(name != NULL);
1017
1018	family = so->so_family;
1019	switch (family) {
1020	case AF_INET:
1021		if (name->sa_family != family) {
1022			eprintsoline(so, EAFNOSUPPORT);
1023			return (EAFNOSUPPORT);
1024		}
1025		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
1026			eprintsoline(so, EINVAL);
1027			return (EINVAL);
1028		}
1029		break;
1030	case AF_INET6: {
1031#ifdef DEBUG
1032		struct sockaddr_in6 *sin6;
1033#endif /* DEBUG */
1034
1035		if (name->sa_family != family) {
1036			eprintsoline(so, EAFNOSUPPORT);
1037			return (EAFNOSUPPORT);
1038		}
1039		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
1040			eprintsoline(so, EINVAL);
1041			return (EINVAL);
1042		}
1043#ifdef DEBUG
1044		/* Verify that apps don't forget to clear sin6_scope_id etc */
1045		sin6 = (struct sockaddr_in6 *)name;
1046		if (sin6->sin6_scope_id != 0 &&
1047		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
1048			zcmn_err(getzoneid(), CE_WARN,
1049			    "connect/send* with uninitialized sin6_scope_id "
1050			    "(%d) on socket. Pid = %d\n",
1051			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
1052		}
1053#endif /* DEBUG */
1054		break;
1055	}
1056	case AF_UNIX:
1057		if (so->so_state & SS_FADDR_NOXLATE) {
1058			return (0);
1059		}
1060		if (namelen < (socklen_t)sizeof (short)) {
1061			eprintsoline(so, ENOENT);
1062			return (ENOENT);
1063		}
1064		if (name->sa_family != family) {
1065			eprintsoline(so, EAFNOSUPPORT);
1066			return (EAFNOSUPPORT);
1067		}
1068		/* MAXPATHLEN + soun_family + nul termination */
1069		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
1070			eprintsoline(so, ENAMETOOLONG);
1071			return (ENAMETOOLONG);
1072		}
1073
1074		break;
1075
1076	default:
1077		/*
1078		 * Default is don't do any length or sa_family check
1079		 * to allow non-sockaddr style addresses.
1080		 */
1081		break;
1082	}
1083
1084	return (0);
1085}
1086
1087
1088/*
1089 * Translate an AF_UNIX sockaddr_un to the transport internal name.
1090 * Assumes caller has called so_addr_verify first.
1091 */
1092/*ARGSUSED*/
1093int
1094so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
1095    socklen_t namelen, int checkaccess,
1096    void **addrp, socklen_t *addrlenp)
1097{
1098	int			error;
1099	struct sockaddr_un	*soun;
1100	vnode_t			*vp;
1101	void			*addr;
1102	socklen_t		addrlen;
1103
1104	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
1105	    so, name, namelen, checkaccess));
1106
1107	ASSERT(name != NULL);
1108	ASSERT(so->so_family == AF_UNIX);
1109	ASSERT(!(so->so_state & SS_FADDR_NOXLATE));
1110	ASSERT(namelen >= (socklen_t)sizeof (short));
1111	ASSERT(name->sa_family == AF_UNIX);
1112	soun = (struct sockaddr_un *)name;
1113	/*
1114	 * Lookup vnode for the specified path name and verify that
1115	 * it is a socket.
1116	 */
1117	error = so_ux_lookup(so, soun, checkaccess, &vp);
1118	if (error) {
1119		eprintsoline(so, error);
1120		return (error);
1121	}
1122	/*
1123	 * Use the address of the peer vnode as the address to send
1124	 * to. We release the peer vnode here. In case it has been
1125	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
1126	 * transport the message will get an error or be dropped.
1127	 */
1128	so->so_ux_faddr.soua_vp = vp;
1129	so->so_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
1130	addr = &so->so_ux_faddr;
1131	addrlen = (socklen_t)sizeof (so->so_ux_faddr);
1132	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n", addrlen, vp));
1133	VN_RELE(vp);
1134	*addrp = addr;
1135	*addrlenp = (socklen_t)addrlen;
1136	return (0);
1137}
1138
1139/*
1140 * Esballoc free function for messages that contain SO_FILEP option.
1141 * Decrement the reference count on the file pointers using closef.
1142 */
1143void
1144fdbuf_free(struct fdbuf *fdbuf)
1145{
1146	int	i;
1147	struct file *fp;
1148
1149	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
1150	for (i = 0; i < fdbuf->fd_numfd; i++) {
1151		/*
1152		 * We need pointer size alignment for fd_fds. On a LP64
1153		 * kernel, the required alignment is 8 bytes while
1154		 * the option headers and values are only 4 bytes
1155		 * aligned. So its safer to do a bcopy compared to
1156		 * assigning fdbuf->fd_fds[i] to fp.
1157		 */
1158		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
1159		dprint(1, ("fdbuf_free: [%d] = %p\n", i, fp));
1160		(void) closef(fp);
1161	}
1162	if (fdbuf->fd_ebuf != NULL)
1163		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
1164	kmem_free(fdbuf, fdbuf->fd_size);
1165}
1166
1167/*
1168 * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
1169 * Waits if memory is not available.
1170 */
1171mblk_t *
1172fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
1173{
1174	uchar_t	*buf;
1175	mblk_t	*mp;
1176
1177	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
1178	buf = kmem_alloc(size, KM_SLEEP);
1179	fdbuf->fd_ebuf = (caddr_t)buf;
1180	fdbuf->fd_ebuflen = size;
1181	fdbuf->fd_frtn.free_func = fdbuf_free;
1182	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
1183
1184	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
1185	mp->b_datap->db_type = M_PROTO;
1186	return (mp);
1187}
1188
1189/*
1190 * Extract file descriptors from a fdbuf.
1191 * Return list in rights/rightslen.
1192 */
1193/*ARGSUSED*/
1194static int
1195fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
1196{
1197	int	i, fd;
1198	int	*rp;
1199	struct file *fp;
1200	int	numfd;
1201
1202	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
1203	    fdbuf->fd_numfd, rightslen));
1204
1205	numfd = fdbuf->fd_numfd;
1206	ASSERT(rightslen == numfd * (int)sizeof (int));
1207
1208	/*
1209	 * Allocate a file descriptor and increment the f_count.
1210	 * The latter is needed since we always call fdbuf_free
1211	 * which performs a closef.
1212	 */
1213	rp = (int *)rights;
1214	for (i = 0; i < numfd; i++) {
1215		if ((fd = ufalloc(0)) == -1)
1216			goto cleanup;
1217		/*
1218		 * We need pointer size alignment for fd_fds. On a LP64
1219		 * kernel, the required alignment is 8 bytes while
1220		 * the option headers and values are only 4 bytes
1221		 * aligned. So its safer to do a bcopy compared to
1222		 * assigning fdbuf->fd_fds[i] to fp.
1223		 */
1224		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
1225		mutex_enter(&fp->f_tlock);
1226		fp->f_count++;
1227		mutex_exit(&fp->f_tlock);
1228		setf(fd, fp);
1229		*rp++ = fd;
1230		if (audit_active)
1231			audit_fdrecv(fd, fp);
1232		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
1233		    i, fd, fp, fp->f_count));
1234	}
1235	return (0);
1236
1237cleanup:
1238	/*
1239	 * Undo whatever partial work the loop above has done.
1240	 */
1241	{
1242		int j;
1243
1244		rp = (int *)rights;
1245		for (j = 0; j < i; j++) {
1246			dprint(0,
1247			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
1248			(void) closeandsetf(*rp++, NULL);
1249		}
1250	}
1251
1252	return (EMFILE);
1253}
1254
1255/*
1256 * Insert file descriptors into an fdbuf.
1257 * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
1258 * by calling fdbuf_free().
1259 */
1260int
1261fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
1262{
1263	int		numfd, i;
1264	int		*fds;
1265	struct file	*fp;
1266	struct fdbuf	*fdbuf;
1267	int		fdbufsize;
1268
1269	dprint(1, ("fdbuf_create: len %d\n", rightslen));
1270
1271	numfd = rightslen / (int)sizeof (int);
1272
1273	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
1274	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
1275	fdbuf->fd_size = fdbufsize;
1276	fdbuf->fd_numfd = 0;
1277	fdbuf->fd_ebuf = NULL;
1278	fdbuf->fd_ebuflen = 0;
1279	fds = (int *)rights;
1280	for (i = 0; i < numfd; i++) {
1281		if ((fp = getf(fds[i])) == NULL) {
1282			fdbuf_free(fdbuf);
1283			return (EBADF);
1284		}
1285		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
1286		    i, fds[i], fp, fp->f_count));
1287		mutex_enter(&fp->f_tlock);
1288		fp->f_count++;
1289		mutex_exit(&fp->f_tlock);
1290		/*
1291		 * The maximum alignment for fdbuf (or any option header
1292		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
1293		 * is not sufficient for pointers (fd_fds in this case). Since
1294		 * we just did a kmem_alloc (we get a double word alignment),
1295		 * we don't need to do anything on the send side (we loose
1296		 * the double word alignment because fdbuf goes after an
1297		 * option header (eg T_unitdata_req) which is only 4 byte
1298		 * aligned). We take care of this when we extract the file
1299		 * descriptor in fdbuf_extract or fdbuf_free.
1300		 */
1301		fdbuf->fd_fds[i] = fp;
1302		fdbuf->fd_numfd++;
1303		releasef(fds[i]);
1304		if (audit_active)
1305			audit_fdsend(fds[i], fp, 0);
1306	}
1307	*fdbufp = fdbuf;
1308	return (0);
1309}
1310
1311static int
1312fdbuf_optlen(int rightslen)
1313{
1314	int numfd;
1315
1316	numfd = rightslen / (int)sizeof (int);
1317
1318	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
1319}
1320
1321static t_uscalar_t
1322fdbuf_cmsglen(int fdbuflen)
1323{
1324	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
1325	    (int)sizeof (struct file *) * (int)sizeof (int));
1326}
1327
1328
1329/*
1330 * Return non-zero if the mblk and fdbuf are consistent.
1331 */
1332static int
1333fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
1334{
1335	if (fdbuflen >= FDBUF_HDRSIZE &&
1336	    fdbuflen == fdbuf->fd_size) {
1337		frtn_t *frp = mp->b_datap->db_frtnp;
1338		/*
1339		 * Check that the SO_FILEP portion of the
1340		 * message has not been modified by
1341		 * the loopback transport. The sending sockfs generates
1342		 * a message that is esballoc'ed with the free function
1343		 * being fdbuf_free() and where free_arg contains the
1344		 * identical information as the SO_FILEP content.
1345		 *
1346		 * If any of these constraints are not satisfied we
1347		 * silently ignore the option.
1348		 */
1349		ASSERT(mp);
1350		if (frp != NULL &&
1351		    frp->free_func == fdbuf_free &&
1352		    frp->free_arg != NULL &&
1353		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
1354			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
1355			    fdbuf, fdbuflen));
1356			return (1);
1357		} else {
1358			zcmn_err(getzoneid(), CE_WARN,
1359			    "sockfs: mismatched fdbuf content (%p)",
1360			    (void *)mp);
1361			return (0);
1362		}
1363	} else {
1364		zcmn_err(getzoneid(), CE_WARN,
1365		    "sockfs: mismatched fdbuf len %d, %d\n",
1366		    fdbuflen, fdbuf->fd_size);
1367		return (0);
1368	}
1369}
1370
1371/*
1372 * When the file descriptors returned by sorecvmsg can not be passed
1373 * to the application this routine will cleanup the references on
1374 * the files. Start at startoff bytes into the buffer.
1375 */
1376static void
1377close_fds(void *fdbuf, int fdbuflen, int startoff)
1378{
1379	int *fds = (int *)fdbuf;
1380	int numfd = fdbuflen / (int)sizeof (int);
1381	int i;
1382
1383	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
1384
1385	for (i = 0; i < numfd; i++) {
1386		if (startoff < 0)
1387			startoff = 0;
1388		if (startoff < (int)sizeof (int)) {
1389			/*
1390			 * This file descriptor is partially or fully after
1391			 * the offset
1392			 */
1393			dprint(0,
1394			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
1395			(void) closeandsetf(fds[i], NULL);
1396		}
1397		startoff -= (int)sizeof (int);
1398	}
1399}
1400
1401/*
1402 * Close all file descriptors contained in the control part starting at
1403 * the startoffset.
1404 */
1405void
1406so_closefds(void *control, t_uscalar_t controllen, int oldflg,
1407    int startoff)
1408{
1409	struct cmsghdr *cmsg;
1410
1411	if (control == NULL)
1412		return;
1413
1414	if (oldflg) {
1415		close_fds(control, controllen, startoff);
1416		return;
1417	}
1418	/* Scan control part for file descriptors. */
1419	for (cmsg = (struct cmsghdr *)control;
1420	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1421	    cmsg = CMSG_NEXT(cmsg)) {
1422		if (cmsg->cmsg_level == SOL_SOCKET &&
1423		    cmsg->cmsg_type == SCM_RIGHTS) {
1424			close_fds(CMSG_CONTENT(cmsg),
1425			    (int)CMSG_CONTENTLEN(cmsg),
1426			    startoff - (int)sizeof (struct cmsghdr));
1427		}
1428		startoff -= cmsg->cmsg_len;
1429	}
1430}
1431
1432/*
1433 * Returns a pointer/length for the file descriptors contained
1434 * in the control buffer. Returns with *fdlenp == -1 if there are no
1435 * file descriptor options present. This is different than there being
1436 * a zero-length file descriptor option.
1437 * Fail if there are multiple SCM_RIGHT cmsgs.
1438 */
1439int
1440so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
1441    void **fdsp, int *fdlenp)
1442{
1443	struct cmsghdr *cmsg;
1444	void *fds;
1445	int fdlen;
1446
1447	if (control == NULL) {
1448		*fdsp = NULL;
1449		*fdlenp = -1;
1450		return (0);
1451	}
1452
1453	if (oldflg) {
1454		*fdsp = control;
1455		if (controllen == 0)
1456			*fdlenp = -1;
1457		else
1458			*fdlenp = controllen;
1459		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
1460		return (0);
1461	}
1462
1463	fds = NULL;
1464	fdlen = 0;
1465
1466	for (cmsg = (struct cmsghdr *)control;
1467	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1468	    cmsg = CMSG_NEXT(cmsg)) {
1469		if (cmsg->cmsg_level == SOL_SOCKET &&
1470		    cmsg->cmsg_type == SCM_RIGHTS) {
1471			if (fds != NULL)
1472				return (EINVAL);
1473			fds = CMSG_CONTENT(cmsg);
1474			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1475			dprint(1, ("so_getfdopt: new %lu\n",
1476			    (size_t)CMSG_CONTENTLEN(cmsg)));
1477		}
1478	}
1479	if (fds == NULL) {
1480		dprint(1, ("so_getfdopt: NONE\n"));
1481		*fdlenp = -1;
1482	} else
1483		*fdlenp = fdlen;
1484	*fdsp = fds;
1485	return (0);
1486}
1487
1488/*
1489 * Return the length of the options including any file descriptor options.
1490 */
1491t_uscalar_t
1492so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1493{
1494	struct cmsghdr *cmsg;
1495	t_uscalar_t optlen = 0;
1496	t_uscalar_t len;
1497
1498	if (control == NULL)
1499		return (0);
1500
1501	if (oldflg)
1502		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1503		    fdbuf_optlen(controllen)));
1504
1505	for (cmsg = (struct cmsghdr *)control;
1506	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1507	    cmsg = CMSG_NEXT(cmsg)) {
1508		if (cmsg->cmsg_level == SOL_SOCKET &&
1509		    cmsg->cmsg_type == SCM_RIGHTS) {
1510			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1511		} else {
1512			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1513		}
1514		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1515		    sizeof (struct T_opthdr));
1516	}
1517	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1518	    controllen, oldflg, optlen));
1519	return (optlen);
1520}
1521
1522/*
1523 * Copy options from control to the mblk. Skip any file descriptor options.
1524 */
1525void
1526so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1527{
1528	struct T_opthdr toh;
1529	struct cmsghdr *cmsg;
1530
1531	if (control == NULL)
1532		return;
1533
1534	if (oldflg) {
1535		/* No real options - caller has handled file descriptors */
1536		return;
1537	}
1538	for (cmsg = (struct cmsghdr *)control;
1539	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1540	    cmsg = CMSG_NEXT(cmsg)) {
1541		/*
1542		 * Note: The caller handles file descriptors prior
1543		 * to calling this function.
1544		 */
1545		t_uscalar_t len;
1546
1547		if (cmsg->cmsg_level == SOL_SOCKET &&
1548		    cmsg->cmsg_type == SCM_RIGHTS)
1549			continue;
1550
1551		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1552		toh.level = cmsg->cmsg_level;
1553		toh.name = cmsg->cmsg_type;
1554		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1555		toh.status = 0;
1556
1557		soappendmsg(mp, &toh, sizeof (toh));
1558		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1559		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1560		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1561	}
1562}
1563
1564/*
1565 * Return the length of the control message derived from the options.
1566 * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1567 * When oldflg is set only include SO_FILEP.
1568 * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1569 * allocates the space that so_opt2cmsg fills. If one changes, the other should
1570 * also be checked for any possible impacts.
1571 */
1572t_uscalar_t
1573so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1574{
1575	t_uscalar_t cmsglen = 0;
1576	struct T_opthdr *tohp;
1577	t_uscalar_t len;
1578	t_uscalar_t last_roundup = 0;
1579
1580	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1581
1582	for (tohp = (struct T_opthdr *)opt;
1583	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1584	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1585		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1586		    tohp->level, tohp->name, tohp->len));
1587		if (tohp->level == SOL_SOCKET &&
1588		    (tohp->name == SO_SRCADDR ||
1589		    tohp->name == SO_UNIX_CLOSE)) {
1590			continue;
1591		}
1592		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1593			struct fdbuf *fdbuf;
1594			int fdbuflen;
1595
1596			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1597			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1598
1599			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1600				continue;
1601			if (oldflg) {
1602				cmsglen += fdbuf_cmsglen(fdbuflen);
1603				continue;
1604			}
1605			len = fdbuf_cmsglen(fdbuflen);
1606		} else if (tohp->level == SOL_SOCKET &&
1607		    tohp->name == SCM_TIMESTAMP) {
1608			if (oldflg)
1609				continue;
1610
1611			if (get_udatamodel() == DATAMODEL_NATIVE) {
1612				len = sizeof (struct timeval);
1613			} else {
1614				len = sizeof (struct timeval32);
1615			}
1616		} else {
1617			if (oldflg)
1618				continue;
1619			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1620		}
1621		/*
1622		 * Exclude roundup for last option to not set
1623		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1624		 */
1625		last_roundup = (t_uscalar_t)
1626		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1627		    (len + (int)sizeof (struct cmsghdr)));
1628		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1629		    last_roundup;
1630	}
1631	cmsglen -= last_roundup;
1632	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1633	    optlen, oldflg, cmsglen));
1634	return (cmsglen);
1635}
1636
1637/*
1638 * Copy options from options to the control. Convert SO_FILEP to
1639 * file descriptors.
1640 * Returns errno or zero.
1641 * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1642 * allocates the space that so_opt2cmsg fills. If one changes, the other should
1643 * also be checked for any possible impacts.
1644 */
1645int
1646so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1647    void *control, t_uscalar_t controllen)
1648{
1649	struct T_opthdr *tohp;
1650	struct cmsghdr *cmsg;
1651	struct fdbuf *fdbuf;
1652	int fdbuflen;
1653	int error;
1654#if defined(DEBUG) || defined(__lint)
1655	struct cmsghdr *cend = (struct cmsghdr *)
1656	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1657#endif
1658	cmsg = (struct cmsghdr *)control;
1659
1660	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1661
1662	for (tohp = (struct T_opthdr *)opt;
1663	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1664	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1665		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1666		    tohp->level, tohp->name, tohp->len));
1667
1668		if (tohp->level == SOL_SOCKET &&
1669		    (tohp->name == SO_SRCADDR ||
1670		    tohp->name == SO_UNIX_CLOSE)) {
1671			continue;
1672		}
1673		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1674		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1675			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1676			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1677
1678			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1679				return (EPROTO);
1680			if (oldflg) {
1681				error = fdbuf_extract(fdbuf, control,
1682				    (int)controllen);
1683				if (error != 0)
1684					return (error);
1685				continue;
1686			} else {
1687				int fdlen;
1688
1689				fdlen = (int)fdbuf_cmsglen(
1690				    (int)_TPI_TOPT_DATALEN(tohp));
1691
1692				cmsg->cmsg_level = tohp->level;
1693				cmsg->cmsg_type = SCM_RIGHTS;
1694				cmsg->cmsg_len = (socklen_t)(fdlen +
1695				    sizeof (struct cmsghdr));
1696
1697				error = fdbuf_extract(fdbuf,
1698				    CMSG_CONTENT(cmsg), fdlen);
1699				if (error != 0)
1700					return (error);
1701			}
1702		} else if (tohp->level == SOL_SOCKET &&
1703		    tohp->name == SCM_TIMESTAMP) {
1704			timestruc_t *timestamp;
1705
1706			if (oldflg)
1707				continue;
1708
1709			cmsg->cmsg_level = tohp->level;
1710			cmsg->cmsg_type = tohp->name;
1711
1712			timestamp =
1713			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1714			    sizeof (intptr_t));
1715
1716			if (get_udatamodel() == DATAMODEL_NATIVE) {
1717				struct timeval tv;
1718
1719				cmsg->cmsg_len = sizeof (struct timeval) +
1720				    sizeof (struct cmsghdr);
1721				tv.tv_sec = timestamp->tv_sec;
1722				tv.tv_usec = timestamp->tv_nsec /
1723				    (NANOSEC / MICROSEC);
1724				/*
1725				 * on LP64 systems, the struct timeval in
1726				 * the destination will not be 8-byte aligned,
1727				 * so use bcopy to avoid alignment trouble
1728				 */
1729				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1730			} else {
1731				struct timeval32 *time32;
1732
1733				cmsg->cmsg_len = sizeof (struct timeval32) +
1734				    sizeof (struct cmsghdr);
1735				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1736				time32->tv_sec = (time32_t)timestamp->tv_sec;
1737				time32->tv_usec =
1738				    (int32_t)(timestamp->tv_nsec /
1739				    (NANOSEC / MICROSEC));
1740			}
1741
1742		} else {
1743			if (oldflg)
1744				continue;
1745
1746			cmsg->cmsg_level = tohp->level;
1747			cmsg->cmsg_type = tohp->name;
1748			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1749			    sizeof (struct cmsghdr));
1750
1751			/* copy content to control data part */
1752			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1753			    CMSG_CONTENTLEN(cmsg));
1754		}
1755		/* move to next CMSG structure! */
1756		cmsg = CMSG_NEXT(cmsg);
1757	}
1758	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1759	    control, controllen, cend, cmsg));
1760	ASSERT(cmsg <= cend);
1761	return (0);
1762}
1763
1764/*
1765 * Extract the SO_SRCADDR option value if present.
1766 */
1767void
1768so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1769    t_uscalar_t *srclenp)
1770{
1771	struct T_opthdr		*tohp;
1772
1773	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1774
1775	ASSERT(srcp != NULL && srclenp != NULL);
1776	*srcp = NULL;
1777	*srclenp = 0;
1778
1779	for (tohp = (struct T_opthdr *)opt;
1780	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1781	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1782		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1783		    tohp->level, tohp->name, tohp->len));
1784		if (tohp->level == SOL_SOCKET &&
1785		    tohp->name == SO_SRCADDR) {
1786			*srcp = _TPI_TOPT_DATA(tohp);
1787			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1788		}
1789	}
1790}
1791
1792/*
1793 * Verify if the SO_UNIX_CLOSE option is present.
1794 */
1795int
1796so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1797{
1798	struct T_opthdr		*tohp;
1799
1800	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1801
1802	for (tohp = (struct T_opthdr *)opt;
1803	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1804	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1805		dprint(1,
1806		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1807		    tohp->level, tohp->name, tohp->len));
1808		if (tohp->level == SOL_SOCKET &&
1809		    tohp->name == SO_UNIX_CLOSE)
1810			return (1);
1811	}
1812	return (0);
1813}
1814
1815/*
1816 * Allocate an M_PROTO message.
1817 *
1818 * If allocation fails the behavior depends on sleepflg:
1819 *	_ALLOC_NOSLEEP	fail immediately
1820 *	_ALLOC_INTR	sleep for memory until a signal is caught
1821 *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1822 */
1823mblk_t *
1824soallocproto(size_t size, int sleepflg)
1825{
1826	mblk_t	*mp;
1827
1828	/* Round up size for reuse */
1829	size = MAX(size, 64);
1830	mp = allocb(size, BPRI_MED);
1831	if (mp == NULL) {
1832		int error;	/* Dummy - error not returned to caller */
1833
1834		switch (sleepflg) {
1835		case _ALLOC_SLEEP:
1836			mp = allocb_wait(size, BPRI_MED, STR_NOSIG, &error);
1837			ASSERT(mp);
1838			break;
1839		case _ALLOC_INTR:
1840			mp = allocb_wait(size, BPRI_MED, 0, &error);
1841			if (mp == NULL) {
1842				/* Caught signal while sleeping for memory */
1843				eprintline(ENOBUFS);
1844				return (NULL);
1845			}
1846			break;
1847		case _ALLOC_NOSLEEP:
1848		default:
1849			eprintline(ENOBUFS);
1850			return (NULL);
1851		}
1852	}
1853	DB_TYPE(mp) = M_PROTO;
1854	return (mp);
1855}
1856
1857/*
1858 * Allocate an M_PROTO message with a single component.
1859 * len is the length of buf. size is the amount to allocate.
1860 *
1861 * buf can be NULL with a non-zero len.
1862 * This results in a bzero'ed chunk being placed the message.
1863 */
1864mblk_t *
1865soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg)
1866{
1867	mblk_t	*mp;
1868
1869	if (size == 0)
1870		size = len;
1871
1872	ASSERT(size >= len);
1873	/* Round up size for reuse */
1874	size = MAX(size, 64);
1875	mp = soallocproto(size, sleepflg);
1876	if (mp == NULL)
1877		return (NULL);
1878	mp->b_datap->db_type = M_PROTO;
1879	if (len != 0) {
1880		if (buf != NULL)
1881			bcopy(buf, mp->b_wptr, len);
1882		else
1883			bzero(mp->b_wptr, len);
1884		mp->b_wptr += len;
1885	}
1886	return (mp);
1887}
1888
1889/*
1890 * Append buf/len to mp.
1891 * The caller has to ensure that there is enough room in the mblk.
1892 *
1893 * buf can be NULL with a non-zero len.
1894 * This results in a bzero'ed chunk being placed the message.
1895 */
1896void
1897soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1898{
1899	ASSERT(mp);
1900
1901	if (len != 0) {
1902		/* Assert for room left */
1903		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1904		if (buf != NULL)
1905			bcopy(buf, mp->b_wptr, len);
1906		else
1907			bzero(mp->b_wptr, len);
1908	}
1909	mp->b_wptr += len;
1910}
1911
1912/*
1913 * Create a message using two kernel buffers.
1914 * If size is set that will determine the allocation size (e.g. for future
1915 * soappendmsg calls). If size is zero it is derived from the buffer
1916 * lengths.
1917 */
1918mblk_t *
1919soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1920    ssize_t size, int sleepflg)
1921{
1922	mblk_t *mp;
1923
1924	if (size == 0)
1925		size = len1 + len2;
1926	ASSERT(size >= len1 + len2);
1927
1928	mp = soallocproto1(buf1, len1, size, sleepflg);
1929	if (mp)
1930		soappendmsg(mp, buf2, len2);
1931	return (mp);
1932}
1933
1934/*
1935 * Create a message using three kernel buffers.
1936 * If size is set that will determine the allocation size (for future
1937 * soappendmsg calls). If size is zero it is derived from the buffer
1938 * lengths.
1939 */
1940mblk_t *
1941soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1942    const void *buf3, ssize_t len3, ssize_t size, int sleepflg)
1943{
1944	mblk_t *mp;
1945
1946	if (size == 0)
1947		size = len1 + len2 +len3;
1948	ASSERT(size >= len1 + len2 + len3);
1949
1950	mp = soallocproto1(buf1, len1, size, sleepflg);
1951	if (mp != NULL) {
1952		soappendmsg(mp, buf2, len2);
1953		soappendmsg(mp, buf3, len3);
1954	}
1955	return (mp);
1956}
1957
1958#ifdef DEBUG
1959char *
1960pr_state(uint_t state, uint_t mode)
1961{
1962	static char buf[1024];
1963
1964	buf[0] = 0;
1965	if (state & SS_ISCONNECTED)
1966		strcat(buf, "ISCONNECTED ");
1967	if (state & SS_ISCONNECTING)
1968		strcat(buf, "ISCONNECTING ");
1969	if (state & SS_ISDISCONNECTING)
1970		strcat(buf, "ISDISCONNECTING ");
1971	if (state & SS_CANTSENDMORE)
1972		strcat(buf, "CANTSENDMORE ");
1973
1974	if (state & SS_CANTRCVMORE)
1975		strcat(buf, "CANTRCVMORE ");
1976	if (state & SS_ISBOUND)
1977		strcat(buf, "ISBOUND ");
1978	if (state & SS_NDELAY)
1979		strcat(buf, "NDELAY ");
1980	if (state & SS_NONBLOCK)
1981		strcat(buf, "NONBLOCK ");
1982
1983	if (state & SS_ASYNC)
1984		strcat(buf, "ASYNC ");
1985	if (state & SS_ACCEPTCONN)
1986		strcat(buf, "ACCEPTCONN ");
1987	if (state & SS_HASCONNIND)
1988		strcat(buf, "HASCONNIND ");
1989	if (state & SS_SAVEDEOR)
1990		strcat(buf, "SAVEDEOR ");
1991
1992	if (state & SS_RCVATMARK)
1993		strcat(buf, "RCVATMARK ");
1994	if (state & SS_OOBPEND)
1995		strcat(buf, "OOBPEND ");
1996	if (state & SS_HAVEOOBDATA)
1997		strcat(buf, "HAVEOOBDATA ");
1998	if (state & SS_HADOOBDATA)
1999		strcat(buf, "HADOOBDATA ");
2000
2001	if (state & SS_FADDR_NOXLATE)
2002		strcat(buf, "FADDR_NOXLATE ");
2003
2004	if (mode & SM_PRIV)
2005		strcat(buf, "PRIV ");
2006	if (mode & SM_ATOMIC)
2007		strcat(buf, "ATOMIC ");
2008	if (mode & SM_ADDR)
2009		strcat(buf, "ADDR ");
2010	if (mode & SM_CONNREQUIRED)
2011		strcat(buf, "CONNREQUIRED ");
2012
2013	if (mode & SM_FDPASSING)
2014		strcat(buf, "FDPASSING ");
2015	if (mode & SM_EXDATA)
2016		strcat(buf, "EXDATA ");
2017	if (mode & SM_OPTDATA)
2018		strcat(buf, "OPTDATA ");
2019	if (mode & SM_BYTESTREAM)
2020		strcat(buf, "BYTESTREAM ");
2021	return (buf);
2022}
2023
2024char *
2025pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
2026{
2027	static char buf[1024];
2028
2029	if (addr == NULL || addrlen == 0) {
2030		sprintf(buf, "(len %d) %p", addrlen, addr);
2031		return (buf);
2032	}
2033	switch (family) {
2034	case AF_INET: {
2035		struct sockaddr_in sin;
2036
2037		bcopy(addr, &sin, sizeof (sin));
2038
2039		(void) sprintf(buf, "(len %d) %x/%d",
2040		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
2041		break;
2042	}
2043	case AF_INET6: {
2044		struct sockaddr_in6 sin6;
2045		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
2046
2047		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
2048		sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
2049		    addrlen,
2050		    ntohs(piece[0]), ntohs(piece[1]),
2051		    ntohs(piece[2]), ntohs(piece[3]),
2052		    ntohs(piece[4]), ntohs(piece[5]),
2053		    ntohs(piece[6]), ntohs(piece[7]),
2054		    ntohs(sin6.sin6_port));
2055		break;
2056	}
2057	case AF_UNIX: {
2058		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
2059
2060		(void) sprintf(buf, "(len %d) %s", addrlen,
2061		    (soun == NULL) ? "(none)" : soun->sun_path);
2062		break;
2063	}
2064	default:
2065		(void) sprintf(buf, "(unknown af %d)", family);
2066		break;
2067	}
2068	return (buf);
2069}
2070
2071/* The logical equivalence operator (a if-and-only-if b) */
2072#define	EQUIV(a, b)	(((a) && (b)) || (!(a) && (!(b))))
2073
2074/*
2075 * Verify limitations and invariants on oob state.
2076 * Return 1 if OK, otherwise 0 so that it can be used as
2077 *	ASSERT(verify_oobstate(so));
2078 */
2079int
2080so_verify_oobstate(struct sonode *so)
2081{
2082	ASSERT(MUTEX_HELD(&so->so_lock));
2083
2084	/*
2085	 * The possible state combinations are:
2086	 *	0
2087	 *	SS_OOBPEND
2088	 *	SS_OOBPEND|SS_HAVEOOBDATA
2089	 *	SS_OOBPEND|SS_HADOOBDATA
2090	 *	SS_HADOOBDATA
2091	 */
2092	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
2093	case 0:
2094	case SS_OOBPEND:
2095	case SS_OOBPEND|SS_HAVEOOBDATA:
2096	case SS_OOBPEND|SS_HADOOBDATA:
2097	case SS_HADOOBDATA:
2098		break;
2099	default:
2100		printf("Bad oob state 1 (%p): counts %d/%d state %s\n",
2101		    so, so->so_oobsigcnt,
2102		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2103		return (0);
2104	}
2105
2106	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
2107	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
2108		printf("Bad oob state 2 (%p): counts %d/%d state %s\n",
2109		    so, so->so_oobsigcnt,
2110		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2111		return (0);
2112	}
2113
2114	/*
2115	 * (so_oobsigcnt != 0 or SS_RCVATMARK) iff SS_OOBPEND
2116	 */
2117	if (!EQUIV((so->so_oobsigcnt != 0) || (so->so_state & SS_RCVATMARK),
2118	    so->so_state & SS_OOBPEND)) {
2119		printf("Bad oob state 3 (%p): counts %d/%d state %s\n",
2120		    so, so->so_oobsigcnt,
2121		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2122		return (0);
2123	}
2124
2125	/*
2126	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
2127	 */
2128	if (!(so->so_options & SO_OOBINLINE) &&
2129	    !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
2130		printf("Bad oob state 4 (%p): counts %d/%d state %s\n",
2131		    so, so->so_oobsigcnt,
2132		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2133		return (0);
2134	}
2135	if (so->so_oobsigcnt < so->so_oobcnt) {
2136		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
2137		    so, so->so_oobsigcnt,
2138		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2139		return (0);
2140	}
2141	return (1);
2142}
2143#undef	EQUIV
2144
2145#endif /* DEBUG */
2146
2147/* initialize sockfs zone specific kstat related items			*/
2148void *
2149sock_kstat_init(zoneid_t zoneid)
2150{
2151	kstat_t	*ksp;
2152
2153	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
2154	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
2155
2156	if (ksp != NULL) {
2157		ksp->ks_update = sockfs_update;
2158		ksp->ks_snapshot = sockfs_snapshot;
2159		ksp->ks_lock = &socklist.sl_lock;
2160		ksp->ks_private = (void *)(uintptr_t)zoneid;
2161		kstat_install(ksp);
2162	}
2163
2164	return (ksp);
2165}
2166
2167/* tear down sockfs zone specific kstat related items			*/
2168/*ARGSUSED*/
2169void
2170sock_kstat_fini(zoneid_t zoneid, void *arg)
2171{
2172	kstat_t *ksp = (kstat_t *)arg;
2173
2174	if (ksp != NULL) {
2175		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
2176		kstat_delete(ksp);
2177	}
2178}
2179
2180/*
2181 * Zones:
2182 * Note that nactive is going to be different for each zone.
2183 * This means we require kstat to call sockfs_update and then sockfs_snapshot
2184 * for the same zone, or sockfs_snapshot will be taken into the wrong size
2185 * buffer. This is safe, but if the buffer is too small, user will not be
2186 * given details of all sockets. However, as this kstat has a ks_lock, kstat
2187 * driver will keep it locked between the update and the snapshot, so no
2188 * other process (zone) can currently get inbetween resulting in a wrong size
2189 * buffer allocation.
2190 */
2191static int
2192sockfs_update(kstat_t *ksp, int rw)
2193{
2194	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
2195	struct sonode	*so;		/* current sonode on socklist	*/
2196	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
2197
2198	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
2199
2200	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
2201		return (EACCES);
2202	}
2203
2204	for (so = socklist.sl_list; so != NULL; so = so->so_next) {
2205		if (so->so_accessvp != NULL && so->so_zoneid == myzoneid) {
2206			nactive++;
2207		}
2208	}
2209	ksp->ks_ndata = nactive;
2210	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
2211
2212	return (0);
2213}
2214
2215static int
2216sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
2217{
2218	int			ns;	/* # of sonodes we've copied	*/
2219	struct sonode		*so;	/* current sonode on socklist	*/
2220	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
2221	t_uscalar_t		sn_len;	/* soa_len			*/
2222	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
2223
2224	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
2225
2226	ksp->ks_snaptime = gethrtime();
2227
2228	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
2229		return (EACCES);
2230	}
2231
2232	/*
2233	 * for each sonode on the socklist, we massage the important
2234	 * info into buf, in k_sockinfo format.
2235	 */
2236	pksi = (struct k_sockinfo *)buf;
2237	for (ns = 0, so = socklist.sl_list; so != NULL; so = so->so_next) {
2238		/* only stuff active sonodes and the same zone:		*/
2239		if (so->so_accessvp == NULL || so->so_zoneid != myzoneid) {
2240			continue;
2241		}
2242
2243		/*
2244		 * If the sonode was activated between the update and the
2245		 * snapshot, we're done - as this is only a snapshot.
2246		 */
2247		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
2248			break;
2249		}
2250
2251		/* copy important info into buf:			*/
2252		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
2253		pksi->ks_si.si_family = so->so_family;
2254		pksi->ks_si.si_type = so->so_type;
2255		pksi->ks_si.si_flag = so->so_flag;
2256		pksi->ks_si.si_state = so->so_state;
2257		pksi->ks_si.si_serv_type = so->so_serv_type;
2258		pksi->ks_si.si_ux_laddr_sou_magic = so->so_ux_laddr.soua_magic;
2259		pksi->ks_si.si_ux_faddr_sou_magic = so->so_ux_faddr.soua_magic;
2260		pksi->ks_si.si_laddr_soa_len = so->so_laddr.soa_len;
2261		pksi->ks_si.si_faddr_soa_len = so->so_faddr.soa_len;
2262		pksi->ks_si.si_szoneid = so->so_zoneid;
2263
2264		mutex_enter(&so->so_lock);
2265
2266		if (so->so_laddr_sa != NULL) {
2267			ASSERT(so->so_laddr_sa->sa_data != NULL);
2268			sn_len = so->so_laddr_len;
2269			ASSERT(sn_len <= sizeof (short) +
2270			    sizeof (pksi->ks_si.si_laddr_sun_path));
2271
2272			pksi->ks_si.si_laddr_family =
2273			    so->so_laddr_sa->sa_family;
2274			if (sn_len != 0) {
2275				/* AF_UNIX socket names are NULL terminated */
2276				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
2277				    so->so_laddr_sa->sa_data,
2278				    sizeof (pksi->ks_si.si_laddr_sun_path));
2279				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
2280			}
2281			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
2282		}
2283
2284		if (so->so_faddr_sa != NULL) {
2285			ASSERT(so->so_faddr_sa->sa_data != NULL);
2286			sn_len = so->so_faddr_len;
2287			ASSERT(sn_len <= sizeof (short) +
2288			    sizeof (pksi->ks_si.si_faddr_sun_path));
2289
2290			pksi->ks_si.si_faddr_family =
2291			    so->so_faddr_sa->sa_family;
2292			if (sn_len != 0) {
2293				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
2294				    so->so_faddr_sa->sa_data,
2295				    sizeof (pksi->ks_si.si_faddr_sun_path));
2296				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
2297			}
2298			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
2299		}
2300
2301		mutex_exit(&so->so_lock);
2302
2303		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
2304		(void) sprintf(pksi->ks_straddr[1], "%p",
2305		    (void *)so->so_ux_laddr.soua_vp);
2306		(void) sprintf(pksi->ks_straddr[2], "%p",
2307		    (void *)so->so_ux_faddr.soua_vp);
2308
2309		ns++;
2310		pksi++;
2311	}
2312
2313	ksp->ks_ndata = ns;
2314	return (0);
2315}
2316
2317ssize_t
2318soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
2319{
2320	struct uio auio;
2321	struct iovec aiov[MSG_MAXIOVLEN];
2322	register vnode_t *vp;
2323	int ioflag, rwflag;
2324	ssize_t cnt;
2325	int error = 0;
2326	int iovcnt = 0;
2327	short fflag;
2328
2329	vp = fp->f_vnode;
2330	fflag = fp->f_flag;
2331
2332	rwflag = 0;
2333	aiov[0].iov_base = (caddr_t)buf;
2334	aiov[0].iov_len = size;
2335	iovcnt = 1;
2336	cnt = (ssize_t)size;
2337	(void) VOP_RWLOCK(vp, rwflag, NULL);
2338
2339	auio.uio_loffset = fileoff;
2340	auio.uio_iov = aiov;
2341	auio.uio_iovcnt = iovcnt;
2342	auio.uio_resid = cnt;
2343	auio.uio_segflg = UIO_SYSSPACE;
2344	auio.uio_llimit = MAXOFFSET_T;
2345	auio.uio_fmode = fflag;
2346	auio.uio_extflg = UIO_COPY_CACHED;
2347
2348	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
2349
2350	/* If read sync is not asked for, filter sync flags */
2351	if ((ioflag & FRSYNC) == 0)
2352		ioflag &= ~(FSYNC|FDSYNC);
2353	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
2354	cnt -= auio.uio_resid;
2355
2356	VOP_RWUNLOCK(vp, rwflag, NULL);
2357
2358	if (error == EINTR && cnt != 0)
2359		error = 0;
2360out:
2361	if (error != 0) {
2362		*err = error;
2363		return (0);
2364	} else {
2365		*err = 0;
2366		return (cnt);
2367	}
2368}
2369