nfs_common.c revision 3898:c788126f2a20
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 *	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
28 *		All rights reserved.
29 */
30
31#pragma ident	"%Z%%M%	%I%	%E% SMI"
32
33#include <sys/errno.h>
34#include <sys/param.h>
35#include <sys/types.h>
36#include <sys/user.h>
37#include <sys/stat.h>
38#include <sys/time.h>
39#include <sys/utsname.h>
40#include <sys/vfs.h>
41#include <sys/vfs_opreg.h>
42#include <sys/vnode.h>
43#include <sys/pathname.h>
44#include <sys/bootconf.h>
45#include <fs/fs_subr.h>
46#include <rpc/types.h>
47#include <nfs/nfs.h>
48#include <nfs/nfs4.h>
49#include <nfs/nfs_clnt.h>
50#include <nfs/rnode.h>
51#include <nfs/mount.h>
52#include <nfs/nfssys.h>
53#include <sys/debug.h>
54#include <sys/cmn_err.h>
55#include <sys/file.h>
56#include <sys/fcntl.h>
57#include <sys/zone.h>
58
59/*
60 * This is the loadable module wrapper.
61 */
62#include <sys/systm.h>
63#include <sys/modctl.h>
64#include <sys/syscall.h>
65#include <sys/ddi.h>
66
67#include <rpc/types.h>
68#include <rpc/auth.h>
69#include <rpc/clnt.h>
70#include <rpc/svc.h>
71
72/*
73 * The psuedo NFS filesystem to allow diskless booting to dynamically
74 * mount either a NFS V2, NFS V3, or NFS V4 filesystem.  This only implements
75 * the VFS_MOUNTROOT op and is only intended to be used by the
76 * diskless booting code until the real root filesystem is mounted.
77 * Nothing else should ever call this!
78 *
79 * The strategy is that if the initial rootfs type is set to "nfsdyn"
80 * by loadrootmodules() this filesystem is called to mount the
81 * root filesystem.  It first attempts to mount a V4 filesystem, and if that
82 * fails due to an RPC version mismatch it tries V3 and finally V2.
83 * Once the real mount succeeds the vfsops and rootfs name are changed
84 * to reflect the real filesystem type.
85 */
86static int nfsdyninit(int, char *);
87static int nfsdyn_mountroot(vfs_t *, whymountroot_t);
88
89vfsops_t *nfsdyn_vfsops;
90
91/*
92 * The following data structures are used to configure the NFS
93 * system call, the NFS Version 2 client VFS, and the NFS Version
94 * 3 client VFS into the system.  The NFS Version 4 structures are defined in
95 * nfs4_common.c
96 */
97
98/*
99 * The NFS system call.
100 */
101static struct sysent nfssysent = {
102	2,
103	SE_32RVAL1 | SE_ARGC | SE_NOUNLOAD,
104	nfssys
105};
106
107static struct modlsys modlsys = {
108	&mod_syscallops,
109	"NFS syscall, client, and common",
110	&nfssysent
111};
112
113#ifdef _SYSCALL32_IMPL
114static struct modlsys modlsys32 = {
115	&mod_syscallops32,
116	"NFS syscall, client, and common (32-bit)",
117	&nfssysent
118};
119#endif /* _SYSCALL32_IMPL */
120
121/*
122 * The NFS Dynamic client VFS.
123 */
124static vfsdef_t vfw = {
125	VFSDEF_VERSION,
126	"nfsdyn",
127	nfsdyninit,
128	0,
129	NULL
130};
131
132static struct modlfs modlfs = {
133	&mod_fsops,
134	"network filesystem",
135	&vfw
136};
137
138/*
139 * The NFS Version 2 client VFS.
140 */
141static vfsdef_t vfw2 = {
142	VFSDEF_VERSION,
143	"nfs",
144	nfsinit,
145	VSW_CANREMOUNT|VSW_NOTZONESAFE|VSW_STATS,
146	NULL
147};
148
149static struct modlfs modlfs2 = {
150	&mod_fsops,
151	"network filesystem version 2",
152	&vfw2
153};
154
155/*
156 * The NFS Version 3 client VFS.
157 */
158static vfsdef_t vfw3 = {
159	VFSDEF_VERSION,
160	"nfs3",
161	nfs3init,
162	VSW_CANREMOUNT|VSW_NOTZONESAFE|VSW_STATS,
163	NULL
164};
165
166static struct modlfs modlfs3 = {
167	&mod_fsops,
168	"network filesystem version 3",
169	&vfw3
170};
171
172extern struct modlfs modlfs4;
173
174/*
175 * We have too many linkage structures so we define our own XXX
176 */
177struct modlinkage_big {
178	int		ml_rev;		/* rev of loadable modules system */
179	void		*ml_linkage[7];	/* NULL terminated list of */
180					/* linkage structures */
181};
182
183/*
184 * All of the module configuration linkages required to configure
185 * the system call and client VFS's into the system.
186 */
187static struct modlinkage_big modlinkage = {
188	MODREV_1,
189	&modlsys,
190#ifdef _SYSCALL32_IMPL
191	&modlsys32,
192#endif
193	&modlfs,
194	&modlfs2,
195	&modlfs3,
196	&modlfs4,
197	NULL
198};
199
200/*
201 * specfs - for getfsname only??
202 * rpcmod - too many symbols to build stubs for them all
203 */
204char _depends_on[] = "fs/specfs strmod/rpcmod misc/rpcsec";
205
206/*
207 * This routine is invoked automatically when the kernel module
208 * containing this routine is loaded.  This allows module specific
209 * initialization to be done when the module is loaded.
210 */
211int
212_init(void)
213{
214	int status;
215
216	if ((status = nfs_clntinit()) != 0) {
217		cmn_err(CE_WARN, "_init: nfs_clntinit failed");
218		return (status);
219	}
220
221	/*
222	 * Create the version specific kstats.
223	 *
224	 * PSARC 2001/697 Contract Private Interface
225	 * All nfs kstats are under SunMC contract
226	 * Please refer to the PSARC listed above and contact
227	 * SunMC before making any changes!
228	 *
229	 * Changes must be reviewed by Solaris File Sharing
230	 * Changes must be communicated to contract-2001-697@sun.com
231	 *
232	 */
233
234	zone_key_create(&nfsstat_zone_key, nfsstat_zone_init, NULL,
235	    nfsstat_zone_fini);
236	status = mod_install((struct modlinkage *)&modlinkage);
237
238	if (status)  {
239		(void) zone_key_delete(nfsstat_zone_key);
240
241		/*
242		 * Failed to install module, cleanup previous
243		 * initialization work.
244		 */
245		nfs_clntfini();
246
247		/*
248		 * Clean up work performed indirectly by mod_installfs()
249		 * as a result of our call to mod_install().
250		 */
251		nfs4fini();
252		nfs3fini();
253		nfsfini();
254	}
255	return (status);
256}
257
258int
259_fini(void)
260{
261	/* Don't allow module to be unloaded */
262	return (EBUSY);
263}
264
265int
266_info(struct modinfo *modinfop)
267{
268	return (mod_info((struct modlinkage *)&modlinkage, modinfop));
269}
270
271/*
272 * General utilities
273 */
274
275/*
276 * Returns the prefered transfer size in bytes based on
277 * what network interfaces are available.
278 */
279int
280nfstsize(void)
281{
282	/*
283	 * For the moment, just return NFS_MAXDATA until we can query the
284	 * appropriate transport.
285	 */
286	return (NFS_MAXDATA);
287}
288
289/*
290 * Returns the prefered transfer size in bytes based on
291 * what network interfaces are available.
292 */
293
294/* this should reflect the largest transfer size possible */
295static int nfs3_max_transfer_size = 1024 * 1024;
296
297int
298nfs3tsize(void)
299{
300	/*
301	 * For the moment, just return nfs3_max_transfer_size until we
302	 * can query the appropriate transport.
303	 */
304	return (nfs3_max_transfer_size);
305}
306
307static uint_t nfs3_max_transfer_size_clts = 32 * 1024;
308static uint_t nfs3_max_transfer_size_cots = 1024 * 1024;
309static uint_t nfs3_max_transfer_size_rdma = 1024 * 1024;
310
311uint_t
312nfs3_tsize(struct knetconfig *knp)
313{
314
315	if (knp->knc_semantics == NC_TPI_COTS_ORD ||
316	    knp->knc_semantics == NC_TPI_COTS)
317		return (nfs3_max_transfer_size_cots);
318	if (knp->knc_semantics == NC_TPI_RDMA)
319		return (nfs3_max_transfer_size_rdma);
320	return (nfs3_max_transfer_size_clts);
321}
322
323uint_t
324rfs3_tsize(struct svc_req *req)
325{
326
327	if (req->rq_xprt->xp_type == T_COTS_ORD ||
328	    req->rq_xprt->xp_type == T_COTS)
329		return (nfs3_max_transfer_size_cots);
330	if (req->rq_xprt->xp_type == T_RDMA)
331		return (nfs3_max_transfer_size_rdma);
332	return (nfs3_max_transfer_size_clts);
333}
334
335/* ARGSUSED */
336static int
337nfsdyninit(int fstyp, char *name)
338{
339	static const fs_operation_def_t nfsdyn_vfsops_template[] = {
340		VFSNAME_MOUNTROOT, { .vfs_mountroot = nfsdyn_mountroot },
341		NULL, NULL
342	};
343	int error;
344
345	error = vfs_setfsops(fstyp, nfsdyn_vfsops_template, &nfsdyn_vfsops);
346	if (error != 0)
347		return (error);
348
349	return (0);
350}
351
352/* ARGSUSED */
353static int
354nfsdyn_mountroot(vfs_t *vfsp, whymountroot_t why)
355{
356	char root_hostname[SYS_NMLN+1];
357	struct servinfo *svp;
358	int error;
359	int vfsflags;
360	char *root_path;
361	struct pathname pn;
362	char *name;
363	static char token[10];
364	struct nfs_args args;		/* nfs mount arguments */
365
366	bzero(&args, sizeof (args));
367
368	/* do this BEFORE getfile which causes xid stamps to be initialized */
369	clkset(-1L);		/* hack for now - until we get time svc? */
370
371	if (why == ROOT_REMOUNT) {
372		/*
373		 * Shouldn't happen.
374		 */
375		panic("nfs3_mountroot: why == ROOT_REMOUNT\n");
376	}
377
378	if (why == ROOT_UNMOUNT) {
379		/*
380		 * Nothing to do for NFS.
381		 */
382		return (0);
383	}
384
385	/*
386	 * why == ROOT_INIT
387	 */
388
389	name = token;
390	*name = 0;
391	getfsname("root", name, sizeof (token));
392
393	pn_alloc(&pn);
394	root_path = pn.pn_path;
395
396	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
397	mutex_init(&svp->sv_lock, NULL, MUTEX_DEFAULT, NULL);
398	svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP);
399	svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
400	svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
401
402	/*
403	 * First try version 4
404	 */
405	vfs_setops(vfsp, nfs4_vfsops);
406	args.addr = &svp->sv_addr;
407	args.fh = (char *)&svp->sv_fhandle;
408	args.knconf = svp->sv_knconf;
409	args.hostname = root_hostname;
410	vfsflags = 0;
411
412	if (error = mount_root(*name ? name : "root", root_path, NFS_V4,
413				&args, &vfsflags)) {
414		if (error != EPROTONOSUPPORT) {
415			nfs_cmn_err(error, CE_WARN,
416				"Unable to mount NFS root filesystem: %m");
417			sv_free(svp);
418			pn_free(&pn);
419			vfs_setops(vfsp, nfsdyn_vfsops);
420			return (error);
421		}
422
423		/*
424		 * Then try version 3
425		 */
426		bzero(&args, sizeof (args));
427		vfs_setops(vfsp, nfs3_vfsops);
428		args.addr = &svp->sv_addr;
429		args.fh = (char *)&svp->sv_fhandle;
430		args.knconf = svp->sv_knconf;
431		args.hostname = root_hostname;
432		vfsflags = 0;
433
434		if (error = mount_root(*name ? name : "root", root_path,
435						NFS_V3, &args, &vfsflags)) {
436			if (error != EPROTONOSUPPORT) {
437				nfs_cmn_err(error, CE_WARN,
438				    "Unable to mount NFS root filesystem: %m");
439				sv_free(svp);
440				pn_free(&pn);
441				vfs_setops(vfsp, nfsdyn_vfsops);
442				return (error);
443			}
444
445			/*
446			 * Finally, try version 2
447			 */
448			bzero(&args, sizeof (args));
449			args.addr = &svp->sv_addr;
450			args.fh = (char *)&svp->sv_fhandle.fh_buf;
451			args.knconf = svp->sv_knconf;
452			args.hostname = root_hostname;
453			vfsflags = 0;
454
455			vfs_setops(vfsp, nfs_vfsops);
456
457			if (error = mount_root(*name ? name : "root",
458					root_path, NFS_VERSION, &args,
459					&vfsflags)) {
460				nfs_cmn_err(error, CE_WARN,
461				    "Unable to mount NFS root filesystem: %m");
462				sv_free(svp);
463				pn_free(&pn);
464				vfs_setops(vfsp, nfsdyn_vfsops);
465				return (error);
466			}
467		}
468	}
469
470	sv_free(svp);
471	pn_free(&pn);
472	return (VFS_MOUNTROOT(vfsp, why));
473}
474
475int
476nfs_setopts(vnode_t *vp, model_t model, struct nfs_args *buf)
477{
478	mntinfo_t *mi;			/* mount info, pointed at by vfs */
479	STRUCT_HANDLE(nfs_args, args);
480	int flags;
481
482#ifdef lint
483	model = model;
484#endif
485
486	STRUCT_SET_HANDLE(args, model, buf);
487
488	flags = STRUCT_FGET(args, flags);
489
490	/*
491	 * Set option fields in mount info record
492	 */
493	mi = VTOMI(vp);
494
495	if (flags & NFSMNT_NOAC) {
496		mi->mi_flags |= MI_NOAC;
497		PURGE_ATTRCACHE(vp);
498	}
499	if (flags & NFSMNT_NOCTO)
500		mi->mi_flags |= MI_NOCTO;
501	if (flags & NFSMNT_LLOCK)
502		mi->mi_flags |= MI_LLOCK;
503	if (flags & NFSMNT_GRPID)
504		mi->mi_flags |= MI_GRPID;
505	if (flags & NFSMNT_RETRANS) {
506		if (STRUCT_FGET(args, retrans) < 0)
507			return (EINVAL);
508		mi->mi_retrans = STRUCT_FGET(args, retrans);
509	}
510	if (flags & NFSMNT_TIMEO) {
511		if (STRUCT_FGET(args, timeo) <= 0)
512			return (EINVAL);
513		mi->mi_timeo = STRUCT_FGET(args, timeo);
514		/*
515		 * The following scales the standard deviation and
516		 * and current retransmission timer to match the
517		 * initial value for the timeout specified.
518		 */
519		mi->mi_timers[NFS_CALLTYPES].rt_deviate =
520		    (mi->mi_timeo * hz * 2) / 5;
521		mi->mi_timers[NFS_CALLTYPES].rt_rtxcur =
522		    mi->mi_timeo * hz / 10;
523	}
524	if (flags & NFSMNT_RSIZE) {
525		if (STRUCT_FGET(args, rsize) <= 0)
526			return (EINVAL);
527		mi->mi_tsize = MIN(mi->mi_tsize, STRUCT_FGET(args, rsize));
528		mi->mi_curread = MIN(mi->mi_curread, mi->mi_tsize);
529	}
530	if (flags & NFSMNT_WSIZE) {
531		if (STRUCT_FGET(args, wsize) <= 0)
532			return (EINVAL);
533		mi->mi_stsize = MIN(mi->mi_stsize, STRUCT_FGET(args, wsize));
534		mi->mi_curwrite = MIN(mi->mi_curwrite, mi->mi_stsize);
535	}
536	if (flags & NFSMNT_ACREGMIN) {
537		if (STRUCT_FGET(args, acregmin) < 0)
538			mi->mi_acregmin = ACMINMAX;
539		else
540			mi->mi_acregmin = MIN(STRUCT_FGET(args, acregmin),
541			    ACMINMAX);
542		mi->mi_acregmin = SEC2HR(mi->mi_acregmin);
543	}
544	if (flags & NFSMNT_ACREGMAX) {
545		if (STRUCT_FGET(args, acregmax) < 0)
546			mi->mi_acregmax = ACMAXMAX;
547		else
548			mi->mi_acregmax = MIN(STRUCT_FGET(args, acregmax),
549			    ACMAXMAX);
550		mi->mi_acregmax = SEC2HR(mi->mi_acregmax);
551	}
552	if (flags & NFSMNT_ACDIRMIN) {
553		if (STRUCT_FGET(args, acdirmin) < 0)
554			mi->mi_acdirmin = ACMINMAX;
555		else
556			mi->mi_acdirmin = MIN(STRUCT_FGET(args, acdirmin),
557			    ACMINMAX);
558		mi->mi_acdirmin = SEC2HR(mi->mi_acdirmin);
559	}
560	if (flags & NFSMNT_ACDIRMAX) {
561		if (STRUCT_FGET(args, acdirmax) < 0)
562			mi->mi_acdirmax = ACMAXMAX;
563		else
564			mi->mi_acdirmax = MIN(STRUCT_FGET(args, acdirmax),
565			    ACMAXMAX);
566		mi->mi_acdirmax = SEC2HR(mi->mi_acdirmax);
567	}
568
569	if (flags & NFSMNT_LOOPBACK)
570		mi->mi_flags |= MI_LOOPBACK;
571
572	return (0);
573}
574
575/*
576 * Set or Clear direct I/O flag
577 * VOP_RWLOCK() is held for write access to prevent a race condition
578 * which would occur if a process is in the middle of a write when
579 * directio flag gets set. It is possible that all pages may not get flushed.
580 */
581
582/* ARGSUSED */
583int
584nfs_directio(vnode_t *vp, int cmd, cred_t *cr)
585{
586	int	error = 0;
587	rnode_t	*rp;
588
589	rp = VTOR(vp);
590
591	if (cmd == DIRECTIO_ON) {
592
593		if (rp->r_flags & RDIRECTIO)
594			return (0);
595
596		/*
597		 * Flush the page cache.
598		 */
599
600		(void) VOP_RWLOCK(vp, V_WRITELOCK_TRUE, NULL);
601
602		if (rp->r_flags & RDIRECTIO) {
603			VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
604			return (0);
605		}
606
607		if (vn_has_cached_data(vp) &&
608		    ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
609			error = VOP_PUTPAGE(vp, (offset_t)0, (uint_t)0,
610			    B_INVAL, cr);
611			if (error) {
612				if (error == ENOSPC || error == EDQUOT) {
613					mutex_enter(&rp->r_statelock);
614					if (!rp->r_error)
615						rp->r_error = error;
616					mutex_exit(&rp->r_statelock);
617				}
618				VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
619				return (error);
620			}
621		}
622
623		mutex_enter(&rp->r_statelock);
624		rp->r_flags |= RDIRECTIO;
625		mutex_exit(&rp->r_statelock);
626		VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
627		return (0);
628	}
629
630	if (cmd == DIRECTIO_OFF) {
631		mutex_enter(&rp->r_statelock);
632		rp->r_flags &= ~RDIRECTIO;	/* disable direct mode */
633		mutex_exit(&rp->r_statelock);
634		return (0);
635	}
636
637	return (EINVAL);
638}
639