nfs_client.c revision 11066:cebb50cbe4f9
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 *
25 *  	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
26 *	All rights reserved.
27 */
28
29#include <sys/param.h>
30#include <sys/types.h>
31#include <sys/systm.h>
32#include <sys/thread.h>
33#include <sys/t_lock.h>
34#include <sys/time.h>
35#include <sys/vnode.h>
36#include <sys/vfs.h>
37#include <sys/errno.h>
38#include <sys/buf.h>
39#include <sys/stat.h>
40#include <sys/cred.h>
41#include <sys/kmem.h>
42#include <sys/debug.h>
43#include <sys/dnlc.h>
44#include <sys/vmsystm.h>
45#include <sys/flock.h>
46#include <sys/share.h>
47#include <sys/cmn_err.h>
48#include <sys/tiuser.h>
49#include <sys/sysmacros.h>
50#include <sys/callb.h>
51#include <sys/acl.h>
52#include <sys/kstat.h>
53#include <sys/signal.h>
54#include <sys/list.h>
55#include <sys/zone.h>
56
57#include <rpc/types.h>
58#include <rpc/xdr.h>
59#include <rpc/auth.h>
60#include <rpc/clnt.h>
61
62#include <nfs/nfs.h>
63#include <nfs/nfs_clnt.h>
64
65#include <nfs/rnode.h>
66#include <nfs/nfs_acl.h>
67#include <nfs/lm.h>
68
69#include <vm/hat.h>
70#include <vm/as.h>
71#include <vm/page.h>
72#include <vm/pvn.h>
73#include <vm/seg.h>
74#include <vm/seg_map.h>
75#include <vm/seg_vn.h>
76
77static void	nfs3_attr_cache(vnode_t *, vattr_t *, vattr_t *, hrtime_t,
78			cred_t *);
79static int	nfs_getattr_cache(vnode_t *, struct vattr *);
80static int	nfs_remove_locking_id(vnode_t *, int, char *, char *, int *);
81
82struct mi_globals {
83	kmutex_t	mig_lock;  /* lock protecting mig_list */
84	list_t		mig_list;  /* list of NFS v2 or v3 mounts in zone */
85	boolean_t	mig_destructor_called;
86};
87
88static zone_key_t mi_list_key;
89
90/* Debugging flag for PC file shares. */
91extern int	share_debug;
92
93/*
94 * Attributes caching:
95 *
96 * Attributes are cached in the rnode in struct vattr form.
97 * There is a time associated with the cached attributes (r_attrtime)
98 * which tells whether the attributes are valid. The time is initialized
99 * to the difference between current time and the modify time of the vnode
100 * when new attributes are cached. This allows the attributes for
101 * files that have changed recently to be timed out sooner than for files
102 * that have not changed for a long time. There are minimum and maximum
103 * timeout values that can be set per mount point.
104 */
105
106int
107nfs_waitfor_purge_complete(vnode_t *vp)
108{
109	rnode_t *rp;
110	k_sigset_t smask;
111
112	rp = VTOR(vp);
113	if (rp->r_serial != NULL && rp->r_serial != curthread) {
114		mutex_enter(&rp->r_statelock);
115		sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
116		while (rp->r_serial != NULL) {
117			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
118				sigunintr(&smask);
119				mutex_exit(&rp->r_statelock);
120				return (EINTR);
121			}
122		}
123		sigunintr(&smask);
124		mutex_exit(&rp->r_statelock);
125	}
126	return (0);
127}
128
129/*
130 * Validate caches by checking cached attributes. If the cached
131 * attributes have timed out, then get new attributes from the server.
132 * As a side affect, this will do cache invalidation if the attributes
133 * have changed.
134 *
135 * If the attributes have not timed out and if there is a cache
136 * invalidation being done by some other thread, then wait until that
137 * thread has completed the cache invalidation.
138 */
139int
140nfs_validate_caches(vnode_t *vp, cred_t *cr)
141{
142	int error;
143	struct vattr va;
144
145	if (ATTRCACHE_VALID(vp)) {
146		error = nfs_waitfor_purge_complete(vp);
147		if (error)
148			return (error);
149		return (0);
150	}
151
152	va.va_mask = AT_ALL;
153	return (nfs_getattr_otw(vp, &va, cr));
154}
155
156/*
157 * Validate caches by checking cached attributes. If the cached
158 * attributes have timed out, then get new attributes from the server.
159 * As a side affect, this will do cache invalidation if the attributes
160 * have changed.
161 *
162 * If the attributes have not timed out and if there is a cache
163 * invalidation being done by some other thread, then wait until that
164 * thread has completed the cache invalidation.
165 */
166int
167nfs3_validate_caches(vnode_t *vp, cred_t *cr)
168{
169	int error;
170	struct vattr va;
171
172	if (ATTRCACHE_VALID(vp)) {
173		error = nfs_waitfor_purge_complete(vp);
174		if (error)
175			return (error);
176		return (0);
177	}
178
179	va.va_mask = AT_ALL;
180	return (nfs3_getattr_otw(vp, &va, cr));
181}
182
183/*
184 * Purge all of the various NFS `data' caches.
185 */
186void
187nfs_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr)
188{
189	rnode_t *rp;
190	char *contents;
191	int size;
192	int error;
193
194	/*
195	 * Purge the DNLC for any entries which refer to this file.
196	 * Avoid recursive entry into dnlc_purge_vp() in case of a directory.
197	 */
198	rp = VTOR(vp);
199	mutex_enter(&rp->r_statelock);
200	if (vp->v_count > 1 &&
201	    (vp->v_type == VDIR || purge_dnlc == NFS_PURGE_DNLC) &&
202	    !(rp->r_flags & RINDNLCPURGE)) {
203		/*
204		 * Set the RINDNLCPURGE flag to prevent recursive entry
205		 * into dnlc_purge_vp()
206		 */
207		if (vp->v_type == VDIR)
208			rp->r_flags |= RINDNLCPURGE;
209		mutex_exit(&rp->r_statelock);
210		dnlc_purge_vp(vp);
211		mutex_enter(&rp->r_statelock);
212		if (rp->r_flags & RINDNLCPURGE)
213			rp->r_flags &= ~RINDNLCPURGE;
214	}
215
216	/*
217	 * Clear any readdir state bits and purge the readlink response cache.
218	 */
219	contents = rp->r_symlink.contents;
220	size = rp->r_symlink.size;
221	rp->r_symlink.contents = NULL;
222	mutex_exit(&rp->r_statelock);
223
224	if (contents != NULL) {
225
226		kmem_free((void *)contents, size);
227	}
228
229	/*
230	 * Flush the page cache.
231	 */
232	if (vn_has_cached_data(vp)) {
233		error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
234		if (error && (error == ENOSPC || error == EDQUOT)) {
235			mutex_enter(&rp->r_statelock);
236			if (!rp->r_error)
237				rp->r_error = error;
238			mutex_exit(&rp->r_statelock);
239		}
240	}
241
242	/*
243	 * Flush the readdir response cache.
244	 */
245	if (HAVE_RDDIR_CACHE(rp))
246		nfs_purge_rddir_cache(vp);
247}
248
249/*
250 * Purge the readdir cache of all entries
251 */
252void
253nfs_purge_rddir_cache(vnode_t *vp)
254{
255	rnode_t *rp;
256	rddir_cache *rdc;
257	rddir_cache *nrdc;
258
259	rp = VTOR(vp);
260top:
261	mutex_enter(&rp->r_statelock);
262	rp->r_direof = NULL;
263	rp->r_flags &= ~RLOOKUP;
264	rp->r_flags |= RREADDIRPLUS;
265	rdc = avl_first(&rp->r_dir);
266	while (rdc != NULL) {
267		nrdc = AVL_NEXT(&rp->r_dir, rdc);
268		avl_remove(&rp->r_dir, rdc);
269		rddir_cache_rele(rdc);
270		rdc = nrdc;
271	}
272	mutex_exit(&rp->r_statelock);
273}
274
275/*
276 * Do a cache check based on the post-operation attributes.
277 * Then make them the new cached attributes.  If no attributes
278 * were returned, then mark the attributes as timed out.
279 */
280void
281nfs3_cache_post_op_attr(vnode_t *vp, post_op_attr *poap, hrtime_t t, cred_t *cr)
282{
283	vattr_t attr;
284
285	if (!poap->attributes) {
286		PURGE_ATTRCACHE(vp);
287		return;
288	}
289	(void) nfs3_cache_fattr3(vp, &poap->attr, &attr, t, cr);
290}
291
292/*
293 * Same as above, but using a vattr
294 */
295void
296nfs3_cache_post_op_vattr(vnode_t *vp, post_op_vattr *poap, hrtime_t t,
297    cred_t *cr)
298{
299	if (!poap->attributes) {
300		PURGE_ATTRCACHE(vp);
301		return;
302	}
303	nfs_attr_cache(vp, poap->fres.vap, t, cr);
304}
305
306/*
307 * Do a cache check based on the weak cache consistency attributes.
308 * These consist of a small set of pre-operation attributes and the
309 * full set of post-operation attributes.
310 *
311 * If we are given the pre-operation attributes, then use them to
312 * check the validity of the various caches.  Then, if we got the
313 * post-operation attributes, make them the new cached attributes.
314 * If we didn't get the post-operation attributes, then mark the
315 * attribute cache as timed out so that the next reference will
316 * cause a GETATTR to the server to refresh with the current
317 * attributes.
318 *
319 * Otherwise, if we didn't get the pre-operation attributes, but
320 * we did get the post-operation attributes, then use these
321 * attributes to check the validity of the various caches.  This
322 * will probably cause a flush of the caches because if the
323 * operation succeeded, the attributes of the object were changed
324 * in some way from the old post-operation attributes.  This
325 * should be okay because it is the safe thing to do.  After
326 * checking the data caches, then we make these the new cached
327 * attributes.
328 *
329 * Otherwise, we didn't get either the pre- or post-operation
330 * attributes.  Simply mark the attribute cache as timed out so
331 * the next reference will cause a GETATTR to the server to
332 * refresh with the current attributes.
333 *
334 * If an error occurred trying to convert the over the wire
335 * attributes to a vattr, then simply mark the attribute cache as
336 * timed out.
337 */
338void
339nfs3_cache_wcc_data(vnode_t *vp, wcc_data *wccp, hrtime_t t, cred_t *cr)
340{
341	vattr_t bva;
342	vattr_t ava;
343
344	if (wccp->after.attributes) {
345		if (fattr3_to_vattr(vp, &wccp->after.attr, &ava)) {
346			PURGE_ATTRCACHE(vp);
347			return;
348		}
349		if (wccp->before.attributes) {
350			bva.va_ctime.tv_sec = wccp->before.attr.ctime.seconds;
351			bva.va_ctime.tv_nsec = wccp->before.attr.ctime.nseconds;
352			bva.va_mtime.tv_sec = wccp->before.attr.mtime.seconds;
353			bva.va_mtime.tv_nsec = wccp->before.attr.mtime.nseconds;
354			bva.va_size = wccp->before.attr.size;
355			nfs3_attr_cache(vp, &bva, &ava, t, cr);
356		} else
357			nfs_attr_cache(vp, &ava, t, cr);
358	} else {
359		PURGE_ATTRCACHE(vp);
360	}
361}
362
363/*
364 * Set attributes cache for given vnode using nfsattr.
365 *
366 * This routine does not do cache validation with the attributes.
367 *
368 * If an error occurred trying to convert the over the wire
369 * attributes to a vattr, then simply mark the attribute cache as
370 * timed out.
371 */
372void
373nfs_attrcache(vnode_t *vp, struct nfsfattr *na, hrtime_t t)
374{
375	rnode_t *rp;
376	struct vattr va;
377
378	if (!nattr_to_vattr(vp, na, &va)) {
379		rp = VTOR(vp);
380		mutex_enter(&rp->r_statelock);
381		if (rp->r_mtime <= t)
382			nfs_attrcache_va(vp, &va);
383		mutex_exit(&rp->r_statelock);
384	} else {
385		PURGE_ATTRCACHE(vp);
386	}
387}
388
389/*
390 * Set attributes cache for given vnode using fattr3.
391 *
392 * This routine does not do cache validation with the attributes.
393 *
394 * If an error occurred trying to convert the over the wire
395 * attributes to a vattr, then simply mark the attribute cache as
396 * timed out.
397 */
398void
399nfs3_attrcache(vnode_t *vp, fattr3 *na, hrtime_t t)
400{
401	rnode_t *rp;
402	struct vattr va;
403
404	if (!fattr3_to_vattr(vp, na, &va)) {
405		rp = VTOR(vp);
406		mutex_enter(&rp->r_statelock);
407		if (rp->r_mtime <= t)
408			nfs_attrcache_va(vp, &va);
409		mutex_exit(&rp->r_statelock);
410	} else {
411		PURGE_ATTRCACHE(vp);
412	}
413}
414
415/*
416 * Do a cache check based on attributes returned over the wire.  The
417 * new attributes are cached.
418 *
419 * If an error occurred trying to convert the over the wire attributes
420 * to a vattr, then just return that error.
421 *
422 * As a side affect, the vattr argument is filled in with the converted
423 * attributes.
424 */
425int
426nfs_cache_fattr(vnode_t *vp, struct nfsfattr *na, vattr_t *vap, hrtime_t t,
427    cred_t *cr)
428{
429	int error;
430
431	error = nattr_to_vattr(vp, na, vap);
432	if (error)
433		return (error);
434	nfs_attr_cache(vp, vap, t, cr);
435	return (0);
436}
437
438/*
439 * Do a cache check based on attributes returned over the wire.  The
440 * new attributes are cached.
441 *
442 * If an error occurred trying to convert the over the wire attributes
443 * to a vattr, then just return that error.
444 *
445 * As a side affect, the vattr argument is filled in with the converted
446 * attributes.
447 */
448int
449nfs3_cache_fattr3(vnode_t *vp, fattr3 *na, vattr_t *vap, hrtime_t t, cred_t *cr)
450{
451	int error;
452
453	error = fattr3_to_vattr(vp, na, vap);
454	if (error)
455		return (error);
456	nfs_attr_cache(vp, vap, t, cr);
457	return (0);
458}
459
460/*
461 * Use the passed in virtual attributes to check to see whether the
462 * data and metadata caches are valid, cache the new attributes, and
463 * then do the cache invalidation if required.
464 *
465 * The cache validation and caching of the new attributes is done
466 * atomically via the use of the mutex, r_statelock.  If required,
467 * the cache invalidation is done atomically w.r.t. the cache
468 * validation and caching of the attributes via the pseudo lock,
469 * r_serial.
470 *
471 * This routine is used to do cache validation and attributes caching
472 * for operations with a single set of post operation attributes.
473 */
474void
475nfs_attr_cache(vnode_t *vp, vattr_t *vap, hrtime_t t, cred_t *cr)
476{
477	rnode_t *rp;
478	int mtime_changed = 0;
479	int ctime_changed = 0;
480	vsecattr_t *vsp;
481	int was_serial;
482	len_t preattr_rsize;
483	boolean_t writeattr_set = B_FALSE;
484	boolean_t cachepurge_set = B_FALSE;
485
486	rp = VTOR(vp);
487
488	mutex_enter(&rp->r_statelock);
489
490	if (rp->r_serial != curthread) {
491		klwp_t *lwp = ttolwp(curthread);
492
493		was_serial = 0;
494		if (lwp != NULL)
495			lwp->lwp_nostop++;
496		while (rp->r_serial != NULL) {
497			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
498				mutex_exit(&rp->r_statelock);
499				if (lwp != NULL)
500					lwp->lwp_nostop--;
501				return;
502			}
503		}
504		if (lwp != NULL)
505			lwp->lwp_nostop--;
506	} else
507		was_serial = 1;
508
509	if (rp->r_mtime > t) {
510		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
511			PURGE_ATTRCACHE_LOCKED(rp);
512		mutex_exit(&rp->r_statelock);
513		return;
514	}
515
516	/*
517	 * Write thread after writing data to file on remote server,
518	 * will always set RWRITEATTR to indicate that file on remote
519	 * server was modified with a WRITE operation and would have
520	 * marked attribute cache as timed out. If RWRITEATTR
521	 * is set, then do not check for mtime and ctime change.
522	 */
523	if (!(rp->r_flags & RWRITEATTR)) {
524		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
525			mtime_changed = 1;
526
527		if (rp->r_attr.va_ctime.tv_sec != vap->va_ctime.tv_sec ||
528		    rp->r_attr.va_ctime.tv_nsec != vap->va_ctime.tv_nsec)
529			ctime_changed = 1;
530	} else {
531		writeattr_set = B_TRUE;
532	}
533
534	preattr_rsize = rp->r_size;
535
536	nfs_attrcache_va(vp, vap);
537
538	/*
539	 * If we have updated filesize in nfs_attrcache_va, as soon as we
540	 * drop statelock we will be in transition of purging all
541	 * our caches and updating them. It is possible for another
542	 * thread to pick this new file size and read in zeroed data.
543	 * stall other threads till cache purge is complete.
544	 */
545	if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) {
546		/*
547		 * If RWRITEATTR was set and we have updated the file
548		 * size, Server's returned file size need not necessarily
549		 * be because of this Client's WRITE. We need to purge
550		 * all caches.
551		 */
552		if (writeattr_set)
553			mtime_changed = 1;
554
555		if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) {
556			rp->r_flags |= RINCACHEPURGE;
557			cachepurge_set = B_TRUE;
558		}
559	}
560
561	if (!mtime_changed && !ctime_changed) {
562		mutex_exit(&rp->r_statelock);
563		return;
564	}
565
566	rp->r_serial = curthread;
567
568	mutex_exit(&rp->r_statelock);
569
570	if (mtime_changed)
571		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
572
573	if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) {
574		mutex_enter(&rp->r_statelock);
575		rp->r_flags &= ~RINCACHEPURGE;
576		cv_broadcast(&rp->r_cv);
577		mutex_exit(&rp->r_statelock);
578		cachepurge_set = B_FALSE;
579	}
580
581	if (ctime_changed) {
582		(void) nfs_access_purge_rp(rp);
583		if (rp->r_secattr != NULL) {
584			mutex_enter(&rp->r_statelock);
585			vsp = rp->r_secattr;
586			rp->r_secattr = NULL;
587			mutex_exit(&rp->r_statelock);
588			if (vsp != NULL)
589				nfs_acl_free(vsp);
590		}
591	}
592
593	if (!was_serial) {
594		mutex_enter(&rp->r_statelock);
595		rp->r_serial = NULL;
596		cv_broadcast(&rp->r_cv);
597		mutex_exit(&rp->r_statelock);
598	}
599}
600
601/*
602 * Use the passed in "before" virtual attributes to check to see
603 * whether the data and metadata caches are valid, cache the "after"
604 * new attributes, and then do the cache invalidation if required.
605 *
606 * The cache validation and caching of the new attributes is done
607 * atomically via the use of the mutex, r_statelock.  If required,
608 * the cache invalidation is done atomically w.r.t. the cache
609 * validation and caching of the attributes via the pseudo lock,
610 * r_serial.
611 *
612 * This routine is used to do cache validation and attributes caching
613 * for operations with both pre operation attributes and post operation
614 * attributes.
615 */
616static void
617nfs3_attr_cache(vnode_t *vp, vattr_t *bvap, vattr_t *avap, hrtime_t t,
618    cred_t *cr)
619{
620	rnode_t *rp;
621	int mtime_changed = 0;
622	int ctime_changed = 0;
623	vsecattr_t *vsp;
624	int was_serial;
625	len_t preattr_rsize;
626	boolean_t writeattr_set = B_FALSE;
627	boolean_t cachepurge_set = B_FALSE;
628
629	rp = VTOR(vp);
630
631	mutex_enter(&rp->r_statelock);
632
633	if (rp->r_serial != curthread) {
634		klwp_t *lwp = ttolwp(curthread);
635
636		was_serial = 0;
637		if (lwp != NULL)
638			lwp->lwp_nostop++;
639		while (rp->r_serial != NULL) {
640			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
641				mutex_exit(&rp->r_statelock);
642				if (lwp != NULL)
643					lwp->lwp_nostop--;
644				return;
645			}
646		}
647		if (lwp != NULL)
648			lwp->lwp_nostop--;
649	} else
650		was_serial = 1;
651
652	if (rp->r_mtime > t) {
653		if (!CACHE_VALID(rp, avap->va_mtime, avap->va_size))
654			PURGE_ATTRCACHE_LOCKED(rp);
655		mutex_exit(&rp->r_statelock);
656		return;
657	}
658
659	/*
660	 * Write thread after writing data to file on remote server,
661	 * will always set RWRITEATTR to indicate that file on remote
662	 * server was modified with a WRITE operation and would have
663	 * marked attribute cache as timed out. If RWRITEATTR
664	 * is set, then do not check for mtime and ctime change.
665	 */
666	if (!(rp->r_flags & RWRITEATTR)) {
667		if (!CACHE_VALID(rp, bvap->va_mtime, bvap->va_size))
668			mtime_changed = 1;
669
670		if (rp->r_attr.va_ctime.tv_sec != bvap->va_ctime.tv_sec ||
671		    rp->r_attr.va_ctime.tv_nsec != bvap->va_ctime.tv_nsec)
672			ctime_changed = 1;
673	} else {
674		writeattr_set = B_TRUE;
675	}
676
677	preattr_rsize = rp->r_size;
678
679	nfs_attrcache_va(vp, avap);
680
681	/*
682	 * If we have updated filesize in nfs_attrcache_va, as soon as we
683	 * drop statelock we will be in transition of purging all
684	 * our caches and updating them. It is possible for another
685	 * thread to pick this new file size and read in zeroed data.
686	 * stall other threads till cache purge is complete.
687	 */
688	if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) {
689		/*
690		 * If RWRITEATTR was set and we have updated the file
691		 * size, Server's returned file size need not necessarily
692		 * be because of this Client's WRITE. We need to purge
693		 * all caches.
694		 */
695		if (writeattr_set)
696			mtime_changed = 1;
697
698		if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) {
699			rp->r_flags |= RINCACHEPURGE;
700			cachepurge_set = B_TRUE;
701		}
702	}
703
704	if (!mtime_changed && !ctime_changed) {
705		mutex_exit(&rp->r_statelock);
706		return;
707	}
708
709	rp->r_serial = curthread;
710
711	mutex_exit(&rp->r_statelock);
712
713	if (mtime_changed)
714		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
715
716	if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) {
717		mutex_enter(&rp->r_statelock);
718		rp->r_flags &= ~RINCACHEPURGE;
719		cv_broadcast(&rp->r_cv);
720		mutex_exit(&rp->r_statelock);
721		cachepurge_set = B_FALSE;
722	}
723
724	if (ctime_changed) {
725		(void) nfs_access_purge_rp(rp);
726		if (rp->r_secattr != NULL) {
727			mutex_enter(&rp->r_statelock);
728			vsp = rp->r_secattr;
729			rp->r_secattr = NULL;
730			mutex_exit(&rp->r_statelock);
731			if (vsp != NULL)
732				nfs_acl_free(vsp);
733		}
734	}
735
736	if (!was_serial) {
737		mutex_enter(&rp->r_statelock);
738		rp->r_serial = NULL;
739		cv_broadcast(&rp->r_cv);
740		mutex_exit(&rp->r_statelock);
741	}
742}
743
744/*
745 * Set attributes cache for given vnode using virtual attributes.
746 *
747 * Set the timeout value on the attribute cache and fill it
748 * with the passed in attributes.
749 *
750 * The caller must be holding r_statelock.
751 */
752void
753nfs_attrcache_va(vnode_t *vp, struct vattr *va)
754{
755	rnode_t *rp;
756	mntinfo_t *mi;
757	hrtime_t delta;
758	hrtime_t now;
759
760	rp = VTOR(vp);
761
762	ASSERT(MUTEX_HELD(&rp->r_statelock));
763
764	now = gethrtime();
765
766	mi = VTOMI(vp);
767
768	/*
769	 * Delta is the number of nanoseconds that we will
770	 * cache the attributes of the file.  It is based on
771	 * the number of nanoseconds since the last time that
772	 * we detected a change.  The assumption is that files
773	 * that changed recently are likely to change again.
774	 * There is a minimum and a maximum for regular files
775	 * and for directories which is enforced though.
776	 *
777	 * Using the time since last change was detected
778	 * eliminates direct comparison or calculation
779	 * using mixed client and server times.  NFS does
780	 * not make any assumptions regarding the client
781	 * and server clocks being synchronized.
782	 */
783	if (va->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
784	    va->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
785	    va->va_size != rp->r_attr.va_size)
786		rp->r_mtime = now;
787
788	if ((mi->mi_flags & MI_NOAC) || (vp->v_flag & VNOCACHE))
789		delta = 0;
790	else {
791		delta = now - rp->r_mtime;
792		if (vp->v_type == VDIR) {
793			if (delta < mi->mi_acdirmin)
794				delta = mi->mi_acdirmin;
795			else if (delta > mi->mi_acdirmax)
796				delta = mi->mi_acdirmax;
797		} else {
798			if (delta < mi->mi_acregmin)
799				delta = mi->mi_acregmin;
800			else if (delta > mi->mi_acregmax)
801				delta = mi->mi_acregmax;
802		}
803	}
804	rp->r_attrtime = now + delta;
805	rp->r_attr = *va;
806	/*
807	 * Update the size of the file if there is no cached data or if
808	 * the cached data is clean and there is no data being written
809	 * out.
810	 */
811	if (rp->r_size != va->va_size &&
812	    (!vn_has_cached_data(vp) ||
813	    (!(rp->r_flags & RDIRTY) && rp->r_count == 0)))
814		rp->r_size = va->va_size;
815	nfs_setswaplike(vp, va);
816	rp->r_flags &= ~RWRITEATTR;
817}
818
819/*
820 * Fill in attribute from the cache.
821 * If valid, then return 0 to indicate that no error occurred,
822 * otherwise return 1 to indicate that an error occurred.
823 */
824static int
825nfs_getattr_cache(vnode_t *vp, struct vattr *vap)
826{
827	rnode_t *rp;
828	uint_t mask = vap->va_mask;
829
830	rp = VTOR(vp);
831	mutex_enter(&rp->r_statelock);
832	if (ATTRCACHE_VALID(vp)) {
833		/*
834		 * Cached attributes are valid
835		 */
836		*vap = rp->r_attr;
837		/*
838		 * Set the caller's va_mask to the set of attributes
839		 * that were requested ANDed with the attributes that
840		 * are available.  If attributes were requested that
841		 * are not available, those bits must be turned off
842		 * in the callers va_mask.
843		 */
844		vap->va_mask &= mask;
845		mutex_exit(&rp->r_statelock);
846		return (0);
847	}
848	mutex_exit(&rp->r_statelock);
849	return (1);
850}
851
852/*
853 * Get attributes over-the-wire and update attributes cache
854 * if no error occurred in the over-the-wire operation.
855 * Return 0 if successful, otherwise error.
856 */
857int
858nfs_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
859{
860	int error;
861	struct nfsattrstat ns;
862	int douprintf;
863	mntinfo_t *mi;
864	failinfo_t fi;
865	hrtime_t t;
866
867	mi = VTOMI(vp);
868	fi.vp = vp;
869	fi.fhp = NULL;		/* no need to update, filehandle not copied */
870	fi.copyproc = nfscopyfh;
871	fi.lookupproc = nfslookup;
872	fi.xattrdirproc = acl_getxattrdir2;
873
874	if (mi->mi_flags & MI_ACL) {
875		error = acl_getattr2_otw(vp, vap, cr);
876		if (mi->mi_flags & MI_ACL)
877			return (error);
878	}
879
880	douprintf = 1;
881
882	t = gethrtime();
883
884	error = rfs2call(mi, RFS_GETATTR,
885	    xdr_fhandle, (caddr_t)VTOFH(vp),
886	    xdr_attrstat, (caddr_t)&ns, cr,
887	    &douprintf, &ns.ns_status, 0, &fi);
888
889	if (!error) {
890		error = geterrno(ns.ns_status);
891		if (!error)
892			error = nfs_cache_fattr(vp, &ns.ns_attr, vap, t, cr);
893		else {
894			PURGE_STALE_FH(error, vp, cr);
895		}
896	}
897
898	return (error);
899}
900
901/*
902 * Return either cached ot remote attributes. If get remote attr
903 * use them to check and invalidate caches, then cache the new attributes.
904 */
905int
906nfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
907{
908	int error;
909	rnode_t *rp;
910
911	/*
912	 * If we've got cached attributes, we're done, otherwise go
913	 * to the server to get attributes, which will update the cache
914	 * in the process.
915	 */
916	error = nfs_getattr_cache(vp, vap);
917	if (error)
918		error = nfs_getattr_otw(vp, vap, cr);
919
920	/* Return the client's view of file size */
921	rp = VTOR(vp);
922	mutex_enter(&rp->r_statelock);
923	vap->va_size = rp->r_size;
924	mutex_exit(&rp->r_statelock);
925
926	return (error);
927}
928
929/*
930 * Get attributes over-the-wire and update attributes cache
931 * if no error occurred in the over-the-wire operation.
932 * Return 0 if successful, otherwise error.
933 */
934int
935nfs3_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
936{
937	int error;
938	GETATTR3args args;
939	GETATTR3vres res;
940	int douprintf;
941	failinfo_t fi;
942	hrtime_t t;
943
944	args.object = *VTOFH3(vp);
945	fi.vp = vp;
946	fi.fhp = (caddr_t)&args.object;
947	fi.copyproc = nfs3copyfh;
948	fi.lookupproc = nfs3lookup;
949	fi.xattrdirproc = acl_getxattrdir3;
950	res.fres.vp = vp;
951	res.fres.vap = vap;
952
953	douprintf = 1;
954
955	t = gethrtime();
956
957	error = rfs3call(VTOMI(vp), NFSPROC3_GETATTR,
958	    xdr_nfs_fh3, (caddr_t)&args,
959	    xdr_GETATTR3vres, (caddr_t)&res, cr,
960	    &douprintf, &res.status, 0, &fi);
961
962	if (error)
963		return (error);
964
965	error = geterrno3(res.status);
966	if (error) {
967		PURGE_STALE_FH(error, vp, cr);
968		return (error);
969	}
970
971	/*
972	 * Catch status codes that indicate fattr3 to vattr translation failure
973	 */
974	if (res.fres.status)
975		return (res.fres.status);
976
977	nfs_attr_cache(vp, vap, t, cr);
978	return (0);
979}
980
981/*
982 * Return either cached or remote attributes. If get remote attr
983 * use them to check and invalidate caches, then cache the new attributes.
984 */
985int
986nfs3getattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
987{
988	int error;
989	rnode_t *rp;
990
991	/*
992	 * If we've got cached attributes, we're done, otherwise go
993	 * to the server to get attributes, which will update the cache
994	 * in the process.
995	 */
996	error = nfs_getattr_cache(vp, vap);
997	if (error)
998		error = nfs3_getattr_otw(vp, vap, cr);
999
1000	/* Return the client's view of file size */
1001	rp = VTOR(vp);
1002	mutex_enter(&rp->r_statelock);
1003	vap->va_size = rp->r_size;
1004	mutex_exit(&rp->r_statelock);
1005
1006	return (error);
1007}
1008
1009vtype_t nf_to_vt[] = {
1010	VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK
1011};
1012/*
1013 * Convert NFS Version 2 over the network attributes to the local
1014 * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1015 * network representation and the local representation is done here.
1016 * Returns 0 for success, error if failed due to overflow.
1017 */
1018int
1019nattr_to_vattr(vnode_t *vp, struct nfsfattr *na, struct vattr *vap)
1020{
1021	/* overflow in time attributes? */
1022#ifndef _LP64
1023	if (!NFS2_FATTR_TIME_OK(na))
1024		return (EOVERFLOW);
1025#endif
1026
1027	vap->va_mask = AT_ALL;
1028
1029	if (na->na_type < NFNON || na->na_type > NFSOC)
1030		vap->va_type = VBAD;
1031	else
1032		vap->va_type = nf_to_vt[na->na_type];
1033	vap->va_mode = na->na_mode;
1034	vap->va_uid = (na->na_uid == NFS_UID_NOBODY) ? UID_NOBODY : na->na_uid;
1035	vap->va_gid = (na->na_gid == NFS_GID_NOBODY) ? GID_NOBODY : na->na_gid;
1036	vap->va_fsid = vp->v_vfsp->vfs_dev;
1037	vap->va_nodeid = na->na_nodeid;
1038	vap->va_nlink = na->na_nlink;
1039	vap->va_size = na->na_size;	/* keep for cache validation */
1040	/*
1041	 * nfs protocol defines times as unsigned so don't extend sign,
1042	 * unless sysadmin set nfs_allow_preepoch_time.
1043	 */
1044	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->na_atime.tv_sec);
1045	vap->va_atime.tv_nsec = (uint32_t)(na->na_atime.tv_usec * 1000);
1046	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->na_mtime.tv_sec);
1047	vap->va_mtime.tv_nsec = (uint32_t)(na->na_mtime.tv_usec * 1000);
1048	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->na_ctime.tv_sec);
1049	vap->va_ctime.tv_nsec = (uint32_t)(na->na_ctime.tv_usec * 1000);
1050	/*
1051	 * Shannon's law - uncompress the received dev_t
1052	 * if the top half of is zero indicating a response
1053	 * from an `older style' OS. Except for when it is a
1054	 * `new style' OS sending the maj device of zero,
1055	 * in which case the algorithm still works because the
1056	 * fact that it is a new style server
1057	 * is hidden by the minor device not being greater
1058	 * than 255 (a requirement in this case).
1059	 */
1060	if ((na->na_rdev & 0xffff0000) == 0)
1061		vap->va_rdev = nfsv2_expdev(na->na_rdev);
1062	else
1063		vap->va_rdev = expldev(na->na_rdev);
1064
1065	vap->va_nblocks = na->na_blocks;
1066	switch (na->na_type) {
1067	case NFBLK:
1068		vap->va_blksize = DEV_BSIZE;
1069		break;
1070
1071	case NFCHR:
1072		vap->va_blksize = MAXBSIZE;
1073		break;
1074
1075	case NFSOC:
1076	default:
1077		vap->va_blksize = na->na_blocksize;
1078		break;
1079	}
1080	/*
1081	 * This bit of ugliness is a hack to preserve the
1082	 * over-the-wire protocols for named-pipe vnodes.
1083	 * It remaps the special over-the-wire type to the
1084	 * VFIFO type. (see note in nfs.h)
1085	 */
1086	if (NA_ISFIFO(na)) {
1087		vap->va_type = VFIFO;
1088		vap->va_mode = (vap->va_mode & ~S_IFMT) | S_IFIFO;
1089		vap->va_rdev = 0;
1090		vap->va_blksize = na->na_blocksize;
1091	}
1092	vap->va_seq = 0;
1093	return (0);
1094}
1095
1096/*
1097 * Convert NFS Version 3 over the network attributes to the local
1098 * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1099 * network representation and the local representation is done here.
1100 */
1101vtype_t nf3_to_vt[] = {
1102	VBAD, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO
1103};
1104
1105int
1106fattr3_to_vattr(vnode_t *vp, fattr3 *na, struct vattr *vap)
1107{
1108
1109#ifndef _LP64
1110	/* overflow in time attributes? */
1111	if (!NFS3_FATTR_TIME_OK(na))
1112		return (EOVERFLOW);
1113#endif
1114	if (!NFS3_SIZE_OK(na->size))
1115		/* file too big */
1116		return (EFBIG);
1117
1118	vap->va_mask = AT_ALL;
1119
1120	if (na->type < NF3REG || na->type > NF3FIFO)
1121		vap->va_type = VBAD;
1122	else
1123		vap->va_type = nf3_to_vt[na->type];
1124	vap->va_mode = na->mode;
1125	vap->va_uid = (na->uid == NFS_UID_NOBODY) ? UID_NOBODY : (uid_t)na->uid;
1126	vap->va_gid = (na->gid == NFS_GID_NOBODY) ? GID_NOBODY : (gid_t)na->gid;
1127	vap->va_fsid = vp->v_vfsp->vfs_dev;
1128	vap->va_nodeid = na->fileid;
1129	vap->va_nlink = na->nlink;
1130	vap->va_size = na->size;
1131
1132	/*
1133	 * nfs protocol defines times as unsigned so don't extend sign,
1134	 * unless sysadmin set nfs_allow_preepoch_time.
1135	 */
1136	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->atime.seconds);
1137	vap->va_atime.tv_nsec = (uint32_t)na->atime.nseconds;
1138	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->mtime.seconds);
1139	vap->va_mtime.tv_nsec = (uint32_t)na->mtime.nseconds;
1140	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->ctime.seconds);
1141	vap->va_ctime.tv_nsec = (uint32_t)na->ctime.nseconds;
1142
1143	switch (na->type) {
1144	case NF3BLK:
1145		vap->va_rdev = makedevice(na->rdev.specdata1,
1146		    na->rdev.specdata2);
1147		vap->va_blksize = DEV_BSIZE;
1148		vap->va_nblocks = 0;
1149		break;
1150	case NF3CHR:
1151		vap->va_rdev = makedevice(na->rdev.specdata1,
1152		    na->rdev.specdata2);
1153		vap->va_blksize = MAXBSIZE;
1154		vap->va_nblocks = 0;
1155		break;
1156	case NF3REG:
1157	case NF3DIR:
1158	case NF3LNK:
1159		vap->va_rdev = 0;
1160		vap->va_blksize = MAXBSIZE;
1161		vap->va_nblocks = (u_longlong_t)
1162		    ((na->used + (size3)DEV_BSIZE - (size3)1) /
1163		    (size3)DEV_BSIZE);
1164		break;
1165	case NF3SOCK:
1166	case NF3FIFO:
1167	default:
1168		vap->va_rdev = 0;
1169		vap->va_blksize = MAXBSIZE;
1170		vap->va_nblocks = 0;
1171		break;
1172	}
1173	vap->va_seq = 0;
1174	return (0);
1175}
1176
1177/*
1178 * Asynchronous I/O parameters.  nfs_async_threads is the high-water mark
1179 * for the demand-based allocation of async threads per-mount.  The
1180 * nfs_async_timeout is the amount of time a thread will live after it
1181 * becomes idle, unless new I/O requests are received before the thread
1182 * dies.  See nfs_async_putpage and nfs_async_start.
1183 */
1184
1185int nfs_async_timeout = -1;	/* uninitialized */
1186
1187static void	nfs_async_start(struct vfs *);
1188
1189static void
1190free_async_args(struct nfs_async_reqs *args)
1191{
1192	rnode_t *rp;
1193
1194	if (args->a_io != NFS_INACTIVE) {
1195		rp = VTOR(args->a_vp);
1196		mutex_enter(&rp->r_statelock);
1197		rp->r_count--;
1198		if (args->a_io == NFS_PUTAPAGE ||
1199		    args->a_io == NFS_PAGEIO)
1200			rp->r_awcount--;
1201		cv_broadcast(&rp->r_cv);
1202		mutex_exit(&rp->r_statelock);
1203		VN_RELE(args->a_vp);
1204	}
1205	crfree(args->a_cred);
1206	kmem_free(args, sizeof (*args));
1207}
1208
1209/*
1210 * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1211 * pageout(), running in the global zone, have legitimate reasons to do
1212 * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts.  We avoid the problem by
1213 * use of a a per-mount "asynchronous requests manager thread" which is
1214 * signaled by the various asynchronous work routines when there is
1215 * asynchronous work to be done.  It is responsible for creating new
1216 * worker threads if necessary, and notifying existing worker threads
1217 * that there is work to be done.
1218 *
1219 * In other words, it will "take the specifications from the customers and
1220 * give them to the engineers."
1221 *
1222 * Worker threads die off of their own accord if they are no longer
1223 * needed.
1224 *
1225 * This thread is killed when the zone is going away or the filesystem
1226 * is being unmounted.
1227 */
1228void
1229nfs_async_manager(vfs_t *vfsp)
1230{
1231	callb_cpr_t cprinfo;
1232	mntinfo_t *mi;
1233	uint_t max_threads;
1234
1235	mi = VFTOMI(vfsp);
1236
1237	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1238	    "nfs_async_manager");
1239
1240	mutex_enter(&mi->mi_async_lock);
1241	/*
1242	 * We want to stash the max number of threads that this mount was
1243	 * allowed so we can use it later when the variable is set to zero as
1244	 * part of the zone/mount going away.
1245	 *
1246	 * We want to be able to create at least one thread to handle
1247	 * asyncrhonous inactive calls.
1248	 */
1249	max_threads = MAX(mi->mi_max_threads, 1);
1250	mutex_enter(&mi->mi_lock);
1251	/*
1252	 * We don't want to wait for mi_max_threads to go to zero, since that
1253	 * happens as part of a failed unmount, but this thread should only
1254	 * exit when the mount/zone is really going away.
1255	 *
1256	 * Once MI_ASYNC_MGR_STOP is set, no more async operations will be
1257	 * attempted: the various _async_*() functions know to do things
1258	 * inline if mi_max_threads == 0.  Henceforth we just drain out the
1259	 * outstanding requests.
1260	 *
1261	 * Note that we still create zthreads even if we notice the zone is
1262	 * shutting down (MI_ASYNC_MGR_STOP is set); this may cause the zone
1263	 * shutdown sequence to take slightly longer in some cases, but
1264	 * doesn't violate the protocol, as all threads will exit as soon as
1265	 * they're done processing the remaining requests.
1266	 */
1267	while (!(mi->mi_flags & MI_ASYNC_MGR_STOP) ||
1268	    mi->mi_async_req_count > 0) {
1269		mutex_exit(&mi->mi_lock);
1270		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1271		cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1272		CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1273		while (mi->mi_async_req_count > 0) {
1274			/*
1275			 * Paranoia: If the mount started out having
1276			 * (mi->mi_max_threads == 0), and the value was
1277			 * later changed (via a debugger or somesuch),
1278			 * we could be confused since we will think we
1279			 * can't create any threads, and the calling
1280			 * code (which looks at the current value of
1281			 * mi->mi_max_threads, now non-zero) thinks we
1282			 * can.
1283			 *
1284			 * So, because we're paranoid, we create threads
1285			 * up to the maximum of the original and the
1286			 * current value. This means that future
1287			 * (debugger-induced) lowerings of
1288			 * mi->mi_max_threads are ignored for our
1289			 * purposes, but who told them they could change
1290			 * random values on a live kernel anyhow?
1291			 */
1292			if (mi->mi_threads <
1293			    MAX(mi->mi_max_threads, max_threads)) {
1294				mi->mi_threads++;
1295				mutex_exit(&mi->mi_async_lock);
1296				VFS_HOLD(vfsp);	/* hold for new thread */
1297				(void) zthread_create(NULL, 0, nfs_async_start,
1298				    vfsp, 0, minclsyspri);
1299				mutex_enter(&mi->mi_async_lock);
1300			}
1301			cv_signal(&mi->mi_async_work_cv);
1302			ASSERT(mi->mi_async_req_count != 0);
1303			mi->mi_async_req_count--;
1304		}
1305		mutex_enter(&mi->mi_lock);
1306	}
1307	mutex_exit(&mi->mi_lock);
1308	/*
1309	 * Let everyone know we're done.
1310	 */
1311	mi->mi_manager_thread = NULL;
1312	cv_broadcast(&mi->mi_async_cv);
1313
1314	/*
1315	 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1316	 * since CALLB_CPR_EXIT is actually responsible for releasing
1317	 * 'mi_async_lock'.
1318	 */
1319	CALLB_CPR_EXIT(&cprinfo);
1320	VFS_RELE(vfsp);	/* release thread's hold */
1321	zthread_exit();
1322}
1323
1324/*
1325 * Signal (and wait for) the async manager thread to clean up and go away.
1326 */
1327void
1328nfs_async_manager_stop(vfs_t *vfsp)
1329{
1330	mntinfo_t *mi = VFTOMI(vfsp);
1331
1332	mutex_enter(&mi->mi_async_lock);
1333	mutex_enter(&mi->mi_lock);
1334	mi->mi_flags |= MI_ASYNC_MGR_STOP;
1335	mutex_exit(&mi->mi_lock);
1336	cv_broadcast(&mi->mi_async_reqs_cv);
1337	while (mi->mi_manager_thread != NULL)
1338		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1339	mutex_exit(&mi->mi_async_lock);
1340}
1341
1342int
1343nfs_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1344	struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1345	u_offset_t, caddr_t, struct seg *, cred_t *))
1346{
1347	rnode_t *rp;
1348	mntinfo_t *mi;
1349	struct nfs_async_reqs *args;
1350
1351	rp = VTOR(vp);
1352	ASSERT(rp->r_freef == NULL);
1353
1354	mi = VTOMI(vp);
1355
1356	/*
1357	 * If addr falls in a different segment, don't bother doing readahead.
1358	 */
1359	if (addr >= seg->s_base + seg->s_size)
1360		return (-1);
1361
1362	/*
1363	 * If we can't allocate a request structure, punt on the readahead.
1364	 */
1365	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1366		return (-1);
1367
1368	/*
1369	 * If a lock operation is pending, don't initiate any new
1370	 * readaheads.  Otherwise, bump r_count to indicate the new
1371	 * asynchronous I/O.
1372	 */
1373	if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1374		kmem_free(args, sizeof (*args));
1375		return (-1);
1376	}
1377	mutex_enter(&rp->r_statelock);
1378	rp->r_count++;
1379	mutex_exit(&rp->r_statelock);
1380	nfs_rw_exit(&rp->r_lkserlock);
1381
1382	args->a_next = NULL;
1383#ifdef DEBUG
1384	args->a_queuer = curthread;
1385#endif
1386	VN_HOLD(vp);
1387	args->a_vp = vp;
1388	ASSERT(cr != NULL);
1389	crhold(cr);
1390	args->a_cred = cr;
1391	args->a_io = NFS_READ_AHEAD;
1392	args->a_nfs_readahead = readahead;
1393	args->a_nfs_blkoff = blkoff;
1394	args->a_nfs_seg = seg;
1395	args->a_nfs_addr = addr;
1396
1397	mutex_enter(&mi->mi_async_lock);
1398
1399	/*
1400	 * If asyncio has been disabled, don't bother readahead.
1401	 */
1402	if (mi->mi_max_threads == 0) {
1403		mutex_exit(&mi->mi_async_lock);
1404		goto noasync;
1405	}
1406
1407	/*
1408	 * Link request structure into the async list and
1409	 * wakeup async thread to do the i/o.
1410	 */
1411	if (mi->mi_async_reqs[NFS_READ_AHEAD] == NULL) {
1412		mi->mi_async_reqs[NFS_READ_AHEAD] = args;
1413		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1414	} else {
1415		mi->mi_async_tail[NFS_READ_AHEAD]->a_next = args;
1416		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1417	}
1418
1419	if (mi->mi_io_kstats) {
1420		mutex_enter(&mi->mi_lock);
1421		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1422		mutex_exit(&mi->mi_lock);
1423	}
1424
1425	mi->mi_async_req_count++;
1426	ASSERT(mi->mi_async_req_count != 0);
1427	cv_signal(&mi->mi_async_reqs_cv);
1428	mutex_exit(&mi->mi_async_lock);
1429	return (0);
1430
1431noasync:
1432	mutex_enter(&rp->r_statelock);
1433	rp->r_count--;
1434	cv_broadcast(&rp->r_cv);
1435	mutex_exit(&rp->r_statelock);
1436	VN_RELE(vp);
1437	crfree(cr);
1438	kmem_free(args, sizeof (*args));
1439	return (-1);
1440}
1441
1442int
1443nfs_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1444	int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1445	u_offset_t, size_t, int, cred_t *))
1446{
1447	rnode_t *rp;
1448	mntinfo_t *mi;
1449	struct nfs_async_reqs *args;
1450
1451	ASSERT(flags & B_ASYNC);
1452	ASSERT(vp->v_vfsp != NULL);
1453
1454	rp = VTOR(vp);
1455	ASSERT(rp->r_count > 0);
1456
1457	mi = VTOMI(vp);
1458
1459	/*
1460	 * If we can't allocate a request structure, do the putpage
1461	 * operation synchronously in this thread's context.
1462	 */
1463	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1464		goto noasync;
1465
1466	args->a_next = NULL;
1467#ifdef DEBUG
1468	args->a_queuer = curthread;
1469#endif
1470	VN_HOLD(vp);
1471	args->a_vp = vp;
1472	ASSERT(cr != NULL);
1473	crhold(cr);
1474	args->a_cred = cr;
1475	args->a_io = NFS_PUTAPAGE;
1476	args->a_nfs_putapage = putapage;
1477	args->a_nfs_pp = pp;
1478	args->a_nfs_off = off;
1479	args->a_nfs_len = (uint_t)len;
1480	args->a_nfs_flags = flags;
1481
1482	mutex_enter(&mi->mi_async_lock);
1483
1484	/*
1485	 * If asyncio has been disabled, then make a synchronous request.
1486	 * This check is done a second time in case async io was diabled
1487	 * while this thread was blocked waiting for memory pressure to
1488	 * reduce or for the queue to drain.
1489	 */
1490	if (mi->mi_max_threads == 0) {
1491		mutex_exit(&mi->mi_async_lock);
1492		goto noasync;
1493	}
1494
1495	/*
1496	 * Link request structure into the async list and
1497	 * wakeup async thread to do the i/o.
1498	 */
1499	if (mi->mi_async_reqs[NFS_PUTAPAGE] == NULL) {
1500		mi->mi_async_reqs[NFS_PUTAPAGE] = args;
1501		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1502	} else {
1503		mi->mi_async_tail[NFS_PUTAPAGE]->a_next = args;
1504		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1505	}
1506
1507	mutex_enter(&rp->r_statelock);
1508	rp->r_count++;
1509	rp->r_awcount++;
1510	mutex_exit(&rp->r_statelock);
1511
1512	if (mi->mi_io_kstats) {
1513		mutex_enter(&mi->mi_lock);
1514		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1515		mutex_exit(&mi->mi_lock);
1516	}
1517
1518	mi->mi_async_req_count++;
1519	ASSERT(mi->mi_async_req_count != 0);
1520	cv_signal(&mi->mi_async_reqs_cv);
1521	mutex_exit(&mi->mi_async_lock);
1522	return (0);
1523
1524noasync:
1525	if (args != NULL) {
1526		VN_RELE(vp);
1527		crfree(cr);
1528		kmem_free(args, sizeof (*args));
1529	}
1530
1531	if (curproc == proc_pageout || curproc == proc_fsflush) {
1532		/*
1533		 * If we get here in the context of the pageout/fsflush,
1534		 * we refuse to do a sync write, because this may hang
1535		 * pageout (and the machine). In this case, we just
1536		 * re-mark the page as dirty and punt on the page.
1537		 *
1538		 * Make sure B_FORCE isn't set.  We can re-mark the
1539		 * pages as dirty and unlock the pages in one swoop by
1540		 * passing in B_ERROR to pvn_write_done().  However,
1541		 * we should make sure B_FORCE isn't set - we don't
1542		 * want the page tossed before it gets written out.
1543		 */
1544		if (flags & B_FORCE)
1545			flags &= ~(B_INVAL | B_FORCE);
1546		pvn_write_done(pp, flags | B_ERROR);
1547		return (0);
1548	}
1549	if (nfs_zone() != mi->mi_zone) {
1550		/*
1551		 * So this was a cross-zone sync putpage.  We pass in B_ERROR
1552		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1553		 * them.
1554		 *
1555		 * We don't want to clear B_FORCE here as the caller presumably
1556		 * knows what they're doing if they set it.
1557		 */
1558		pvn_write_done(pp, flags | B_ERROR);
1559		return (EPERM);
1560	}
1561	return ((*putapage)(vp, pp, off, len, flags, cr));
1562}
1563
1564int
1565nfs_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1566	int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1567	size_t, int, cred_t *))
1568{
1569	rnode_t *rp;
1570	mntinfo_t *mi;
1571	struct nfs_async_reqs *args;
1572
1573	ASSERT(flags & B_ASYNC);
1574	ASSERT(vp->v_vfsp != NULL);
1575
1576	rp = VTOR(vp);
1577	ASSERT(rp->r_count > 0);
1578
1579	mi = VTOMI(vp);
1580
1581	/*
1582	 * If we can't allocate a request structure, do the pageio
1583	 * request synchronously in this thread's context.
1584	 */
1585	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1586		goto noasync;
1587
1588	args->a_next = NULL;
1589#ifdef DEBUG
1590	args->a_queuer = curthread;
1591#endif
1592	VN_HOLD(vp);
1593	args->a_vp = vp;
1594	ASSERT(cr != NULL);
1595	crhold(cr);
1596	args->a_cred = cr;
1597	args->a_io = NFS_PAGEIO;
1598	args->a_nfs_pageio = pageio;
1599	args->a_nfs_pp = pp;
1600	args->a_nfs_off = io_off;
1601	args->a_nfs_len = (uint_t)io_len;
1602	args->a_nfs_flags = flags;
1603
1604	mutex_enter(&mi->mi_async_lock);
1605
1606	/*
1607	 * If asyncio has been disabled, then make a synchronous request.
1608	 * This check is done a second time in case async io was diabled
1609	 * while this thread was blocked waiting for memory pressure to
1610	 * reduce or for the queue to drain.
1611	 */
1612	if (mi->mi_max_threads == 0) {
1613		mutex_exit(&mi->mi_async_lock);
1614		goto noasync;
1615	}
1616
1617	/*
1618	 * Link request structure into the async list and
1619	 * wakeup async thread to do the i/o.
1620	 */
1621	if (mi->mi_async_reqs[NFS_PAGEIO] == NULL) {
1622		mi->mi_async_reqs[NFS_PAGEIO] = args;
1623		mi->mi_async_tail[NFS_PAGEIO] = args;
1624	} else {
1625		mi->mi_async_tail[NFS_PAGEIO]->a_next = args;
1626		mi->mi_async_tail[NFS_PAGEIO] = args;
1627	}
1628
1629	mutex_enter(&rp->r_statelock);
1630	rp->r_count++;
1631	rp->r_awcount++;
1632	mutex_exit(&rp->r_statelock);
1633
1634	if (mi->mi_io_kstats) {
1635		mutex_enter(&mi->mi_lock);
1636		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1637		mutex_exit(&mi->mi_lock);
1638	}
1639
1640	mi->mi_async_req_count++;
1641	ASSERT(mi->mi_async_req_count != 0);
1642	cv_signal(&mi->mi_async_reqs_cv);
1643	mutex_exit(&mi->mi_async_lock);
1644	return (0);
1645
1646noasync:
1647	if (args != NULL) {
1648		VN_RELE(vp);
1649		crfree(cr);
1650		kmem_free(args, sizeof (*args));
1651	}
1652
1653	/*
1654	 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1655	 * the page list), for writes we do it synchronously, except for
1656	 * proc_pageout/proc_fsflush as described below.
1657	 */
1658	if (flags & B_READ) {
1659		pvn_read_done(pp, flags | B_ERROR);
1660		return (0);
1661	}
1662
1663	if (curproc == proc_pageout || curproc == proc_fsflush) {
1664		/*
1665		 * If we get here in the context of the pageout/fsflush,
1666		 * we refuse to do a sync write, because this may hang
1667		 * pageout/fsflush (and the machine). In this case, we just
1668		 * re-mark the page as dirty and punt on the page.
1669		 *
1670		 * Make sure B_FORCE isn't set.  We can re-mark the
1671		 * pages as dirty and unlock the pages in one swoop by
1672		 * passing in B_ERROR to pvn_write_done().  However,
1673		 * we should make sure B_FORCE isn't set - we don't
1674		 * want the page tossed before it gets written out.
1675		 */
1676		if (flags & B_FORCE)
1677			flags &= ~(B_INVAL | B_FORCE);
1678		pvn_write_done(pp, flags | B_ERROR);
1679		return (0);
1680	}
1681
1682	if (nfs_zone() != mi->mi_zone) {
1683		/*
1684		 * So this was a cross-zone sync pageio.  We pass in B_ERROR
1685		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1686		 * them.
1687		 *
1688		 * We don't want to clear B_FORCE here as the caller presumably
1689		 * knows what they're doing if they set it.
1690		 */
1691		pvn_write_done(pp, flags | B_ERROR);
1692		return (EPERM);
1693	}
1694	return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1695}
1696
1697void
1698nfs_async_readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr,
1699	int (*readdir)(vnode_t *, rddir_cache *, cred_t *))
1700{
1701	rnode_t *rp;
1702	mntinfo_t *mi;
1703	struct nfs_async_reqs *args;
1704
1705	rp = VTOR(vp);
1706	ASSERT(rp->r_freef == NULL);
1707
1708	mi = VTOMI(vp);
1709
1710	/*
1711	 * If we can't allocate a request structure, do the readdir
1712	 * operation synchronously in this thread's context.
1713	 */
1714	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1715		goto noasync;
1716
1717	args->a_next = NULL;
1718#ifdef DEBUG
1719	args->a_queuer = curthread;
1720#endif
1721	VN_HOLD(vp);
1722	args->a_vp = vp;
1723	ASSERT(cr != NULL);
1724	crhold(cr);
1725	args->a_cred = cr;
1726	args->a_io = NFS_READDIR;
1727	args->a_nfs_readdir = readdir;
1728	args->a_nfs_rdc = rdc;
1729
1730	mutex_enter(&mi->mi_async_lock);
1731
1732	/*
1733	 * If asyncio has been disabled, then make a synchronous request.
1734	 */
1735	if (mi->mi_max_threads == 0) {
1736		mutex_exit(&mi->mi_async_lock);
1737		goto noasync;
1738	}
1739
1740	/*
1741	 * Link request structure into the async list and
1742	 * wakeup async thread to do the i/o.
1743	 */
1744	if (mi->mi_async_reqs[NFS_READDIR] == NULL) {
1745		mi->mi_async_reqs[NFS_READDIR] = args;
1746		mi->mi_async_tail[NFS_READDIR] = args;
1747	} else {
1748		mi->mi_async_tail[NFS_READDIR]->a_next = args;
1749		mi->mi_async_tail[NFS_READDIR] = args;
1750	}
1751
1752	mutex_enter(&rp->r_statelock);
1753	rp->r_count++;
1754	mutex_exit(&rp->r_statelock);
1755
1756	if (mi->mi_io_kstats) {
1757		mutex_enter(&mi->mi_lock);
1758		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1759		mutex_exit(&mi->mi_lock);
1760	}
1761
1762	mi->mi_async_req_count++;
1763	ASSERT(mi->mi_async_req_count != 0);
1764	cv_signal(&mi->mi_async_reqs_cv);
1765	mutex_exit(&mi->mi_async_lock);
1766	return;
1767
1768noasync:
1769	if (args != NULL) {
1770		VN_RELE(vp);
1771		crfree(cr);
1772		kmem_free(args, sizeof (*args));
1773	}
1774
1775	rdc->entries = NULL;
1776	mutex_enter(&rp->r_statelock);
1777	ASSERT(rdc->flags & RDDIR);
1778	rdc->flags &= ~RDDIR;
1779	rdc->flags |= RDDIRREQ;
1780	/*
1781	 * Check the flag to see if RDDIRWAIT is set. If RDDIRWAIT
1782	 * is set, wakeup the thread sleeping in cv_wait_sig().
1783	 * The woken up thread will reset the flag to RDDIR and will
1784	 * continue with the readdir opeartion.
1785	 */
1786	if (rdc->flags & RDDIRWAIT) {
1787		rdc->flags &= ~RDDIRWAIT;
1788		cv_broadcast(&rdc->cv);
1789	}
1790	mutex_exit(&rp->r_statelock);
1791	rddir_cache_rele(rdc);
1792}
1793
1794void
1795nfs_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
1796	cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
1797	cred_t *))
1798{
1799	rnode_t *rp;
1800	mntinfo_t *mi;
1801	struct nfs_async_reqs *args;
1802	page_t *pp;
1803
1804	rp = VTOR(vp);
1805	mi = VTOMI(vp);
1806
1807	/*
1808	 * If we can't allocate a request structure, do the commit
1809	 * operation synchronously in this thread's context.
1810	 */
1811	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1812		goto noasync;
1813
1814	args->a_next = NULL;
1815#ifdef DEBUG
1816	args->a_queuer = curthread;
1817#endif
1818	VN_HOLD(vp);
1819	args->a_vp = vp;
1820	ASSERT(cr != NULL);
1821	crhold(cr);
1822	args->a_cred = cr;
1823	args->a_io = NFS_COMMIT;
1824	args->a_nfs_commit = commit;
1825	args->a_nfs_plist = plist;
1826	args->a_nfs_offset = offset;
1827	args->a_nfs_count = count;
1828
1829	mutex_enter(&mi->mi_async_lock);
1830
1831	/*
1832	 * If asyncio has been disabled, then make a synchronous request.
1833	 * This check is done a second time in case async io was diabled
1834	 * while this thread was blocked waiting for memory pressure to
1835	 * reduce or for the queue to drain.
1836	 */
1837	if (mi->mi_max_threads == 0) {
1838		mutex_exit(&mi->mi_async_lock);
1839		goto noasync;
1840	}
1841
1842	/*
1843	 * Link request structure into the async list and
1844	 * wakeup async thread to do the i/o.
1845	 */
1846	if (mi->mi_async_reqs[NFS_COMMIT] == NULL) {
1847		mi->mi_async_reqs[NFS_COMMIT] = args;
1848		mi->mi_async_tail[NFS_COMMIT] = args;
1849	} else {
1850		mi->mi_async_tail[NFS_COMMIT]->a_next = args;
1851		mi->mi_async_tail[NFS_COMMIT] = args;
1852	}
1853
1854	mutex_enter(&rp->r_statelock);
1855	rp->r_count++;
1856	mutex_exit(&rp->r_statelock);
1857
1858	if (mi->mi_io_kstats) {
1859		mutex_enter(&mi->mi_lock);
1860		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1861		mutex_exit(&mi->mi_lock);
1862	}
1863
1864	mi->mi_async_req_count++;
1865	ASSERT(mi->mi_async_req_count != 0);
1866	cv_signal(&mi->mi_async_reqs_cv);
1867	mutex_exit(&mi->mi_async_lock);
1868	return;
1869
1870noasync:
1871	if (args != NULL) {
1872		VN_RELE(vp);
1873		crfree(cr);
1874		kmem_free(args, sizeof (*args));
1875	}
1876
1877	if (curproc == proc_pageout || curproc == proc_fsflush ||
1878	    nfs_zone() != mi->mi_zone) {
1879		while (plist != NULL) {
1880			pp = plist;
1881			page_sub(&plist, pp);
1882			pp->p_fsdata = C_COMMIT;
1883			page_unlock(pp);
1884		}
1885		return;
1886	}
1887	(*commit)(vp, plist, offset, count, cr);
1888}
1889
1890void
1891nfs_async_inactive(vnode_t *vp, cred_t *cr,
1892    void (*inactive)(vnode_t *, cred_t *, caller_context_t *))
1893{
1894	mntinfo_t *mi;
1895	struct nfs_async_reqs *args;
1896
1897	mi = VTOMI(vp);
1898
1899	args = kmem_alloc(sizeof (*args), KM_SLEEP);
1900	args->a_next = NULL;
1901#ifdef DEBUG
1902	args->a_queuer = curthread;
1903#endif
1904	args->a_vp = vp;
1905	ASSERT(cr != NULL);
1906	crhold(cr);
1907	args->a_cred = cr;
1908	args->a_io = NFS_INACTIVE;
1909	args->a_nfs_inactive = inactive;
1910
1911	/*
1912	 * Note that we don't check mi->mi_max_threads here, since we
1913	 * *need* to get rid of this vnode regardless of whether someone
1914	 * set nfs3_max_threads/nfs_max_threads to zero in /etc/system.
1915	 *
1916	 * The manager thread knows about this and is willing to create
1917	 * at least one thread to accommodate us.
1918	 */
1919	mutex_enter(&mi->mi_async_lock);
1920	if (mi->mi_manager_thread == NULL) {
1921		rnode_t *rp = VTOR(vp);
1922
1923		mutex_exit(&mi->mi_async_lock);
1924		crfree(cr);	/* drop our reference */
1925		kmem_free(args, sizeof (*args));
1926		/*
1927		 * We can't do an over-the-wire call since we're in the wrong
1928		 * zone, so we need to clean up state as best we can and then
1929		 * throw away the vnode.
1930		 */
1931		mutex_enter(&rp->r_statelock);
1932		if (rp->r_unldvp != NULL) {
1933			vnode_t *unldvp;
1934			char *unlname;
1935			cred_t *unlcred;
1936
1937			unldvp = rp->r_unldvp;
1938			rp->r_unldvp = NULL;
1939			unlname = rp->r_unlname;
1940			rp->r_unlname = NULL;
1941			unlcred = rp->r_unlcred;
1942			rp->r_unlcred = NULL;
1943			mutex_exit(&rp->r_statelock);
1944
1945			VN_RELE(unldvp);
1946			kmem_free(unlname, MAXNAMELEN);
1947			crfree(unlcred);
1948		} else {
1949			mutex_exit(&rp->r_statelock);
1950		}
1951		/*
1952		 * No need to explicitly throw away any cached pages.  The
1953		 * eventual rinactive() will attempt a synchronous
1954		 * VOP_PUTPAGE() which will immediately fail since the request
1955		 * is coming from the wrong zone, and then will proceed to call
1956		 * nfs_invalidate_pages() which will clean things up for us.
1957		 */
1958		rp_addfree(VTOR(vp), cr);
1959		return;
1960	}
1961
1962	if (mi->mi_async_reqs[NFS_INACTIVE] == NULL) {
1963		mi->mi_async_reqs[NFS_INACTIVE] = args;
1964	} else {
1965		mi->mi_async_tail[NFS_INACTIVE]->a_next = args;
1966	}
1967	mi->mi_async_tail[NFS_INACTIVE] = args;
1968	/*
1969	 * Don't increment r_count, since we're trying to get rid of the vnode.
1970	 */
1971
1972	mi->mi_async_req_count++;
1973	ASSERT(mi->mi_async_req_count != 0);
1974	cv_signal(&mi->mi_async_reqs_cv);
1975	mutex_exit(&mi->mi_async_lock);
1976}
1977
1978/*
1979 * The async queues for each mounted file system are arranged as a
1980 * set of queues, one for each async i/o type.  Requests are taken
1981 * from the queues in a round-robin fashion.  A number of consecutive
1982 * requests are taken from each queue before moving on to the next
1983 * queue.  This functionality may allow the NFS Version 2 server to do
1984 * write clustering, even if the client is mixing writes and reads
1985 * because it will take multiple write requests from the queue
1986 * before processing any of the other async i/o types.
1987 *
1988 * XXX The nfs_async_start thread is unsafe in the light of the present
1989 * model defined by cpr to suspend the system. Specifically over the
1990 * wire calls are cpr-unsafe. The thread should be reevaluated in
1991 * case of future updates to the cpr model.
1992 */
1993static void
1994nfs_async_start(struct vfs *vfsp)
1995{
1996	struct nfs_async_reqs *args;
1997	mntinfo_t *mi = VFTOMI(vfsp);
1998	clock_t time_left = 1;
1999	callb_cpr_t cprinfo;
2000	int i;
2001
2002	/*
2003	 * Dynamic initialization of nfs_async_timeout to allow nfs to be
2004	 * built in an implementation independent manner.
2005	 */
2006	if (nfs_async_timeout == -1)
2007		nfs_async_timeout = NFS_ASYNC_TIMEOUT;
2008
2009	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
2010
2011	mutex_enter(&mi->mi_async_lock);
2012	for (;;) {
2013		/*
2014		 * Find the next queue containing an entry.  We start
2015		 * at the current queue pointer and then round robin
2016		 * through all of them until we either find a non-empty
2017		 * queue or have looked through all of them.
2018		 */
2019		for (i = 0; i < NFS_ASYNC_TYPES; i++) {
2020			args = *mi->mi_async_curr;
2021			if (args != NULL)
2022				break;
2023			mi->mi_async_curr++;
2024			if (mi->mi_async_curr ==
2025			    &mi->mi_async_reqs[NFS_ASYNC_TYPES])
2026				mi->mi_async_curr = &mi->mi_async_reqs[0];
2027		}
2028		/*
2029		 * If we didn't find a entry, then block until woken up
2030		 * again and then look through the queues again.
2031		 */
2032		if (args == NULL) {
2033			/*
2034			 * Exiting is considered to be safe for CPR as well
2035			 */
2036			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2037
2038			/*
2039			 * Wakeup thread waiting to unmount the file
2040			 * system only if all async threads are inactive.
2041			 *
2042			 * If we've timed-out and there's nothing to do,
2043			 * then get rid of this thread.
2044			 */
2045			if (mi->mi_max_threads == 0 || time_left <= 0) {
2046				if (--mi->mi_threads == 0)
2047					cv_signal(&mi->mi_async_cv);
2048				CALLB_CPR_EXIT(&cprinfo);
2049				VFS_RELE(vfsp);	/* release thread's hold */
2050				zthread_exit();
2051				/* NOTREACHED */
2052			}
2053			time_left = cv_reltimedwait(&mi->mi_async_work_cv,
2054			    &mi->mi_async_lock, nfs_async_timeout,
2055			    TR_CLOCK_TICK);
2056
2057			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
2058
2059			continue;
2060		}
2061		time_left = 1;
2062
2063		/*
2064		 * Remove the request from the async queue and then
2065		 * update the current async request queue pointer.  If
2066		 * the current queue is empty or we have removed enough
2067		 * consecutive entries from it, then reset the counter
2068		 * for this queue and then move the current pointer to
2069		 * the next queue.
2070		 */
2071		*mi->mi_async_curr = args->a_next;
2072		if (*mi->mi_async_curr == NULL ||
2073		    --mi->mi_async_clusters[args->a_io] == 0) {
2074			mi->mi_async_clusters[args->a_io] =
2075			    mi->mi_async_init_clusters;
2076			mi->mi_async_curr++;
2077			if (mi->mi_async_curr ==
2078			    &mi->mi_async_reqs[NFS_ASYNC_TYPES])
2079				mi->mi_async_curr = &mi->mi_async_reqs[0];
2080		}
2081
2082		if (args->a_io != NFS_INACTIVE && mi->mi_io_kstats) {
2083			mutex_enter(&mi->mi_lock);
2084			kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
2085			mutex_exit(&mi->mi_lock);
2086		}
2087
2088		mutex_exit(&mi->mi_async_lock);
2089
2090		/*
2091		 * Obtain arguments from the async request structure.
2092		 */
2093		if (args->a_io == NFS_READ_AHEAD && mi->mi_max_threads > 0) {
2094			(*args->a_nfs_readahead)(args->a_vp, args->a_nfs_blkoff,
2095			    args->a_nfs_addr, args->a_nfs_seg,
2096			    args->a_cred);
2097		} else if (args->a_io == NFS_PUTAPAGE) {
2098			(void) (*args->a_nfs_putapage)(args->a_vp,
2099			    args->a_nfs_pp, args->a_nfs_off,
2100			    args->a_nfs_len, args->a_nfs_flags,
2101			    args->a_cred);
2102		} else if (args->a_io == NFS_PAGEIO) {
2103			(void) (*args->a_nfs_pageio)(args->a_vp,
2104			    args->a_nfs_pp, args->a_nfs_off,
2105			    args->a_nfs_len, args->a_nfs_flags,
2106			    args->a_cred);
2107		} else if (args->a_io == NFS_READDIR) {
2108			(void) ((*args->a_nfs_readdir)(args->a_vp,
2109			    args->a_nfs_rdc, args->a_cred));
2110		} else if (args->a_io == NFS_COMMIT) {
2111			(*args->a_nfs_commit)(args->a_vp, args->a_nfs_plist,
2112			    args->a_nfs_offset, args->a_nfs_count,
2113			    args->a_cred);
2114		} else if (args->a_io == NFS_INACTIVE) {
2115			(*args->a_nfs_inactive)(args->a_vp, args->a_cred, NULL);
2116		}
2117
2118		/*
2119		 * Now, release the vnode and free the credentials
2120		 * structure.
2121		 */
2122		free_async_args(args);
2123		/*
2124		 * Reacquire the mutex because it will be needed above.
2125		 */
2126		mutex_enter(&mi->mi_async_lock);
2127	}
2128}
2129
2130void
2131nfs_async_stop(struct vfs *vfsp)
2132{
2133	mntinfo_t *mi = VFTOMI(vfsp);
2134
2135	/*
2136	 * Wait for all outstanding async operations to complete and for the
2137	 * worker threads to exit.
2138	 */
2139	mutex_enter(&mi->mi_async_lock);
2140	mi->mi_max_threads = 0;
2141	cv_broadcast(&mi->mi_async_work_cv);
2142	while (mi->mi_threads != 0)
2143		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2144	mutex_exit(&mi->mi_async_lock);
2145}
2146
2147/*
2148 * nfs_async_stop_sig:
2149 * Wait for all outstanding putpage operation to complete. If a signal
2150 * is deliver we will abort and return non-zero. If we can put all the
2151 * pages we will return 0. This routine is called from nfs_unmount and
2152 * nfs3_unmount to make these operations interruptible.
2153 */
2154int
2155nfs_async_stop_sig(struct vfs *vfsp)
2156{
2157	mntinfo_t *mi = VFTOMI(vfsp);
2158	ushort_t omax;
2159	int rval;
2160
2161	/*
2162	 * Wait for all outstanding async operations to complete and for the
2163	 * worker threads to exit.
2164	 */
2165	mutex_enter(&mi->mi_async_lock);
2166	omax = mi->mi_max_threads;
2167	mi->mi_max_threads = 0;
2168	/*
2169	 * Tell all the worker threads to exit.
2170	 */
2171	cv_broadcast(&mi->mi_async_work_cv);
2172	while (mi->mi_threads != 0) {
2173		if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock))
2174			break;
2175	}
2176	rval = (mi->mi_threads != 0);	/* Interrupted */
2177	if (rval)
2178		mi->mi_max_threads = omax;
2179	mutex_exit(&mi->mi_async_lock);
2180
2181	return (rval);
2182}
2183
2184int
2185writerp(rnode_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2186{
2187	int pagecreate;
2188	int n;
2189	int saved_n;
2190	caddr_t saved_base;
2191	u_offset_t offset;
2192	int error;
2193	int sm_error;
2194	vnode_t *vp = RTOV(rp);
2195
2196	ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2197	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2198	if (!vpm_enable) {
2199		ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2200	}
2201
2202	/*
2203	 * Move bytes in at most PAGESIZE chunks. We must avoid
2204	 * spanning pages in uiomove() because page faults may cause
2205	 * the cache to be invalidated out from under us. The r_size is not
2206	 * updated until after the uiomove. If we push the last page of a
2207	 * file before r_size is correct, we will lose the data written past
2208	 * the current (and invalid) r_size.
2209	 */
2210	do {
2211		offset = uio->uio_loffset;
2212		pagecreate = 0;
2213
2214		/*
2215		 * n is the number of bytes required to satisfy the request
2216		 *   or the number of bytes to fill out the page.
2217		 */
2218		n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2219
2220		/*
2221		 * Check to see if we can skip reading in the page
2222		 * and just allocate the memory.  We can do this
2223		 * if we are going to rewrite the entire mapping
2224		 * or if we are going to write to or beyond the current
2225		 * end of file from the beginning of the mapping.
2226		 *
2227		 * The read of r_size is now protected by r_statelock.
2228		 */
2229		mutex_enter(&rp->r_statelock);
2230		/*
2231		 * When pgcreated is nonzero the caller has already done
2232		 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2233		 * segkpm this means we already have at least one page
2234		 * created and mapped at base.
2235		 */
2236		pagecreate = pgcreated ||
2237		    ((offset & PAGEOFFSET) == 0 &&
2238		    (n == PAGESIZE || ((offset + n) >= rp->r_size)));
2239
2240		mutex_exit(&rp->r_statelock);
2241		if (!vpm_enable && pagecreate) {
2242			/*
2243			 * The last argument tells segmap_pagecreate() to
2244			 * always lock the page, as opposed to sometimes
2245			 * returning with the page locked. This way we avoid a
2246			 * fault on the ensuing uiomove(), but also
2247			 * more importantly (to fix bug 1094402) we can
2248			 * call segmap_fault() to unlock the page in all
2249			 * cases. An alternative would be to modify
2250			 * segmap_pagecreate() to tell us when it is
2251			 * locking a page, but that's a fairly major
2252			 * interface change.
2253			 */
2254			if (pgcreated == 0)
2255				(void) segmap_pagecreate(segkmap, base,
2256				    (uint_t)n, 1);
2257			saved_base = base;
2258			saved_n = n;
2259		}
2260
2261		/*
2262		 * The number of bytes of data in the last page can not
2263		 * be accurately be determined while page is being
2264		 * uiomove'd to and the size of the file being updated.
2265		 * Thus, inform threads which need to know accurately
2266		 * how much data is in the last page of the file.  They
2267		 * will not do the i/o immediately, but will arrange for
2268		 * the i/o to happen later when this modify operation
2269		 * will have finished.
2270		 */
2271		ASSERT(!(rp->r_flags & RMODINPROGRESS));
2272		mutex_enter(&rp->r_statelock);
2273		rp->r_flags |= RMODINPROGRESS;
2274		rp->r_modaddr = (offset & MAXBMASK);
2275		mutex_exit(&rp->r_statelock);
2276
2277		if (vpm_enable) {
2278			/*
2279			 * Copy data. If new pages are created, part of
2280			 * the page that is not written will be initizliazed
2281			 * with zeros.
2282			 */
2283			error = vpm_data_copy(vp, offset, n, uio,
2284			    !pagecreate, NULL, 0, S_WRITE);
2285		} else {
2286			error = uiomove(base, n, UIO_WRITE, uio);
2287		}
2288
2289		/*
2290		 * r_size is the maximum number of
2291		 * bytes known to be in the file.
2292		 * Make sure it is at least as high as the
2293		 * first unwritten byte pointed to by uio_loffset.
2294		 */
2295		mutex_enter(&rp->r_statelock);
2296		if (rp->r_size < uio->uio_loffset)
2297			rp->r_size = uio->uio_loffset;
2298		rp->r_flags &= ~RMODINPROGRESS;
2299		rp->r_flags |= RDIRTY;
2300		mutex_exit(&rp->r_statelock);
2301
2302		/* n = # of bytes written */
2303		n = (int)(uio->uio_loffset - offset);
2304
2305		if (!vpm_enable) {
2306			base += n;
2307		}
2308		tcount -= n;
2309		/*
2310		 * If we created pages w/o initializing them completely,
2311		 * we need to zero the part that wasn't set up.
2312		 * This happens on a most EOF write cases and if
2313		 * we had some sort of error during the uiomove.
2314		 */
2315		if (!vpm_enable && pagecreate) {
2316			if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2317				(void) kzero(base, PAGESIZE - n);
2318
2319			if (pgcreated) {
2320				/*
2321				 * Caller is responsible for this page,
2322				 * it was not created in this loop.
2323				 */
2324				pgcreated = 0;
2325			} else {
2326				/*
2327				 * For bug 1094402: segmap_pagecreate locks
2328				 * page. Unlock it. This also unlocks the
2329				 * pages allocated by page_create_va() in
2330				 * segmap_pagecreate().
2331				 */
2332				sm_error = segmap_fault(kas.a_hat, segkmap,
2333				    saved_base, saved_n,
2334				    F_SOFTUNLOCK, S_WRITE);
2335				if (error == 0)
2336					error = sm_error;
2337			}
2338		}
2339	} while (tcount > 0 && error == 0);
2340
2341	return (error);
2342}
2343
2344int
2345nfs_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2346{
2347	rnode_t *rp;
2348	page_t *pp;
2349	u_offset_t eoff;
2350	u_offset_t io_off;
2351	size_t io_len;
2352	int error;
2353	int rdirty;
2354	int err;
2355
2356	rp = VTOR(vp);
2357	ASSERT(rp->r_count > 0);
2358
2359	if (!vn_has_cached_data(vp))
2360		return (0);
2361
2362	ASSERT(vp->v_type != VCHR);
2363
2364	/*
2365	 * If ROUTOFSPACE is set, then all writes turn into B_INVAL
2366	 * writes.  B_FORCE is set to force the VM system to actually
2367	 * invalidate the pages, even if the i/o failed.  The pages
2368	 * need to get invalidated because they can't be written out
2369	 * because there isn't any space left on either the server's
2370	 * file system or in the user's disk quota.  The B_FREE bit
2371	 * is cleared to avoid confusion as to whether this is a
2372	 * request to place the page on the freelist or to destroy
2373	 * it.
2374	 */
2375	if ((rp->r_flags & ROUTOFSPACE) ||
2376	    (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2377		flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2378
2379	if (len == 0) {
2380		/*
2381		 * If doing a full file synchronous operation, then clear
2382		 * the RDIRTY bit.  If a page gets dirtied while the flush
2383		 * is happening, then RDIRTY will get set again.  The
2384		 * RDIRTY bit must get cleared before the flush so that
2385		 * we don't lose this information.
2386		 *
2387		 * If there are no full file async write operations
2388		 * pending and RDIRTY bit is set, clear it.
2389		 */
2390		if (off == (u_offset_t)0 &&
2391		    !(flags & B_ASYNC) &&
2392		    (rp->r_flags & RDIRTY)) {
2393			mutex_enter(&rp->r_statelock);
2394			rdirty = (rp->r_flags & RDIRTY);
2395			rp->r_flags &= ~RDIRTY;
2396			mutex_exit(&rp->r_statelock);
2397		} else if (flags & B_ASYNC && off == (u_offset_t)0) {
2398			mutex_enter(&rp->r_statelock);
2399			if (rp->r_flags & RDIRTY && rp->r_awcount == 0) {
2400				rdirty = (rp->r_flags & RDIRTY);
2401				rp->r_flags &= ~RDIRTY;
2402			}
2403			mutex_exit(&rp->r_statelock);
2404		} else
2405			rdirty = 0;
2406
2407		/*
2408		 * Search the entire vp list for pages >= off, and flush
2409		 * the dirty pages.
2410		 */
2411		error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2412		    flags, cr);
2413
2414		/*
2415		 * If an error occurred and the file was marked as dirty
2416		 * before and we aren't forcibly invalidating pages, then
2417		 * reset the RDIRTY flag.
2418		 */
2419		if (error && rdirty &&
2420		    (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2421			mutex_enter(&rp->r_statelock);
2422			rp->r_flags |= RDIRTY;
2423			mutex_exit(&rp->r_statelock);
2424		}
2425	} else {
2426		/*
2427		 * Do a range from [off...off + len) looking for pages
2428		 * to deal with.
2429		 */
2430		error = 0;
2431#ifdef lint
2432		io_len = 0;
2433#endif
2434		eoff = off + len;
2435		mutex_enter(&rp->r_statelock);
2436		for (io_off = off; io_off < eoff && io_off < rp->r_size;
2437		    io_off += io_len) {
2438			mutex_exit(&rp->r_statelock);
2439			/*
2440			 * If we are not invalidating, synchronously
2441			 * freeing or writing pages use the routine
2442			 * page_lookup_nowait() to prevent reclaiming
2443			 * them from the free list.
2444			 */
2445			if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2446				pp = page_lookup(vp, io_off,
2447				    (flags & (B_INVAL | B_FREE)) ?
2448				    SE_EXCL : SE_SHARED);
2449			} else {
2450				pp = page_lookup_nowait(vp, io_off,
2451				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2452			}
2453
2454			if (pp == NULL || !pvn_getdirty(pp, flags))
2455				io_len = PAGESIZE;
2456			else {
2457				err = (*rp->r_putapage)(vp, pp, &io_off,
2458				    &io_len, flags, cr);
2459				if (!error)
2460					error = err;
2461				/*
2462				 * "io_off" and "io_len" are returned as
2463				 * the range of pages we actually wrote.
2464				 * This allows us to skip ahead more quickly
2465				 * since several pages may've been dealt
2466				 * with by this iteration of the loop.
2467				 */
2468			}
2469			mutex_enter(&rp->r_statelock);
2470		}
2471		mutex_exit(&rp->r_statelock);
2472	}
2473
2474	return (error);
2475}
2476
2477void
2478nfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2479{
2480	rnode_t *rp;
2481
2482	rp = VTOR(vp);
2483	mutex_enter(&rp->r_statelock);
2484	while (rp->r_flags & RTRUNCATE)
2485		cv_wait(&rp->r_cv, &rp->r_statelock);
2486	rp->r_flags |= RTRUNCATE;
2487	if (off == (u_offset_t)0) {
2488		rp->r_flags &= ~RDIRTY;
2489		if (!(rp->r_flags & RSTALE))
2490			rp->r_error = 0;
2491	}
2492	rp->r_truncaddr = off;
2493	mutex_exit(&rp->r_statelock);
2494	(void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2495	    B_INVAL | B_TRUNC, cr);
2496	mutex_enter(&rp->r_statelock);
2497	rp->r_flags &= ~RTRUNCATE;
2498	cv_broadcast(&rp->r_cv);
2499	mutex_exit(&rp->r_statelock);
2500}
2501
2502static int nfs_write_error_to_cons_only = 0;
2503#define	MSG(x)	(nfs_write_error_to_cons_only ? (x) : (x) + 1)
2504
2505/*
2506 * Print a file handle
2507 */
2508void
2509nfs_printfhandle(nfs_fhandle *fhp)
2510{
2511	int *ip;
2512	char *buf;
2513	size_t bufsize;
2514	char *cp;
2515
2516	/*
2517	 * 13 == "(file handle:"
2518	 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times
2519	 *	1 == ' '
2520	 *	8 == maximum strlen of "%x"
2521	 * 3 == ")\n\0"
2522	 */
2523	bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3;
2524	buf = kmem_alloc(bufsize, KM_NOSLEEP);
2525	if (buf == NULL)
2526		return;
2527
2528	cp = buf;
2529	(void) strcpy(cp, "(file handle:");
2530	while (*cp != '\0')
2531		cp++;
2532	for (ip = (int *)fhp->fh_buf;
2533	    ip < (int *)&fhp->fh_buf[fhp->fh_len];
2534	    ip++) {
2535		(void) sprintf(cp, " %x", *ip);
2536		while (*cp != '\0')
2537			cp++;
2538	}
2539	(void) strcpy(cp, ")\n");
2540
2541	zcmn_err(getzoneid(), CE_CONT, MSG("^%s"), buf);
2542
2543	kmem_free(buf, bufsize);
2544}
2545
2546/*
2547 * Notify the system administrator that an NFS write error has
2548 * occurred.
2549 */
2550
2551/* seconds between ENOSPC/EDQUOT messages */
2552clock_t nfs_write_error_interval = 5;
2553
2554void
2555nfs_write_error(vnode_t *vp, int error, cred_t *cr)
2556{
2557	mntinfo_t *mi;
2558	clock_t now;
2559
2560	mi = VTOMI(vp);
2561	/*
2562	 * In case of forced unmount or zone shutdown, do not print any
2563	 * messages since it can flood the console with error messages.
2564	 */
2565	if (FS_OR_ZONE_GONE(mi->mi_vfsp))
2566		return;
2567
2568	/*
2569	 * No use in flooding the console with ENOSPC
2570	 * messages from the same file system.
2571	 */
2572	now = ddi_get_lbolt();
2573	if ((error != ENOSPC && error != EDQUOT) ||
2574	    now - mi->mi_printftime > 0) {
2575		zoneid_t zoneid = mi->mi_zone->zone_id;
2576
2577#ifdef DEBUG
2578		nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2579		    mi->mi_vers, VTOR(vp)->r_server->sv_hostname, NULL);
2580#else
2581		nfs_perror(error, "NFS write error on host %s: %m.\n",
2582		    VTOR(vp)->r_server->sv_hostname, NULL);
2583#endif
2584		if (error == ENOSPC || error == EDQUOT) {
2585			zcmn_err(zoneid, CE_CONT,
2586			    MSG("^File: userid=%d, groupid=%d\n"),
2587			    crgetuid(cr), crgetgid(cr));
2588			if (crgetuid(CRED()) != crgetuid(cr) ||
2589			    crgetgid(CRED()) != crgetgid(cr)) {
2590				zcmn_err(zoneid, CE_CONT,
2591				    MSG("^User: userid=%d, groupid=%d\n"),
2592				    crgetuid(CRED()), crgetgid(CRED()));
2593			}
2594			mi->mi_printftime = now +
2595			    nfs_write_error_interval * hz;
2596		}
2597		nfs_printfhandle(&VTOR(vp)->r_fh);
2598#ifdef DEBUG
2599		if (error == EACCES) {
2600			zcmn_err(zoneid, CE_CONT,
2601			    MSG("^nfs_bio: cred is%s kcred\n"),
2602			    cr == kcred ? "" : " not");
2603		}
2604#endif
2605	}
2606}
2607
2608/* ARGSUSED */
2609static void *
2610nfs_mi_init(zoneid_t zoneid)
2611{
2612	struct mi_globals *mig;
2613
2614	mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2615	mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2616	list_create(&mig->mig_list, sizeof (mntinfo_t),
2617	    offsetof(mntinfo_t, mi_zone_node));
2618	mig->mig_destructor_called = B_FALSE;
2619	return (mig);
2620}
2621
2622/*
2623 * Callback routine to tell all NFS mounts in the zone to stop creating new
2624 * threads.  Existing threads should exit.
2625 */
2626/* ARGSUSED */
2627static void
2628nfs_mi_shutdown(zoneid_t zoneid, void *data)
2629{
2630	struct mi_globals *mig = data;
2631	mntinfo_t *mi;
2632
2633	ASSERT(mig != NULL);
2634again:
2635	mutex_enter(&mig->mig_lock);
2636	for (mi = list_head(&mig->mig_list); mi != NULL;
2637	    mi = list_next(&mig->mig_list, mi)) {
2638
2639		/*
2640		 * If we've done the shutdown work for this FS, skip.
2641		 * Once we go off the end of the list, we're done.
2642		 */
2643		if (mi->mi_flags & MI_DEAD)
2644			continue;
2645
2646		/*
2647		 * We will do work, so not done.  Get a hold on the FS.
2648		 */
2649		VFS_HOLD(mi->mi_vfsp);
2650
2651		/*
2652		 * purge the DNLC for this filesystem
2653		 */
2654		(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2655
2656		mutex_enter(&mi->mi_async_lock);
2657		/*
2658		 * Tell existing async worker threads to exit.
2659		 */
2660		mi->mi_max_threads = 0;
2661		cv_broadcast(&mi->mi_async_work_cv);
2662		/*
2663		 * Set MI_ASYNC_MGR_STOP so the async manager thread starts
2664		 * getting ready to exit when it's done with its current work.
2665		 * Also set MI_DEAD to note we've acted on this FS.
2666		 */
2667		mutex_enter(&mi->mi_lock);
2668		mi->mi_flags |= (MI_ASYNC_MGR_STOP|MI_DEAD);
2669		mutex_exit(&mi->mi_lock);
2670		/*
2671		 * Wake up the async manager thread.
2672		 */
2673		cv_broadcast(&mi->mi_async_reqs_cv);
2674		mutex_exit(&mi->mi_async_lock);
2675
2676		/*
2677		 * Drop lock and release FS, which may change list, then repeat.
2678		 * We're done when every mi has been done or the list is empty.
2679		 */
2680		mutex_exit(&mig->mig_lock);
2681		VFS_RELE(mi->mi_vfsp);
2682		goto again;
2683	}
2684	mutex_exit(&mig->mig_lock);
2685}
2686
2687static void
2688nfs_mi_free_globals(struct mi_globals *mig)
2689{
2690	list_destroy(&mig->mig_list);	/* makes sure the list is empty */
2691	mutex_destroy(&mig->mig_lock);
2692	kmem_free(mig, sizeof (*mig));
2693
2694}
2695
2696/* ARGSUSED */
2697static void
2698nfs_mi_destroy(zoneid_t zoneid, void *data)
2699{
2700	struct mi_globals *mig = data;
2701
2702	ASSERT(mig != NULL);
2703	mutex_enter(&mig->mig_lock);
2704	if (list_head(&mig->mig_list) != NULL) {
2705		/* Still waiting for VFS_FREEVFS() */
2706		mig->mig_destructor_called = B_TRUE;
2707		mutex_exit(&mig->mig_lock);
2708		return;
2709	}
2710	nfs_mi_free_globals(mig);
2711}
2712
2713/*
2714 * Add an NFS mount to the per-zone list of NFS mounts.
2715 */
2716void
2717nfs_mi_zonelist_add(mntinfo_t *mi)
2718{
2719	struct mi_globals *mig;
2720
2721	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2722	mutex_enter(&mig->mig_lock);
2723	list_insert_head(&mig->mig_list, mi);
2724	mutex_exit(&mig->mig_lock);
2725}
2726
2727/*
2728 * Remove an NFS mount from the per-zone list of NFS mounts.
2729 */
2730static void
2731nfs_mi_zonelist_remove(mntinfo_t *mi)
2732{
2733	struct mi_globals *mig;
2734
2735	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2736	mutex_enter(&mig->mig_lock);
2737	list_remove(&mig->mig_list, mi);
2738	/*
2739	 * We can be called asynchronously by VFS_FREEVFS() after the zone
2740	 * shutdown/destroy callbacks have executed; if so, clean up the zone's
2741	 * mi globals.
2742	 */
2743	if (list_head(&mig->mig_list) == NULL &&
2744	    mig->mig_destructor_called == B_TRUE) {
2745		nfs_mi_free_globals(mig);
2746		return;
2747	}
2748	mutex_exit(&mig->mig_lock);
2749}
2750
2751/*
2752 * NFS Client initialization routine.  This routine should only be called
2753 * once.  It performs the following tasks:
2754 *	- Initalize all global locks
2755 * 	- Call sub-initialization routines (localize access to variables)
2756 */
2757int
2758nfs_clntinit(void)
2759{
2760#ifdef DEBUG
2761	static boolean_t nfs_clntup = B_FALSE;
2762#endif
2763	int error;
2764
2765#ifdef DEBUG
2766	ASSERT(nfs_clntup == B_FALSE);
2767#endif
2768
2769	error = nfs_subrinit();
2770	if (error)
2771		return (error);
2772
2773	error = nfs_vfsinit();
2774	if (error) {
2775		/*
2776		 * Cleanup nfs_subrinit() work
2777		 */
2778		nfs_subrfini();
2779		return (error);
2780	}
2781	zone_key_create(&mi_list_key, nfs_mi_init, nfs_mi_shutdown,
2782	    nfs_mi_destroy);
2783
2784	nfs4_clnt_init();
2785
2786#ifdef DEBUG
2787	nfs_clntup = B_TRUE;
2788#endif
2789
2790	return (0);
2791}
2792
2793/*
2794 * This routine is only called if the NFS Client has been initialized but
2795 * the module failed to be installed. This routine will cleanup the previously
2796 * allocated/initialized work.
2797 */
2798void
2799nfs_clntfini(void)
2800{
2801	(void) zone_key_delete(mi_list_key);
2802	nfs_subrfini();
2803	nfs_vfsfini();
2804	nfs4_clnt_fini();
2805}
2806
2807/*
2808 * nfs_lockrelease:
2809 *
2810 * Release any locks on the given vnode that are held by the current
2811 * process.
2812 */
2813void
2814nfs_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
2815{
2816	flock64_t ld;
2817	struct shrlock shr;
2818	char *buf;
2819	int remote_lock_possible;
2820	int ret;
2821
2822	ASSERT((uintptr_t)vp > KERNELBASE);
2823
2824	/*
2825	 * Generate an explicit unlock operation for the entire file.  As a
2826	 * partial optimization, only generate the unlock if there is a
2827	 * lock registered for the file.  We could check whether this
2828	 * particular process has any locks on the file, but that would
2829	 * require the local locking code to provide yet another query
2830	 * routine.  Note that no explicit synchronization is needed here.
2831	 * At worst, flk_has_remote_locks() will return a false positive,
2832	 * in which case the unlock call wastes time but doesn't harm
2833	 * correctness.
2834	 *
2835	 * In addition, an unlock request is generated if the process
2836	 * is listed as possibly having a lock on the file because the
2837	 * server and client lock managers may have gotten out of sync.
2838	 * N.B. It is important to make sure nfs_remove_locking_id() is
2839	 * called here even if flk_has_remote_locks(vp) reports true.
2840	 * If it is not called and there is an entry on the process id
2841	 * list, that entry will never get removed.
2842	 */
2843	remote_lock_possible = nfs_remove_locking_id(vp, RLMPL_PID,
2844	    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2845	if (remote_lock_possible || flk_has_remote_locks(vp)) {
2846		ld.l_type = F_UNLCK;	/* set to unlock entire file */
2847		ld.l_whence = 0;	/* unlock from start of file */
2848		ld.l_start = 0;
2849		ld.l_len = 0;		/* do entire file */
2850		ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr,
2851		    NULL);
2852
2853		if (ret != 0) {
2854			/*
2855			 * If VOP_FRLOCK fails, make sure we unregister
2856			 * local locks before we continue.
2857			 */
2858			ld.l_pid = ttoproc(curthread)->p_pid;
2859			lm_register_lock_locally(vp, NULL, &ld, flag, offset);
2860#ifdef DEBUG
2861			nfs_perror(ret,
2862			    "NFS lock release error on vp %p: %m.\n",
2863			    (void *)vp, NULL);
2864#endif
2865		}
2866
2867		/*
2868		 * The call to VOP_FRLOCK may put the pid back on the
2869		 * list.  We need to remove it.
2870		 */
2871		(void) nfs_remove_locking_id(vp, RLMPL_PID,
2872		    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2873	}
2874
2875	/*
2876	 * As long as the vp has a share matching our pid,
2877	 * pluck it off and unshare it.  There are circumstances in
2878	 * which the call to nfs_remove_locking_id() may put the
2879	 * owner back on the list, in which case we simply do a
2880	 * redundant and harmless unshare.
2881	 */
2882	buf = kmem_alloc(MAX_SHR_OWNER_LEN, KM_SLEEP);
2883	while (nfs_remove_locking_id(vp, RLMPL_OWNER,
2884	    (char *)NULL, buf, &shr.s_own_len)) {
2885		shr.s_owner = buf;
2886		shr.s_access = 0;
2887		shr.s_deny = 0;
2888		shr.s_sysid = 0;
2889		shr.s_pid = curproc->p_pid;
2890
2891		ret = VOP_SHRLOCK(vp, F_UNSHARE, &shr, flag, cr, NULL);
2892#ifdef DEBUG
2893		if (ret != 0) {
2894			nfs_perror(ret,
2895			    "NFS share release error on vp %p: %m.\n",
2896			    (void *)vp, NULL);
2897		}
2898#endif
2899	}
2900	kmem_free(buf, MAX_SHR_OWNER_LEN);
2901}
2902
2903/*
2904 * nfs_lockcompletion:
2905 *
2906 * If the vnode has a lock that makes it unsafe to cache the file, mark it
2907 * as non cachable (set VNOCACHE bit).
2908 */
2909
2910void
2911nfs_lockcompletion(vnode_t *vp, int cmd)
2912{
2913#ifdef DEBUG
2914	rnode_t *rp = VTOR(vp);
2915
2916	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2917#endif
2918
2919	if (cmd == F_SETLK || cmd == F_SETLKW) {
2920		if (!lm_safemap(vp)) {
2921			mutex_enter(&vp->v_lock);
2922			vp->v_flag |= VNOCACHE;
2923			mutex_exit(&vp->v_lock);
2924		} else {
2925			mutex_enter(&vp->v_lock);
2926			vp->v_flag &= ~VNOCACHE;
2927			mutex_exit(&vp->v_lock);
2928		}
2929	}
2930	/*
2931	 * The cached attributes of the file are stale after acquiring
2932	 * the lock on the file. They were updated when the file was
2933	 * opened, but not updated when the lock was acquired. Therefore the
2934	 * cached attributes are invalidated after the lock is obtained.
2935	 */
2936	PURGE_ATTRCACHE(vp);
2937}
2938
2939/*
2940 * The lock manager holds state making it possible for the client
2941 * and server to be out of sync.  For example, if the response from
2942 * the server granting a lock request is lost, the server will think
2943 * the lock is granted and the client will think the lock is lost.
2944 * The client can tell when it is not positive if it is in sync with
2945 * the server.
2946 *
2947 * To deal with this, a list of processes for which the client is
2948 * not sure if the server holds a lock is attached to the rnode.
2949 * When such a process closes the rnode, an unlock request is sent
2950 * to the server to unlock the entire file.
2951 *
2952 * The list is kept as a singularly linked NULL terminated list.
2953 * Because it is only added to under extreme error conditions, the
2954 * list shouldn't get very big.  DEBUG kernels print a message if
2955 * the list gets bigger than nfs_lmpl_high_water.  This is arbitrarily
2956 * choosen to be 8, but can be tuned at runtime.
2957 */
2958#ifdef DEBUG
2959/* int nfs_lmpl_high_water = 8; */
2960int nfs_lmpl_high_water = 128;
2961int nfs_cnt_add_locking_id = 0;
2962int nfs_len_add_locking_id = 0;
2963#endif /* DEBUG */
2964
2965/*
2966 * Record that the nfs lock manager server may be holding a lock on
2967 * a vnode for a process.
2968 *
2969 * Because the nfs lock manager server holds state, it is possible
2970 * for the server to get out of sync with the client.  This routine is called
2971 * from the client when it is no longer sure if the server is in sync
2972 * with the client.  nfs_lockrelease() will then notice this and send
2973 * an unlock request when the file is closed
2974 */
2975void
2976nfs_add_locking_id(vnode_t *vp, pid_t pid, int type, char *id, int len)
2977{
2978	rnode_t *rp;
2979	lmpl_t *new;
2980	lmpl_t *cur;
2981	lmpl_t **lmplp;
2982#ifdef DEBUG
2983	int list_len = 1;
2984#endif /* DEBUG */
2985
2986#ifdef DEBUG
2987	++nfs_cnt_add_locking_id;
2988#endif /* DEBUG */
2989	/*
2990	 * allocate new lmpl_t now so we don't sleep
2991	 * later after grabbing mutexes
2992	 */
2993	ASSERT(len < MAX_SHR_OWNER_LEN);
2994	new = kmem_alloc(sizeof (*new), KM_SLEEP);
2995	new->lmpl_type = type;
2996	new->lmpl_pid = pid;
2997	new->lmpl_owner = kmem_alloc(len, KM_SLEEP);
2998	bcopy(id, new->lmpl_owner, len);
2999	new->lmpl_own_len = len;
3000	new->lmpl_next = (lmpl_t *)NULL;
3001#ifdef DEBUG
3002	if (type == RLMPL_PID) {
3003		ASSERT(len == sizeof (pid_t));
3004		ASSERT(pid == *(pid_t *)new->lmpl_owner);
3005	} else {
3006		ASSERT(type == RLMPL_OWNER);
3007	}
3008#endif
3009
3010	rp = VTOR(vp);
3011	mutex_enter(&rp->r_statelock);
3012
3013	/*
3014	 * Add this id to the list for this rnode only if the
3015	 * rnode is active and the id is not already there.
3016	 */
3017	ASSERT(rp->r_flags & RHASHED);
3018	lmplp = &(rp->r_lmpl);
3019	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3020		if (cur->lmpl_pid == pid &&
3021		    cur->lmpl_type == type &&
3022		    cur->lmpl_own_len == len &&
3023		    bcmp(cur->lmpl_owner, new->lmpl_owner, len) == 0) {
3024			kmem_free(new->lmpl_owner, len);
3025			kmem_free(new, sizeof (*new));
3026			break;
3027		}
3028		lmplp = &cur->lmpl_next;
3029#ifdef DEBUG
3030		++list_len;
3031#endif /* DEBUG */
3032	}
3033	if (cur == (lmpl_t *)NULL) {
3034		*lmplp = new;
3035#ifdef DEBUG
3036		if (list_len > nfs_len_add_locking_id) {
3037			nfs_len_add_locking_id = list_len;
3038		}
3039		if (list_len > nfs_lmpl_high_water) {
3040			cmn_err(CE_WARN, "nfs_add_locking_id: long list "
3041			    "vp=%p is %d", (void *)vp, list_len);
3042		}
3043#endif /* DEBUG */
3044	}
3045
3046#ifdef DEBUG
3047	if (share_debug) {
3048		int nitems = 0;
3049		int npids = 0;
3050		int nowners = 0;
3051
3052		/*
3053		 * Count the number of things left on r_lmpl after the remove.
3054		 */
3055		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3056		    cur = cur->lmpl_next) {
3057			nitems++;
3058			if (cur->lmpl_type == RLMPL_PID) {
3059				npids++;
3060			} else if (cur->lmpl_type == RLMPL_OWNER) {
3061				nowners++;
3062			} else {
3063				cmn_err(CE_PANIC, "nfs_add_locking_id: "
3064				    "unrecognized lmpl_type %d",
3065				    cur->lmpl_type);
3066			}
3067		}
3068
3069		cmn_err(CE_CONT, "nfs_add_locking_id(%s): %d PIDs + %d "
3070		    "OWNs = %d items left on r_lmpl\n",
3071		    (type == RLMPL_PID) ? "P" : "O", npids, nowners, nitems);
3072	}
3073#endif
3074
3075	mutex_exit(&rp->r_statelock);
3076}
3077
3078/*
3079 * Remove an id from the lock manager id list.
3080 *
3081 * If the id is not in the list return 0.  If it was found and
3082 * removed, return 1.
3083 */
3084static int
3085nfs_remove_locking_id(vnode_t *vp, int type, char *id, char *rid, int *rlen)
3086{
3087	lmpl_t *cur;
3088	lmpl_t **lmplp;
3089	rnode_t *rp;
3090	int rv = 0;
3091
3092	ASSERT(type == RLMPL_PID || type == RLMPL_OWNER);
3093
3094	rp = VTOR(vp);
3095
3096	mutex_enter(&rp->r_statelock);
3097	ASSERT(rp->r_flags & RHASHED);
3098	lmplp = &(rp->r_lmpl);
3099
3100	/*
3101	 * Search through the list and remove the entry for this id
3102	 * if it is there.  The special case id == NULL allows removal
3103	 * of the first share on the r_lmpl list belonging to the
3104	 * current process (if any), without regard to further details
3105	 * of its identity.
3106	 */
3107	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3108		if (cur->lmpl_type == type &&
3109		    cur->lmpl_pid == curproc->p_pid &&
3110		    (id == (char *)NULL ||
3111		    bcmp(cur->lmpl_owner, id, cur->lmpl_own_len) == 0)) {
3112			*lmplp = cur->lmpl_next;
3113			ASSERT(cur->lmpl_own_len < MAX_SHR_OWNER_LEN);
3114			if (rid != NULL) {
3115				bcopy(cur->lmpl_owner, rid, cur->lmpl_own_len);
3116				*rlen = cur->lmpl_own_len;
3117			}
3118			kmem_free(cur->lmpl_owner, cur->lmpl_own_len);
3119			kmem_free(cur, sizeof (*cur));
3120			rv = 1;
3121			break;
3122		}
3123		lmplp = &cur->lmpl_next;
3124	}
3125
3126#ifdef DEBUG
3127	if (share_debug) {
3128		int nitems = 0;
3129		int npids = 0;
3130		int nowners = 0;
3131
3132		/*
3133		 * Count the number of things left on r_lmpl after the remove.
3134		 */
3135		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3136		    cur = cur->lmpl_next) {
3137			nitems++;
3138			if (cur->lmpl_type == RLMPL_PID) {
3139				npids++;
3140			} else if (cur->lmpl_type == RLMPL_OWNER) {
3141				nowners++;
3142			} else {
3143				cmn_err(CE_PANIC,
3144				    "nrli: unrecognized lmpl_type %d",
3145				    cur->lmpl_type);
3146			}
3147		}
3148
3149		cmn_err(CE_CONT,
3150		"nrli(%s): %d PIDs + %d OWNs = %d items left on r_lmpl\n",
3151		    (type == RLMPL_PID) ? "P" : "O",
3152		    npids,
3153		    nowners,
3154		    nitems);
3155	}
3156#endif
3157
3158	mutex_exit(&rp->r_statelock);
3159	return (rv);
3160}
3161
3162void
3163nfs_free_mi(mntinfo_t *mi)
3164{
3165	ASSERT(mi->mi_flags & MI_ASYNC_MGR_STOP);
3166	ASSERT(mi->mi_manager_thread == NULL);
3167	ASSERT(mi->mi_threads == 0);
3168
3169	/*
3170	 * Remove the node from the global list before we start tearing it down.
3171	 */
3172	nfs_mi_zonelist_remove(mi);
3173	if (mi->mi_klmconfig) {
3174		lm_free_config(mi->mi_klmconfig);
3175		kmem_free(mi->mi_klmconfig, sizeof (struct knetconfig));
3176	}
3177	mutex_destroy(&mi->mi_lock);
3178	mutex_destroy(&mi->mi_remap_lock);
3179	mutex_destroy(&mi->mi_async_lock);
3180	cv_destroy(&mi->mi_failover_cv);
3181	cv_destroy(&mi->mi_async_work_cv);
3182	cv_destroy(&mi->mi_async_reqs_cv);
3183	cv_destroy(&mi->mi_async_cv);
3184	zone_rele(mi->mi_zone);
3185	kmem_free(mi, sizeof (*mi));
3186}
3187
3188static int
3189mnt_kstat_update(kstat_t *ksp, int rw)
3190{
3191	mntinfo_t *mi;
3192	struct mntinfo_kstat *mik;
3193	vfs_t *vfsp;
3194	int i;
3195
3196	/* this is a read-only kstat. Bail out on a write */
3197	if (rw == KSTAT_WRITE)
3198		return (EACCES);
3199
3200	/*
3201	 * We don't want to wait here as kstat_chain_lock could be held by
3202	 * dounmount(). dounmount() takes vfs_reflock before the chain lock
3203	 * and thus could lead to a deadlock.
3204	 */
3205	vfsp = (struct vfs *)ksp->ks_private;
3206
3207
3208	mi = VFTOMI(vfsp);
3209
3210	mik = (struct mntinfo_kstat *)ksp->ks_data;
3211
3212	(void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
3213	mik->mik_vers = (uint32_t)mi->mi_vers;
3214	mik->mik_flags = mi->mi_flags;
3215	mik->mik_secmod = mi->mi_curr_serv->sv_secdata->secmod;
3216	mik->mik_curread = (uint32_t)mi->mi_curread;
3217	mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
3218	mik->mik_retrans = mi->mi_retrans;
3219	mik->mik_timeo = mi->mi_timeo;
3220	mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
3221	mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
3222	mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
3223	mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
3224	for (i = 0; i < NFS_CALLTYPES + 1; i++) {
3225		mik->mik_timers[i].srtt = (uint32_t)mi->mi_timers[i].rt_srtt;
3226		mik->mik_timers[i].deviate =
3227		    (uint32_t)mi->mi_timers[i].rt_deviate;
3228		mik->mik_timers[i].rtxcur =
3229		    (uint32_t)mi->mi_timers[i].rt_rtxcur;
3230	}
3231	mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
3232	mik->mik_failover = (uint32_t)mi->mi_failover;
3233	mik->mik_remap = (uint32_t)mi->mi_remap;
3234	(void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
3235
3236	return (0);
3237}
3238
3239void
3240nfs_mnt_kstat_init(struct vfs *vfsp)
3241{
3242	mntinfo_t *mi = VFTOMI(vfsp);
3243
3244	/*
3245	 * Create the version specific kstats.
3246	 *
3247	 * PSARC 2001/697 Contract Private Interface
3248	 * All nfs kstats are under SunMC contract
3249	 * Please refer to the PSARC listed above and contact
3250	 * SunMC before making any changes!
3251	 *
3252	 * Changes must be reviewed by Solaris File Sharing
3253	 * Changes must be communicated to contract-2001-697@sun.com
3254	 *
3255	 */
3256
3257	mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
3258	    NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
3259	if (mi->mi_io_kstats) {
3260		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3261			kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
3262		mi->mi_io_kstats->ks_lock = &mi->mi_lock;
3263		kstat_install(mi->mi_io_kstats);
3264	}
3265
3266	if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
3267	    getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
3268	    sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
3269		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3270			kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
3271		mi->mi_ro_kstats->ks_update = mnt_kstat_update;
3272		mi->mi_ro_kstats->ks_private = (void *)vfsp;
3273		kstat_install(mi->mi_ro_kstats);
3274	}
3275}
3276
3277nfs_delmapcall_t *
3278nfs_init_delmapcall()
3279{
3280	nfs_delmapcall_t	*delmap_call;
3281
3282	delmap_call = kmem_alloc(sizeof (nfs_delmapcall_t), KM_SLEEP);
3283	delmap_call->call_id = curthread;
3284	delmap_call->error = 0;
3285
3286	return (delmap_call);
3287}
3288
3289void
3290nfs_free_delmapcall(nfs_delmapcall_t *delmap_call)
3291{
3292	kmem_free(delmap_call, sizeof (nfs_delmapcall_t));
3293}
3294
3295/*
3296 * Searches for the current delmap caller (based on curthread) in the list of
3297 * callers.  If it is found, we remove it and free the delmap caller.
3298 * Returns:
3299 *	0 if the caller wasn't found
3300 *	1 if the caller was found, removed and freed.  *errp is set to what
3301 * 	the result of the delmap was.
3302 */
3303int
3304nfs_find_and_delete_delmapcall(rnode_t *rp, int *errp)
3305{
3306	nfs_delmapcall_t	*delmap_call;
3307
3308	/*
3309	 * If the list doesn't exist yet, we create it and return
3310	 * that the caller wasn't found.  No list = no callers.
3311	 */
3312	mutex_enter(&rp->r_statelock);
3313	if (!(rp->r_flags & RDELMAPLIST)) {
3314		/* The list does not exist */
3315		list_create(&rp->r_indelmap, sizeof (nfs_delmapcall_t),
3316		    offsetof(nfs_delmapcall_t, call_node));
3317		rp->r_flags |= RDELMAPLIST;
3318		mutex_exit(&rp->r_statelock);
3319		return (0);
3320	} else {
3321		/* The list exists so search it */
3322		for (delmap_call = list_head(&rp->r_indelmap);
3323		    delmap_call != NULL;
3324		    delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
3325			if (delmap_call->call_id == curthread) {
3326				/* current caller is in the list */
3327				*errp = delmap_call->error;
3328				list_remove(&rp->r_indelmap, delmap_call);
3329				mutex_exit(&rp->r_statelock);
3330				nfs_free_delmapcall(delmap_call);
3331				return (1);
3332			}
3333		}
3334	}
3335	mutex_exit(&rp->r_statelock);
3336	return (0);
3337}
3338