nfs_subr.c revision 11134:8aa0c4ca6639
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/param.h>
27#include <sys/types.h>
28#include <sys/systm.h>
29#include <sys/cred.h>
30#include <sys/proc.h>
31#include <sys/user.h>
32#include <sys/time.h>
33#include <sys/buf.h>
34#include <sys/vfs.h>
35#include <sys/vnode.h>
36#include <sys/socket.h>
37#include <sys/uio.h>
38#include <sys/tiuser.h>
39#include <sys/swap.h>
40#include <sys/errno.h>
41#include <sys/debug.h>
42#include <sys/kmem.h>
43#include <sys/kstat.h>
44#include <sys/cmn_err.h>
45#include <sys/vtrace.h>
46#include <sys/session.h>
47#include <sys/dnlc.h>
48#include <sys/bitmap.h>
49#include <sys/acl.h>
50#include <sys/ddi.h>
51#include <sys/pathname.h>
52#include <sys/flock.h>
53#include <sys/dirent.h>
54#include <sys/flock.h>
55#include <sys/callb.h>
56#include <sys/atomic.h>
57#include <sys/list.h>
58#include <sys/tsol/tnet.h>
59#include <sys/priv.h>
60#include <sys/sdt.h>
61#include <sys/attr.h>
62
63#include <inet/ip6.h>
64
65#include <rpc/types.h>
66#include <rpc/xdr.h>
67#include <rpc/auth.h>
68#include <rpc/clnt.h>
69
70#include <nfs/nfs.h>
71#include <nfs/nfs4.h>
72#include <nfs/nfs_clnt.h>
73#include <nfs/rnode.h>
74#include <nfs/nfs_acl.h>
75
76#include <sys/tsol/label.h>
77
78/*
79 * The hash queues for the access to active and cached rnodes
80 * are organized as doubly linked lists.  A reader/writer lock
81 * for each hash bucket is used to control access and to synchronize
82 * lookups, additions, and deletions from the hash queue.
83 *
84 * The rnode freelist is organized as a doubly linked list with
85 * a head pointer.  Additions and deletions are synchronized via
86 * a single mutex.
87 *
88 * In order to add an rnode to the free list, it must be hashed into
89 * a hash queue and the exclusive lock to the hash queue be held.
90 * If an rnode is not hashed into a hash queue, then it is destroyed
91 * because it represents no valuable information that can be reused
92 * about the file.  The exclusive lock to the hash queue must be
93 * held in order to prevent a lookup in the hash queue from finding
94 * the rnode and using it and assuming that the rnode is not on the
95 * freelist.  The lookup in the hash queue will have the hash queue
96 * locked, either exclusive or shared.
97 *
98 * The vnode reference count for each rnode is not allowed to drop
99 * below 1.  This prevents external entities, such as the VM
100 * subsystem, from acquiring references to vnodes already on the
101 * freelist and then trying to place them back on the freelist
102 * when their reference is released.  This means that the when an
103 * rnode is looked up in the hash queues, then either the rnode
104 * is removed from the freelist and that reference is transferred to
105 * the new reference or the vnode reference count must be incremented
106 * accordingly.  The mutex for the freelist must be held in order to
107 * accurately test to see if the rnode is on the freelist or not.
108 * The hash queue lock might be held shared and it is possible that
109 * two different threads may race to remove the rnode from the
110 * freelist.  This race can be resolved by holding the mutex for the
111 * freelist.  Please note that the mutex for the freelist does not
112 * need to held if the rnode is not on the freelist.  It can not be
113 * placed on the freelist due to the requirement that the thread
114 * putting the rnode on the freelist must hold the exclusive lock
115 * to the hash queue and the thread doing the lookup in the hash
116 * queue is holding either a shared or exclusive lock to the hash
117 * queue.
118 *
119 * The lock ordering is:
120 *
121 *	hash bucket lock -> vnode lock
122 *	hash bucket lock -> freelist lock
123 */
124static rhashq_t *rtable;
125
126static kmutex_t rpfreelist_lock;
127static rnode_t *rpfreelist = NULL;
128static long rnew = 0;
129long nrnode = 0;
130
131static int rtablesize;
132static int rtablemask;
133
134static int hashlen = 4;
135
136static struct kmem_cache *rnode_cache;
137
138/*
139 * Mutex to protect the following variables:
140 *	nfs_major
141 *	nfs_minor
142 */
143kmutex_t nfs_minor_lock;
144int nfs_major;
145int nfs_minor;
146
147/* Do we allow preepoch (negative) time values otw? */
148bool_t nfs_allow_preepoch_time = FALSE;	/* default: do not allow preepoch */
149
150/*
151 * Access cache
152 */
153static acache_hash_t *acache;
154static long nacache;	/* used strictly to size the number of hash queues */
155
156static int acachesize;
157static int acachemask;
158static struct kmem_cache *acache_cache;
159
160/*
161 * Client side utilities
162 */
163
164/*
165 * client side statistics
166 */
167static const struct clstat clstat_tmpl = {
168	{ "calls",	KSTAT_DATA_UINT64 },
169	{ "badcalls",	KSTAT_DATA_UINT64 },
170	{ "clgets",	KSTAT_DATA_UINT64 },
171	{ "cltoomany",	KSTAT_DATA_UINT64 },
172#ifdef DEBUG
173	{ "clalloc",	KSTAT_DATA_UINT64 },
174	{ "noresponse",	KSTAT_DATA_UINT64 },
175	{ "failover",	KSTAT_DATA_UINT64 },
176	{ "remap",	KSTAT_DATA_UINT64 },
177#endif
178};
179
180/*
181 * The following are statistics that describe behavior of the system as a whole
182 * and doesn't correspond to any one particular zone.
183 */
184#ifdef DEBUG
185static struct clstat_debug {
186	kstat_named_t	nrnode;			/* number of allocated rnodes */
187	kstat_named_t	access;			/* size of access cache */
188	kstat_named_t	dirent;			/* size of readdir cache */
189	kstat_named_t	dirents;		/* size of readdir buf cache */
190	kstat_named_t	reclaim;		/* number of reclaims */
191	kstat_named_t	clreclaim;		/* number of cl reclaims */
192	kstat_named_t	f_reclaim;		/* number of free reclaims */
193	kstat_named_t	a_reclaim;		/* number of active reclaims */
194	kstat_named_t	r_reclaim;		/* number of rnode reclaims */
195	kstat_named_t	rpath;			/* bytes used to store rpaths */
196} clstat_debug = {
197	{ "nrnode",	KSTAT_DATA_UINT64 },
198	{ "access",	KSTAT_DATA_UINT64 },
199	{ "dirent",	KSTAT_DATA_UINT64 },
200	{ "dirents",	KSTAT_DATA_UINT64 },
201	{ "reclaim",	KSTAT_DATA_UINT64 },
202	{ "clreclaim",	KSTAT_DATA_UINT64 },
203	{ "f_reclaim",	KSTAT_DATA_UINT64 },
204	{ "a_reclaim",	KSTAT_DATA_UINT64 },
205	{ "r_reclaim",	KSTAT_DATA_UINT64 },
206	{ "r_path",	KSTAT_DATA_UINT64 },
207};
208#endif	/* DEBUG */
209
210/*
211 * We keep a global list of per-zone client data, so we can clean up all zones
212 * if we get low on memory.
213 */
214static list_t nfs_clnt_list;
215static kmutex_t nfs_clnt_list_lock;
216static zone_key_t nfsclnt_zone_key;
217
218static struct kmem_cache *chtab_cache;
219
220/*
221 * Some servers do not properly update the attributes of the
222 * directory when changes are made.  To allow interoperability
223 * with these broken servers, the nfs_disable_rddir_cache
224 * parameter must be set in /etc/system
225 */
226int nfs_disable_rddir_cache = 0;
227
228int		clget(clinfo_t *, servinfo_t *, cred_t *, CLIENT **,
229		    struct chtab **);
230void		clfree(CLIENT *, struct chtab *);
231static int	acl_clget(mntinfo_t *, servinfo_t *, cred_t *, CLIENT **,
232		    struct chtab **, struct nfs_clnt *);
233static int	nfs_clget(mntinfo_t *, servinfo_t *, cred_t *, CLIENT **,
234		    struct chtab **, struct nfs_clnt *);
235static void	clreclaim(void *);
236static int	nfs_feedback(int, int, mntinfo_t *);
237static int	rfscall(mntinfo_t *, rpcproc_t, xdrproc_t, caddr_t, xdrproc_t,
238		    caddr_t, cred_t *, int *, enum clnt_stat *, int,
239		    failinfo_t *);
240static int	aclcall(mntinfo_t *, rpcproc_t, xdrproc_t, caddr_t, xdrproc_t,
241		    caddr_t, cred_t *, int *, int, failinfo_t *);
242static void	rinactive(rnode_t *, cred_t *);
243static int	rtablehash(nfs_fhandle *);
244static vnode_t	*make_rnode(nfs_fhandle *, rhashq_t *, struct vfs *,
245		    struct vnodeops *,
246		    int (*)(vnode_t *, page_t *, u_offset_t *, size_t *, int,
247			cred_t *),
248		    int (*)(const void *, const void *), int *, cred_t *,
249		    char *, char *);
250static void	rp_rmfree(rnode_t *);
251static void	rp_addhash(rnode_t *);
252static void	rp_rmhash_locked(rnode_t *);
253static rnode_t	*rfind(rhashq_t *, nfs_fhandle *, struct vfs *);
254static void	destroy_rnode(rnode_t *);
255static void	rddir_cache_free(rddir_cache *);
256static int	nfs_free_data_reclaim(rnode_t *);
257static int	nfs_active_data_reclaim(rnode_t *);
258static int	nfs_free_reclaim(void);
259static int	nfs_active_reclaim(void);
260static int	nfs_rnode_reclaim(void);
261static void	nfs_reclaim(void *);
262static int	failover_safe(failinfo_t *);
263static void	failover_newserver(mntinfo_t *mi);
264static void	failover_thread(mntinfo_t *mi);
265static int	failover_wait(mntinfo_t *);
266static int	failover_remap(failinfo_t *);
267static int	failover_lookup(char *, vnode_t *,
268		    int (*)(vnode_t *, char *, vnode_t **,
269			struct pathname *, int, vnode_t *, cred_t *, int),
270		    int (*)(vnode_t *, vnode_t **, bool_t, cred_t *, int),
271		    vnode_t **);
272static void	nfs_free_r_path(rnode_t *);
273static void	nfs_set_vroot(vnode_t *);
274static char	*nfs_getsrvnames(mntinfo_t *, size_t *);
275
276/*
277 * from rpcsec module (common/rpcsec)
278 */
279extern int sec_clnt_geth(CLIENT *, struct sec_data *, cred_t *, AUTH **);
280extern void sec_clnt_freeh(AUTH *);
281extern void sec_clnt_freeinfo(struct sec_data *);
282
283/*
284 * used in mount policy
285 */
286extern ts_label_t *getflabel_cipso(vfs_t *);
287
288/*
289 * EIO or EINTR are not recoverable errors.
290 */
291#define	IS_RECOVERABLE_ERROR(error)	!((error == EINTR) || (error == EIO))
292
293#ifdef DEBUG
294#define	SRV_QFULL_MSG	"send queue to NFS%d server %s is full; still trying\n"
295#define	SRV_NOTRESP_MSG	"NFS%d server %s not responding still trying\n"
296#else
297#define	SRV_QFULL_MSG	"send queue to NFS server %s is full still trying\n"
298#define	SRV_NOTRESP_MSG	"NFS server %s not responding still trying\n"
299#endif
300/*
301 * Common handle get program for NFS, NFS ACL, and NFS AUTH client.
302 */
303static int
304clget_impl(clinfo_t *ci, servinfo_t *svp, cred_t *cr, CLIENT **newcl,
305    struct chtab **chp, struct nfs_clnt *nfscl)
306{
307	struct chhead *ch, *newch;
308	struct chhead **plistp;
309	struct chtab *cp;
310	int error;
311	k_sigset_t smask;
312
313	if (newcl == NULL || chp == NULL || ci == NULL)
314		return (EINVAL);
315
316	*newcl = NULL;
317	*chp = NULL;
318
319	/*
320	 * Find an unused handle or create one
321	 */
322	newch = NULL;
323	nfscl->nfscl_stat.clgets.value.ui64++;
324top:
325	/*
326	 * Find the correct entry in the cache to check for free
327	 * client handles.  The search is based on the RPC program
328	 * number, program version number, dev_t for the transport
329	 * device, and the protocol family.
330	 */
331	mutex_enter(&nfscl->nfscl_chtable_lock);
332	plistp = &nfscl->nfscl_chtable;
333	for (ch = nfscl->nfscl_chtable; ch != NULL; ch = ch->ch_next) {
334		if (ch->ch_prog == ci->cl_prog &&
335		    ch->ch_vers == ci->cl_vers &&
336		    ch->ch_dev == svp->sv_knconf->knc_rdev &&
337		    (strcmp(ch->ch_protofmly,
338		    svp->sv_knconf->knc_protofmly) == 0))
339			break;
340		plistp = &ch->ch_next;
341	}
342
343	/*
344	 * If we didn't find a cache entry for this quadruple, then
345	 * create one.  If we don't have one already preallocated,
346	 * then drop the cache lock, create one, and then start over.
347	 * If we did have a preallocated entry, then just add it to
348	 * the front of the list.
349	 */
350	if (ch == NULL) {
351		if (newch == NULL) {
352			mutex_exit(&nfscl->nfscl_chtable_lock);
353			newch = kmem_alloc(sizeof (*newch), KM_SLEEP);
354			newch->ch_timesused = 0;
355			newch->ch_prog = ci->cl_prog;
356			newch->ch_vers = ci->cl_vers;
357			newch->ch_dev = svp->sv_knconf->knc_rdev;
358			newch->ch_protofmly = kmem_alloc(
359			    strlen(svp->sv_knconf->knc_protofmly) + 1,
360			    KM_SLEEP);
361			(void) strcpy(newch->ch_protofmly,
362			    svp->sv_knconf->knc_protofmly);
363			newch->ch_list = NULL;
364			goto top;
365		}
366		ch = newch;
367		newch = NULL;
368		ch->ch_next = nfscl->nfscl_chtable;
369		nfscl->nfscl_chtable = ch;
370	/*
371	 * We found a cache entry, but if it isn't on the front of the
372	 * list, then move it to the front of the list to try to take
373	 * advantage of locality of operations.
374	 */
375	} else if (ch != nfscl->nfscl_chtable) {
376		*plistp = ch->ch_next;
377		ch->ch_next = nfscl->nfscl_chtable;
378		nfscl->nfscl_chtable = ch;
379	}
380
381	/*
382	 * If there was a free client handle cached, then remove it
383	 * from the list, init it, and use it.
384	 */
385	if (ch->ch_list != NULL) {
386		cp = ch->ch_list;
387		ch->ch_list = cp->ch_list;
388		mutex_exit(&nfscl->nfscl_chtable_lock);
389		if (newch != NULL) {
390			kmem_free(newch->ch_protofmly,
391			    strlen(newch->ch_protofmly) + 1);
392			kmem_free(newch, sizeof (*newch));
393		}
394		(void) clnt_tli_kinit(cp->ch_client, svp->sv_knconf,
395		    &svp->sv_addr, ci->cl_readsize, ci->cl_retrans, cr);
396		error = sec_clnt_geth(cp->ch_client, svp->sv_secdata, cr,
397		    &cp->ch_client->cl_auth);
398		if (error || cp->ch_client->cl_auth == NULL) {
399			CLNT_DESTROY(cp->ch_client);
400			kmem_cache_free(chtab_cache, cp);
401			return ((error != 0) ? error : EINTR);
402		}
403		ch->ch_timesused++;
404		*newcl = cp->ch_client;
405		*chp = cp;
406		return (0);
407	}
408
409	/*
410	 * There weren't any free client handles which fit, so allocate
411	 * a new one and use that.
412	 */
413#ifdef DEBUG
414	atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, 1);
415#endif
416	mutex_exit(&nfscl->nfscl_chtable_lock);
417
418	nfscl->nfscl_stat.cltoomany.value.ui64++;
419	if (newch != NULL) {
420		kmem_free(newch->ch_protofmly, strlen(newch->ch_protofmly) + 1);
421		kmem_free(newch, sizeof (*newch));
422	}
423
424	cp = kmem_cache_alloc(chtab_cache, KM_SLEEP);
425	cp->ch_head = ch;
426
427	sigintr(&smask, (int)ci->cl_flags & MI_INT);
428	error = clnt_tli_kcreate(svp->sv_knconf, &svp->sv_addr, ci->cl_prog,
429	    ci->cl_vers, ci->cl_readsize, ci->cl_retrans, cr, &cp->ch_client);
430	sigunintr(&smask);
431
432	if (error != 0) {
433		kmem_cache_free(chtab_cache, cp);
434#ifdef DEBUG
435		atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, -1);
436#endif
437		/*
438		 * Warning is unnecessary if error is EINTR.
439		 */
440		if (error != EINTR) {
441			nfs_cmn_err(error, CE_WARN,
442			    "clget: couldn't create handle: %m\n");
443		}
444		return (error);
445	}
446	(void) CLNT_CONTROL(cp->ch_client, CLSET_PROGRESS, NULL);
447	auth_destroy(cp->ch_client->cl_auth);
448	error = sec_clnt_geth(cp->ch_client, svp->sv_secdata, cr,
449	    &cp->ch_client->cl_auth);
450	if (error || cp->ch_client->cl_auth == NULL) {
451		CLNT_DESTROY(cp->ch_client);
452		kmem_cache_free(chtab_cache, cp);
453#ifdef DEBUG
454		atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, -1);
455#endif
456		return ((error != 0) ? error : EINTR);
457	}
458	ch->ch_timesused++;
459	*newcl = cp->ch_client;
460	ASSERT(cp->ch_client->cl_nosignal == FALSE);
461	*chp = cp;
462	return (0);
463}
464
465int
466clget(clinfo_t *ci, servinfo_t *svp, cred_t *cr, CLIENT **newcl,
467    struct chtab **chp)
468{
469	struct nfs_clnt *nfscl;
470
471	nfscl = zone_getspecific(nfsclnt_zone_key, nfs_zone());
472	ASSERT(nfscl != NULL);
473
474	return (clget_impl(ci, svp, cr, newcl, chp, nfscl));
475}
476
477static int
478acl_clget(mntinfo_t *mi, servinfo_t *svp, cred_t *cr, CLIENT **newcl,
479    struct chtab **chp, struct nfs_clnt *nfscl)
480{
481	clinfo_t ci;
482	int error;
483
484	/*
485	 * Set read buffer size to rsize
486	 * and add room for RPC headers.
487	 */
488	ci.cl_readsize = mi->mi_tsize;
489	if (ci.cl_readsize != 0)
490		ci.cl_readsize += (RPC_MAXDATASIZE - NFS_MAXDATA);
491
492	/*
493	 * If soft mount and server is down just try once.
494	 * meaning: do not retransmit.
495	 */
496	if (!(mi->mi_flags & MI_HARD) && (mi->mi_flags & MI_DOWN))
497		ci.cl_retrans = 0;
498	else
499		ci.cl_retrans = mi->mi_retrans;
500
501	ci.cl_prog = NFS_ACL_PROGRAM;
502	ci.cl_vers = mi->mi_vers;
503	ci.cl_flags = mi->mi_flags;
504
505	/*
506	 * clget calls sec_clnt_geth() to get an auth handle. For RPCSEC_GSS
507	 * security flavor, the client tries to establish a security context
508	 * by contacting the server. If the connection is timed out or reset,
509	 * e.g. server reboot, we will try again.
510	 */
511	do {
512		error = clget_impl(&ci, svp, cr, newcl, chp, nfscl);
513
514		if (error == 0)
515			break;
516
517		/*
518		 * For forced unmount or zone shutdown, bail out, no retry.
519		 */
520		if (FS_OR_ZONE_GONE(mi->mi_vfsp)) {
521			error = EIO;
522			break;
523		}
524
525		/* do not retry for softmount */
526		if (!(mi->mi_flags & MI_HARD))
527			break;
528
529		/* let the caller deal with the failover case */
530		if (FAILOVER_MOUNT(mi))
531			break;
532
533	} while (error == ETIMEDOUT || error == ECONNRESET);
534
535	return (error);
536}
537
538static int
539nfs_clget(mntinfo_t *mi, servinfo_t *svp, cred_t *cr, CLIENT **newcl,
540    struct chtab **chp, struct nfs_clnt *nfscl)
541{
542	clinfo_t ci;
543	int error;
544
545	/*
546	 * Set read buffer size to rsize
547	 * and add room for RPC headers.
548	 */
549	ci.cl_readsize = mi->mi_tsize;
550	if (ci.cl_readsize != 0)
551		ci.cl_readsize += (RPC_MAXDATASIZE - NFS_MAXDATA);
552
553	/*
554	 * If soft mount and server is down just try once.
555	 * meaning: do not retransmit.
556	 */
557	if (!(mi->mi_flags & MI_HARD) && (mi->mi_flags & MI_DOWN))
558		ci.cl_retrans = 0;
559	else
560		ci.cl_retrans = mi->mi_retrans;
561
562	ci.cl_prog = mi->mi_prog;
563	ci.cl_vers = mi->mi_vers;
564	ci.cl_flags = mi->mi_flags;
565
566	/*
567	 * clget calls sec_clnt_geth() to get an auth handle. For RPCSEC_GSS
568	 * security flavor, the client tries to establish a security context
569	 * by contacting the server. If the connection is timed out or reset,
570	 * e.g. server reboot, we will try again.
571	 */
572	do {
573		error = clget_impl(&ci, svp, cr, newcl, chp, nfscl);
574
575		if (error == 0)
576			break;
577
578		/*
579		 * For forced unmount or zone shutdown, bail out, no retry.
580		 */
581		if (FS_OR_ZONE_GONE(mi->mi_vfsp)) {
582			error = EIO;
583			break;
584		}
585
586		/* do not retry for softmount */
587		if (!(mi->mi_flags & MI_HARD))
588			break;
589
590		/* let the caller deal with the failover case */
591		if (FAILOVER_MOUNT(mi))
592			break;
593
594	} while (error == ETIMEDOUT || error == ECONNRESET);
595
596	return (error);
597}
598
599static void
600clfree_impl(CLIENT *cl, struct chtab *cp, struct nfs_clnt *nfscl)
601{
602	if (cl->cl_auth != NULL) {
603		sec_clnt_freeh(cl->cl_auth);
604		cl->cl_auth = NULL;
605	}
606
607	/*
608	 * Timestamp this cache entry so that we know when it was last
609	 * used.
610	 */
611	cp->ch_freed = gethrestime_sec();
612
613	/*
614	 * Add the free client handle to the front of the list.
615	 * This way, the list will be sorted in youngest to oldest
616	 * order.
617	 */
618	mutex_enter(&nfscl->nfscl_chtable_lock);
619	cp->ch_list = cp->ch_head->ch_list;
620	cp->ch_head->ch_list = cp;
621	mutex_exit(&nfscl->nfscl_chtable_lock);
622}
623
624void
625clfree(CLIENT *cl, struct chtab *cp)
626{
627	struct nfs_clnt *nfscl;
628
629	nfscl = zone_getspecific(nfsclnt_zone_key, nfs_zone());
630	ASSERT(nfscl != NULL);
631
632	clfree_impl(cl, cp, nfscl);
633}
634
635#define	CL_HOLDTIME	60	/* time to hold client handles */
636
637static void
638clreclaim_zone(struct nfs_clnt *nfscl, uint_t cl_holdtime)
639{
640	struct chhead *ch;
641	struct chtab *cp;	/* list of objects that can be reclaimed */
642	struct chtab *cpe;
643	struct chtab *cpl;
644	struct chtab **cpp;
645#ifdef DEBUG
646	int n = 0;
647#endif
648
649	/*
650	 * Need to reclaim some memory, so step through the cache
651	 * looking through the lists for entries which can be freed.
652	 */
653	cp = NULL;
654
655	mutex_enter(&nfscl->nfscl_chtable_lock);
656
657	/*
658	 * Here we step through each non-NULL quadruple and start to
659	 * construct the reclaim list pointed to by cp.  Note that
660	 * cp will contain all eligible chtab entries.  When this traversal
661	 * completes, chtab entries from the last quadruple will be at the
662	 * front of cp and entries from previously inspected quadruples have
663	 * been appended to the rear of cp.
664	 */
665	for (ch = nfscl->nfscl_chtable; ch != NULL; ch = ch->ch_next) {
666		if (ch->ch_list == NULL)
667			continue;
668		/*
669		 * Search each list for entries older then
670		 * cl_holdtime seconds.  The lists are maintained
671		 * in youngest to oldest order so that when the
672		 * first entry is found which is old enough, then
673		 * all of the rest of the entries on the list will
674		 * be old enough as well.
675		 */
676		cpl = ch->ch_list;
677		cpp = &ch->ch_list;
678		while (cpl != NULL &&
679		    cpl->ch_freed + cl_holdtime > gethrestime_sec()) {
680			cpp = &cpl->ch_list;
681			cpl = cpl->ch_list;
682		}
683		if (cpl != NULL) {
684			*cpp = NULL;
685			if (cp != NULL) {
686				cpe = cpl;
687				while (cpe->ch_list != NULL)
688					cpe = cpe->ch_list;
689				cpe->ch_list = cp;
690			}
691			cp = cpl;
692		}
693	}
694
695	mutex_exit(&nfscl->nfscl_chtable_lock);
696
697	/*
698	 * If cp is empty, then there is nothing to reclaim here.
699	 */
700	if (cp == NULL)
701		return;
702
703	/*
704	 * Step through the list of entries to free, destroying each client
705	 * handle and kmem_free'ing the memory for each entry.
706	 */
707	while (cp != NULL) {
708#ifdef DEBUG
709		n++;
710#endif
711		CLNT_DESTROY(cp->ch_client);
712		cpl = cp->ch_list;
713		kmem_cache_free(chtab_cache, cp);
714		cp = cpl;
715	}
716
717#ifdef DEBUG
718	/*
719	 * Update clalloc so that nfsstat shows the current number
720	 * of allocated client handles.
721	 */
722	atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, -n);
723#endif
724}
725
726/* ARGSUSED */
727static void
728clreclaim(void *all)
729{
730	struct nfs_clnt *nfscl;
731
732#ifdef DEBUG
733	clstat_debug.clreclaim.value.ui64++;
734#endif
735	/*
736	 * The system is low on memory; go through and try to reclaim some from
737	 * every zone on the system.
738	 */
739	mutex_enter(&nfs_clnt_list_lock);
740	nfscl = list_head(&nfs_clnt_list);
741	for (; nfscl != NULL; nfscl = list_next(&nfs_clnt_list, nfscl))
742		clreclaim_zone(nfscl, CL_HOLDTIME);
743	mutex_exit(&nfs_clnt_list_lock);
744}
745
746/*
747 * Minimum time-out values indexed by call type
748 * These units are in "eights" of a second to avoid multiplies
749 */
750static unsigned int minimum_timeo[] = {
751	6, 7, 10
752};
753
754/*
755 * Back off for retransmission timeout, MAXTIMO is in hz of a sec
756 */
757#define	MAXTIMO	(20*hz)
758#define	backoff(tim)	(((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
759#define	dobackoff(tim)	((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
760
761#define	MIN_NFS_TSIZE 512	/* minimum "chunk" of NFS IO */
762#define	REDUCE_NFS_TIME (hz/2)	/* rtxcur we try to keep under */
763#define	INCREASE_NFS_TIME (hz/3*8) /* srtt we try to keep under (scaled*8) */
764
765/*
766 * Function called when rfscall notices that we have been
767 * re-transmitting, or when we get a response without retransmissions.
768 * Return 1 if the transfer size was adjusted down - 0 if no change.
769 */
770static int
771nfs_feedback(int flag, int which, mntinfo_t *mi)
772{
773	int kind;
774	int r = 0;
775
776	mutex_enter(&mi->mi_lock);
777	if (flag == FEEDBACK_REXMIT1) {
778		if (mi->mi_timers[NFS_CALLTYPES].rt_rtxcur != 0 &&
779		    mi->mi_timers[NFS_CALLTYPES].rt_rtxcur < REDUCE_NFS_TIME)
780			goto done;
781		if (mi->mi_curread > MIN_NFS_TSIZE) {
782			mi->mi_curread /= 2;
783			if (mi->mi_curread < MIN_NFS_TSIZE)
784				mi->mi_curread = MIN_NFS_TSIZE;
785			r = 1;
786		}
787
788		if (mi->mi_curwrite > MIN_NFS_TSIZE) {
789			mi->mi_curwrite /= 2;
790			if (mi->mi_curwrite < MIN_NFS_TSIZE)
791				mi->mi_curwrite = MIN_NFS_TSIZE;
792			r = 1;
793		}
794	} else if (flag == FEEDBACK_OK) {
795		kind = mi->mi_timer_type[which];
796		if (kind == 0 ||
797		    mi->mi_timers[kind].rt_srtt >= INCREASE_NFS_TIME)
798			goto done;
799		if (kind == 1) {
800			if (mi->mi_curread >= mi->mi_tsize)
801				goto done;
802			mi->mi_curread +=  MIN_NFS_TSIZE;
803			if (mi->mi_curread > mi->mi_tsize/2)
804				mi->mi_curread = mi->mi_tsize;
805		} else if (kind == 2) {
806			if (mi->mi_curwrite >= mi->mi_stsize)
807				goto done;
808			mi->mi_curwrite += MIN_NFS_TSIZE;
809			if (mi->mi_curwrite > mi->mi_stsize/2)
810				mi->mi_curwrite = mi->mi_stsize;
811		}
812	}
813done:
814	mutex_exit(&mi->mi_lock);
815	return (r);
816}
817
818#ifdef DEBUG
819static int rfs2call_hits = 0;
820static int rfs2call_misses = 0;
821#endif
822
823int
824rfs2call(mntinfo_t *mi, rpcproc_t which, xdrproc_t xdrargs, caddr_t argsp,
825    xdrproc_t xdrres, caddr_t resp, cred_t *cr, int *douprintf,
826    enum nfsstat *statusp, int flags, failinfo_t *fi)
827{
828	int rpcerror;
829	enum clnt_stat rpc_status;
830
831	ASSERT(statusp != NULL);
832
833	rpcerror = rfscall(mi, which, xdrargs, argsp, xdrres, resp,
834	    cr, douprintf, &rpc_status, flags, fi);
835	if (!rpcerror) {
836		/*
837		 * See crnetadjust() for comments.
838		 */
839		if (*statusp == NFSERR_ACCES &&
840		    (cr = crnetadjust(cr)) != NULL) {
841#ifdef DEBUG
842			rfs2call_hits++;
843#endif
844			rpcerror = rfscall(mi, which, xdrargs, argsp, xdrres,
845			    resp, cr, douprintf, NULL, flags, fi);
846			crfree(cr);
847#ifdef DEBUG
848			if (*statusp == NFSERR_ACCES)
849				rfs2call_misses++;
850#endif
851		}
852	} else if (rpc_status == RPC_PROCUNAVAIL) {
853		*statusp = NFSERR_OPNOTSUPP;
854		rpcerror = 0;
855	}
856
857	return (rpcerror);
858}
859
860#define	NFS3_JUKEBOX_DELAY	10 * hz
861
862static clock_t nfs3_jukebox_delay = 0;
863
864#ifdef DEBUG
865static int rfs3call_hits = 0;
866static int rfs3call_misses = 0;
867#endif
868
869int
870rfs3call(mntinfo_t *mi, rpcproc_t which, xdrproc_t xdrargs, caddr_t argsp,
871    xdrproc_t xdrres, caddr_t resp, cred_t *cr, int *douprintf,
872    nfsstat3 *statusp, int flags, failinfo_t *fi)
873{
874	int rpcerror;
875	int user_informed;
876
877	user_informed = 0;
878	do {
879		rpcerror = rfscall(mi, which, xdrargs, argsp, xdrres, resp,
880		    cr, douprintf, NULL, flags, fi);
881		if (!rpcerror) {
882			cred_t *crr;
883			if (*statusp == NFS3ERR_JUKEBOX) {
884				if (ttoproc(curthread) == &p0) {
885					rpcerror = EAGAIN;
886					break;
887				}
888				if (!user_informed) {
889					user_informed = 1;
890					uprintf(
891		"file temporarily unavailable on the server, retrying...\n");
892				}
893				delay(nfs3_jukebox_delay);
894			}
895			/*
896			 * See crnetadjust() for comments.
897			 */
898			else if (*statusp == NFS3ERR_ACCES &&
899			    (crr = crnetadjust(cr)) != NULL) {
900#ifdef DEBUG
901				rfs3call_hits++;
902#endif
903				rpcerror = rfscall(mi, which, xdrargs, argsp,
904				    xdrres, resp, crr, douprintf,
905				    NULL, flags, fi);
906
907				crfree(crr);
908#ifdef DEBUG
909				if (*statusp == NFS3ERR_ACCES)
910					rfs3call_misses++;
911#endif
912			}
913		}
914	} while (!rpcerror && *statusp == NFS3ERR_JUKEBOX);
915
916	return (rpcerror);
917}
918
919#define	VALID_FH(fi)	(VTOR(fi->vp)->r_server == VTOMI(fi->vp)->mi_curr_serv)
920#define	INC_READERS(mi)		{ \
921	mi->mi_readers++; \
922}
923#define	DEC_READERS(mi)		{ \
924	mi->mi_readers--; \
925	if (mi->mi_readers == 0) \
926		cv_broadcast(&mi->mi_failover_cv); \
927}
928
929static int
930rfscall(mntinfo_t *mi, rpcproc_t which, xdrproc_t xdrargs, caddr_t argsp,
931    xdrproc_t xdrres, caddr_t resp, cred_t *icr, int *douprintf,
932    enum clnt_stat *rpc_status, int flags, failinfo_t *fi)
933{
934	CLIENT *client;
935	struct chtab *ch;
936	cred_t *cr = icr;
937	enum clnt_stat status;
938	struct rpc_err rpcerr, rpcerr_tmp;
939	struct timeval wait;
940	int timeo;		/* in units of hz */
941	int my_rsize, my_wsize;
942	bool_t tryagain;
943	bool_t cred_cloned = FALSE;
944	k_sigset_t smask;
945	servinfo_t *svp;
946	struct nfs_clnt *nfscl;
947	zoneid_t zoneid = getzoneid();
948	char *msg;
949#ifdef DEBUG
950	char *bufp;
951#endif
952
953
954	TRACE_2(TR_FAC_NFS, TR_RFSCALL_START,
955	    "rfscall_start:which %d mi %p", which, mi);
956
957	nfscl = zone_getspecific(nfsclnt_zone_key, nfs_zone());
958	ASSERT(nfscl != NULL);
959
960	nfscl->nfscl_stat.calls.value.ui64++;
961	mi->mi_reqs[which].value.ui64++;
962
963	rpcerr.re_status = RPC_SUCCESS;
964
965	/*
966	 * In case of forced unmount or zone shutdown, return EIO.
967	 */
968
969	if (FS_OR_ZONE_GONE(mi->mi_vfsp)) {
970		rpcerr.re_status = RPC_FAILED;
971		rpcerr.re_errno = EIO;
972		return (rpcerr.re_errno);
973	}
974
975	/*
976	 * Remember the transfer sizes in case
977	 * nfs_feedback changes them underneath us.
978	 */
979	my_rsize = mi->mi_curread;
980	my_wsize = mi->mi_curwrite;
981
982	/*
983	 * NFS client failover support
984	 *
985	 * If this rnode is not in sync with the current server (VALID_FH),
986	 * we'd like to do a remap to get in sync.  We can be interrupted
987	 * in failover_remap(), and if so we'll bail.  Otherwise, we'll
988	 * use the best info we have to try the RPC.  Part of that is
989	 * unconditionally updating the filehandle copy kept for V3.
990	 *
991	 * Locking: INC_READERS/DEC_READERS is a poor man's interrruptible
992	 * rw_enter(); we're trying to keep the current server from being
993	 * changed on us until we're done with the remapping and have a
994	 * matching client handle.  We don't want to sending a filehandle
995	 * to the wrong host.
996	 */
997failoverretry:
998	if (FAILOVER_MOUNT(mi)) {
999		mutex_enter(&mi->mi_lock);
1000		if (!(flags & RFSCALL_SOFT) && failover_safe(fi)) {
1001			if (failover_wait(mi)) {
1002				mutex_exit(&mi->mi_lock);
1003				return (EINTR);
1004			}
1005		}
1006		INC_READERS(mi);
1007		mutex_exit(&mi->mi_lock);
1008		if (fi) {
1009			if (!VALID_FH(fi) &&
1010			    !(flags & RFSCALL_SOFT) && failover_safe(fi)) {
1011				int remaperr;
1012
1013				svp = mi->mi_curr_serv;
1014				remaperr = failover_remap(fi);
1015				if (remaperr != 0) {
1016#ifdef DEBUG
1017					if (remaperr != EINTR)
1018						nfs_cmn_err(remaperr, CE_WARN,
1019					    "rfscall couldn't failover: %m");
1020#endif
1021					mutex_enter(&mi->mi_lock);
1022					DEC_READERS(mi);
1023					mutex_exit(&mi->mi_lock);
1024					/*
1025					 * If failover_remap returns ETIMEDOUT
1026					 * and the filesystem is hard mounted
1027					 * we have to retry the call with a new
1028					 * server.
1029					 */
1030					if ((mi->mi_flags & MI_HARD) &&
1031					    IS_RECOVERABLE_ERROR(remaperr)) {
1032						if (svp == mi->mi_curr_serv)
1033							failover_newserver(mi);
1034						rpcerr.re_status = RPC_SUCCESS;
1035						goto failoverretry;
1036					}
1037					rpcerr.re_errno = remaperr;
1038					return (remaperr);
1039				}
1040			}
1041			if (fi->fhp && fi->copyproc)
1042				(*fi->copyproc)(fi->fhp, fi->vp);
1043		}
1044	}
1045
1046	/* For TSOL, use a new cred which has net_mac_aware flag */
1047	if (!cred_cloned && is_system_labeled()) {
1048		cred_cloned = TRUE;
1049		cr = crdup(icr);
1050		(void) setpflags(NET_MAC_AWARE, 1, cr);
1051	}
1052
1053	/*
1054	 * clget() calls clnt_tli_kinit() which clears the xid, so we
1055	 * are guaranteed to reprocess the retry as a new request.
1056	 */
1057	svp = mi->mi_curr_serv;
1058	rpcerr.re_errno = nfs_clget(mi, svp, cr, &client, &ch, nfscl);
1059
1060	if (FAILOVER_MOUNT(mi)) {
1061		mutex_enter(&mi->mi_lock);
1062		DEC_READERS(mi);
1063		mutex_exit(&mi->mi_lock);
1064
1065		if ((rpcerr.re_errno == ETIMEDOUT ||
1066		    rpcerr.re_errno == ECONNRESET) &&
1067		    failover_safe(fi)) {
1068			if (svp == mi->mi_curr_serv)
1069				failover_newserver(mi);
1070			goto failoverretry;
1071		}
1072	}
1073	if (rpcerr.re_errno != 0)
1074		return (rpcerr.re_errno);
1075
1076	if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD ||
1077	    svp->sv_knconf->knc_semantics == NC_TPI_COTS) {
1078		timeo = (mi->mi_timeo * hz) / 10;
1079	} else {
1080		mutex_enter(&mi->mi_lock);
1081		timeo = CLNT_SETTIMERS(client,
1082		    &(mi->mi_timers[mi->mi_timer_type[which]]),
1083		    &(mi->mi_timers[NFS_CALLTYPES]),
1084		    (minimum_timeo[mi->mi_call_type[which]]*hz)>>3,
1085		    (void (*)())NULL, (caddr_t)mi, 0);
1086		mutex_exit(&mi->mi_lock);
1087	}
1088
1089	/*
1090	 * If hard mounted fs, retry call forever unless hard error occurs.
1091	 */
1092	do {
1093		tryagain = FALSE;
1094
1095		if (FS_OR_ZONE_GONE(mi->mi_vfsp)) {
1096			status = RPC_FAILED;
1097			rpcerr.re_status = RPC_FAILED;
1098			rpcerr.re_errno = EIO;
1099			break;
1100		}
1101
1102		TICK_TO_TIMEVAL(timeo, &wait);
1103
1104		/*
1105		 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
1106		 * and SIGTERM. (Preserving the existing masks).
1107		 * Mask out SIGINT if mount option nointr is specified.
1108		 */
1109		sigintr(&smask, (int)mi->mi_flags & MI_INT);
1110		if (!(mi->mi_flags & MI_INT))
1111			client->cl_nosignal = TRUE;
1112
1113		/*
1114		 * If there is a current signal, then don't bother
1115		 * even trying to send out the request because we
1116		 * won't be able to block waiting for the response.
1117		 * Simply assume RPC_INTR and get on with it.
1118		 */
1119		if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING))
1120			status = RPC_INTR;
1121		else {
1122			status = CLNT_CALL(client, which, xdrargs, argsp,
1123			    xdrres, resp, wait);
1124		}
1125
1126		if (!(mi->mi_flags & MI_INT))
1127			client->cl_nosignal = FALSE;
1128		/*
1129		 * restore original signal mask
1130		 */
1131		sigunintr(&smask);
1132
1133		switch (status) {
1134		case RPC_SUCCESS:
1135			if ((mi->mi_flags & MI_DYNAMIC) &&
1136			    mi->mi_timer_type[which] != 0 &&
1137			    (mi->mi_curread != my_rsize ||
1138			    mi->mi_curwrite != my_wsize))
1139				(void) nfs_feedback(FEEDBACK_OK, which, mi);
1140			break;
1141
1142		case RPC_INTR:
1143			/*
1144			 * There is no way to recover from this error,
1145			 * even if mount option nointr is specified.
1146			 * SIGKILL, for example, cannot be blocked.
1147			 */
1148			rpcerr.re_status = RPC_INTR;
1149			rpcerr.re_errno = EINTR;
1150			break;
1151
1152		case RPC_UDERROR:
1153			/*
1154			 * If the NFS server is local (vold) and
1155			 * it goes away then we get RPC_UDERROR.
1156			 * This is a retryable error, so we would
1157			 * loop, so check to see if the specific
1158			 * error was ECONNRESET, indicating that
1159			 * target did not exist at all.  If so,
1160			 * return with RPC_PROGUNAVAIL and
1161			 * ECONNRESET to indicate why.
1162			 */
1163			CLNT_GETERR(client, &rpcerr);
1164			if (rpcerr.re_errno == ECONNRESET) {
1165				rpcerr.re_status = RPC_PROGUNAVAIL;
1166				rpcerr.re_errno = ECONNRESET;
1167				break;
1168			}
1169			/*FALLTHROUGH*/
1170
1171		default:		/* probably RPC_TIMEDOUT */
1172			if (IS_UNRECOVERABLE_RPC(status))
1173				break;
1174
1175			/*
1176			 * increment server not responding count
1177			 */
1178			mutex_enter(&mi->mi_lock);
1179			mi->mi_noresponse++;
1180			mutex_exit(&mi->mi_lock);
1181#ifdef DEBUG
1182			nfscl->nfscl_stat.noresponse.value.ui64++;
1183#endif
1184
1185			if (!(mi->mi_flags & MI_HARD)) {
1186				if (!(mi->mi_flags & MI_SEMISOFT) ||
1187				    (mi->mi_ss_call_type[which] == 0))
1188					break;
1189			}
1190
1191			/*
1192			 * The call is in progress (over COTS).
1193			 * Try the CLNT_CALL again, but don't
1194			 * print a noisy error message.
1195			 */
1196			if (status == RPC_INPROGRESS) {
1197				tryagain = TRUE;
1198				break;
1199			}
1200
1201			if (flags & RFSCALL_SOFT)
1202				break;
1203
1204			/*
1205			 * On zone shutdown, just move on.
1206			 */
1207			if (zone_status_get(curproc->p_zone) >=
1208			    ZONE_IS_SHUTTING_DOWN) {
1209				rpcerr.re_status = RPC_FAILED;
1210				rpcerr.re_errno = EIO;
1211				break;
1212			}
1213
1214			/*
1215			 * NFS client failover support
1216			 *
1217			 * If the current server just failed us, we'll
1218			 * start the process of finding a new server.
1219			 * After that, we can just retry.
1220			 */
1221			if (FAILOVER_MOUNT(mi) && failover_safe(fi)) {
1222				if (svp == mi->mi_curr_serv)
1223					failover_newserver(mi);
1224				clfree_impl(client, ch, nfscl);
1225				goto failoverretry;
1226			}
1227
1228			tryagain = TRUE;
1229			timeo = backoff(timeo);
1230
1231			CLNT_GETERR(client, &rpcerr_tmp);
1232			if ((status == RPC_CANTSEND) &&
1233			    (rpcerr_tmp.re_errno == ENOBUFS))
1234				msg = SRV_QFULL_MSG;
1235			else
1236				msg = SRV_NOTRESP_MSG;
1237
1238			mutex_enter(&mi->mi_lock);
1239			if (!(mi->mi_flags & MI_PRINTED)) {
1240				mi->mi_flags |= MI_PRINTED;
1241				mutex_exit(&mi->mi_lock);
1242#ifdef DEBUG
1243				zprintf(zoneid, msg, mi->mi_vers,
1244				    svp->sv_hostname);
1245#else
1246				zprintf(zoneid, msg, svp->sv_hostname);
1247#endif
1248			} else
1249				mutex_exit(&mi->mi_lock);
1250			if (*douprintf && nfs_has_ctty()) {
1251				*douprintf = 0;
1252				if (!(mi->mi_flags & MI_NOPRINT))
1253#ifdef DEBUG
1254					uprintf(msg, mi->mi_vers,
1255					    svp->sv_hostname);
1256#else
1257					uprintf(msg, svp->sv_hostname);
1258#endif
1259			}
1260
1261			/*
1262			 * If doing dynamic adjustment of transfer
1263			 * size and if it's a read or write call
1264			 * and if the transfer size changed while
1265			 * retransmitting or if the feedback routine
1266			 * changed the transfer size,
1267			 * then exit rfscall so that the transfer
1268			 * size can be adjusted at the vnops level.
1269			 */
1270			if ((mi->mi_flags & MI_DYNAMIC) &&
1271			    mi->mi_timer_type[which] != 0 &&
1272			    (mi->mi_curread != my_rsize ||
1273			    mi->mi_curwrite != my_wsize ||
1274			    nfs_feedback(FEEDBACK_REXMIT1, which, mi))) {
1275				/*
1276				 * On read or write calls, return
1277				 * back to the vnode ops level if
1278				 * the transfer size changed.
1279				 */
1280				clfree_impl(client, ch, nfscl);
1281				if (cred_cloned)
1282					crfree(cr);
1283				return (ENFS_TRYAGAIN);
1284			}
1285		}
1286	} while (tryagain);
1287
1288	if (status != RPC_SUCCESS) {
1289		/*
1290		 * Let soft mounts use the timed out message.
1291		 */
1292		if (status == RPC_INPROGRESS)
1293			status = RPC_TIMEDOUT;
1294		nfscl->nfscl_stat.badcalls.value.ui64++;
1295		if (status != RPC_INTR) {
1296			mutex_enter(&mi->mi_lock);
1297			mi->mi_flags |= MI_DOWN;
1298			mutex_exit(&mi->mi_lock);
1299			CLNT_GETERR(client, &rpcerr);
1300#ifdef DEBUG
1301			bufp = clnt_sperror(client, svp->sv_hostname);
1302			zprintf(zoneid, "NFS%d %s failed for %s\n",
1303			    mi->mi_vers, mi->mi_rfsnames[which], bufp);
1304			if (nfs_has_ctty()) {
1305				if (!(mi->mi_flags & MI_NOPRINT)) {
1306					uprintf("NFS%d %s failed for %s\n",
1307					    mi->mi_vers, mi->mi_rfsnames[which],
1308					    bufp);
1309				}
1310			}
1311			kmem_free(bufp, MAXPATHLEN);
1312#else
1313			zprintf(zoneid,
1314			    "NFS %s failed for server %s: error %d (%s)\n",
1315			    mi->mi_rfsnames[which], svp->sv_hostname,
1316			    status, clnt_sperrno(status));
1317			if (nfs_has_ctty()) {
1318				if (!(mi->mi_flags & MI_NOPRINT)) {
1319					uprintf(
1320				"NFS %s failed for server %s: error %d (%s)\n",
1321					    mi->mi_rfsnames[which],
1322					    svp->sv_hostname, status,
1323					    clnt_sperrno(status));
1324				}
1325			}
1326#endif
1327			/*
1328			 * when CLNT_CALL() fails with RPC_AUTHERROR,
1329			 * re_errno is set appropriately depending on
1330			 * the authentication error
1331			 */
1332			if (status == RPC_VERSMISMATCH ||
1333			    status == RPC_PROGVERSMISMATCH)
1334				rpcerr.re_errno = EIO;
1335		}
1336	} else {
1337		/*
1338		 * Test the value of mi_down and mi_printed without
1339		 * holding the mi_lock mutex.  If they are both zero,
1340		 * then it is okay to skip the down and printed
1341		 * processing.  This saves on a mutex_enter and
1342		 * mutex_exit pair for a normal, successful RPC.
1343		 * This was just complete overhead.
1344		 */
1345		if (mi->mi_flags & (MI_DOWN | MI_PRINTED)) {
1346			mutex_enter(&mi->mi_lock);
1347			mi->mi_flags &= ~MI_DOWN;
1348			if (mi->mi_flags & MI_PRINTED) {
1349				mi->mi_flags &= ~MI_PRINTED;
1350				mutex_exit(&mi->mi_lock);
1351#ifdef DEBUG
1352			if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
1353				zprintf(zoneid, "NFS%d server %s ok\n",
1354				    mi->mi_vers, svp->sv_hostname);
1355#else
1356			if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
1357				zprintf(zoneid, "NFS server %s ok\n",
1358				    svp->sv_hostname);
1359#endif
1360			} else
1361				mutex_exit(&mi->mi_lock);
1362		}
1363
1364		if (*douprintf == 0) {
1365			if (!(mi->mi_flags & MI_NOPRINT))
1366#ifdef DEBUG
1367				if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
1368					uprintf("NFS%d server %s ok\n",
1369					    mi->mi_vers, svp->sv_hostname);
1370#else
1371			if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
1372				uprintf("NFS server %s ok\n", svp->sv_hostname);
1373#endif
1374			*douprintf = 1;
1375		}
1376	}
1377
1378	clfree_impl(client, ch, nfscl);
1379	if (cred_cloned)
1380		crfree(cr);
1381
1382	ASSERT(rpcerr.re_status == RPC_SUCCESS || rpcerr.re_errno != 0);
1383
1384	if (rpc_status != NULL)
1385		*rpc_status = rpcerr.re_status;
1386
1387	TRACE_1(TR_FAC_NFS, TR_RFSCALL_END, "rfscall_end:errno %d",
1388	    rpcerr.re_errno);
1389
1390	return (rpcerr.re_errno);
1391}
1392
1393#ifdef DEBUG
1394static int acl2call_hits = 0;
1395static int acl2call_misses = 0;
1396#endif
1397
1398int
1399acl2call(mntinfo_t *mi, rpcproc_t which, xdrproc_t xdrargs, caddr_t argsp,
1400    xdrproc_t xdrres, caddr_t resp, cred_t *cr, int *douprintf,
1401    enum nfsstat *statusp, int flags, failinfo_t *fi)
1402{
1403	int rpcerror;
1404
1405	rpcerror = aclcall(mi, which, xdrargs, argsp, xdrres, resp,
1406	    cr, douprintf, flags, fi);
1407	if (!rpcerror) {
1408		/*
1409		 * See comments with crnetadjust().
1410		 */
1411		if (*statusp == NFSERR_ACCES &&
1412		    (cr = crnetadjust(cr)) != NULL) {
1413#ifdef DEBUG
1414			acl2call_hits++;
1415#endif
1416			rpcerror = aclcall(mi, which, xdrargs, argsp, xdrres,
1417			    resp, cr, douprintf, flags, fi);
1418			crfree(cr);
1419#ifdef DEBUG
1420			if (*statusp == NFSERR_ACCES)
1421				acl2call_misses++;
1422#endif
1423		}
1424	}
1425
1426	return (rpcerror);
1427}
1428
1429#ifdef DEBUG
1430static int acl3call_hits = 0;
1431static int acl3call_misses = 0;
1432#endif
1433
1434int
1435acl3call(mntinfo_t *mi, rpcproc_t which, xdrproc_t xdrargs, caddr_t argsp,
1436    xdrproc_t xdrres, caddr_t resp, cred_t *cr, int *douprintf,
1437    nfsstat3 *statusp, int flags, failinfo_t *fi)
1438{
1439	int rpcerror;
1440	int user_informed;
1441
1442	user_informed = 0;
1443
1444	do {
1445		rpcerror = aclcall(mi, which, xdrargs, argsp, xdrres, resp,
1446		    cr, douprintf, flags, fi);
1447		if (!rpcerror) {
1448			cred_t *crr;
1449			if (*statusp == NFS3ERR_JUKEBOX) {
1450				if (!user_informed) {
1451					user_informed = 1;
1452					uprintf(
1453		"file temporarily unavailable on the server, retrying...\n");
1454				}
1455				delay(nfs3_jukebox_delay);
1456			}
1457			/*
1458			 * See crnetadjust() for comments.
1459			 */
1460			else if (*statusp == NFS3ERR_ACCES &&
1461			    (crr = crnetadjust(cr)) != NULL) {
1462#ifdef DEBUG
1463				acl3call_hits++;
1464#endif
1465				rpcerror = aclcall(mi, which, xdrargs, argsp,
1466				    xdrres, resp, crr, douprintf, flags, fi);
1467
1468				crfree(crr);
1469#ifdef DEBUG
1470				if (*statusp == NFS3ERR_ACCES)
1471					acl3call_misses++;
1472#endif
1473			}
1474		}
1475	} while (!rpcerror && *statusp == NFS3ERR_JUKEBOX);
1476
1477	return (rpcerror);
1478}
1479
1480static int
1481aclcall(mntinfo_t *mi, rpcproc_t which, xdrproc_t xdrargs, caddr_t argsp,
1482    xdrproc_t xdrres, caddr_t resp, cred_t *icr, int *douprintf,
1483    int flags, failinfo_t *fi)
1484{
1485	CLIENT *client;
1486	struct chtab *ch;
1487	cred_t *cr = icr;
1488	bool_t cred_cloned = FALSE;
1489	enum clnt_stat status;
1490	struct rpc_err rpcerr;
1491	struct timeval wait;
1492	int timeo;		/* in units of hz */
1493#if 0 /* notyet */
1494	int my_rsize, my_wsize;
1495#endif
1496	bool_t tryagain;
1497	k_sigset_t smask;
1498	servinfo_t *svp;
1499	struct nfs_clnt *nfscl;
1500	zoneid_t zoneid = getzoneid();
1501#ifdef DEBUG
1502	char *bufp;
1503#endif
1504
1505#if 0 /* notyet */
1506	TRACE_2(TR_FAC_NFS, TR_RFSCALL_START,
1507	    "rfscall_start:which %d mi %p", which, mi);
1508#endif
1509
1510	nfscl = zone_getspecific(nfsclnt_zone_key, nfs_zone());
1511	ASSERT(nfscl != NULL);
1512
1513	nfscl->nfscl_stat.calls.value.ui64++;
1514	mi->mi_aclreqs[which].value.ui64++;
1515
1516	rpcerr.re_status = RPC_SUCCESS;
1517
1518	if (FS_OR_ZONE_GONE(mi->mi_vfsp)) {
1519		rpcerr.re_status = RPC_FAILED;
1520		rpcerr.re_errno = EIO;
1521		return (rpcerr.re_errno);
1522	}
1523
1524#if 0 /* notyet */
1525	/*
1526	 * Remember the transfer sizes in case
1527	 * nfs_feedback changes them underneath us.
1528	 */
1529	my_rsize = mi->mi_curread;
1530	my_wsize = mi->mi_curwrite;
1531#endif
1532
1533	/*
1534	 * NFS client failover support
1535	 *
1536	 * If this rnode is not in sync with the current server (VALID_FH),
1537	 * we'd like to do a remap to get in sync.  We can be interrupted
1538	 * in failover_remap(), and if so we'll bail.  Otherwise, we'll
1539	 * use the best info we have to try the RPC.  Part of that is
1540	 * unconditionally updating the filehandle copy kept for V3.
1541	 *
1542	 * Locking: INC_READERS/DEC_READERS is a poor man's interrruptible
1543	 * rw_enter(); we're trying to keep the current server from being
1544	 * changed on us until we're done with the remapping and have a
1545	 * matching client handle.  We don't want to sending a filehandle
1546	 * to the wrong host.
1547	 */
1548failoverretry:
1549	if (FAILOVER_MOUNT(mi)) {
1550		mutex_enter(&mi->mi_lock);
1551		if (!(flags & RFSCALL_SOFT) && failover_safe(fi)) {
1552			if (failover_wait(mi)) {
1553				mutex_exit(&mi->mi_lock);
1554				return (EINTR);
1555			}
1556		}
1557		INC_READERS(mi);
1558		mutex_exit(&mi->mi_lock);
1559		if (fi) {
1560			if (!VALID_FH(fi) &&
1561			    !(flags & RFSCALL_SOFT) && failover_safe(fi)) {
1562				int remaperr;
1563
1564				svp = mi->mi_curr_serv;
1565				remaperr = failover_remap(fi);
1566				if (remaperr != 0) {
1567#ifdef DEBUG
1568					if (remaperr != EINTR)
1569						nfs_cmn_err(remaperr, CE_WARN,
1570					    "aclcall couldn't failover: %m");
1571#endif
1572					mutex_enter(&mi->mi_lock);
1573					DEC_READERS(mi);
1574					mutex_exit(&mi->mi_lock);
1575
1576					/*
1577					 * If failover_remap returns ETIMEDOUT
1578					 * and the filesystem is hard mounted
1579					 * we have to retry the call with a new
1580					 * server.
1581					 */
1582					if ((mi->mi_flags & MI_HARD) &&
1583					    IS_RECOVERABLE_ERROR(remaperr)) {
1584						if (svp == mi->mi_curr_serv)
1585							failover_newserver(mi);
1586						rpcerr.re_status = RPC_SUCCESS;
1587						goto failoverretry;
1588					}
1589					return (remaperr);
1590				}
1591			}
1592			if (fi->fhp && fi->copyproc)
1593				(*fi->copyproc)(fi->fhp, fi->vp);
1594		}
1595	}
1596
1597	/* For TSOL, use a new cred which has net_mac_aware flag */
1598	if (!cred_cloned && is_system_labeled()) {
1599		cred_cloned = TRUE;
1600		cr = crdup(icr);
1601		(void) setpflags(NET_MAC_AWARE, 1, cr);
1602	}
1603
1604	/*
1605	 * acl_clget() calls clnt_tli_kinit() which clears the xid, so we
1606	 * are guaranteed to reprocess the retry as a new request.
1607	 */
1608	svp = mi->mi_curr_serv;
1609	rpcerr.re_errno = acl_clget(mi, svp, cr, &client, &ch, nfscl);
1610	if (FAILOVER_MOUNT(mi)) {
1611		mutex_enter(&mi->mi_lock);
1612		DEC_READERS(mi);
1613		mutex_exit(&mi->mi_lock);
1614
1615		if ((rpcerr.re_errno == ETIMEDOUT ||
1616		    rpcerr.re_errno == ECONNRESET) &&
1617		    failover_safe(fi)) {
1618			if (svp == mi->mi_curr_serv)
1619				failover_newserver(mi);
1620			goto failoverretry;
1621		}
1622	}
1623	if (rpcerr.re_errno != 0) {
1624		if (cred_cloned)
1625			crfree(cr);
1626		return (rpcerr.re_errno);
1627	}
1628
1629	if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD ||
1630	    svp->sv_knconf->knc_semantics == NC_TPI_COTS) {
1631		timeo = (mi->mi_timeo * hz) / 10;
1632	} else {
1633		mutex_enter(&mi->mi_lock);
1634		timeo = CLNT_SETTIMERS(client,
1635		    &(mi->mi_timers[mi->mi_acl_timer_type[which]]),
1636		    &(mi->mi_timers[NFS_CALLTYPES]),
1637		    (minimum_timeo[mi->mi_acl_call_type[which]]*hz)>>3,
1638		    (void (*)()) 0, (caddr_t)mi, 0);
1639		mutex_exit(&mi->mi_lock);
1640	}
1641
1642	/*
1643	 * If hard mounted fs, retry call forever unless hard error occurs.
1644	 */
1645	do {
1646		tryagain = FALSE;
1647
1648		if (FS_OR_ZONE_GONE(mi->mi_vfsp)) {
1649			status = RPC_FAILED;
1650			rpcerr.re_status = RPC_FAILED;
1651			rpcerr.re_errno = EIO;
1652			break;
1653		}
1654
1655		TICK_TO_TIMEVAL(timeo, &wait);
1656
1657		/*
1658		 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
1659		 * and SIGTERM. (Preserving the existing masks).
1660		 * Mask out SIGINT if mount option nointr is specified.
1661		 */
1662		sigintr(&smask, (int)mi->mi_flags & MI_INT);
1663		if (!(mi->mi_flags & MI_INT))
1664			client->cl_nosignal = TRUE;
1665
1666		/*
1667		 * If there is a current signal, then don't bother
1668		 * even trying to send out the request because we
1669		 * won't be able to block waiting for the response.
1670		 * Simply assume RPC_INTR and get on with it.
1671		 */
1672		if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING))
1673			status = RPC_INTR;
1674		else {
1675			status = CLNT_CALL(client, which, xdrargs, argsp,
1676			    xdrres, resp, wait);
1677		}
1678
1679		if (!(mi->mi_flags & MI_INT))
1680			client->cl_nosignal = FALSE;
1681		/*
1682		 * restore original signal mask
1683		 */
1684		sigunintr(&smask);
1685
1686		switch (status) {
1687		case RPC_SUCCESS:
1688#if 0 /* notyet */
1689			if ((mi->mi_flags & MI_DYNAMIC) &&
1690			    mi->mi_timer_type[which] != 0 &&
1691			    (mi->mi_curread != my_rsize ||
1692			    mi->mi_curwrite != my_wsize))
1693				(void) nfs_feedback(FEEDBACK_OK, which, mi);
1694#endif
1695			break;
1696
1697		/*
1698		 * Unfortunately, there are servers in the world which
1699		 * are not coded correctly.  They are not prepared to
1700		 * handle RPC requests to the NFS port which are not
1701		 * NFS requests.  Thus, they may try to process the
1702		 * NFS_ACL request as if it were an NFS request.  This
1703		 * does not work.  Generally, an error will be generated
1704		 * on the client because it will not be able to decode
1705		 * the response from the server.  However, it seems
1706		 * possible that the server may not be able to decode
1707		 * the arguments.  Thus, the criteria for deciding
1708		 * whether the server supports NFS_ACL or not is whether
1709		 * the following RPC errors are returned from CLNT_CALL.
1710		 */
1711		case RPC_CANTDECODERES:
1712		case RPC_PROGUNAVAIL:
1713		case RPC_CANTDECODEARGS:
1714		case RPC_PROGVERSMISMATCH:
1715			mutex_enter(&mi->mi_lock);
1716			mi->mi_flags &= ~(MI_ACL | MI_EXTATTR);
1717			mutex_exit(&mi->mi_lock);
1718			break;
1719
1720		/*
1721		 * If the server supports NFS_ACL but not the new ops
1722		 * for extended attributes, make sure we don't retry.
1723		 */
1724		case RPC_PROCUNAVAIL:
1725			mutex_enter(&mi->mi_lock);
1726			mi->mi_flags &= ~MI_EXTATTR;
1727			mutex_exit(&mi->mi_lock);
1728			break;
1729
1730		case RPC_INTR:
1731			/*
1732			 * There is no way to recover from this error,
1733			 * even if mount option nointr is specified.
1734			 * SIGKILL, for example, cannot be blocked.
1735			 */
1736			rpcerr.re_status = RPC_INTR;
1737			rpcerr.re_errno = EINTR;
1738			break;
1739
1740		case RPC_UDERROR:
1741			/*
1742			 * If the NFS server is local (vold) and
1743			 * it goes away then we get RPC_UDERROR.
1744			 * This is a retryable error, so we would
1745			 * loop, so check to see if the specific
1746			 * error was ECONNRESET, indicating that
1747			 * target did not exist at all.  If so,
1748			 * return with RPC_PROGUNAVAIL and
1749			 * ECONNRESET to indicate why.
1750			 */
1751			CLNT_GETERR(client, &rpcerr);
1752			if (rpcerr.re_errno == ECONNRESET) {
1753				rpcerr.re_status = RPC_PROGUNAVAIL;
1754				rpcerr.re_errno = ECONNRESET;
1755				break;
1756			}
1757			/*FALLTHROUGH*/
1758
1759		default:		/* probably RPC_TIMEDOUT */
1760			if (IS_UNRECOVERABLE_RPC(status))
1761				break;
1762
1763			/*
1764			 * increment server not responding count
1765			 */
1766			mutex_enter(&mi->mi_lock);
1767			mi->mi_noresponse++;
1768			mutex_exit(&mi->mi_lock);
1769#ifdef DEBUG
1770			nfscl->nfscl_stat.noresponse.value.ui64++;
1771#endif
1772
1773			if (!(mi->mi_flags & MI_HARD)) {
1774				if (!(mi->mi_flags & MI_SEMISOFT) ||
1775				    (mi->mi_acl_ss_call_type[which] == 0))
1776					break;
1777			}
1778
1779			/*
1780			 * The call is in progress (over COTS).
1781			 * Try the CLNT_CALL again, but don't
1782			 * print a noisy error message.
1783			 */
1784			if (status == RPC_INPROGRESS) {
1785				tryagain = TRUE;
1786				break;
1787			}
1788
1789			if (flags & RFSCALL_SOFT)
1790				break;
1791
1792			/*
1793			 * On zone shutdown, just move on.
1794			 */
1795			if (zone_status_get(curproc->p_zone) >=
1796			    ZONE_IS_SHUTTING_DOWN) {
1797				rpcerr.re_status = RPC_FAILED;
1798				rpcerr.re_errno = EIO;
1799				break;
1800			}
1801
1802			/*
1803			 * NFS client failover support
1804			 *
1805			 * If the current server just failed us, we'll
1806			 * start the process of finding a new server.
1807			 * After that, we can just retry.
1808			 */
1809			if (FAILOVER_MOUNT(mi) && failover_safe(fi)) {
1810				if (svp == mi->mi_curr_serv)
1811					failover_newserver(mi);
1812				clfree_impl(client, ch, nfscl);
1813				goto failoverretry;
1814			}
1815
1816			tryagain = TRUE;
1817			timeo = backoff(timeo);
1818			mutex_enter(&mi->mi_lock);
1819			if (!(mi->mi_flags & MI_PRINTED)) {
1820				mi->mi_flags |= MI_PRINTED;
1821				mutex_exit(&mi->mi_lock);
1822#ifdef DEBUG
1823				zprintf(zoneid,
1824			"NFS_ACL%d server %s not responding still trying\n",
1825				    mi->mi_vers, svp->sv_hostname);
1826#else
1827				zprintf(zoneid,
1828			    "NFS server %s not responding still trying\n",
1829				    svp->sv_hostname);
1830#endif
1831			} else
1832				mutex_exit(&mi->mi_lock);
1833			if (*douprintf && nfs_has_ctty()) {
1834				*douprintf = 0;
1835				if (!(mi->mi_flags & MI_NOPRINT))
1836#ifdef DEBUG
1837					uprintf(
1838			"NFS_ACL%d server %s not responding still trying\n",
1839					    mi->mi_vers, svp->sv_hostname);
1840#else
1841					uprintf(
1842			    "NFS server %s not responding still trying\n",
1843					    svp->sv_hostname);
1844#endif
1845			}
1846
1847#if 0 /* notyet */
1848			/*
1849			 * If doing dynamic adjustment of transfer
1850			 * size and if it's a read or write call
1851			 * and if the transfer size changed while
1852			 * retransmitting or if the feedback routine
1853			 * changed the transfer size,
1854			 * then exit rfscall so that the transfer
1855			 * size can be adjusted at the vnops level.
1856			 */
1857			if ((mi->mi_flags & MI_DYNAMIC) &&
1858			    mi->mi_acl_timer_type[which] != 0 &&
1859			    (mi->mi_curread != my_rsize ||
1860			    mi->mi_curwrite != my_wsize ||
1861			    nfs_feedback(FEEDBACK_REXMIT1, which, mi))) {
1862				/*
1863				 * On read or write calls, return
1864				 * back to the vnode ops level if
1865				 * the transfer size changed.
1866				 */
1867				clfree_impl(client, ch, nfscl);
1868				if (cred_cloned)
1869					crfree(cr);
1870				return (ENFS_TRYAGAIN);
1871			}
1872#endif
1873		}
1874	} while (tryagain);
1875
1876	if (status != RPC_SUCCESS) {
1877		/*
1878		 * Let soft mounts use the timed out message.
1879		 */
1880		if (status == RPC_INPROGRESS)
1881			status = RPC_TIMEDOUT;
1882		nfscl->nfscl_stat.badcalls.value.ui64++;
1883		if (status == RPC_CANTDECODERES ||
1884		    status == RPC_PROGUNAVAIL ||
1885		    status == RPC_PROCUNAVAIL ||
1886		    status == RPC_CANTDECODEARGS ||
1887		    status == RPC_PROGVERSMISMATCH)
1888			CLNT_GETERR(client, &rpcerr);
1889		else if (status != RPC_INTR) {
1890			mutex_enter(&mi->mi_lock);
1891			mi->mi_flags |= MI_DOWN;
1892			mutex_exit(&mi->mi_lock);
1893			CLNT_GETERR(client, &rpcerr);
1894#ifdef DEBUG
1895			bufp = clnt_sperror(client, svp->sv_hostname);
1896			zprintf(zoneid, "NFS_ACL%d %s failed for %s\n",
1897			    mi->mi_vers, mi->mi_aclnames[which], bufp);
1898			if (nfs_has_ctty()) {
1899				if (!(mi->mi_flags & MI_NOPRINT)) {
1900					uprintf("NFS_ACL%d %s failed for %s\n",
1901					    mi->mi_vers, mi->mi_aclnames[which],
1902					    bufp);
1903				}
1904			}
1905			kmem_free(bufp, MAXPATHLEN);
1906#else
1907			zprintf(zoneid,
1908			    "NFS %s failed for server %s: error %d (%s)\n",
1909			    mi->mi_aclnames[which], svp->sv_hostname,
1910			    status, clnt_sperrno(status));
1911			if (nfs_has_ctty()) {
1912				if (!(mi->mi_flags & MI_NOPRINT))
1913					uprintf(
1914				"NFS %s failed for server %s: error %d (%s)\n",
1915					    mi->mi_aclnames[which],
1916					    svp->sv_hostname, status,
1917					    clnt_sperrno(status));
1918			}
1919#endif
1920			/*
1921			 * when CLNT_CALL() fails with RPC_AUTHERROR,
1922			 * re_errno is set appropriately depending on
1923			 * the authentication error
1924			 */
1925			if (status == RPC_VERSMISMATCH ||
1926			    status == RPC_PROGVERSMISMATCH)
1927				rpcerr.re_errno = EIO;
1928		}
1929	} else {
1930		/*
1931		 * Test the value of mi_down and mi_printed without
1932		 * holding the mi_lock mutex.  If they are both zero,
1933		 * then it is okay to skip the down and printed
1934		 * processing.  This saves on a mutex_enter and
1935		 * mutex_exit pair for a normal, successful RPC.
1936		 * This was just complete overhead.
1937		 */
1938		if (mi->mi_flags & (MI_DOWN | MI_PRINTED)) {
1939			mutex_enter(&mi->mi_lock);
1940			mi->mi_flags &= ~MI_DOWN;
1941			if (mi->mi_flags & MI_PRINTED) {
1942				mi->mi_flags &= ~MI_PRINTED;
1943				mutex_exit(&mi->mi_lock);
1944#ifdef DEBUG
1945				zprintf(zoneid, "NFS_ACL%d server %s ok\n",
1946				    mi->mi_vers, svp->sv_hostname);
1947#else
1948				zprintf(zoneid, "NFS server %s ok\n",
1949				    svp->sv_hostname);
1950#endif
1951			} else
1952				mutex_exit(&mi->mi_lock);
1953		}
1954
1955		if (*douprintf == 0) {
1956			if (!(mi->mi_flags & MI_NOPRINT))
1957#ifdef DEBUG
1958				uprintf("NFS_ACL%d server %s ok\n",
1959				    mi->mi_vers, svp->sv_hostname);
1960#else
1961				uprintf("NFS server %s ok\n", svp->sv_hostname);
1962#endif
1963			*douprintf = 1;
1964		}
1965	}
1966
1967	clfree_impl(client, ch, nfscl);
1968	if (cred_cloned)
1969		crfree(cr);
1970
1971	ASSERT(rpcerr.re_status == RPC_SUCCESS || rpcerr.re_errno != 0);
1972
1973#if 0 /* notyet */
1974	TRACE_1(TR_FAC_NFS, TR_RFSCALL_END, "rfscall_end:errno %d",
1975	    rpcerr.re_errno);
1976#endif
1977
1978	return (rpcerr.re_errno);
1979}
1980
1981int
1982vattr_to_sattr(struct vattr *vap, struct nfssattr *sa)
1983{
1984	uint_t mask = vap->va_mask;
1985
1986	if (!(mask & AT_MODE))
1987		sa->sa_mode = (uint32_t)-1;
1988	else
1989		sa->sa_mode = vap->va_mode;
1990	if (!(mask & AT_UID))
1991		sa->sa_uid = (uint32_t)-1;
1992	else
1993		sa->sa_uid = (uint32_t)vap->va_uid;
1994	if (!(mask & AT_GID))
1995		sa->sa_gid = (uint32_t)-1;
1996	else
1997		sa->sa_gid = (uint32_t)vap->va_gid;
1998	if (!(mask & AT_SIZE))
1999		sa->sa_size = (uint32_t)-1;
2000	else
2001		sa->sa_size = (uint32_t)vap->va_size;
2002	if (!(mask & AT_ATIME))
2003		sa->sa_atime.tv_sec = sa->sa_atime.tv_usec = (int32_t)-1;
2004	else {
2005		/* check time validity */
2006		if (! NFS_TIME_T_OK(vap->va_atime.tv_sec)) {
2007			return (EOVERFLOW);
2008		}
2009		sa->sa_atime.tv_sec = vap->va_atime.tv_sec;
2010		sa->sa_atime.tv_usec = vap->va_atime.tv_nsec / 1000;
2011	}
2012	if (!(mask & AT_MTIME))
2013		sa->sa_mtime.tv_sec = sa->sa_mtime.tv_usec = (int32_t)-1;
2014	else {
2015		/* check time validity */
2016		if (! NFS_TIME_T_OK(vap->va_mtime.tv_sec)) {
2017			return (EOVERFLOW);
2018		}
2019		sa->sa_mtime.tv_sec = vap->va_mtime.tv_sec;
2020		sa->sa_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000;
2021	}
2022	return (0);
2023}
2024
2025int
2026vattr_to_sattr3(struct vattr *vap, sattr3 *sa)
2027{
2028	uint_t mask = vap->va_mask;
2029
2030	if (!(mask & AT_MODE))
2031		sa->mode.set_it = FALSE;
2032	else {
2033		sa->mode.set_it = TRUE;
2034		sa->mode.mode = (mode3)vap->va_mode;
2035	}
2036	if (!(mask & AT_UID))
2037		sa->uid.set_it = FALSE;
2038	else {
2039		sa->uid.set_it = TRUE;
2040		sa->uid.uid = (uid3)vap->va_uid;
2041	}
2042	if (!(mask & AT_GID))
2043		sa->gid.set_it = FALSE;
2044	else {
2045		sa->gid.set_it = TRUE;
2046		sa->gid.gid = (gid3)vap->va_gid;
2047	}
2048	if (!(mask & AT_SIZE))
2049		sa->size.set_it = FALSE;
2050	else {
2051		sa->size.set_it = TRUE;
2052		sa->size.size = (size3)vap->va_size;
2053	}
2054	if (!(mask & AT_ATIME))
2055		sa->atime.set_it = DONT_CHANGE;
2056	else {
2057		/* check time validity */
2058		if (! NFS_TIME_T_OK(vap->va_atime.tv_sec)) {
2059			return (EOVERFLOW);
2060		}
2061		sa->atime.set_it = SET_TO_CLIENT_TIME;
2062		sa->atime.atime.seconds = (uint32)vap->va_atime.tv_sec;
2063		sa->atime.atime.nseconds = (uint32)vap->va_atime.tv_nsec;
2064	}
2065	if (!(mask & AT_MTIME))
2066		sa->mtime.set_it = DONT_CHANGE;
2067	else {
2068		/* check time validity */
2069		if (! NFS_TIME_T_OK(vap->va_mtime.tv_sec)) {
2070			return (EOVERFLOW);
2071		}
2072		sa->mtime.set_it = SET_TO_CLIENT_TIME;
2073		sa->mtime.mtime.seconds = (uint32)vap->va_mtime.tv_sec;
2074		sa->mtime.mtime.nseconds = (uint32)vap->va_mtime.tv_nsec;
2075	}
2076	return (0);
2077}
2078
2079void
2080setdiropargs(struct nfsdiropargs *da, char *nm, vnode_t *dvp)
2081{
2082
2083	da->da_fhandle = VTOFH(dvp);
2084	da->da_name = nm;
2085	da->da_flags = 0;
2086}
2087
2088void
2089setdiropargs3(diropargs3 *da, char *nm, vnode_t *dvp)
2090{
2091
2092	da->dirp = VTOFH3(dvp);
2093	da->name = nm;
2094}
2095
2096int
2097setdirgid(vnode_t *dvp, gid_t *gidp, cred_t *cr)
2098{
2099	int error;
2100	rnode_t *rp;
2101	struct vattr va;
2102
2103	va.va_mask = AT_MODE | AT_GID;
2104	error = VOP_GETATTR(dvp, &va, 0, cr, NULL);
2105	if (error)
2106		return (error);
2107
2108	/*
2109	 * To determine the expected group-id of the created file:
2110	 *  1)	If the filesystem was not mounted with the Old-BSD-compatible
2111	 *	GRPID option, and the directory's set-gid bit is clear,
2112	 *	then use the process's gid.
2113	 *  2)	Otherwise, set the group-id to the gid of the parent directory.
2114	 */
2115	rp = VTOR(dvp);
2116	mutex_enter(&rp->r_statelock);
2117	if (!(VTOMI(dvp)->mi_flags & MI_GRPID) && !(va.va_mode & VSGID))
2118		*gidp = crgetgid(cr);
2119	else
2120		*gidp = va.va_gid;
2121	mutex_exit(&rp->r_statelock);
2122	return (0);
2123}
2124
2125int
2126setdirmode(vnode_t *dvp, mode_t *omp, cred_t *cr)
2127{
2128	int error;
2129	struct vattr va;
2130
2131	va.va_mask = AT_MODE;
2132	error = VOP_GETATTR(dvp, &va, 0, cr, NULL);
2133	if (error)
2134		return (error);
2135
2136	/*
2137	 * Modify the expected mode (om) so that the set-gid bit matches
2138	 * that of the parent directory (dvp).
2139	 */
2140	if (va.va_mode & VSGID)
2141		*omp |= VSGID;
2142	else
2143		*omp &= ~VSGID;
2144	return (0);
2145}
2146
2147void
2148nfs_setswaplike(vnode_t *vp, vattr_t *vap)
2149{
2150
2151	if (vp->v_type == VREG && (vap->va_mode & (VEXEC | VSVTX)) == VSVTX) {
2152		if (!(vp->v_flag & VSWAPLIKE)) {
2153			mutex_enter(&vp->v_lock);
2154			vp->v_flag |= VSWAPLIKE;
2155			mutex_exit(&vp->v_lock);
2156		}
2157	} else {
2158		if (vp->v_flag & VSWAPLIKE) {
2159			mutex_enter(&vp->v_lock);
2160			vp->v_flag &= ~VSWAPLIKE;
2161			mutex_exit(&vp->v_lock);
2162		}
2163	}
2164}
2165
2166/*
2167 * Free the resources associated with an rnode.
2168 */
2169static void
2170rinactive(rnode_t *rp, cred_t *cr)
2171{
2172	vnode_t *vp;
2173	cred_t *cred;
2174	char *contents;
2175	int size;
2176	vsecattr_t *vsp;
2177	int error;
2178	nfs3_pathconf_info *info;
2179
2180	/*
2181	 * Before freeing anything, wait until all asynchronous
2182	 * activity is done on this rnode.  This will allow all
2183	 * asynchronous read ahead and write behind i/o's to
2184	 * finish.
2185	 */
2186	mutex_enter(&rp->r_statelock);
2187	while (rp->r_count > 0)
2188		cv_wait(&rp->r_cv, &rp->r_statelock);
2189	mutex_exit(&rp->r_statelock);
2190
2191	/*
2192	 * Flush and invalidate all pages associated with the vnode.
2193	 */
2194	vp = RTOV(rp);
2195	if (vn_has_cached_data(vp)) {
2196		ASSERT(vp->v_type != VCHR);
2197		if ((rp->r_flags & RDIRTY) && !rp->r_error) {
2198			error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, 0, cr, NULL);
2199			if (error && (error == ENOSPC || error == EDQUOT)) {
2200				mutex_enter(&rp->r_statelock);
2201				if (!rp->r_error)
2202					rp->r_error = error;
2203				mutex_exit(&rp->r_statelock);
2204			}
2205		}
2206		nfs_invalidate_pages(vp, (u_offset_t)0, cr);
2207	}
2208
2209	/*
2210	 * Free any held credentials and caches which may be associated
2211	 * with this rnode.
2212	 */
2213	mutex_enter(&rp->r_statelock);
2214	cred = rp->r_cred;
2215	rp->r_cred = NULL;
2216	contents = rp->r_symlink.contents;
2217	size = rp->r_symlink.size;
2218	rp->r_symlink.contents = NULL;
2219	vsp = rp->r_secattr;
2220	rp->r_secattr = NULL;
2221	info = rp->r_pathconf;
2222	rp->r_pathconf = NULL;
2223	mutex_exit(&rp->r_statelock);
2224
2225	/*
2226	 * Free the held credential.
2227	 */
2228	if (cred != NULL)
2229		crfree(cred);
2230
2231	/*
2232	 * Free the access cache entries.
2233	 */
2234	(void) nfs_access_purge_rp(rp);
2235
2236	/*
2237	 * Free the readdir cache entries.
2238	 */
2239	if (HAVE_RDDIR_CACHE(rp))
2240		nfs_purge_rddir_cache(vp);
2241
2242	/*
2243	 * Free the symbolic link cache.
2244	 */
2245	if (contents != NULL) {
2246
2247		kmem_free((void *)contents, size);
2248	}
2249
2250	/*
2251	 * Free any cached ACL.
2252	 */
2253	if (vsp != NULL)
2254		nfs_acl_free(vsp);
2255
2256	/*
2257	 * Free any cached pathconf information.
2258	 */
2259	if (info != NULL)
2260		kmem_free(info, sizeof (*info));
2261}
2262
2263/*
2264 * Return a vnode for the given NFS Version 2 file handle.
2265 * If no rnode exists for this fhandle, create one and put it
2266 * into the hash queues.  If the rnode for this fhandle
2267 * already exists, return it.
2268 *
2269 * Note: make_rnode() may upgrade the hash bucket lock to exclusive.
2270 */
2271vnode_t *
2272makenfsnode(fhandle_t *fh, struct nfsfattr *attr, struct vfs *vfsp,
2273    hrtime_t t, cred_t *cr, char *dnm, char *nm)
2274{
2275	int newnode;
2276	int index;
2277	vnode_t *vp;
2278	nfs_fhandle nfh;
2279	vattr_t va;
2280
2281	nfh.fh_len = NFS_FHSIZE;
2282	bcopy(fh, nfh.fh_buf, NFS_FHSIZE);
2283
2284	index = rtablehash(&nfh);
2285	rw_enter(&rtable[index].r_lock, RW_READER);
2286
2287	vp = make_rnode(&nfh, &rtable[index], vfsp, nfs_vnodeops,
2288	    nfs_putapage, nfs_rddir_compar, &newnode, cr, dnm, nm);
2289
2290	if (attr != NULL) {
2291		if (!newnode) {
2292			rw_exit(&rtable[index].r_lock);
2293			(void) nfs_cache_fattr(vp, attr, &va, t, cr);
2294		} else {
2295			if (attr->na_type < NFNON || attr->na_type > NFSOC)
2296				vp->v_type = VBAD;
2297			else
2298				vp->v_type = n2v_type(attr);
2299			/*
2300			 * A translation here seems to be necessary
2301			 * because this function can be called
2302			 * with `attr' that has come from the wire,
2303			 * and been operated on by vattr_to_nattr().
2304			 * See nfsrootvp()->VOP_GETTATTR()->nfsgetattr()
2305			 * ->nfs_getattr_otw()->rfscall()->vattr_to_nattr()
2306			 * ->makenfsnode().
2307			 */
2308			if ((attr->na_rdev & 0xffff0000) == 0)
2309				vp->v_rdev = nfsv2_expdev(attr->na_rdev);
2310			else
2311				vp->v_rdev = expldev(n2v_rdev(attr));
2312			nfs_attrcache(vp, attr, t);
2313			rw_exit(&rtable[index].r_lock);
2314		}
2315	} else {
2316		if (newnode) {
2317			PURGE_ATTRCACHE(vp);
2318		}
2319		rw_exit(&rtable[index].r_lock);
2320	}
2321
2322	return (vp);
2323}
2324
2325/*
2326 * Return a vnode for the given NFS Version 3 file handle.
2327 * If no rnode exists for this fhandle, create one and put it
2328 * into the hash queues.  If the rnode for this fhandle
2329 * already exists, return it.
2330 *
2331 * Note: make_rnode() may upgrade the hash bucket lock to exclusive.
2332 */
2333vnode_t *
2334makenfs3node_va(nfs_fh3 *fh, vattr_t *vap, struct vfs *vfsp, hrtime_t t,
2335    cred_t *cr, char *dnm, char *nm)
2336{
2337	int newnode;
2338	int index;
2339	vnode_t *vp;
2340
2341	index = rtablehash((nfs_fhandle *)fh);
2342	rw_enter(&rtable[index].r_lock, RW_READER);
2343
2344	vp = make_rnode((nfs_fhandle *)fh, &rtable[index], vfsp,
2345	    nfs3_vnodeops, nfs3_putapage, nfs3_rddir_compar, &newnode, cr,
2346	    dnm, nm);
2347
2348	if (vap == NULL) {
2349		if (newnode) {
2350			PURGE_ATTRCACHE(vp);
2351		}
2352		rw_exit(&rtable[index].r_lock);
2353		return (vp);
2354	}
2355
2356	if (!newnode) {
2357		rw_exit(&rtable[index].r_lock);
2358		nfs_attr_cache(vp, vap, t, cr);
2359	} else {
2360		rnode_t *rp = VTOR(vp);
2361
2362		vp->v_type = vap->va_type;
2363		vp->v_rdev = vap->va_rdev;
2364
2365		mutex_enter(&rp->r_statelock);
2366		if (rp->r_mtime <= t)
2367			nfs_attrcache_va(vp, vap);
2368		mutex_exit(&rp->r_statelock);
2369		rw_exit(&rtable[index].r_lock);
2370	}
2371
2372	return (vp);
2373}
2374
2375vnode_t *
2376makenfs3node(nfs_fh3 *fh, fattr3 *attr, struct vfs *vfsp, hrtime_t t,
2377    cred_t *cr, char *dnm, char *nm)
2378{
2379	int newnode;
2380	int index;
2381	vnode_t *vp;
2382	vattr_t va;
2383
2384	index = rtablehash((nfs_fhandle *)fh);
2385	rw_enter(&rtable[index].r_lock, RW_READER);
2386
2387	vp = make_rnode((nfs_fhandle *)fh, &rtable[index], vfsp,
2388	    nfs3_vnodeops, nfs3_putapage, nfs3_rddir_compar, &newnode, cr,
2389	    dnm, nm);
2390
2391	if (attr == NULL) {
2392		if (newnode) {
2393			PURGE_ATTRCACHE(vp);
2394		}
2395		rw_exit(&rtable[index].r_lock);
2396		return (vp);
2397	}
2398
2399	if (!newnode) {
2400		rw_exit(&rtable[index].r_lock);
2401		(void) nfs3_cache_fattr3(vp, attr, &va, t, cr);
2402	} else {
2403		if (attr->type < NF3REG || attr->type > NF3FIFO)
2404			vp->v_type = VBAD;
2405		else
2406			vp->v_type = nf3_to_vt[attr->type];
2407		vp->v_rdev = makedevice(attr->rdev.specdata1,
2408		    attr->rdev.specdata2);
2409		nfs3_attrcache(vp, attr, t);
2410		rw_exit(&rtable[index].r_lock);
2411	}
2412
2413	return (vp);
2414}
2415
2416/*
2417 * Read this comment before making changes to rtablehash()!
2418 * This is a hash function in which seemingly obvious and harmless
2419 * changes can cause escalations costing million dollars!
2420 * Know what you are doing.
2421 *
2422 * rtablehash() implements Jenkins' one-at-a-time hash algorithm.  The
2423 * algorithm is currently detailed here:
2424 *
2425 *   http://burtleburtle.net/bob/hash/doobs.html
2426 *
2427 * Of course, the above link may not be valid by the time you are reading
2428 * this, but suffice it to say that the one-at-a-time algorithm works well in
2429 * almost all cases.  If you are changing the algorithm be sure to verify that
2430 * the hash algorithm still provides even distribution in all cases and with
2431 * any server returning filehandles in whatever order (sequential or random).
2432 */
2433static int
2434rtablehash(nfs_fhandle *fh)
2435{
2436	ulong_t hash, len, i;
2437	char *key;
2438
2439	key = fh->fh_buf;
2440	len = (ulong_t)fh->fh_len;
2441	for (hash = 0, i = 0; i < len; i++) {
2442		hash += key[i];
2443		hash += (hash << 10);
2444		hash ^= (hash >> 6);
2445	}
2446	hash += (hash << 3);
2447	hash ^= (hash >> 11);
2448	hash += (hash << 15);
2449	return (hash & rtablemask);
2450}
2451
2452static vnode_t *
2453make_rnode(nfs_fhandle *fh, rhashq_t *rhtp, struct vfs *vfsp,
2454    struct vnodeops *vops,
2455    int (*putapage)(vnode_t *, page_t *, u_offset_t *, size_t *, int, cred_t *),
2456    int (*compar)(const void *, const void *),
2457    int *newnode, cred_t *cr, char *dnm, char *nm)
2458{
2459	rnode_t *rp;
2460	rnode_t *trp;
2461	vnode_t *vp;
2462	mntinfo_t *mi;
2463
2464	ASSERT(RW_READ_HELD(&rhtp->r_lock));
2465
2466	mi = VFTOMI(vfsp);
2467start:
2468	if ((rp = rfind(rhtp, fh, vfsp)) != NULL) {
2469		vp = RTOV(rp);
2470		nfs_set_vroot(vp);
2471		*newnode = 0;
2472		return (vp);
2473	}
2474	rw_exit(&rhtp->r_lock);
2475
2476	mutex_enter(&rpfreelist_lock);
2477	if (rpfreelist != NULL && rnew >= nrnode) {
2478		rp = rpfreelist;
2479		rp_rmfree(rp);
2480		mutex_exit(&rpfreelist_lock);
2481
2482		vp = RTOV(rp);
2483
2484		if (rp->r_flags & RHASHED) {
2485			rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
2486			mutex_enter(&vp->v_lock);
2487			if (vp->v_count > 1) {
2488				vp->v_count--;
2489				mutex_exit(&vp->v_lock);
2490				rw_exit(&rp->r_hashq->r_lock);
2491				rw_enter(&rhtp->r_lock, RW_READER);
2492				goto start;
2493			}
2494			mutex_exit(&vp->v_lock);
2495			rp_rmhash_locked(rp);
2496			rw_exit(&rp->r_hashq->r_lock);
2497		}
2498
2499		rinactive(rp, cr);
2500
2501		mutex_enter(&vp->v_lock);
2502		if (vp->v_count > 1) {
2503			vp->v_count--;
2504			mutex_exit(&vp->v_lock);
2505			rw_enter(&rhtp->r_lock, RW_READER);
2506			goto start;
2507		}
2508		mutex_exit(&vp->v_lock);
2509		vn_invalid(vp);
2510		/*
2511		 * destroy old locks before bzero'ing and
2512		 * recreating the locks below.
2513		 */
2514		nfs_rw_destroy(&rp->r_rwlock);
2515		nfs_rw_destroy(&rp->r_lkserlock);
2516		mutex_destroy(&rp->r_statelock);
2517		cv_destroy(&rp->r_cv);
2518		cv_destroy(&rp->r_commit.c_cv);
2519		nfs_free_r_path(rp);
2520		avl_destroy(&rp->r_dir);
2521		/*
2522		 * Make sure that if rnode is recycled then
2523		 * VFS count is decremented properly before
2524		 * reuse.
2525		 */
2526		VFS_RELE(vp->v_vfsp);
2527		vn_reinit(vp);
2528	} else {
2529		vnode_t *new_vp;
2530
2531		mutex_exit(&rpfreelist_lock);
2532
2533		rp = kmem_cache_alloc(rnode_cache, KM_SLEEP);
2534		new_vp = vn_alloc(KM_SLEEP);
2535
2536		atomic_add_long((ulong_t *)&rnew, 1);
2537#ifdef DEBUG
2538		clstat_debug.nrnode.value.ui64++;
2539#endif
2540		vp = new_vp;
2541	}
2542
2543	bzero(rp, sizeof (*rp));
2544	rp->r_vnode = vp;
2545	nfs_rw_init(&rp->r_rwlock, NULL, RW_DEFAULT, NULL);
2546	nfs_rw_init(&rp->r_lkserlock, NULL, RW_DEFAULT, NULL);
2547	mutex_init(&rp->r_statelock, NULL, MUTEX_DEFAULT, NULL);
2548	cv_init(&rp->r_cv, NULL, CV_DEFAULT, NULL);
2549	cv_init(&rp->r_commit.c_cv, NULL, CV_DEFAULT, NULL);
2550	rp->r_fh.fh_len = fh->fh_len;
2551	bcopy(fh->fh_buf, rp->r_fh.fh_buf, fh->fh_len);
2552	rp->r_server = mi->mi_curr_serv;
2553	if (FAILOVER_MOUNT(mi)) {
2554		/*
2555		 * If replicated servers, stash pathnames
2556		 */
2557		if (dnm != NULL && nm != NULL) {
2558			char *s, *p;
2559			uint_t len;
2560
2561			len = (uint_t)(strlen(dnm) + strlen(nm) + 2);
2562			rp->r_path = kmem_alloc(len, KM_SLEEP);
2563#ifdef DEBUG
2564			clstat_debug.rpath.value.ui64 += len;
2565#endif
2566			s = rp->r_path;
2567			for (p = dnm; *p; p++)
2568				*s++ = *p;
2569			*s++ = '/';
2570			for (p = nm; *p; p++)
2571				*s++ = *p;
2572			*s = '\0';
2573		} else {
2574			/* special case for root */
2575			rp->r_path = kmem_alloc(2, KM_SLEEP);
2576#ifdef DEBUG
2577			clstat_debug.rpath.value.ui64 += 2;
2578#endif
2579			*rp->r_path = '.';
2580			*(rp->r_path + 1) = '\0';
2581		}
2582	}
2583	VFS_HOLD(vfsp);
2584	rp->r_putapage = putapage;
2585	rp->r_hashq = rhtp;
2586	rp->r_flags = RREADDIRPLUS;
2587	avl_create(&rp->r_dir, compar, sizeof (rddir_cache),
2588	    offsetof(rddir_cache, tree));
2589	vn_setops(vp, vops);
2590	vp->v_data = (caddr_t)rp;
2591	vp->v_vfsp = vfsp;
2592	vp->v_type = VNON;
2593	nfs_set_vroot(vp);
2594
2595	/*
2596	 * There is a race condition if someone else
2597	 * alloc's the rnode while no locks are held, so we
2598	 * check again and recover if found.
2599	 */
2600	rw_enter(&rhtp->r_lock, RW_WRITER);
2601	if ((trp = rfind(rhtp, fh, vfsp)) != NULL) {
2602		vp = RTOV(trp);
2603		nfs_set_vroot(vp);
2604		*newnode = 0;
2605		rw_exit(&rhtp->r_lock);
2606		rp_addfree(rp, cr);
2607		rw_enter(&rhtp->r_lock, RW_READER);
2608		return (vp);
2609	}
2610	rp_addhash(rp);
2611	*newnode = 1;
2612	return (vp);
2613}
2614
2615static void
2616nfs_set_vroot(vnode_t *vp)
2617{
2618	rnode_t *rp;
2619	nfs_fhandle *rootfh;
2620
2621	rp = VTOR(vp);
2622	rootfh = &rp->r_server->sv_fhandle;
2623	if (rootfh->fh_len == rp->r_fh.fh_len &&
2624	    bcmp(rootfh->fh_buf, rp->r_fh.fh_buf, rp->r_fh.fh_len) == 0) {
2625		if (!(vp->v_flag & VROOT)) {
2626			mutex_enter(&vp->v_lock);
2627			vp->v_flag |= VROOT;
2628			mutex_exit(&vp->v_lock);
2629		}
2630	}
2631}
2632
2633static void
2634nfs_free_r_path(rnode_t *rp)
2635{
2636	char *path;
2637	size_t len;
2638
2639	path = rp->r_path;
2640	if (path) {
2641		rp->r_path = NULL;
2642		len = strlen(path) + 1;
2643		kmem_free(path, len);
2644#ifdef DEBUG
2645		clstat_debug.rpath.value.ui64 -= len;
2646#endif
2647	}
2648}
2649
2650/*
2651 * Put an rnode on the free list.
2652 *
2653 * Rnodes which were allocated above and beyond the normal limit
2654 * are immediately freed.
2655 */
2656void
2657rp_addfree(rnode_t *rp, cred_t *cr)
2658{
2659	vnode_t *vp;
2660	struct vfs *vfsp;
2661
2662	vp = RTOV(rp);
2663	ASSERT(vp->v_count >= 1);
2664	ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL);
2665
2666	/*
2667	 * If we have too many rnodes allocated and there are no
2668	 * references to this rnode, or if the rnode is no longer
2669	 * accessible by it does not reside in the hash queues,
2670	 * or if an i/o error occurred while writing to the file,
2671	 * then just free it instead of putting it on the rnode
2672	 * freelist.
2673	 */
2674	vfsp = vp->v_vfsp;
2675	if (((rnew > nrnode || !(rp->r_flags & RHASHED) || rp->r_error ||
2676	    (vfsp->vfs_flag & VFS_UNMOUNTED)) && rp->r_count == 0)) {
2677		if (rp->r_flags & RHASHED) {
2678			rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
2679			mutex_enter(&vp->v_lock);
2680			if (vp->v_count > 1) {
2681				vp->v_count--;
2682				mutex_exit(&vp->v_lock);
2683				rw_exit(&rp->r_hashq->r_lock);
2684				return;
2685			}
2686			mutex_exit(&vp->v_lock);
2687			rp_rmhash_locked(rp);
2688			rw_exit(&rp->r_hashq->r_lock);
2689		}
2690
2691		rinactive(rp, cr);
2692
2693		/*
2694		 * Recheck the vnode reference count.  We need to
2695		 * make sure that another reference has not been
2696		 * acquired while we were not holding v_lock.  The
2697		 * rnode is not in the rnode hash queues, so the
2698		 * only way for a reference to have been acquired
2699		 * is for a VOP_PUTPAGE because the rnode was marked
2700		 * with RDIRTY or for a modified page.  This
2701		 * reference may have been acquired before our call
2702		 * to rinactive.  The i/o may have been completed,
2703		 * thus allowing rinactive to complete, but the
2704		 * reference to the vnode may not have been released
2705		 * yet.  In any case, the rnode can not be destroyed
2706		 * until the other references to this vnode have been
2707		 * released.  The other references will take care of
2708		 * either destroying the rnode or placing it on the
2709		 * rnode freelist.  If there are no other references,
2710		 * then the rnode may be safely destroyed.
2711		 */
2712		mutex_enter(&vp->v_lock);
2713		if (vp->v_count > 1) {
2714			vp->v_count--;
2715			mutex_exit(&vp->v_lock);
2716			return;
2717		}
2718		mutex_exit(&vp->v_lock);
2719
2720		destroy_rnode(rp);
2721		return;
2722	}
2723
2724	/*
2725	 * Lock the hash queue and then recheck the reference count
2726	 * to ensure that no other threads have acquired a reference
2727	 * to indicate that the rnode should not be placed on the
2728	 * freelist.  If another reference has been acquired, then
2729	 * just release this one and let the other thread complete
2730	 * the processing of adding this rnode to the freelist.
2731	 */
2732	rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
2733
2734	mutex_enter(&vp->v_lock);
2735	if (vp->v_count > 1) {
2736		vp->v_count--;
2737		mutex_exit(&vp->v_lock);
2738		rw_exit(&rp->r_hashq->r_lock);
2739		return;
2740	}
2741	mutex_exit(&vp->v_lock);
2742
2743	/*
2744	 * If there is no cached data or metadata for this file, then
2745	 * put the rnode on the front of the freelist so that it will
2746	 * be reused before other rnodes which may have cached data or
2747	 * metadata associated with them.
2748	 */
2749	mutex_enter(&rpfreelist_lock);
2750	if (rpfreelist == NULL) {
2751		rp->r_freef = rp;
2752		rp->r_freeb = rp;
2753		rpfreelist = rp;
2754	} else {
2755		rp->r_freef = rpfreelist;
2756		rp->r_freeb = rpfreelist->r_freeb;
2757		rpfreelist->r_freeb->r_freef = rp;
2758		rpfreelist->r_freeb = rp;
2759		if (!vn_has_cached_data(vp) &&
2760		    !HAVE_RDDIR_CACHE(rp) &&
2761		    rp->r_symlink.contents == NULL &&
2762		    rp->r_secattr == NULL &&
2763		    rp->r_pathconf == NULL)
2764			rpfreelist = rp;
2765	}
2766	mutex_exit(&rpfreelist_lock);
2767
2768	rw_exit(&rp->r_hashq->r_lock);
2769}
2770
2771/*
2772 * Remove an rnode from the free list.
2773 *
2774 * The caller must be holding rpfreelist_lock and the rnode
2775 * must be on the freelist.
2776 */
2777static void
2778rp_rmfree(rnode_t *rp)
2779{
2780
2781	ASSERT(MUTEX_HELD(&rpfreelist_lock));
2782	ASSERT(rp->r_freef != NULL && rp->r_freeb != NULL);
2783
2784	if (rp == rpfreelist) {
2785		rpfreelist = rp->r_freef;
2786		if (rp == rpfreelist)
2787			rpfreelist = NULL;
2788	}
2789
2790	rp->r_freeb->r_freef = rp->r_freef;
2791	rp->r_freef->r_freeb = rp->r_freeb;
2792
2793	rp->r_freef = rp->r_freeb = NULL;
2794}
2795
2796/*
2797 * Put a rnode in the hash table.
2798 *
2799 * The caller must be holding the exclusive hash queue lock.
2800 */
2801static void
2802rp_addhash(rnode_t *rp)
2803{
2804
2805	ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock));
2806	ASSERT(!(rp->r_flags & RHASHED));
2807
2808	rp->r_hashf = rp->r_hashq->r_hashf;
2809	rp->r_hashq->r_hashf = rp;
2810	rp->r_hashb = (rnode_t *)rp->r_hashq;
2811	rp->r_hashf->r_hashb = rp;
2812
2813	mutex_enter(&rp->r_statelock);
2814	rp->r_flags |= RHASHED;
2815	mutex_exit(&rp->r_statelock);
2816}
2817
2818/*
2819 * Remove a rnode from the hash table.
2820 *
2821 * The caller must be holding the hash queue lock.
2822 */
2823static void
2824rp_rmhash_locked(rnode_t *rp)
2825{
2826
2827	ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock));
2828	ASSERT(rp->r_flags & RHASHED);
2829
2830	rp->r_hashb->r_hashf = rp->r_hashf;
2831	rp->r_hashf->r_hashb = rp->r_hashb;
2832
2833	mutex_enter(&rp->r_statelock);
2834	rp->r_flags &= ~RHASHED;
2835	mutex_exit(&rp->r_statelock);
2836}
2837
2838/*
2839 * Remove a rnode from the hash table.
2840 *
2841 * The caller must not be holding the hash queue lock.
2842 */
2843void
2844rp_rmhash(rnode_t *rp)
2845{
2846
2847	rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
2848	rp_rmhash_locked(rp);
2849	rw_exit(&rp->r_hashq->r_lock);
2850}
2851
2852/*
2853 * Lookup a rnode by fhandle.
2854 *
2855 * The caller must be holding the hash queue lock, either shared or exclusive.
2856 */
2857static rnode_t *
2858rfind(rhashq_t *rhtp, nfs_fhandle *fh, struct vfs *vfsp)
2859{
2860	rnode_t *rp;
2861	vnode_t *vp;
2862
2863	ASSERT(RW_LOCK_HELD(&rhtp->r_lock));
2864
2865	for (rp = rhtp->r_hashf; rp != (rnode_t *)rhtp; rp = rp->r_hashf) {
2866		vp = RTOV(rp);
2867		if (vp->v_vfsp == vfsp &&
2868		    rp->r_fh.fh_len == fh->fh_len &&
2869		    bcmp(rp->r_fh.fh_buf, fh->fh_buf, fh->fh_len) == 0) {
2870			/*
2871			 * remove rnode from free list, if necessary.
2872			 */
2873			if (rp->r_freef != NULL) {
2874				mutex_enter(&rpfreelist_lock);
2875				/*
2876				 * If the rnode is on the freelist,
2877				 * then remove it and use that reference
2878				 * as the new reference.  Otherwise,
2879				 * need to increment the reference count.
2880				 */
2881				if (rp->r_freef != NULL) {
2882					rp_rmfree(rp);
2883					mutex_exit(&rpfreelist_lock);
2884				} else {
2885					mutex_exit(&rpfreelist_lock);
2886					VN_HOLD(vp);
2887				}
2888			} else
2889				VN_HOLD(vp);
2890			return (rp);
2891		}
2892	}
2893	return (NULL);
2894}
2895
2896/*
2897 * Return 1 if there is a active vnode belonging to this vfs in the
2898 * rtable cache.
2899 *
2900 * Several of these checks are done without holding the usual
2901 * locks.  This is safe because destroy_rtable(), rp_addfree(),
2902 * etc. will redo the necessary checks before actually destroying
2903 * any rnodes.
2904 */
2905int
2906check_rtable(struct vfs *vfsp)
2907{
2908	int index;
2909	rnode_t *rp;
2910	vnode_t *vp;
2911
2912	for (index = 0; index < rtablesize; index++) {
2913		rw_enter(&rtable[index].r_lock, RW_READER);
2914		for (rp = rtable[index].r_hashf;
2915		    rp != (rnode_t *)(&rtable[index]);
2916		    rp = rp->r_hashf) {
2917			vp = RTOV(rp);
2918			if (vp->v_vfsp == vfsp) {
2919				if (rp->r_freef == NULL ||
2920				    (vn_has_cached_data(vp) &&
2921				    (rp->r_flags & RDIRTY)) ||
2922				    rp->r_count > 0) {
2923					rw_exit(&rtable[index].r_lock);
2924					return (1);
2925				}
2926			}
2927		}
2928		rw_exit(&rtable[index].r_lock);
2929	}
2930	return (0);
2931}
2932
2933/*
2934 * Destroy inactive vnodes from the hash queues which belong to this
2935 * vfs.  It is essential that we destroy all inactive vnodes during a
2936 * forced unmount as well as during a normal unmount.
2937 */
2938void
2939destroy_rtable(struct vfs *vfsp, cred_t *cr)
2940{
2941	int index;
2942	rnode_t *rp;
2943	rnode_t *rlist;
2944	rnode_t *r_hashf;
2945	vnode_t *vp;
2946
2947	rlist = NULL;
2948
2949	for (index = 0; index < rtablesize; index++) {
2950		rw_enter(&rtable[index].r_lock, RW_WRITER);
2951		for (rp = rtable[index].r_hashf;
2952		    rp != (rnode_t *)(&rtable[index]);
2953		    rp = r_hashf) {
2954			/* save the hash pointer before destroying */
2955			r_hashf = rp->r_hashf;
2956			vp = RTOV(rp);
2957			if (vp->v_vfsp == vfsp) {
2958				mutex_enter(&rpfreelist_lock);
2959				if (rp->r_freef != NULL) {
2960					rp_rmfree(rp);
2961					mutex_exit(&rpfreelist_lock);
2962					rp_rmhash_locked(rp);
2963					rp->r_hashf = rlist;
2964					rlist = rp;
2965				} else
2966					mutex_exit(&rpfreelist_lock);
2967			}
2968		}
2969		rw_exit(&rtable[index].r_lock);
2970	}
2971
2972	for (rp = rlist; rp != NULL; rp = rlist) {
2973		rlist = rp->r_hashf;
2974		/*
2975		 * This call to rp_addfree will end up destroying the
2976		 * rnode, but in a safe way with the appropriate set
2977		 * of checks done.
2978		 */
2979		rp_addfree(rp, cr);
2980	}
2981
2982}
2983
2984/*
2985 * This routine destroys all the resources associated with the rnode
2986 * and then the rnode itself.
2987 */
2988static void
2989destroy_rnode(rnode_t *rp)
2990{
2991	vnode_t *vp;
2992	vfs_t *vfsp;
2993
2994	vp = RTOV(rp);
2995	vfsp = vp->v_vfsp;
2996
2997	ASSERT(vp->v_count == 1);
2998	ASSERT(rp->r_count == 0);
2999	ASSERT(rp->r_lmpl == NULL);
3000	ASSERT(rp->r_mapcnt == 0);
3001	ASSERT(!(rp->r_flags & RHASHED));
3002	ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL);
3003	atomic_add_long((ulong_t *)&rnew, -1);
3004#ifdef DEBUG
3005	clstat_debug.nrnode.value.ui64--;
3006#endif
3007	nfs_rw_destroy(&rp->r_rwlock);
3008	nfs_rw_destroy(&rp->r_lkserlock);
3009	mutex_destroy(&rp->r_statelock);
3010	cv_destroy(&rp->r_cv);
3011	cv_destroy(&rp->r_commit.c_cv);
3012	if (rp->r_flags & RDELMAPLIST)
3013		list_destroy(&rp->r_indelmap);
3014	nfs_free_r_path(rp);
3015	avl_destroy(&rp->r_dir);
3016	vn_invalid(vp);
3017	vn_free(vp);
3018	kmem_cache_free(rnode_cache, rp);
3019	VFS_RELE(vfsp);
3020}
3021
3022/*
3023 * Flush all vnodes in this (or every) vfs.
3024 * Used by nfs_sync and by nfs_unmount.
3025 */
3026void
3027rflush(struct vfs *vfsp, cred_t *cr)
3028{
3029	int index;
3030	rnode_t *rp;
3031	vnode_t *vp, **vplist;
3032	long num, cnt;
3033
3034	/*
3035	 * Check to see whether there is anything to do.
3036	 */
3037	num = rnew;
3038	if (num == 0)
3039		return;
3040
3041	/*
3042	 * Allocate a slot for all currently active rnodes on the
3043	 * supposition that they all may need flushing.
3044	 */
3045	vplist = kmem_alloc(num * sizeof (*vplist), KM_SLEEP);
3046	cnt = 0;
3047
3048	/*
3049	 * Walk the hash queues looking for rnodes with page
3050	 * lists associated with them.  Make a list of these
3051	 * files.
3052	 */
3053	for (index = 0; index < rtablesize; index++) {
3054		rw_enter(&rtable[index].r_lock, RW_READER);
3055		for (rp = rtable[index].r_hashf;
3056		    rp != (rnode_t *)(&rtable[index]);
3057		    rp = rp->r_hashf) {
3058			vp = RTOV(rp);
3059			/*
3060			 * Don't bother sync'ing a vp if it
3061			 * is part of virtual swap device or
3062			 * if VFS is read-only
3063			 */
3064			if (IS_SWAPVP(vp) || vn_is_readonly(vp))
3065				continue;
3066			/*
3067			 * If flushing all mounted file systems or
3068			 * the vnode belongs to this vfs, has pages
3069			 * and is marked as either dirty or mmap'd,
3070			 * hold and add this vnode to the list of
3071			 * vnodes to flush.
3072			 */
3073			if ((vfsp == NULL || vp->v_vfsp == vfsp) &&
3074			    vn_has_cached_data(vp) &&
3075			    ((rp->r_flags & RDIRTY) || rp->r_mapcnt > 0)) {
3076				VN_HOLD(vp);
3077				vplist[cnt++] = vp;
3078				if (cnt == num) {
3079					rw_exit(&rtable[index].r_lock);
3080					goto toomany;
3081				}
3082			}
3083		}
3084		rw_exit(&rtable[index].r_lock);
3085	}
3086toomany:
3087
3088	/*
3089	 * Flush and release all of the files on the list.
3090	 */
3091	while (cnt-- > 0) {
3092		vp = vplist[cnt];
3093		(void) VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_ASYNC, cr, NULL);
3094		VN_RELE(vp);
3095	}
3096
3097	/*
3098	 * Free the space allocated to hold the list.
3099	 */
3100	kmem_free(vplist, num * sizeof (*vplist));
3101}
3102
3103/*
3104 * This probably needs to be larger than or equal to
3105 * log2(sizeof (struct rnode)) due to the way that rnodes are
3106 * allocated.
3107 */
3108#define	ACACHE_SHIFT_BITS	9
3109
3110static int
3111acachehash(rnode_t *rp, cred_t *cr)
3112{
3113
3114	return ((((intptr_t)rp >> ACACHE_SHIFT_BITS) + crgetuid(cr)) &
3115	    acachemask);
3116}
3117
3118#ifdef DEBUG
3119static long nfs_access_cache_hits = 0;
3120static long nfs_access_cache_misses = 0;
3121#endif
3122
3123nfs_access_type_t
3124nfs_access_check(rnode_t *rp, uint32_t acc, cred_t *cr)
3125{
3126	vnode_t *vp;
3127	acache_t *ap;
3128	acache_hash_t *hp;
3129	nfs_access_type_t all;
3130
3131	vp = RTOV(rp);
3132	if (!ATTRCACHE_VALID(vp) || nfs_waitfor_purge_complete(vp))
3133		return (NFS_ACCESS_UNKNOWN);
3134
3135	if (rp->r_acache != NULL) {
3136		hp = &acache[acachehash(rp, cr)];
3137		rw_enter(&hp->lock, RW_READER);
3138		ap = hp->next;
3139		while (ap != (acache_t *)hp) {
3140			if (crcmp(ap->cred, cr) == 0 && ap->rnode == rp) {
3141				if ((ap->known & acc) == acc) {
3142#ifdef DEBUG
3143					nfs_access_cache_hits++;
3144#endif
3145					if ((ap->allowed & acc) == acc)
3146						all = NFS_ACCESS_ALLOWED;
3147					else
3148						all = NFS_ACCESS_DENIED;
3149				} else {
3150#ifdef DEBUG
3151					nfs_access_cache_misses++;
3152#endif
3153					all = NFS_ACCESS_UNKNOWN;
3154				}
3155				rw_exit(&hp->lock);
3156				return (all);
3157			}
3158			ap = ap->next;
3159		}
3160		rw_exit(&hp->lock);
3161	}
3162
3163#ifdef DEBUG
3164	nfs_access_cache_misses++;
3165#endif
3166	return (NFS_ACCESS_UNKNOWN);
3167}
3168
3169void
3170nfs_access_cache(rnode_t *rp, uint32_t acc, uint32_t resacc, cred_t *cr)
3171{
3172	acache_t *ap;
3173	acache_t *nap;
3174	acache_hash_t *hp;
3175
3176	hp = &acache[acachehash(rp, cr)];
3177
3178	/*
3179	 * Allocate now assuming that mostly an allocation will be
3180	 * required.  This allows the allocation to happen without
3181	 * holding the hash bucket locked.
3182	 */
3183	nap = kmem_cache_alloc(acache_cache, KM_NOSLEEP);
3184	if (nap != NULL) {
3185		nap->known = acc;
3186		nap->allowed = resacc;
3187		nap->rnode = rp;
3188		crhold(cr);
3189		nap->cred = cr;
3190		nap->hashq = hp;
3191	}
3192
3193	rw_enter(&hp->lock, RW_WRITER);
3194
3195	if (rp->r_acache != NULL) {
3196		ap = hp->next;
3197		while (ap != (acache_t *)hp) {
3198			if (crcmp(ap->cred, cr) == 0 && ap->rnode == rp) {
3199				ap->known |= acc;
3200				ap->allowed &= ~acc;
3201				ap->allowed |= resacc;
3202				rw_exit(&hp->lock);
3203				if (nap != NULL) {
3204					crfree(nap->cred);
3205					kmem_cache_free(acache_cache, nap);
3206				}
3207				return;
3208			}
3209			ap = ap->next;
3210		}
3211	}
3212
3213	if (nap != NULL) {
3214#ifdef DEBUG
3215		clstat_debug.access.value.ui64++;
3216#endif
3217		nap->next = hp->next;
3218		hp->next = nap;
3219		nap->next->prev = nap;
3220		nap->prev = (acache_t *)hp;
3221
3222		mutex_enter(&rp->r_statelock);
3223		nap->list = rp->r_acache;
3224		rp->r_acache = nap;
3225		mutex_exit(&rp->r_statelock);
3226	}
3227
3228	rw_exit(&hp->lock);
3229}
3230
3231int
3232nfs_access_purge_rp(rnode_t *rp)
3233{
3234	acache_t *ap;
3235	acache_t *tmpap;
3236	acache_t *rplist;
3237
3238	/*
3239	 * If there aren't any cached entries, then there is nothing
3240	 * to free.
3241	 */
3242	if (rp->r_acache == NULL)
3243		return (0);
3244
3245	mutex_enter(&rp->r_statelock);
3246	rplist = rp->r_acache;
3247	rp->r_acache = NULL;
3248	mutex_exit(&rp->r_statelock);
3249
3250	/*
3251	 * Loop through each entry in the list pointed to in the
3252	 * rnode.  Remove each of these entries from the hash
3253	 * queue that it is on and remove it from the list in
3254	 * the rnode.
3255	 */
3256	for (ap = rplist; ap != NULL; ap = tmpap) {
3257		rw_enter(&ap->hashq->lock, RW_WRITER);
3258		ap->prev->next = ap->next;
3259		ap->next->prev = ap->prev;
3260		rw_exit(&ap->hashq->lock);
3261
3262		tmpap = ap->list;
3263		crfree(ap->cred);
3264		kmem_cache_free(acache_cache, ap);
3265#ifdef DEBUG
3266		clstat_debug.access.value.ui64--;
3267#endif
3268	}
3269
3270	return (1);
3271}
3272
3273static const char prefix[] = ".nfs";
3274
3275static kmutex_t newnum_lock;
3276
3277int
3278newnum(void)
3279{
3280	static uint_t newnum = 0;
3281	uint_t id;
3282
3283	mutex_enter(&newnum_lock);
3284	if (newnum == 0)
3285		newnum = gethrestime_sec() & 0xffff;
3286	id = newnum++;
3287	mutex_exit(&newnum_lock);
3288	return (id);
3289}
3290
3291char *
3292newname(void)
3293{
3294	char *news;
3295	char *s;
3296	const char *p;
3297	uint_t id;
3298
3299	id = newnum();
3300	news = kmem_alloc(MAXNAMELEN, KM_SLEEP);
3301	s = news;
3302	p = prefix;
3303	while (*p != '\0')
3304		*s++ = *p++;
3305	while (id != 0) {
3306		*s++ = "0123456789ABCDEF"[id & 0x0f];
3307		id >>= 4;
3308	}
3309	*s = '\0';
3310	return (news);
3311}
3312
3313/*
3314 * Snapshot callback for nfs:0:nfs_client as registered with the kstat
3315 * framework.
3316 */
3317static int
3318cl_snapshot(kstat_t *ksp, void *buf, int rw)
3319{
3320	ksp->ks_snaptime = gethrtime();
3321	if (rw == KSTAT_WRITE) {
3322		bcopy(buf, ksp->ks_private, sizeof (clstat_tmpl));
3323#ifdef DEBUG
3324		/*
3325		 * Currently only the global zone can write to kstats, but we
3326		 * add the check just for paranoia.
3327		 */
3328		if (INGLOBALZONE(curproc))
3329			bcopy((char *)buf + sizeof (clstat_tmpl), &clstat_debug,
3330			    sizeof (clstat_debug));
3331#endif
3332	} else {
3333		bcopy(ksp->ks_private, buf, sizeof (clstat_tmpl));
3334#ifdef DEBUG
3335		/*
3336		 * If we're displaying the "global" debug kstat values, we
3337		 * display them as-is to all zones since in fact they apply to
3338		 * the system as a whole.
3339		 */
3340		bcopy(&clstat_debug, (char *)buf + sizeof (clstat_tmpl),
3341		    sizeof (clstat_debug));
3342#endif
3343	}
3344	return (0);
3345}
3346
3347static void *
3348clinit_zone(zoneid_t zoneid)
3349{
3350	kstat_t *nfs_client_kstat;
3351	struct nfs_clnt *nfscl;
3352	uint_t ndata;
3353
3354	nfscl = kmem_alloc(sizeof (*nfscl), KM_SLEEP);
3355	mutex_init(&nfscl->nfscl_chtable_lock, NULL, MUTEX_DEFAULT, NULL);
3356	nfscl->nfscl_chtable = NULL;
3357	nfscl->nfscl_zoneid = zoneid;
3358
3359	bcopy(&clstat_tmpl, &nfscl->nfscl_stat, sizeof (clstat_tmpl));
3360	ndata = sizeof (clstat_tmpl) / sizeof (kstat_named_t);
3361#ifdef DEBUG
3362	ndata += sizeof (clstat_debug) / sizeof (kstat_named_t);
3363#endif
3364	if ((nfs_client_kstat = kstat_create_zone("nfs", 0, "nfs_client",
3365	    "misc", KSTAT_TYPE_NAMED, ndata,
3366	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid)) != NULL) {
3367		nfs_client_kstat->ks_private = &nfscl->nfscl_stat;
3368		nfs_client_kstat->ks_snapshot = cl_snapshot;
3369		kstat_install(nfs_client_kstat);
3370	}
3371	mutex_enter(&nfs_clnt_list_lock);
3372	list_insert_head(&nfs_clnt_list, nfscl);
3373	mutex_exit(&nfs_clnt_list_lock);
3374	return (nfscl);
3375}
3376
3377/*ARGSUSED*/
3378static void
3379clfini_zone(zoneid_t zoneid, void *arg)
3380{
3381	struct nfs_clnt *nfscl = arg;
3382	chhead_t *chp, *next;
3383
3384	if (nfscl == NULL)
3385		return;
3386	mutex_enter(&nfs_clnt_list_lock);
3387	list_remove(&nfs_clnt_list, nfscl);
3388	mutex_exit(&nfs_clnt_list_lock);
3389	clreclaim_zone(nfscl, 0);
3390	for (chp = nfscl->nfscl_chtable; chp != NULL; chp = next) {
3391		ASSERT(chp->ch_list == NULL);
3392		kmem_free(chp->ch_protofmly, strlen(chp->ch_protofmly) + 1);
3393		next = chp->ch_next;
3394		kmem_free(chp, sizeof (*chp));
3395	}
3396	kstat_delete_byname_zone("nfs", 0, "nfs_client", zoneid);
3397	mutex_destroy(&nfscl->nfscl_chtable_lock);
3398	kmem_free(nfscl, sizeof (*nfscl));
3399}
3400
3401/*
3402 * Called by endpnt_destructor to make sure the client handles are
3403 * cleaned up before the RPC endpoints.  This becomes a no-op if
3404 * clfini_zone (above) is called first.  This function is needed
3405 * (rather than relying on clfini_zone to clean up) because the ZSD
3406 * callbacks have no ordering mechanism, so we have no way to ensure
3407 * that clfini_zone is called before endpnt_destructor.
3408 */
3409void
3410clcleanup_zone(zoneid_t zoneid)
3411{
3412	struct nfs_clnt *nfscl;
3413
3414	mutex_enter(&nfs_clnt_list_lock);
3415	nfscl = list_head(&nfs_clnt_list);
3416	for (; nfscl != NULL; nfscl = list_next(&nfs_clnt_list, nfscl)) {
3417		if (nfscl->nfscl_zoneid == zoneid) {
3418			clreclaim_zone(nfscl, 0);
3419			break;
3420		}
3421	}
3422	mutex_exit(&nfs_clnt_list_lock);
3423}
3424
3425int
3426nfs_subrinit(void)
3427{
3428	int i;
3429	ulong_t nrnode_max;
3430
3431	/*
3432	 * Allocate and initialize the rnode hash queues
3433	 */
3434	if (nrnode <= 0)
3435		nrnode = ncsize;
3436	nrnode_max = (ulong_t)((kmem_maxavail() >> 2) / sizeof (struct rnode));
3437	if (nrnode > nrnode_max || (nrnode == 0 && ncsize == 0)) {
3438		zcmn_err(GLOBAL_ZONEID, CE_NOTE,
3439		    "setting nrnode to max value of %ld", nrnode_max);
3440		nrnode = nrnode_max;
3441	}
3442
3443	rtablesize = 1 << highbit(nrnode / hashlen);
3444	rtablemask = rtablesize - 1;
3445	rtable = kmem_alloc(rtablesize * sizeof (*rtable), KM_SLEEP);
3446	for (i = 0; i < rtablesize; i++) {
3447		rtable[i].r_hashf = (rnode_t *)(&rtable[i]);
3448		rtable[i].r_hashb = (rnode_t *)(&rtable[i]);
3449		rw_init(&rtable[i].r_lock, NULL, RW_DEFAULT, NULL);
3450	}
3451	rnode_cache = kmem_cache_create("rnode_cache", sizeof (rnode_t),
3452	    0, NULL, NULL, nfs_reclaim, NULL, NULL, 0);
3453
3454	/*
3455	 * Allocate and initialize the access cache
3456	 */
3457
3458	/*
3459	 * Initial guess is one access cache entry per rnode unless
3460	 * nacache is set to a non-zero value and then it is used to
3461	 * indicate a guess at the number of access cache entries.
3462	 */
3463	if (nacache > 0)
3464		acachesize = 1 << highbit(nacache / hashlen);
3465	else
3466		acachesize = rtablesize;
3467	acachemask = acachesize - 1;
3468	acache = kmem_alloc(acachesize * sizeof (*acache), KM_SLEEP);
3469	for (i = 0; i < acachesize; i++) {
3470		acache[i].next = (acache_t *)&acache[i];
3471		acache[i].prev = (acache_t *)&acache[i];
3472		rw_init(&acache[i].lock, NULL, RW_DEFAULT, NULL);
3473	}
3474	acache_cache = kmem_cache_create("nfs_access_cache",
3475	    sizeof (acache_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3476	/*
3477	 * Allocate and initialize the client handle cache
3478	 */
3479	chtab_cache = kmem_cache_create("client_handle_cache",
3480	    sizeof (struct chtab), 0, NULL, NULL, clreclaim, NULL, NULL, 0);
3481	/*
3482	 * Initialize the list of per-zone client handles (and associated data).
3483	 * This needs to be done before we call zone_key_create().
3484	 */
3485	list_create(&nfs_clnt_list, sizeof (struct nfs_clnt),
3486	    offsetof(struct nfs_clnt, nfscl_node));
3487	/*
3488	 * Initialize the zone_key for per-zone client handle lists.
3489	 */
3490	zone_key_create(&nfsclnt_zone_key, clinit_zone, NULL, clfini_zone);
3491	/*
3492	 * Initialize the various mutexes and reader/writer locks
3493	 */
3494	mutex_init(&rpfreelist_lock, NULL, MUTEX_DEFAULT, NULL);
3495	mutex_init(&newnum_lock, NULL, MUTEX_DEFAULT, NULL);
3496	mutex_init(&nfs_minor_lock, NULL, MUTEX_DEFAULT, NULL);
3497
3498	/*
3499	 * Assign unique major number for all nfs mounts
3500	 */
3501	if ((nfs_major = getudev()) == -1) {
3502		zcmn_err(GLOBAL_ZONEID, CE_WARN,
3503		    "nfs: init: can't get unique device number");
3504		nfs_major = 0;
3505	}
3506	nfs_minor = 0;
3507
3508	if (nfs3_jukebox_delay == 0)
3509		nfs3_jukebox_delay = NFS3_JUKEBOX_DELAY;
3510
3511	return (0);
3512}
3513
3514void
3515nfs_subrfini(void)
3516{
3517	int i;
3518
3519	/*
3520	 * Deallocate the rnode hash queues
3521	 */
3522	kmem_cache_destroy(rnode_cache);
3523
3524	for (i = 0; i < rtablesize; i++)
3525		rw_destroy(&rtable[i].r_lock);
3526	kmem_free(rtable, rtablesize * sizeof (*rtable));
3527
3528	/*
3529	 * Deallocated the access cache
3530	 */
3531	kmem_cache_destroy(acache_cache);
3532
3533	for (i = 0; i < acachesize; i++)
3534		rw_destroy(&acache[i].lock);
3535	kmem_free(acache, acachesize * sizeof (*acache));
3536
3537	/*
3538	 * Deallocate the client handle cache
3539	 */
3540	kmem_cache_destroy(chtab_cache);
3541
3542	/*
3543	 * Destroy the various mutexes and reader/writer locks
3544	 */
3545	mutex_destroy(&rpfreelist_lock);
3546	mutex_destroy(&newnum_lock);
3547	mutex_destroy(&nfs_minor_lock);
3548	(void) zone_key_delete(nfsclnt_zone_key);
3549}
3550
3551enum nfsstat
3552puterrno(int error)
3553{
3554
3555	switch (error) {
3556	case EOPNOTSUPP:
3557		return (NFSERR_OPNOTSUPP);
3558	case ENAMETOOLONG:
3559		return (NFSERR_NAMETOOLONG);
3560	case ENOTEMPTY:
3561		return (NFSERR_NOTEMPTY);
3562	case EDQUOT:
3563		return (NFSERR_DQUOT);
3564	case ESTALE:
3565		return (NFSERR_STALE);
3566	case EREMOTE:
3567		return (NFSERR_REMOTE);
3568	case ENOSYS:
3569		return (NFSERR_OPNOTSUPP);
3570	case EOVERFLOW:
3571		return (NFSERR_INVAL);
3572	default:
3573		return ((enum nfsstat)error);
3574	}
3575	/* NOTREACHED */
3576}
3577
3578int
3579geterrno(enum nfsstat status)
3580{
3581
3582	switch (status) {
3583	case NFSERR_OPNOTSUPP:
3584		return (EOPNOTSUPP);
3585	case NFSERR_NAMETOOLONG:
3586		return (ENAMETOOLONG);
3587	case NFSERR_NOTEMPTY:
3588		return (ENOTEMPTY);
3589	case NFSERR_DQUOT:
3590		return (EDQUOT);
3591	case NFSERR_STALE:
3592		return (ESTALE);
3593	case NFSERR_REMOTE:
3594		return (EREMOTE);
3595	case NFSERR_WFLUSH:
3596		return (EIO);
3597	default:
3598		return ((int)status);
3599	}
3600	/* NOTREACHED */
3601}
3602
3603enum nfsstat3
3604puterrno3(int error)
3605{
3606
3607#ifdef DEBUG
3608	switch (error) {
3609	case 0:
3610		return (NFS3_OK);
3611	case EPERM:
3612		return (NFS3ERR_PERM);
3613	case ENOENT:
3614		return (NFS3ERR_NOENT);
3615	case EIO:
3616		return (NFS3ERR_IO);
3617	case ENXIO:
3618		return (NFS3ERR_NXIO);
3619	case EACCES:
3620		return (NFS3ERR_ACCES);
3621	case EEXIST:
3622		return (NFS3ERR_EXIST);
3623	case EXDEV:
3624		return (NFS3ERR_XDEV);
3625	case ENODEV:
3626		return (NFS3ERR_NODEV);
3627	case ENOTDIR:
3628		return (NFS3ERR_NOTDIR);
3629	case EISDIR:
3630		return (NFS3ERR_ISDIR);
3631	case EINVAL:
3632		return (NFS3ERR_INVAL);
3633	case EFBIG:
3634		return (NFS3ERR_FBIG);
3635	case ENOSPC:
3636		return (NFS3ERR_NOSPC);
3637	case EROFS:
3638		return (NFS3ERR_ROFS);
3639	case EMLINK:
3640		return (NFS3ERR_MLINK);
3641	case ENAMETOOLONG:
3642		return (NFS3ERR_NAMETOOLONG);
3643	case ENOTEMPTY:
3644		return (NFS3ERR_NOTEMPTY);
3645	case EDQUOT:
3646		return (NFS3ERR_DQUOT);
3647	case ESTALE:
3648		return (NFS3ERR_STALE);
3649	case EREMOTE:
3650		return (NFS3ERR_REMOTE);
3651	case ENOSYS:
3652	case EOPNOTSUPP:
3653		return (NFS3ERR_NOTSUPP);
3654	case EOVERFLOW:
3655		return (NFS3ERR_INVAL);
3656	default:
3657		zcmn_err(getzoneid(), CE_WARN,
3658		    "puterrno3: got error %d", error);
3659		return ((enum nfsstat3)error);
3660	}
3661#else
3662	switch (error) {
3663	case ENAMETOOLONG:
3664		return (NFS3ERR_NAMETOOLONG);
3665	case ENOTEMPTY:
3666		return (NFS3ERR_NOTEMPTY);
3667	case EDQUOT:
3668		return (NFS3ERR_DQUOT);
3669	case ESTALE:
3670		return (NFS3ERR_STALE);
3671	case ENOSYS:
3672	case EOPNOTSUPP:
3673		return (NFS3ERR_NOTSUPP);
3674	case EREMOTE:
3675		return (NFS3ERR_REMOTE);
3676	case EOVERFLOW:
3677		return (NFS3ERR_INVAL);
3678	default:
3679		return ((enum nfsstat3)error);
3680	}
3681#endif
3682}
3683
3684int
3685geterrno3(enum nfsstat3 status)
3686{
3687
3688#ifdef DEBUG
3689	switch (status) {
3690	case NFS3_OK:
3691		return (0);
3692	case NFS3ERR_PERM:
3693		return (EPERM);
3694	case NFS3ERR_NOENT:
3695		return (ENOENT);
3696	case NFS3ERR_IO:
3697		return (EIO);
3698	case NFS3ERR_NXIO:
3699		return (ENXIO);
3700	case NFS3ERR_ACCES:
3701		return (EACCES);
3702	case NFS3ERR_EXIST:
3703		return (EEXIST);
3704	case NFS3ERR_XDEV:
3705		return (EXDEV);
3706	case NFS3ERR_NODEV:
3707		return (ENODEV);
3708	case NFS3ERR_NOTDIR:
3709		return (ENOTDIR);
3710	case NFS3ERR_ISDIR:
3711		return (EISDIR);
3712	case NFS3ERR_INVAL:
3713		return (EINVAL);
3714	case NFS3ERR_FBIG:
3715		return (EFBIG);
3716	case NFS3ERR_NOSPC:
3717		return (ENOSPC);
3718	case NFS3ERR_ROFS:
3719		return (EROFS);
3720	case NFS3ERR_MLINK:
3721		return (EMLINK);
3722	case NFS3ERR_NAMETOOLONG:
3723		return (ENAMETOOLONG);
3724	case NFS3ERR_NOTEMPTY:
3725		return (ENOTEMPTY);
3726	case NFS3ERR_DQUOT:
3727		return (EDQUOT);
3728	case NFS3ERR_STALE:
3729		return (ESTALE);
3730	case NFS3ERR_REMOTE:
3731		return (EREMOTE);
3732	case NFS3ERR_BADHANDLE:
3733		return (ESTALE);
3734	case NFS3ERR_NOT_SYNC:
3735		return (EINVAL);
3736	case NFS3ERR_BAD_COOKIE:
3737		return (ENOENT);
3738	case NFS3ERR_NOTSUPP:
3739		return (EOPNOTSUPP);
3740	case NFS3ERR_TOOSMALL:
3741		return (EINVAL);
3742	case NFS3ERR_SERVERFAULT:
3743		return (EIO);
3744	case NFS3ERR_BADTYPE:
3745		return (EINVAL);
3746	case NFS3ERR_JUKEBOX:
3747		return (ENXIO);
3748	default:
3749		zcmn_err(getzoneid(), CE_WARN,
3750		    "geterrno3: got status %d", status);
3751		return ((int)status);
3752	}
3753#else
3754	switch (status) {
3755	case NFS3ERR_NAMETOOLONG:
3756		return (ENAMETOOLONG);
3757	case NFS3ERR_NOTEMPTY:
3758		return (ENOTEMPTY);
3759	case NFS3ERR_DQUOT:
3760		return (EDQUOT);
3761	case NFS3ERR_STALE:
3762	case NFS3ERR_BADHANDLE:
3763		return (ESTALE);
3764	case NFS3ERR_NOTSUPP:
3765		return (EOPNOTSUPP);
3766	case NFS3ERR_REMOTE:
3767		return (EREMOTE);
3768	case NFS3ERR_NOT_SYNC:
3769	case NFS3ERR_TOOSMALL:
3770	case NFS3ERR_BADTYPE:
3771		return (EINVAL);
3772	case NFS3ERR_BAD_COOKIE:
3773		return (ENOENT);
3774	case NFS3ERR_SERVERFAULT:
3775		return (EIO);
3776	case NFS3ERR_JUKEBOX:
3777		return (ENXIO);
3778	default:
3779		return ((int)status);
3780	}
3781#endif
3782}
3783
3784rddir_cache *
3785rddir_cache_alloc(int flags)
3786{
3787	rddir_cache *rc;
3788
3789	rc = kmem_alloc(sizeof (*rc), flags);
3790	if (rc != NULL) {
3791		rc->entries = NULL;
3792		rc->flags = RDDIR;
3793		cv_init(&rc->cv, NULL, CV_DEFAULT, NULL);
3794		mutex_init(&rc->lock, NULL, MUTEX_DEFAULT, NULL);
3795		rc->count = 1;
3796#ifdef DEBUG
3797		atomic_add_64(&clstat_debug.dirent.value.ui64, 1);
3798#endif
3799	}
3800	return (rc);
3801}
3802
3803static void
3804rddir_cache_free(rddir_cache *rc)
3805{
3806
3807#ifdef DEBUG
3808	atomic_add_64(&clstat_debug.dirent.value.ui64, -1);
3809#endif
3810	if (rc->entries != NULL) {
3811#ifdef DEBUG
3812		rddir_cache_buf_free(rc->entries, rc->buflen);
3813#else
3814		kmem_free(rc->entries, rc->buflen);
3815#endif
3816	}
3817	cv_destroy(&rc->cv);
3818	mutex_destroy(&rc->lock);
3819	kmem_free(rc, sizeof (*rc));
3820}
3821
3822void
3823rddir_cache_hold(rddir_cache *rc)
3824{
3825
3826	mutex_enter(&rc->lock);
3827	rc->count++;
3828	mutex_exit(&rc->lock);
3829}
3830
3831void
3832rddir_cache_rele(rddir_cache *rc)
3833{
3834
3835	mutex_enter(&rc->lock);
3836	ASSERT(rc->count > 0);
3837	if (--rc->count == 0) {
3838		mutex_exit(&rc->lock);
3839		rddir_cache_free(rc);
3840	} else
3841		mutex_exit(&rc->lock);
3842}
3843
3844#ifdef DEBUG
3845char *
3846rddir_cache_buf_alloc(size_t size, int flags)
3847{
3848	char *rc;
3849
3850	rc = kmem_alloc(size, flags);
3851	if (rc != NULL)
3852		atomic_add_64(&clstat_debug.dirents.value.ui64, size);
3853	return (rc);
3854}
3855
3856void
3857rddir_cache_buf_free(void *addr, size_t size)
3858{
3859
3860	atomic_add_64(&clstat_debug.dirents.value.ui64, -(int64_t)size);
3861	kmem_free(addr, size);
3862}
3863#endif
3864
3865static int
3866nfs_free_data_reclaim(rnode_t *rp)
3867{
3868	char *contents;
3869	int size;
3870	vsecattr_t *vsp;
3871	nfs3_pathconf_info *info;
3872	int freed;
3873	cred_t *cred;
3874
3875	/*
3876	 * Free any held credentials and caches which
3877	 * may be associated with this rnode.
3878	 */
3879	mutex_enter(&rp->r_statelock);
3880	cred = rp->r_cred;
3881	rp->r_cred = NULL;
3882	contents = rp->r_symlink.contents;
3883	size = rp->r_symlink.size;
3884	rp->r_symlink.contents = NULL;
3885	vsp = rp->r_secattr;
3886	rp->r_secattr = NULL;
3887	info = rp->r_pathconf;
3888	rp->r_pathconf = NULL;
3889	mutex_exit(&rp->r_statelock);
3890
3891	if (cred != NULL)
3892		crfree(cred);
3893
3894	/*
3895	 * Free the access cache entries.
3896	 */
3897	freed = nfs_access_purge_rp(rp);
3898
3899	if (!HAVE_RDDIR_CACHE(rp) &&
3900	    contents == NULL &&
3901	    vsp == NULL &&
3902	    info == NULL)
3903		return (freed);
3904
3905	/*
3906	 * Free the readdir cache entries
3907	 */
3908	if (HAVE_RDDIR_CACHE(rp))
3909		nfs_purge_rddir_cache(RTOV(rp));
3910
3911	/*
3912	 * Free the symbolic link cache.
3913	 */
3914	if (contents != NULL) {
3915
3916		kmem_free((void *)contents, size);
3917	}
3918
3919	/*
3920	 * Free any cached ACL.
3921	 */
3922	if (vsp != NULL)
3923		nfs_acl_free(vsp);
3924
3925	/*
3926	 * Free any cached pathconf information.
3927	 */
3928	if (info != NULL)
3929		kmem_free(info, sizeof (*info));
3930
3931	return (1);
3932}
3933
3934static int
3935nfs_active_data_reclaim(rnode_t *rp)
3936{
3937	char *contents;
3938	int size;
3939	vsecattr_t *vsp;
3940	nfs3_pathconf_info *info;
3941	int freed;
3942
3943	/*
3944	 * Free any held credentials and caches which
3945	 * may be associated with this rnode.
3946	 */
3947	if (!mutex_tryenter(&rp->r_statelock))
3948		return (0);
3949	contents = rp->r_symlink.contents;
3950	size = rp->r_symlink.size;
3951	rp->r_symlink.contents = NULL;
3952	vsp = rp->r_secattr;
3953	rp->r_secattr = NULL;
3954	info = rp->r_pathconf;
3955	rp->r_pathconf = NULL;
3956	mutex_exit(&rp->r_statelock);
3957
3958	/*
3959	 * Free the access cache entries.
3960	 */
3961	freed = nfs_access_purge_rp(rp);
3962
3963	if (!HAVE_RDDIR_CACHE(rp) &&
3964	    contents == NULL &&
3965	    vsp == NULL &&
3966	    info == NULL)
3967		return (freed);
3968
3969	/*
3970	 * Free the readdir cache entries
3971	 */
3972	if (HAVE_RDDIR_CACHE(rp))
3973		nfs_purge_rddir_cache(RTOV(rp));
3974
3975	/*
3976	 * Free the symbolic link cache.
3977	 */
3978	if (contents != NULL) {
3979
3980		kmem_free((void *)contents, size);
3981	}
3982
3983	/*
3984	 * Free any cached ACL.
3985	 */
3986	if (vsp != NULL)
3987		nfs_acl_free(vsp);
3988
3989	/*
3990	 * Free any cached pathconf information.
3991	 */
3992	if (info != NULL)
3993		kmem_free(info, sizeof (*info));
3994
3995	return (1);
3996}
3997
3998static int
3999nfs_free_reclaim(void)
4000{
4001	int freed;
4002	rnode_t *rp;
4003
4004#ifdef DEBUG
4005	clstat_debug.f_reclaim.value.ui64++;
4006#endif
4007	freed = 0;
4008	mutex_enter(&rpfreelist_lock);
4009	rp = rpfreelist;
4010	if (rp != NULL) {
4011		do {
4012			if (nfs_free_data_reclaim(rp))
4013				freed = 1;
4014		} while ((rp = rp->r_freef) != rpfreelist);
4015	}
4016	mutex_exit(&rpfreelist_lock);
4017	return (freed);
4018}
4019
4020static int
4021nfs_active_reclaim(void)
4022{
4023	int freed;
4024	int index;
4025	rnode_t *rp;
4026
4027#ifdef DEBUG
4028	clstat_debug.a_reclaim.value.ui64++;
4029#endif
4030	freed = 0;
4031	for (index = 0; index < rtablesize; index++) {
4032		rw_enter(&rtable[index].r_lock, RW_READER);
4033		for (rp = rtable[index].r_hashf;
4034		    rp != (rnode_t *)(&rtable[index]);
4035		    rp = rp->r_hashf) {
4036			if (nfs_active_data_reclaim(rp))
4037				freed = 1;
4038		}
4039		rw_exit(&rtable[index].r_lock);
4040	}
4041	return (freed);
4042}
4043
4044static int
4045nfs_rnode_reclaim(void)
4046{
4047	int freed;
4048	rnode_t *rp;
4049	vnode_t *vp;
4050
4051#ifdef DEBUG
4052	clstat_debug.r_reclaim.value.ui64++;
4053#endif
4054	freed = 0;
4055	mutex_enter(&rpfreelist_lock);
4056	while ((rp = rpfreelist) != NULL) {
4057		rp_rmfree(rp);
4058		mutex_exit(&rpfreelist_lock);
4059		if (rp->r_flags & RHASHED) {
4060			vp = RTOV(rp);
4061			rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
4062			mutex_enter(&vp->v_lock);
4063			if (vp->v_count > 1) {
4064				vp->v_count--;
4065				mutex_exit(&vp->v_lock);
4066				rw_exit(&rp->r_hashq->r_lock);
4067				mutex_enter(&rpfreelist_lock);
4068				continue;
4069			}
4070			mutex_exit(&vp->v_lock);
4071			rp_rmhash_locked(rp);
4072			rw_exit(&rp->r_hashq->r_lock);
4073		}
4074		/*
4075		 * This call to rp_addfree will end up destroying the
4076		 * rnode, but in a safe way with the appropriate set
4077		 * of checks done.
4078		 */
4079		rp_addfree(rp, CRED());
4080		mutex_enter(&rpfreelist_lock);
4081	}
4082	mutex_exit(&rpfreelist_lock);
4083	return (freed);
4084}
4085
4086/*ARGSUSED*/
4087static void
4088nfs_reclaim(void *cdrarg)
4089{
4090
4091#ifdef DEBUG
4092	clstat_debug.reclaim.value.ui64++;
4093#endif
4094	if (nfs_free_reclaim())
4095		return;
4096
4097	if (nfs_active_reclaim())
4098		return;
4099
4100	(void) nfs_rnode_reclaim();
4101}
4102
4103/*
4104 * NFS client failover support
4105 *
4106 * Routines to copy filehandles
4107 */
4108void
4109nfscopyfh(caddr_t fhp, vnode_t *vp)
4110{
4111	fhandle_t *dest = (fhandle_t *)fhp;
4112
4113	if (dest != NULL)
4114		*dest = *VTOFH(vp);
4115}
4116
4117void
4118nfs3copyfh(caddr_t fhp, vnode_t *vp)
4119{
4120	nfs_fh3 *dest = (nfs_fh3 *)fhp;
4121
4122	if (dest != NULL)
4123		*dest = *VTOFH3(vp);
4124}
4125
4126/*
4127 * NFS client failover support
4128 *
4129 * failover_safe() will test various conditions to ensure that
4130 * failover is permitted for this vnode.  It will be denied
4131 * if:
4132 *	1) the operation in progress does not support failover (NULL fi)
4133 *	2) there are no available replicas (NULL mi_servers->sv_next)
4134 *	3) any locks are outstanding on this file
4135 */
4136static int
4137failover_safe(failinfo_t *fi)
4138{
4139
4140	/*
4141	 * Does this op permit failover?
4142	 */
4143	if (fi == NULL || fi->vp == NULL)
4144		return (0);
4145
4146	/*
4147	 * Are there any alternates to failover to?
4148	 */
4149	if (VTOMI(fi->vp)->mi_servers->sv_next == NULL)
4150		return (0);
4151
4152	/*
4153	 * Disable check; we've forced local locking
4154	 *
4155	 * if (flk_has_remote_locks(fi->vp))
4156	 *	return (0);
4157	 */
4158
4159	/*
4160	 * If we have no partial path, we can't do anything
4161	 */
4162	if (VTOR(fi->vp)->r_path == NULL)
4163		return (0);
4164
4165	return (1);
4166}
4167
4168#include <sys/thread.h>
4169
4170/*
4171 * NFS client failover support
4172 *
4173 * failover_newserver() will start a search for a new server,
4174 * preferably by starting an async thread to do the work.  If
4175 * someone is already doing this (recognizable by MI_BINDINPROG
4176 * being set), it will simply return and the calling thread
4177 * will queue on the mi_failover_cv condition variable.
4178 */
4179static void
4180failover_newserver(mntinfo_t *mi)
4181{
4182	/*
4183	 * Check if someone else is doing this already
4184	 */
4185	mutex_enter(&mi->mi_lock);
4186	if (mi->mi_flags & MI_BINDINPROG) {
4187		mutex_exit(&mi->mi_lock);
4188		return;
4189	}
4190	mi->mi_flags |= MI_BINDINPROG;
4191
4192	/*
4193	 * Need to hold the vfs struct so that it can't be released
4194	 * while the failover thread is selecting a new server.
4195	 */
4196	VFS_HOLD(mi->mi_vfsp);
4197
4198	/*
4199	 * Start a thread to do the real searching.
4200	 */
4201	(void) zthread_create(NULL, 0, failover_thread, mi, 0, minclsyspri);
4202
4203	mutex_exit(&mi->mi_lock);
4204}
4205
4206/*
4207 * NFS client failover support
4208 *
4209 * failover_thread() will find a new server to replace the one
4210 * currently in use, wake up other threads waiting on this mount
4211 * point, and die.  It will start at the head of the server list
4212 * and poll servers until it finds one with an NFS server which is
4213 * registered and responds to a NULL procedure ping.
4214 *
4215 * XXX failover_thread is unsafe within the scope of the
4216 * present model defined for cpr to suspend the system.
4217 * Specifically, over-the-wire calls made by the thread
4218 * are unsafe. The thread needs to be reevaluated in case of
4219 * future updates to the cpr suspend model.
4220 */
4221static void
4222failover_thread(mntinfo_t *mi)
4223{
4224	servinfo_t *svp = NULL;
4225	CLIENT *cl;
4226	enum clnt_stat status;
4227	struct timeval tv;
4228	int error;
4229	int oncethru = 0;
4230	callb_cpr_t cprinfo;
4231	rnode_t *rp;
4232	int index;
4233	char *srvnames;
4234	size_t srvnames_len;
4235	struct nfs_clnt *nfscl = NULL;
4236	zoneid_t zoneid = getzoneid();
4237
4238#ifdef DEBUG
4239	/*
4240	 * This is currently only needed to access counters which exist on
4241	 * DEBUG kernels, hence we don't want to pay the penalty of the lookup
4242	 * on non-DEBUG kernels.
4243	 */
4244	nfscl = zone_getspecific(nfsclnt_zone_key, nfs_zone());
4245	ASSERT(nfscl != NULL);
4246#endif
4247
4248	/*
4249	 * Its safe to piggyback on the mi_lock since failover_newserver()
4250	 * code guarantees that there will be only one failover thread
4251	 * per mountinfo at any instance.
4252	 */
4253	CALLB_CPR_INIT(&cprinfo, &mi->mi_lock, callb_generic_cpr,
4254	    "failover_thread");
4255
4256	mutex_enter(&mi->mi_lock);
4257	while (mi->mi_readers) {
4258		CALLB_CPR_SAFE_BEGIN(&cprinfo);
4259		cv_wait(&mi->mi_failover_cv, &mi->mi_lock);
4260		CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_lock);
4261	}
4262	mutex_exit(&mi->mi_lock);
4263
4264	tv.tv_sec = 2;
4265	tv.tv_usec = 0;
4266
4267	/*
4268	 * Ping the null NFS procedure of every server in
4269	 * the list until one responds.  We always start
4270	 * at the head of the list and always skip the one
4271	 * that is current, since it's caused us a problem.
4272	 */
4273	while (svp == NULL) {
4274		for (svp = mi->mi_servers; svp; svp = svp->sv_next) {
4275			if (!oncethru && svp == mi->mi_curr_serv)
4276				continue;
4277
4278			/*
4279			 * If the file system was forcibly umounted
4280			 * while trying to do a failover, then just
4281			 * give up on the failover.  It won't matter
4282			 * what the server is.
4283			 */
4284			if (FS_OR_ZONE_GONE(mi->mi_vfsp)) {
4285				svp = NULL;
4286				goto done;
4287			}
4288
4289			error = clnt_tli_kcreate(svp->sv_knconf, &svp->sv_addr,
4290			    NFS_PROGRAM, NFS_VERSION, 0, 1, CRED(), &cl);
4291			if (error)
4292				continue;
4293
4294			if (!(mi->mi_flags & MI_INT))
4295				cl->cl_nosignal = TRUE;
4296			status = CLNT_CALL(cl, RFS_NULL, xdr_void, NULL,
4297			    xdr_void, NULL, tv);
4298			if (!(mi->mi_flags & MI_INT))
4299				cl->cl_nosignal = FALSE;
4300			AUTH_DESTROY(cl->cl_auth);
4301			CLNT_DESTROY(cl);
4302			if (status == RPC_SUCCESS) {
4303				if (svp == mi->mi_curr_serv) {
4304#ifdef DEBUG
4305					zcmn_err(zoneid, CE_NOTE,
4306			"NFS%d: failing over: selecting original server %s",
4307					    mi->mi_vers, svp->sv_hostname);
4308#else
4309					zcmn_err(zoneid, CE_NOTE,
4310			"NFS: failing over: selecting original server %s",
4311					    svp->sv_hostname);
4312#endif
4313				} else {
4314#ifdef DEBUG
4315					zcmn_err(zoneid, CE_NOTE,
4316				    "NFS%d: failing over from %s to %s",
4317					    mi->mi_vers,
4318					    mi->mi_curr_serv->sv_hostname,
4319					    svp->sv_hostname);
4320#else
4321					zcmn_err(zoneid, CE_NOTE,
4322				    "NFS: failing over from %s to %s",
4323					    mi->mi_curr_serv->sv_hostname,
4324					    svp->sv_hostname);
4325#endif
4326				}
4327				break;
4328			}
4329		}
4330
4331		if (svp == NULL) {
4332			if (!oncethru) {
4333				srvnames = nfs_getsrvnames(mi, &srvnames_len);
4334#ifdef DEBUG
4335				zprintf(zoneid,
4336				    "NFS%d servers %s not responding "
4337				    "still trying\n", mi->mi_vers, srvnames);
4338#else
4339				zprintf(zoneid, "NFS servers %s not responding "
4340				    "still trying\n", srvnames);
4341#endif
4342				oncethru = 1;
4343			}
4344			mutex_enter(&mi->mi_lock);
4345			CALLB_CPR_SAFE_BEGIN(&cprinfo);
4346			mutex_exit(&mi->mi_lock);
4347			delay(hz);
4348			mutex_enter(&mi->mi_lock);
4349			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_lock);
4350			mutex_exit(&mi->mi_lock);
4351		}
4352	}
4353
4354	if (oncethru) {
4355#ifdef DEBUG
4356		zprintf(zoneid, "NFS%d servers %s ok\n", mi->mi_vers, srvnames);
4357#else
4358		zprintf(zoneid, "NFS servers %s ok\n", srvnames);
4359#endif
4360	}
4361
4362	if (svp != mi->mi_curr_serv) {
4363		(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
4364		index = rtablehash(&mi->mi_curr_serv->sv_fhandle);
4365		rw_enter(&rtable[index].r_lock, RW_WRITER);
4366		rp = rfind(&rtable[index], &mi->mi_curr_serv->sv_fhandle,
4367		    mi->mi_vfsp);
4368		if (rp != NULL) {
4369			if (rp->r_flags & RHASHED)
4370				rp_rmhash_locked(rp);
4371			rw_exit(&rtable[index].r_lock);
4372			rp->r_server = svp;
4373			rp->r_fh = svp->sv_fhandle;
4374			(void) nfs_free_data_reclaim(rp);
4375			index = rtablehash(&rp->r_fh);
4376			rp->r_hashq = &rtable[index];
4377			rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
4378			vn_exists(RTOV(rp));
4379			rp_addhash(rp);
4380			rw_exit(&rp->r_hashq->r_lock);
4381			VN_RELE(RTOV(rp));
4382		} else
4383			rw_exit(&rtable[index].r_lock);
4384	}
4385
4386done:
4387	if (oncethru)
4388		kmem_free(srvnames, srvnames_len);
4389	mutex_enter(&mi->mi_lock);
4390	mi->mi_flags &= ~MI_BINDINPROG;
4391	if (svp != NULL) {
4392		mi->mi_curr_serv = svp;
4393		mi->mi_failover++;
4394#ifdef DEBUG
4395	nfscl->nfscl_stat.failover.value.ui64++;
4396#endif
4397	}
4398	cv_broadcast(&mi->mi_failover_cv);
4399	CALLB_CPR_EXIT(&cprinfo);
4400	VFS_RELE(mi->mi_vfsp);
4401	zthread_exit();
4402	/* NOTREACHED */
4403}
4404
4405/*
4406 * NFS client failover support
4407 *
4408 * failover_wait() will put the thread to sleep until MI_BINDINPROG
4409 * is cleared, meaning that failover is complete.  Called with
4410 * mi_lock mutex held.
4411 */
4412static int
4413failover_wait(mntinfo_t *mi)
4414{
4415	k_sigset_t smask;
4416
4417	/*
4418	 * If someone else is hunting for a living server,
4419	 * sleep until it's done.  After our sleep, we may
4420	 * be bound to the right server and get off cheaply.
4421	 */
4422	while (mi->mi_flags & MI_BINDINPROG) {
4423		/*
4424		 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
4425		 * and SIGTERM. (Preserving the existing masks).
4426		 * Mask out SIGINT if mount option nointr is specified.
4427		 */
4428		sigintr(&smask, (int)mi->mi_flags & MI_INT);
4429		if (!cv_wait_sig(&mi->mi_failover_cv, &mi->mi_lock)) {
4430			/*
4431			 * restore original signal mask
4432			 */
4433			sigunintr(&smask);
4434			return (EINTR);
4435		}
4436		/*
4437		 * restore original signal mask
4438		 */
4439		sigunintr(&smask);
4440	}
4441	return (0);
4442}
4443
4444/*
4445 * NFS client failover support
4446 *
4447 * failover_remap() will do a partial pathname lookup and find the
4448 * desired vnode on the current server.  The interim vnode will be
4449 * discarded after we pilfer the new filehandle.
4450 *
4451 * Side effects:
4452 * - This routine will also update the filehandle in the args structure
4453 *    pointed to by the fi->fhp pointer if it is non-NULL.
4454 */
4455
4456static int
4457failover_remap(failinfo_t *fi)
4458{
4459	vnode_t *vp, *nvp, *rootvp;
4460	rnode_t *rp, *nrp;
4461	mntinfo_t *mi;
4462	int error;
4463#ifdef DEBUG
4464	struct nfs_clnt *nfscl;
4465
4466	nfscl = zone_getspecific(nfsclnt_zone_key, nfs_zone());
4467	ASSERT(nfscl != NULL);
4468#endif
4469	/*
4470	 * Sanity check
4471	 */
4472	if (fi == NULL || fi->vp == NULL || fi->lookupproc == NULL)
4473		return (EINVAL);
4474	vp = fi->vp;
4475	rp = VTOR(vp);
4476	mi = VTOMI(vp);
4477
4478	if (!(vp->v_flag & VROOT)) {
4479		/*
4480		 * Given the root fh, use the path stored in
4481		 * the rnode to find the fh for the new server.
4482		 */
4483		error = VFS_ROOT(mi->mi_vfsp, &rootvp);
4484		if (error)
4485			return (error);
4486
4487		error = failover_lookup(rp->r_path, rootvp,
4488		    fi->lookupproc, fi->xattrdirproc, &nvp);
4489
4490		VN_RELE(rootvp);
4491
4492		if (error)
4493			return (error);
4494
4495		/*
4496		 * If we found the same rnode, we're done now
4497		 */
4498		if (nvp == vp) {
4499			/*
4500			 * Failed and the new server may physically be same
4501			 * OR may share a same disk subsystem. In this case
4502			 * file handle for a particular file path is not going
4503			 * to change, given the same filehandle lookup will
4504			 * always locate the same rnode as the existing one.
4505			 * All we might need to do is to update the r_server
4506			 * with the current servinfo.
4507			 */
4508			if (!VALID_FH(fi)) {
4509				rp->r_server = mi->mi_curr_serv;
4510			}
4511			VN_RELE(nvp);
4512			return (0);
4513		}
4514
4515		/*
4516		 * Try to make it so that no one else will find this
4517		 * vnode because it is just a temporary to hold the
4518		 * new file handle until that file handle can be
4519		 * copied to the original vnode/rnode.
4520		 */
4521		nrp = VTOR(nvp);
4522		mutex_enter(&mi->mi_remap_lock);
4523		/*
4524		 * Some other thread could have raced in here and could
4525		 * have done the remap for this particular rnode before
4526		 * this thread here. Check for rp->r_server and
4527		 * mi->mi_curr_serv and return if they are same.
4528		 */
4529		if (VALID_FH(fi)) {
4530			mutex_exit(&mi->mi_remap_lock);
4531			VN_RELE(nvp);
4532			return (0);
4533		}
4534
4535		if (nrp->r_flags & RHASHED)
4536			rp_rmhash(nrp);
4537
4538		/*
4539		 * As a heuristic check on the validity of the new
4540		 * file, check that the size and type match against
4541		 * that we remember from the old version.
4542		 */
4543		if (rp->r_size != nrp->r_size || vp->v_type != nvp->v_type) {
4544			mutex_exit(&mi->mi_remap_lock);
4545			zcmn_err(mi->mi_zone->zone_id, CE_WARN,
4546			    "NFS replicas %s and %s: file %s not same.",
4547			    rp->r_server->sv_hostname,
4548			    nrp->r_server->sv_hostname, rp->r_path);
4549			VN_RELE(nvp);
4550			return (EINVAL);
4551		}
4552
4553		/*
4554		 * snarf the filehandle from the new rnode
4555		 * then release it, again while updating the
4556		 * hash queues for the rnode.
4557		 */
4558		if (rp->r_flags & RHASHED)
4559			rp_rmhash(rp);
4560		rp->r_server = mi->mi_curr_serv;
4561		rp->r_fh = nrp->r_fh;
4562		rp->r_hashq = nrp->r_hashq;
4563		/*
4564		 * Copy the attributes from the new rnode to the old
4565		 * rnode.  This will help to reduce unnecessary page
4566		 * cache flushes.
4567		 */
4568		rp->r_attr = nrp->r_attr;
4569		rp->r_attrtime = nrp->r_attrtime;
4570		rp->r_mtime = nrp->r_mtime;
4571		(void) nfs_free_data_reclaim(rp);
4572		nfs_setswaplike(vp, &rp->r_attr);
4573		rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
4574		rp_addhash(rp);
4575		rw_exit(&rp->r_hashq->r_lock);
4576		mutex_exit(&mi->mi_remap_lock);
4577		VN_RELE(nvp);
4578	}
4579
4580	/*
4581	 * Update successful failover remap count
4582	 */
4583	mutex_enter(&mi->mi_lock);
4584	mi->mi_remap++;
4585	mutex_exit(&mi->mi_lock);
4586#ifdef DEBUG
4587	nfscl->nfscl_stat.remap.value.ui64++;
4588#endif
4589
4590	/*
4591	 * If we have a copied filehandle to update, do it now.
4592	 */
4593	if (fi->fhp != NULL && fi->copyproc != NULL)
4594		(*fi->copyproc)(fi->fhp, vp);
4595
4596	return (0);
4597}
4598
4599/*
4600 * NFS client failover support
4601 *
4602 * We want a simple pathname lookup routine to parse the pieces
4603 * of path in rp->r_path.  We know that the path was a created
4604 * as rnodes were made, so we know we have only to deal with
4605 * paths that look like:
4606 *	dir1/dir2/dir3/file
4607 * Any evidence of anything like .., symlinks, and ENOTDIR
4608 * are hard errors, because they mean something in this filesystem
4609 * is different from the one we came from, or has changed under
4610 * us in some way.  If this is true, we want the failure.
4611 *
4612 * Extended attributes: if the filesystem is mounted with extended
4613 * attributes enabled (-o xattr), the attribute directory will be
4614 * represented in the r_path as the magic name XATTR_RPATH. So if
4615 * we see that name in the pathname, is must be because this node
4616 * is an extended attribute.  Therefore, look it up that way.
4617 */
4618static int
4619failover_lookup(char *path, vnode_t *root,
4620    int (*lookupproc)(vnode_t *, char *, vnode_t **, struct pathname *, int,
4621	vnode_t *, cred_t *, int),
4622    int (*xattrdirproc)(vnode_t *, vnode_t **, bool_t, cred_t *, int),
4623    vnode_t **new)
4624{
4625	vnode_t *dvp, *nvp;
4626	int error = EINVAL;
4627	char *s, *p, *tmppath;
4628	size_t len;
4629	mntinfo_t *mi;
4630	bool_t xattr;
4631
4632	/* Make local copy of path */
4633	len = strlen(path) + 1;
4634	tmppath = kmem_alloc(len, KM_SLEEP);
4635	(void) strcpy(tmppath, path);
4636	s = tmppath;
4637
4638	dvp = root;
4639	VN_HOLD(dvp);
4640	mi = VTOMI(root);
4641	xattr = mi->mi_flags & MI_EXTATTR;
4642
4643	do {
4644		p = strchr(s, '/');
4645		if (p != NULL)
4646			*p = '\0';
4647		if (xattr && strcmp(s, XATTR_RPATH) == 0) {
4648			error = (*xattrdirproc)(dvp, &nvp, FALSE, CRED(),
4649			    RFSCALL_SOFT);
4650		} else {
4651			error = (*lookupproc)(dvp, s, &nvp, NULL, 0, NULL,
4652			    CRED(), RFSCALL_SOFT);
4653		}
4654		if (p != NULL)
4655			*p++ = '/';
4656		if (error) {
4657			VN_RELE(dvp);
4658			kmem_free(tmppath, len);
4659			return (error);
4660		}
4661		s = p;
4662		VN_RELE(dvp);
4663		dvp = nvp;
4664	} while (p != NULL);
4665
4666	if (nvp != NULL && new != NULL)
4667		*new = nvp;
4668	kmem_free(tmppath, len);
4669	return (0);
4670}
4671
4672/*
4673 * NFS client failover support
4674 *
4675 * sv_free() frees the malloc'd portion of a "servinfo_t".
4676 */
4677void
4678sv_free(servinfo_t *svp)
4679{
4680	servinfo_t *next;
4681	struct knetconfig *knconf;
4682
4683	while (svp != NULL) {
4684		next = svp->sv_next;
4685		if (svp->sv_secdata)
4686			sec_clnt_freeinfo(svp->sv_secdata);
4687		if (svp->sv_hostname && svp->sv_hostnamelen > 0)
4688			kmem_free(svp->sv_hostname, svp->sv_hostnamelen);
4689		knconf = svp->sv_knconf;
4690		if (knconf != NULL) {
4691			if (knconf->knc_protofmly != NULL)
4692				kmem_free(knconf->knc_protofmly, KNC_STRSIZE);
4693			if (knconf->knc_proto != NULL)
4694				kmem_free(knconf->knc_proto, KNC_STRSIZE);
4695			kmem_free(knconf, sizeof (*knconf));
4696		}
4697		knconf = svp->sv_origknconf;
4698		if (knconf != NULL) {
4699			if (knconf->knc_protofmly != NULL)
4700				kmem_free(knconf->knc_protofmly, KNC_STRSIZE);
4701			if (knconf->knc_proto != NULL)
4702				kmem_free(knconf->knc_proto, KNC_STRSIZE);
4703			kmem_free(knconf, sizeof (*knconf));
4704		}
4705		if (svp->sv_addr.buf != NULL && svp->sv_addr.maxlen != 0)
4706			kmem_free(svp->sv_addr.buf, svp->sv_addr.maxlen);
4707		mutex_destroy(&svp->sv_lock);
4708		kmem_free(svp, sizeof (*svp));
4709		svp = next;
4710	}
4711}
4712
4713/*
4714 * Only can return non-zero if intr != 0.
4715 */
4716int
4717nfs_rw_enter_sig(nfs_rwlock_t *l, krw_t rw, int intr)
4718{
4719
4720	mutex_enter(&l->lock);
4721
4722	/*
4723	 * If this is a nested enter, then allow it.  There
4724	 * must be as many exits as enters through.
4725	 */
4726	if (l->owner == curthread) {
4727		/* lock is held for writing by current thread */
4728		ASSERT(rw == RW_READER || rw == RW_WRITER);
4729		l->count--;
4730	} else if (rw == RW_READER) {
4731		/*
4732		 * While there is a writer active or writers waiting,
4733		 * then wait for them to finish up and move on.  Then,
4734		 * increment the count to indicate that a reader is
4735		 * active.
4736		 */
4737		while (l->count < 0 || l->waiters > 0) {
4738			if (intr) {
4739				klwp_t *lwp = ttolwp(curthread);
4740
4741				if (lwp != NULL)
4742					lwp->lwp_nostop++;
4743				if (!cv_wait_sig(&l->cv, &l->lock)) {
4744					if (lwp != NULL)
4745						lwp->lwp_nostop--;
4746					mutex_exit(&l->lock);
4747					return (EINTR);
4748				}
4749				if (lwp != NULL)
4750					lwp->lwp_nostop--;
4751			} else
4752				cv_wait(&l->cv, &l->lock);
4753		}
4754		ASSERT(l->count < INT_MAX);
4755#ifdef	DEBUG
4756		if ((l->count % 10000) == 9999)
4757			cmn_err(CE_WARN, "nfs_rw_enter_sig: count %d on"
4758			    "rwlock @ %p\n", l->count, (void *)&l);
4759#endif
4760		l->count++;
4761	} else {
4762		ASSERT(rw == RW_WRITER);
4763		/*
4764		 * While there are readers active or a writer
4765		 * active, then wait for all of the readers
4766		 * to finish or for the writer to finish.
4767		 * Then, set the owner field to curthread and
4768		 * decrement count to indicate that a writer
4769		 * is active.
4770		 */
4771		while (l->count > 0 || l->owner != NULL) {
4772			l->waiters++;
4773			if (intr) {
4774				klwp_t *lwp = ttolwp(curthread);
4775
4776				if (lwp != NULL)
4777					lwp->lwp_nostop++;
4778				if (!cv_wait_sig(&l->cv, &l->lock)) {
4779					if (lwp != NULL)
4780						lwp->lwp_nostop--;
4781					l->waiters--;
4782					cv_broadcast(&l->cv);
4783					mutex_exit(&l->lock);
4784					return (EINTR);
4785				}
4786				if (lwp != NULL)
4787					lwp->lwp_nostop--;
4788			} else
4789				cv_wait(&l->cv, &l->lock);
4790			l->waiters--;
4791		}
4792		l->owner = curthread;
4793		l->count--;
4794	}
4795
4796	mutex_exit(&l->lock);
4797
4798	return (0);
4799}
4800
4801/*
4802 * If the lock is available, obtain it and return non-zero.  If there is
4803 * already a conflicting lock, return 0 immediately.
4804 */
4805
4806int
4807nfs_rw_tryenter(nfs_rwlock_t *l, krw_t rw)
4808{
4809	mutex_enter(&l->lock);
4810
4811	/*
4812	 * If this is a nested enter, then allow it.  There
4813	 * must be as many exits as enters through.
4814	 */
4815	if (l->owner == curthread) {
4816		/* lock is held for writing by current thread */
4817		ASSERT(rw == RW_READER || rw == RW_WRITER);
4818		l->count--;
4819	} else if (rw == RW_READER) {
4820		/*
4821		 * If there is a writer active or writers waiting, deny the
4822		 * lock.  Otherwise, bump the count of readers.
4823		 */
4824		if (l->count < 0 || l->waiters > 0) {
4825			mutex_exit(&l->lock);
4826			return (0);
4827		}
4828		l->count++;
4829	} else {
4830		ASSERT(rw == RW_WRITER);
4831		/*
4832		 * If there are readers active or a writer active, deny the
4833		 * lock.  Otherwise, set the owner field to curthread and
4834		 * decrement count to indicate that a writer is active.
4835		 */
4836		if (l->count > 0 || l->owner != NULL) {
4837			mutex_exit(&l->lock);
4838			return (0);
4839		}
4840		l->owner = curthread;
4841		l->count--;
4842	}
4843
4844	mutex_exit(&l->lock);
4845
4846	return (1);
4847}
4848
4849void
4850nfs_rw_exit(nfs_rwlock_t *l)
4851{
4852
4853	mutex_enter(&l->lock);
4854	/*
4855	 * If this is releasing a writer lock, then increment count to
4856	 * indicate that there is one less writer active.  If this was
4857	 * the last of possibly nested writer locks, then clear the owner
4858	 * field as well to indicate that there is no writer active
4859	 * and wakeup any possible waiting writers or readers.
4860	 *
4861	 * If releasing a reader lock, then just decrement count to
4862	 * indicate that there is one less reader active.  If this was
4863	 * the last active reader and there are writer(s) waiting,
4864	 * then wake up the first.
4865	 */
4866	if (l->owner != NULL) {
4867		ASSERT(l->owner == curthread);
4868		l->count++;
4869		if (l->count == 0) {
4870			l->owner = NULL;
4871			cv_broadcast(&l->cv);
4872		}
4873	} else {
4874		ASSERT(l->count > 0);
4875		l->count--;
4876		if (l->count == 0 && l->waiters > 0)
4877			cv_broadcast(&l->cv);
4878	}
4879	mutex_exit(&l->lock);
4880}
4881
4882int
4883nfs_rw_lock_held(nfs_rwlock_t *l, krw_t rw)
4884{
4885
4886	if (rw == RW_READER)
4887		return (l->count > 0);
4888	ASSERT(rw == RW_WRITER);
4889	return (l->count < 0);
4890}
4891
4892/* ARGSUSED */
4893void
4894nfs_rw_init(nfs_rwlock_t *l, char *name, krw_type_t type, void *arg)
4895{
4896
4897	l->count = 0;
4898	l->waiters = 0;
4899	l->owner = NULL;
4900	mutex_init(&l->lock, NULL, MUTEX_DEFAULT, NULL);
4901	cv_init(&l->cv, NULL, CV_DEFAULT, NULL);
4902}
4903
4904void
4905nfs_rw_destroy(nfs_rwlock_t *l)
4906{
4907
4908	mutex_destroy(&l->lock);
4909	cv_destroy(&l->cv);
4910}
4911
4912int
4913nfs3_rddir_compar(const void *x, const void *y)
4914{
4915	rddir_cache *a = (rddir_cache *)x;
4916	rddir_cache *b = (rddir_cache *)y;
4917
4918	if (a->nfs3_cookie == b->nfs3_cookie) {
4919		if (a->buflen == b->buflen)
4920			return (0);
4921		if (a->buflen < b->buflen)
4922			return (-1);
4923		return (1);
4924	}
4925
4926	if (a->nfs3_cookie < b->nfs3_cookie)
4927		return (-1);
4928
4929	return (1);
4930}
4931
4932int
4933nfs_rddir_compar(const void *x, const void *y)
4934{
4935	rddir_cache *a = (rddir_cache *)x;
4936	rddir_cache *b = (rddir_cache *)y;
4937
4938	if (a->nfs_cookie == b->nfs_cookie) {
4939		if (a->buflen == b->buflen)
4940			return (0);
4941		if (a->buflen < b->buflen)
4942			return (-1);
4943		return (1);
4944	}
4945
4946	if (a->nfs_cookie < b->nfs_cookie)
4947		return (-1);
4948
4949	return (1);
4950}
4951
4952static char *
4953nfs_getsrvnames(mntinfo_t *mi, size_t *len)
4954{
4955	servinfo_t *s;
4956	char *srvnames;
4957	char *namep;
4958	size_t length;
4959
4960	/*
4961	 * Calculate the length of the string required to hold all
4962	 * of the server names plus either a comma or a null
4963	 * character following each individual one.
4964	 */
4965	length = 0;
4966	for (s = mi->mi_servers; s != NULL; s = s->sv_next)
4967		length += s->sv_hostnamelen;
4968
4969	srvnames = kmem_alloc(length, KM_SLEEP);
4970
4971	namep = srvnames;
4972	for (s = mi->mi_servers; s != NULL; s = s->sv_next) {
4973		(void) strcpy(namep, s->sv_hostname);
4974		namep += s->sv_hostnamelen - 1;
4975		*namep++ = ',';
4976	}
4977	*--namep = '\0';
4978
4979	*len = length;
4980
4981	return (srvnames);
4982}
4983
4984/*
4985 * These two functions are temporary and designed for the upgrade-workaround
4986 * only.  They cannot be used for general zone-crossing NFS client support, and
4987 * will be removed shortly.
4988 *
4989 * When the workaround is enabled, all NFS traffic is forced into the global
4990 * zone.  These functions are called when the code needs to refer to the state
4991 * of the underlying network connection.  They're not called when the function
4992 * needs to refer to the state of the process that invoked the system call.
4993 * (E.g., when checking whether the zone is shutting down during the mount()
4994 * call.)
4995 */
4996
4997struct zone *
4998nfs_zone(void)
4999{
5000	return (nfs_global_client_only != 0 ? global_zone : curproc->p_zone);
5001}
5002
5003zoneid_t
5004nfs_zoneid(void)
5005{
5006	return (nfs_global_client_only != 0 ? GLOBAL_ZONEID : getzoneid());
5007}
5008
5009/*
5010 * nfs_mount_label_policy:
5011 *	Determine whether the mount is allowed according to MAC check,
5012 *	by comparing (where appropriate) label of the remote server
5013 *	against the label of the zone being mounted into.
5014 *
5015 *	Returns:
5016 *		 0 :	access allowed
5017 *		-1 :	read-only access allowed (i.e., read-down)
5018 *		>0 :	error code, such as EACCES
5019 */
5020int
5021nfs_mount_label_policy(vfs_t *vfsp, struct netbuf *addr,
5022    struct knetconfig *knconf, cred_t *cr)
5023{
5024	int		addr_type;
5025	void		*ipaddr;
5026	bslabel_t	*server_sl, *mntlabel;
5027	zone_t		*mntzone = NULL;
5028	ts_label_t	*zlabel;
5029	tsol_tpc_t	*tp;
5030	ts_label_t	*tsl = NULL;
5031	int		retv;
5032
5033	/*
5034	 * Get the zone's label.  Each zone on a labeled system has a label.
5035	 */
5036	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
5037	zlabel = mntzone->zone_slabel;
5038	ASSERT(zlabel != NULL);
5039	label_hold(zlabel);
5040
5041	if (strcmp(knconf->knc_protofmly, NC_INET) == 0) {
5042		addr_type = IPV4_VERSION;
5043		ipaddr = &((struct sockaddr_in *)addr->buf)->sin_addr;
5044	} else if (strcmp(knconf->knc_protofmly, NC_INET6) == 0) {
5045		addr_type = IPV6_VERSION;
5046		ipaddr = &((struct sockaddr_in6 *)addr->buf)->sin6_addr;
5047	} else {
5048		retv = 0;
5049		goto out;
5050	}
5051
5052	retv = EACCES;				/* assume the worst */
5053
5054	/*
5055	 * Next, get the assigned label of the remote server.
5056	 */
5057	tp = find_tpc(ipaddr, addr_type, B_FALSE);
5058	if (tp == NULL)
5059		goto out;			/* error getting host entry */
5060
5061	if (tp->tpc_tp.tp_doi != zlabel->tsl_doi)
5062		goto rel_tpc;			/* invalid domain */
5063	if ((tp->tpc_tp.host_type != SUN_CIPSO) &&
5064	    (tp->tpc_tp.host_type != UNLABELED))
5065		goto rel_tpc;			/* invalid hosttype */
5066
5067	if (tp->tpc_tp.host_type == SUN_CIPSO) {
5068		tsl = getflabel_cipso(vfsp);
5069		if (tsl == NULL)
5070			goto rel_tpc;		/* error getting server lbl */
5071
5072		server_sl = label2bslabel(tsl);
5073	} else {	/* UNLABELED */
5074		server_sl = &tp->tpc_tp.tp_def_label;
5075	}
5076
5077	mntlabel = label2bslabel(zlabel);
5078
5079	/*
5080	 * Now compare labels to complete the MAC check.  If the labels
5081	 * are equal or if the requestor is in the global zone and has
5082	 * NET_MAC_AWARE, then allow read-write access.   (Except for
5083	 * mounts into the global zone itself; restrict these to
5084	 * read-only.)
5085	 *
5086	 * If the requestor is in some other zone, but his label
5087	 * dominates the server, then allow read-down.
5088	 *
5089	 * Otherwise, access is denied.
5090	 */
5091	if (blequal(mntlabel, server_sl) ||
5092	    (crgetzoneid(cr) == GLOBAL_ZONEID &&
5093	    getpflags(NET_MAC_AWARE, cr) != 0)) {
5094		if ((mntzone == global_zone) ||
5095		    !blequal(mntlabel, server_sl))
5096			retv = -1;		/* read-only */
5097		else
5098			retv = 0;		/* access OK */
5099	} else if (bldominates(mntlabel, server_sl)) {
5100		retv = -1;			/* read-only */
5101	} else {
5102		retv = EACCES;
5103	}
5104
5105	if (tsl != NULL)
5106		label_rele(tsl);
5107
5108rel_tpc:
5109	TPC_RELE(tp);
5110out:
5111	if (mntzone)
5112		zone_rele(mntzone);
5113	label_rele(zlabel);
5114	return (retv);
5115}
5116
5117boolean_t
5118nfs_has_ctty(void)
5119{
5120	boolean_t rv;
5121	mutex_enter(&curproc->p_splock);
5122	rv = (curproc->p_sessp->s_vp != NULL);
5123	mutex_exit(&curproc->p_splock);
5124	return (rv);
5125}
5126
5127/*
5128 * See if xattr directory to see if it has any generic user attributes
5129 */
5130int
5131do_xattr_exists_check(vnode_t *vp, ulong_t *valp, cred_t *cr)
5132{
5133	struct uio uio;
5134	struct iovec iov;
5135	char *dbuf;
5136	struct dirent64 *dp;
5137	size_t dlen = 8 * 1024;
5138	size_t dbuflen;
5139	int eof = 0;
5140	int error;
5141
5142	*valp = 0;
5143	dbuf = kmem_alloc(dlen, KM_SLEEP);
5144	uio.uio_iov = &iov;
5145	uio.uio_iovcnt = 1;
5146	uio.uio_segflg = UIO_SYSSPACE;
5147	uio.uio_fmode = 0;
5148	uio.uio_extflg = UIO_COPY_CACHED;
5149	uio.uio_loffset = 0;
5150	uio.uio_resid = dlen;
5151	iov.iov_base = dbuf;
5152	iov.iov_len = dlen;
5153	(void) VOP_RWLOCK(vp, V_WRITELOCK_FALSE, NULL);
5154	error = VOP_READDIR(vp, &uio, cr, &eof, NULL, 0);
5155	VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL);
5156
5157	dbuflen = dlen - uio.uio_resid;
5158
5159	if (error || dbuflen == 0) {
5160		kmem_free(dbuf, dlen);
5161		return (error);
5162	}
5163
5164	dp = (dirent64_t *)dbuf;
5165
5166	while ((intptr_t)dp < (intptr_t)dbuf + dbuflen) {
5167		if (strcmp(dp->d_name, ".") == 0 ||
5168		    strcmp(dp->d_name, "..") == 0 || strcmp(dp->d_name,
5169		    VIEW_READWRITE) == 0 || strcmp(dp->d_name,
5170		    VIEW_READONLY) == 0) {
5171			dp = (dirent64_t *)((intptr_t)dp + dp->d_reclen);
5172			continue;
5173		}
5174
5175		*valp = 1;
5176		break;
5177	}
5178	kmem_free(dbuf, dlen);
5179	return (0);
5180}
5181