dtrace.c revision 2870:a343ed00e23c
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#pragma ident	"%Z%%M%	%I%	%E% SMI"
28
29/*
30 * DTrace - Dynamic Tracing for Solaris
31 *
32 * This is the implementation of the Solaris Dynamic Tracing framework
33 * (DTrace).  The user-visible interface to DTrace is described at length in
34 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35 * library, the in-kernel DTrace framework, and the DTrace providers are
36 * described in the block comments in the <sys/dtrace.h> header file.  The
37 * internal architecture of DTrace is described in the block comments in the
38 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39 * implementation very much assume mastery of all of these sources; if one has
40 * an unanswered question about the implementation, one should consult them
41 * first.
42 *
43 * The functions here are ordered roughly as follows:
44 *
45 *   - Probe context functions
46 *   - Probe hashing functions
47 *   - Non-probe context utility functions
48 *   - Matching functions
49 *   - Provider-to-Framework API functions
50 *   - Probe management functions
51 *   - DIF object functions
52 *   - Format functions
53 *   - Predicate functions
54 *   - ECB functions
55 *   - Buffer functions
56 *   - Enabling functions
57 *   - DOF functions
58 *   - Anonymous enabling functions
59 *   - Consumer state functions
60 *   - Helper functions
61 *   - Hook functions
62 *   - Driver cookbook functions
63 *
64 * Each group of functions begins with a block comment labelled the "DTrace
65 * [Group] Functions", allowing one to find each block by searching forward
66 * on capital-f functions.
67 */
68#include <sys/errno.h>
69#include <sys/stat.h>
70#include <sys/modctl.h>
71#include <sys/conf.h>
72#include <sys/systm.h>
73#include <sys/ddi.h>
74#include <sys/sunddi.h>
75#include <sys/cpuvar.h>
76#include <sys/kmem.h>
77#include <sys/strsubr.h>
78#include <sys/sysmacros.h>
79#include <sys/dtrace_impl.h>
80#include <sys/atomic.h>
81#include <sys/cmn_err.h>
82#include <sys/mutex_impl.h>
83#include <sys/rwlock_impl.h>
84#include <sys/ctf_api.h>
85#include <sys/panic.h>
86#include <sys/priv_impl.h>
87#include <sys/policy.h>
88#include <sys/cred_impl.h>
89#include <sys/procfs_isa.h>
90#include <sys/taskq.h>
91#include <sys/mkdev.h>
92#include <sys/kdi.h>
93#include <sys/zone.h>
94
95/*
96 * DTrace Tunable Variables
97 *
98 * The following variables may be tuned by adding a line to /etc/system that
99 * includes both the name of the DTrace module ("dtrace") and the name of the
100 * variable.  For example:
101 *
102 *   set dtrace:dtrace_destructive_disallow = 1
103 *
104 * In general, the only variables that one should be tuning this way are those
105 * that affect system-wide DTrace behavior, and for which the default behavior
106 * is undesirable.  Most of these variables are tunable on a per-consumer
107 * basis using DTrace options, and need not be tuned on a system-wide basis.
108 * When tuning these variables, avoid pathological values; while some attempt
109 * is made to verify the integrity of these variables, they are not considered
110 * part of the supported interface to DTrace, and they are therefore not
111 * checked comprehensively.  Further, these variables should not be tuned
112 * dynamically via "mdb -kw" or other means; they should only be tuned via
113 * /etc/system.
114 */
115int		dtrace_destructive_disallow = 0;
116dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117size_t		dtrace_difo_maxsize = (256 * 1024);
118dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
119size_t		dtrace_global_maxsize = (16 * 1024);
120size_t		dtrace_actions_max = (16 * 1024);
121size_t		dtrace_retain_max = 1024;
122dtrace_optval_t	dtrace_helper_actions_max = 32;
123dtrace_optval_t	dtrace_helper_providers_max = 32;
124dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
125size_t		dtrace_strsize_default = 256;
126dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
127dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
128dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
129dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
130dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
131dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
132dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
133dtrace_optval_t	dtrace_nspec_default = 1;
134dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
135dtrace_optval_t dtrace_stackframes_default = 20;
136dtrace_optval_t dtrace_ustackframes_default = 20;
137dtrace_optval_t dtrace_jstackframes_default = 50;
138dtrace_optval_t dtrace_jstackstrsize_default = 512;
139int		dtrace_msgdsize_max = 128;
140hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
141hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
142int		dtrace_devdepth_max = 32;
143int		dtrace_err_verbose;
144hrtime_t	dtrace_deadman_interval = NANOSEC;
145hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147
148/*
149 * DTrace External Variables
150 *
151 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
152 * available to DTrace consumers via the backtick (`) syntax.  One of these,
153 * dtrace_zero, is made deliberately so:  it is provided as a source of
154 * well-known, zero-filled memory.  While this variable is not documented,
155 * it is used by some translators as an implementation detail.
156 */
157const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
158
159/*
160 * DTrace Internal Variables
161 */
162static dev_info_t	*dtrace_devi;		/* device info */
163static vmem_t		*dtrace_arena;		/* probe ID arena */
164static vmem_t		*dtrace_minor;		/* minor number arena */
165static taskq_t		*dtrace_taskq;		/* task queue */
166static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
167static int		dtrace_nprobes;		/* number of probes */
168static dtrace_provider_t *dtrace_provider;	/* provider list */
169static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
170static int		dtrace_opens;		/* number of opens */
171static int		dtrace_helpers;		/* number of helpers */
172static void		*dtrace_softstate;	/* softstate pointer */
173static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
174static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
175static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
176static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
177static int		dtrace_toxranges;	/* number of toxic ranges */
178static int		dtrace_toxranges_max;	/* size of toxic range array */
179static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
180static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
181static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
182static kthread_t	*dtrace_panicked;	/* panicking thread */
183static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
184static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
185static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
186static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
187static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
188
189/*
190 * DTrace Locking
191 * DTrace is protected by three (relatively coarse-grained) locks:
192 *
193 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
194 *     including enabling state, probes, ECBs, consumer state, helper state,
195 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
196 *     probe context is lock-free -- synchronization is handled via the
197 *     dtrace_sync() cross call mechanism.
198 *
199 * (2) dtrace_provider_lock is required when manipulating provider state, or
200 *     when provider state must be held constant.
201 *
202 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
203 *     when meta provider state must be held constant.
204 *
205 * The lock ordering between these three locks is dtrace_meta_lock before
206 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
207 * several places where dtrace_provider_lock is held by the framework as it
208 * calls into the providers -- which then call back into the framework,
209 * grabbing dtrace_lock.)
210 *
211 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
212 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
213 * role as a coarse-grained lock; it is acquired before both of these locks.
214 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
215 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
216 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
217 * acquired _between_ dtrace_provider_lock and dtrace_lock.
218 */
219static kmutex_t		dtrace_lock;		/* probe state lock */
220static kmutex_t		dtrace_provider_lock;	/* provider state lock */
221static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
222
223/*
224 * DTrace Provider Variables
225 *
226 * These are the variables relating to DTrace as a provider (that is, the
227 * provider of the BEGIN, END, and ERROR probes).
228 */
229static dtrace_pattr_t	dtrace_provider_attr = {
230{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
231{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
232{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
233{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
234{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
235};
236
237static void
238dtrace_nullop(void)
239{}
240
241static dtrace_pops_t	dtrace_provider_ops = {
242	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
243	(void (*)(void *, struct modctl *))dtrace_nullop,
244	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
245	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
246	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
248	NULL,
249	NULL,
250	NULL,
251	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
252};
253
254static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
255static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
256dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
257
258/*
259 * DTrace Helper Tracing Variables
260 */
261uint32_t dtrace_helptrace_next = 0;
262uint32_t dtrace_helptrace_nlocals;
263char	*dtrace_helptrace_buffer;
264int	dtrace_helptrace_bufsize = 512 * 1024;
265
266#ifdef DEBUG
267int	dtrace_helptrace_enabled = 1;
268#else
269int	dtrace_helptrace_enabled = 0;
270#endif
271
272/*
273 * DTrace Error Hashing
274 *
275 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
276 * table.  This is very useful for checking coverage of tests that are
277 * expected to induce DIF or DOF processing errors, and may be useful for
278 * debugging problems in the DIF code generator or in DOF generation .  The
279 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
280 */
281#ifdef DEBUG
282static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
283static const char *dtrace_errlast;
284static kthread_t *dtrace_errthread;
285static kmutex_t dtrace_errlock;
286#endif
287
288/*
289 * DTrace Macros and Constants
290 *
291 * These are various macros that are useful in various spots in the
292 * implementation, along with a few random constants that have no meaning
293 * outside of the implementation.  There is no real structure to this cpp
294 * mishmash -- but is there ever?
295 */
296#define	DTRACE_HASHSTR(hash, probe)	\
297	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
298
299#define	DTRACE_HASHNEXT(hash, probe)	\
300	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
301
302#define	DTRACE_HASHPREV(hash, probe)	\
303	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
304
305#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
306	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
307	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
308
309#define	DTRACE_AGGHASHSIZE_SLEW		17
310
311/*
312 * The key for a thread-local variable consists of the lower 61 bits of the
313 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
314 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
315 * equal to a variable identifier.  This is necessary (but not sufficient) to
316 * assure that global associative arrays never collide with thread-local
317 * variables.  To guarantee that they cannot collide, we must also define the
318 * order for keying dynamic variables.  That order is:
319 *
320 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
321 *
322 * Because the variable-key and the tls-key are in orthogonal spaces, there is
323 * no way for a global variable key signature to match a thread-local key
324 * signature.
325 */
326#define	DTRACE_TLS_THRKEY(where) { \
327	uint_t intr = 0; \
328	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
329	for (; actv; actv >>= 1) \
330		intr++; \
331	ASSERT(intr < (1 << 3)); \
332	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
333	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
334}
335
336#define	DT_BSWAP_8(x)	((x) & 0xff)
337#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
338#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
339#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
340
341#define	DTRACE_STORE(type, tomax, offset, what) \
342	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
343
344#ifndef __i386
345#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
346	if (addr & (size - 1)) {					\
347		*flags |= CPU_DTRACE_BADALIGN;				\
348		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
349		return (0);						\
350	}
351#else
352#define	DTRACE_ALIGNCHECK(addr, size, flags)
353#endif
354
355/*
356 * Test whether a range of memory starting at testaddr of size testsz falls
357 * within the range of memory described by addr, sz, taking care to avoid
358 * problems with overflow and underflow of the unsigned quantities.
359 */
360#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
361	((testaddr) - (baseaddr) < (basesz) && \
362	(testaddr) + (testsz) - (baseaddr) <= (basesz))
363
364#define	DTRACE_LOADFUNC(bits)						\
365/*CSTYLED*/								\
366uint##bits##_t								\
367dtrace_load##bits(uintptr_t addr)					\
368{									\
369	size_t size = bits / NBBY;					\
370	/*CSTYLED*/							\
371	uint##bits##_t rval;						\
372	int i;								\
373	volatile uint16_t *flags = (volatile uint16_t *)		\
374	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
375									\
376	DTRACE_ALIGNCHECK(addr, size, flags);				\
377									\
378	for (i = 0; i < dtrace_toxranges; i++) {			\
379		if (addr >= dtrace_toxrange[i].dtt_limit)		\
380			continue;					\
381									\
382		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
383			continue;					\
384									\
385		/*							\
386		 * This address falls within a toxic region; return 0.	\
387		 */							\
388		*flags |= CPU_DTRACE_BADADDR;				\
389		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
390		return (0);						\
391	}								\
392									\
393	*flags |= CPU_DTRACE_NOFAULT;					\
394	/*CSTYLED*/							\
395	rval = *((volatile uint##bits##_t *)addr);			\
396	*flags &= ~CPU_DTRACE_NOFAULT;					\
397									\
398	return (rval);							\
399}
400
401#ifdef _LP64
402#define	dtrace_loadptr	dtrace_load64
403#else
404#define	dtrace_loadptr	dtrace_load32
405#endif
406
407#define	DTRACE_DYNHASH_FREE	0
408#define	DTRACE_DYNHASH_SINK	1
409#define	DTRACE_DYNHASH_VALID	2
410
411#define	DTRACE_MATCH_NEXT	0
412#define	DTRACE_MATCH_DONE	1
413#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
414#define	DTRACE_STATE_ALIGN	64
415
416#define	DTRACE_FLAGS2FLT(flags)						\
417	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
418	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
419	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
420	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
421	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
422	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
423	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
424	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
425	DTRACEFLT_UNKNOWN)
426
427#define	DTRACEACT_ISSTRING(act)						\
428	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
429	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
430
431static size_t dtrace_strlen(const char *, size_t);
432static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
433static void dtrace_enabling_provide(dtrace_provider_t *);
434static int dtrace_enabling_match(dtrace_enabling_t *, int *);
435static void dtrace_enabling_matchall(void);
436static dtrace_state_t *dtrace_anon_grab(void);
437static uint64_t dtrace_helper(int, dtrace_mstate_t *,
438    dtrace_state_t *, uint64_t, uint64_t);
439static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
440static void dtrace_buffer_drop(dtrace_buffer_t *);
441static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
442    dtrace_state_t *, dtrace_mstate_t *);
443static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
444    dtrace_optval_t);
445static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
446static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
447
448/*
449 * DTrace Probe Context Functions
450 *
451 * These functions are called from probe context.  Because probe context is
452 * any context in which C may be called, arbitrarily locks may be held,
453 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
454 * As a result, functions called from probe context may only call other DTrace
455 * support functions -- they may not interact at all with the system at large.
456 * (Note that the ASSERT macro is made probe-context safe by redefining it in
457 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
458 * loads are to be performed from probe context, they _must_ be in terms of
459 * the safe dtrace_load*() variants.
460 *
461 * Some functions in this block are not actually called from probe context;
462 * for these functions, there will be a comment above the function reading
463 * "Note:  not called from probe context."
464 */
465void
466dtrace_panic(const char *format, ...)
467{
468	va_list alist;
469
470	va_start(alist, format);
471	dtrace_vpanic(format, alist);
472	va_end(alist);
473}
474
475int
476dtrace_assfail(const char *a, const char *f, int l)
477{
478	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
479
480	/*
481	 * We just need something here that even the most clever compiler
482	 * cannot optimize away.
483	 */
484	return (a[(uintptr_t)f]);
485}
486
487/*
488 * Atomically increment a specified error counter from probe context.
489 */
490static void
491dtrace_error(uint32_t *counter)
492{
493	/*
494	 * Most counters stored to in probe context are per-CPU counters.
495	 * However, there are some error conditions that are sufficiently
496	 * arcane that they don't merit per-CPU storage.  If these counters
497	 * are incremented concurrently on different CPUs, scalability will be
498	 * adversely affected -- but we don't expect them to be white-hot in a
499	 * correctly constructed enabling...
500	 */
501	uint32_t oval, nval;
502
503	do {
504		oval = *counter;
505
506		if ((nval = oval + 1) == 0) {
507			/*
508			 * If the counter would wrap, set it to 1 -- assuring
509			 * that the counter is never zero when we have seen
510			 * errors.  (The counter must be 32-bits because we
511			 * aren't guaranteed a 64-bit compare&swap operation.)
512			 * To save this code both the infamy of being fingered
513			 * by a priggish news story and the indignity of being
514			 * the target of a neo-puritan witch trial, we're
515			 * carefully avoiding any colorful description of the
516			 * likelihood of this condition -- but suffice it to
517			 * say that it is only slightly more likely than the
518			 * overflow of predicate cache IDs, as discussed in
519			 * dtrace_predicate_create().
520			 */
521			nval = 1;
522		}
523	} while (dtrace_cas32(counter, oval, nval) != oval);
524}
525
526/*
527 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
528 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
529 */
530DTRACE_LOADFUNC(8)
531DTRACE_LOADFUNC(16)
532DTRACE_LOADFUNC(32)
533DTRACE_LOADFUNC(64)
534
535static int
536dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
537{
538	if (dest < mstate->dtms_scratch_base)
539		return (0);
540
541	if (dest + size < dest)
542		return (0);
543
544	if (dest + size > mstate->dtms_scratch_ptr)
545		return (0);
546
547	return (1);
548}
549
550static int
551dtrace_canstore_statvar(uint64_t addr, size_t sz,
552    dtrace_statvar_t **svars, int nsvars)
553{
554	int i;
555
556	for (i = 0; i < nsvars; i++) {
557		dtrace_statvar_t *svar = svars[i];
558
559		if (svar == NULL || svar->dtsv_size == 0)
560			continue;
561
562		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
563			return (1);
564	}
565
566	return (0);
567}
568
569/*
570 * Check to see if the address is within a memory region to which a store may
571 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
572 * region.  The caller of dtrace_canstore() is responsible for performing any
573 * alignment checks that are needed before stores are actually executed.
574 */
575static int
576dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
577    dtrace_vstate_t *vstate)
578{
579	/*
580	 * First, check to see if the address is in scratch space...
581	 */
582	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
583	    mstate->dtms_scratch_size))
584		return (1);
585
586	/*
587	 * Now check to see if it's a dynamic variable.  This check will pick
588	 * up both thread-local variables and any global dynamically-allocated
589	 * variables.
590	 */
591	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
592	    vstate->dtvs_dynvars.dtds_size))
593		return (1);
594
595	/*
596	 * Finally, check the static local and global variables.  These checks
597	 * take the longest, so we perform them last.
598	 */
599	if (dtrace_canstore_statvar(addr, sz,
600	    vstate->dtvs_locals, vstate->dtvs_nlocals))
601		return (1);
602
603	if (dtrace_canstore_statvar(addr, sz,
604	    vstate->dtvs_globals, vstate->dtvs_nglobals))
605		return (1);
606
607	return (0);
608}
609
610
611/*
612 * Convenience routine to check to see if the address is within a memory
613 * region in which a load may be issued given the user's privilege level;
614 * if not, it sets the appropriate error flags and loads 'addr' into the
615 * illegal value slot.
616 *
617 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
618 * appropriate memory access protection.
619 */
620static int
621dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
622    dtrace_vstate_t *vstate)
623{
624	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
625
626	/*
627	 * If we hold the privilege to read from kernel memory, then
628	 * everything is readable.
629	 */
630	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
631		return (1);
632
633	/*
634	 * You can obviously read that which you can store.
635	 */
636	if (dtrace_canstore(addr, sz, mstate, vstate))
637		return (1);
638
639	/*
640	 * We're allowed to read from our own string table.
641	 */
642	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
643	    mstate->dtms_difo->dtdo_strlen))
644		return (1);
645
646	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
647	*illval = addr;
648	return (0);
649}
650
651/*
652 * Convenience routine to check to see if a given string is within a memory
653 * region in which a load may be issued given the user's privilege level;
654 * this exists so that we don't need to issue unnecessary dtrace_strlen()
655 * calls in the event that the user has all privileges.
656 */
657static int
658dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
659    dtrace_vstate_t *vstate)
660{
661	size_t strsz;
662
663	/*
664	 * If we hold the privilege to read from kernel memory, then
665	 * everything is readable.
666	 */
667	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
668		return (1);
669
670	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
671	if (dtrace_canload(addr, strsz, mstate, vstate))
672		return (1);
673
674	return (0);
675}
676
677/*
678 * Convenience routine to check to see if a given variable is within a memory
679 * region in which a load may be issued given the user's privilege level.
680 */
681static int
682dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
683    dtrace_vstate_t *vstate)
684{
685	size_t sz;
686	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
687
688	/*
689	 * If we hold the privilege to read from kernel memory, then
690	 * everything is readable.
691	 */
692	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
693		return (1);
694
695	if (type->dtdt_kind == DIF_TYPE_STRING)
696		sz = dtrace_strlen(src,
697		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
698	else
699		sz = type->dtdt_size;
700
701	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
702}
703
704/*
705 * Compare two strings using safe loads.
706 */
707static int
708dtrace_strncmp(char *s1, char *s2, size_t limit)
709{
710	uint8_t c1, c2;
711	volatile uint16_t *flags;
712
713	if (s1 == s2 || limit == 0)
714		return (0);
715
716	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
717
718	do {
719		if (s1 == NULL) {
720			c1 = '\0';
721		} else {
722			c1 = dtrace_load8((uintptr_t)s1++);
723		}
724
725		if (s2 == NULL) {
726			c2 = '\0';
727		} else {
728			c2 = dtrace_load8((uintptr_t)s2++);
729		}
730
731		if (c1 != c2)
732			return (c1 - c2);
733	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
734
735	return (0);
736}
737
738/*
739 * Compute strlen(s) for a string using safe memory accesses.  The additional
740 * len parameter is used to specify a maximum length to ensure completion.
741 */
742static size_t
743dtrace_strlen(const char *s, size_t lim)
744{
745	uint_t len;
746
747	for (len = 0; len != lim; len++) {
748		if (dtrace_load8((uintptr_t)s++) == '\0')
749			break;
750	}
751
752	return (len);
753}
754
755/*
756 * Check if an address falls within a toxic region.
757 */
758static int
759dtrace_istoxic(uintptr_t kaddr, size_t size)
760{
761	uintptr_t taddr, tsize;
762	int i;
763
764	for (i = 0; i < dtrace_toxranges; i++) {
765		taddr = dtrace_toxrange[i].dtt_base;
766		tsize = dtrace_toxrange[i].dtt_limit - taddr;
767
768		if (kaddr - taddr < tsize) {
769			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
770			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
771			return (1);
772		}
773
774		if (taddr - kaddr < size) {
775			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
776			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
777			return (1);
778		}
779	}
780
781	return (0);
782}
783
784/*
785 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
786 * memory specified by the DIF program.  The dst is assumed to be safe memory
787 * that we can store to directly because it is managed by DTrace.  As with
788 * standard bcopy, overlapping copies are handled properly.
789 */
790static void
791dtrace_bcopy(const void *src, void *dst, size_t len)
792{
793	if (len != 0) {
794		uint8_t *s1 = dst;
795		const uint8_t *s2 = src;
796
797		if (s1 <= s2) {
798			do {
799				*s1++ = dtrace_load8((uintptr_t)s2++);
800			} while (--len != 0);
801		} else {
802			s2 += len;
803			s1 += len;
804
805			do {
806				*--s1 = dtrace_load8((uintptr_t)--s2);
807			} while (--len != 0);
808		}
809	}
810}
811
812/*
813 * Copy src to dst using safe memory accesses, up to either the specified
814 * length, or the point that a nul byte is encountered.  The src is assumed to
815 * be unsafe memory specified by the DIF program.  The dst is assumed to be
816 * safe memory that we can store to directly because it is managed by DTrace.
817 * Unlike dtrace_bcopy(), overlapping regions are not handled.
818 */
819static void
820dtrace_strcpy(const void *src, void *dst, size_t len)
821{
822	if (len != 0) {
823		uint8_t *s1 = dst, c;
824		const uint8_t *s2 = src;
825
826		do {
827			*s1++ = c = dtrace_load8((uintptr_t)s2++);
828		} while (--len != 0 && c != '\0');
829	}
830}
831
832/*
833 * Copy src to dst, deriving the size and type from the specified (BYREF)
834 * variable type.  The src is assumed to be unsafe memory specified by the DIF
835 * program.  The dst is assumed to be DTrace variable memory that is of the
836 * specified type; we assume that we can store to directly.
837 */
838static void
839dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
840{
841	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
842
843	if (type->dtdt_kind == DIF_TYPE_STRING) {
844		dtrace_strcpy(src, dst, type->dtdt_size);
845	} else {
846		dtrace_bcopy(src, dst, type->dtdt_size);
847	}
848}
849
850/*
851 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
852 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
853 * safe memory that we can access directly because it is managed by DTrace.
854 */
855static int
856dtrace_bcmp(const void *s1, const void *s2, size_t len)
857{
858	volatile uint16_t *flags;
859
860	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
861
862	if (s1 == s2)
863		return (0);
864
865	if (s1 == NULL || s2 == NULL)
866		return (1);
867
868	if (s1 != s2 && len != 0) {
869		const uint8_t *ps1 = s1;
870		const uint8_t *ps2 = s2;
871
872		do {
873			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
874				return (1);
875		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
876	}
877	return (0);
878}
879
880/*
881 * Zero the specified region using a simple byte-by-byte loop.  Note that this
882 * is for safe DTrace-managed memory only.
883 */
884static void
885dtrace_bzero(void *dst, size_t len)
886{
887	uchar_t *cp;
888
889	for (cp = dst; len != 0; len--)
890		*cp++ = 0;
891}
892
893/*
894 * This privilege check should be used by actions and subroutines to
895 * verify that the user credentials of the process that enabled the
896 * invoking ECB match the target credentials
897 */
898static int
899dtrace_priv_proc_common_user(dtrace_state_t *state)
900{
901	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
902
903	/*
904	 * We should always have a non-NULL state cred here, since if cred
905	 * is null (anonymous tracing), we fast-path bypass this routine.
906	 */
907	ASSERT(s_cr != NULL);
908
909	if ((cr = CRED()) != NULL &&
910	    s_cr->cr_uid == cr->cr_uid &&
911	    s_cr->cr_uid == cr->cr_ruid &&
912	    s_cr->cr_uid == cr->cr_suid &&
913	    s_cr->cr_gid == cr->cr_gid &&
914	    s_cr->cr_gid == cr->cr_rgid &&
915	    s_cr->cr_gid == cr->cr_sgid)
916		return (1);
917
918	return (0);
919}
920
921/*
922 * This privilege check should be used by actions and subroutines to
923 * verify that the zone of the process that enabled the invoking ECB
924 * matches the target credentials
925 */
926static int
927dtrace_priv_proc_common_zone(dtrace_state_t *state)
928{
929	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
930
931	/*
932	 * We should always have a non-NULL state cred here, since if cred
933	 * is null (anonymous tracing), we fast-path bypass this routine.
934	 */
935	ASSERT(s_cr != NULL);
936
937	if ((cr = CRED()) != NULL &&
938	    s_cr->cr_zone == cr->cr_zone)
939		return (1);
940
941	return (0);
942}
943
944/*
945 * This privilege check should be used by actions and subroutines to
946 * verify that the process has not setuid or changed credentials.
947 */
948static int
949dtrace_priv_proc_common_nocd()
950{
951	proc_t *proc;
952
953	if ((proc = ttoproc(curthread)) != NULL &&
954	    !(proc->p_flag & SNOCD))
955		return (1);
956
957	return (0);
958}
959
960static int
961dtrace_priv_proc_destructive(dtrace_state_t *state)
962{
963	int action = state->dts_cred.dcr_action;
964
965	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
966	    dtrace_priv_proc_common_zone(state) == 0)
967		goto bad;
968
969	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
970	    dtrace_priv_proc_common_user(state) == 0)
971		goto bad;
972
973	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
974	    dtrace_priv_proc_common_nocd() == 0)
975		goto bad;
976
977	return (1);
978
979bad:
980	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
981
982	return (0);
983}
984
985static int
986dtrace_priv_proc_control(dtrace_state_t *state)
987{
988	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
989		return (1);
990
991	if (dtrace_priv_proc_common_zone(state) &&
992	    dtrace_priv_proc_common_user(state) &&
993	    dtrace_priv_proc_common_nocd())
994		return (1);
995
996	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
997
998	return (0);
999}
1000
1001static int
1002dtrace_priv_proc(dtrace_state_t *state)
1003{
1004	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1005		return (1);
1006
1007	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1008
1009	return (0);
1010}
1011
1012static int
1013dtrace_priv_kernel(dtrace_state_t *state)
1014{
1015	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1016		return (1);
1017
1018	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1019
1020	return (0);
1021}
1022
1023static int
1024dtrace_priv_kernel_destructive(dtrace_state_t *state)
1025{
1026	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1027		return (1);
1028
1029	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1030
1031	return (0);
1032}
1033
1034/*
1035 * Note:  not called from probe context.  This function is called
1036 * asynchronously (and at a regular interval) from outside of probe context to
1037 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1038 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1039 */
1040void
1041dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1042{
1043	dtrace_dynvar_t *dirty;
1044	dtrace_dstate_percpu_t *dcpu;
1045	int i, work = 0;
1046
1047	for (i = 0; i < NCPU; i++) {
1048		dcpu = &dstate->dtds_percpu[i];
1049
1050		ASSERT(dcpu->dtdsc_rinsing == NULL);
1051
1052		/*
1053		 * If the dirty list is NULL, there is no dirty work to do.
1054		 */
1055		if (dcpu->dtdsc_dirty == NULL)
1056			continue;
1057
1058		/*
1059		 * If the clean list is non-NULL, then we're not going to do
1060		 * any work for this CPU -- it means that there has not been
1061		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1062		 * since the last time we cleaned house.
1063		 */
1064		if (dcpu->dtdsc_clean != NULL)
1065			continue;
1066
1067		work = 1;
1068
1069		/*
1070		 * Atomically move the dirty list aside.
1071		 */
1072		do {
1073			dirty = dcpu->dtdsc_dirty;
1074
1075			/*
1076			 * Before we zap the dirty list, set the rinsing list.
1077			 * (This allows for a potential assertion in
1078			 * dtrace_dynvar():  if a free dynamic variable appears
1079			 * on a hash chain, either the dirty list or the
1080			 * rinsing list for some CPU must be non-NULL.)
1081			 */
1082			dcpu->dtdsc_rinsing = dirty;
1083			dtrace_membar_producer();
1084		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1085		    dirty, NULL) != dirty);
1086	}
1087
1088	if (!work) {
1089		/*
1090		 * We have no work to do; we can simply return.
1091		 */
1092		return;
1093	}
1094
1095	dtrace_sync();
1096
1097	for (i = 0; i < NCPU; i++) {
1098		dcpu = &dstate->dtds_percpu[i];
1099
1100		if (dcpu->dtdsc_rinsing == NULL)
1101			continue;
1102
1103		/*
1104		 * We are now guaranteed that no hash chain contains a pointer
1105		 * into this dirty list; we can make it clean.
1106		 */
1107		ASSERT(dcpu->dtdsc_clean == NULL);
1108		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1109		dcpu->dtdsc_rinsing = NULL;
1110	}
1111
1112	/*
1113	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1114	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1115	 * This prevents a race whereby a CPU incorrectly decides that
1116	 * the state should be something other than DTRACE_DSTATE_CLEAN
1117	 * after dtrace_dynvar_clean() has completed.
1118	 */
1119	dtrace_sync();
1120
1121	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1122}
1123
1124/*
1125 * Depending on the value of the op parameter, this function looks-up,
1126 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1127 * allocation is requested, this function will return a pointer to a
1128 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1129 * variable can be allocated.  If NULL is returned, the appropriate counter
1130 * will be incremented.
1131 */
1132dtrace_dynvar_t *
1133dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1134    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1135    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1136{
1137	uint64_t hashval = DTRACE_DYNHASH_VALID;
1138	dtrace_dynhash_t *hash = dstate->dtds_hash;
1139	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1140	processorid_t me = CPU->cpu_id, cpu = me;
1141	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1142	size_t bucket, ksize;
1143	size_t chunksize = dstate->dtds_chunksize;
1144	uintptr_t kdata, lock, nstate;
1145	uint_t i;
1146
1147	ASSERT(nkeys != 0);
1148
1149	/*
1150	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1151	 * algorithm.  For the by-value portions, we perform the algorithm in
1152	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1153	 * bit, and seems to have only a minute effect on distribution.  For
1154	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1155	 * over each referenced byte.  It's painful to do this, but it's much
1156	 * better than pathological hash distribution.  The efficacy of the
1157	 * hashing algorithm (and a comparison with other algorithms) may be
1158	 * found by running the ::dtrace_dynstat MDB dcmd.
1159	 */
1160	for (i = 0; i < nkeys; i++) {
1161		if (key[i].dttk_size == 0) {
1162			uint64_t val = key[i].dttk_value;
1163
1164			hashval += (val >> 48) & 0xffff;
1165			hashval += (hashval << 10);
1166			hashval ^= (hashval >> 6);
1167
1168			hashval += (val >> 32) & 0xffff;
1169			hashval += (hashval << 10);
1170			hashval ^= (hashval >> 6);
1171
1172			hashval += (val >> 16) & 0xffff;
1173			hashval += (hashval << 10);
1174			hashval ^= (hashval >> 6);
1175
1176			hashval += val & 0xffff;
1177			hashval += (hashval << 10);
1178			hashval ^= (hashval >> 6);
1179		} else {
1180			/*
1181			 * This is incredibly painful, but it beats the hell
1182			 * out of the alternative.
1183			 */
1184			uint64_t j, size = key[i].dttk_size;
1185			uintptr_t base = (uintptr_t)key[i].dttk_value;
1186
1187			if (!dtrace_canload(base, size, mstate, vstate))
1188				break;
1189
1190			for (j = 0; j < size; j++) {
1191				hashval += dtrace_load8(base + j);
1192				hashval += (hashval << 10);
1193				hashval ^= (hashval >> 6);
1194			}
1195		}
1196	}
1197
1198	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1199		return (NULL);
1200
1201	hashval += (hashval << 3);
1202	hashval ^= (hashval >> 11);
1203	hashval += (hashval << 15);
1204
1205	/*
1206	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1207	 * comes out to be one of our two sentinel hash values.  If this
1208	 * actually happens, we set the hashval to be a value known to be a
1209	 * non-sentinel value.
1210	 */
1211	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1212		hashval = DTRACE_DYNHASH_VALID;
1213
1214	/*
1215	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1216	 * important here, tricks can be pulled to reduce it.  (However, it's
1217	 * critical that hash collisions be kept to an absolute minimum;
1218	 * they're much more painful than a divide.)  It's better to have a
1219	 * solution that generates few collisions and still keeps things
1220	 * relatively simple.
1221	 */
1222	bucket = hashval % dstate->dtds_hashsize;
1223
1224	if (op == DTRACE_DYNVAR_DEALLOC) {
1225		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1226
1227		for (;;) {
1228			while ((lock = *lockp) & 1)
1229				continue;
1230
1231			if (dtrace_casptr((void *)lockp,
1232			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1233				break;
1234		}
1235
1236		dtrace_membar_producer();
1237	}
1238
1239top:
1240	prev = NULL;
1241	lock = hash[bucket].dtdh_lock;
1242
1243	dtrace_membar_consumer();
1244
1245	start = hash[bucket].dtdh_chain;
1246	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1247	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1248	    op != DTRACE_DYNVAR_DEALLOC));
1249
1250	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1251		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1252		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1253
1254		if (dvar->dtdv_hashval != hashval) {
1255			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1256				/*
1257				 * We've reached the sink, and therefore the
1258				 * end of the hash chain; we can kick out of
1259				 * the loop knowing that we have seen a valid
1260				 * snapshot of state.
1261				 */
1262				ASSERT(dvar->dtdv_next == NULL);
1263				ASSERT(dvar == &dtrace_dynhash_sink);
1264				break;
1265			}
1266
1267			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1268				/*
1269				 * We've gone off the rails:  somewhere along
1270				 * the line, one of the members of this hash
1271				 * chain was deleted.  Note that we could also
1272				 * detect this by simply letting this loop run
1273				 * to completion, as we would eventually hit
1274				 * the end of the dirty list.  However, we
1275				 * want to avoid running the length of the
1276				 * dirty list unnecessarily (it might be quite
1277				 * long), so we catch this as early as
1278				 * possible by detecting the hash marker.  In
1279				 * this case, we simply set dvar to NULL and
1280				 * break; the conditional after the loop will
1281				 * send us back to top.
1282				 */
1283				dvar = NULL;
1284				break;
1285			}
1286
1287			goto next;
1288		}
1289
1290		if (dtuple->dtt_nkeys != nkeys)
1291			goto next;
1292
1293		for (i = 0; i < nkeys; i++, dkey++) {
1294			if (dkey->dttk_size != key[i].dttk_size)
1295				goto next; /* size or type mismatch */
1296
1297			if (dkey->dttk_size != 0) {
1298				if (dtrace_bcmp(
1299				    (void *)(uintptr_t)key[i].dttk_value,
1300				    (void *)(uintptr_t)dkey->dttk_value,
1301				    dkey->dttk_size))
1302					goto next;
1303			} else {
1304				if (dkey->dttk_value != key[i].dttk_value)
1305					goto next;
1306			}
1307		}
1308
1309		if (op != DTRACE_DYNVAR_DEALLOC)
1310			return (dvar);
1311
1312		ASSERT(dvar->dtdv_next == NULL ||
1313		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1314
1315		if (prev != NULL) {
1316			ASSERT(hash[bucket].dtdh_chain != dvar);
1317			ASSERT(start != dvar);
1318			ASSERT(prev->dtdv_next == dvar);
1319			prev->dtdv_next = dvar->dtdv_next;
1320		} else {
1321			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1322			    start, dvar->dtdv_next) != start) {
1323				/*
1324				 * We have failed to atomically swing the
1325				 * hash table head pointer, presumably because
1326				 * of a conflicting allocation on another CPU.
1327				 * We need to reread the hash chain and try
1328				 * again.
1329				 */
1330				goto top;
1331			}
1332		}
1333
1334		dtrace_membar_producer();
1335
1336		/*
1337		 * Now set the hash value to indicate that it's free.
1338		 */
1339		ASSERT(hash[bucket].dtdh_chain != dvar);
1340		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1341
1342		dtrace_membar_producer();
1343
1344		/*
1345		 * Set the next pointer to point at the dirty list, and
1346		 * atomically swing the dirty pointer to the newly freed dvar.
1347		 */
1348		do {
1349			next = dcpu->dtdsc_dirty;
1350			dvar->dtdv_next = next;
1351		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1352
1353		/*
1354		 * Finally, unlock this hash bucket.
1355		 */
1356		ASSERT(hash[bucket].dtdh_lock == lock);
1357		ASSERT(lock & 1);
1358		hash[bucket].dtdh_lock++;
1359
1360		return (NULL);
1361next:
1362		prev = dvar;
1363		continue;
1364	}
1365
1366	if (dvar == NULL) {
1367		/*
1368		 * If dvar is NULL, it is because we went off the rails:
1369		 * one of the elements that we traversed in the hash chain
1370		 * was deleted while we were traversing it.  In this case,
1371		 * we assert that we aren't doing a dealloc (deallocs lock
1372		 * the hash bucket to prevent themselves from racing with
1373		 * one another), and retry the hash chain traversal.
1374		 */
1375		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1376		goto top;
1377	}
1378
1379	if (op != DTRACE_DYNVAR_ALLOC) {
1380		/*
1381		 * If we are not to allocate a new variable, we want to
1382		 * return NULL now.  Before we return, check that the value
1383		 * of the lock word hasn't changed.  If it has, we may have
1384		 * seen an inconsistent snapshot.
1385		 */
1386		if (op == DTRACE_DYNVAR_NOALLOC) {
1387			if (hash[bucket].dtdh_lock != lock)
1388				goto top;
1389		} else {
1390			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1391			ASSERT(hash[bucket].dtdh_lock == lock);
1392			ASSERT(lock & 1);
1393			hash[bucket].dtdh_lock++;
1394		}
1395
1396		return (NULL);
1397	}
1398
1399	/*
1400	 * We need to allocate a new dynamic variable.  The size we need is the
1401	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1402	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1403	 * the size of any referred-to data (dsize).  We then round the final
1404	 * size up to the chunksize for allocation.
1405	 */
1406	for (ksize = 0, i = 0; i < nkeys; i++)
1407		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1408
1409	/*
1410	 * This should be pretty much impossible, but could happen if, say,
1411	 * strange DIF specified the tuple.  Ideally, this should be an
1412	 * assertion and not an error condition -- but that requires that the
1413	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1414	 * bullet-proof.  (That is, it must not be able to be fooled by
1415	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1416	 * solving this would presumably not amount to solving the Halting
1417	 * Problem -- but it still seems awfully hard.
1418	 */
1419	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1420	    ksize + dsize > chunksize) {
1421		dcpu->dtdsc_drops++;
1422		return (NULL);
1423	}
1424
1425	nstate = DTRACE_DSTATE_EMPTY;
1426
1427	do {
1428retry:
1429		free = dcpu->dtdsc_free;
1430
1431		if (free == NULL) {
1432			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1433			void *rval;
1434
1435			if (clean == NULL) {
1436				/*
1437				 * We're out of dynamic variable space on
1438				 * this CPU.  Unless we have tried all CPUs,
1439				 * we'll try to allocate from a different
1440				 * CPU.
1441				 */
1442				switch (dstate->dtds_state) {
1443				case DTRACE_DSTATE_CLEAN: {
1444					void *sp = &dstate->dtds_state;
1445
1446					if (++cpu >= NCPU)
1447						cpu = 0;
1448
1449					if (dcpu->dtdsc_dirty != NULL &&
1450					    nstate == DTRACE_DSTATE_EMPTY)
1451						nstate = DTRACE_DSTATE_DIRTY;
1452
1453					if (dcpu->dtdsc_rinsing != NULL)
1454						nstate = DTRACE_DSTATE_RINSING;
1455
1456					dcpu = &dstate->dtds_percpu[cpu];
1457
1458					if (cpu != me)
1459						goto retry;
1460
1461					(void) dtrace_cas32(sp,
1462					    DTRACE_DSTATE_CLEAN, nstate);
1463
1464					/*
1465					 * To increment the correct bean
1466					 * counter, take another lap.
1467					 */
1468					goto retry;
1469				}
1470
1471				case DTRACE_DSTATE_DIRTY:
1472					dcpu->dtdsc_dirty_drops++;
1473					break;
1474
1475				case DTRACE_DSTATE_RINSING:
1476					dcpu->dtdsc_rinsing_drops++;
1477					break;
1478
1479				case DTRACE_DSTATE_EMPTY:
1480					dcpu->dtdsc_drops++;
1481					break;
1482				}
1483
1484				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1485				return (NULL);
1486			}
1487
1488			/*
1489			 * The clean list appears to be non-empty.  We want to
1490			 * move the clean list to the free list; we start by
1491			 * moving the clean pointer aside.
1492			 */
1493			if (dtrace_casptr(&dcpu->dtdsc_clean,
1494			    clean, NULL) != clean) {
1495				/*
1496				 * We are in one of two situations:
1497				 *
1498				 *  (a)	The clean list was switched to the
1499				 *	free list by another CPU.
1500				 *
1501				 *  (b)	The clean list was added to by the
1502				 *	cleansing cyclic.
1503				 *
1504				 * In either of these situations, we can
1505				 * just reattempt the free list allocation.
1506				 */
1507				goto retry;
1508			}
1509
1510			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1511
1512			/*
1513			 * Now we'll move the clean list to the free list.
1514			 * It's impossible for this to fail:  the only way
1515			 * the free list can be updated is through this
1516			 * code path, and only one CPU can own the clean list.
1517			 * Thus, it would only be possible for this to fail if
1518			 * this code were racing with dtrace_dynvar_clean().
1519			 * (That is, if dtrace_dynvar_clean() updated the clean
1520			 * list, and we ended up racing to update the free
1521			 * list.)  This race is prevented by the dtrace_sync()
1522			 * in dtrace_dynvar_clean() -- which flushes the
1523			 * owners of the clean lists out before resetting
1524			 * the clean lists.
1525			 */
1526			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1527			ASSERT(rval == NULL);
1528			goto retry;
1529		}
1530
1531		dvar = free;
1532		new_free = dvar->dtdv_next;
1533	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1534
1535	/*
1536	 * We have now allocated a new chunk.  We copy the tuple keys into the
1537	 * tuple array and copy any referenced key data into the data space
1538	 * following the tuple array.  As we do this, we relocate dttk_value
1539	 * in the final tuple to point to the key data address in the chunk.
1540	 */
1541	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1542	dvar->dtdv_data = (void *)(kdata + ksize);
1543	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1544
1545	for (i = 0; i < nkeys; i++) {
1546		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1547		size_t kesize = key[i].dttk_size;
1548
1549		if (kesize != 0) {
1550			dtrace_bcopy(
1551			    (const void *)(uintptr_t)key[i].dttk_value,
1552			    (void *)kdata, kesize);
1553			dkey->dttk_value = kdata;
1554			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1555		} else {
1556			dkey->dttk_value = key[i].dttk_value;
1557		}
1558
1559		dkey->dttk_size = kesize;
1560	}
1561
1562	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1563	dvar->dtdv_hashval = hashval;
1564	dvar->dtdv_next = start;
1565
1566	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1567		return (dvar);
1568
1569	/*
1570	 * The cas has failed.  Either another CPU is adding an element to
1571	 * this hash chain, or another CPU is deleting an element from this
1572	 * hash chain.  The simplest way to deal with both of these cases
1573	 * (though not necessarily the most efficient) is to free our
1574	 * allocated block and tail-call ourselves.  Note that the free is
1575	 * to the dirty list and _not_ to the free list.  This is to prevent
1576	 * races with allocators, above.
1577	 */
1578	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1579
1580	dtrace_membar_producer();
1581
1582	do {
1583		free = dcpu->dtdsc_dirty;
1584		dvar->dtdv_next = free;
1585	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1586
1587	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1588}
1589
1590/*ARGSUSED*/
1591static void
1592dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1593{
1594	if (nval < *oval)
1595		*oval = nval;
1596}
1597
1598/*ARGSUSED*/
1599static void
1600dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1601{
1602	if (nval > *oval)
1603		*oval = nval;
1604}
1605
1606static void
1607dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1608{
1609	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1610	int64_t val = (int64_t)nval;
1611
1612	if (val < 0) {
1613		for (i = 0; i < zero; i++) {
1614			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1615				quanta[i] += incr;
1616				return;
1617			}
1618		}
1619	} else {
1620		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1621			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1622				quanta[i - 1] += incr;
1623				return;
1624			}
1625		}
1626
1627		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1628		return;
1629	}
1630
1631	ASSERT(0);
1632}
1633
1634static void
1635dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1636{
1637	uint64_t arg = *lquanta++;
1638	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1639	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1640	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1641	int32_t val = (int32_t)nval, level;
1642
1643	ASSERT(step != 0);
1644	ASSERT(levels != 0);
1645
1646	if (val < base) {
1647		/*
1648		 * This is an underflow.
1649		 */
1650		lquanta[0] += incr;
1651		return;
1652	}
1653
1654	level = (val - base) / step;
1655
1656	if (level < levels) {
1657		lquanta[level + 1] += incr;
1658		return;
1659	}
1660
1661	/*
1662	 * This is an overflow.
1663	 */
1664	lquanta[levels + 1] += incr;
1665}
1666
1667/*ARGSUSED*/
1668static void
1669dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1670{
1671	data[0]++;
1672	data[1] += nval;
1673}
1674
1675/*ARGSUSED*/
1676static void
1677dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1678{
1679	*oval = *oval + 1;
1680}
1681
1682/*ARGSUSED*/
1683static void
1684dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1685{
1686	*oval += nval;
1687}
1688
1689/*
1690 * Aggregate given the tuple in the principal data buffer, and the aggregating
1691 * action denoted by the specified dtrace_aggregation_t.  The aggregation
1692 * buffer is specified as the buf parameter.  This routine does not return
1693 * failure; if there is no space in the aggregation buffer, the data will be
1694 * dropped, and a corresponding counter incremented.
1695 */
1696static void
1697dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1698    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1699{
1700	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1701	uint32_t i, ndx, size, fsize;
1702	uint32_t align = sizeof (uint64_t) - 1;
1703	dtrace_aggbuffer_t *agb;
1704	dtrace_aggkey_t *key;
1705	uint32_t hashval = 0, limit, isstr;
1706	caddr_t tomax, data, kdata;
1707	dtrace_actkind_t action;
1708	dtrace_action_t *act;
1709	uintptr_t offs;
1710
1711	if (buf == NULL)
1712		return;
1713
1714	if (!agg->dtag_hasarg) {
1715		/*
1716		 * Currently, only quantize() and lquantize() take additional
1717		 * arguments, and they have the same semantics:  an increment
1718		 * value that defaults to 1 when not present.  If additional
1719		 * aggregating actions take arguments, the setting of the
1720		 * default argument value will presumably have to become more
1721		 * sophisticated...
1722		 */
1723		arg = 1;
1724	}
1725
1726	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1727	size = rec->dtrd_offset - agg->dtag_base;
1728	fsize = size + rec->dtrd_size;
1729
1730	ASSERT(dbuf->dtb_tomax != NULL);
1731	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1732
1733	if ((tomax = buf->dtb_tomax) == NULL) {
1734		dtrace_buffer_drop(buf);
1735		return;
1736	}
1737
1738	/*
1739	 * The metastructure is always at the bottom of the buffer.
1740	 */
1741	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1742	    sizeof (dtrace_aggbuffer_t));
1743
1744	if (buf->dtb_offset == 0) {
1745		/*
1746		 * We just kludge up approximately 1/8th of the size to be
1747		 * buckets.  If this guess ends up being routinely
1748		 * off-the-mark, we may need to dynamically readjust this
1749		 * based on past performance.
1750		 */
1751		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1752
1753		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1754		    (uintptr_t)tomax || hashsize == 0) {
1755			/*
1756			 * We've been given a ludicrously small buffer;
1757			 * increment our drop count and leave.
1758			 */
1759			dtrace_buffer_drop(buf);
1760			return;
1761		}
1762
1763		/*
1764		 * And now, a pathetic attempt to try to get a an odd (or
1765		 * perchance, a prime) hash size for better hash distribution.
1766		 */
1767		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1768			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1769
1770		agb->dtagb_hashsize = hashsize;
1771		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1772		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1773		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1774
1775		for (i = 0; i < agb->dtagb_hashsize; i++)
1776			agb->dtagb_hash[i] = NULL;
1777	}
1778
1779	ASSERT(agg->dtag_first != NULL);
1780	ASSERT(agg->dtag_first->dta_intuple);
1781
1782	/*
1783	 * Calculate the hash value based on the key.  Note that we _don't_
1784	 * include the aggid in the hashing (but we will store it as part of
1785	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1786	 * algorithm: a simple, quick algorithm that has no known funnels, and
1787	 * gets good distribution in practice.  The efficacy of the hashing
1788	 * algorithm (and a comparison with other algorithms) may be found by
1789	 * running the ::dtrace_aggstat MDB dcmd.
1790	 */
1791	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1792		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1793		limit = i + act->dta_rec.dtrd_size;
1794		ASSERT(limit <= size);
1795		isstr = DTRACEACT_ISSTRING(act);
1796
1797		for (; i < limit; i++) {
1798			hashval += data[i];
1799			hashval += (hashval << 10);
1800			hashval ^= (hashval >> 6);
1801
1802			if (isstr && data[i] == '\0')
1803				break;
1804		}
1805	}
1806
1807	hashval += (hashval << 3);
1808	hashval ^= (hashval >> 11);
1809	hashval += (hashval << 15);
1810
1811	/*
1812	 * Yes, the divide here is expensive -- but it's generally the least
1813	 * of the performance issues given the amount of data that we iterate
1814	 * over to compute hash values, compare data, etc.
1815	 */
1816	ndx = hashval % agb->dtagb_hashsize;
1817
1818	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1819		ASSERT((caddr_t)key >= tomax);
1820		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1821
1822		if (hashval != key->dtak_hashval || key->dtak_size != size)
1823			continue;
1824
1825		kdata = key->dtak_data;
1826		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1827
1828		for (act = agg->dtag_first; act->dta_intuple;
1829		    act = act->dta_next) {
1830			i = act->dta_rec.dtrd_offset - agg->dtag_base;
1831			limit = i + act->dta_rec.dtrd_size;
1832			ASSERT(limit <= size);
1833			isstr = DTRACEACT_ISSTRING(act);
1834
1835			for (; i < limit; i++) {
1836				if (kdata[i] != data[i])
1837					goto next;
1838
1839				if (isstr && data[i] == '\0')
1840					break;
1841			}
1842		}
1843
1844		if (action != key->dtak_action) {
1845			/*
1846			 * We are aggregating on the same value in the same
1847			 * aggregation with two different aggregating actions.
1848			 * (This should have been picked up in the compiler,
1849			 * so we may be dealing with errant or devious DIF.)
1850			 * This is an error condition; we indicate as much,
1851			 * and return.
1852			 */
1853			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
1854			return;
1855		}
1856
1857		/*
1858		 * This is a hit:  we need to apply the aggregator to
1859		 * the value at this key.
1860		 */
1861		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
1862		return;
1863next:
1864		continue;
1865	}
1866
1867	/*
1868	 * We didn't find it.  We need to allocate some zero-filled space,
1869	 * link it into the hash table appropriately, and apply the aggregator
1870	 * to the (zero-filled) value.
1871	 */
1872	offs = buf->dtb_offset;
1873	while (offs & (align - 1))
1874		offs += sizeof (uint32_t);
1875
1876	/*
1877	 * If we don't have enough room to both allocate a new key _and_
1878	 * its associated data, increment the drop count and return.
1879	 */
1880	if ((uintptr_t)tomax + offs + fsize >
1881	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
1882		dtrace_buffer_drop(buf);
1883		return;
1884	}
1885
1886	/*CONSTCOND*/
1887	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
1888	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
1889	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
1890
1891	key->dtak_data = kdata = tomax + offs;
1892	buf->dtb_offset = offs + fsize;
1893
1894	/*
1895	 * Now copy the data across.
1896	 */
1897	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
1898
1899	for (i = sizeof (dtrace_aggid_t); i < size; i++)
1900		kdata[i] = data[i];
1901
1902	/*
1903	 * Because strings are not zeroed out by default, we need to iterate
1904	 * looking for actions that store strings, and we need to explicitly
1905	 * pad these strings out with zeroes.
1906	 */
1907	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1908		int nul;
1909
1910		if (!DTRACEACT_ISSTRING(act))
1911			continue;
1912
1913		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1914		limit = i + act->dta_rec.dtrd_size;
1915		ASSERT(limit <= size);
1916
1917		for (nul = 0; i < limit; i++) {
1918			if (nul) {
1919				kdata[i] = '\0';
1920				continue;
1921			}
1922
1923			if (data[i] != '\0')
1924				continue;
1925
1926			nul = 1;
1927		}
1928	}
1929
1930	for (i = size; i < fsize; i++)
1931		kdata[i] = 0;
1932
1933	key->dtak_hashval = hashval;
1934	key->dtak_size = size;
1935	key->dtak_action = action;
1936	key->dtak_next = agb->dtagb_hash[ndx];
1937	agb->dtagb_hash[ndx] = key;
1938
1939	/*
1940	 * Finally, apply the aggregator.
1941	 */
1942	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
1943	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
1944}
1945
1946/*
1947 * Given consumer state, this routine finds a speculation in the INACTIVE
1948 * state and transitions it into the ACTIVE state.  If there is no speculation
1949 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
1950 * incremented -- it is up to the caller to take appropriate action.
1951 */
1952static int
1953dtrace_speculation(dtrace_state_t *state)
1954{
1955	int i = 0;
1956	dtrace_speculation_state_t current;
1957	uint32_t *stat = &state->dts_speculations_unavail, count;
1958
1959	while (i < state->dts_nspeculations) {
1960		dtrace_speculation_t *spec = &state->dts_speculations[i];
1961
1962		current = spec->dtsp_state;
1963
1964		if (current != DTRACESPEC_INACTIVE) {
1965			if (current == DTRACESPEC_COMMITTINGMANY ||
1966			    current == DTRACESPEC_COMMITTING ||
1967			    current == DTRACESPEC_DISCARDING)
1968				stat = &state->dts_speculations_busy;
1969			i++;
1970			continue;
1971		}
1972
1973		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1974		    current, DTRACESPEC_ACTIVE) == current)
1975			return (i + 1);
1976	}
1977
1978	/*
1979	 * We couldn't find a speculation.  If we found as much as a single
1980	 * busy speculation buffer, we'll attribute this failure as "busy"
1981	 * instead of "unavail".
1982	 */
1983	do {
1984		count = *stat;
1985	} while (dtrace_cas32(stat, count, count + 1) != count);
1986
1987	return (0);
1988}
1989
1990/*
1991 * This routine commits an active speculation.  If the specified speculation
1992 * is not in a valid state to perform a commit(), this routine will silently do
1993 * nothing.  The state of the specified speculation is transitioned according
1994 * to the state transition diagram outlined in <sys/dtrace_impl.h>
1995 */
1996static void
1997dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
1998    dtrace_specid_t which)
1999{
2000	dtrace_speculation_t *spec;
2001	dtrace_buffer_t *src, *dest;
2002	uintptr_t daddr, saddr, dlimit;
2003	dtrace_speculation_state_t current, new;
2004	intptr_t offs;
2005
2006	if (which == 0)
2007		return;
2008
2009	if (which > state->dts_nspeculations) {
2010		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2011		return;
2012	}
2013
2014	spec = &state->dts_speculations[which - 1];
2015	src = &spec->dtsp_buffer[cpu];
2016	dest = &state->dts_buffer[cpu];
2017
2018	do {
2019		current = spec->dtsp_state;
2020
2021		if (current == DTRACESPEC_COMMITTINGMANY)
2022			break;
2023
2024		switch (current) {
2025		case DTRACESPEC_INACTIVE:
2026		case DTRACESPEC_DISCARDING:
2027			return;
2028
2029		case DTRACESPEC_COMMITTING:
2030			/*
2031			 * This is only possible if we are (a) commit()'ing
2032			 * without having done a prior speculate() on this CPU
2033			 * and (b) racing with another commit() on a different
2034			 * CPU.  There's nothing to do -- we just assert that
2035			 * our offset is 0.
2036			 */
2037			ASSERT(src->dtb_offset == 0);
2038			return;
2039
2040		case DTRACESPEC_ACTIVE:
2041			new = DTRACESPEC_COMMITTING;
2042			break;
2043
2044		case DTRACESPEC_ACTIVEONE:
2045			/*
2046			 * This speculation is active on one CPU.  If our
2047			 * buffer offset is non-zero, we know that the one CPU
2048			 * must be us.  Otherwise, we are committing on a
2049			 * different CPU from the speculate(), and we must
2050			 * rely on being asynchronously cleaned.
2051			 */
2052			if (src->dtb_offset != 0) {
2053				new = DTRACESPEC_COMMITTING;
2054				break;
2055			}
2056			/*FALLTHROUGH*/
2057
2058		case DTRACESPEC_ACTIVEMANY:
2059			new = DTRACESPEC_COMMITTINGMANY;
2060			break;
2061
2062		default:
2063			ASSERT(0);
2064		}
2065	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2066	    current, new) != current);
2067
2068	/*
2069	 * We have set the state to indicate that we are committing this
2070	 * speculation.  Now reserve the necessary space in the destination
2071	 * buffer.
2072	 */
2073	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2074	    sizeof (uint64_t), state, NULL)) < 0) {
2075		dtrace_buffer_drop(dest);
2076		goto out;
2077	}
2078
2079	/*
2080	 * We have the space; copy the buffer across.  (Note that this is a
2081	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2082	 * a serious performance issue, a high-performance DTrace-specific
2083	 * bcopy() should obviously be invented.)
2084	 */
2085	daddr = (uintptr_t)dest->dtb_tomax + offs;
2086	dlimit = daddr + src->dtb_offset;
2087	saddr = (uintptr_t)src->dtb_tomax;
2088
2089	/*
2090	 * First, the aligned portion.
2091	 */
2092	while (dlimit - daddr >= sizeof (uint64_t)) {
2093		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2094
2095		daddr += sizeof (uint64_t);
2096		saddr += sizeof (uint64_t);
2097	}
2098
2099	/*
2100	 * Now any left-over bit...
2101	 */
2102	while (dlimit - daddr)
2103		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2104
2105	/*
2106	 * Finally, commit the reserved space in the destination buffer.
2107	 */
2108	dest->dtb_offset = offs + src->dtb_offset;
2109
2110out:
2111	/*
2112	 * If we're lucky enough to be the only active CPU on this speculation
2113	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2114	 */
2115	if (current == DTRACESPEC_ACTIVE ||
2116	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2117		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2118		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2119
2120		ASSERT(rval == DTRACESPEC_COMMITTING);
2121	}
2122
2123	src->dtb_offset = 0;
2124	src->dtb_xamot_drops += src->dtb_drops;
2125	src->dtb_drops = 0;
2126}
2127
2128/*
2129 * This routine discards an active speculation.  If the specified speculation
2130 * is not in a valid state to perform a discard(), this routine will silently
2131 * do nothing.  The state of the specified speculation is transitioned
2132 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2133 */
2134static void
2135dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2136    dtrace_specid_t which)
2137{
2138	dtrace_speculation_t *spec;
2139	dtrace_speculation_state_t current, new;
2140	dtrace_buffer_t *buf;
2141
2142	if (which == 0)
2143		return;
2144
2145	if (which > state->dts_nspeculations) {
2146		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2147		return;
2148	}
2149
2150	spec = &state->dts_speculations[which - 1];
2151	buf = &spec->dtsp_buffer[cpu];
2152
2153	do {
2154		current = spec->dtsp_state;
2155
2156		switch (current) {
2157		case DTRACESPEC_INACTIVE:
2158		case DTRACESPEC_COMMITTINGMANY:
2159		case DTRACESPEC_COMMITTING:
2160		case DTRACESPEC_DISCARDING:
2161			return;
2162
2163		case DTRACESPEC_ACTIVE:
2164		case DTRACESPEC_ACTIVEMANY:
2165			new = DTRACESPEC_DISCARDING;
2166			break;
2167
2168		case DTRACESPEC_ACTIVEONE:
2169			if (buf->dtb_offset != 0) {
2170				new = DTRACESPEC_INACTIVE;
2171			} else {
2172				new = DTRACESPEC_DISCARDING;
2173			}
2174			break;
2175
2176		default:
2177			ASSERT(0);
2178		}
2179	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2180	    current, new) != current);
2181
2182	buf->dtb_offset = 0;
2183	buf->dtb_drops = 0;
2184}
2185
2186/*
2187 * Note:  not called from probe context.  This function is called
2188 * asynchronously from cross call context to clean any speculations that are
2189 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2190 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2191 * speculation.
2192 */
2193static void
2194dtrace_speculation_clean_here(dtrace_state_t *state)
2195{
2196	dtrace_icookie_t cookie;
2197	processorid_t cpu = CPU->cpu_id;
2198	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2199	dtrace_specid_t i;
2200
2201	cookie = dtrace_interrupt_disable();
2202
2203	if (dest->dtb_tomax == NULL) {
2204		dtrace_interrupt_enable(cookie);
2205		return;
2206	}
2207
2208	for (i = 0; i < state->dts_nspeculations; i++) {
2209		dtrace_speculation_t *spec = &state->dts_speculations[i];
2210		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2211
2212		if (src->dtb_tomax == NULL)
2213			continue;
2214
2215		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2216			src->dtb_offset = 0;
2217			continue;
2218		}
2219
2220		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2221			continue;
2222
2223		if (src->dtb_offset == 0)
2224			continue;
2225
2226		dtrace_speculation_commit(state, cpu, i + 1);
2227	}
2228
2229	dtrace_interrupt_enable(cookie);
2230}
2231
2232/*
2233 * Note:  not called from probe context.  This function is called
2234 * asynchronously (and at a regular interval) to clean any speculations that
2235 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2236 * is work to be done, it cross calls all CPUs to perform that work;
2237 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2238 * INACTIVE state until they have been cleaned by all CPUs.
2239 */
2240static void
2241dtrace_speculation_clean(dtrace_state_t *state)
2242{
2243	int work = 0, rv;
2244	dtrace_specid_t i;
2245
2246	for (i = 0; i < state->dts_nspeculations; i++) {
2247		dtrace_speculation_t *spec = &state->dts_speculations[i];
2248
2249		ASSERT(!spec->dtsp_cleaning);
2250
2251		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2252		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2253			continue;
2254
2255		work++;
2256		spec->dtsp_cleaning = 1;
2257	}
2258
2259	if (!work)
2260		return;
2261
2262	dtrace_xcall(DTRACE_CPUALL,
2263	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2264
2265	/*
2266	 * We now know that all CPUs have committed or discarded their
2267	 * speculation buffers, as appropriate.  We can now set the state
2268	 * to inactive.
2269	 */
2270	for (i = 0; i < state->dts_nspeculations; i++) {
2271		dtrace_speculation_t *spec = &state->dts_speculations[i];
2272		dtrace_speculation_state_t current, new;
2273
2274		if (!spec->dtsp_cleaning)
2275			continue;
2276
2277		current = spec->dtsp_state;
2278		ASSERT(current == DTRACESPEC_DISCARDING ||
2279		    current == DTRACESPEC_COMMITTINGMANY);
2280
2281		new = DTRACESPEC_INACTIVE;
2282
2283		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2284		ASSERT(rv == current);
2285		spec->dtsp_cleaning = 0;
2286	}
2287}
2288
2289/*
2290 * Called as part of a speculate() to get the speculative buffer associated
2291 * with a given speculation.  Returns NULL if the specified speculation is not
2292 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2293 * the active CPU is not the specified CPU -- the speculation will be
2294 * atomically transitioned into the ACTIVEMANY state.
2295 */
2296static dtrace_buffer_t *
2297dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2298    dtrace_specid_t which)
2299{
2300	dtrace_speculation_t *spec;
2301	dtrace_speculation_state_t current, new;
2302	dtrace_buffer_t *buf;
2303
2304	if (which == 0)
2305		return (NULL);
2306
2307	if (which > state->dts_nspeculations) {
2308		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2309		return (NULL);
2310	}
2311
2312	spec = &state->dts_speculations[which - 1];
2313	buf = &spec->dtsp_buffer[cpuid];
2314
2315	do {
2316		current = spec->dtsp_state;
2317
2318		switch (current) {
2319		case DTRACESPEC_INACTIVE:
2320		case DTRACESPEC_COMMITTINGMANY:
2321		case DTRACESPEC_DISCARDING:
2322			return (NULL);
2323
2324		case DTRACESPEC_COMMITTING:
2325			ASSERT(buf->dtb_offset == 0);
2326			return (NULL);
2327
2328		case DTRACESPEC_ACTIVEONE:
2329			/*
2330			 * This speculation is currently active on one CPU.
2331			 * Check the offset in the buffer; if it's non-zero,
2332			 * that CPU must be us (and we leave the state alone).
2333			 * If it's zero, assume that we're starting on a new
2334			 * CPU -- and change the state to indicate that the
2335			 * speculation is active on more than one CPU.
2336			 */
2337			if (buf->dtb_offset != 0)
2338				return (buf);
2339
2340			new = DTRACESPEC_ACTIVEMANY;
2341			break;
2342
2343		case DTRACESPEC_ACTIVEMANY:
2344			return (buf);
2345
2346		case DTRACESPEC_ACTIVE:
2347			new = DTRACESPEC_ACTIVEONE;
2348			break;
2349
2350		default:
2351			ASSERT(0);
2352		}
2353	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2354	    current, new) != current);
2355
2356	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2357	return (buf);
2358}
2359
2360/*
2361 * Return a string.  In the event that the user lacks the privilege to access
2362 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2363 * don't fail access checking.
2364 *
2365 * dtrace_dif_variable() uses this routine as a helper for various
2366 * builtin values such as 'execname' and 'probefunc.'
2367 */
2368uintptr_t
2369dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2370    dtrace_mstate_t *mstate)
2371{
2372	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2373	uintptr_t ret;
2374	size_t strsz;
2375
2376	/*
2377	 * The easy case: this probe is allowed to read all of memory, so
2378	 * we can just return this as a vanilla pointer.
2379	 */
2380	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2381		return (addr);
2382
2383	/*
2384	 * This is the tougher case: we copy the string in question from
2385	 * kernel memory into scratch memory and return it that way: this
2386	 * ensures that we won't trip up when access checking tests the
2387	 * BYREF return value.
2388	 */
2389	strsz = dtrace_strlen((char *)addr, size) + 1;
2390
2391	if (mstate->dtms_scratch_ptr + strsz >
2392	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2393		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2394		return (NULL);
2395	}
2396
2397	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2398	    strsz);
2399	ret = mstate->dtms_scratch_ptr;
2400	mstate->dtms_scratch_ptr += strsz;
2401	return (ret);
2402}
2403
2404/*
2405 * This function implements the DIF emulator's variable lookups.  The emulator
2406 * passes a reserved variable identifier and optional built-in array index.
2407 */
2408static uint64_t
2409dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2410    uint64_t ndx)
2411{
2412	/*
2413	 * If we're accessing one of the uncached arguments, we'll turn this
2414	 * into a reference in the args array.
2415	 */
2416	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2417		ndx = v - DIF_VAR_ARG0;
2418		v = DIF_VAR_ARGS;
2419	}
2420
2421	switch (v) {
2422	case DIF_VAR_ARGS:
2423		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2424		if (ndx >= sizeof (mstate->dtms_arg) /
2425		    sizeof (mstate->dtms_arg[0])) {
2426			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2427			dtrace_provider_t *pv;
2428			uint64_t val;
2429
2430			pv = mstate->dtms_probe->dtpr_provider;
2431			if (pv->dtpv_pops.dtps_getargval != NULL)
2432				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2433				    mstate->dtms_probe->dtpr_id,
2434				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2435			else
2436				val = dtrace_getarg(ndx, aframes);
2437
2438			/*
2439			 * This is regrettably required to keep the compiler
2440			 * from tail-optimizing the call to dtrace_getarg().
2441			 * The condition always evaluates to true, but the
2442			 * compiler has no way of figuring that out a priori.
2443			 * (None of this would be necessary if the compiler
2444			 * could be relied upon to _always_ tail-optimize
2445			 * the call to dtrace_getarg() -- but it can't.)
2446			 */
2447			if (mstate->dtms_probe != NULL)
2448				return (val);
2449
2450			ASSERT(0);
2451		}
2452
2453		return (mstate->dtms_arg[ndx]);
2454
2455	case DIF_VAR_UREGS: {
2456		klwp_t *lwp;
2457
2458		if (!dtrace_priv_proc(state))
2459			return (0);
2460
2461		if ((lwp = curthread->t_lwp) == NULL) {
2462			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2463			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2464			return (0);
2465		}
2466
2467		return (dtrace_getreg(lwp->lwp_regs, ndx));
2468	}
2469
2470	case DIF_VAR_CURTHREAD:
2471		if (!dtrace_priv_kernel(state))
2472			return (0);
2473		return ((uint64_t)(uintptr_t)curthread);
2474
2475	case DIF_VAR_TIMESTAMP:
2476		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2477			mstate->dtms_timestamp = dtrace_gethrtime();
2478			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2479		}
2480		return (mstate->dtms_timestamp);
2481
2482	case DIF_VAR_VTIMESTAMP:
2483		ASSERT(dtrace_vtime_references != 0);
2484		return (curthread->t_dtrace_vtime);
2485
2486	case DIF_VAR_WALLTIMESTAMP:
2487		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2488			mstate->dtms_walltimestamp = dtrace_gethrestime();
2489			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2490		}
2491		return (mstate->dtms_walltimestamp);
2492
2493	case DIF_VAR_IPL:
2494		if (!dtrace_priv_kernel(state))
2495			return (0);
2496		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2497			mstate->dtms_ipl = dtrace_getipl();
2498			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2499		}
2500		return (mstate->dtms_ipl);
2501
2502	case DIF_VAR_EPID:
2503		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2504		return (mstate->dtms_epid);
2505
2506	case DIF_VAR_ID:
2507		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2508		return (mstate->dtms_probe->dtpr_id);
2509
2510	case DIF_VAR_STACKDEPTH:
2511		if (!dtrace_priv_kernel(state))
2512			return (0);
2513		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2514			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2515
2516			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2517			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2518		}
2519		return (mstate->dtms_stackdepth);
2520
2521	case DIF_VAR_USTACKDEPTH:
2522		if (!dtrace_priv_proc(state))
2523			return (0);
2524		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2525			/*
2526			 * See comment in DIF_VAR_PID.
2527			 */
2528			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2529			    CPU_ON_INTR(CPU)) {
2530				mstate->dtms_ustackdepth = 0;
2531			} else {
2532				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2533				mstate->dtms_ustackdepth =
2534				    dtrace_getustackdepth();
2535				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2536			}
2537			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2538		}
2539		return (mstate->dtms_ustackdepth);
2540
2541	case DIF_VAR_CALLER:
2542		if (!dtrace_priv_kernel(state))
2543			return (0);
2544		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2545			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2546
2547			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2548				/*
2549				 * If this is an unanchored probe, we are
2550				 * required to go through the slow path:
2551				 * dtrace_caller() only guarantees correct
2552				 * results for anchored probes.
2553				 */
2554				pc_t caller[2];
2555
2556				dtrace_getpcstack(caller, 2, aframes,
2557				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2558				mstate->dtms_caller = caller[1];
2559			} else if ((mstate->dtms_caller =
2560			    dtrace_caller(aframes)) == -1) {
2561				/*
2562				 * We have failed to do this the quick way;
2563				 * we must resort to the slower approach of
2564				 * calling dtrace_getpcstack().
2565				 */
2566				pc_t caller;
2567
2568				dtrace_getpcstack(&caller, 1, aframes, NULL);
2569				mstate->dtms_caller = caller;
2570			}
2571
2572			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2573		}
2574		return (mstate->dtms_caller);
2575
2576	case DIF_VAR_UCALLER:
2577		if (!dtrace_priv_proc(state))
2578			return (0);
2579
2580		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2581			uint64_t ustack[3];
2582
2583			/*
2584			 * dtrace_getupcstack() fills in the first uint64_t
2585			 * with the current PID.  The second uint64_t will
2586			 * be the program counter at user-level.  The third
2587			 * uint64_t will contain the caller, which is what
2588			 * we're after.
2589			 */
2590			ustack[2] = NULL;
2591			dtrace_getupcstack(ustack, 3);
2592			mstate->dtms_ucaller = ustack[2];
2593			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2594		}
2595
2596		return (mstate->dtms_ucaller);
2597
2598	case DIF_VAR_PROBEPROV:
2599		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2600		return (dtrace_dif_varstr(
2601		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2602		    state, mstate));
2603
2604	case DIF_VAR_PROBEMOD:
2605		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2606		return (dtrace_dif_varstr(
2607		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2608		    state, mstate));
2609
2610	case DIF_VAR_PROBEFUNC:
2611		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2612		return (dtrace_dif_varstr(
2613		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2614		    state, mstate));
2615
2616	case DIF_VAR_PROBENAME:
2617		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2618		return (dtrace_dif_varstr(
2619		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2620		    state, mstate));
2621
2622	case DIF_VAR_PID:
2623		if (!dtrace_priv_proc(state))
2624			return (0);
2625
2626		/*
2627		 * Note that we are assuming that an unanchored probe is
2628		 * always due to a high-level interrupt.  (And we're assuming
2629		 * that there is only a single high level interrupt.)
2630		 */
2631		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2632			return (pid0.pid_id);
2633
2634		/*
2635		 * It is always safe to dereference one's own t_procp pointer:
2636		 * it always points to a valid, allocated proc structure.
2637		 * Further, it is always safe to dereference the p_pidp member
2638		 * of one's own proc structure.  (These are truisms becuase
2639		 * threads and processes don't clean up their own state --
2640		 * they leave that task to whomever reaps them.)
2641		 */
2642		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2643
2644	case DIF_VAR_PPID:
2645		if (!dtrace_priv_proc(state))
2646			return (0);
2647
2648		/*
2649		 * See comment in DIF_VAR_PID.
2650		 */
2651		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2652			return (pid0.pid_id);
2653
2654		/*
2655		 * It is always safe to dereference one's own t_procp pointer:
2656		 * it always points to a valid, allocated proc structure.
2657		 * (This is true because threads don't clean up their own
2658		 * state -- they leave that task to whomever reaps them.)
2659		 */
2660		return ((uint64_t)curthread->t_procp->p_ppid);
2661
2662	case DIF_VAR_TID:
2663		/*
2664		 * See comment in DIF_VAR_PID.
2665		 */
2666		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2667			return (0);
2668
2669		return ((uint64_t)curthread->t_tid);
2670
2671	case DIF_VAR_EXECNAME:
2672		if (!dtrace_priv_proc(state))
2673			return (0);
2674
2675		/*
2676		 * See comment in DIF_VAR_PID.
2677		 */
2678		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2679			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2680
2681		/*
2682		 * It is always safe to dereference one's own t_procp pointer:
2683		 * it always points to a valid, allocated proc structure.
2684		 * (This is true because threads don't clean up their own
2685		 * state -- they leave that task to whomever reaps them.)
2686		 */
2687		return (dtrace_dif_varstr(
2688		    (uintptr_t)curthread->t_procp->p_user.u_comm,
2689		    state, mstate));
2690
2691	case DIF_VAR_ZONENAME:
2692		if (!dtrace_priv_proc(state))
2693			return (0);
2694
2695		/*
2696		 * See comment in DIF_VAR_PID.
2697		 */
2698		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2699			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2700
2701		/*
2702		 * It is always safe to dereference one's own t_procp pointer:
2703		 * it always points to a valid, allocated proc structure.
2704		 * (This is true because threads don't clean up their own
2705		 * state -- they leave that task to whomever reaps them.)
2706		 */
2707		return (dtrace_dif_varstr(
2708		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
2709		    state, mstate));
2710
2711	case DIF_VAR_UID:
2712		if (!dtrace_priv_proc(state))
2713			return (0);
2714
2715		/*
2716		 * See comment in DIF_VAR_PID.
2717		 */
2718		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2719			return ((uint64_t)p0.p_cred->cr_uid);
2720
2721		/*
2722		 * It is always safe to dereference one's own t_procp pointer:
2723		 * it always points to a valid, allocated proc structure.
2724		 * (This is true because threads don't clean up their own
2725		 * state -- they leave that task to whomever reaps them.)
2726		 *
2727		 * Additionally, it is safe to dereference one's own process
2728		 * credential, since this is never NULL after process birth.
2729		 */
2730		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
2731
2732	case DIF_VAR_GID:
2733		if (!dtrace_priv_proc(state))
2734			return (0);
2735
2736		/*
2737		 * See comment in DIF_VAR_PID.
2738		 */
2739		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2740			return ((uint64_t)p0.p_cred->cr_gid);
2741
2742		/*
2743		 * It is always safe to dereference one's own t_procp pointer:
2744		 * it always points to a valid, allocated proc structure.
2745		 * (This is true because threads don't clean up their own
2746		 * state -- they leave that task to whomever reaps them.)
2747		 *
2748		 * Additionally, it is safe to dereference one's own process
2749		 * credential, since this is never NULL after process birth.
2750		 */
2751		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
2752
2753	case DIF_VAR_ERRNO: {
2754		klwp_t *lwp;
2755		if (!dtrace_priv_proc(state))
2756			return (0);
2757
2758		/*
2759		 * See comment in DIF_VAR_PID.
2760		 */
2761		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2762			return (0);
2763
2764		/*
2765		 * It is always safe to dereference one's own t_lwp pointer in
2766		 * the event that this pointer is non-NULL.  (This is true
2767		 * because threads and lwps don't clean up their own state --
2768		 * they leave that task to whomever reaps them.)
2769		 */
2770		if ((lwp = curthread->t_lwp) == NULL)
2771			return (0);
2772
2773		return ((uint64_t)lwp->lwp_errno);
2774	}
2775	default:
2776		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2777		return (0);
2778	}
2779}
2780
2781/*
2782 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2783 * Notice that we don't bother validating the proper number of arguments or
2784 * their types in the tuple stack.  This isn't needed because all argument
2785 * interpretation is safe because of our load safety -- the worst that can
2786 * happen is that a bogus program can obtain bogus results.
2787 */
2788static void
2789dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2790    dtrace_key_t *tupregs, int nargs,
2791    dtrace_mstate_t *mstate, dtrace_state_t *state)
2792{
2793	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2794	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2795	dtrace_vstate_t *vstate = &state->dts_vstate;
2796
2797	union {
2798		mutex_impl_t mi;
2799		uint64_t mx;
2800	} m;
2801
2802	union {
2803		krwlock_t ri;
2804		uintptr_t rw;
2805	} r;
2806
2807	switch (subr) {
2808	case DIF_SUBR_RAND:
2809		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2810		break;
2811
2812	case DIF_SUBR_MUTEX_OWNED:
2813		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2814		    mstate, vstate)) {
2815			regs[rd] = NULL;
2816			break;
2817		}
2818
2819		m.mx = dtrace_load64(tupregs[0].dttk_value);
2820		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2821			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2822		else
2823			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2824		break;
2825
2826	case DIF_SUBR_MUTEX_OWNER:
2827		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2828		    mstate, vstate)) {
2829			regs[rd] = NULL;
2830			break;
2831		}
2832
2833		m.mx = dtrace_load64(tupregs[0].dttk_value);
2834		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
2835		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
2836			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
2837		else
2838			regs[rd] = 0;
2839		break;
2840
2841	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
2842		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2843		    mstate, vstate)) {
2844			regs[rd] = NULL;
2845			break;
2846		}
2847
2848		m.mx = dtrace_load64(tupregs[0].dttk_value);
2849		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
2850		break;
2851
2852	case DIF_SUBR_MUTEX_TYPE_SPIN:
2853		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2854		    mstate, vstate)) {
2855			regs[rd] = NULL;
2856			break;
2857		}
2858
2859		m.mx = dtrace_load64(tupregs[0].dttk_value);
2860		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
2861		break;
2862
2863	case DIF_SUBR_RW_READ_HELD: {
2864		uintptr_t tmp;
2865
2866		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
2867		    mstate, vstate)) {
2868			regs[rd] = NULL;
2869			break;
2870		}
2871
2872		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2873		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
2874		break;
2875	}
2876
2877	case DIF_SUBR_RW_WRITE_HELD:
2878		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
2879		    mstate, vstate)) {
2880			regs[rd] = NULL;
2881			break;
2882		}
2883
2884		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2885		regs[rd] = _RW_WRITE_HELD(&r.ri);
2886		break;
2887
2888	case DIF_SUBR_RW_ISWRITER:
2889		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
2890		    mstate, vstate)) {
2891			regs[rd] = NULL;
2892			break;
2893		}
2894
2895		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2896		regs[rd] = _RW_ISWRITER(&r.ri);
2897		break;
2898
2899	case DIF_SUBR_BCOPY: {
2900		/*
2901		 * We need to be sure that the destination is in the scratch
2902		 * region -- no other region is allowed.
2903		 */
2904		uintptr_t src = tupregs[0].dttk_value;
2905		uintptr_t dest = tupregs[1].dttk_value;
2906		size_t size = tupregs[2].dttk_value;
2907
2908		if (!dtrace_inscratch(dest, size, mstate)) {
2909			*flags |= CPU_DTRACE_BADADDR;
2910			*illval = regs[rd];
2911			break;
2912		}
2913
2914		if (!dtrace_canload(src, size, mstate, vstate)) {
2915			regs[rd] = NULL;
2916			break;
2917		}
2918
2919		dtrace_bcopy((void *)src, (void *)dest, size);
2920		break;
2921	}
2922
2923	case DIF_SUBR_ALLOCA:
2924	case DIF_SUBR_COPYIN: {
2925		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
2926		uint64_t size =
2927		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
2928		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
2929
2930		/*
2931		 * This action doesn't require any credential checks since
2932		 * probes will not activate in user contexts to which the
2933		 * enabling user does not have permissions.
2934		 */
2935		if (mstate->dtms_scratch_ptr + scratch_size >
2936		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2937			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2938			regs[rd] = NULL;
2939			break;
2940		}
2941
2942		if (subr == DIF_SUBR_COPYIN) {
2943			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2944			dtrace_copyin(tupregs[0].dttk_value, dest, size);
2945			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2946		}
2947
2948		mstate->dtms_scratch_ptr += scratch_size;
2949		regs[rd] = dest;
2950		break;
2951	}
2952
2953	case DIF_SUBR_COPYINTO: {
2954		uint64_t size = tupregs[1].dttk_value;
2955		uintptr_t dest = tupregs[2].dttk_value;
2956
2957		/*
2958		 * This action doesn't require any credential checks since
2959		 * probes will not activate in user contexts to which the
2960		 * enabling user does not have permissions.
2961		 */
2962		if (!dtrace_inscratch(dest, size, mstate)) {
2963			*flags |= CPU_DTRACE_BADADDR;
2964			*illval = regs[rd];
2965			break;
2966		}
2967
2968		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2969		dtrace_copyin(tupregs[0].dttk_value, dest, size);
2970		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2971		break;
2972	}
2973
2974	case DIF_SUBR_COPYINSTR: {
2975		uintptr_t dest = mstate->dtms_scratch_ptr;
2976		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2977
2978		if (nargs > 1 && tupregs[1].dttk_value < size)
2979			size = tupregs[1].dttk_value + 1;
2980
2981		/*
2982		 * This action doesn't require any credential checks since
2983		 * probes will not activate in user contexts to which the
2984		 * enabling user does not have permissions.
2985		 */
2986		if (mstate->dtms_scratch_ptr + size >
2987		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2988			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2989			regs[rd] = NULL;
2990			break;
2991		}
2992
2993		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2994		dtrace_copyinstr(tupregs[0].dttk_value, dest, size);
2995		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2996
2997		((char *)dest)[size - 1] = '\0';
2998		mstate->dtms_scratch_ptr += size;
2999		regs[rd] = dest;
3000		break;
3001	}
3002
3003	case DIF_SUBR_MSGSIZE:
3004	case DIF_SUBR_MSGDSIZE: {
3005		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3006		uintptr_t wptr, rptr;
3007		size_t count = 0;
3008		int cont = 0;
3009
3010		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3011
3012			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3013			    vstate)) {
3014				regs[rd] = NULL;
3015				break;
3016			}
3017
3018			wptr = dtrace_loadptr(baddr +
3019			    offsetof(mblk_t, b_wptr));
3020
3021			rptr = dtrace_loadptr(baddr +
3022			    offsetof(mblk_t, b_rptr));
3023
3024			if (wptr < rptr) {
3025				*flags |= CPU_DTRACE_BADADDR;
3026				*illval = tupregs[0].dttk_value;
3027				break;
3028			}
3029
3030			daddr = dtrace_loadptr(baddr +
3031			    offsetof(mblk_t, b_datap));
3032
3033			baddr = dtrace_loadptr(baddr +
3034			    offsetof(mblk_t, b_cont));
3035
3036			/*
3037			 * We want to prevent against denial-of-service here,
3038			 * so we're only going to search the list for
3039			 * dtrace_msgdsize_max mblks.
3040			 */
3041			if (cont++ > dtrace_msgdsize_max) {
3042				*flags |= CPU_DTRACE_ILLOP;
3043				break;
3044			}
3045
3046			if (subr == DIF_SUBR_MSGDSIZE) {
3047				if (dtrace_load8(daddr +
3048				    offsetof(dblk_t, db_type)) != M_DATA)
3049					continue;
3050			}
3051
3052			count += wptr - rptr;
3053		}
3054
3055		if (!(*flags & CPU_DTRACE_FAULT))
3056			regs[rd] = count;
3057
3058		break;
3059	}
3060
3061	case DIF_SUBR_PROGENYOF: {
3062		pid_t pid = tupregs[0].dttk_value;
3063		proc_t *p;
3064		int rval = 0;
3065
3066		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3067
3068		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3069			if (p->p_pidp->pid_id == pid) {
3070				rval = 1;
3071				break;
3072			}
3073		}
3074
3075		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3076
3077		regs[rd] = rval;
3078		break;
3079	}
3080
3081	case DIF_SUBR_SPECULATION:
3082		regs[rd] = dtrace_speculation(state);
3083		break;
3084
3085	case DIF_SUBR_COPYOUT: {
3086		uintptr_t kaddr = tupregs[0].dttk_value;
3087		uintptr_t uaddr = tupregs[1].dttk_value;
3088		uint64_t size = tupregs[2].dttk_value;
3089
3090		if (!dtrace_destructive_disallow &&
3091		    dtrace_priv_proc_control(state) &&
3092		    !dtrace_istoxic(kaddr, size)) {
3093			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3094			dtrace_copyout(kaddr, uaddr, size);
3095			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3096		}
3097		break;
3098	}
3099
3100	case DIF_SUBR_COPYOUTSTR: {
3101		uintptr_t kaddr = tupregs[0].dttk_value;
3102		uintptr_t uaddr = tupregs[1].dttk_value;
3103		uint64_t size = tupregs[2].dttk_value;
3104
3105		if (!dtrace_destructive_disallow &&
3106		    dtrace_priv_proc_control(state) &&
3107		    !dtrace_istoxic(kaddr, size)) {
3108			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3109			dtrace_copyoutstr(kaddr, uaddr, size);
3110			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3111		}
3112		break;
3113	}
3114
3115	case DIF_SUBR_STRLEN: {
3116		size_t sz;
3117		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3118		sz = dtrace_strlen((char *)addr,
3119		    state->dts_options[DTRACEOPT_STRSIZE]);
3120
3121		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3122			regs[rd] = NULL;
3123			break;
3124		}
3125
3126		regs[rd] = sz;
3127
3128		break;
3129	}
3130
3131	case DIF_SUBR_STRCHR:
3132	case DIF_SUBR_STRRCHR: {
3133		/*
3134		 * We're going to iterate over the string looking for the
3135		 * specified character.  We will iterate until we have reached
3136		 * the string length or we have found the character.  If this
3137		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3138		 * of the specified character instead of the first.
3139		 */
3140		uintptr_t saddr = tupregs[0].dttk_value;
3141		uintptr_t addr = tupregs[0].dttk_value;
3142		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3143		char c, target = (char)tupregs[1].dttk_value;
3144
3145		for (regs[rd] = NULL; addr < limit; addr++) {
3146			if ((c = dtrace_load8(addr)) == target) {
3147				regs[rd] = addr;
3148
3149				if (subr == DIF_SUBR_STRCHR)
3150					break;
3151			}
3152
3153			if (c == '\0')
3154				break;
3155		}
3156
3157		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3158			regs[rd] = NULL;
3159			break;
3160		}
3161
3162		break;
3163	}
3164
3165	case DIF_SUBR_STRSTR:
3166	case DIF_SUBR_INDEX:
3167	case DIF_SUBR_RINDEX: {
3168		/*
3169		 * We're going to iterate over the string looking for the
3170		 * specified string.  We will iterate until we have reached
3171		 * the string length or we have found the string.  (Yes, this
3172		 * is done in the most naive way possible -- but considering
3173		 * that the string we're searching for is likely to be
3174		 * relatively short, the complexity of Rabin-Karp or similar
3175		 * hardly seems merited.)
3176		 */
3177		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3178		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3179		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3180		size_t len = dtrace_strlen(addr, size);
3181		size_t sublen = dtrace_strlen(substr, size);
3182		char *limit = addr + len, *orig = addr;
3183		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3184		int inc = 1;
3185
3186		regs[rd] = notfound;
3187
3188		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3189			regs[rd] = NULL;
3190			break;
3191		}
3192
3193		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3194		    vstate)) {
3195			regs[rd] = NULL;
3196			break;
3197		}
3198
3199		/*
3200		 * strstr() and index()/rindex() have similar semantics if
3201		 * both strings are the empty string: strstr() returns a
3202		 * pointer to the (empty) string, and index() and rindex()
3203		 * both return index 0 (regardless of any position argument).
3204		 */
3205		if (sublen == 0 && len == 0) {
3206			if (subr == DIF_SUBR_STRSTR)
3207				regs[rd] = (uintptr_t)addr;
3208			else
3209				regs[rd] = 0;
3210			break;
3211		}
3212
3213		if (subr != DIF_SUBR_STRSTR) {
3214			if (subr == DIF_SUBR_RINDEX) {
3215				limit = orig - 1;
3216				addr += len;
3217				inc = -1;
3218			}
3219
3220			/*
3221			 * Both index() and rindex() take an optional position
3222			 * argument that denotes the starting position.
3223			 */
3224			if (nargs == 3) {
3225				int64_t pos = (int64_t)tupregs[2].dttk_value;
3226
3227				/*
3228				 * If the position argument to index() is
3229				 * negative, Perl implicitly clamps it at
3230				 * zero.  This semantic is a little surprising
3231				 * given the special meaning of negative
3232				 * positions to similar Perl functions like
3233				 * substr(), but it appears to reflect a
3234				 * notion that index() can start from a
3235				 * negative index and increment its way up to
3236				 * the string.  Given this notion, Perl's
3237				 * rindex() is at least self-consistent in
3238				 * that it implicitly clamps positions greater
3239				 * than the string length to be the string
3240				 * length.  Where Perl completely loses
3241				 * coherence, however, is when the specified
3242				 * substring is the empty string ("").  In
3243				 * this case, even if the position is
3244				 * negative, rindex() returns 0 -- and even if
3245				 * the position is greater than the length,
3246				 * index() returns the string length.  These
3247				 * semantics violate the notion that index()
3248				 * should never return a value less than the
3249				 * specified position and that rindex() should
3250				 * never return a value greater than the
3251				 * specified position.  (One assumes that
3252				 * these semantics are artifacts of Perl's
3253				 * implementation and not the results of
3254				 * deliberate design -- it beggars belief that
3255				 * even Larry Wall could desire such oddness.)
3256				 * While in the abstract one would wish for
3257				 * consistent position semantics across
3258				 * substr(), index() and rindex() -- or at the
3259				 * very least self-consistent position
3260				 * semantics for index() and rindex() -- we
3261				 * instead opt to keep with the extant Perl
3262				 * semantics, in all their broken glory.  (Do
3263				 * we have more desire to maintain Perl's
3264				 * semantics than Perl does?  Probably.)
3265				 */
3266				if (subr == DIF_SUBR_RINDEX) {
3267					if (pos < 0) {
3268						if (sublen == 0)
3269							regs[rd] = 0;
3270						break;
3271					}
3272
3273					if (pos > len)
3274						pos = len;
3275				} else {
3276					if (pos < 0)
3277						pos = 0;
3278
3279					if (pos >= len) {
3280						if (sublen == 0)
3281							regs[rd] = len;
3282						break;
3283					}
3284				}
3285
3286				addr = orig + pos;
3287			}
3288		}
3289
3290		for (regs[rd] = notfound; addr != limit; addr += inc) {
3291			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3292				if (subr != DIF_SUBR_STRSTR) {
3293					/*
3294					 * As D index() and rindex() are
3295					 * modeled on Perl (and not on awk),
3296					 * we return a zero-based (and not a
3297					 * one-based) index.  (For you Perl
3298					 * weenies: no, we're not going to add
3299					 * $[ -- and shouldn't you be at a con
3300					 * or something?)
3301					 */
3302					regs[rd] = (uintptr_t)(addr - orig);
3303					break;
3304				}
3305
3306				ASSERT(subr == DIF_SUBR_STRSTR);
3307				regs[rd] = (uintptr_t)addr;
3308				break;
3309			}
3310		}
3311
3312		break;
3313	}
3314
3315	case DIF_SUBR_STRTOK: {
3316		uintptr_t addr = tupregs[0].dttk_value;
3317		uintptr_t tokaddr = tupregs[1].dttk_value;
3318		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3319		uintptr_t limit, toklimit = tokaddr + size;
3320		uint8_t c, tokmap[32];	 /* 256 / 8 */
3321		char *dest = (char *)mstate->dtms_scratch_ptr;
3322		int i;
3323
3324		/*
3325		 * Check both the token buffer and (later) the input buffer,
3326		 * since both could be non-scratch addresses.
3327		 */
3328		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3329			regs[rd] = NULL;
3330			break;
3331		}
3332
3333		if (mstate->dtms_scratch_ptr + size >
3334		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3335			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3336			regs[rd] = NULL;
3337			break;
3338		}
3339
3340		if (addr == NULL) {
3341			/*
3342			 * If the address specified is NULL, we use our saved
3343			 * strtok pointer from the mstate.  Note that this
3344			 * means that the saved strtok pointer is _only_
3345			 * valid within multiple enablings of the same probe --
3346			 * it behaves like an implicit clause-local variable.
3347			 */
3348			addr = mstate->dtms_strtok;
3349		} else {
3350			/*
3351			 * If the user-specified address is non-NULL we must
3352			 * access check it.  This is the only time we have
3353			 * a chance to do so, since this address may reside
3354			 * in the string table of this clause-- future calls
3355			 * (when we fetch addr from mstate->dtms_strtok)
3356			 * would fail this access check.
3357			 */
3358			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3359				regs[rd] = NULL;
3360				break;
3361			}
3362		}
3363
3364		/*
3365		 * First, zero the token map, and then process the token
3366		 * string -- setting a bit in the map for every character
3367		 * found in the token string.
3368		 */
3369		for (i = 0; i < sizeof (tokmap); i++)
3370			tokmap[i] = 0;
3371
3372		for (; tokaddr < toklimit; tokaddr++) {
3373			if ((c = dtrace_load8(tokaddr)) == '\0')
3374				break;
3375
3376			ASSERT((c >> 3) < sizeof (tokmap));
3377			tokmap[c >> 3] |= (1 << (c & 0x7));
3378		}
3379
3380		for (limit = addr + size; addr < limit; addr++) {
3381			/*
3382			 * We're looking for a character that is _not_ contained
3383			 * in the token string.
3384			 */
3385			if ((c = dtrace_load8(addr)) == '\0')
3386				break;
3387
3388			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3389				break;
3390		}
3391
3392		if (c == '\0') {
3393			/*
3394			 * We reached the end of the string without finding
3395			 * any character that was not in the token string.
3396			 * We return NULL in this case, and we set the saved
3397			 * address to NULL as well.
3398			 */
3399			regs[rd] = NULL;
3400			mstate->dtms_strtok = NULL;
3401			break;
3402		}
3403
3404		/*
3405		 * From here on, we're copying into the destination string.
3406		 */
3407		for (i = 0; addr < limit && i < size - 1; addr++) {
3408			if ((c = dtrace_load8(addr)) == '\0')
3409				break;
3410
3411			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3412				break;
3413
3414			ASSERT(i < size);
3415			dest[i++] = c;
3416		}
3417
3418		ASSERT(i < size);
3419		dest[i] = '\0';
3420		regs[rd] = (uintptr_t)dest;
3421		mstate->dtms_scratch_ptr += size;
3422		mstate->dtms_strtok = addr;
3423		break;
3424	}
3425
3426	case DIF_SUBR_SUBSTR: {
3427		uintptr_t s = tupregs[0].dttk_value;
3428		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3429		char *d = (char *)mstate->dtms_scratch_ptr;
3430		int64_t index = (int64_t)tupregs[1].dttk_value;
3431		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3432		size_t len = dtrace_strlen((char *)s, size);
3433		int64_t i = 0;
3434
3435		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3436			regs[rd] = NULL;
3437			break;
3438		}
3439
3440		if (nargs <= 2)
3441			remaining = (int64_t)size;
3442
3443		if (mstate->dtms_scratch_ptr + size >
3444		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3445			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3446			regs[rd] = NULL;
3447			break;
3448		}
3449
3450		if (index < 0) {
3451			index += len;
3452
3453			if (index < 0 && index + remaining > 0) {
3454				remaining += index;
3455				index = 0;
3456			}
3457		}
3458
3459		if (index >= len || index < 0)
3460			index = len;
3461
3462		for (d[0] = '\0'; remaining > 0; remaining--) {
3463			if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
3464				break;
3465
3466			if (i == size) {
3467				d[i - 1] = '\0';
3468				break;
3469			}
3470		}
3471
3472		mstate->dtms_scratch_ptr += size;
3473		regs[rd] = (uintptr_t)d;
3474		break;
3475	}
3476
3477	case DIF_SUBR_GETMAJOR:
3478#ifdef _LP64
3479		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3480#else
3481		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3482#endif
3483		break;
3484
3485	case DIF_SUBR_GETMINOR:
3486#ifdef _LP64
3487		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3488#else
3489		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3490#endif
3491		break;
3492
3493	case DIF_SUBR_DDI_PATHNAME: {
3494		/*
3495		 * This one is a galactic mess.  We are going to roughly
3496		 * emulate ddi_pathname(), but it's made more complicated
3497		 * by the fact that we (a) want to include the minor name and
3498		 * (b) must proceed iteratively instead of recursively.
3499		 */
3500		uintptr_t dest = mstate->dtms_scratch_ptr;
3501		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3502		char *start = (char *)dest, *end = start + size - 1;
3503		uintptr_t daddr = tupregs[0].dttk_value;
3504		int64_t minor = (int64_t)tupregs[1].dttk_value;
3505		char *s;
3506		int i, len, depth = 0;
3507
3508		/*
3509		 * Due to all the pointer jumping we do and context we must
3510		 * rely upon, we just mandate that the user must have kernel
3511		 * read privileges to use this routine.
3512		 */
3513		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3514			*flags |= CPU_DTRACE_KPRIV;
3515			*illval = daddr;
3516			regs[rd] = NULL;
3517		}
3518
3519		if (size == 0 || mstate->dtms_scratch_ptr + size >
3520		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3521			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3522			regs[rd] = NULL;
3523			break;
3524		}
3525
3526		*end = '\0';
3527
3528		/*
3529		 * We want to have a name for the minor.  In order to do this,
3530		 * we need to walk the minor list from the devinfo.  We want
3531		 * to be sure that we don't infinitely walk a circular list,
3532		 * so we check for circularity by sending a scout pointer
3533		 * ahead two elements for every element that we iterate over;
3534		 * if the list is circular, these will ultimately point to the
3535		 * same element.  You may recognize this little trick as the
3536		 * answer to a stupid interview question -- one that always
3537		 * seems to be asked by those who had to have it laboriously
3538		 * explained to them, and who can't even concisely describe
3539		 * the conditions under which one would be forced to resort to
3540		 * this technique.  Needless to say, those conditions are
3541		 * found here -- and probably only here.  Is this is the only
3542		 * use of this infamous trick in shipping, production code?
3543		 * If it isn't, it probably should be...
3544		 */
3545		if (minor != -1) {
3546			uintptr_t maddr = dtrace_loadptr(daddr +
3547			    offsetof(struct dev_info, devi_minor));
3548
3549			uintptr_t next = offsetof(struct ddi_minor_data, next);
3550			uintptr_t name = offsetof(struct ddi_minor_data,
3551			    d_minor) + offsetof(struct ddi_minor, name);
3552			uintptr_t dev = offsetof(struct ddi_minor_data,
3553			    d_minor) + offsetof(struct ddi_minor, dev);
3554			uintptr_t scout;
3555
3556			if (maddr != NULL)
3557				scout = dtrace_loadptr(maddr + next);
3558
3559			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3560				uint64_t m;
3561#ifdef _LP64
3562				m = dtrace_load64(maddr + dev) & MAXMIN64;
3563#else
3564				m = dtrace_load32(maddr + dev) & MAXMIN;
3565#endif
3566				if (m != minor) {
3567					maddr = dtrace_loadptr(maddr + next);
3568
3569					if (scout == NULL)
3570						continue;
3571
3572					scout = dtrace_loadptr(scout + next);
3573
3574					if (scout == NULL)
3575						continue;
3576
3577					scout = dtrace_loadptr(scout + next);
3578
3579					if (scout == NULL)
3580						continue;
3581
3582					if (scout == maddr) {
3583						*flags |= CPU_DTRACE_ILLOP;
3584						break;
3585					}
3586
3587					continue;
3588				}
3589
3590				/*
3591				 * We have the minor data.  Now we need to
3592				 * copy the minor's name into the end of the
3593				 * pathname.
3594				 */
3595				s = (char *)dtrace_loadptr(maddr + name);
3596				len = dtrace_strlen(s, size);
3597
3598				if (*flags & CPU_DTRACE_FAULT)
3599					break;
3600
3601				if (len != 0) {
3602					if ((end -= (len + 1)) < start)
3603						break;
3604
3605					*end = ':';
3606				}
3607
3608				for (i = 1; i <= len; i++)
3609					end[i] = dtrace_load8((uintptr_t)s++);
3610				break;
3611			}
3612		}
3613
3614		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3615			ddi_node_state_t devi_state;
3616
3617			devi_state = dtrace_load32(daddr +
3618			    offsetof(struct dev_info, devi_node_state));
3619
3620			if (*flags & CPU_DTRACE_FAULT)
3621				break;
3622
3623			if (devi_state >= DS_INITIALIZED) {
3624				s = (char *)dtrace_loadptr(daddr +
3625				    offsetof(struct dev_info, devi_addr));
3626				len = dtrace_strlen(s, size);
3627
3628				if (*flags & CPU_DTRACE_FAULT)
3629					break;
3630
3631				if (len != 0) {
3632					if ((end -= (len + 1)) < start)
3633						break;
3634
3635					*end = '@';
3636				}
3637
3638				for (i = 1; i <= len; i++)
3639					end[i] = dtrace_load8((uintptr_t)s++);
3640			}
3641
3642			/*
3643			 * Now for the node name...
3644			 */
3645			s = (char *)dtrace_loadptr(daddr +
3646			    offsetof(struct dev_info, devi_node_name));
3647
3648			daddr = dtrace_loadptr(daddr +
3649			    offsetof(struct dev_info, devi_parent));
3650
3651			/*
3652			 * If our parent is NULL (that is, if we're the root
3653			 * node), we're going to use the special path
3654			 * "devices".
3655			 */
3656			if (daddr == NULL)
3657				s = "devices";
3658
3659			len = dtrace_strlen(s, size);
3660			if (*flags & CPU_DTRACE_FAULT)
3661				break;
3662
3663			if ((end -= (len + 1)) < start)
3664				break;
3665
3666			for (i = 1; i <= len; i++)
3667				end[i] = dtrace_load8((uintptr_t)s++);
3668			*end = '/';
3669
3670			if (depth++ > dtrace_devdepth_max) {
3671				*flags |= CPU_DTRACE_ILLOP;
3672				break;
3673			}
3674		}
3675
3676		if (end < start)
3677			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3678
3679		if (daddr == NULL) {
3680			regs[rd] = (uintptr_t)end;
3681			mstate->dtms_scratch_ptr += size;
3682		}
3683
3684		break;
3685	}
3686
3687	case DIF_SUBR_STRJOIN: {
3688		char *d = (char *)mstate->dtms_scratch_ptr;
3689		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3690		uintptr_t s1 = tupregs[0].dttk_value;
3691		uintptr_t s2 = tupregs[1].dttk_value;
3692		int i = 0;
3693
3694		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
3695		    !dtrace_strcanload(s2, size, mstate, vstate)) {
3696			regs[rd] = NULL;
3697			break;
3698		}
3699
3700		if (mstate->dtms_scratch_ptr + size >
3701		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3702			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3703			regs[rd] = NULL;
3704			break;
3705		}
3706
3707		for (;;) {
3708			if (i >= size) {
3709				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3710				regs[rd] = NULL;
3711				break;
3712			}
3713
3714			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3715				i--;
3716				break;
3717			}
3718		}
3719
3720		for (;;) {
3721			if (i >= size) {
3722				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3723				regs[rd] = NULL;
3724				break;
3725			}
3726
3727			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3728				break;
3729		}
3730
3731		if (i < size) {
3732			mstate->dtms_scratch_ptr += i;
3733			regs[rd] = (uintptr_t)d;
3734		}
3735
3736		break;
3737	}
3738
3739	case DIF_SUBR_LLTOSTR: {
3740		int64_t i = (int64_t)tupregs[0].dttk_value;
3741		int64_t val = i < 0 ? i * -1 : i;
3742		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3743		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3744
3745		if (mstate->dtms_scratch_ptr + size >
3746		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3747			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3748			regs[rd] = NULL;
3749			break;
3750		}
3751
3752		for (*end-- = '\0'; val; val /= 10)
3753			*end-- = '0' + (val % 10);
3754
3755		if (i == 0)
3756			*end-- = '0';
3757
3758		if (i < 0)
3759			*end-- = '-';
3760
3761		regs[rd] = (uintptr_t)end + 1;
3762		mstate->dtms_scratch_ptr += size;
3763		break;
3764	}
3765
3766	case DIF_SUBR_HTONS:
3767	case DIF_SUBR_NTOHS:
3768#ifdef _BIG_ENDIAN
3769		regs[rd] = (uint16_t)tupregs[0].dttk_value;
3770#else
3771		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
3772#endif
3773		break;
3774
3775
3776	case DIF_SUBR_HTONL:
3777	case DIF_SUBR_NTOHL:
3778#ifdef _BIG_ENDIAN
3779		regs[rd] = (uint32_t)tupregs[0].dttk_value;
3780#else
3781		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
3782#endif
3783		break;
3784
3785
3786	case DIF_SUBR_HTONLL:
3787	case DIF_SUBR_NTOHLL:
3788#ifdef _BIG_ENDIAN
3789		regs[rd] = (uint64_t)tupregs[0].dttk_value;
3790#else
3791		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
3792#endif
3793		break;
3794
3795
3796	case DIF_SUBR_DIRNAME:
3797	case DIF_SUBR_BASENAME: {
3798		char *dest = (char *)mstate->dtms_scratch_ptr;
3799		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3800		uintptr_t src = tupregs[0].dttk_value;
3801		int i, j, len = dtrace_strlen((char *)src, size);
3802		int lastbase = -1, firstbase = -1, lastdir = -1;
3803		int start, end;
3804
3805		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
3806			regs[rd] = NULL;
3807			break;
3808		}
3809
3810		if (mstate->dtms_scratch_ptr + size >
3811		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3812			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3813			regs[rd] = NULL;
3814			break;
3815		}
3816
3817		/*
3818		 * The basename and dirname for a zero-length string is
3819		 * defined to be "."
3820		 */
3821		if (len == 0) {
3822			len = 1;
3823			src = (uintptr_t)".";
3824		}
3825
3826		/*
3827		 * Start from the back of the string, moving back toward the
3828		 * front until we see a character that isn't a slash.  That
3829		 * character is the last character in the basename.
3830		 */
3831		for (i = len - 1; i >= 0; i--) {
3832			if (dtrace_load8(src + i) != '/')
3833				break;
3834		}
3835
3836		if (i >= 0)
3837			lastbase = i;
3838
3839		/*
3840		 * Starting from the last character in the basename, move
3841		 * towards the front until we find a slash.  The character
3842		 * that we processed immediately before that is the first
3843		 * character in the basename.
3844		 */
3845		for (; i >= 0; i--) {
3846			if (dtrace_load8(src + i) == '/')
3847				break;
3848		}
3849
3850		if (i >= 0)
3851			firstbase = i + 1;
3852
3853		/*
3854		 * Now keep going until we find a non-slash character.  That
3855		 * character is the last character in the dirname.
3856		 */
3857		for (; i >= 0; i--) {
3858			if (dtrace_load8(src + i) != '/')
3859				break;
3860		}
3861
3862		if (i >= 0)
3863			lastdir = i;
3864
3865		ASSERT(!(lastbase == -1 && firstbase != -1));
3866		ASSERT(!(firstbase == -1 && lastdir != -1));
3867
3868		if (lastbase == -1) {
3869			/*
3870			 * We didn't find a non-slash character.  We know that
3871			 * the length is non-zero, so the whole string must be
3872			 * slashes.  In either the dirname or the basename
3873			 * case, we return '/'.
3874			 */
3875			ASSERT(firstbase == -1);
3876			firstbase = lastbase = lastdir = 0;
3877		}
3878
3879		if (firstbase == -1) {
3880			/*
3881			 * The entire string consists only of a basename
3882			 * component.  If we're looking for dirname, we need
3883			 * to change our string to be just "."; if we're
3884			 * looking for a basename, we'll just set the first
3885			 * character of the basename to be 0.
3886			 */
3887			if (subr == DIF_SUBR_DIRNAME) {
3888				ASSERT(lastdir == -1);
3889				src = (uintptr_t)".";
3890				lastdir = 0;
3891			} else {
3892				firstbase = 0;
3893			}
3894		}
3895
3896		if (subr == DIF_SUBR_DIRNAME) {
3897			if (lastdir == -1) {
3898				/*
3899				 * We know that we have a slash in the name --
3900				 * or lastdir would be set to 0, above.  And
3901				 * because lastdir is -1, we know that this
3902				 * slash must be the first character.  (That
3903				 * is, the full string must be of the form
3904				 * "/basename".)  In this case, the last
3905				 * character of the directory name is 0.
3906				 */
3907				lastdir = 0;
3908			}
3909
3910			start = 0;
3911			end = lastdir;
3912		} else {
3913			ASSERT(subr == DIF_SUBR_BASENAME);
3914			ASSERT(firstbase != -1 && lastbase != -1);
3915			start = firstbase;
3916			end = lastbase;
3917		}
3918
3919		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
3920			dest[j] = dtrace_load8(src + i);
3921
3922		dest[j] = '\0';
3923		regs[rd] = (uintptr_t)dest;
3924		mstate->dtms_scratch_ptr += size;
3925		break;
3926	}
3927
3928	case DIF_SUBR_CLEANPATH: {
3929		char *dest = (char *)mstate->dtms_scratch_ptr, c;
3930		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3931		uintptr_t src = tupregs[0].dttk_value;
3932		int i = 0, j = 0;
3933
3934		if (!dtrace_strcanload(src, size, mstate, vstate)) {
3935			regs[rd] = NULL;
3936			break;
3937		}
3938
3939		if (mstate->dtms_scratch_ptr + size >
3940		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3941			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3942			regs[rd] = NULL;
3943			break;
3944		}
3945
3946		/*
3947		 * Move forward, loading each character.
3948		 */
3949		do {
3950			c = dtrace_load8(src + i++);
3951next:
3952			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
3953				break;
3954
3955			if (c != '/') {
3956				dest[j++] = c;
3957				continue;
3958			}
3959
3960			c = dtrace_load8(src + i++);
3961
3962			if (c == '/') {
3963				/*
3964				 * We have two slashes -- we can just advance
3965				 * to the next character.
3966				 */
3967				goto next;
3968			}
3969
3970			if (c != '.') {
3971				/*
3972				 * This is not "." and it's not ".." -- we can
3973				 * just store the "/" and this character and
3974				 * drive on.
3975				 */
3976				dest[j++] = '/';
3977				dest[j++] = c;
3978				continue;
3979			}
3980
3981			c = dtrace_load8(src + i++);
3982
3983			if (c == '/') {
3984				/*
3985				 * This is a "/./" component.  We're not going
3986				 * to store anything in the destination buffer;
3987				 * we're just going to go to the next component.
3988				 */
3989				goto next;
3990			}
3991
3992			if (c != '.') {
3993				/*
3994				 * This is not ".." -- we can just store the
3995				 * "/." and this character and continue
3996				 * processing.
3997				 */
3998				dest[j++] = '/';
3999				dest[j++] = '.';
4000				dest[j++] = c;
4001				continue;
4002			}
4003
4004			c = dtrace_load8(src + i++);
4005
4006			if (c != '/' && c != '\0') {
4007				/*
4008				 * This is not ".." -- it's "..[mumble]".
4009				 * We'll store the "/.." and this character
4010				 * and continue processing.
4011				 */
4012				dest[j++] = '/';
4013				dest[j++] = '.';
4014				dest[j++] = '.';
4015				dest[j++] = c;
4016				continue;
4017			}
4018
4019			/*
4020			 * This is "/../" or "/..\0".  We need to back up
4021			 * our destination pointer until we find a "/".
4022			 */
4023			i--;
4024			while (j != 0 && dest[--j] != '/')
4025				continue;
4026
4027			if (c == '\0')
4028				dest[++j] = '/';
4029		} while (c != '\0');
4030
4031		dest[j] = '\0';
4032		regs[rd] = (uintptr_t)dest;
4033		mstate->dtms_scratch_ptr += size;
4034		break;
4035	}
4036	}
4037}
4038
4039/*
4040 * Emulate the execution of DTrace IR instructions specified by the given
4041 * DIF object.  This function is deliberately void of assertions as all of
4042 * the necessary checks are handled by a call to dtrace_difo_validate().
4043 */
4044static uint64_t
4045dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4046    dtrace_vstate_t *vstate, dtrace_state_t *state)
4047{
4048	const dif_instr_t *text = difo->dtdo_buf;
4049	const uint_t textlen = difo->dtdo_len;
4050	const char *strtab = difo->dtdo_strtab;
4051	const uint64_t *inttab = difo->dtdo_inttab;
4052
4053	uint64_t rval = 0;
4054	dtrace_statvar_t *svar;
4055	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4056	dtrace_difv_t *v;
4057	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4058	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4059
4060	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4061	uint64_t regs[DIF_DIR_NREGS];
4062	uint64_t *tmp;
4063
4064	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4065	int64_t cc_r;
4066	uint_t pc = 0, id, opc;
4067	uint8_t ttop = 0;
4068	dif_instr_t instr;
4069	uint_t r1, r2, rd;
4070
4071	/*
4072	 * We stash the current DIF object into the machine state: we need it
4073	 * for subsequent access checking.
4074	 */
4075	mstate->dtms_difo = difo;
4076
4077	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4078
4079	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4080		opc = pc;
4081
4082		instr = text[pc++];
4083		r1 = DIF_INSTR_R1(instr);
4084		r2 = DIF_INSTR_R2(instr);
4085		rd = DIF_INSTR_RD(instr);
4086
4087		switch (DIF_INSTR_OP(instr)) {
4088		case DIF_OP_OR:
4089			regs[rd] = regs[r1] | regs[r2];
4090			break;
4091		case DIF_OP_XOR:
4092			regs[rd] = regs[r1] ^ regs[r2];
4093			break;
4094		case DIF_OP_AND:
4095			regs[rd] = regs[r1] & regs[r2];
4096			break;
4097		case DIF_OP_SLL:
4098			regs[rd] = regs[r1] << regs[r2];
4099			break;
4100		case DIF_OP_SRL:
4101			regs[rd] = regs[r1] >> regs[r2];
4102			break;
4103		case DIF_OP_SUB:
4104			regs[rd] = regs[r1] - regs[r2];
4105			break;
4106		case DIF_OP_ADD:
4107			regs[rd] = regs[r1] + regs[r2];
4108			break;
4109		case DIF_OP_MUL:
4110			regs[rd] = regs[r1] * regs[r2];
4111			break;
4112		case DIF_OP_SDIV:
4113			if (regs[r2] == 0) {
4114				regs[rd] = 0;
4115				*flags |= CPU_DTRACE_DIVZERO;
4116			} else {
4117				regs[rd] = (int64_t)regs[r1] /
4118				    (int64_t)regs[r2];
4119			}
4120			break;
4121
4122		case DIF_OP_UDIV:
4123			if (regs[r2] == 0) {
4124				regs[rd] = 0;
4125				*flags |= CPU_DTRACE_DIVZERO;
4126			} else {
4127				regs[rd] = regs[r1] / regs[r2];
4128			}
4129			break;
4130
4131		case DIF_OP_SREM:
4132			if (regs[r2] == 0) {
4133				regs[rd] = 0;
4134				*flags |= CPU_DTRACE_DIVZERO;
4135			} else {
4136				regs[rd] = (int64_t)regs[r1] %
4137				    (int64_t)regs[r2];
4138			}
4139			break;
4140
4141		case DIF_OP_UREM:
4142			if (regs[r2] == 0) {
4143				regs[rd] = 0;
4144				*flags |= CPU_DTRACE_DIVZERO;
4145			} else {
4146				regs[rd] = regs[r1] % regs[r2];
4147			}
4148			break;
4149
4150		case DIF_OP_NOT:
4151			regs[rd] = ~regs[r1];
4152			break;
4153		case DIF_OP_MOV:
4154			regs[rd] = regs[r1];
4155			break;
4156		case DIF_OP_CMP:
4157			cc_r = regs[r1] - regs[r2];
4158			cc_n = cc_r < 0;
4159			cc_z = cc_r == 0;
4160			cc_v = 0;
4161			cc_c = regs[r1] < regs[r2];
4162			break;
4163		case DIF_OP_TST:
4164			cc_n = cc_v = cc_c = 0;
4165			cc_z = regs[r1] == 0;
4166			break;
4167		case DIF_OP_BA:
4168			pc = DIF_INSTR_LABEL(instr);
4169			break;
4170		case DIF_OP_BE:
4171			if (cc_z)
4172				pc = DIF_INSTR_LABEL(instr);
4173			break;
4174		case DIF_OP_BNE:
4175			if (cc_z == 0)
4176				pc = DIF_INSTR_LABEL(instr);
4177			break;
4178		case DIF_OP_BG:
4179			if ((cc_z | (cc_n ^ cc_v)) == 0)
4180				pc = DIF_INSTR_LABEL(instr);
4181			break;
4182		case DIF_OP_BGU:
4183			if ((cc_c | cc_z) == 0)
4184				pc = DIF_INSTR_LABEL(instr);
4185			break;
4186		case DIF_OP_BGE:
4187			if ((cc_n ^ cc_v) == 0)
4188				pc = DIF_INSTR_LABEL(instr);
4189			break;
4190		case DIF_OP_BGEU:
4191			if (cc_c == 0)
4192				pc = DIF_INSTR_LABEL(instr);
4193			break;
4194		case DIF_OP_BL:
4195			if (cc_n ^ cc_v)
4196				pc = DIF_INSTR_LABEL(instr);
4197			break;
4198		case DIF_OP_BLU:
4199			if (cc_c)
4200				pc = DIF_INSTR_LABEL(instr);
4201			break;
4202		case DIF_OP_BLE:
4203			if (cc_z | (cc_n ^ cc_v))
4204				pc = DIF_INSTR_LABEL(instr);
4205			break;
4206		case DIF_OP_BLEU:
4207			if (cc_c | cc_z)
4208				pc = DIF_INSTR_LABEL(instr);
4209			break;
4210		case DIF_OP_RLDSB:
4211			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4212				*flags |= CPU_DTRACE_KPRIV;
4213				*illval = regs[r1];
4214				break;
4215			}
4216			/*FALLTHROUGH*/
4217		case DIF_OP_LDSB:
4218			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4219			break;
4220		case DIF_OP_RLDSH:
4221			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4222				*flags |= CPU_DTRACE_KPRIV;
4223				*illval = regs[r1];
4224				break;
4225			}
4226			/*FALLTHROUGH*/
4227		case DIF_OP_LDSH:
4228			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4229			break;
4230		case DIF_OP_RLDSW:
4231			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4232				*flags |= CPU_DTRACE_KPRIV;
4233				*illval = regs[r1];
4234				break;
4235			}
4236			/*FALLTHROUGH*/
4237		case DIF_OP_LDSW:
4238			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4239			break;
4240		case DIF_OP_RLDUB:
4241			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4242				*flags |= CPU_DTRACE_KPRIV;
4243				*illval = regs[r1];
4244				break;
4245			}
4246			/*FALLTHROUGH*/
4247		case DIF_OP_LDUB:
4248			regs[rd] = dtrace_load8(regs[r1]);
4249			break;
4250		case DIF_OP_RLDUH:
4251			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4252				*flags |= CPU_DTRACE_KPRIV;
4253				*illval = regs[r1];
4254				break;
4255			}
4256			/*FALLTHROUGH*/
4257		case DIF_OP_LDUH:
4258			regs[rd] = dtrace_load16(regs[r1]);
4259			break;
4260		case DIF_OP_RLDUW:
4261			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4262				*flags |= CPU_DTRACE_KPRIV;
4263				*illval = regs[r1];
4264				break;
4265			}
4266			/*FALLTHROUGH*/
4267		case DIF_OP_LDUW:
4268			regs[rd] = dtrace_load32(regs[r1]);
4269			break;
4270		case DIF_OP_RLDX:
4271			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4272				*flags |= CPU_DTRACE_KPRIV;
4273				*illval = regs[r1];
4274				break;
4275			}
4276			/*FALLTHROUGH*/
4277		case DIF_OP_LDX:
4278			regs[rd] = dtrace_load64(regs[r1]);
4279			break;
4280		case DIF_OP_ULDSB:
4281			regs[rd] = (int8_t)
4282			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4283			break;
4284		case DIF_OP_ULDSH:
4285			regs[rd] = (int16_t)
4286			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4287			break;
4288		case DIF_OP_ULDSW:
4289			regs[rd] = (int32_t)
4290			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4291			break;
4292		case DIF_OP_ULDUB:
4293			regs[rd] =
4294			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4295			break;
4296		case DIF_OP_ULDUH:
4297			regs[rd] =
4298			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4299			break;
4300		case DIF_OP_ULDUW:
4301			regs[rd] =
4302			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4303			break;
4304		case DIF_OP_ULDX:
4305			regs[rd] =
4306			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
4307			break;
4308		case DIF_OP_RET:
4309			rval = regs[rd];
4310			break;
4311		case DIF_OP_NOP:
4312			break;
4313		case DIF_OP_SETX:
4314			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
4315			break;
4316		case DIF_OP_SETS:
4317			regs[rd] = (uint64_t)(uintptr_t)
4318			    (strtab + DIF_INSTR_STRING(instr));
4319			break;
4320		case DIF_OP_SCMP: {
4321			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
4322			uintptr_t s1 = regs[r1];
4323			uintptr_t s2 = regs[r2];
4324
4325			if (s1 != NULL &&
4326			    !dtrace_strcanload(s1, sz, mstate, vstate))
4327				break;
4328			if (s2 != NULL &&
4329			    !dtrace_strcanload(s2, sz, mstate, vstate))
4330				break;
4331
4332			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
4333
4334			cc_n = cc_r < 0;
4335			cc_z = cc_r == 0;
4336			cc_v = cc_c = 0;
4337			break;
4338		}
4339		case DIF_OP_LDGA:
4340			regs[rd] = dtrace_dif_variable(mstate, state,
4341			    r1, regs[r2]);
4342			break;
4343		case DIF_OP_LDGS:
4344			id = DIF_INSTR_VAR(instr);
4345
4346			if (id >= DIF_VAR_OTHER_UBASE) {
4347				uintptr_t a;
4348
4349				id -= DIF_VAR_OTHER_UBASE;
4350				svar = vstate->dtvs_globals[id];
4351				ASSERT(svar != NULL);
4352				v = &svar->dtsv_var;
4353
4354				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
4355					regs[rd] = svar->dtsv_data;
4356					break;
4357				}
4358
4359				a = (uintptr_t)svar->dtsv_data;
4360
4361				if (*(uint8_t *)a == UINT8_MAX) {
4362					/*
4363					 * If the 0th byte is set to UINT8_MAX
4364					 * then this is to be treated as a
4365					 * reference to a NULL variable.
4366					 */
4367					regs[rd] = NULL;
4368				} else {
4369					regs[rd] = a + sizeof (uint64_t);
4370				}
4371
4372				break;
4373			}
4374
4375			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
4376			break;
4377
4378		case DIF_OP_STGS:
4379			id = DIF_INSTR_VAR(instr);
4380
4381			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4382			id -= DIF_VAR_OTHER_UBASE;
4383
4384			svar = vstate->dtvs_globals[id];
4385			ASSERT(svar != NULL);
4386			v = &svar->dtsv_var;
4387
4388			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4389				uintptr_t a = (uintptr_t)svar->dtsv_data;
4390
4391				ASSERT(a != NULL);
4392				ASSERT(svar->dtsv_size != 0);
4393
4394				if (regs[rd] == NULL) {
4395					*(uint8_t *)a = UINT8_MAX;
4396					break;
4397				} else {
4398					*(uint8_t *)a = 0;
4399					a += sizeof (uint64_t);
4400				}
4401				if (!dtrace_vcanload(
4402				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4403				    mstate, vstate))
4404					break;
4405
4406				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4407				    (void *)a, &v->dtdv_type);
4408				break;
4409			}
4410
4411			svar->dtsv_data = regs[rd];
4412			break;
4413
4414		case DIF_OP_LDTA:
4415			/*
4416			 * There are no DTrace built-in thread-local arrays at
4417			 * present.  This opcode is saved for future work.
4418			 */
4419			*flags |= CPU_DTRACE_ILLOP;
4420			regs[rd] = 0;
4421			break;
4422
4423		case DIF_OP_LDLS:
4424			id = DIF_INSTR_VAR(instr);
4425
4426			if (id < DIF_VAR_OTHER_UBASE) {
4427				/*
4428				 * For now, this has no meaning.
4429				 */
4430				regs[rd] = 0;
4431				break;
4432			}
4433
4434			id -= DIF_VAR_OTHER_UBASE;
4435
4436			ASSERT(id < vstate->dtvs_nlocals);
4437			ASSERT(vstate->dtvs_locals != NULL);
4438
4439			svar = vstate->dtvs_locals[id];
4440			ASSERT(svar != NULL);
4441			v = &svar->dtsv_var;
4442
4443			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4444				uintptr_t a = (uintptr_t)svar->dtsv_data;
4445				size_t sz = v->dtdv_type.dtdt_size;
4446
4447				sz += sizeof (uint64_t);
4448				ASSERT(svar->dtsv_size == NCPU * sz);
4449				a += CPU->cpu_id * sz;
4450
4451				if (*(uint8_t *)a == UINT8_MAX) {
4452					/*
4453					 * If the 0th byte is set to UINT8_MAX
4454					 * then this is to be treated as a
4455					 * reference to a NULL variable.
4456					 */
4457					regs[rd] = NULL;
4458				} else {
4459					regs[rd] = a + sizeof (uint64_t);
4460				}
4461
4462				break;
4463			}
4464
4465			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4466			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4467			regs[rd] = tmp[CPU->cpu_id];
4468			break;
4469
4470		case DIF_OP_STLS:
4471			id = DIF_INSTR_VAR(instr);
4472
4473			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4474			id -= DIF_VAR_OTHER_UBASE;
4475			ASSERT(id < vstate->dtvs_nlocals);
4476
4477			ASSERT(vstate->dtvs_locals != NULL);
4478			svar = vstate->dtvs_locals[id];
4479			ASSERT(svar != NULL);
4480			v = &svar->dtsv_var;
4481
4482			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4483				uintptr_t a = (uintptr_t)svar->dtsv_data;
4484				size_t sz = v->dtdv_type.dtdt_size;
4485
4486				sz += sizeof (uint64_t);
4487				ASSERT(svar->dtsv_size == NCPU * sz);
4488				a += CPU->cpu_id * sz;
4489
4490				if (regs[rd] == NULL) {
4491					*(uint8_t *)a = UINT8_MAX;
4492					break;
4493				} else {
4494					*(uint8_t *)a = 0;
4495					a += sizeof (uint64_t);
4496				}
4497
4498				if (!dtrace_vcanload(
4499				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4500				    mstate, vstate))
4501					break;
4502
4503				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4504				    (void *)a, &v->dtdv_type);
4505				break;
4506			}
4507
4508			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4509			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4510			tmp[CPU->cpu_id] = regs[rd];
4511			break;
4512
4513		case DIF_OP_LDTS: {
4514			dtrace_dynvar_t *dvar;
4515			dtrace_key_t *key;
4516
4517			id = DIF_INSTR_VAR(instr);
4518			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4519			id -= DIF_VAR_OTHER_UBASE;
4520			v = &vstate->dtvs_tlocals[id];
4521
4522			key = &tupregs[DIF_DTR_NREGS];
4523			key[0].dttk_value = (uint64_t)id;
4524			key[0].dttk_size = 0;
4525			DTRACE_TLS_THRKEY(key[1].dttk_value);
4526			key[1].dttk_size = 0;
4527
4528			dvar = dtrace_dynvar(dstate, 2, key,
4529			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
4530			    mstate, vstate);
4531
4532			if (dvar == NULL) {
4533				regs[rd] = 0;
4534				break;
4535			}
4536
4537			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4538				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4539			} else {
4540				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4541			}
4542
4543			break;
4544		}
4545
4546		case DIF_OP_STTS: {
4547			dtrace_dynvar_t *dvar;
4548			dtrace_key_t *key;
4549
4550			id = DIF_INSTR_VAR(instr);
4551			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4552			id -= DIF_VAR_OTHER_UBASE;
4553
4554			key = &tupregs[DIF_DTR_NREGS];
4555			key[0].dttk_value = (uint64_t)id;
4556			key[0].dttk_size = 0;
4557			DTRACE_TLS_THRKEY(key[1].dttk_value);
4558			key[1].dttk_size = 0;
4559			v = &vstate->dtvs_tlocals[id];
4560
4561			dvar = dtrace_dynvar(dstate, 2, key,
4562			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4563			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4564			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4565			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
4566
4567			/*
4568			 * Given that we're storing to thread-local data,
4569			 * we need to flush our predicate cache.
4570			 */
4571			curthread->t_predcache = NULL;
4572
4573			if (dvar == NULL)
4574				break;
4575
4576			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4577				if (!dtrace_vcanload(
4578				    (void *)(uintptr_t)regs[rd],
4579				    &v->dtdv_type, mstate, vstate))
4580					break;
4581
4582				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4583				    dvar->dtdv_data, &v->dtdv_type);
4584			} else {
4585				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4586			}
4587
4588			break;
4589		}
4590
4591		case DIF_OP_SRA:
4592			regs[rd] = (int64_t)regs[r1] >> regs[r2];
4593			break;
4594
4595		case DIF_OP_CALL:
4596			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
4597			    regs, tupregs, ttop, mstate, state);
4598			break;
4599
4600		case DIF_OP_PUSHTR:
4601			if (ttop == DIF_DTR_NREGS) {
4602				*flags |= CPU_DTRACE_TUPOFLOW;
4603				break;
4604			}
4605
4606			if (r1 == DIF_TYPE_STRING) {
4607				/*
4608				 * If this is a string type and the size is 0,
4609				 * we'll use the system-wide default string
4610				 * size.  Note that we are _not_ looking at
4611				 * the value of the DTRACEOPT_STRSIZE option;
4612				 * had this been set, we would expect to have
4613				 * a non-zero size value in the "pushtr".
4614				 */
4615				tupregs[ttop].dttk_size =
4616				    dtrace_strlen((char *)(uintptr_t)regs[rd],
4617				    regs[r2] ? regs[r2] :
4618				    dtrace_strsize_default) + 1;
4619			} else {
4620				tupregs[ttop].dttk_size = regs[r2];
4621			}
4622
4623			tupregs[ttop++].dttk_value = regs[rd];
4624			break;
4625
4626		case DIF_OP_PUSHTV:
4627			if (ttop == DIF_DTR_NREGS) {
4628				*flags |= CPU_DTRACE_TUPOFLOW;
4629				break;
4630			}
4631
4632			tupregs[ttop].dttk_value = regs[rd];
4633			tupregs[ttop++].dttk_size = 0;
4634			break;
4635
4636		case DIF_OP_POPTS:
4637			if (ttop != 0)
4638				ttop--;
4639			break;
4640
4641		case DIF_OP_FLUSHTS:
4642			ttop = 0;
4643			break;
4644
4645		case DIF_OP_LDGAA:
4646		case DIF_OP_LDTAA: {
4647			dtrace_dynvar_t *dvar;
4648			dtrace_key_t *key = tupregs;
4649			uint_t nkeys = ttop;
4650
4651			id = DIF_INSTR_VAR(instr);
4652			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4653			id -= DIF_VAR_OTHER_UBASE;
4654
4655			key[nkeys].dttk_value = (uint64_t)id;
4656			key[nkeys++].dttk_size = 0;
4657
4658			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
4659				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4660				key[nkeys++].dttk_size = 0;
4661				v = &vstate->dtvs_tlocals[id];
4662			} else {
4663				v = &vstate->dtvs_globals[id]->dtsv_var;
4664			}
4665
4666			dvar = dtrace_dynvar(dstate, nkeys, key,
4667			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4668			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4669			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
4670
4671			if (dvar == NULL) {
4672				regs[rd] = 0;
4673				break;
4674			}
4675
4676			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4677				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4678			} else {
4679				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4680			}
4681
4682			break;
4683		}
4684
4685		case DIF_OP_STGAA:
4686		case DIF_OP_STTAA: {
4687			dtrace_dynvar_t *dvar;
4688			dtrace_key_t *key = tupregs;
4689			uint_t nkeys = ttop;
4690
4691			id = DIF_INSTR_VAR(instr);
4692			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4693			id -= DIF_VAR_OTHER_UBASE;
4694
4695			key[nkeys].dttk_value = (uint64_t)id;
4696			key[nkeys++].dttk_size = 0;
4697
4698			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
4699				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4700				key[nkeys++].dttk_size = 0;
4701				v = &vstate->dtvs_tlocals[id];
4702			} else {
4703				v = &vstate->dtvs_globals[id]->dtsv_var;
4704			}
4705
4706			dvar = dtrace_dynvar(dstate, nkeys, key,
4707			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4708			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4709			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4710			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
4711
4712			if (dvar == NULL)
4713				break;
4714
4715			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4716				if (!dtrace_vcanload(
4717				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4718				    mstate, vstate))
4719					break;
4720
4721				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4722				    dvar->dtdv_data, &v->dtdv_type);
4723			} else {
4724				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4725			}
4726
4727			break;
4728		}
4729
4730		case DIF_OP_ALLOCS: {
4731			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4732			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
4733
4734			if (mstate->dtms_scratch_ptr + size >
4735			    mstate->dtms_scratch_base +
4736			    mstate->dtms_scratch_size) {
4737				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4738				regs[rd] = NULL;
4739			} else {
4740				dtrace_bzero((void *)
4741				    mstate->dtms_scratch_ptr, size);
4742				mstate->dtms_scratch_ptr += size;
4743				regs[rd] = ptr;
4744			}
4745			break;
4746		}
4747
4748		case DIF_OP_COPYS:
4749			if (!dtrace_canstore(regs[rd], regs[r2],
4750			    mstate, vstate)) {
4751				*flags |= CPU_DTRACE_BADADDR;
4752				*illval = regs[rd];
4753				break;
4754			}
4755
4756			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
4757				break;
4758
4759			dtrace_bcopy((void *)(uintptr_t)regs[r1],
4760			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
4761			break;
4762
4763		case DIF_OP_STB:
4764			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
4765				*flags |= CPU_DTRACE_BADADDR;
4766				*illval = regs[rd];
4767				break;
4768			}
4769			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
4770			break;
4771
4772		case DIF_OP_STH:
4773			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
4774				*flags |= CPU_DTRACE_BADADDR;
4775				*illval = regs[rd];
4776				break;
4777			}
4778			if (regs[rd] & 1) {
4779				*flags |= CPU_DTRACE_BADALIGN;
4780				*illval = regs[rd];
4781				break;
4782			}
4783			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
4784			break;
4785
4786		case DIF_OP_STW:
4787			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
4788				*flags |= CPU_DTRACE_BADADDR;
4789				*illval = regs[rd];
4790				break;
4791			}
4792			if (regs[rd] & 3) {
4793				*flags |= CPU_DTRACE_BADALIGN;
4794				*illval = regs[rd];
4795				break;
4796			}
4797			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
4798			break;
4799
4800		case DIF_OP_STX:
4801			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
4802				*flags |= CPU_DTRACE_BADADDR;
4803				*illval = regs[rd];
4804				break;
4805			}
4806			if (regs[rd] & 7) {
4807				*flags |= CPU_DTRACE_BADALIGN;
4808				*illval = regs[rd];
4809				break;
4810			}
4811			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
4812			break;
4813		}
4814	}
4815
4816	if (!(*flags & CPU_DTRACE_FAULT))
4817		return (rval);
4818
4819	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
4820	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
4821
4822	return (0);
4823}
4824
4825static void
4826dtrace_action_breakpoint(dtrace_ecb_t *ecb)
4827{
4828	dtrace_probe_t *probe = ecb->dte_probe;
4829	dtrace_provider_t *prov = probe->dtpr_provider;
4830	char c[DTRACE_FULLNAMELEN + 80], *str;
4831	char *msg = "dtrace: breakpoint action at probe ";
4832	char *ecbmsg = " (ecb ";
4833	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
4834	uintptr_t val = (uintptr_t)ecb;
4835	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
4836
4837	if (dtrace_destructive_disallow)
4838		return;
4839
4840	/*
4841	 * It's impossible to be taking action on the NULL probe.
4842	 */
4843	ASSERT(probe != NULL);
4844
4845	/*
4846	 * This is a poor man's (destitute man's?) sprintf():  we want to
4847	 * print the provider name, module name, function name and name of
4848	 * the probe, along with the hex address of the ECB with the breakpoint
4849	 * action -- all of which we must place in the character buffer by
4850	 * hand.
4851	 */
4852	while (*msg != '\0')
4853		c[i++] = *msg++;
4854
4855	for (str = prov->dtpv_name; *str != '\0'; str++)
4856		c[i++] = *str;
4857	c[i++] = ':';
4858
4859	for (str = probe->dtpr_mod; *str != '\0'; str++)
4860		c[i++] = *str;
4861	c[i++] = ':';
4862
4863	for (str = probe->dtpr_func; *str != '\0'; str++)
4864		c[i++] = *str;
4865	c[i++] = ':';
4866
4867	for (str = probe->dtpr_name; *str != '\0'; str++)
4868		c[i++] = *str;
4869
4870	while (*ecbmsg != '\0')
4871		c[i++] = *ecbmsg++;
4872
4873	while (shift >= 0) {
4874		mask = (uintptr_t)0xf << shift;
4875
4876		if (val >= ((uintptr_t)1 << shift))
4877			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
4878		shift -= 4;
4879	}
4880
4881	c[i++] = ')';
4882	c[i] = '\0';
4883
4884	debug_enter(c);
4885}
4886
4887static void
4888dtrace_action_panic(dtrace_ecb_t *ecb)
4889{
4890	dtrace_probe_t *probe = ecb->dte_probe;
4891
4892	/*
4893	 * It's impossible to be taking action on the NULL probe.
4894	 */
4895	ASSERT(probe != NULL);
4896
4897	if (dtrace_destructive_disallow)
4898		return;
4899
4900	if (dtrace_panicked != NULL)
4901		return;
4902
4903	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
4904		return;
4905
4906	/*
4907	 * We won the right to panic.  (We want to be sure that only one
4908	 * thread calls panic() from dtrace_probe(), and that panic() is
4909	 * called exactly once.)
4910	 */
4911	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
4912	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
4913	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
4914}
4915
4916static void
4917dtrace_action_raise(uint64_t sig)
4918{
4919	if (dtrace_destructive_disallow)
4920		return;
4921
4922	if (sig >= NSIG) {
4923		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4924		return;
4925	}
4926
4927	/*
4928	 * raise() has a queue depth of 1 -- we ignore all subsequent
4929	 * invocations of the raise() action.
4930	 */
4931	if (curthread->t_dtrace_sig == 0)
4932		curthread->t_dtrace_sig = (uint8_t)sig;
4933
4934	curthread->t_sig_check = 1;
4935	aston(curthread);
4936}
4937
4938static void
4939dtrace_action_stop(void)
4940{
4941	if (dtrace_destructive_disallow)
4942		return;
4943
4944	if (!curthread->t_dtrace_stop) {
4945		curthread->t_dtrace_stop = 1;
4946		curthread->t_sig_check = 1;
4947		aston(curthread);
4948	}
4949}
4950
4951static void
4952dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
4953{
4954	hrtime_t now;
4955	volatile uint16_t *flags;
4956	cpu_t *cpu = CPU;
4957
4958	if (dtrace_destructive_disallow)
4959		return;
4960
4961	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
4962
4963	now = dtrace_gethrtime();
4964
4965	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
4966		/*
4967		 * We need to advance the mark to the current time.
4968		 */
4969		cpu->cpu_dtrace_chillmark = now;
4970		cpu->cpu_dtrace_chilled = 0;
4971	}
4972
4973	/*
4974	 * Now check to see if the requested chill time would take us over
4975	 * the maximum amount of time allowed in the chill interval.  (Or
4976	 * worse, if the calculation itself induces overflow.)
4977	 */
4978	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
4979	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
4980		*flags |= CPU_DTRACE_ILLOP;
4981		return;
4982	}
4983
4984	while (dtrace_gethrtime() - now < val)
4985		continue;
4986
4987	/*
4988	 * Normally, we assure that the value of the variable "timestamp" does
4989	 * not change within an ECB.  The presence of chill() represents an
4990	 * exception to this rule, however.
4991	 */
4992	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
4993	cpu->cpu_dtrace_chilled += val;
4994}
4995
4996static void
4997dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
4998    uint64_t *buf, uint64_t arg)
4999{
5000	int nframes = DTRACE_USTACK_NFRAMES(arg);
5001	int strsize = DTRACE_USTACK_STRSIZE(arg);
5002	uint64_t *pcs = &buf[1], *fps;
5003	char *str = (char *)&pcs[nframes];
5004	int size, offs = 0, i, j;
5005	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5006	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5007	char *sym;
5008
5009	/*
5010	 * Should be taking a faster path if string space has not been
5011	 * allocated.
5012	 */
5013	ASSERT(strsize != 0);
5014
5015	/*
5016	 * We will first allocate some temporary space for the frame pointers.
5017	 */
5018	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5019	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5020	    (nframes * sizeof (uint64_t));
5021
5022	if (mstate->dtms_scratch_ptr + size >
5023	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
5024		/*
5025		 * Not enough room for our frame pointers -- need to indicate
5026		 * that we ran out of scratch space.
5027		 */
5028		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5029		return;
5030	}
5031
5032	mstate->dtms_scratch_ptr += size;
5033	saved = mstate->dtms_scratch_ptr;
5034
5035	/*
5036	 * Now get a stack with both program counters and frame pointers.
5037	 */
5038	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5039	dtrace_getufpstack(buf, fps, nframes + 1);
5040	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5041
5042	/*
5043	 * If that faulted, we're cooked.
5044	 */
5045	if (*flags & CPU_DTRACE_FAULT)
5046		goto out;
5047
5048	/*
5049	 * Now we want to walk up the stack, calling the USTACK helper.  For
5050	 * each iteration, we restore the scratch pointer.
5051	 */
5052	for (i = 0; i < nframes; i++) {
5053		mstate->dtms_scratch_ptr = saved;
5054
5055		if (offs >= strsize)
5056			break;
5057
5058		sym = (char *)(uintptr_t)dtrace_helper(
5059		    DTRACE_HELPER_ACTION_USTACK,
5060		    mstate, state, pcs[i], fps[i]);
5061
5062		/*
5063		 * If we faulted while running the helper, we're going to
5064		 * clear the fault and null out the corresponding string.
5065		 */
5066		if (*flags & CPU_DTRACE_FAULT) {
5067			*flags &= ~CPU_DTRACE_FAULT;
5068			str[offs++] = '\0';
5069			continue;
5070		}
5071
5072		if (sym == NULL) {
5073			str[offs++] = '\0';
5074			continue;
5075		}
5076
5077		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5078
5079		/*
5080		 * Now copy in the string that the helper returned to us.
5081		 */
5082		for (j = 0; offs + j < strsize; j++) {
5083			if ((str[offs + j] = sym[j]) == '\0')
5084				break;
5085		}
5086
5087		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5088
5089		offs += j + 1;
5090	}
5091
5092	if (offs >= strsize) {
5093		/*
5094		 * If we didn't have room for all of the strings, we don't
5095		 * abort processing -- this needn't be a fatal error -- but we
5096		 * still want to increment a counter (dts_stkstroverflows) to
5097		 * allow this condition to be warned about.  (If this is from
5098		 * a jstack() action, it is easily tuned via jstackstrsize.)
5099		 */
5100		dtrace_error(&state->dts_stkstroverflows);
5101	}
5102
5103	while (offs < strsize)
5104		str[offs++] = '\0';
5105
5106out:
5107	mstate->dtms_scratch_ptr = old;
5108}
5109
5110/*
5111 * If you're looking for the epicenter of DTrace, you just found it.  This
5112 * is the function called by the provider to fire a probe -- from which all
5113 * subsequent probe-context DTrace activity emanates.
5114 */
5115void
5116dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5117    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5118{
5119	processorid_t cpuid;
5120	dtrace_icookie_t cookie;
5121	dtrace_probe_t *probe;
5122	dtrace_mstate_t mstate;
5123	dtrace_ecb_t *ecb;
5124	dtrace_action_t *act;
5125	intptr_t offs;
5126	size_t size;
5127	int vtime, onintr;
5128	volatile uint16_t *flags;
5129	hrtime_t now;
5130
5131	/*
5132	 * Kick out immediately if this CPU is still being born (in which case
5133	 * curthread will be set to -1)
5134	 */
5135	if ((uintptr_t)curthread & 1)
5136		return;
5137
5138	cookie = dtrace_interrupt_disable();
5139	probe = dtrace_probes[id - 1];
5140	cpuid = CPU->cpu_id;
5141	onintr = CPU_ON_INTR(CPU);
5142
5143	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5144	    probe->dtpr_predcache == curthread->t_predcache) {
5145		/*
5146		 * We have hit in the predicate cache; we know that
5147		 * this predicate would evaluate to be false.
5148		 */
5149		dtrace_interrupt_enable(cookie);
5150		return;
5151	}
5152
5153	if (panic_quiesce) {
5154		/*
5155		 * We don't trace anything if we're panicking.
5156		 */
5157		dtrace_interrupt_enable(cookie);
5158		return;
5159	}
5160
5161	now = dtrace_gethrtime();
5162	vtime = dtrace_vtime_references != 0;
5163
5164	if (vtime && curthread->t_dtrace_start)
5165		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5166
5167	mstate.dtms_difo = NULL;
5168	mstate.dtms_probe = probe;
5169	mstate.dtms_strtok = NULL;
5170	mstate.dtms_arg[0] = arg0;
5171	mstate.dtms_arg[1] = arg1;
5172	mstate.dtms_arg[2] = arg2;
5173	mstate.dtms_arg[3] = arg3;
5174	mstate.dtms_arg[4] = arg4;
5175
5176	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5177
5178	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5179		dtrace_predicate_t *pred = ecb->dte_predicate;
5180		dtrace_state_t *state = ecb->dte_state;
5181		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5182		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5183		dtrace_vstate_t *vstate = &state->dts_vstate;
5184		dtrace_provider_t *prov = probe->dtpr_provider;
5185		int committed = 0;
5186		caddr_t tomax;
5187
5188		/*
5189		 * A little subtlety with the following (seemingly innocuous)
5190		 * declaration of the automatic 'val':  by looking at the
5191		 * code, you might think that it could be declared in the
5192		 * action processing loop, below.  (That is, it's only used in
5193		 * the action processing loop.)  However, it must be declared
5194		 * out of that scope because in the case of DIF expression
5195		 * arguments to aggregating actions, one iteration of the
5196		 * action loop will use the last iteration's value.
5197		 */
5198#ifdef lint
5199		uint64_t val = 0;
5200#else
5201		uint64_t val;
5202#endif
5203
5204		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5205		*flags &= ~CPU_DTRACE_ERROR;
5206
5207		if (prov == dtrace_provider) {
5208			/*
5209			 * If dtrace itself is the provider of this probe,
5210			 * we're only going to continue processing the ECB if
5211			 * arg0 (the dtrace_state_t) is equal to the ECB's
5212			 * creating state.  (This prevents disjoint consumers
5213			 * from seeing one another's metaprobes.)
5214			 */
5215			if (arg0 != (uint64_t)(uintptr_t)state)
5216				continue;
5217		}
5218
5219		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5220			/*
5221			 * We're not currently active.  If our provider isn't
5222			 * the dtrace pseudo provider, we're not interested.
5223			 */
5224			if (prov != dtrace_provider)
5225				continue;
5226
5227			/*
5228			 * Now we must further check if we are in the BEGIN
5229			 * probe.  If we are, we will only continue processing
5230			 * if we're still in WARMUP -- if one BEGIN enabling
5231			 * has invoked the exit() action, we don't want to
5232			 * evaluate subsequent BEGIN enablings.
5233			 */
5234			if (probe->dtpr_id == dtrace_probeid_begin &&
5235			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5236				ASSERT(state->dts_activity ==
5237				    DTRACE_ACTIVITY_DRAINING);
5238				continue;
5239			}
5240		}
5241
5242		if (ecb->dte_cond) {
5243			/*
5244			 * If the dte_cond bits indicate that this
5245			 * consumer is only allowed to see user-mode firings
5246			 * of this probe, call the provider's dtps_usermode()
5247			 * entry point to check that the probe was fired
5248			 * while in a user context. Skip this ECB if that's
5249			 * not the case.
5250			 */
5251			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5252			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5253			    probe->dtpr_id, probe->dtpr_arg) == 0)
5254				continue;
5255
5256			/*
5257			 * This is more subtle than it looks. We have to be
5258			 * absolutely certain that CRED() isn't going to
5259			 * change out from under us so it's only legit to
5260			 * examine that structure if we're in constrained
5261			 * situations. Currently, the only times we'll this
5262			 * check is if a non-super-user has enabled the
5263			 * profile or syscall providers -- providers that
5264			 * allow visibility of all processes. For the
5265			 * profile case, the check above will ensure that
5266			 * we're examining a user context.
5267			 */
5268			if (ecb->dte_cond & DTRACE_COND_OWNER) {
5269				cred_t *cr;
5270				cred_t *s_cr =
5271				    ecb->dte_state->dts_cred.dcr_cred;
5272				proc_t *proc;
5273
5274				ASSERT(s_cr != NULL);
5275
5276				if ((cr = CRED()) == NULL ||
5277				    s_cr->cr_uid != cr->cr_uid ||
5278				    s_cr->cr_uid != cr->cr_ruid ||
5279				    s_cr->cr_uid != cr->cr_suid ||
5280				    s_cr->cr_gid != cr->cr_gid ||
5281				    s_cr->cr_gid != cr->cr_rgid ||
5282				    s_cr->cr_gid != cr->cr_sgid ||
5283				    (proc = ttoproc(curthread)) == NULL ||
5284				    (proc->p_flag & SNOCD))
5285					continue;
5286			}
5287
5288			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
5289				cred_t *cr;
5290				cred_t *s_cr =
5291				    ecb->dte_state->dts_cred.dcr_cred;
5292
5293				ASSERT(s_cr != NULL);
5294
5295				if ((cr = CRED()) == NULL ||
5296				    s_cr->cr_zone->zone_id !=
5297				    cr->cr_zone->zone_id)
5298					continue;
5299			}
5300		}
5301
5302		if (now - state->dts_alive > dtrace_deadman_timeout) {
5303			/*
5304			 * We seem to be dead.  Unless we (a) have kernel
5305			 * destructive permissions (b) have expicitly enabled
5306			 * destructive actions and (c) destructive actions have
5307			 * not been disabled, we're going to transition into
5308			 * the KILLED state, from which no further processing
5309			 * on this state will be performed.
5310			 */
5311			if (!dtrace_priv_kernel_destructive(state) ||
5312			    !state->dts_cred.dcr_destructive ||
5313			    dtrace_destructive_disallow) {
5314				void *activity = &state->dts_activity;
5315				dtrace_activity_t current;
5316
5317				do {
5318					current = state->dts_activity;
5319				} while (dtrace_cas32(activity, current,
5320				    DTRACE_ACTIVITY_KILLED) != current);
5321
5322				continue;
5323			}
5324		}
5325
5326		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
5327		    ecb->dte_alignment, state, &mstate)) < 0)
5328			continue;
5329
5330		tomax = buf->dtb_tomax;
5331		ASSERT(tomax != NULL);
5332
5333		if (ecb->dte_size != 0)
5334			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
5335
5336		mstate.dtms_epid = ecb->dte_epid;
5337		mstate.dtms_present |= DTRACE_MSTATE_EPID;
5338
5339		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
5340			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
5341		else
5342			mstate.dtms_access = 0;
5343
5344		if (pred != NULL) {
5345			dtrace_difo_t *dp = pred->dtp_difo;
5346			int rval;
5347
5348			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
5349
5350			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
5351				dtrace_cacheid_t cid = probe->dtpr_predcache;
5352
5353				if (cid != DTRACE_CACHEIDNONE && !onintr) {
5354					/*
5355					 * Update the predicate cache...
5356					 */
5357					ASSERT(cid == pred->dtp_cacheid);
5358					curthread->t_predcache = cid;
5359				}
5360
5361				continue;
5362			}
5363		}
5364
5365		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
5366		    act != NULL; act = act->dta_next) {
5367			size_t valoffs;
5368			dtrace_difo_t *dp;
5369			dtrace_recdesc_t *rec = &act->dta_rec;
5370
5371			size = rec->dtrd_size;
5372			valoffs = offs + rec->dtrd_offset;
5373
5374			if (DTRACEACT_ISAGG(act->dta_kind)) {
5375				uint64_t v = 0xbad;
5376				dtrace_aggregation_t *agg;
5377
5378				agg = (dtrace_aggregation_t *)act;
5379
5380				if ((dp = act->dta_difo) != NULL)
5381					v = dtrace_dif_emulate(dp,
5382					    &mstate, vstate, state);
5383
5384				if (*flags & CPU_DTRACE_ERROR)
5385					continue;
5386
5387				/*
5388				 * Note that we always pass the expression
5389				 * value from the previous iteration of the
5390				 * action loop.  This value will only be used
5391				 * if there is an expression argument to the
5392				 * aggregating action, denoted by the
5393				 * dtag_hasarg field.
5394				 */
5395				dtrace_aggregate(agg, buf,
5396				    offs, aggbuf, v, val);
5397				continue;
5398			}
5399
5400			switch (act->dta_kind) {
5401			case DTRACEACT_STOP:
5402				if (dtrace_priv_proc_destructive(state))
5403					dtrace_action_stop();
5404				continue;
5405
5406			case DTRACEACT_BREAKPOINT:
5407				if (dtrace_priv_kernel_destructive(state))
5408					dtrace_action_breakpoint(ecb);
5409				continue;
5410
5411			case DTRACEACT_PANIC:
5412				if (dtrace_priv_kernel_destructive(state))
5413					dtrace_action_panic(ecb);
5414				continue;
5415
5416			case DTRACEACT_STACK:
5417				if (!dtrace_priv_kernel(state))
5418					continue;
5419
5420				dtrace_getpcstack((pc_t *)(tomax + valoffs),
5421				    size / sizeof (pc_t), probe->dtpr_aframes,
5422				    DTRACE_ANCHORED(probe) ? NULL :
5423				    (uint32_t *)arg0);
5424
5425				continue;
5426
5427			case DTRACEACT_JSTACK:
5428			case DTRACEACT_USTACK:
5429				if (!dtrace_priv_proc(state))
5430					continue;
5431
5432				/*
5433				 * See comment in DIF_VAR_PID.
5434				 */
5435				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
5436				    CPU_ON_INTR(CPU)) {
5437					int depth = DTRACE_USTACK_NFRAMES(
5438					    rec->dtrd_arg) + 1;
5439
5440					dtrace_bzero((void *)(tomax + valoffs),
5441					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
5442					    + depth * sizeof (uint64_t));
5443
5444					continue;
5445				}
5446
5447				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
5448				    curproc->p_dtrace_helpers != NULL) {
5449					/*
5450					 * This is the slow path -- we have
5451					 * allocated string space, and we're
5452					 * getting the stack of a process that
5453					 * has helpers.  Call into a separate
5454					 * routine to perform this processing.
5455					 */
5456					dtrace_action_ustack(&mstate, state,
5457					    (uint64_t *)(tomax + valoffs),
5458					    rec->dtrd_arg);
5459					continue;
5460				}
5461
5462				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5463				dtrace_getupcstack((uint64_t *)
5464				    (tomax + valoffs),
5465				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
5466				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5467				continue;
5468
5469			default:
5470				break;
5471			}
5472
5473			dp = act->dta_difo;
5474			ASSERT(dp != NULL);
5475
5476			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
5477
5478			if (*flags & CPU_DTRACE_ERROR)
5479				continue;
5480
5481			switch (act->dta_kind) {
5482			case DTRACEACT_SPECULATE:
5483				ASSERT(buf == &state->dts_buffer[cpuid]);
5484				buf = dtrace_speculation_buffer(state,
5485				    cpuid, val);
5486
5487				if (buf == NULL) {
5488					*flags |= CPU_DTRACE_DROP;
5489					continue;
5490				}
5491
5492				offs = dtrace_buffer_reserve(buf,
5493				    ecb->dte_needed, ecb->dte_alignment,
5494				    state, NULL);
5495
5496				if (offs < 0) {
5497					*flags |= CPU_DTRACE_DROP;
5498					continue;
5499				}
5500
5501				tomax = buf->dtb_tomax;
5502				ASSERT(tomax != NULL);
5503
5504				if (ecb->dte_size != 0)
5505					DTRACE_STORE(uint32_t, tomax, offs,
5506					    ecb->dte_epid);
5507				continue;
5508
5509			case DTRACEACT_CHILL:
5510				if (dtrace_priv_kernel_destructive(state))
5511					dtrace_action_chill(&mstate, val);
5512				continue;
5513
5514			case DTRACEACT_RAISE:
5515				if (dtrace_priv_proc_destructive(state))
5516					dtrace_action_raise(val);
5517				continue;
5518
5519			case DTRACEACT_COMMIT:
5520				ASSERT(!committed);
5521
5522				/*
5523				 * We need to commit our buffer state.
5524				 */
5525				if (ecb->dte_size)
5526					buf->dtb_offset = offs + ecb->dte_size;
5527				buf = &state->dts_buffer[cpuid];
5528				dtrace_speculation_commit(state, cpuid, val);
5529				committed = 1;
5530				continue;
5531
5532			case DTRACEACT_DISCARD:
5533				dtrace_speculation_discard(state, cpuid, val);
5534				continue;
5535
5536			case DTRACEACT_DIFEXPR:
5537			case DTRACEACT_LIBACT:
5538			case DTRACEACT_PRINTF:
5539			case DTRACEACT_PRINTA:
5540			case DTRACEACT_SYSTEM:
5541			case DTRACEACT_FREOPEN:
5542				break;
5543
5544			case DTRACEACT_SYM:
5545			case DTRACEACT_MOD:
5546				if (!dtrace_priv_kernel(state))
5547					continue;
5548				break;
5549
5550			case DTRACEACT_USYM:
5551			case DTRACEACT_UMOD:
5552			case DTRACEACT_UADDR: {
5553				struct pid *pid = curthread->t_procp->p_pidp;
5554
5555				if (!dtrace_priv_proc(state))
5556					continue;
5557
5558				DTRACE_STORE(uint64_t, tomax,
5559				    valoffs, (uint64_t)pid->pid_id);
5560				DTRACE_STORE(uint64_t, tomax,
5561				    valoffs + sizeof (uint64_t), val);
5562
5563				continue;
5564			}
5565
5566			case DTRACEACT_EXIT: {
5567				/*
5568				 * For the exit action, we are going to attempt
5569				 * to atomically set our activity to be
5570				 * draining.  If this fails (either because
5571				 * another CPU has beat us to the exit action,
5572				 * or because our current activity is something
5573				 * other than ACTIVE or WARMUP), we will
5574				 * continue.  This assures that the exit action
5575				 * can be successfully recorded at most once
5576				 * when we're in the ACTIVE state.  If we're
5577				 * encountering the exit() action while in
5578				 * COOLDOWN, however, we want to honor the new
5579				 * status code.  (We know that we're the only
5580				 * thread in COOLDOWN, so there is no race.)
5581				 */
5582				void *activity = &state->dts_activity;
5583				dtrace_activity_t current = state->dts_activity;
5584
5585				if (current == DTRACE_ACTIVITY_COOLDOWN)
5586					break;
5587
5588				if (current != DTRACE_ACTIVITY_WARMUP)
5589					current = DTRACE_ACTIVITY_ACTIVE;
5590
5591				if (dtrace_cas32(activity, current,
5592				    DTRACE_ACTIVITY_DRAINING) != current) {
5593					*flags |= CPU_DTRACE_DROP;
5594					continue;
5595				}
5596
5597				break;
5598			}
5599
5600			default:
5601				ASSERT(0);
5602			}
5603
5604			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
5605				uintptr_t end = valoffs + size;
5606
5607				if (!dtrace_vcanload((void *)(uintptr_t)val,
5608				    &dp->dtdo_rtype, &mstate, vstate))
5609					continue;
5610
5611				/*
5612				 * If this is a string, we're going to only
5613				 * load until we find the zero byte -- after
5614				 * which we'll store zero bytes.
5615				 */
5616				if (dp->dtdo_rtype.dtdt_kind ==
5617				    DIF_TYPE_STRING) {
5618					char c = '\0' + 1;
5619					int intuple = act->dta_intuple;
5620					size_t s;
5621
5622					for (s = 0; s < size; s++) {
5623						if (c != '\0')
5624							c = dtrace_load8(val++);
5625
5626						DTRACE_STORE(uint8_t, tomax,
5627						    valoffs++, c);
5628
5629						if (c == '\0' && intuple)
5630							break;
5631					}
5632
5633					continue;
5634				}
5635
5636				while (valoffs < end) {
5637					DTRACE_STORE(uint8_t, tomax, valoffs++,
5638					    dtrace_load8(val++));
5639				}
5640
5641				continue;
5642			}
5643
5644			switch (size) {
5645			case 0:
5646				break;
5647
5648			case sizeof (uint8_t):
5649				DTRACE_STORE(uint8_t, tomax, valoffs, val);
5650				break;
5651			case sizeof (uint16_t):
5652				DTRACE_STORE(uint16_t, tomax, valoffs, val);
5653				break;
5654			case sizeof (uint32_t):
5655				DTRACE_STORE(uint32_t, tomax, valoffs, val);
5656				break;
5657			case sizeof (uint64_t):
5658				DTRACE_STORE(uint64_t, tomax, valoffs, val);
5659				break;
5660			default:
5661				/*
5662				 * Any other size should have been returned by
5663				 * reference, not by value.
5664				 */
5665				ASSERT(0);
5666				break;
5667			}
5668		}
5669
5670		if (*flags & CPU_DTRACE_DROP)
5671			continue;
5672
5673		if (*flags & CPU_DTRACE_FAULT) {
5674			int ndx;
5675			dtrace_action_t *err;
5676
5677			buf->dtb_errors++;
5678
5679			if (probe->dtpr_id == dtrace_probeid_error) {
5680				/*
5681				 * There's nothing we can do -- we had an
5682				 * error on the error probe.  We bump an
5683				 * error counter to at least indicate that
5684				 * this condition happened.
5685				 */
5686				dtrace_error(&state->dts_dblerrors);
5687				continue;
5688			}
5689
5690			if (vtime) {
5691				/*
5692				 * Before recursing on dtrace_probe(), we
5693				 * need to explicitly clear out our start
5694				 * time to prevent it from being accumulated
5695				 * into t_dtrace_vtime.
5696				 */
5697				curthread->t_dtrace_start = 0;
5698			}
5699
5700			/*
5701			 * Iterate over the actions to figure out which action
5702			 * we were processing when we experienced the error.
5703			 * Note that act points _past_ the faulting action; if
5704			 * act is ecb->dte_action, the fault was in the
5705			 * predicate, if it's ecb->dte_action->dta_next it's
5706			 * in action #1, and so on.
5707			 */
5708			for (err = ecb->dte_action, ndx = 0;
5709			    err != act; err = err->dta_next, ndx++)
5710				continue;
5711
5712			dtrace_probe_error(state, ecb->dte_epid, ndx,
5713			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
5714			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
5715			    cpu_core[cpuid].cpuc_dtrace_illval);
5716
5717			continue;
5718		}
5719
5720		if (!committed)
5721			buf->dtb_offset = offs + ecb->dte_size;
5722	}
5723
5724	if (vtime)
5725		curthread->t_dtrace_start = dtrace_gethrtime();
5726
5727	dtrace_interrupt_enable(cookie);
5728}
5729
5730/*
5731 * DTrace Probe Hashing Functions
5732 *
5733 * The functions in this section (and indeed, the functions in remaining
5734 * sections) are not _called_ from probe context.  (Any exceptions to this are
5735 * marked with a "Note:".)  Rather, they are called from elsewhere in the
5736 * DTrace framework to look-up probes in, add probes to and remove probes from
5737 * the DTrace probe hashes.  (Each probe is hashed by each element of the
5738 * probe tuple -- allowing for fast lookups, regardless of what was
5739 * specified.)
5740 */
5741static uint_t
5742dtrace_hash_str(char *p)
5743{
5744	unsigned int g;
5745	uint_t hval = 0;
5746
5747	while (*p) {
5748		hval = (hval << 4) + *p++;
5749		if ((g = (hval & 0xf0000000)) != 0)
5750			hval ^= g >> 24;
5751		hval &= ~g;
5752	}
5753	return (hval);
5754}
5755
5756static dtrace_hash_t *
5757dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
5758{
5759	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
5760
5761	hash->dth_stroffs = stroffs;
5762	hash->dth_nextoffs = nextoffs;
5763	hash->dth_prevoffs = prevoffs;
5764
5765	hash->dth_size = 1;
5766	hash->dth_mask = hash->dth_size - 1;
5767
5768	hash->dth_tab = kmem_zalloc(hash->dth_size *
5769	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
5770
5771	return (hash);
5772}
5773
5774static void
5775dtrace_hash_destroy(dtrace_hash_t *hash)
5776{
5777#ifdef DEBUG
5778	int i;
5779
5780	for (i = 0; i < hash->dth_size; i++)
5781		ASSERT(hash->dth_tab[i] == NULL);
5782#endif
5783
5784	kmem_free(hash->dth_tab,
5785	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
5786	kmem_free(hash, sizeof (dtrace_hash_t));
5787}
5788
5789static void
5790dtrace_hash_resize(dtrace_hash_t *hash)
5791{
5792	int size = hash->dth_size, i, ndx;
5793	int new_size = hash->dth_size << 1;
5794	int new_mask = new_size - 1;
5795	dtrace_hashbucket_t **new_tab, *bucket, *next;
5796
5797	ASSERT((new_size & new_mask) == 0);
5798
5799	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
5800
5801	for (i = 0; i < size; i++) {
5802		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
5803			dtrace_probe_t *probe = bucket->dthb_chain;
5804
5805			ASSERT(probe != NULL);
5806			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
5807
5808			next = bucket->dthb_next;
5809			bucket->dthb_next = new_tab[ndx];
5810			new_tab[ndx] = bucket;
5811		}
5812	}
5813
5814	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
5815	hash->dth_tab = new_tab;
5816	hash->dth_size = new_size;
5817	hash->dth_mask = new_mask;
5818}
5819
5820static void
5821dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
5822{
5823	int hashval = DTRACE_HASHSTR(hash, new);
5824	int ndx = hashval & hash->dth_mask;
5825	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5826	dtrace_probe_t **nextp, **prevp;
5827
5828	for (; bucket != NULL; bucket = bucket->dthb_next) {
5829		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
5830			goto add;
5831	}
5832
5833	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
5834		dtrace_hash_resize(hash);
5835		dtrace_hash_add(hash, new);
5836		return;
5837	}
5838
5839	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
5840	bucket->dthb_next = hash->dth_tab[ndx];
5841	hash->dth_tab[ndx] = bucket;
5842	hash->dth_nbuckets++;
5843
5844add:
5845	nextp = DTRACE_HASHNEXT(hash, new);
5846	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
5847	*nextp = bucket->dthb_chain;
5848
5849	if (bucket->dthb_chain != NULL) {
5850		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
5851		ASSERT(*prevp == NULL);
5852		*prevp = new;
5853	}
5854
5855	bucket->dthb_chain = new;
5856	bucket->dthb_len++;
5857}
5858
5859static dtrace_probe_t *
5860dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
5861{
5862	int hashval = DTRACE_HASHSTR(hash, template);
5863	int ndx = hashval & hash->dth_mask;
5864	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5865
5866	for (; bucket != NULL; bucket = bucket->dthb_next) {
5867		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5868			return (bucket->dthb_chain);
5869	}
5870
5871	return (NULL);
5872}
5873
5874static int
5875dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
5876{
5877	int hashval = DTRACE_HASHSTR(hash, template);
5878	int ndx = hashval & hash->dth_mask;
5879	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5880
5881	for (; bucket != NULL; bucket = bucket->dthb_next) {
5882		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5883			return (bucket->dthb_len);
5884	}
5885
5886	return (NULL);
5887}
5888
5889static void
5890dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
5891{
5892	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
5893	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5894
5895	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
5896	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
5897
5898	/*
5899	 * Find the bucket that we're removing this probe from.
5900	 */
5901	for (; bucket != NULL; bucket = bucket->dthb_next) {
5902		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
5903			break;
5904	}
5905
5906	ASSERT(bucket != NULL);
5907
5908	if (*prevp == NULL) {
5909		if (*nextp == NULL) {
5910			/*
5911			 * The removed probe was the only probe on this
5912			 * bucket; we need to remove the bucket.
5913			 */
5914			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
5915
5916			ASSERT(bucket->dthb_chain == probe);
5917			ASSERT(b != NULL);
5918
5919			if (b == bucket) {
5920				hash->dth_tab[ndx] = bucket->dthb_next;
5921			} else {
5922				while (b->dthb_next != bucket)
5923					b = b->dthb_next;
5924				b->dthb_next = bucket->dthb_next;
5925			}
5926
5927			ASSERT(hash->dth_nbuckets > 0);
5928			hash->dth_nbuckets--;
5929			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
5930			return;
5931		}
5932
5933		bucket->dthb_chain = *nextp;
5934	} else {
5935		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
5936	}
5937
5938	if (*nextp != NULL)
5939		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
5940}
5941
5942/*
5943 * DTrace Utility Functions
5944 *
5945 * These are random utility functions that are _not_ called from probe context.
5946 */
5947static int
5948dtrace_badattr(const dtrace_attribute_t *a)
5949{
5950	return (a->dtat_name > DTRACE_STABILITY_MAX ||
5951	    a->dtat_data > DTRACE_STABILITY_MAX ||
5952	    a->dtat_class > DTRACE_CLASS_MAX);
5953}
5954
5955/*
5956 * Return a duplicate copy of a string.  If the specified string is NULL,
5957 * this function returns a zero-length string.
5958 */
5959static char *
5960dtrace_strdup(const char *str)
5961{
5962	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
5963
5964	if (str != NULL)
5965		(void) strcpy(new, str);
5966
5967	return (new);
5968}
5969
5970#define	DTRACE_ISALPHA(c)	\
5971	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
5972
5973static int
5974dtrace_badname(const char *s)
5975{
5976	char c;
5977
5978	if (s == NULL || (c = *s++) == '\0')
5979		return (0);
5980
5981	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
5982		return (1);
5983
5984	while ((c = *s++) != '\0') {
5985		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
5986		    c != '-' && c != '_' && c != '.' && c != '`')
5987			return (1);
5988	}
5989
5990	return (0);
5991}
5992
5993static void
5994dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
5995{
5996	uint32_t priv;
5997
5998	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
5999		/*
6000		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6001		 */
6002		priv = DTRACE_PRIV_ALL;
6003	} else {
6004		*uidp = crgetuid(cr);
6005		*zoneidp = crgetzoneid(cr);
6006
6007		priv = 0;
6008		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6009			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6010		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6011			priv |= DTRACE_PRIV_USER;
6012		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6013			priv |= DTRACE_PRIV_PROC;
6014		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6015			priv |= DTRACE_PRIV_OWNER;
6016		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6017			priv |= DTRACE_PRIV_ZONEOWNER;
6018	}
6019
6020	*privp = priv;
6021}
6022
6023#ifdef DTRACE_ERRDEBUG
6024static void
6025dtrace_errdebug(const char *str)
6026{
6027	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6028	int occupied = 0;
6029
6030	mutex_enter(&dtrace_errlock);
6031	dtrace_errlast = str;
6032	dtrace_errthread = curthread;
6033
6034	while (occupied++ < DTRACE_ERRHASHSZ) {
6035		if (dtrace_errhash[hval].dter_msg == str) {
6036			dtrace_errhash[hval].dter_count++;
6037			goto out;
6038		}
6039
6040		if (dtrace_errhash[hval].dter_msg != NULL) {
6041			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6042			continue;
6043		}
6044
6045		dtrace_errhash[hval].dter_msg = str;
6046		dtrace_errhash[hval].dter_count = 1;
6047		goto out;
6048	}
6049
6050	panic("dtrace: undersized error hash");
6051out:
6052	mutex_exit(&dtrace_errlock);
6053}
6054#endif
6055
6056/*
6057 * DTrace Matching Functions
6058 *
6059 * These functions are used to match groups of probes, given some elements of
6060 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6061 */
6062static int
6063dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6064    zoneid_t zoneid)
6065{
6066	if (priv != DTRACE_PRIV_ALL) {
6067		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6068		uint32_t match = priv & ppriv;
6069
6070		/*
6071		 * No PRIV_DTRACE_* privileges...
6072		 */
6073		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6074		    DTRACE_PRIV_KERNEL)) == 0)
6075			return (0);
6076
6077		/*
6078		 * No matching bits, but there were bits to match...
6079		 */
6080		if (match == 0 && ppriv != 0)
6081			return (0);
6082
6083		/*
6084		 * Need to have permissions to the process, but don't...
6085		 */
6086		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6087		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6088			return (0);
6089		}
6090
6091		/*
6092		 * Need to be in the same zone unless we possess the
6093		 * privilege to examine all zones.
6094		 */
6095		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6096		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6097			return (0);
6098		}
6099	}
6100
6101	return (1);
6102}
6103
6104/*
6105 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6106 * consists of input pattern strings and an ops-vector to evaluate them.
6107 * This function returns >0 for match, 0 for no match, and <0 for error.
6108 */
6109static int
6110dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6111    uint32_t priv, uid_t uid, zoneid_t zoneid)
6112{
6113	dtrace_provider_t *pvp = prp->dtpr_provider;
6114	int rv;
6115
6116	if (pvp->dtpv_defunct)
6117		return (0);
6118
6119	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6120		return (rv);
6121
6122	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6123		return (rv);
6124
6125	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6126		return (rv);
6127
6128	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6129		return (rv);
6130
6131	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6132		return (0);
6133
6134	return (rv);
6135}
6136
6137/*
6138 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6139 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6140 * libc's version, the kernel version only applies to 8-bit ASCII strings.
6141 * In addition, all of the recursion cases except for '*' matching have been
6142 * unwound.  For '*', we still implement recursive evaluation, but a depth
6143 * counter is maintained and matching is aborted if we recurse too deep.
6144 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6145 */
6146static int
6147dtrace_match_glob(const char *s, const char *p, int depth)
6148{
6149	const char *olds;
6150	char s1, c;
6151	int gs;
6152
6153	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6154		return (-1);
6155
6156	if (s == NULL)
6157		s = ""; /* treat NULL as empty string */
6158
6159top:
6160	olds = s;
6161	s1 = *s++;
6162
6163	if (p == NULL)
6164		return (0);
6165
6166	if ((c = *p++) == '\0')
6167		return (s1 == '\0');
6168
6169	switch (c) {
6170	case '[': {
6171		int ok = 0, notflag = 0;
6172		char lc = '\0';
6173
6174		if (s1 == '\0')
6175			return (0);
6176
6177		if (*p == '!') {
6178			notflag = 1;
6179			p++;
6180		}
6181
6182		if ((c = *p++) == '\0')
6183			return (0);
6184
6185		do {
6186			if (c == '-' && lc != '\0' && *p != ']') {
6187				if ((c = *p++) == '\0')
6188					return (0);
6189				if (c == '\\' && (c = *p++) == '\0')
6190					return (0);
6191
6192				if (notflag) {
6193					if (s1 < lc || s1 > c)
6194						ok++;
6195					else
6196						return (0);
6197				} else if (lc <= s1 && s1 <= c)
6198					ok++;
6199
6200			} else if (c == '\\' && (c = *p++) == '\0')
6201				return (0);
6202
6203			lc = c; /* save left-hand 'c' for next iteration */
6204
6205			if (notflag) {
6206				if (s1 != c)
6207					ok++;
6208				else
6209					return (0);
6210			} else if (s1 == c)
6211				ok++;
6212
6213			if ((c = *p++) == '\0')
6214				return (0);
6215
6216		} while (c != ']');
6217
6218		if (ok)
6219			goto top;
6220
6221		return (0);
6222	}
6223
6224	case '\\':
6225		if ((c = *p++) == '\0')
6226			return (0);
6227		/*FALLTHRU*/
6228
6229	default:
6230		if (c != s1)
6231			return (0);
6232		/*FALLTHRU*/
6233
6234	case '?':
6235		if (s1 != '\0')
6236			goto top;
6237		return (0);
6238
6239	case '*':
6240		while (*p == '*')
6241			p++; /* consecutive *'s are identical to a single one */
6242
6243		if (*p == '\0')
6244			return (1);
6245
6246		for (s = olds; *s != '\0'; s++) {
6247			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
6248				return (gs);
6249		}
6250
6251		return (0);
6252	}
6253}
6254
6255/*ARGSUSED*/
6256static int
6257dtrace_match_string(const char *s, const char *p, int depth)
6258{
6259	return (s != NULL && strcmp(s, p) == 0);
6260}
6261
6262/*ARGSUSED*/
6263static int
6264dtrace_match_nul(const char *s, const char *p, int depth)
6265{
6266	return (1); /* always match the empty pattern */
6267}
6268
6269/*ARGSUSED*/
6270static int
6271dtrace_match_nonzero(const char *s, const char *p, int depth)
6272{
6273	return (s != NULL && s[0] != '\0');
6274}
6275
6276static int
6277dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
6278    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
6279{
6280	dtrace_probe_t template, *probe;
6281	dtrace_hash_t *hash = NULL;
6282	int len, best = INT_MAX, nmatched = 0;
6283	dtrace_id_t i;
6284
6285	ASSERT(MUTEX_HELD(&dtrace_lock));
6286
6287	/*
6288	 * If the probe ID is specified in the key, just lookup by ID and
6289	 * invoke the match callback once if a matching probe is found.
6290	 */
6291	if (pkp->dtpk_id != DTRACE_IDNONE) {
6292		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
6293		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
6294			(void) (*matched)(probe, arg);
6295			nmatched++;
6296		}
6297		return (nmatched);
6298	}
6299
6300	template.dtpr_mod = (char *)pkp->dtpk_mod;
6301	template.dtpr_func = (char *)pkp->dtpk_func;
6302	template.dtpr_name = (char *)pkp->dtpk_name;
6303
6304	/*
6305	 * We want to find the most distinct of the module name, function
6306	 * name, and name.  So for each one that is not a glob pattern or
6307	 * empty string, we perform a lookup in the corresponding hash and
6308	 * use the hash table with the fewest collisions to do our search.
6309	 */
6310	if (pkp->dtpk_mmatch == &dtrace_match_string &&
6311	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
6312		best = len;
6313		hash = dtrace_bymod;
6314	}
6315
6316	if (pkp->dtpk_fmatch == &dtrace_match_string &&
6317	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
6318		best = len;
6319		hash = dtrace_byfunc;
6320	}
6321
6322	if (pkp->dtpk_nmatch == &dtrace_match_string &&
6323	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
6324		best = len;
6325		hash = dtrace_byname;
6326	}
6327
6328	/*
6329	 * If we did not select a hash table, iterate over every probe and
6330	 * invoke our callback for each one that matches our input probe key.
6331	 */
6332	if (hash == NULL) {
6333		for (i = 0; i < dtrace_nprobes; i++) {
6334			if ((probe = dtrace_probes[i]) == NULL ||
6335			    dtrace_match_probe(probe, pkp, priv, uid,
6336			    zoneid) <= 0)
6337				continue;
6338
6339			nmatched++;
6340
6341			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
6342				break;
6343		}
6344
6345		return (nmatched);
6346	}
6347
6348	/*
6349	 * If we selected a hash table, iterate over each probe of the same key
6350	 * name and invoke the callback for every probe that matches the other
6351	 * attributes of our input probe key.
6352	 */
6353	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
6354	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
6355
6356		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
6357			continue;
6358
6359		nmatched++;
6360
6361		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
6362			break;
6363	}
6364
6365	return (nmatched);
6366}
6367
6368/*
6369 * Return the function pointer dtrace_probecmp() should use to compare the
6370 * specified pattern with a string.  For NULL or empty patterns, we select
6371 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
6372 * For non-empty non-glob strings, we use dtrace_match_string().
6373 */
6374static dtrace_probekey_f *
6375dtrace_probekey_func(const char *p)
6376{
6377	char c;
6378
6379	if (p == NULL || *p == '\0')
6380		return (&dtrace_match_nul);
6381
6382	while ((c = *p++) != '\0') {
6383		if (c == '[' || c == '?' || c == '*' || c == '\\')
6384			return (&dtrace_match_glob);
6385	}
6386
6387	return (&dtrace_match_string);
6388}
6389
6390/*
6391 * Build a probe comparison key for use with dtrace_match_probe() from the
6392 * given probe description.  By convention, a null key only matches anchored
6393 * probes: if each field is the empty string, reset dtpk_fmatch to
6394 * dtrace_match_nonzero().
6395 */
6396static void
6397dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
6398{
6399	pkp->dtpk_prov = pdp->dtpd_provider;
6400	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
6401
6402	pkp->dtpk_mod = pdp->dtpd_mod;
6403	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
6404
6405	pkp->dtpk_func = pdp->dtpd_func;
6406	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
6407
6408	pkp->dtpk_name = pdp->dtpd_name;
6409	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
6410
6411	pkp->dtpk_id = pdp->dtpd_id;
6412
6413	if (pkp->dtpk_id == DTRACE_IDNONE &&
6414	    pkp->dtpk_pmatch == &dtrace_match_nul &&
6415	    pkp->dtpk_mmatch == &dtrace_match_nul &&
6416	    pkp->dtpk_fmatch == &dtrace_match_nul &&
6417	    pkp->dtpk_nmatch == &dtrace_match_nul)
6418		pkp->dtpk_fmatch = &dtrace_match_nonzero;
6419}
6420
6421/*
6422 * DTrace Provider-to-Framework API Functions
6423 *
6424 * These functions implement much of the Provider-to-Framework API, as
6425 * described in <sys/dtrace.h>.  The parts of the API not in this section are
6426 * the functions in the API for probe management (found below), and
6427 * dtrace_probe() itself (found above).
6428 */
6429
6430/*
6431 * Register the calling provider with the DTrace framework.  This should
6432 * generally be called by DTrace providers in their attach(9E) entry point.
6433 */
6434int
6435dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
6436    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
6437{
6438	dtrace_provider_t *provider;
6439
6440	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
6441		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6442		    "arguments", name ? name : "<NULL>");
6443		return (EINVAL);
6444	}
6445
6446	if (name[0] == '\0' || dtrace_badname(name)) {
6447		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6448		    "provider name", name);
6449		return (EINVAL);
6450	}
6451
6452	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
6453	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
6454	    pops->dtps_destroy == NULL ||
6455	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
6456		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6457		    "provider ops", name);
6458		return (EINVAL);
6459	}
6460
6461	if (dtrace_badattr(&pap->dtpa_provider) ||
6462	    dtrace_badattr(&pap->dtpa_mod) ||
6463	    dtrace_badattr(&pap->dtpa_func) ||
6464	    dtrace_badattr(&pap->dtpa_name) ||
6465	    dtrace_badattr(&pap->dtpa_args)) {
6466		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6467		    "provider attributes", name);
6468		return (EINVAL);
6469	}
6470
6471	if (priv & ~DTRACE_PRIV_ALL) {
6472		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6473		    "privilege attributes", name);
6474		return (EINVAL);
6475	}
6476
6477	if ((priv & DTRACE_PRIV_KERNEL) &&
6478	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
6479	    pops->dtps_usermode == NULL) {
6480		cmn_err(CE_WARN, "failed to register provider '%s': need "
6481		    "dtps_usermode() op for given privilege attributes", name);
6482		return (EINVAL);
6483	}
6484
6485	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
6486	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6487	(void) strcpy(provider->dtpv_name, name);
6488
6489	provider->dtpv_attr = *pap;
6490	provider->dtpv_priv.dtpp_flags = priv;
6491	if (cr != NULL) {
6492		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
6493		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
6494	}
6495	provider->dtpv_pops = *pops;
6496
6497	if (pops->dtps_provide == NULL) {
6498		ASSERT(pops->dtps_provide_module != NULL);
6499		provider->dtpv_pops.dtps_provide =
6500		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
6501	}
6502
6503	if (pops->dtps_provide_module == NULL) {
6504		ASSERT(pops->dtps_provide != NULL);
6505		provider->dtpv_pops.dtps_provide_module =
6506		    (void (*)(void *, struct modctl *))dtrace_nullop;
6507	}
6508
6509	if (pops->dtps_suspend == NULL) {
6510		ASSERT(pops->dtps_resume == NULL);
6511		provider->dtpv_pops.dtps_suspend =
6512		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6513		provider->dtpv_pops.dtps_resume =
6514		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6515	}
6516
6517	provider->dtpv_arg = arg;
6518	*idp = (dtrace_provider_id_t)provider;
6519
6520	if (pops == &dtrace_provider_ops) {
6521		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6522		ASSERT(MUTEX_HELD(&dtrace_lock));
6523		ASSERT(dtrace_anon.dta_enabling == NULL);
6524
6525		/*
6526		 * We make sure that the DTrace provider is at the head of
6527		 * the provider chain.
6528		 */
6529		provider->dtpv_next = dtrace_provider;
6530		dtrace_provider = provider;
6531		return (0);
6532	}
6533
6534	mutex_enter(&dtrace_provider_lock);
6535	mutex_enter(&dtrace_lock);
6536
6537	/*
6538	 * If there is at least one provider registered, we'll add this
6539	 * provider after the first provider.
6540	 */
6541	if (dtrace_provider != NULL) {
6542		provider->dtpv_next = dtrace_provider->dtpv_next;
6543		dtrace_provider->dtpv_next = provider;
6544	} else {
6545		dtrace_provider = provider;
6546	}
6547
6548	if (dtrace_retained != NULL) {
6549		dtrace_enabling_provide(provider);
6550
6551		/*
6552		 * Now we need to call dtrace_enabling_matchall() -- which
6553		 * will acquire cpu_lock and dtrace_lock.  We therefore need
6554		 * to drop all of our locks before calling into it...
6555		 */
6556		mutex_exit(&dtrace_lock);
6557		mutex_exit(&dtrace_provider_lock);
6558		dtrace_enabling_matchall();
6559
6560		return (0);
6561	}
6562
6563	mutex_exit(&dtrace_lock);
6564	mutex_exit(&dtrace_provider_lock);
6565
6566	return (0);
6567}
6568
6569/*
6570 * Unregister the specified provider from the DTrace framework.  This should
6571 * generally be called by DTrace providers in their detach(9E) entry point.
6572 */
6573int
6574dtrace_unregister(dtrace_provider_id_t id)
6575{
6576	dtrace_provider_t *old = (dtrace_provider_t *)id;
6577	dtrace_provider_t *prev = NULL;
6578	int i, self = 0;
6579	dtrace_probe_t *probe, *first = NULL;
6580
6581	if (old->dtpv_pops.dtps_enable ==
6582	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
6583		/*
6584		 * If DTrace itself is the provider, we're called with locks
6585		 * already held.
6586		 */
6587		ASSERT(old == dtrace_provider);
6588		ASSERT(dtrace_devi != NULL);
6589		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6590		ASSERT(MUTEX_HELD(&dtrace_lock));
6591		self = 1;
6592
6593		if (dtrace_provider->dtpv_next != NULL) {
6594			/*
6595			 * There's another provider here; return failure.
6596			 */
6597			return (EBUSY);
6598		}
6599	} else {
6600		mutex_enter(&dtrace_provider_lock);
6601		mutex_enter(&mod_lock);
6602		mutex_enter(&dtrace_lock);
6603	}
6604
6605	/*
6606	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
6607	 * probes, we refuse to let providers slither away, unless this
6608	 * provider has already been explicitly invalidated.
6609	 */
6610	if (!old->dtpv_defunct &&
6611	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
6612	    dtrace_anon.dta_state->dts_necbs > 0))) {
6613		if (!self) {
6614			mutex_exit(&dtrace_lock);
6615			mutex_exit(&mod_lock);
6616			mutex_exit(&dtrace_provider_lock);
6617		}
6618		return (EBUSY);
6619	}
6620
6621	/*
6622	 * Attempt to destroy the probes associated with this provider.
6623	 */
6624	for (i = 0; i < dtrace_nprobes; i++) {
6625		if ((probe = dtrace_probes[i]) == NULL)
6626			continue;
6627
6628		if (probe->dtpr_provider != old)
6629			continue;
6630
6631		if (probe->dtpr_ecb == NULL)
6632			continue;
6633
6634		/*
6635		 * We have at least one ECB; we can't remove this provider.
6636		 */
6637		if (!self) {
6638			mutex_exit(&dtrace_lock);
6639			mutex_exit(&mod_lock);
6640			mutex_exit(&dtrace_provider_lock);
6641		}
6642		return (EBUSY);
6643	}
6644
6645	/*
6646	 * All of the probes for this provider are disabled; we can safely
6647	 * remove all of them from their hash chains and from the probe array.
6648	 */
6649	for (i = 0; i < dtrace_nprobes; i++) {
6650		if ((probe = dtrace_probes[i]) == NULL)
6651			continue;
6652
6653		if (probe->dtpr_provider != old)
6654			continue;
6655
6656		dtrace_probes[i] = NULL;
6657
6658		dtrace_hash_remove(dtrace_bymod, probe);
6659		dtrace_hash_remove(dtrace_byfunc, probe);
6660		dtrace_hash_remove(dtrace_byname, probe);
6661
6662		if (first == NULL) {
6663			first = probe;
6664			probe->dtpr_nextmod = NULL;
6665		} else {
6666			probe->dtpr_nextmod = first;
6667			first = probe;
6668		}
6669	}
6670
6671	/*
6672	 * The provider's probes have been removed from the hash chains and
6673	 * from the probe array.  Now issue a dtrace_sync() to be sure that
6674	 * everyone has cleared out from any probe array processing.
6675	 */
6676	dtrace_sync();
6677
6678	for (probe = first; probe != NULL; probe = first) {
6679		first = probe->dtpr_nextmod;
6680
6681		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
6682		    probe->dtpr_arg);
6683		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6684		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6685		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6686		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
6687		kmem_free(probe, sizeof (dtrace_probe_t));
6688	}
6689
6690	if ((prev = dtrace_provider) == old) {
6691		ASSERT(self || dtrace_devi == NULL);
6692		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
6693		dtrace_provider = old->dtpv_next;
6694	} else {
6695		while (prev != NULL && prev->dtpv_next != old)
6696			prev = prev->dtpv_next;
6697
6698		if (prev == NULL) {
6699			panic("attempt to unregister non-existent "
6700			    "dtrace provider %p\n", (void *)id);
6701		}
6702
6703		prev->dtpv_next = old->dtpv_next;
6704	}
6705
6706	if (!self) {
6707		mutex_exit(&dtrace_lock);
6708		mutex_exit(&mod_lock);
6709		mutex_exit(&dtrace_provider_lock);
6710	}
6711
6712	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
6713	kmem_free(old, sizeof (dtrace_provider_t));
6714
6715	return (0);
6716}
6717
6718/*
6719 * Invalidate the specified provider.  All subsequent probe lookups for the
6720 * specified provider will fail, but its probes will not be removed.
6721 */
6722void
6723dtrace_invalidate(dtrace_provider_id_t id)
6724{
6725	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
6726
6727	ASSERT(pvp->dtpv_pops.dtps_enable !=
6728	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6729
6730	mutex_enter(&dtrace_provider_lock);
6731	mutex_enter(&dtrace_lock);
6732
6733	pvp->dtpv_defunct = 1;
6734
6735	mutex_exit(&dtrace_lock);
6736	mutex_exit(&dtrace_provider_lock);
6737}
6738
6739/*
6740 * Indicate whether or not DTrace has attached.
6741 */
6742int
6743dtrace_attached(void)
6744{
6745	/*
6746	 * dtrace_provider will be non-NULL iff the DTrace driver has
6747	 * attached.  (It's non-NULL because DTrace is always itself a
6748	 * provider.)
6749	 */
6750	return (dtrace_provider != NULL);
6751}
6752
6753/*
6754 * Remove all the unenabled probes for the given provider.  This function is
6755 * not unlike dtrace_unregister(), except that it doesn't remove the provider
6756 * -- just as many of its associated probes as it can.
6757 */
6758int
6759dtrace_condense(dtrace_provider_id_t id)
6760{
6761	dtrace_provider_t *prov = (dtrace_provider_t *)id;
6762	int i;
6763	dtrace_probe_t *probe;
6764
6765	/*
6766	 * Make sure this isn't the dtrace provider itself.
6767	 */
6768	ASSERT(prov->dtpv_pops.dtps_enable !=
6769	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6770
6771	mutex_enter(&dtrace_provider_lock);
6772	mutex_enter(&dtrace_lock);
6773
6774	/*
6775	 * Attempt to destroy the probes associated with this provider.
6776	 */
6777	for (i = 0; i < dtrace_nprobes; i++) {
6778		if ((probe = dtrace_probes[i]) == NULL)
6779			continue;
6780
6781		if (probe->dtpr_provider != prov)
6782			continue;
6783
6784		if (probe->dtpr_ecb != NULL)
6785			continue;
6786
6787		dtrace_probes[i] = NULL;
6788
6789		dtrace_hash_remove(dtrace_bymod, probe);
6790		dtrace_hash_remove(dtrace_byfunc, probe);
6791		dtrace_hash_remove(dtrace_byname, probe);
6792
6793		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
6794		    probe->dtpr_arg);
6795		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6796		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6797		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6798		kmem_free(probe, sizeof (dtrace_probe_t));
6799		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
6800	}
6801
6802	mutex_exit(&dtrace_lock);
6803	mutex_exit(&dtrace_provider_lock);
6804
6805	return (0);
6806}
6807
6808/*
6809 * DTrace Probe Management Functions
6810 *
6811 * The functions in this section perform the DTrace probe management,
6812 * including functions to create probes, look-up probes, and call into the
6813 * providers to request that probes be provided.  Some of these functions are
6814 * in the Provider-to-Framework API; these functions can be identified by the
6815 * fact that they are not declared "static".
6816 */
6817
6818/*
6819 * Create a probe with the specified module name, function name, and name.
6820 */
6821dtrace_id_t
6822dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
6823    const char *func, const char *name, int aframes, void *arg)
6824{
6825	dtrace_probe_t *probe, **probes;
6826	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
6827	dtrace_id_t id;
6828
6829	if (provider == dtrace_provider) {
6830		ASSERT(MUTEX_HELD(&dtrace_lock));
6831	} else {
6832		mutex_enter(&dtrace_lock);
6833	}
6834
6835	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
6836	    VM_BESTFIT | VM_SLEEP);
6837	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
6838
6839	probe->dtpr_id = id;
6840	probe->dtpr_gen = dtrace_probegen++;
6841	probe->dtpr_mod = dtrace_strdup(mod);
6842	probe->dtpr_func = dtrace_strdup(func);
6843	probe->dtpr_name = dtrace_strdup(name);
6844	probe->dtpr_arg = arg;
6845	probe->dtpr_aframes = aframes;
6846	probe->dtpr_provider = provider;
6847
6848	dtrace_hash_add(dtrace_bymod, probe);
6849	dtrace_hash_add(dtrace_byfunc, probe);
6850	dtrace_hash_add(dtrace_byname, probe);
6851
6852	if (id - 1 >= dtrace_nprobes) {
6853		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
6854		size_t nsize = osize << 1;
6855
6856		if (nsize == 0) {
6857			ASSERT(osize == 0);
6858			ASSERT(dtrace_probes == NULL);
6859			nsize = sizeof (dtrace_probe_t *);
6860		}
6861
6862		probes = kmem_zalloc(nsize, KM_SLEEP);
6863
6864		if (dtrace_probes == NULL) {
6865			ASSERT(osize == 0);
6866			dtrace_probes = probes;
6867			dtrace_nprobes = 1;
6868		} else {
6869			dtrace_probe_t **oprobes = dtrace_probes;
6870
6871			bcopy(oprobes, probes, osize);
6872			dtrace_membar_producer();
6873			dtrace_probes = probes;
6874
6875			dtrace_sync();
6876
6877			/*
6878			 * All CPUs are now seeing the new probes array; we can
6879			 * safely free the old array.
6880			 */
6881			kmem_free(oprobes, osize);
6882			dtrace_nprobes <<= 1;
6883		}
6884
6885		ASSERT(id - 1 < dtrace_nprobes);
6886	}
6887
6888	ASSERT(dtrace_probes[id - 1] == NULL);
6889	dtrace_probes[id - 1] = probe;
6890
6891	if (provider != dtrace_provider)
6892		mutex_exit(&dtrace_lock);
6893
6894	return (id);
6895}
6896
6897static dtrace_probe_t *
6898dtrace_probe_lookup_id(dtrace_id_t id)
6899{
6900	ASSERT(MUTEX_HELD(&dtrace_lock));
6901
6902	if (id == 0 || id > dtrace_nprobes)
6903		return (NULL);
6904
6905	return (dtrace_probes[id - 1]);
6906}
6907
6908static int
6909dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
6910{
6911	*((dtrace_id_t *)arg) = probe->dtpr_id;
6912
6913	return (DTRACE_MATCH_DONE);
6914}
6915
6916/*
6917 * Look up a probe based on provider and one or more of module name, function
6918 * name and probe name.
6919 */
6920dtrace_id_t
6921dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
6922    const char *func, const char *name)
6923{
6924	dtrace_probekey_t pkey;
6925	dtrace_id_t id;
6926	int match;
6927
6928	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
6929	pkey.dtpk_pmatch = &dtrace_match_string;
6930	pkey.dtpk_mod = mod;
6931	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
6932	pkey.dtpk_func = func;
6933	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
6934	pkey.dtpk_name = name;
6935	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
6936	pkey.dtpk_id = DTRACE_IDNONE;
6937
6938	mutex_enter(&dtrace_lock);
6939	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
6940	    dtrace_probe_lookup_match, &id);
6941	mutex_exit(&dtrace_lock);
6942
6943	ASSERT(match == 1 || match == 0);
6944	return (match ? id : 0);
6945}
6946
6947/*
6948 * Returns the probe argument associated with the specified probe.
6949 */
6950void *
6951dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
6952{
6953	dtrace_probe_t *probe;
6954	void *rval = NULL;
6955
6956	mutex_enter(&dtrace_lock);
6957
6958	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
6959	    probe->dtpr_provider == (dtrace_provider_t *)id)
6960		rval = probe->dtpr_arg;
6961
6962	mutex_exit(&dtrace_lock);
6963
6964	return (rval);
6965}
6966
6967/*
6968 * Copy a probe into a probe description.
6969 */
6970static void
6971dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
6972{
6973	bzero(pdp, sizeof (dtrace_probedesc_t));
6974	pdp->dtpd_id = prp->dtpr_id;
6975
6976	(void) strncpy(pdp->dtpd_provider,
6977	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
6978
6979	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
6980	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
6981	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
6982}
6983
6984/*
6985 * Called to indicate that a probe -- or probes -- should be provided by a
6986 * specfied provider.  If the specified description is NULL, the provider will
6987 * be told to provide all of its probes.  (This is done whenever a new
6988 * consumer comes along, or whenever a retained enabling is to be matched.) If
6989 * the specified description is non-NULL, the provider is given the
6990 * opportunity to dynamically provide the specified probe, allowing providers
6991 * to support the creation of probes on-the-fly.  (So-called _autocreated_
6992 * probes.)  If the provider is NULL, the operations will be applied to all
6993 * providers; if the provider is non-NULL the operations will only be applied
6994 * to the specified provider.  The dtrace_provider_lock must be held, and the
6995 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
6996 * will need to grab the dtrace_lock when it reenters the framework through
6997 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
6998 */
6999static void
7000dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7001{
7002	struct modctl *ctl;
7003	int all = 0;
7004
7005	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7006
7007	if (prv == NULL) {
7008		all = 1;
7009		prv = dtrace_provider;
7010	}
7011
7012	do {
7013		/*
7014		 * First, call the blanket provide operation.
7015		 */
7016		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7017
7018		/*
7019		 * Now call the per-module provide operation.  We will grab
7020		 * mod_lock to prevent the list from being modified.  Note
7021		 * that this also prevents the mod_busy bits from changing.
7022		 * (mod_busy can only be changed with mod_lock held.)
7023		 */
7024		mutex_enter(&mod_lock);
7025
7026		ctl = &modules;
7027		do {
7028			if (ctl->mod_busy || ctl->mod_mp == NULL)
7029				continue;
7030
7031			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7032
7033		} while ((ctl = ctl->mod_next) != &modules);
7034
7035		mutex_exit(&mod_lock);
7036	} while (all && (prv = prv->dtpv_next) != NULL);
7037}
7038
7039/*
7040 * Iterate over each probe, and call the Framework-to-Provider API function
7041 * denoted by offs.
7042 */
7043static void
7044dtrace_probe_foreach(uintptr_t offs)
7045{
7046	dtrace_provider_t *prov;
7047	void (*func)(void *, dtrace_id_t, void *);
7048	dtrace_probe_t *probe;
7049	dtrace_icookie_t cookie;
7050	int i;
7051
7052	/*
7053	 * We disable interrupts to walk through the probe array.  This is
7054	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7055	 * won't see stale data.
7056	 */
7057	cookie = dtrace_interrupt_disable();
7058
7059	for (i = 0; i < dtrace_nprobes; i++) {
7060		if ((probe = dtrace_probes[i]) == NULL)
7061			continue;
7062
7063		if (probe->dtpr_ecb == NULL) {
7064			/*
7065			 * This probe isn't enabled -- don't call the function.
7066			 */
7067			continue;
7068		}
7069
7070		prov = probe->dtpr_provider;
7071		func = *((void(**)(void *, dtrace_id_t, void *))
7072		    ((uintptr_t)&prov->dtpv_pops + offs));
7073
7074		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7075	}
7076
7077	dtrace_interrupt_enable(cookie);
7078}
7079
7080static int
7081dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7082{
7083	dtrace_probekey_t pkey;
7084	uint32_t priv;
7085	uid_t uid;
7086	zoneid_t zoneid;
7087
7088	ASSERT(MUTEX_HELD(&dtrace_lock));
7089	dtrace_ecb_create_cache = NULL;
7090
7091	if (desc == NULL) {
7092		/*
7093		 * If we're passed a NULL description, we're being asked to
7094		 * create an ECB with a NULL probe.
7095		 */
7096		(void) dtrace_ecb_create_enable(NULL, enab);
7097		return (0);
7098	}
7099
7100	dtrace_probekey(desc, &pkey);
7101	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7102	    &priv, &uid, &zoneid);
7103
7104	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7105	    enab));
7106}
7107
7108/*
7109 * DTrace Helper Provider Functions
7110 */
7111static void
7112dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7113{
7114	attr->dtat_name = DOF_ATTR_NAME(dofattr);
7115	attr->dtat_data = DOF_ATTR_DATA(dofattr);
7116	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7117}
7118
7119static void
7120dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7121    const dof_provider_t *dofprov, char *strtab)
7122{
7123	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7124	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7125	    dofprov->dofpv_provattr);
7126	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
7127	    dofprov->dofpv_modattr);
7128	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
7129	    dofprov->dofpv_funcattr);
7130	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
7131	    dofprov->dofpv_nameattr);
7132	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
7133	    dofprov->dofpv_argsattr);
7134}
7135
7136static void
7137dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7138{
7139	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7140	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7141	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
7142	dof_provider_t *provider;
7143	dof_probe_t *probe;
7144	uint32_t *off, *enoff;
7145	uint8_t *arg;
7146	char *strtab;
7147	uint_t i, nprobes;
7148	dtrace_helper_provdesc_t dhpv;
7149	dtrace_helper_probedesc_t dhpb;
7150	dtrace_meta_t *meta = dtrace_meta_pid;
7151	dtrace_mops_t *mops = &meta->dtm_mops;
7152	void *parg;
7153
7154	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7155	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7156	    provider->dofpv_strtab * dof->dofh_secsize);
7157	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7158	    provider->dofpv_probes * dof->dofh_secsize);
7159	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7160	    provider->dofpv_prargs * dof->dofh_secsize);
7161	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7162	    provider->dofpv_proffs * dof->dofh_secsize);
7163
7164	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7165	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
7166	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
7167	enoff = NULL;
7168
7169	/*
7170	 * See dtrace_helper_provider_validate().
7171	 */
7172	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
7173	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
7174		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7175		    provider->dofpv_prenoffs * dof->dofh_secsize);
7176		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
7177	}
7178
7179	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
7180
7181	/*
7182	 * Create the provider.
7183	 */
7184	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7185
7186	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
7187		return;
7188
7189	meta->dtm_count++;
7190
7191	/*
7192	 * Create the probes.
7193	 */
7194	for (i = 0; i < nprobes; i++) {
7195		probe = (dof_probe_t *)(uintptr_t)(daddr +
7196		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
7197
7198		dhpb.dthpb_mod = dhp->dofhp_mod;
7199		dhpb.dthpb_func = strtab + probe->dofpr_func;
7200		dhpb.dthpb_name = strtab + probe->dofpr_name;
7201		dhpb.dthpb_base = probe->dofpr_addr;
7202		dhpb.dthpb_offs = off + probe->dofpr_offidx;
7203		dhpb.dthpb_noffs = probe->dofpr_noffs;
7204		if (enoff != NULL) {
7205			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
7206			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
7207		} else {
7208			dhpb.dthpb_enoffs = NULL;
7209			dhpb.dthpb_nenoffs = 0;
7210		}
7211		dhpb.dthpb_args = arg + probe->dofpr_argidx;
7212		dhpb.dthpb_nargc = probe->dofpr_nargc;
7213		dhpb.dthpb_xargc = probe->dofpr_xargc;
7214		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
7215		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
7216
7217		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
7218	}
7219}
7220
7221static void
7222dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
7223{
7224	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7225	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7226	int i;
7227
7228	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7229
7230	for (i = 0; i < dof->dofh_secnum; i++) {
7231		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7232		    dof->dofh_secoff + i * dof->dofh_secsize);
7233
7234		if (sec->dofs_type != DOF_SECT_PROVIDER)
7235			continue;
7236
7237		dtrace_helper_provide_one(dhp, sec, pid);
7238	}
7239
7240	/*
7241	 * We may have just created probes, so we must now rematch against
7242	 * any retained enablings.  Note that this call will acquire both
7243	 * cpu_lock and dtrace_lock; the fact that we are holding
7244	 * dtrace_meta_lock now is what defines the ordering with respect to
7245	 * these three locks.
7246	 */
7247	dtrace_enabling_matchall();
7248}
7249
7250static void
7251dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7252{
7253	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7254	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7255	dof_sec_t *str_sec;
7256	dof_provider_t *provider;
7257	char *strtab;
7258	dtrace_helper_provdesc_t dhpv;
7259	dtrace_meta_t *meta = dtrace_meta_pid;
7260	dtrace_mops_t *mops = &meta->dtm_mops;
7261
7262	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7263	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7264	    provider->dofpv_strtab * dof->dofh_secsize);
7265
7266	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7267
7268	/*
7269	 * Create the provider.
7270	 */
7271	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7272
7273	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
7274
7275	meta->dtm_count--;
7276}
7277
7278static void
7279dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
7280{
7281	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7282	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7283	int i;
7284
7285	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7286
7287	for (i = 0; i < dof->dofh_secnum; i++) {
7288		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7289		    dof->dofh_secoff + i * dof->dofh_secsize);
7290
7291		if (sec->dofs_type != DOF_SECT_PROVIDER)
7292			continue;
7293
7294		dtrace_helper_provider_remove_one(dhp, sec, pid);
7295	}
7296}
7297
7298/*
7299 * DTrace Meta Provider-to-Framework API Functions
7300 *
7301 * These functions implement the Meta Provider-to-Framework API, as described
7302 * in <sys/dtrace.h>.
7303 */
7304int
7305dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
7306    dtrace_meta_provider_id_t *idp)
7307{
7308	dtrace_meta_t *meta;
7309	dtrace_helpers_t *help, *next;
7310	int i;
7311
7312	*idp = DTRACE_METAPROVNONE;
7313
7314	/*
7315	 * We strictly don't need the name, but we hold onto it for
7316	 * debuggability. All hail error queues!
7317	 */
7318	if (name == NULL) {
7319		cmn_err(CE_WARN, "failed to register meta-provider: "
7320		    "invalid name");
7321		return (EINVAL);
7322	}
7323
7324	if (mops == NULL ||
7325	    mops->dtms_create_probe == NULL ||
7326	    mops->dtms_provide_pid == NULL ||
7327	    mops->dtms_remove_pid == NULL) {
7328		cmn_err(CE_WARN, "failed to register meta-register %s: "
7329		    "invalid ops", name);
7330		return (EINVAL);
7331	}
7332
7333	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
7334	meta->dtm_mops = *mops;
7335	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7336	(void) strcpy(meta->dtm_name, name);
7337	meta->dtm_arg = arg;
7338
7339	mutex_enter(&dtrace_meta_lock);
7340	mutex_enter(&dtrace_lock);
7341
7342	if (dtrace_meta_pid != NULL) {
7343		mutex_exit(&dtrace_lock);
7344		mutex_exit(&dtrace_meta_lock);
7345		cmn_err(CE_WARN, "failed to register meta-register %s: "
7346		    "user-land meta-provider exists", name);
7347		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
7348		kmem_free(meta, sizeof (dtrace_meta_t));
7349		return (EINVAL);
7350	}
7351
7352	dtrace_meta_pid = meta;
7353	*idp = (dtrace_meta_provider_id_t)meta;
7354
7355	/*
7356	 * If there are providers and probes ready to go, pass them
7357	 * off to the new meta provider now.
7358	 */
7359
7360	help = dtrace_deferred_pid;
7361	dtrace_deferred_pid = NULL;
7362
7363	mutex_exit(&dtrace_lock);
7364
7365	while (help != NULL) {
7366		for (i = 0; i < help->dthps_nprovs; i++) {
7367			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
7368			    help->dthps_pid);
7369		}
7370
7371		next = help->dthps_next;
7372		help->dthps_next = NULL;
7373		help->dthps_prev = NULL;
7374		help->dthps_deferred = 0;
7375		help = next;
7376	}
7377
7378	mutex_exit(&dtrace_meta_lock);
7379
7380	return (0);
7381}
7382
7383int
7384dtrace_meta_unregister(dtrace_meta_provider_id_t id)
7385{
7386	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
7387
7388	mutex_enter(&dtrace_meta_lock);
7389	mutex_enter(&dtrace_lock);
7390
7391	if (old == dtrace_meta_pid) {
7392		pp = &dtrace_meta_pid;
7393	} else {
7394		panic("attempt to unregister non-existent "
7395		    "dtrace meta-provider %p\n", (void *)old);
7396	}
7397
7398	if (old->dtm_count != 0) {
7399		mutex_exit(&dtrace_lock);
7400		mutex_exit(&dtrace_meta_lock);
7401		return (EBUSY);
7402	}
7403
7404	*pp = NULL;
7405
7406	mutex_exit(&dtrace_lock);
7407	mutex_exit(&dtrace_meta_lock);
7408
7409	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
7410	kmem_free(old, sizeof (dtrace_meta_t));
7411
7412	return (0);
7413}
7414
7415
7416/*
7417 * DTrace DIF Object Functions
7418 */
7419static int
7420dtrace_difo_err(uint_t pc, const char *format, ...)
7421{
7422	if (dtrace_err_verbose) {
7423		va_list alist;
7424
7425		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
7426		va_start(alist, format);
7427		(void) vuprintf(format, alist);
7428		va_end(alist);
7429	}
7430
7431#ifdef DTRACE_ERRDEBUG
7432	dtrace_errdebug(format);
7433#endif
7434	return (1);
7435}
7436
7437/*
7438 * Validate a DTrace DIF object by checking the IR instructions.  The following
7439 * rules are currently enforced by dtrace_difo_validate():
7440 *
7441 * 1. Each instruction must have a valid opcode
7442 * 2. Each register, string, variable, or subroutine reference must be valid
7443 * 3. No instruction can modify register %r0 (must be zero)
7444 * 4. All instruction reserved bits must be set to zero
7445 * 5. The last instruction must be a "ret" instruction
7446 * 6. All branch targets must reference a valid instruction _after_ the branch
7447 */
7448static int
7449dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
7450    cred_t *cr)
7451{
7452	int err = 0, i;
7453	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7454	int kcheckload;
7455	uint_t pc;
7456
7457	kcheckload = cr == NULL ||
7458	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
7459
7460	dp->dtdo_destructive = 0;
7461
7462	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
7463		dif_instr_t instr = dp->dtdo_buf[pc];
7464
7465		uint_t r1 = DIF_INSTR_R1(instr);
7466		uint_t r2 = DIF_INSTR_R2(instr);
7467		uint_t rd = DIF_INSTR_RD(instr);
7468		uint_t rs = DIF_INSTR_RS(instr);
7469		uint_t label = DIF_INSTR_LABEL(instr);
7470		uint_t v = DIF_INSTR_VAR(instr);
7471		uint_t subr = DIF_INSTR_SUBR(instr);
7472		uint_t type = DIF_INSTR_TYPE(instr);
7473		uint_t op = DIF_INSTR_OP(instr);
7474
7475		switch (op) {
7476		case DIF_OP_OR:
7477		case DIF_OP_XOR:
7478		case DIF_OP_AND:
7479		case DIF_OP_SLL:
7480		case DIF_OP_SRL:
7481		case DIF_OP_SRA:
7482		case DIF_OP_SUB:
7483		case DIF_OP_ADD:
7484		case DIF_OP_MUL:
7485		case DIF_OP_SDIV:
7486		case DIF_OP_UDIV:
7487		case DIF_OP_SREM:
7488		case DIF_OP_UREM:
7489		case DIF_OP_COPYS:
7490			if (r1 >= nregs)
7491				err += efunc(pc, "invalid register %u\n", r1);
7492			if (r2 >= nregs)
7493				err += efunc(pc, "invalid register %u\n", r2);
7494			if (rd >= nregs)
7495				err += efunc(pc, "invalid register %u\n", rd);
7496			if (rd == 0)
7497				err += efunc(pc, "cannot write to %r0\n");
7498			break;
7499		case DIF_OP_NOT:
7500		case DIF_OP_MOV:
7501		case DIF_OP_ALLOCS:
7502			if (r1 >= nregs)
7503				err += efunc(pc, "invalid register %u\n", r1);
7504			if (r2 != 0)
7505				err += efunc(pc, "non-zero reserved bits\n");
7506			if (rd >= nregs)
7507				err += efunc(pc, "invalid register %u\n", rd);
7508			if (rd == 0)
7509				err += efunc(pc, "cannot write to %r0\n");
7510			break;
7511		case DIF_OP_LDSB:
7512		case DIF_OP_LDSH:
7513		case DIF_OP_LDSW:
7514		case DIF_OP_LDUB:
7515		case DIF_OP_LDUH:
7516		case DIF_OP_LDUW:
7517		case DIF_OP_LDX:
7518			if (r1 >= nregs)
7519				err += efunc(pc, "invalid register %u\n", r1);
7520			if (r2 != 0)
7521				err += efunc(pc, "non-zero reserved bits\n");
7522			if (rd >= nregs)
7523				err += efunc(pc, "invalid register %u\n", rd);
7524			if (rd == 0)
7525				err += efunc(pc, "cannot write to %r0\n");
7526			if (kcheckload)
7527				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
7528				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
7529			break;
7530		case DIF_OP_RLDSB:
7531		case DIF_OP_RLDSH:
7532		case DIF_OP_RLDSW:
7533		case DIF_OP_RLDUB:
7534		case DIF_OP_RLDUH:
7535		case DIF_OP_RLDUW:
7536		case DIF_OP_RLDX:
7537			if (r1 >= nregs)
7538				err += efunc(pc, "invalid register %u\n", r1);
7539			if (r2 != 0)
7540				err += efunc(pc, "non-zero reserved bits\n");
7541			if (rd >= nregs)
7542				err += efunc(pc, "invalid register %u\n", rd);
7543			if (rd == 0)
7544				err += efunc(pc, "cannot write to %r0\n");
7545			break;
7546		case DIF_OP_ULDSB:
7547		case DIF_OP_ULDSH:
7548		case DIF_OP_ULDSW:
7549		case DIF_OP_ULDUB:
7550		case DIF_OP_ULDUH:
7551		case DIF_OP_ULDUW:
7552		case DIF_OP_ULDX:
7553			if (r1 >= nregs)
7554				err += efunc(pc, "invalid register %u\n", r1);
7555			if (r2 != 0)
7556				err += efunc(pc, "non-zero reserved bits\n");
7557			if (rd >= nregs)
7558				err += efunc(pc, "invalid register %u\n", rd);
7559			if (rd == 0)
7560				err += efunc(pc, "cannot write to %r0\n");
7561			break;
7562		case DIF_OP_STB:
7563		case DIF_OP_STH:
7564		case DIF_OP_STW:
7565		case DIF_OP_STX:
7566			if (r1 >= nregs)
7567				err += efunc(pc, "invalid register %u\n", r1);
7568			if (r2 != 0)
7569				err += efunc(pc, "non-zero reserved bits\n");
7570			if (rd >= nregs)
7571				err += efunc(pc, "invalid register %u\n", rd);
7572			if (rd == 0)
7573				err += efunc(pc, "cannot write to 0 address\n");
7574			break;
7575		case DIF_OP_CMP:
7576		case DIF_OP_SCMP:
7577			if (r1 >= nregs)
7578				err += efunc(pc, "invalid register %u\n", r1);
7579			if (r2 >= nregs)
7580				err += efunc(pc, "invalid register %u\n", r2);
7581			if (rd != 0)
7582				err += efunc(pc, "non-zero reserved bits\n");
7583			break;
7584		case DIF_OP_TST:
7585			if (r1 >= nregs)
7586				err += efunc(pc, "invalid register %u\n", r1);
7587			if (r2 != 0 || rd != 0)
7588				err += efunc(pc, "non-zero reserved bits\n");
7589			break;
7590		case DIF_OP_BA:
7591		case DIF_OP_BE:
7592		case DIF_OP_BNE:
7593		case DIF_OP_BG:
7594		case DIF_OP_BGU:
7595		case DIF_OP_BGE:
7596		case DIF_OP_BGEU:
7597		case DIF_OP_BL:
7598		case DIF_OP_BLU:
7599		case DIF_OP_BLE:
7600		case DIF_OP_BLEU:
7601			if (label >= dp->dtdo_len) {
7602				err += efunc(pc, "invalid branch target %u\n",
7603				    label);
7604			}
7605			if (label <= pc) {
7606				err += efunc(pc, "backward branch to %u\n",
7607				    label);
7608			}
7609			break;
7610		case DIF_OP_RET:
7611			if (r1 != 0 || r2 != 0)
7612				err += efunc(pc, "non-zero reserved bits\n");
7613			if (rd >= nregs)
7614				err += efunc(pc, "invalid register %u\n", rd);
7615			break;
7616		case DIF_OP_NOP:
7617		case DIF_OP_POPTS:
7618		case DIF_OP_FLUSHTS:
7619			if (r1 != 0 || r2 != 0 || rd != 0)
7620				err += efunc(pc, "non-zero reserved bits\n");
7621			break;
7622		case DIF_OP_SETX:
7623			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
7624				err += efunc(pc, "invalid integer ref %u\n",
7625				    DIF_INSTR_INTEGER(instr));
7626			}
7627			if (rd >= nregs)
7628				err += efunc(pc, "invalid register %u\n", rd);
7629			if (rd == 0)
7630				err += efunc(pc, "cannot write to %r0\n");
7631			break;
7632		case DIF_OP_SETS:
7633			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
7634				err += efunc(pc, "invalid string ref %u\n",
7635				    DIF_INSTR_STRING(instr));
7636			}
7637			if (rd >= nregs)
7638				err += efunc(pc, "invalid register %u\n", rd);
7639			if (rd == 0)
7640				err += efunc(pc, "cannot write to %r0\n");
7641			break;
7642		case DIF_OP_LDGA:
7643		case DIF_OP_LDTA:
7644			if (r1 > DIF_VAR_ARRAY_MAX)
7645				err += efunc(pc, "invalid array %u\n", r1);
7646			if (r2 >= nregs)
7647				err += efunc(pc, "invalid register %u\n", r2);
7648			if (rd >= nregs)
7649				err += efunc(pc, "invalid register %u\n", rd);
7650			if (rd == 0)
7651				err += efunc(pc, "cannot write to %r0\n");
7652			break;
7653		case DIF_OP_LDGS:
7654		case DIF_OP_LDTS:
7655		case DIF_OP_LDLS:
7656		case DIF_OP_LDGAA:
7657		case DIF_OP_LDTAA:
7658			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
7659				err += efunc(pc, "invalid variable %u\n", v);
7660			if (rd >= nregs)
7661				err += efunc(pc, "invalid register %u\n", rd);
7662			if (rd == 0)
7663				err += efunc(pc, "cannot write to %r0\n");
7664			break;
7665		case DIF_OP_STGS:
7666		case DIF_OP_STTS:
7667		case DIF_OP_STLS:
7668		case DIF_OP_STGAA:
7669		case DIF_OP_STTAA:
7670			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
7671				err += efunc(pc, "invalid variable %u\n", v);
7672			if (rs >= nregs)
7673				err += efunc(pc, "invalid register %u\n", rd);
7674			break;
7675		case DIF_OP_CALL:
7676			if (subr > DIF_SUBR_MAX)
7677				err += efunc(pc, "invalid subr %u\n", subr);
7678			if (rd >= nregs)
7679				err += efunc(pc, "invalid register %u\n", rd);
7680			if (rd == 0)
7681				err += efunc(pc, "cannot write to %r0\n");
7682
7683			if (subr == DIF_SUBR_COPYOUT ||
7684			    subr == DIF_SUBR_COPYOUTSTR) {
7685				dp->dtdo_destructive = 1;
7686			}
7687			break;
7688		case DIF_OP_PUSHTR:
7689			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
7690				err += efunc(pc, "invalid ref type %u\n", type);
7691			if (r2 >= nregs)
7692				err += efunc(pc, "invalid register %u\n", r2);
7693			if (rs >= nregs)
7694				err += efunc(pc, "invalid register %u\n", rs);
7695			break;
7696		case DIF_OP_PUSHTV:
7697			if (type != DIF_TYPE_CTF)
7698				err += efunc(pc, "invalid val type %u\n", type);
7699			if (r2 >= nregs)
7700				err += efunc(pc, "invalid register %u\n", r2);
7701			if (rs >= nregs)
7702				err += efunc(pc, "invalid register %u\n", rs);
7703			break;
7704		default:
7705			err += efunc(pc, "invalid opcode %u\n",
7706			    DIF_INSTR_OP(instr));
7707		}
7708	}
7709
7710	if (dp->dtdo_len != 0 &&
7711	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
7712		err += efunc(dp->dtdo_len - 1,
7713		    "expected 'ret' as last DIF instruction\n");
7714	}
7715
7716	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
7717		/*
7718		 * If we're not returning by reference, the size must be either
7719		 * 0 or the size of one of the base types.
7720		 */
7721		switch (dp->dtdo_rtype.dtdt_size) {
7722		case 0:
7723		case sizeof (uint8_t):
7724		case sizeof (uint16_t):
7725		case sizeof (uint32_t):
7726		case sizeof (uint64_t):
7727			break;
7728
7729		default:
7730			err += efunc(dp->dtdo_len - 1, "bad return size");
7731		}
7732	}
7733
7734	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
7735		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
7736		dtrace_diftype_t *vt, *et;
7737		uint_t id, ndx;
7738
7739		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
7740		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
7741		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
7742			err += efunc(i, "unrecognized variable scope %d\n",
7743			    v->dtdv_scope);
7744			break;
7745		}
7746
7747		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
7748		    v->dtdv_kind != DIFV_KIND_SCALAR) {
7749			err += efunc(i, "unrecognized variable type %d\n",
7750			    v->dtdv_kind);
7751			break;
7752		}
7753
7754		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
7755			err += efunc(i, "%d exceeds variable id limit\n", id);
7756			break;
7757		}
7758
7759		if (id < DIF_VAR_OTHER_UBASE)
7760			continue;
7761
7762		/*
7763		 * For user-defined variables, we need to check that this
7764		 * definition is identical to any previous definition that we
7765		 * encountered.
7766		 */
7767		ndx = id - DIF_VAR_OTHER_UBASE;
7768
7769		switch (v->dtdv_scope) {
7770		case DIFV_SCOPE_GLOBAL:
7771			if (ndx < vstate->dtvs_nglobals) {
7772				dtrace_statvar_t *svar;
7773
7774				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
7775					existing = &svar->dtsv_var;
7776			}
7777
7778			break;
7779
7780		case DIFV_SCOPE_THREAD:
7781			if (ndx < vstate->dtvs_ntlocals)
7782				existing = &vstate->dtvs_tlocals[ndx];
7783			break;
7784
7785		case DIFV_SCOPE_LOCAL:
7786			if (ndx < vstate->dtvs_nlocals) {
7787				dtrace_statvar_t *svar;
7788
7789				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
7790					existing = &svar->dtsv_var;
7791			}
7792
7793			break;
7794		}
7795
7796		vt = &v->dtdv_type;
7797
7798		if (vt->dtdt_flags & DIF_TF_BYREF) {
7799			if (vt->dtdt_size == 0) {
7800				err += efunc(i, "zero-sized variable\n");
7801				break;
7802			}
7803
7804			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
7805			    vt->dtdt_size > dtrace_global_maxsize) {
7806				err += efunc(i, "oversized by-ref global\n");
7807				break;
7808			}
7809		}
7810
7811		if (existing == NULL || existing->dtdv_id == 0)
7812			continue;
7813
7814		ASSERT(existing->dtdv_id == v->dtdv_id);
7815		ASSERT(existing->dtdv_scope == v->dtdv_scope);
7816
7817		if (existing->dtdv_kind != v->dtdv_kind)
7818			err += efunc(i, "%d changed variable kind\n", id);
7819
7820		et = &existing->dtdv_type;
7821
7822		if (vt->dtdt_flags != et->dtdt_flags) {
7823			err += efunc(i, "%d changed variable type flags\n", id);
7824			break;
7825		}
7826
7827		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
7828			err += efunc(i, "%d changed variable type size\n", id);
7829			break;
7830		}
7831	}
7832
7833	return (err);
7834}
7835
7836/*
7837 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
7838 * are much more constrained than normal DIFOs.  Specifically, they may
7839 * not:
7840 *
7841 * 1. Make calls to subroutines other than copyin(), copyinstr() or
7842 *    miscellaneous string routines
7843 * 2. Access DTrace variables other than the args[] array, and the
7844 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
7845 * 3. Have thread-local variables.
7846 * 4. Have dynamic variables.
7847 */
7848static int
7849dtrace_difo_validate_helper(dtrace_difo_t *dp)
7850{
7851	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7852	int err = 0;
7853	uint_t pc;
7854
7855	for (pc = 0; pc < dp->dtdo_len; pc++) {
7856		dif_instr_t instr = dp->dtdo_buf[pc];
7857
7858		uint_t v = DIF_INSTR_VAR(instr);
7859		uint_t subr = DIF_INSTR_SUBR(instr);
7860		uint_t op = DIF_INSTR_OP(instr);
7861
7862		switch (op) {
7863		case DIF_OP_OR:
7864		case DIF_OP_XOR:
7865		case DIF_OP_AND:
7866		case DIF_OP_SLL:
7867		case DIF_OP_SRL:
7868		case DIF_OP_SRA:
7869		case DIF_OP_SUB:
7870		case DIF_OP_ADD:
7871		case DIF_OP_MUL:
7872		case DIF_OP_SDIV:
7873		case DIF_OP_UDIV:
7874		case DIF_OP_SREM:
7875		case DIF_OP_UREM:
7876		case DIF_OP_COPYS:
7877		case DIF_OP_NOT:
7878		case DIF_OP_MOV:
7879		case DIF_OP_RLDSB:
7880		case DIF_OP_RLDSH:
7881		case DIF_OP_RLDSW:
7882		case DIF_OP_RLDUB:
7883		case DIF_OP_RLDUH:
7884		case DIF_OP_RLDUW:
7885		case DIF_OP_RLDX:
7886		case DIF_OP_ULDSB:
7887		case DIF_OP_ULDSH:
7888		case DIF_OP_ULDSW:
7889		case DIF_OP_ULDUB:
7890		case DIF_OP_ULDUH:
7891		case DIF_OP_ULDUW:
7892		case DIF_OP_ULDX:
7893		case DIF_OP_STB:
7894		case DIF_OP_STH:
7895		case DIF_OP_STW:
7896		case DIF_OP_STX:
7897		case DIF_OP_ALLOCS:
7898		case DIF_OP_CMP:
7899		case DIF_OP_SCMP:
7900		case DIF_OP_TST:
7901		case DIF_OP_BA:
7902		case DIF_OP_BE:
7903		case DIF_OP_BNE:
7904		case DIF_OP_BG:
7905		case DIF_OP_BGU:
7906		case DIF_OP_BGE:
7907		case DIF_OP_BGEU:
7908		case DIF_OP_BL:
7909		case DIF_OP_BLU:
7910		case DIF_OP_BLE:
7911		case DIF_OP_BLEU:
7912		case DIF_OP_RET:
7913		case DIF_OP_NOP:
7914		case DIF_OP_POPTS:
7915		case DIF_OP_FLUSHTS:
7916		case DIF_OP_SETX:
7917		case DIF_OP_SETS:
7918		case DIF_OP_LDGA:
7919		case DIF_OP_LDLS:
7920		case DIF_OP_STGS:
7921		case DIF_OP_STLS:
7922		case DIF_OP_PUSHTR:
7923		case DIF_OP_PUSHTV:
7924			break;
7925
7926		case DIF_OP_LDGS:
7927			if (v >= DIF_VAR_OTHER_UBASE)
7928				break;
7929
7930			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
7931				break;
7932
7933			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
7934			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
7935			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
7936			    v == DIF_VAR_UID || v == DIF_VAR_GID)
7937				break;
7938
7939			err += efunc(pc, "illegal variable %u\n", v);
7940			break;
7941
7942		case DIF_OP_LDTA:
7943		case DIF_OP_LDTS:
7944		case DIF_OP_LDGAA:
7945		case DIF_OP_LDTAA:
7946			err += efunc(pc, "illegal dynamic variable load\n");
7947			break;
7948
7949		case DIF_OP_STTS:
7950		case DIF_OP_STGAA:
7951		case DIF_OP_STTAA:
7952			err += efunc(pc, "illegal dynamic variable store\n");
7953			break;
7954
7955		case DIF_OP_CALL:
7956			if (subr == DIF_SUBR_ALLOCA ||
7957			    subr == DIF_SUBR_BCOPY ||
7958			    subr == DIF_SUBR_COPYIN ||
7959			    subr == DIF_SUBR_COPYINTO ||
7960			    subr == DIF_SUBR_COPYINSTR ||
7961			    subr == DIF_SUBR_INDEX ||
7962			    subr == DIF_SUBR_LLTOSTR ||
7963			    subr == DIF_SUBR_RINDEX ||
7964			    subr == DIF_SUBR_STRCHR ||
7965			    subr == DIF_SUBR_STRJOIN ||
7966			    subr == DIF_SUBR_STRRCHR ||
7967			    subr == DIF_SUBR_STRSTR ||
7968			    subr == DIF_SUBR_HTONS ||
7969			    subr == DIF_SUBR_HTONL ||
7970			    subr == DIF_SUBR_HTONLL ||
7971			    subr == DIF_SUBR_NTOHS ||
7972			    subr == DIF_SUBR_NTOHL ||
7973			    subr == DIF_SUBR_NTOHLL)
7974				break;
7975
7976			err += efunc(pc, "invalid subr %u\n", subr);
7977			break;
7978
7979		default:
7980			err += efunc(pc, "invalid opcode %u\n",
7981			    DIF_INSTR_OP(instr));
7982		}
7983	}
7984
7985	return (err);
7986}
7987
7988/*
7989 * Returns 1 if the expression in the DIF object can be cached on a per-thread
7990 * basis; 0 if not.
7991 */
7992static int
7993dtrace_difo_cacheable(dtrace_difo_t *dp)
7994{
7995	int i;
7996
7997	if (dp == NULL)
7998		return (0);
7999
8000	for (i = 0; i < dp->dtdo_varlen; i++) {
8001		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8002
8003		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8004			continue;
8005
8006		switch (v->dtdv_id) {
8007		case DIF_VAR_CURTHREAD:
8008		case DIF_VAR_PID:
8009		case DIF_VAR_TID:
8010		case DIF_VAR_EXECNAME:
8011		case DIF_VAR_ZONENAME:
8012			break;
8013
8014		default:
8015			return (0);
8016		}
8017	}
8018
8019	/*
8020	 * This DIF object may be cacheable.  Now we need to look for any
8021	 * array loading instructions, any memory loading instructions, or
8022	 * any stores to thread-local variables.
8023	 */
8024	for (i = 0; i < dp->dtdo_len; i++) {
8025		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8026
8027		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8028		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8029		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8030		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8031			return (0);
8032	}
8033
8034	return (1);
8035}
8036
8037static void
8038dtrace_difo_hold(dtrace_difo_t *dp)
8039{
8040	int i;
8041
8042	ASSERT(MUTEX_HELD(&dtrace_lock));
8043
8044	dp->dtdo_refcnt++;
8045	ASSERT(dp->dtdo_refcnt != 0);
8046
8047	/*
8048	 * We need to check this DIF object for references to the variable
8049	 * DIF_VAR_VTIMESTAMP.
8050	 */
8051	for (i = 0; i < dp->dtdo_varlen; i++) {
8052		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8053
8054		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8055			continue;
8056
8057		if (dtrace_vtime_references++ == 0)
8058			dtrace_vtime_enable();
8059	}
8060}
8061
8062/*
8063 * This routine calculates the dynamic variable chunksize for a given DIF
8064 * object.  The calculation is not fool-proof, and can probably be tricked by
8065 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8066 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8067 * if a dynamic variable size exceeds the chunksize.
8068 */
8069static void
8070dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8071{
8072	uint64_t sval;
8073	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8074	const dif_instr_t *text = dp->dtdo_buf;
8075	uint_t pc, srd = 0;
8076	uint_t ttop = 0;
8077	size_t size, ksize;
8078	uint_t id, i;
8079
8080	for (pc = 0; pc < dp->dtdo_len; pc++) {
8081		dif_instr_t instr = text[pc];
8082		uint_t op = DIF_INSTR_OP(instr);
8083		uint_t rd = DIF_INSTR_RD(instr);
8084		uint_t r1 = DIF_INSTR_R1(instr);
8085		uint_t nkeys = 0;
8086		uchar_t scope;
8087
8088		dtrace_key_t *key = tupregs;
8089
8090		switch (op) {
8091		case DIF_OP_SETX:
8092			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8093			srd = rd;
8094			continue;
8095
8096		case DIF_OP_STTS:
8097			key = &tupregs[DIF_DTR_NREGS];
8098			key[0].dttk_size = 0;
8099			key[1].dttk_size = 0;
8100			nkeys = 2;
8101			scope = DIFV_SCOPE_THREAD;
8102			break;
8103
8104		case DIF_OP_STGAA:
8105		case DIF_OP_STTAA:
8106			nkeys = ttop;
8107
8108			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
8109				key[nkeys++].dttk_size = 0;
8110
8111			key[nkeys++].dttk_size = 0;
8112
8113			if (op == DIF_OP_STTAA) {
8114				scope = DIFV_SCOPE_THREAD;
8115			} else {
8116				scope = DIFV_SCOPE_GLOBAL;
8117			}
8118
8119			break;
8120
8121		case DIF_OP_PUSHTR:
8122			if (ttop == DIF_DTR_NREGS)
8123				return;
8124
8125			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
8126				/*
8127				 * If the register for the size of the "pushtr"
8128				 * is %r0 (or the value is 0) and the type is
8129				 * a string, we'll use the system-wide default
8130				 * string size.
8131				 */
8132				tupregs[ttop++].dttk_size =
8133				    dtrace_strsize_default;
8134			} else {
8135				if (srd == 0)
8136					return;
8137
8138				tupregs[ttop++].dttk_size = sval;
8139			}
8140
8141			break;
8142
8143		case DIF_OP_PUSHTV:
8144			if (ttop == DIF_DTR_NREGS)
8145				return;
8146
8147			tupregs[ttop++].dttk_size = 0;
8148			break;
8149
8150		case DIF_OP_FLUSHTS:
8151			ttop = 0;
8152			break;
8153
8154		case DIF_OP_POPTS:
8155			if (ttop != 0)
8156				ttop--;
8157			break;
8158		}
8159
8160		sval = 0;
8161		srd = 0;
8162
8163		if (nkeys == 0)
8164			continue;
8165
8166		/*
8167		 * We have a dynamic variable allocation; calculate its size.
8168		 */
8169		for (ksize = 0, i = 0; i < nkeys; i++)
8170			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
8171
8172		size = sizeof (dtrace_dynvar_t);
8173		size += sizeof (dtrace_key_t) * (nkeys - 1);
8174		size += ksize;
8175
8176		/*
8177		 * Now we need to determine the size of the stored data.
8178		 */
8179		id = DIF_INSTR_VAR(instr);
8180
8181		for (i = 0; i < dp->dtdo_varlen; i++) {
8182			dtrace_difv_t *v = &dp->dtdo_vartab[i];
8183
8184			if (v->dtdv_id == id && v->dtdv_scope == scope) {
8185				size += v->dtdv_type.dtdt_size;
8186				break;
8187			}
8188		}
8189
8190		if (i == dp->dtdo_varlen)
8191			return;
8192
8193		/*
8194		 * We have the size.  If this is larger than the chunk size
8195		 * for our dynamic variable state, reset the chunk size.
8196		 */
8197		size = P2ROUNDUP(size, sizeof (uint64_t));
8198
8199		if (size > vstate->dtvs_dynvars.dtds_chunksize)
8200			vstate->dtvs_dynvars.dtds_chunksize = size;
8201	}
8202}
8203
8204static void
8205dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8206{
8207	int i, oldsvars, osz, nsz, otlocals, ntlocals;
8208	uint_t id;
8209
8210	ASSERT(MUTEX_HELD(&dtrace_lock));
8211	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
8212
8213	for (i = 0; i < dp->dtdo_varlen; i++) {
8214		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8215		dtrace_statvar_t *svar, ***svarp;
8216		size_t dsize = 0;
8217		uint8_t scope = v->dtdv_scope;
8218		int *np;
8219
8220		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8221			continue;
8222
8223		id -= DIF_VAR_OTHER_UBASE;
8224
8225		switch (scope) {
8226		case DIFV_SCOPE_THREAD:
8227			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
8228				dtrace_difv_t *tlocals;
8229
8230				if ((ntlocals = (otlocals << 1)) == 0)
8231					ntlocals = 1;
8232
8233				osz = otlocals * sizeof (dtrace_difv_t);
8234				nsz = ntlocals * sizeof (dtrace_difv_t);
8235
8236				tlocals = kmem_zalloc(nsz, KM_SLEEP);
8237
8238				if (osz != 0) {
8239					bcopy(vstate->dtvs_tlocals,
8240					    tlocals, osz);
8241					kmem_free(vstate->dtvs_tlocals, osz);
8242				}
8243
8244				vstate->dtvs_tlocals = tlocals;
8245				vstate->dtvs_ntlocals = ntlocals;
8246			}
8247
8248			vstate->dtvs_tlocals[id] = *v;
8249			continue;
8250
8251		case DIFV_SCOPE_LOCAL:
8252			np = &vstate->dtvs_nlocals;
8253			svarp = &vstate->dtvs_locals;
8254
8255			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8256				dsize = NCPU * (v->dtdv_type.dtdt_size +
8257				    sizeof (uint64_t));
8258			else
8259				dsize = NCPU * sizeof (uint64_t);
8260
8261			break;
8262
8263		case DIFV_SCOPE_GLOBAL:
8264			np = &vstate->dtvs_nglobals;
8265			svarp = &vstate->dtvs_globals;
8266
8267			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8268				dsize = v->dtdv_type.dtdt_size +
8269				    sizeof (uint64_t);
8270
8271			break;
8272
8273		default:
8274			ASSERT(0);
8275		}
8276
8277		while (id >= (oldsvars = *np)) {
8278			dtrace_statvar_t **statics;
8279			int newsvars, oldsize, newsize;
8280
8281			if ((newsvars = (oldsvars << 1)) == 0)
8282				newsvars = 1;
8283
8284			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
8285			newsize = newsvars * sizeof (dtrace_statvar_t *);
8286
8287			statics = kmem_zalloc(newsize, KM_SLEEP);
8288
8289			if (oldsize != 0) {
8290				bcopy(*svarp, statics, oldsize);
8291				kmem_free(*svarp, oldsize);
8292			}
8293
8294			*svarp = statics;
8295			*np = newsvars;
8296		}
8297
8298		if ((svar = (*svarp)[id]) == NULL) {
8299			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
8300			svar->dtsv_var = *v;
8301
8302			if ((svar->dtsv_size = dsize) != 0) {
8303				svar->dtsv_data = (uint64_t)(uintptr_t)
8304				    kmem_zalloc(dsize, KM_SLEEP);
8305			}
8306
8307			(*svarp)[id] = svar;
8308		}
8309
8310		svar->dtsv_refcnt++;
8311	}
8312
8313	dtrace_difo_chunksize(dp, vstate);
8314	dtrace_difo_hold(dp);
8315}
8316
8317static dtrace_difo_t *
8318dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8319{
8320	dtrace_difo_t *new;
8321	size_t sz;
8322
8323	ASSERT(dp->dtdo_buf != NULL);
8324	ASSERT(dp->dtdo_refcnt != 0);
8325
8326	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
8327
8328	ASSERT(dp->dtdo_buf != NULL);
8329	sz = dp->dtdo_len * sizeof (dif_instr_t);
8330	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
8331	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
8332	new->dtdo_len = dp->dtdo_len;
8333
8334	if (dp->dtdo_strtab != NULL) {
8335		ASSERT(dp->dtdo_strlen != 0);
8336		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
8337		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
8338		new->dtdo_strlen = dp->dtdo_strlen;
8339	}
8340
8341	if (dp->dtdo_inttab != NULL) {
8342		ASSERT(dp->dtdo_intlen != 0);
8343		sz = dp->dtdo_intlen * sizeof (uint64_t);
8344		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
8345		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
8346		new->dtdo_intlen = dp->dtdo_intlen;
8347	}
8348
8349	if (dp->dtdo_vartab != NULL) {
8350		ASSERT(dp->dtdo_varlen != 0);
8351		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
8352		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
8353		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
8354		new->dtdo_varlen = dp->dtdo_varlen;
8355	}
8356
8357	dtrace_difo_init(new, vstate);
8358	return (new);
8359}
8360
8361static void
8362dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8363{
8364	int i;
8365
8366	ASSERT(dp->dtdo_refcnt == 0);
8367
8368	for (i = 0; i < dp->dtdo_varlen; i++) {
8369		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8370		dtrace_statvar_t *svar, **svarp;
8371		uint_t id;
8372		uint8_t scope = v->dtdv_scope;
8373		int *np;
8374
8375		switch (scope) {
8376		case DIFV_SCOPE_THREAD:
8377			continue;
8378
8379		case DIFV_SCOPE_LOCAL:
8380			np = &vstate->dtvs_nlocals;
8381			svarp = vstate->dtvs_locals;
8382			break;
8383
8384		case DIFV_SCOPE_GLOBAL:
8385			np = &vstate->dtvs_nglobals;
8386			svarp = vstate->dtvs_globals;
8387			break;
8388
8389		default:
8390			ASSERT(0);
8391		}
8392
8393		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8394			continue;
8395
8396		id -= DIF_VAR_OTHER_UBASE;
8397		ASSERT(id < *np);
8398
8399		svar = svarp[id];
8400		ASSERT(svar != NULL);
8401		ASSERT(svar->dtsv_refcnt > 0);
8402
8403		if (--svar->dtsv_refcnt > 0)
8404			continue;
8405
8406		if (svar->dtsv_size != 0) {
8407			ASSERT(svar->dtsv_data != NULL);
8408			kmem_free((void *)(uintptr_t)svar->dtsv_data,
8409			    svar->dtsv_size);
8410		}
8411
8412		kmem_free(svar, sizeof (dtrace_statvar_t));
8413		svarp[id] = NULL;
8414	}
8415
8416	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
8417	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
8418	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
8419	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
8420
8421	kmem_free(dp, sizeof (dtrace_difo_t));
8422}
8423
8424static void
8425dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8426{
8427	int i;
8428
8429	ASSERT(MUTEX_HELD(&dtrace_lock));
8430	ASSERT(dp->dtdo_refcnt != 0);
8431
8432	for (i = 0; i < dp->dtdo_varlen; i++) {
8433		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8434
8435		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8436			continue;
8437
8438		ASSERT(dtrace_vtime_references > 0);
8439		if (--dtrace_vtime_references == 0)
8440			dtrace_vtime_disable();
8441	}
8442
8443	if (--dp->dtdo_refcnt == 0)
8444		dtrace_difo_destroy(dp, vstate);
8445}
8446
8447/*
8448 * DTrace Format Functions
8449 */
8450static uint16_t
8451dtrace_format_add(dtrace_state_t *state, char *str)
8452{
8453	char *fmt, **new;
8454	uint16_t ndx, len = strlen(str) + 1;
8455
8456	fmt = kmem_zalloc(len, KM_SLEEP);
8457	bcopy(str, fmt, len);
8458
8459	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
8460		if (state->dts_formats[ndx] == NULL) {
8461			state->dts_formats[ndx] = fmt;
8462			return (ndx + 1);
8463		}
8464	}
8465
8466	if (state->dts_nformats == USHRT_MAX) {
8467		/*
8468		 * This is only likely if a denial-of-service attack is being
8469		 * attempted.  As such, it's okay to fail silently here.
8470		 */
8471		kmem_free(fmt, len);
8472		return (0);
8473	}
8474
8475	/*
8476	 * For simplicity, we always resize the formats array to be exactly the
8477	 * number of formats.
8478	 */
8479	ndx = state->dts_nformats++;
8480	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
8481
8482	if (state->dts_formats != NULL) {
8483		ASSERT(ndx != 0);
8484		bcopy(state->dts_formats, new, ndx * sizeof (char *));
8485		kmem_free(state->dts_formats, ndx * sizeof (char *));
8486	}
8487
8488	state->dts_formats = new;
8489	state->dts_formats[ndx] = fmt;
8490
8491	return (ndx + 1);
8492}
8493
8494static void
8495dtrace_format_remove(dtrace_state_t *state, uint16_t format)
8496{
8497	char *fmt;
8498
8499	ASSERT(state->dts_formats != NULL);
8500	ASSERT(format <= state->dts_nformats);
8501	ASSERT(state->dts_formats[format - 1] != NULL);
8502
8503	fmt = state->dts_formats[format - 1];
8504	kmem_free(fmt, strlen(fmt) + 1);
8505	state->dts_formats[format - 1] = NULL;
8506}
8507
8508static void
8509dtrace_format_destroy(dtrace_state_t *state)
8510{
8511	int i;
8512
8513	if (state->dts_nformats == 0) {
8514		ASSERT(state->dts_formats == NULL);
8515		return;
8516	}
8517
8518	ASSERT(state->dts_formats != NULL);
8519
8520	for (i = 0; i < state->dts_nformats; i++) {
8521		char *fmt = state->dts_formats[i];
8522
8523		if (fmt == NULL)
8524			continue;
8525
8526		kmem_free(fmt, strlen(fmt) + 1);
8527	}
8528
8529	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
8530	state->dts_nformats = 0;
8531	state->dts_formats = NULL;
8532}
8533
8534/*
8535 * DTrace Predicate Functions
8536 */
8537static dtrace_predicate_t *
8538dtrace_predicate_create(dtrace_difo_t *dp)
8539{
8540	dtrace_predicate_t *pred;
8541
8542	ASSERT(MUTEX_HELD(&dtrace_lock));
8543	ASSERT(dp->dtdo_refcnt != 0);
8544
8545	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
8546	pred->dtp_difo = dp;
8547	pred->dtp_refcnt = 1;
8548
8549	if (!dtrace_difo_cacheable(dp))
8550		return (pred);
8551
8552	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
8553		/*
8554		 * This is only theoretically possible -- we have had 2^32
8555		 * cacheable predicates on this machine.  We cannot allow any
8556		 * more predicates to become cacheable:  as unlikely as it is,
8557		 * there may be a thread caching a (now stale) predicate cache
8558		 * ID. (N.B.: the temptation is being successfully resisted to
8559		 * have this cmn_err() "Holy shit -- we executed this code!")
8560		 */
8561		return (pred);
8562	}
8563
8564	pred->dtp_cacheid = dtrace_predcache_id++;
8565
8566	return (pred);
8567}
8568
8569static void
8570dtrace_predicate_hold(dtrace_predicate_t *pred)
8571{
8572	ASSERT(MUTEX_HELD(&dtrace_lock));
8573	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
8574	ASSERT(pred->dtp_refcnt > 0);
8575
8576	pred->dtp_refcnt++;
8577}
8578
8579static void
8580dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
8581{
8582	dtrace_difo_t *dp = pred->dtp_difo;
8583
8584	ASSERT(MUTEX_HELD(&dtrace_lock));
8585	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
8586	ASSERT(pred->dtp_refcnt > 0);
8587
8588	if (--pred->dtp_refcnt == 0) {
8589		dtrace_difo_release(pred->dtp_difo, vstate);
8590		kmem_free(pred, sizeof (dtrace_predicate_t));
8591	}
8592}
8593
8594/*
8595 * DTrace Action Description Functions
8596 */
8597static dtrace_actdesc_t *
8598dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
8599    uint64_t uarg, uint64_t arg)
8600{
8601	dtrace_actdesc_t *act;
8602
8603	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
8604	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
8605
8606	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
8607	act->dtad_kind = kind;
8608	act->dtad_ntuple = ntuple;
8609	act->dtad_uarg = uarg;
8610	act->dtad_arg = arg;
8611	act->dtad_refcnt = 1;
8612
8613	return (act);
8614}
8615
8616static void
8617dtrace_actdesc_hold(dtrace_actdesc_t *act)
8618{
8619	ASSERT(act->dtad_refcnt >= 1);
8620	act->dtad_refcnt++;
8621}
8622
8623static void
8624dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
8625{
8626	dtrace_actkind_t kind = act->dtad_kind;
8627	dtrace_difo_t *dp;
8628
8629	ASSERT(act->dtad_refcnt >= 1);
8630
8631	if (--act->dtad_refcnt != 0)
8632		return;
8633
8634	if ((dp = act->dtad_difo) != NULL)
8635		dtrace_difo_release(dp, vstate);
8636
8637	if (DTRACEACT_ISPRINTFLIKE(kind)) {
8638		char *str = (char *)(uintptr_t)act->dtad_arg;
8639
8640		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
8641		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
8642
8643		if (str != NULL)
8644			kmem_free(str, strlen(str) + 1);
8645	}
8646
8647	kmem_free(act, sizeof (dtrace_actdesc_t));
8648}
8649
8650/*
8651 * DTrace ECB Functions
8652 */
8653static dtrace_ecb_t *
8654dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
8655{
8656	dtrace_ecb_t *ecb;
8657	dtrace_epid_t epid;
8658
8659	ASSERT(MUTEX_HELD(&dtrace_lock));
8660
8661	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
8662	ecb->dte_predicate = NULL;
8663	ecb->dte_probe = probe;
8664
8665	/*
8666	 * The default size is the size of the default action: recording
8667	 * the epid.
8668	 */
8669	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8670	ecb->dte_alignment = sizeof (dtrace_epid_t);
8671
8672	epid = state->dts_epid++;
8673
8674	if (epid - 1 >= state->dts_necbs) {
8675		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
8676		int necbs = state->dts_necbs << 1;
8677
8678		ASSERT(epid == state->dts_necbs + 1);
8679
8680		if (necbs == 0) {
8681			ASSERT(oecbs == NULL);
8682			necbs = 1;
8683		}
8684
8685		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
8686
8687		if (oecbs != NULL)
8688			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
8689
8690		dtrace_membar_producer();
8691		state->dts_ecbs = ecbs;
8692
8693		if (oecbs != NULL) {
8694			/*
8695			 * If this state is active, we must dtrace_sync()
8696			 * before we can free the old dts_ecbs array:  we're
8697			 * coming in hot, and there may be active ring
8698			 * buffer processing (which indexes into the dts_ecbs
8699			 * array) on another CPU.
8700			 */
8701			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
8702				dtrace_sync();
8703
8704			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
8705		}
8706
8707		dtrace_membar_producer();
8708		state->dts_necbs = necbs;
8709	}
8710
8711	ecb->dte_state = state;
8712
8713	ASSERT(state->dts_ecbs[epid - 1] == NULL);
8714	dtrace_membar_producer();
8715	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
8716
8717	return (ecb);
8718}
8719
8720static void
8721dtrace_ecb_enable(dtrace_ecb_t *ecb)
8722{
8723	dtrace_probe_t *probe = ecb->dte_probe;
8724
8725	ASSERT(MUTEX_HELD(&cpu_lock));
8726	ASSERT(MUTEX_HELD(&dtrace_lock));
8727	ASSERT(ecb->dte_next == NULL);
8728
8729	if (probe == NULL) {
8730		/*
8731		 * This is the NULL probe -- there's nothing to do.
8732		 */
8733		return;
8734	}
8735
8736	if (probe->dtpr_ecb == NULL) {
8737		dtrace_provider_t *prov = probe->dtpr_provider;
8738
8739		/*
8740		 * We're the first ECB on this probe.
8741		 */
8742		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
8743
8744		if (ecb->dte_predicate != NULL)
8745			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
8746
8747		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
8748		    probe->dtpr_id, probe->dtpr_arg);
8749	} else {
8750		/*
8751		 * This probe is already active.  Swing the last pointer to
8752		 * point to the new ECB, and issue a dtrace_sync() to assure
8753		 * that all CPUs have seen the change.
8754		 */
8755		ASSERT(probe->dtpr_ecb_last != NULL);
8756		probe->dtpr_ecb_last->dte_next = ecb;
8757		probe->dtpr_ecb_last = ecb;
8758		probe->dtpr_predcache = 0;
8759
8760		dtrace_sync();
8761	}
8762}
8763
8764static void
8765dtrace_ecb_resize(dtrace_ecb_t *ecb)
8766{
8767	uint32_t maxalign = sizeof (dtrace_epid_t);
8768	uint32_t align = sizeof (uint8_t), offs, diff;
8769	dtrace_action_t *act;
8770	int wastuple = 0;
8771	uint32_t aggbase = UINT32_MAX;
8772	dtrace_state_t *state = ecb->dte_state;
8773
8774	/*
8775	 * If we record anything, we always record the epid.  (And we always
8776	 * record it first.)
8777	 */
8778	offs = sizeof (dtrace_epid_t);
8779	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8780
8781	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8782		dtrace_recdesc_t *rec = &act->dta_rec;
8783
8784		if ((align = rec->dtrd_alignment) > maxalign)
8785			maxalign = align;
8786
8787		if (!wastuple && act->dta_intuple) {
8788			/*
8789			 * This is the first record in a tuple.  Align the
8790			 * offset to be at offset 4 in an 8-byte aligned
8791			 * block.
8792			 */
8793			diff = offs + sizeof (dtrace_aggid_t);
8794
8795			if (diff = (diff & (sizeof (uint64_t) - 1)))
8796				offs += sizeof (uint64_t) - diff;
8797
8798			aggbase = offs - sizeof (dtrace_aggid_t);
8799			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
8800		}
8801
8802		/*LINTED*/
8803		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
8804			/*
8805			 * The current offset is not properly aligned; align it.
8806			 */
8807			offs += align - diff;
8808		}
8809
8810		rec->dtrd_offset = offs;
8811
8812		if (offs + rec->dtrd_size > ecb->dte_needed) {
8813			ecb->dte_needed = offs + rec->dtrd_size;
8814
8815			if (ecb->dte_needed > state->dts_needed)
8816				state->dts_needed = ecb->dte_needed;
8817		}
8818
8819		if (DTRACEACT_ISAGG(act->dta_kind)) {
8820			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8821			dtrace_action_t *first = agg->dtag_first, *prev;
8822
8823			ASSERT(rec->dtrd_size != 0 && first != NULL);
8824			ASSERT(wastuple);
8825			ASSERT(aggbase != UINT32_MAX);
8826
8827			agg->dtag_base = aggbase;
8828
8829			while ((prev = first->dta_prev) != NULL &&
8830			    DTRACEACT_ISAGG(prev->dta_kind)) {
8831				agg = (dtrace_aggregation_t *)prev;
8832				first = agg->dtag_first;
8833			}
8834
8835			if (prev != NULL) {
8836				offs = prev->dta_rec.dtrd_offset +
8837				    prev->dta_rec.dtrd_size;
8838			} else {
8839				offs = sizeof (dtrace_epid_t);
8840			}
8841			wastuple = 0;
8842		} else {
8843			if (!act->dta_intuple)
8844				ecb->dte_size = offs + rec->dtrd_size;
8845
8846			offs += rec->dtrd_size;
8847		}
8848
8849		wastuple = act->dta_intuple;
8850	}
8851
8852	if ((act = ecb->dte_action) != NULL &&
8853	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
8854	    ecb->dte_size == sizeof (dtrace_epid_t)) {
8855		/*
8856		 * If the size is still sizeof (dtrace_epid_t), then all
8857		 * actions store no data; set the size to 0.
8858		 */
8859		ecb->dte_alignment = maxalign;
8860		ecb->dte_size = 0;
8861
8862		/*
8863		 * If the needed space is still sizeof (dtrace_epid_t), then
8864		 * all actions need no additional space; set the needed
8865		 * size to 0.
8866		 */
8867		if (ecb->dte_needed == sizeof (dtrace_epid_t))
8868			ecb->dte_needed = 0;
8869
8870		return;
8871	}
8872
8873	/*
8874	 * Set our alignment, and make sure that the dte_size and dte_needed
8875	 * are aligned to the size of an EPID.
8876	 */
8877	ecb->dte_alignment = maxalign;
8878	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
8879	    ~(sizeof (dtrace_epid_t) - 1);
8880	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
8881	    ~(sizeof (dtrace_epid_t) - 1);
8882	ASSERT(ecb->dte_size <= ecb->dte_needed);
8883}
8884
8885static dtrace_action_t *
8886dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8887{
8888	dtrace_aggregation_t *agg;
8889	size_t size = sizeof (uint64_t);
8890	int ntuple = desc->dtad_ntuple;
8891	dtrace_action_t *act;
8892	dtrace_recdesc_t *frec;
8893	dtrace_aggid_t aggid;
8894	dtrace_state_t *state = ecb->dte_state;
8895
8896	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
8897	agg->dtag_ecb = ecb;
8898
8899	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
8900
8901	switch (desc->dtad_kind) {
8902	case DTRACEAGG_MIN:
8903		agg->dtag_initial = UINT64_MAX;
8904		agg->dtag_aggregate = dtrace_aggregate_min;
8905		break;
8906
8907	case DTRACEAGG_MAX:
8908		agg->dtag_aggregate = dtrace_aggregate_max;
8909		break;
8910
8911	case DTRACEAGG_COUNT:
8912		agg->dtag_aggregate = dtrace_aggregate_count;
8913		break;
8914
8915	case DTRACEAGG_QUANTIZE:
8916		agg->dtag_aggregate = dtrace_aggregate_quantize;
8917		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
8918		    sizeof (uint64_t);
8919		break;
8920
8921	case DTRACEAGG_LQUANTIZE: {
8922		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
8923		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
8924
8925		agg->dtag_initial = desc->dtad_arg;
8926		agg->dtag_aggregate = dtrace_aggregate_lquantize;
8927
8928		if (step == 0 || levels == 0)
8929			goto err;
8930
8931		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
8932		break;
8933	}
8934
8935	case DTRACEAGG_AVG:
8936		agg->dtag_aggregate = dtrace_aggregate_avg;
8937		size = sizeof (uint64_t) * 2;
8938		break;
8939
8940	case DTRACEAGG_SUM:
8941		agg->dtag_aggregate = dtrace_aggregate_sum;
8942		break;
8943
8944	default:
8945		goto err;
8946	}
8947
8948	agg->dtag_action.dta_rec.dtrd_size = size;
8949
8950	if (ntuple == 0)
8951		goto err;
8952
8953	/*
8954	 * We must make sure that we have enough actions for the n-tuple.
8955	 */
8956	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
8957		if (DTRACEACT_ISAGG(act->dta_kind))
8958			break;
8959
8960		if (--ntuple == 0) {
8961			/*
8962			 * This is the action with which our n-tuple begins.
8963			 */
8964			agg->dtag_first = act;
8965			goto success;
8966		}
8967	}
8968
8969	/*
8970	 * This n-tuple is short by ntuple elements.  Return failure.
8971	 */
8972	ASSERT(ntuple != 0);
8973err:
8974	kmem_free(agg, sizeof (dtrace_aggregation_t));
8975	return (NULL);
8976
8977success:
8978	/*
8979	 * If the last action in the tuple has a size of zero, it's actually
8980	 * an expression argument for the aggregating action.
8981	 */
8982	ASSERT(ecb->dte_action_last != NULL);
8983	act = ecb->dte_action_last;
8984
8985	if (act->dta_kind == DTRACEACT_DIFEXPR) {
8986		ASSERT(act->dta_difo != NULL);
8987
8988		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
8989			agg->dtag_hasarg = 1;
8990	}
8991
8992	/*
8993	 * We need to allocate an id for this aggregation.
8994	 */
8995	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
8996	    VM_BESTFIT | VM_SLEEP);
8997
8998	if (aggid - 1 >= state->dts_naggregations) {
8999		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9000		dtrace_aggregation_t **aggs;
9001		int naggs = state->dts_naggregations << 1;
9002		int onaggs = state->dts_naggregations;
9003
9004		ASSERT(aggid == state->dts_naggregations + 1);
9005
9006		if (naggs == 0) {
9007			ASSERT(oaggs == NULL);
9008			naggs = 1;
9009		}
9010
9011		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9012
9013		if (oaggs != NULL) {
9014			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9015			kmem_free(oaggs, onaggs * sizeof (*aggs));
9016		}
9017
9018		state->dts_aggregations = aggs;
9019		state->dts_naggregations = naggs;
9020	}
9021
9022	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9023	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9024
9025	frec = &agg->dtag_first->dta_rec;
9026	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9027		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9028
9029	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9030		ASSERT(!act->dta_intuple);
9031		act->dta_intuple = 1;
9032	}
9033
9034	return (&agg->dtag_action);
9035}
9036
9037static void
9038dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9039{
9040	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9041	dtrace_state_t *state = ecb->dte_state;
9042	dtrace_aggid_t aggid = agg->dtag_id;
9043
9044	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9045	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9046
9047	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9048	state->dts_aggregations[aggid - 1] = NULL;
9049
9050	kmem_free(agg, sizeof (dtrace_aggregation_t));
9051}
9052
9053static int
9054dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9055{
9056	dtrace_action_t *action, *last;
9057	dtrace_difo_t *dp = desc->dtad_difo;
9058	uint32_t size = 0, align = sizeof (uint8_t), mask;
9059	uint16_t format = 0;
9060	dtrace_recdesc_t *rec;
9061	dtrace_state_t *state = ecb->dte_state;
9062	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9063	uint64_t arg = desc->dtad_arg;
9064
9065	ASSERT(MUTEX_HELD(&dtrace_lock));
9066	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9067
9068	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9069		/*
9070		 * If this is an aggregating action, there must be neither
9071		 * a speculate nor a commit on the action chain.
9072		 */
9073		dtrace_action_t *act;
9074
9075		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9076			if (act->dta_kind == DTRACEACT_COMMIT)
9077				return (EINVAL);
9078
9079			if (act->dta_kind == DTRACEACT_SPECULATE)
9080				return (EINVAL);
9081		}
9082
9083		action = dtrace_ecb_aggregation_create(ecb, desc);
9084
9085		if (action == NULL)
9086			return (EINVAL);
9087	} else {
9088		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9089		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9090		    dp != NULL && dp->dtdo_destructive)) {
9091			state->dts_destructive = 1;
9092		}
9093
9094		switch (desc->dtad_kind) {
9095		case DTRACEACT_PRINTF:
9096		case DTRACEACT_PRINTA:
9097		case DTRACEACT_SYSTEM:
9098		case DTRACEACT_FREOPEN:
9099			/*
9100			 * We know that our arg is a string -- turn it into a
9101			 * format.
9102			 */
9103			if (arg == NULL) {
9104				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
9105				format = 0;
9106			} else {
9107				ASSERT(arg != NULL);
9108				ASSERT(arg > KERNELBASE);
9109				format = dtrace_format_add(state,
9110				    (char *)(uintptr_t)arg);
9111			}
9112
9113			/*FALLTHROUGH*/
9114		case DTRACEACT_LIBACT:
9115		case DTRACEACT_DIFEXPR:
9116			if (dp == NULL)
9117				return (EINVAL);
9118
9119			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
9120				break;
9121
9122			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
9123				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9124					return (EINVAL);
9125
9126				size = opt[DTRACEOPT_STRSIZE];
9127			}
9128
9129			break;
9130
9131		case DTRACEACT_STACK:
9132			if ((nframes = arg) == 0) {
9133				nframes = opt[DTRACEOPT_STACKFRAMES];
9134				ASSERT(nframes > 0);
9135				arg = nframes;
9136			}
9137
9138			size = nframes * sizeof (pc_t);
9139			break;
9140
9141		case DTRACEACT_JSTACK:
9142			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
9143				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
9144
9145			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
9146				nframes = opt[DTRACEOPT_JSTACKFRAMES];
9147
9148			arg = DTRACE_USTACK_ARG(nframes, strsize);
9149
9150			/*FALLTHROUGH*/
9151		case DTRACEACT_USTACK:
9152			if (desc->dtad_kind != DTRACEACT_JSTACK &&
9153			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
9154				strsize = DTRACE_USTACK_STRSIZE(arg);
9155				nframes = opt[DTRACEOPT_USTACKFRAMES];
9156				ASSERT(nframes > 0);
9157				arg = DTRACE_USTACK_ARG(nframes, strsize);
9158			}
9159
9160			/*
9161			 * Save a slot for the pid.
9162			 */
9163			size = (nframes + 1) * sizeof (uint64_t);
9164			size += DTRACE_USTACK_STRSIZE(arg);
9165			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
9166
9167			break;
9168
9169		case DTRACEACT_SYM:
9170		case DTRACEACT_MOD:
9171			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
9172			    sizeof (uint64_t)) ||
9173			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9174				return (EINVAL);
9175			break;
9176
9177		case DTRACEACT_USYM:
9178		case DTRACEACT_UMOD:
9179		case DTRACEACT_UADDR:
9180			if (dp == NULL ||
9181			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
9182			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9183				return (EINVAL);
9184
9185			/*
9186			 * We have a slot for the pid, plus a slot for the
9187			 * argument.  To keep things simple (aligned with
9188			 * bitness-neutral sizing), we store each as a 64-bit
9189			 * quantity.
9190			 */
9191			size = 2 * sizeof (uint64_t);
9192			break;
9193
9194		case DTRACEACT_STOP:
9195		case DTRACEACT_BREAKPOINT:
9196		case DTRACEACT_PANIC:
9197			break;
9198
9199		case DTRACEACT_CHILL:
9200		case DTRACEACT_DISCARD:
9201		case DTRACEACT_RAISE:
9202			if (dp == NULL)
9203				return (EINVAL);
9204			break;
9205
9206		case DTRACEACT_EXIT:
9207			if (dp == NULL ||
9208			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
9209			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9210				return (EINVAL);
9211			break;
9212
9213		case DTRACEACT_SPECULATE:
9214			if (ecb->dte_size > sizeof (dtrace_epid_t))
9215				return (EINVAL);
9216
9217			if (dp == NULL)
9218				return (EINVAL);
9219
9220			state->dts_speculates = 1;
9221			break;
9222
9223		case DTRACEACT_COMMIT: {
9224			dtrace_action_t *act = ecb->dte_action;
9225
9226			for (; act != NULL; act = act->dta_next) {
9227				if (act->dta_kind == DTRACEACT_COMMIT)
9228					return (EINVAL);
9229			}
9230
9231			if (dp == NULL)
9232				return (EINVAL);
9233			break;
9234		}
9235
9236		default:
9237			return (EINVAL);
9238		}
9239
9240		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
9241			/*
9242			 * If this is a data-storing action or a speculate,
9243			 * we must be sure that there isn't a commit on the
9244			 * action chain.
9245			 */
9246			dtrace_action_t *act = ecb->dte_action;
9247
9248			for (; act != NULL; act = act->dta_next) {
9249				if (act->dta_kind == DTRACEACT_COMMIT)
9250					return (EINVAL);
9251			}
9252		}
9253
9254		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
9255		action->dta_rec.dtrd_size = size;
9256	}
9257
9258	action->dta_refcnt = 1;
9259	rec = &action->dta_rec;
9260	size = rec->dtrd_size;
9261
9262	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
9263		if (!(size & mask)) {
9264			align = mask + 1;
9265			break;
9266		}
9267	}
9268
9269	action->dta_kind = desc->dtad_kind;
9270
9271	if ((action->dta_difo = dp) != NULL)
9272		dtrace_difo_hold(dp);
9273
9274	rec->dtrd_action = action->dta_kind;
9275	rec->dtrd_arg = arg;
9276	rec->dtrd_uarg = desc->dtad_uarg;
9277	rec->dtrd_alignment = (uint16_t)align;
9278	rec->dtrd_format = format;
9279
9280	if ((last = ecb->dte_action_last) != NULL) {
9281		ASSERT(ecb->dte_action != NULL);
9282		action->dta_prev = last;
9283		last->dta_next = action;
9284	} else {
9285		ASSERT(ecb->dte_action == NULL);
9286		ecb->dte_action = action;
9287	}
9288
9289	ecb->dte_action_last = action;
9290
9291	return (0);
9292}
9293
9294static void
9295dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
9296{
9297	dtrace_action_t *act = ecb->dte_action, *next;
9298	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
9299	dtrace_difo_t *dp;
9300	uint16_t format;
9301
9302	if (act != NULL && act->dta_refcnt > 1) {
9303		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
9304		act->dta_refcnt--;
9305	} else {
9306		for (; act != NULL; act = next) {
9307			next = act->dta_next;
9308			ASSERT(next != NULL || act == ecb->dte_action_last);
9309			ASSERT(act->dta_refcnt == 1);
9310
9311			if ((format = act->dta_rec.dtrd_format) != 0)
9312				dtrace_format_remove(ecb->dte_state, format);
9313
9314			if ((dp = act->dta_difo) != NULL)
9315				dtrace_difo_release(dp, vstate);
9316
9317			if (DTRACEACT_ISAGG(act->dta_kind)) {
9318				dtrace_ecb_aggregation_destroy(ecb, act);
9319			} else {
9320				kmem_free(act, sizeof (dtrace_action_t));
9321			}
9322		}
9323	}
9324
9325	ecb->dte_action = NULL;
9326	ecb->dte_action_last = NULL;
9327	ecb->dte_size = sizeof (dtrace_epid_t);
9328}
9329
9330static void
9331dtrace_ecb_disable(dtrace_ecb_t *ecb)
9332{
9333	/*
9334	 * We disable the ECB by removing it from its probe.
9335	 */
9336	dtrace_ecb_t *pecb, *prev = NULL;
9337	dtrace_probe_t *probe = ecb->dte_probe;
9338
9339	ASSERT(MUTEX_HELD(&dtrace_lock));
9340
9341	if (probe == NULL) {
9342		/*
9343		 * This is the NULL probe; there is nothing to disable.
9344		 */
9345		return;
9346	}
9347
9348	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
9349		if (pecb == ecb)
9350			break;
9351		prev = pecb;
9352	}
9353
9354	ASSERT(pecb != NULL);
9355
9356	if (prev == NULL) {
9357		probe->dtpr_ecb = ecb->dte_next;
9358	} else {
9359		prev->dte_next = ecb->dte_next;
9360	}
9361
9362	if (ecb == probe->dtpr_ecb_last) {
9363		ASSERT(ecb->dte_next == NULL);
9364		probe->dtpr_ecb_last = prev;
9365	}
9366
9367	/*
9368	 * The ECB has been disconnected from the probe; now sync to assure
9369	 * that all CPUs have seen the change before returning.
9370	 */
9371	dtrace_sync();
9372
9373	if (probe->dtpr_ecb == NULL) {
9374		/*
9375		 * That was the last ECB on the probe; clear the predicate
9376		 * cache ID for the probe, disable it and sync one more time
9377		 * to assure that we'll never hit it again.
9378		 */
9379		dtrace_provider_t *prov = probe->dtpr_provider;
9380
9381		ASSERT(ecb->dte_next == NULL);
9382		ASSERT(probe->dtpr_ecb_last == NULL);
9383		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
9384		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
9385		    probe->dtpr_id, probe->dtpr_arg);
9386		dtrace_sync();
9387	} else {
9388		/*
9389		 * There is at least one ECB remaining on the probe.  If there
9390		 * is _exactly_ one, set the probe's predicate cache ID to be
9391		 * the predicate cache ID of the remaining ECB.
9392		 */
9393		ASSERT(probe->dtpr_ecb_last != NULL);
9394		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
9395
9396		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
9397			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
9398
9399			ASSERT(probe->dtpr_ecb->dte_next == NULL);
9400
9401			if (p != NULL)
9402				probe->dtpr_predcache = p->dtp_cacheid;
9403		}
9404
9405		ecb->dte_next = NULL;
9406	}
9407}
9408
9409static void
9410dtrace_ecb_destroy(dtrace_ecb_t *ecb)
9411{
9412	dtrace_state_t *state = ecb->dte_state;
9413	dtrace_vstate_t *vstate = &state->dts_vstate;
9414	dtrace_predicate_t *pred;
9415	dtrace_epid_t epid = ecb->dte_epid;
9416
9417	ASSERT(MUTEX_HELD(&dtrace_lock));
9418	ASSERT(ecb->dte_next == NULL);
9419	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
9420
9421	if ((pred = ecb->dte_predicate) != NULL)
9422		dtrace_predicate_release(pred, vstate);
9423
9424	dtrace_ecb_action_remove(ecb);
9425
9426	ASSERT(state->dts_ecbs[epid - 1] == ecb);
9427	state->dts_ecbs[epid - 1] = NULL;
9428
9429	kmem_free(ecb, sizeof (dtrace_ecb_t));
9430}
9431
9432static dtrace_ecb_t *
9433dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
9434    dtrace_enabling_t *enab)
9435{
9436	dtrace_ecb_t *ecb;
9437	dtrace_predicate_t *pred;
9438	dtrace_actdesc_t *act;
9439	dtrace_provider_t *prov;
9440	dtrace_ecbdesc_t *desc = enab->dten_current;
9441
9442	ASSERT(MUTEX_HELD(&dtrace_lock));
9443	ASSERT(state != NULL);
9444
9445	ecb = dtrace_ecb_add(state, probe);
9446	ecb->dte_uarg = desc->dted_uarg;
9447
9448	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
9449		dtrace_predicate_hold(pred);
9450		ecb->dte_predicate = pred;
9451	}
9452
9453	if (probe != NULL) {
9454		/*
9455		 * If the provider shows more leg than the consumer is old
9456		 * enough to see, we need to enable the appropriate implicit
9457		 * predicate bits to prevent the ecb from activating at
9458		 * revealing times.
9459		 *
9460		 * Providers specifying DTRACE_PRIV_USER at register time
9461		 * are stating that they need the /proc-style privilege
9462		 * model to be enforced, and this is what DTRACE_COND_OWNER
9463		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
9464		 */
9465		prov = probe->dtpr_provider;
9466		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
9467		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9468			ecb->dte_cond |= DTRACE_COND_OWNER;
9469
9470		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
9471		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9472			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
9473
9474		/*
9475		 * If the provider shows us kernel innards and the user
9476		 * is lacking sufficient privilege, enable the
9477		 * DTRACE_COND_USERMODE implicit predicate.
9478		 */
9479		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
9480		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
9481			ecb->dte_cond |= DTRACE_COND_USERMODE;
9482	}
9483
9484	if (dtrace_ecb_create_cache != NULL) {
9485		/*
9486		 * If we have a cached ecb, we'll use its action list instead
9487		 * of creating our own (saving both time and space).
9488		 */
9489		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
9490		dtrace_action_t *act = cached->dte_action;
9491
9492		if (act != NULL) {
9493			ASSERT(act->dta_refcnt > 0);
9494			act->dta_refcnt++;
9495			ecb->dte_action = act;
9496			ecb->dte_action_last = cached->dte_action_last;
9497			ecb->dte_needed = cached->dte_needed;
9498			ecb->dte_size = cached->dte_size;
9499			ecb->dte_alignment = cached->dte_alignment;
9500		}
9501
9502		return (ecb);
9503	}
9504
9505	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
9506		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
9507			dtrace_ecb_destroy(ecb);
9508			return (NULL);
9509		}
9510	}
9511
9512	dtrace_ecb_resize(ecb);
9513
9514	return (dtrace_ecb_create_cache = ecb);
9515}
9516
9517static int
9518dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
9519{
9520	dtrace_ecb_t *ecb;
9521	dtrace_enabling_t *enab = arg;
9522	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
9523
9524	ASSERT(state != NULL);
9525
9526	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
9527		/*
9528		 * This probe was created in a generation for which this
9529		 * enabling has previously created ECBs; we don't want to
9530		 * enable it again, so just kick out.
9531		 */
9532		return (DTRACE_MATCH_NEXT);
9533	}
9534
9535	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
9536		return (DTRACE_MATCH_DONE);
9537
9538	dtrace_ecb_enable(ecb);
9539	return (DTRACE_MATCH_NEXT);
9540}
9541
9542static dtrace_ecb_t *
9543dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
9544{
9545	dtrace_ecb_t *ecb;
9546
9547	ASSERT(MUTEX_HELD(&dtrace_lock));
9548
9549	if (id == 0 || id > state->dts_necbs)
9550		return (NULL);
9551
9552	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
9553	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
9554
9555	return (state->dts_ecbs[id - 1]);
9556}
9557
9558static dtrace_aggregation_t *
9559dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
9560{
9561	dtrace_aggregation_t *agg;
9562
9563	ASSERT(MUTEX_HELD(&dtrace_lock));
9564
9565	if (id == 0 || id > state->dts_naggregations)
9566		return (NULL);
9567
9568	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
9569	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
9570	    agg->dtag_id == id);
9571
9572	return (state->dts_aggregations[id - 1]);
9573}
9574
9575/*
9576 * DTrace Buffer Functions
9577 *
9578 * The following functions manipulate DTrace buffers.  Most of these functions
9579 * are called in the context of establishing or processing consumer state;
9580 * exceptions are explicitly noted.
9581 */
9582
9583/*
9584 * Note:  called from cross call context.  This function switches the two
9585 * buffers on a given CPU.  The atomicity of this operation is assured by
9586 * disabling interrupts while the actual switch takes place; the disabling of
9587 * interrupts serializes the execution with any execution of dtrace_probe() on
9588 * the same CPU.
9589 */
9590static void
9591dtrace_buffer_switch(dtrace_buffer_t *buf)
9592{
9593	caddr_t tomax = buf->dtb_tomax;
9594	caddr_t xamot = buf->dtb_xamot;
9595	dtrace_icookie_t cookie;
9596
9597	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9598	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
9599
9600	cookie = dtrace_interrupt_disable();
9601	buf->dtb_tomax = xamot;
9602	buf->dtb_xamot = tomax;
9603	buf->dtb_xamot_drops = buf->dtb_drops;
9604	buf->dtb_xamot_offset = buf->dtb_offset;
9605	buf->dtb_xamot_errors = buf->dtb_errors;
9606	buf->dtb_xamot_flags = buf->dtb_flags;
9607	buf->dtb_offset = 0;
9608	buf->dtb_drops = 0;
9609	buf->dtb_errors = 0;
9610	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
9611	dtrace_interrupt_enable(cookie);
9612}
9613
9614/*
9615 * Note:  called from cross call context.  This function activates a buffer
9616 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
9617 * is guaranteed by the disabling of interrupts.
9618 */
9619static void
9620dtrace_buffer_activate(dtrace_state_t *state)
9621{
9622	dtrace_buffer_t *buf;
9623	dtrace_icookie_t cookie = dtrace_interrupt_disable();
9624
9625	buf = &state->dts_buffer[CPU->cpu_id];
9626
9627	if (buf->dtb_tomax != NULL) {
9628		/*
9629		 * We might like to assert that the buffer is marked inactive,
9630		 * but this isn't necessarily true:  the buffer for the CPU
9631		 * that processes the BEGIN probe has its buffer activated
9632		 * manually.  In this case, we take the (harmless) action
9633		 * re-clearing the bit INACTIVE bit.
9634		 */
9635		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
9636	}
9637
9638	dtrace_interrupt_enable(cookie);
9639}
9640
9641static int
9642dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
9643    processorid_t cpu)
9644{
9645	cpu_t *cp;
9646	dtrace_buffer_t *buf;
9647
9648	ASSERT(MUTEX_HELD(&cpu_lock));
9649	ASSERT(MUTEX_HELD(&dtrace_lock));
9650
9651	if (size > dtrace_nonroot_maxsize &&
9652	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
9653		return (EFBIG);
9654
9655	cp = cpu_list;
9656
9657	do {
9658		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
9659			continue;
9660
9661		buf = &bufs[cp->cpu_id];
9662
9663		/*
9664		 * If there is already a buffer allocated for this CPU, it
9665		 * is only possible that this is a DR event.  In this case,
9666		 * the buffer size must match our specified size.
9667		 */
9668		if (buf->dtb_tomax != NULL) {
9669			ASSERT(buf->dtb_size == size);
9670			continue;
9671		}
9672
9673		ASSERT(buf->dtb_xamot == NULL);
9674
9675		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
9676			goto err;
9677
9678		buf->dtb_size = size;
9679		buf->dtb_flags = flags;
9680		buf->dtb_offset = 0;
9681		buf->dtb_drops = 0;
9682
9683		if (flags & DTRACEBUF_NOSWITCH)
9684			continue;
9685
9686		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
9687			goto err;
9688	} while ((cp = cp->cpu_next) != cpu_list);
9689
9690	return (0);
9691
9692err:
9693	cp = cpu_list;
9694
9695	do {
9696		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
9697			continue;
9698
9699		buf = &bufs[cp->cpu_id];
9700
9701		if (buf->dtb_xamot != NULL) {
9702			ASSERT(buf->dtb_tomax != NULL);
9703			ASSERT(buf->dtb_size == size);
9704			kmem_free(buf->dtb_xamot, size);
9705		}
9706
9707		if (buf->dtb_tomax != NULL) {
9708			ASSERT(buf->dtb_size == size);
9709			kmem_free(buf->dtb_tomax, size);
9710		}
9711
9712		buf->dtb_tomax = NULL;
9713		buf->dtb_xamot = NULL;
9714		buf->dtb_size = 0;
9715	} while ((cp = cp->cpu_next) != cpu_list);
9716
9717	return (ENOMEM);
9718}
9719
9720/*
9721 * Note:  called from probe context.  This function just increments the drop
9722 * count on a buffer.  It has been made a function to allow for the
9723 * possibility of understanding the source of mysterious drop counts.  (A
9724 * problem for which one may be particularly disappointed that DTrace cannot
9725 * be used to understand DTrace.)
9726 */
9727static void
9728dtrace_buffer_drop(dtrace_buffer_t *buf)
9729{
9730	buf->dtb_drops++;
9731}
9732
9733/*
9734 * Note:  called from probe context.  This function is called to reserve space
9735 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
9736 * mstate.  Returns the new offset in the buffer, or a negative value if an
9737 * error has occurred.
9738 */
9739static intptr_t
9740dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
9741    dtrace_state_t *state, dtrace_mstate_t *mstate)
9742{
9743	intptr_t offs = buf->dtb_offset, soffs;
9744	intptr_t woffs;
9745	caddr_t tomax;
9746	size_t total;
9747
9748	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
9749		return (-1);
9750
9751	if ((tomax = buf->dtb_tomax) == NULL) {
9752		dtrace_buffer_drop(buf);
9753		return (-1);
9754	}
9755
9756	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
9757		while (offs & (align - 1)) {
9758			/*
9759			 * Assert that our alignment is off by a number which
9760			 * is itself sizeof (uint32_t) aligned.
9761			 */
9762			ASSERT(!((align - (offs & (align - 1))) &
9763			    (sizeof (uint32_t) - 1)));
9764			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9765			offs += sizeof (uint32_t);
9766		}
9767
9768		if ((soffs = offs + needed) > buf->dtb_size) {
9769			dtrace_buffer_drop(buf);
9770			return (-1);
9771		}
9772
9773		if (mstate == NULL)
9774			return (offs);
9775
9776		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
9777		mstate->dtms_scratch_size = buf->dtb_size - soffs;
9778		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9779
9780		return (offs);
9781	}
9782
9783	if (buf->dtb_flags & DTRACEBUF_FILL) {
9784		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
9785		    (buf->dtb_flags & DTRACEBUF_FULL))
9786			return (-1);
9787		goto out;
9788	}
9789
9790	total = needed + (offs & (align - 1));
9791
9792	/*
9793	 * For a ring buffer, life is quite a bit more complicated.  Before
9794	 * we can store any padding, we need to adjust our wrapping offset.
9795	 * (If we've never before wrapped or we're not about to, no adjustment
9796	 * is required.)
9797	 */
9798	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
9799	    offs + total > buf->dtb_size) {
9800		woffs = buf->dtb_xamot_offset;
9801
9802		if (offs + total > buf->dtb_size) {
9803			/*
9804			 * We can't fit in the end of the buffer.  First, a
9805			 * sanity check that we can fit in the buffer at all.
9806			 */
9807			if (total > buf->dtb_size) {
9808				dtrace_buffer_drop(buf);
9809				return (-1);
9810			}
9811
9812			/*
9813			 * We're going to be storing at the top of the buffer,
9814			 * so now we need to deal with the wrapped offset.  We
9815			 * only reset our wrapped offset to 0 if it is
9816			 * currently greater than the current offset.  If it
9817			 * is less than the current offset, it is because a
9818			 * previous allocation induced a wrap -- but the
9819			 * allocation didn't subsequently take the space due
9820			 * to an error or false predicate evaluation.  In this
9821			 * case, we'll just leave the wrapped offset alone: if
9822			 * the wrapped offset hasn't been advanced far enough
9823			 * for this allocation, it will be adjusted in the
9824			 * lower loop.
9825			 */
9826			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
9827				if (woffs >= offs)
9828					woffs = 0;
9829			} else {
9830				woffs = 0;
9831			}
9832
9833			/*
9834			 * Now we know that we're going to be storing to the
9835			 * top of the buffer and that there is room for us
9836			 * there.  We need to clear the buffer from the current
9837			 * offset to the end (there may be old gunk there).
9838			 */
9839			while (offs < buf->dtb_size)
9840				tomax[offs++] = 0;
9841
9842			/*
9843			 * We need to set our offset to zero.  And because we
9844			 * are wrapping, we need to set the bit indicating as
9845			 * much.  We can also adjust our needed space back
9846			 * down to the space required by the ECB -- we know
9847			 * that the top of the buffer is aligned.
9848			 */
9849			offs = 0;
9850			total = needed;
9851			buf->dtb_flags |= DTRACEBUF_WRAPPED;
9852		} else {
9853			/*
9854			 * There is room for us in the buffer, so we simply
9855			 * need to check the wrapped offset.
9856			 */
9857			if (woffs < offs) {
9858				/*
9859				 * The wrapped offset is less than the offset.
9860				 * This can happen if we allocated buffer space
9861				 * that induced a wrap, but then we didn't
9862				 * subsequently take the space due to an error
9863				 * or false predicate evaluation.  This is
9864				 * okay; we know that _this_ allocation isn't
9865				 * going to induce a wrap.  We still can't
9866				 * reset the wrapped offset to be zero,
9867				 * however: the space may have been trashed in
9868				 * the previous failed probe attempt.  But at
9869				 * least the wrapped offset doesn't need to
9870				 * be adjusted at all...
9871				 */
9872				goto out;
9873			}
9874		}
9875
9876		while (offs + total > woffs) {
9877			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
9878			size_t size;
9879
9880			if (epid == DTRACE_EPIDNONE) {
9881				size = sizeof (uint32_t);
9882			} else {
9883				ASSERT(epid <= state->dts_necbs);
9884				ASSERT(state->dts_ecbs[epid - 1] != NULL);
9885
9886				size = state->dts_ecbs[epid - 1]->dte_size;
9887			}
9888
9889			ASSERT(woffs + size <= buf->dtb_size);
9890			ASSERT(size != 0);
9891
9892			if (woffs + size == buf->dtb_size) {
9893				/*
9894				 * We've reached the end of the buffer; we want
9895				 * to set the wrapped offset to 0 and break
9896				 * out.  However, if the offs is 0, then we're
9897				 * in a strange edge-condition:  the amount of
9898				 * space that we want to reserve plus the size
9899				 * of the record that we're overwriting is
9900				 * greater than the size of the buffer.  This
9901				 * is problematic because if we reserve the
9902				 * space but subsequently don't consume it (due
9903				 * to a failed predicate or error) the wrapped
9904				 * offset will be 0 -- yet the EPID at offset 0
9905				 * will not be committed.  This situation is
9906				 * relatively easy to deal with:  if we're in
9907				 * this case, the buffer is indistinguishable
9908				 * from one that hasn't wrapped; we need only
9909				 * finish the job by clearing the wrapped bit,
9910				 * explicitly setting the offset to be 0, and
9911				 * zero'ing out the old data in the buffer.
9912				 */
9913				if (offs == 0) {
9914					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
9915					buf->dtb_offset = 0;
9916					woffs = total;
9917
9918					while (woffs < buf->dtb_size)
9919						tomax[woffs++] = 0;
9920				}
9921
9922				woffs = 0;
9923				break;
9924			}
9925
9926			woffs += size;
9927		}
9928
9929		/*
9930		 * We have a wrapped offset.  It may be that the wrapped offset
9931		 * has become zero -- that's okay.
9932		 */
9933		buf->dtb_xamot_offset = woffs;
9934	}
9935
9936out:
9937	/*
9938	 * Now we can plow the buffer with any necessary padding.
9939	 */
9940	while (offs & (align - 1)) {
9941		/*
9942		 * Assert that our alignment is off by a number which
9943		 * is itself sizeof (uint32_t) aligned.
9944		 */
9945		ASSERT(!((align - (offs & (align - 1))) &
9946		    (sizeof (uint32_t) - 1)));
9947		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9948		offs += sizeof (uint32_t);
9949	}
9950
9951	if (buf->dtb_flags & DTRACEBUF_FILL) {
9952		if (offs + needed > buf->dtb_size - state->dts_reserve) {
9953			buf->dtb_flags |= DTRACEBUF_FULL;
9954			return (-1);
9955		}
9956	}
9957
9958	if (mstate == NULL)
9959		return (offs);
9960
9961	/*
9962	 * For ring buffers and fill buffers, the scratch space is always
9963	 * the inactive buffer.
9964	 */
9965	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
9966	mstate->dtms_scratch_size = buf->dtb_size;
9967	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9968
9969	return (offs);
9970}
9971
9972static void
9973dtrace_buffer_polish(dtrace_buffer_t *buf)
9974{
9975	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
9976	ASSERT(MUTEX_HELD(&dtrace_lock));
9977
9978	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
9979		return;
9980
9981	/*
9982	 * We need to polish the ring buffer.  There are three cases:
9983	 *
9984	 * - The first (and presumably most common) is that there is no gap
9985	 *   between the buffer offset and the wrapped offset.  In this case,
9986	 *   there is nothing in the buffer that isn't valid data; we can
9987	 *   mark the buffer as polished and return.
9988	 *
9989	 * - The second (less common than the first but still more common
9990	 *   than the third) is that there is a gap between the buffer offset
9991	 *   and the wrapped offset, and the wrapped offset is larger than the
9992	 *   buffer offset.  This can happen because of an alignment issue, or
9993	 *   can happen because of a call to dtrace_buffer_reserve() that
9994	 *   didn't subsequently consume the buffer space.  In this case,
9995	 *   we need to zero the data from the buffer offset to the wrapped
9996	 *   offset.
9997	 *
9998	 * - The third (and least common) is that there is a gap between the
9999	 *   buffer offset and the wrapped offset, but the wrapped offset is
10000	 *   _less_ than the buffer offset.  This can only happen because a
10001	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
10002	 *   was not subsequently consumed.  In this case, we need to zero the
10003	 *   space from the offset to the end of the buffer _and_ from the
10004	 *   top of the buffer to the wrapped offset.
10005	 */
10006	if (buf->dtb_offset < buf->dtb_xamot_offset) {
10007		bzero(buf->dtb_tomax + buf->dtb_offset,
10008		    buf->dtb_xamot_offset - buf->dtb_offset);
10009	}
10010
10011	if (buf->dtb_offset > buf->dtb_xamot_offset) {
10012		bzero(buf->dtb_tomax + buf->dtb_offset,
10013		    buf->dtb_size - buf->dtb_offset);
10014		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10015	}
10016}
10017
10018static void
10019dtrace_buffer_free(dtrace_buffer_t *bufs)
10020{
10021	int i;
10022
10023	for (i = 0; i < NCPU; i++) {
10024		dtrace_buffer_t *buf = &bufs[i];
10025
10026		if (buf->dtb_tomax == NULL) {
10027			ASSERT(buf->dtb_xamot == NULL);
10028			ASSERT(buf->dtb_size == 0);
10029			continue;
10030		}
10031
10032		if (buf->dtb_xamot != NULL) {
10033			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10034			kmem_free(buf->dtb_xamot, buf->dtb_size);
10035		}
10036
10037		kmem_free(buf->dtb_tomax, buf->dtb_size);
10038		buf->dtb_size = 0;
10039		buf->dtb_tomax = NULL;
10040		buf->dtb_xamot = NULL;
10041	}
10042}
10043
10044/*
10045 * DTrace Enabling Functions
10046 */
10047static dtrace_enabling_t *
10048dtrace_enabling_create(dtrace_vstate_t *vstate)
10049{
10050	dtrace_enabling_t *enab;
10051
10052	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
10053	enab->dten_vstate = vstate;
10054
10055	return (enab);
10056}
10057
10058static void
10059dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
10060{
10061	dtrace_ecbdesc_t **ndesc;
10062	size_t osize, nsize;
10063
10064	/*
10065	 * We can't add to enablings after we've enabled them, or after we've
10066	 * retained them.
10067	 */
10068	ASSERT(enab->dten_probegen == 0);
10069	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10070
10071	if (enab->dten_ndesc < enab->dten_maxdesc) {
10072		enab->dten_desc[enab->dten_ndesc++] = ecb;
10073		return;
10074	}
10075
10076	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10077
10078	if (enab->dten_maxdesc == 0) {
10079		enab->dten_maxdesc = 1;
10080	} else {
10081		enab->dten_maxdesc <<= 1;
10082	}
10083
10084	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
10085
10086	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10087	ndesc = kmem_zalloc(nsize, KM_SLEEP);
10088	bcopy(enab->dten_desc, ndesc, osize);
10089	kmem_free(enab->dten_desc, osize);
10090
10091	enab->dten_desc = ndesc;
10092	enab->dten_desc[enab->dten_ndesc++] = ecb;
10093}
10094
10095static void
10096dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
10097    dtrace_probedesc_t *pd)
10098{
10099	dtrace_ecbdesc_t *new;
10100	dtrace_predicate_t *pred;
10101	dtrace_actdesc_t *act;
10102
10103	/*
10104	 * We're going to create a new ECB description that matches the
10105	 * specified ECB in every way, but has the specified probe description.
10106	 */
10107	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10108
10109	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
10110		dtrace_predicate_hold(pred);
10111
10112	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
10113		dtrace_actdesc_hold(act);
10114
10115	new->dted_action = ecb->dted_action;
10116	new->dted_pred = ecb->dted_pred;
10117	new->dted_probe = *pd;
10118	new->dted_uarg = ecb->dted_uarg;
10119
10120	dtrace_enabling_add(enab, new);
10121}
10122
10123static void
10124dtrace_enabling_dump(dtrace_enabling_t *enab)
10125{
10126	int i;
10127
10128	for (i = 0; i < enab->dten_ndesc; i++) {
10129		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
10130
10131		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
10132		    desc->dtpd_provider, desc->dtpd_mod,
10133		    desc->dtpd_func, desc->dtpd_name);
10134	}
10135}
10136
10137static void
10138dtrace_enabling_destroy(dtrace_enabling_t *enab)
10139{
10140	int i;
10141	dtrace_ecbdesc_t *ep;
10142	dtrace_vstate_t *vstate = enab->dten_vstate;
10143
10144	ASSERT(MUTEX_HELD(&dtrace_lock));
10145
10146	for (i = 0; i < enab->dten_ndesc; i++) {
10147		dtrace_actdesc_t *act, *next;
10148		dtrace_predicate_t *pred;
10149
10150		ep = enab->dten_desc[i];
10151
10152		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
10153			dtrace_predicate_release(pred, vstate);
10154
10155		for (act = ep->dted_action; act != NULL; act = next) {
10156			next = act->dtad_next;
10157			dtrace_actdesc_release(act, vstate);
10158		}
10159
10160		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10161	}
10162
10163	kmem_free(enab->dten_desc,
10164	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
10165
10166	/*
10167	 * If this was a retained enabling, decrement the dts_nretained count
10168	 * and take it off of the dtrace_retained list.
10169	 */
10170	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
10171	    dtrace_retained == enab) {
10172		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10173		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
10174		enab->dten_vstate->dtvs_state->dts_nretained--;
10175	}
10176
10177	if (enab->dten_prev == NULL) {
10178		if (dtrace_retained == enab) {
10179			dtrace_retained = enab->dten_next;
10180
10181			if (dtrace_retained != NULL)
10182				dtrace_retained->dten_prev = NULL;
10183		}
10184	} else {
10185		ASSERT(enab != dtrace_retained);
10186		ASSERT(dtrace_retained != NULL);
10187		enab->dten_prev->dten_next = enab->dten_next;
10188	}
10189
10190	if (enab->dten_next != NULL) {
10191		ASSERT(dtrace_retained != NULL);
10192		enab->dten_next->dten_prev = enab->dten_prev;
10193	}
10194
10195	kmem_free(enab, sizeof (dtrace_enabling_t));
10196}
10197
10198static int
10199dtrace_enabling_retain(dtrace_enabling_t *enab)
10200{
10201	dtrace_state_t *state;
10202
10203	ASSERT(MUTEX_HELD(&dtrace_lock));
10204	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10205	ASSERT(enab->dten_vstate != NULL);
10206
10207	state = enab->dten_vstate->dtvs_state;
10208	ASSERT(state != NULL);
10209
10210	/*
10211	 * We only allow each state to retain dtrace_retain_max enablings.
10212	 */
10213	if (state->dts_nretained >= dtrace_retain_max)
10214		return (ENOSPC);
10215
10216	state->dts_nretained++;
10217
10218	if (dtrace_retained == NULL) {
10219		dtrace_retained = enab;
10220		return (0);
10221	}
10222
10223	enab->dten_next = dtrace_retained;
10224	dtrace_retained->dten_prev = enab;
10225	dtrace_retained = enab;
10226
10227	return (0);
10228}
10229
10230static int
10231dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
10232    dtrace_probedesc_t *create)
10233{
10234	dtrace_enabling_t *new, *enab;
10235	int found = 0, err = ENOENT;
10236
10237	ASSERT(MUTEX_HELD(&dtrace_lock));
10238	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
10239	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
10240	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
10241	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
10242
10243	new = dtrace_enabling_create(&state->dts_vstate);
10244
10245	/*
10246	 * Iterate over all retained enablings, looking for enablings that
10247	 * match the specified state.
10248	 */
10249	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10250		int i;
10251
10252		/*
10253		 * dtvs_state can only be NULL for helper enablings -- and
10254		 * helper enablings can't be retained.
10255		 */
10256		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10257
10258		if (enab->dten_vstate->dtvs_state != state)
10259			continue;
10260
10261		/*
10262		 * Now iterate over each probe description; we're looking for
10263		 * an exact match to the specified probe description.
10264		 */
10265		for (i = 0; i < enab->dten_ndesc; i++) {
10266			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10267			dtrace_probedesc_t *pd = &ep->dted_probe;
10268
10269			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
10270				continue;
10271
10272			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
10273				continue;
10274
10275			if (strcmp(pd->dtpd_func, match->dtpd_func))
10276				continue;
10277
10278			if (strcmp(pd->dtpd_name, match->dtpd_name))
10279				continue;
10280
10281			/*
10282			 * We have a winning probe!  Add it to our growing
10283			 * enabling.
10284			 */
10285			found = 1;
10286			dtrace_enabling_addlike(new, ep, create);
10287		}
10288	}
10289
10290	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
10291		dtrace_enabling_destroy(new);
10292		return (err);
10293	}
10294
10295	return (0);
10296}
10297
10298static void
10299dtrace_enabling_retract(dtrace_state_t *state)
10300{
10301	dtrace_enabling_t *enab, *next;
10302
10303	ASSERT(MUTEX_HELD(&dtrace_lock));
10304
10305	/*
10306	 * Iterate over all retained enablings, destroy the enablings retained
10307	 * for the specified state.
10308	 */
10309	for (enab = dtrace_retained; enab != NULL; enab = next) {
10310		next = enab->dten_next;
10311
10312		/*
10313		 * dtvs_state can only be NULL for helper enablings -- and
10314		 * helper enablings can't be retained.
10315		 */
10316		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10317
10318		if (enab->dten_vstate->dtvs_state == state) {
10319			ASSERT(state->dts_nretained > 0);
10320			dtrace_enabling_destroy(enab);
10321		}
10322	}
10323
10324	ASSERT(state->dts_nretained == 0);
10325}
10326
10327static int
10328dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
10329{
10330	int i = 0;
10331	int matched = 0;
10332
10333	ASSERT(MUTEX_HELD(&cpu_lock));
10334	ASSERT(MUTEX_HELD(&dtrace_lock));
10335
10336	for (i = 0; i < enab->dten_ndesc; i++) {
10337		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10338
10339		enab->dten_current = ep;
10340		enab->dten_error = 0;
10341
10342		matched += dtrace_probe_enable(&ep->dted_probe, enab);
10343
10344		if (enab->dten_error != 0) {
10345			/*
10346			 * If we get an error half-way through enabling the
10347			 * probes, we kick out -- perhaps with some number of
10348			 * them enabled.  Leaving enabled probes enabled may
10349			 * be slightly confusing for user-level, but we expect
10350			 * that no one will attempt to actually drive on in
10351			 * the face of such errors.  If this is an anonymous
10352			 * enabling (indicated with a NULL nmatched pointer),
10353			 * we cmn_err() a message.  We aren't expecting to
10354			 * get such an error -- such as it can exist at all,
10355			 * it would be a result of corrupted DOF in the driver
10356			 * properties.
10357			 */
10358			if (nmatched == NULL) {
10359				cmn_err(CE_WARN, "dtrace_enabling_match() "
10360				    "error on %p: %d", (void *)ep,
10361				    enab->dten_error);
10362			}
10363
10364			return (enab->dten_error);
10365		}
10366	}
10367
10368	enab->dten_probegen = dtrace_probegen;
10369	if (nmatched != NULL)
10370		*nmatched = matched;
10371
10372	return (0);
10373}
10374
10375static void
10376dtrace_enabling_matchall(void)
10377{
10378	dtrace_enabling_t *enab;
10379
10380	mutex_enter(&cpu_lock);
10381	mutex_enter(&dtrace_lock);
10382
10383	/*
10384	 * Because we can be called after dtrace_detach() has been called, we
10385	 * cannot assert that there are retained enablings.  We can safely
10386	 * load from dtrace_retained, however:  the taskq_destroy() at the
10387	 * end of dtrace_detach() will block pending our completion.
10388	 */
10389	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
10390		(void) dtrace_enabling_match(enab, NULL);
10391
10392	mutex_exit(&dtrace_lock);
10393	mutex_exit(&cpu_lock);
10394}
10395
10396static int
10397dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
10398{
10399	dtrace_enabling_t *enab;
10400	int matched, total = 0, err;
10401
10402	ASSERT(MUTEX_HELD(&cpu_lock));
10403	ASSERT(MUTEX_HELD(&dtrace_lock));
10404
10405	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10406		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10407
10408		if (enab->dten_vstate->dtvs_state != state)
10409			continue;
10410
10411		if ((err = dtrace_enabling_match(enab, &matched)) != 0)
10412			return (err);
10413
10414		total += matched;
10415	}
10416
10417	if (nmatched != NULL)
10418		*nmatched = total;
10419
10420	return (0);
10421}
10422
10423/*
10424 * If an enabling is to be enabled without having matched probes (that is, if
10425 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
10426 * enabling must be _primed_ by creating an ECB for every ECB description.
10427 * This must be done to assure that we know the number of speculations, the
10428 * number of aggregations, the minimum buffer size needed, etc. before we
10429 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
10430 * enabling any probes, we create ECBs for every ECB decription, but with a
10431 * NULL probe -- which is exactly what this function does.
10432 */
10433static void
10434dtrace_enabling_prime(dtrace_state_t *state)
10435{
10436	dtrace_enabling_t *enab;
10437	int i;
10438
10439	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10440		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10441
10442		if (enab->dten_vstate->dtvs_state != state)
10443			continue;
10444
10445		/*
10446		 * We don't want to prime an enabling more than once, lest
10447		 * we allow a malicious user to induce resource exhaustion.
10448		 * (The ECBs that result from priming an enabling aren't
10449		 * leaked -- but they also aren't deallocated until the
10450		 * consumer state is destroyed.)
10451		 */
10452		if (enab->dten_primed)
10453			continue;
10454
10455		for (i = 0; i < enab->dten_ndesc; i++) {
10456			enab->dten_current = enab->dten_desc[i];
10457			(void) dtrace_probe_enable(NULL, enab);
10458		}
10459
10460		enab->dten_primed = 1;
10461	}
10462}
10463
10464/*
10465 * Called to indicate that probes should be provided due to retained
10466 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
10467 * must take an initial lap through the enabling calling the dtps_provide()
10468 * entry point explicitly to allow for autocreated probes.
10469 */
10470static void
10471dtrace_enabling_provide(dtrace_provider_t *prv)
10472{
10473	int i, all = 0;
10474	dtrace_probedesc_t desc;
10475
10476	ASSERT(MUTEX_HELD(&dtrace_lock));
10477	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
10478
10479	if (prv == NULL) {
10480		all = 1;
10481		prv = dtrace_provider;
10482	}
10483
10484	do {
10485		dtrace_enabling_t *enab = dtrace_retained;
10486		void *parg = prv->dtpv_arg;
10487
10488		for (; enab != NULL; enab = enab->dten_next) {
10489			for (i = 0; i < enab->dten_ndesc; i++) {
10490				desc = enab->dten_desc[i]->dted_probe;
10491				mutex_exit(&dtrace_lock);
10492				prv->dtpv_pops.dtps_provide(parg, &desc);
10493				mutex_enter(&dtrace_lock);
10494			}
10495		}
10496	} while (all && (prv = prv->dtpv_next) != NULL);
10497
10498	mutex_exit(&dtrace_lock);
10499	dtrace_probe_provide(NULL, all ? NULL : prv);
10500	mutex_enter(&dtrace_lock);
10501}
10502
10503/*
10504 * DTrace DOF Functions
10505 */
10506/*ARGSUSED*/
10507static void
10508dtrace_dof_error(dof_hdr_t *dof, const char *str)
10509{
10510	if (dtrace_err_verbose)
10511		cmn_err(CE_WARN, "failed to process DOF: %s", str);
10512
10513#ifdef DTRACE_ERRDEBUG
10514	dtrace_errdebug(str);
10515#endif
10516}
10517
10518/*
10519 * Create DOF out of a currently enabled state.  Right now, we only create
10520 * DOF containing the run-time options -- but this could be expanded to create
10521 * complete DOF representing the enabled state.
10522 */
10523static dof_hdr_t *
10524dtrace_dof_create(dtrace_state_t *state)
10525{
10526	dof_hdr_t *dof;
10527	dof_sec_t *sec;
10528	dof_optdesc_t *opt;
10529	int i, len = sizeof (dof_hdr_t) +
10530	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
10531	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10532
10533	ASSERT(MUTEX_HELD(&dtrace_lock));
10534
10535	dof = kmem_zalloc(len, KM_SLEEP);
10536	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
10537	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
10538	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
10539	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
10540
10541	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
10542	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
10543	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
10544	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
10545	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
10546	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
10547
10548	dof->dofh_flags = 0;
10549	dof->dofh_hdrsize = sizeof (dof_hdr_t);
10550	dof->dofh_secsize = sizeof (dof_sec_t);
10551	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
10552	dof->dofh_secoff = sizeof (dof_hdr_t);
10553	dof->dofh_loadsz = len;
10554	dof->dofh_filesz = len;
10555	dof->dofh_pad = 0;
10556
10557	/*
10558	 * Fill in the option section header...
10559	 */
10560	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
10561	sec->dofs_type = DOF_SECT_OPTDESC;
10562	sec->dofs_align = sizeof (uint64_t);
10563	sec->dofs_flags = DOF_SECF_LOAD;
10564	sec->dofs_entsize = sizeof (dof_optdesc_t);
10565
10566	opt = (dof_optdesc_t *)((uintptr_t)sec +
10567	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
10568
10569	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
10570	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10571
10572	for (i = 0; i < DTRACEOPT_MAX; i++) {
10573		opt[i].dofo_option = i;
10574		opt[i].dofo_strtab = DOF_SECIDX_NONE;
10575		opt[i].dofo_value = state->dts_options[i];
10576	}
10577
10578	return (dof);
10579}
10580
10581static dof_hdr_t *
10582dtrace_dof_copyin(uintptr_t uarg, int *errp)
10583{
10584	dof_hdr_t hdr, *dof;
10585
10586	ASSERT(!MUTEX_HELD(&dtrace_lock));
10587
10588	/*
10589	 * First, we're going to copyin() the sizeof (dof_hdr_t).
10590	 */
10591	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
10592		dtrace_dof_error(NULL, "failed to copyin DOF header");
10593		*errp = EFAULT;
10594		return (NULL);
10595	}
10596
10597	/*
10598	 * Now we'll allocate the entire DOF and copy it in -- provided
10599	 * that the length isn't outrageous.
10600	 */
10601	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
10602		dtrace_dof_error(&hdr, "load size exceeds maximum");
10603		*errp = E2BIG;
10604		return (NULL);
10605	}
10606
10607	if (hdr.dofh_loadsz < sizeof (hdr)) {
10608		dtrace_dof_error(&hdr, "invalid load size");
10609		*errp = EINVAL;
10610		return (NULL);
10611	}
10612
10613	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
10614
10615	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
10616		kmem_free(dof, hdr.dofh_loadsz);
10617		*errp = EFAULT;
10618		return (NULL);
10619	}
10620
10621	return (dof);
10622}
10623
10624static dof_hdr_t *
10625dtrace_dof_property(const char *name)
10626{
10627	uchar_t *buf;
10628	uint64_t loadsz;
10629	unsigned int len, i;
10630	dof_hdr_t *dof;
10631
10632	/*
10633	 * Unfortunately, array of values in .conf files are always (and
10634	 * only) interpreted to be integer arrays.  We must read our DOF
10635	 * as an integer array, and then squeeze it into a byte array.
10636	 */
10637	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
10638	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
10639		return (NULL);
10640
10641	for (i = 0; i < len; i++)
10642		buf[i] = (uchar_t)(((int *)buf)[i]);
10643
10644	if (len < sizeof (dof_hdr_t)) {
10645		ddi_prop_free(buf);
10646		dtrace_dof_error(NULL, "truncated header");
10647		return (NULL);
10648	}
10649
10650	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
10651		ddi_prop_free(buf);
10652		dtrace_dof_error(NULL, "truncated DOF");
10653		return (NULL);
10654	}
10655
10656	if (loadsz >= dtrace_dof_maxsize) {
10657		ddi_prop_free(buf);
10658		dtrace_dof_error(NULL, "oversized DOF");
10659		return (NULL);
10660	}
10661
10662	dof = kmem_alloc(loadsz, KM_SLEEP);
10663	bcopy(buf, dof, loadsz);
10664	ddi_prop_free(buf);
10665
10666	return (dof);
10667}
10668
10669static void
10670dtrace_dof_destroy(dof_hdr_t *dof)
10671{
10672	kmem_free(dof, dof->dofh_loadsz);
10673}
10674
10675/*
10676 * Return the dof_sec_t pointer corresponding to a given section index.  If the
10677 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
10678 * a type other than DOF_SECT_NONE is specified, the header is checked against
10679 * this type and NULL is returned if the types do not match.
10680 */
10681static dof_sec_t *
10682dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
10683{
10684	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
10685	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
10686
10687	if (i >= dof->dofh_secnum) {
10688		dtrace_dof_error(dof, "referenced section index is invalid");
10689		return (NULL);
10690	}
10691
10692	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
10693		dtrace_dof_error(dof, "referenced section is not loadable");
10694		return (NULL);
10695	}
10696
10697	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
10698		dtrace_dof_error(dof, "referenced section is the wrong type");
10699		return (NULL);
10700	}
10701
10702	return (sec);
10703}
10704
10705static dtrace_probedesc_t *
10706dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
10707{
10708	dof_probedesc_t *probe;
10709	dof_sec_t *strtab;
10710	uintptr_t daddr = (uintptr_t)dof;
10711	uintptr_t str;
10712	size_t size;
10713
10714	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
10715		dtrace_dof_error(dof, "invalid probe section");
10716		return (NULL);
10717	}
10718
10719	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10720		dtrace_dof_error(dof, "bad alignment in probe description");
10721		return (NULL);
10722	}
10723
10724	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
10725		dtrace_dof_error(dof, "truncated probe description");
10726		return (NULL);
10727	}
10728
10729	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
10730	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
10731
10732	if (strtab == NULL)
10733		return (NULL);
10734
10735	str = daddr + strtab->dofs_offset;
10736	size = strtab->dofs_size;
10737
10738	if (probe->dofp_provider >= strtab->dofs_size) {
10739		dtrace_dof_error(dof, "corrupt probe provider");
10740		return (NULL);
10741	}
10742
10743	(void) strncpy(desc->dtpd_provider,
10744	    (char *)(str + probe->dofp_provider),
10745	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
10746
10747	if (probe->dofp_mod >= strtab->dofs_size) {
10748		dtrace_dof_error(dof, "corrupt probe module");
10749		return (NULL);
10750	}
10751
10752	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
10753	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
10754
10755	if (probe->dofp_func >= strtab->dofs_size) {
10756		dtrace_dof_error(dof, "corrupt probe function");
10757		return (NULL);
10758	}
10759
10760	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
10761	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
10762
10763	if (probe->dofp_name >= strtab->dofs_size) {
10764		dtrace_dof_error(dof, "corrupt probe name");
10765		return (NULL);
10766	}
10767
10768	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
10769	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
10770
10771	return (desc);
10772}
10773
10774static dtrace_difo_t *
10775dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10776    cred_t *cr)
10777{
10778	dtrace_difo_t *dp;
10779	size_t ttl = 0;
10780	dof_difohdr_t *dofd;
10781	uintptr_t daddr = (uintptr_t)dof;
10782	size_t max = dtrace_difo_maxsize;
10783	int i, l, n;
10784
10785	static const struct {
10786		int section;
10787		int bufoffs;
10788		int lenoffs;
10789		int entsize;
10790		int align;
10791		const char *msg;
10792	} difo[] = {
10793		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
10794		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
10795		sizeof (dif_instr_t), "multiple DIF sections" },
10796
10797		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
10798		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
10799		sizeof (uint64_t), "multiple integer tables" },
10800
10801		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
10802		offsetof(dtrace_difo_t, dtdo_strlen), 0,
10803		sizeof (char), "multiple string tables" },
10804
10805		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
10806		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
10807		sizeof (uint_t), "multiple variable tables" },
10808
10809		{ DOF_SECT_NONE, 0, 0, 0, NULL }
10810	};
10811
10812	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
10813		dtrace_dof_error(dof, "invalid DIFO header section");
10814		return (NULL);
10815	}
10816
10817	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10818		dtrace_dof_error(dof, "bad alignment in DIFO header");
10819		return (NULL);
10820	}
10821
10822	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
10823	    sec->dofs_size % sizeof (dof_secidx_t)) {
10824		dtrace_dof_error(dof, "bad size in DIFO header");
10825		return (NULL);
10826	}
10827
10828	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10829	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
10830
10831	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10832	dp->dtdo_rtype = dofd->dofd_rtype;
10833
10834	for (l = 0; l < n; l++) {
10835		dof_sec_t *subsec;
10836		void **bufp;
10837		uint32_t *lenp;
10838
10839		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
10840		    dofd->dofd_links[l])) == NULL)
10841			goto err; /* invalid section link */
10842
10843		if (ttl + subsec->dofs_size > max) {
10844			dtrace_dof_error(dof, "exceeds maximum size");
10845			goto err;
10846		}
10847
10848		ttl += subsec->dofs_size;
10849
10850		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
10851			if (subsec->dofs_type != difo[i].section)
10852				continue;
10853
10854			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
10855				dtrace_dof_error(dof, "section not loaded");
10856				goto err;
10857			}
10858
10859			if (subsec->dofs_align != difo[i].align) {
10860				dtrace_dof_error(dof, "bad alignment");
10861				goto err;
10862			}
10863
10864			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
10865			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
10866
10867			if (*bufp != NULL) {
10868				dtrace_dof_error(dof, difo[i].msg);
10869				goto err;
10870			}
10871
10872			if (difo[i].entsize != subsec->dofs_entsize) {
10873				dtrace_dof_error(dof, "entry size mismatch");
10874				goto err;
10875			}
10876
10877			if (subsec->dofs_entsize != 0 &&
10878			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
10879				dtrace_dof_error(dof, "corrupt entry size");
10880				goto err;
10881			}
10882
10883			*lenp = subsec->dofs_size;
10884			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
10885			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
10886			    *bufp, subsec->dofs_size);
10887
10888			if (subsec->dofs_entsize != 0)
10889				*lenp /= subsec->dofs_entsize;
10890
10891			break;
10892		}
10893
10894		/*
10895		 * If we encounter a loadable DIFO sub-section that is not
10896		 * known to us, assume this is a broken program and fail.
10897		 */
10898		if (difo[i].section == DOF_SECT_NONE &&
10899		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
10900			dtrace_dof_error(dof, "unrecognized DIFO subsection");
10901			goto err;
10902		}
10903	}
10904
10905	if (dp->dtdo_buf == NULL) {
10906		/*
10907		 * We can't have a DIF object without DIF text.
10908		 */
10909		dtrace_dof_error(dof, "missing DIF text");
10910		goto err;
10911	}
10912
10913	/*
10914	 * Before we validate the DIF object, run through the variable table
10915	 * looking for the strings -- if any of their size are under, we'll set
10916	 * their size to be the system-wide default string size.  Note that
10917	 * this should _not_ happen if the "strsize" option has been set --
10918	 * in this case, the compiler should have set the size to reflect the
10919	 * setting of the option.
10920	 */
10921	for (i = 0; i < dp->dtdo_varlen; i++) {
10922		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10923		dtrace_diftype_t *t = &v->dtdv_type;
10924
10925		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
10926			continue;
10927
10928		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
10929			t->dtdt_size = dtrace_strsize_default;
10930	}
10931
10932	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
10933		goto err;
10934
10935	dtrace_difo_init(dp, vstate);
10936	return (dp);
10937
10938err:
10939	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10940	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10941	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10942	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10943
10944	kmem_free(dp, sizeof (dtrace_difo_t));
10945	return (NULL);
10946}
10947
10948static dtrace_predicate_t *
10949dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10950    cred_t *cr)
10951{
10952	dtrace_difo_t *dp;
10953
10954	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
10955		return (NULL);
10956
10957	return (dtrace_predicate_create(dp));
10958}
10959
10960static dtrace_actdesc_t *
10961dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10962    cred_t *cr)
10963{
10964	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
10965	dof_actdesc_t *desc;
10966	dof_sec_t *difosec;
10967	size_t offs;
10968	uintptr_t daddr = (uintptr_t)dof;
10969	uint64_t arg;
10970	dtrace_actkind_t kind;
10971
10972	if (sec->dofs_type != DOF_SECT_ACTDESC) {
10973		dtrace_dof_error(dof, "invalid action section");
10974		return (NULL);
10975	}
10976
10977	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
10978		dtrace_dof_error(dof, "truncated action description");
10979		return (NULL);
10980	}
10981
10982	if (sec->dofs_align != sizeof (uint64_t)) {
10983		dtrace_dof_error(dof, "bad alignment in action description");
10984		return (NULL);
10985	}
10986
10987	if (sec->dofs_size < sec->dofs_entsize) {
10988		dtrace_dof_error(dof, "section entry size exceeds total size");
10989		return (NULL);
10990	}
10991
10992	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
10993		dtrace_dof_error(dof, "bad entry size in action description");
10994		return (NULL);
10995	}
10996
10997	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
10998		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
10999		return (NULL);
11000	}
11001
11002	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
11003		desc = (dof_actdesc_t *)(daddr +
11004		    (uintptr_t)sec->dofs_offset + offs);
11005		kind = (dtrace_actkind_t)desc->dofa_kind;
11006
11007		if (DTRACEACT_ISPRINTFLIKE(kind) &&
11008		    (kind != DTRACEACT_PRINTA ||
11009		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
11010			dof_sec_t *strtab;
11011			char *str, *fmt;
11012			uint64_t i;
11013
11014			/*
11015			 * printf()-like actions must have a format string.
11016			 */
11017			if ((strtab = dtrace_dof_sect(dof,
11018			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
11019				goto err;
11020
11021			str = (char *)((uintptr_t)dof +
11022			    (uintptr_t)strtab->dofs_offset);
11023
11024			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
11025				if (str[i] == '\0')
11026					break;
11027			}
11028
11029			if (i >= strtab->dofs_size) {
11030				dtrace_dof_error(dof, "bogus format string");
11031				goto err;
11032			}
11033
11034			if (i == desc->dofa_arg) {
11035				dtrace_dof_error(dof, "empty format string");
11036				goto err;
11037			}
11038
11039			i -= desc->dofa_arg;
11040			fmt = kmem_alloc(i + 1, KM_SLEEP);
11041			bcopy(&str[desc->dofa_arg], fmt, i + 1);
11042			arg = (uint64_t)(uintptr_t)fmt;
11043		} else {
11044			if (kind == DTRACEACT_PRINTA) {
11045				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
11046				arg = 0;
11047			} else {
11048				arg = desc->dofa_arg;
11049			}
11050		}
11051
11052		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
11053		    desc->dofa_uarg, arg);
11054
11055		if (last != NULL) {
11056			last->dtad_next = act;
11057		} else {
11058			first = act;
11059		}
11060
11061		last = act;
11062
11063		if (desc->dofa_difo == DOF_SECIDX_NONE)
11064			continue;
11065
11066		if ((difosec = dtrace_dof_sect(dof,
11067		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
11068			goto err;
11069
11070		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
11071
11072		if (act->dtad_difo == NULL)
11073			goto err;
11074	}
11075
11076	ASSERT(first != NULL);
11077	return (first);
11078
11079err:
11080	for (act = first; act != NULL; act = next) {
11081		next = act->dtad_next;
11082		dtrace_actdesc_release(act, vstate);
11083	}
11084
11085	return (NULL);
11086}
11087
11088static dtrace_ecbdesc_t *
11089dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11090    cred_t *cr)
11091{
11092	dtrace_ecbdesc_t *ep;
11093	dof_ecbdesc_t *ecb;
11094	dtrace_probedesc_t *desc;
11095	dtrace_predicate_t *pred = NULL;
11096
11097	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
11098		dtrace_dof_error(dof, "truncated ECB description");
11099		return (NULL);
11100	}
11101
11102	if (sec->dofs_align != sizeof (uint64_t)) {
11103		dtrace_dof_error(dof, "bad alignment in ECB description");
11104		return (NULL);
11105	}
11106
11107	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
11108	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
11109
11110	if (sec == NULL)
11111		return (NULL);
11112
11113	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11114	ep->dted_uarg = ecb->dofe_uarg;
11115	desc = &ep->dted_probe;
11116
11117	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
11118		goto err;
11119
11120	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
11121		if ((sec = dtrace_dof_sect(dof,
11122		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
11123			goto err;
11124
11125		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
11126			goto err;
11127
11128		ep->dted_pred.dtpdd_predicate = pred;
11129	}
11130
11131	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
11132		if ((sec = dtrace_dof_sect(dof,
11133		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
11134			goto err;
11135
11136		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
11137
11138		if (ep->dted_action == NULL)
11139			goto err;
11140	}
11141
11142	return (ep);
11143
11144err:
11145	if (pred != NULL)
11146		dtrace_predicate_release(pred, vstate);
11147	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11148	return (NULL);
11149}
11150
11151/*
11152 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
11153 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
11154 * site of any user SETX relocations to account for load object base address.
11155 * In the future, if we need other relocations, this function can be extended.
11156 */
11157static int
11158dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
11159{
11160	uintptr_t daddr = (uintptr_t)dof;
11161	dof_relohdr_t *dofr =
11162	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11163	dof_sec_t *ss, *rs, *ts;
11164	dof_relodesc_t *r;
11165	uint_t i, n;
11166
11167	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
11168	    sec->dofs_align != sizeof (dof_secidx_t)) {
11169		dtrace_dof_error(dof, "invalid relocation header");
11170		return (-1);
11171	}
11172
11173	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
11174	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
11175	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
11176
11177	if (ss == NULL || rs == NULL || ts == NULL)
11178		return (-1); /* dtrace_dof_error() has been called already */
11179
11180	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
11181	    rs->dofs_align != sizeof (uint64_t)) {
11182		dtrace_dof_error(dof, "invalid relocation section");
11183		return (-1);
11184	}
11185
11186	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
11187	n = rs->dofs_size / rs->dofs_entsize;
11188
11189	for (i = 0; i < n; i++) {
11190		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
11191
11192		switch (r->dofr_type) {
11193		case DOF_RELO_NONE:
11194			break;
11195		case DOF_RELO_SETX:
11196			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
11197			    sizeof (uint64_t) > ts->dofs_size) {
11198				dtrace_dof_error(dof, "bad relocation offset");
11199				return (-1);
11200			}
11201
11202			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
11203				dtrace_dof_error(dof, "misaligned setx relo");
11204				return (-1);
11205			}
11206
11207			*(uint64_t *)taddr += ubase;
11208			break;
11209		default:
11210			dtrace_dof_error(dof, "invalid relocation type");
11211			return (-1);
11212		}
11213
11214		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
11215	}
11216
11217	return (0);
11218}
11219
11220/*
11221 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
11222 * header:  it should be at the front of a memory region that is at least
11223 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
11224 * size.  It need not be validated in any other way.
11225 */
11226static int
11227dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
11228    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
11229{
11230	uint64_t len = dof->dofh_loadsz, seclen;
11231	uintptr_t daddr = (uintptr_t)dof;
11232	dtrace_ecbdesc_t *ep;
11233	dtrace_enabling_t *enab;
11234	uint_t i;
11235
11236	ASSERT(MUTEX_HELD(&dtrace_lock));
11237	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
11238
11239	/*
11240	 * Check the DOF header identification bytes.  In addition to checking
11241	 * valid settings, we also verify that unused bits/bytes are zeroed so
11242	 * we can use them later without fear of regressing existing binaries.
11243	 */
11244	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
11245	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
11246		dtrace_dof_error(dof, "DOF magic string mismatch");
11247		return (-1);
11248	}
11249
11250	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
11251	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
11252		dtrace_dof_error(dof, "DOF has invalid data model");
11253		return (-1);
11254	}
11255
11256	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
11257		dtrace_dof_error(dof, "DOF encoding mismatch");
11258		return (-1);
11259	}
11260
11261	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
11262	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
11263		dtrace_dof_error(dof, "DOF version mismatch");
11264		return (-1);
11265	}
11266
11267	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
11268		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
11269		return (-1);
11270	}
11271
11272	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
11273		dtrace_dof_error(dof, "DOF uses too many integer registers");
11274		return (-1);
11275	}
11276
11277	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
11278		dtrace_dof_error(dof, "DOF uses too many tuple registers");
11279		return (-1);
11280	}
11281
11282	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
11283		if (dof->dofh_ident[i] != 0) {
11284			dtrace_dof_error(dof, "DOF has invalid ident byte set");
11285			return (-1);
11286		}
11287	}
11288
11289	if (dof->dofh_flags & ~DOF_FL_VALID) {
11290		dtrace_dof_error(dof, "DOF has invalid flag bits set");
11291		return (-1);
11292	}
11293
11294	if (dof->dofh_secsize == 0) {
11295		dtrace_dof_error(dof, "zero section header size");
11296		return (-1);
11297	}
11298
11299	/*
11300	 * Check that the section headers don't exceed the amount of DOF
11301	 * data.  Note that we cast the section size and number of sections
11302	 * to uint64_t's to prevent possible overflow in the multiplication.
11303	 */
11304	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
11305
11306	if (dof->dofh_secoff > len || seclen > len ||
11307	    dof->dofh_secoff + seclen > len) {
11308		dtrace_dof_error(dof, "truncated section headers");
11309		return (-1);
11310	}
11311
11312	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
11313		dtrace_dof_error(dof, "misaligned section headers");
11314		return (-1);
11315	}
11316
11317	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
11318		dtrace_dof_error(dof, "misaligned section size");
11319		return (-1);
11320	}
11321
11322	/*
11323	 * Take an initial pass through the section headers to be sure that
11324	 * the headers don't have stray offsets.  If the 'noprobes' flag is
11325	 * set, do not permit sections relating to providers, probes, or args.
11326	 */
11327	for (i = 0; i < dof->dofh_secnum; i++) {
11328		dof_sec_t *sec = (dof_sec_t *)(daddr +
11329		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11330
11331		if (noprobes) {
11332			switch (sec->dofs_type) {
11333			case DOF_SECT_PROVIDER:
11334			case DOF_SECT_PROBES:
11335			case DOF_SECT_PRARGS:
11336			case DOF_SECT_PROFFS:
11337				dtrace_dof_error(dof, "illegal sections "
11338				    "for enabling");
11339				return (-1);
11340			}
11341		}
11342
11343		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11344			continue; /* just ignore non-loadable sections */
11345
11346		if (sec->dofs_align & (sec->dofs_align - 1)) {
11347			dtrace_dof_error(dof, "bad section alignment");
11348			return (-1);
11349		}
11350
11351		if (sec->dofs_offset & (sec->dofs_align - 1)) {
11352			dtrace_dof_error(dof, "misaligned section");
11353			return (-1);
11354		}
11355
11356		if (sec->dofs_offset > len || sec->dofs_size > len ||
11357		    sec->dofs_offset + sec->dofs_size > len) {
11358			dtrace_dof_error(dof, "corrupt section header");
11359			return (-1);
11360		}
11361
11362		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
11363		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
11364			dtrace_dof_error(dof, "non-terminating string table");
11365			return (-1);
11366		}
11367	}
11368
11369	/*
11370	 * Take a second pass through the sections and locate and perform any
11371	 * relocations that are present.  We do this after the first pass to
11372	 * be sure that all sections have had their headers validated.
11373	 */
11374	for (i = 0; i < dof->dofh_secnum; i++) {
11375		dof_sec_t *sec = (dof_sec_t *)(daddr +
11376		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11377
11378		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11379			continue; /* skip sections that are not loadable */
11380
11381		switch (sec->dofs_type) {
11382		case DOF_SECT_URELHDR:
11383			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
11384				return (-1);
11385			break;
11386		}
11387	}
11388
11389	if ((enab = *enabp) == NULL)
11390		enab = *enabp = dtrace_enabling_create(vstate);
11391
11392	for (i = 0; i < dof->dofh_secnum; i++) {
11393		dof_sec_t *sec = (dof_sec_t *)(daddr +
11394		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11395
11396		if (sec->dofs_type != DOF_SECT_ECBDESC)
11397			continue;
11398
11399		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
11400			dtrace_enabling_destroy(enab);
11401			*enabp = NULL;
11402			return (-1);
11403		}
11404
11405		dtrace_enabling_add(enab, ep);
11406	}
11407
11408	return (0);
11409}
11410
11411/*
11412 * Process DOF for any options.  This routine assumes that the DOF has been
11413 * at least processed by dtrace_dof_slurp().
11414 */
11415static int
11416dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
11417{
11418	int i, rval;
11419	uint32_t entsize;
11420	size_t offs;
11421	dof_optdesc_t *desc;
11422
11423	for (i = 0; i < dof->dofh_secnum; i++) {
11424		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
11425		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11426
11427		if (sec->dofs_type != DOF_SECT_OPTDESC)
11428			continue;
11429
11430		if (sec->dofs_align != sizeof (uint64_t)) {
11431			dtrace_dof_error(dof, "bad alignment in "
11432			    "option description");
11433			return (EINVAL);
11434		}
11435
11436		if ((entsize = sec->dofs_entsize) == 0) {
11437			dtrace_dof_error(dof, "zeroed option entry size");
11438			return (EINVAL);
11439		}
11440
11441		if (entsize < sizeof (dof_optdesc_t)) {
11442			dtrace_dof_error(dof, "bad option entry size");
11443			return (EINVAL);
11444		}
11445
11446		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
11447			desc = (dof_optdesc_t *)((uintptr_t)dof +
11448			    (uintptr_t)sec->dofs_offset + offs);
11449
11450			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
11451				dtrace_dof_error(dof, "non-zero option string");
11452				return (EINVAL);
11453			}
11454
11455			if (desc->dofo_value == DTRACEOPT_UNSET) {
11456				dtrace_dof_error(dof, "unset option");
11457				return (EINVAL);
11458			}
11459
11460			if ((rval = dtrace_state_option(state,
11461			    desc->dofo_option, desc->dofo_value)) != 0) {
11462				dtrace_dof_error(dof, "rejected option");
11463				return (rval);
11464			}
11465		}
11466	}
11467
11468	return (0);
11469}
11470
11471/*
11472 * DTrace Consumer State Functions
11473 */
11474int
11475dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
11476{
11477	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
11478	void *base;
11479	uintptr_t limit;
11480	dtrace_dynvar_t *dvar, *next, *start;
11481	int i;
11482
11483	ASSERT(MUTEX_HELD(&dtrace_lock));
11484	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
11485
11486	bzero(dstate, sizeof (dtrace_dstate_t));
11487
11488	if ((dstate->dtds_chunksize = chunksize) == 0)
11489		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
11490
11491	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
11492		size = min;
11493
11494	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
11495		return (ENOMEM);
11496
11497	dstate->dtds_size = size;
11498	dstate->dtds_base = base;
11499	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
11500	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
11501
11502	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
11503
11504	if (hashsize != 1 && (hashsize & 1))
11505		hashsize--;
11506
11507	dstate->dtds_hashsize = hashsize;
11508	dstate->dtds_hash = dstate->dtds_base;
11509
11510	/*
11511	 * Set all of our hash buckets to point to the single sink, and (if
11512	 * it hasn't already been set), set the sink's hash value to be the
11513	 * sink sentinel value.  The sink is needed for dynamic variable
11514	 * lookups to know that they have iterated over an entire, valid hash
11515	 * chain.
11516	 */
11517	for (i = 0; i < hashsize; i++)
11518		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
11519
11520	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
11521		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
11522
11523	/*
11524	 * Determine number of active CPUs.  Divide free list evenly among
11525	 * active CPUs.
11526	 */
11527	start = (dtrace_dynvar_t *)
11528	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
11529	limit = (uintptr_t)base + size;
11530
11531	maxper = (limit - (uintptr_t)start) / NCPU;
11532	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
11533
11534	for (i = 0; i < NCPU; i++) {
11535		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
11536
11537		/*
11538		 * If we don't even have enough chunks to make it once through
11539		 * NCPUs, we're just going to allocate everything to the first
11540		 * CPU.  And if we're on the last CPU, we're going to allocate
11541		 * whatever is left over.  In either case, we set the limit to
11542		 * be the limit of the dynamic variable space.
11543		 */
11544		if (maxper == 0 || i == NCPU - 1) {
11545			limit = (uintptr_t)base + size;
11546			start = NULL;
11547		} else {
11548			limit = (uintptr_t)start + maxper;
11549			start = (dtrace_dynvar_t *)limit;
11550		}
11551
11552		ASSERT(limit <= (uintptr_t)base + size);
11553
11554		for (;;) {
11555			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
11556			    dstate->dtds_chunksize);
11557
11558			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
11559				break;
11560
11561			dvar->dtdv_next = next;
11562			dvar = next;
11563		}
11564
11565		if (maxper == 0)
11566			break;
11567	}
11568
11569	return (0);
11570}
11571
11572void
11573dtrace_dstate_fini(dtrace_dstate_t *dstate)
11574{
11575	ASSERT(MUTEX_HELD(&cpu_lock));
11576
11577	if (dstate->dtds_base == NULL)
11578		return;
11579
11580	kmem_free(dstate->dtds_base, dstate->dtds_size);
11581	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
11582}
11583
11584static void
11585dtrace_vstate_fini(dtrace_vstate_t *vstate)
11586{
11587	/*
11588	 * Logical XOR, where are you?
11589	 */
11590	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
11591
11592	if (vstate->dtvs_nglobals > 0) {
11593		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
11594		    sizeof (dtrace_statvar_t *));
11595	}
11596
11597	if (vstate->dtvs_ntlocals > 0) {
11598		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
11599		    sizeof (dtrace_difv_t));
11600	}
11601
11602	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
11603
11604	if (vstate->dtvs_nlocals > 0) {
11605		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
11606		    sizeof (dtrace_statvar_t *));
11607	}
11608}
11609
11610static void
11611dtrace_state_clean(dtrace_state_t *state)
11612{
11613	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
11614		return;
11615
11616	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
11617	dtrace_speculation_clean(state);
11618}
11619
11620static void
11621dtrace_state_deadman(dtrace_state_t *state)
11622{
11623	hrtime_t now;
11624
11625	dtrace_sync();
11626
11627	now = dtrace_gethrtime();
11628
11629	if (state != dtrace_anon.dta_state &&
11630	    now - state->dts_laststatus >= dtrace_deadman_user)
11631		return;
11632
11633	/*
11634	 * We must be sure that dts_alive never appears to be less than the
11635	 * value upon entry to dtrace_state_deadman(), and because we lack a
11636	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
11637	 * store INT64_MAX to it, followed by a memory barrier, followed by
11638	 * the new value.  This assures that dts_alive never appears to be
11639	 * less than its true value, regardless of the order in which the
11640	 * stores to the underlying storage are issued.
11641	 */
11642	state->dts_alive = INT64_MAX;
11643	dtrace_membar_producer();
11644	state->dts_alive = now;
11645}
11646
11647dtrace_state_t *
11648dtrace_state_create(dev_t *devp, cred_t *cr)
11649{
11650	minor_t minor;
11651	major_t major;
11652	char c[30];
11653	dtrace_state_t *state;
11654	dtrace_optval_t *opt;
11655	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
11656
11657	ASSERT(MUTEX_HELD(&dtrace_lock));
11658	ASSERT(MUTEX_HELD(&cpu_lock));
11659
11660	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
11661	    VM_BESTFIT | VM_SLEEP);
11662
11663	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
11664		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11665		return (NULL);
11666	}
11667
11668	state = ddi_get_soft_state(dtrace_softstate, minor);
11669	state->dts_epid = DTRACE_EPIDNONE + 1;
11670
11671	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
11672	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
11673	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
11674
11675	if (devp != NULL) {
11676		major = getemajor(*devp);
11677	} else {
11678		major = ddi_driver_major(dtrace_devi);
11679	}
11680
11681	state->dts_dev = makedevice(major, minor);
11682
11683	if (devp != NULL)
11684		*devp = state->dts_dev;
11685
11686	/*
11687	 * We allocate NCPU buffers.  On the one hand, this can be quite
11688	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
11689	 * other hand, it saves an additional memory reference in the probe
11690	 * path.
11691	 */
11692	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
11693	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
11694	state->dts_cleaner = CYCLIC_NONE;
11695	state->dts_deadman = CYCLIC_NONE;
11696	state->dts_vstate.dtvs_state = state;
11697
11698	for (i = 0; i < DTRACEOPT_MAX; i++)
11699		state->dts_options[i] = DTRACEOPT_UNSET;
11700
11701	/*
11702	 * Set the default options.
11703	 */
11704	opt = state->dts_options;
11705	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
11706	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
11707	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
11708	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
11709	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
11710	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
11711	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
11712	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
11713	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
11714	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
11715	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
11716	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
11717	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
11718	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
11719
11720	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
11721
11722	/*
11723	 * Depending on the user credentials, we set flag bits which alter probe
11724	 * visibility or the amount of destructiveness allowed.  In the case of
11725	 * actual anonymous tracing, or the possession of all privileges, all of
11726	 * the normal checks are bypassed.
11727	 */
11728	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
11729		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
11730		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
11731	} else {
11732		/*
11733		 * Set up the credentials for this instantiation.  We take a
11734		 * hold on the credential to prevent it from disappearing on
11735		 * us; this in turn prevents the zone_t referenced by this
11736		 * credential from disappearing.  This means that we can
11737		 * examine the credential and the zone from probe context.
11738		 */
11739		crhold(cr);
11740		state->dts_cred.dcr_cred = cr;
11741
11742		/*
11743		 * CRA_PROC means "we have *some* privilege for dtrace" and
11744		 * unlocks the use of variables like pid, zonename, etc.
11745		 */
11746		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
11747		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11748			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
11749		}
11750
11751		/*
11752		 * dtrace_user allows use of syscall and profile providers.
11753		 * If the user also has proc_owner and/or proc_zone, we
11754		 * extend the scope to include additional visibility and
11755		 * destructive power.
11756		 */
11757		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
11758			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
11759				state->dts_cred.dcr_visible |=
11760				    DTRACE_CRV_ALLPROC;
11761
11762				state->dts_cred.dcr_action |=
11763				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11764			}
11765
11766			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
11767				state->dts_cred.dcr_visible |=
11768				    DTRACE_CRV_ALLZONE;
11769
11770				state->dts_cred.dcr_action |=
11771				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11772			}
11773
11774			/*
11775			 * If we have all privs in whatever zone this is,
11776			 * we can do destructive things to processes which
11777			 * have altered credentials.
11778			 */
11779			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
11780			    cr->cr_zone->zone_privset)) {
11781				state->dts_cred.dcr_action |=
11782				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
11783			}
11784		}
11785
11786		/*
11787		 * Holding the dtrace_kernel privilege also implies that
11788		 * the user has the dtrace_user privilege from a visibility
11789		 * perspective.  But without further privileges, some
11790		 * destructive actions are not available.
11791		 */
11792		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
11793			/*
11794			 * Make all probes in all zones visible.  However,
11795			 * this doesn't mean that all actions become available
11796			 * to all zones.
11797			 */
11798			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
11799			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
11800
11801			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
11802			    DTRACE_CRA_PROC;
11803			/*
11804			 * Holding proc_owner means that destructive actions
11805			 * for *this* zone are allowed.
11806			 */
11807			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11808				state->dts_cred.dcr_action |=
11809				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11810
11811			/*
11812			 * Holding proc_zone means that destructive actions
11813			 * for this user/group ID in all zones is allowed.
11814			 */
11815			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
11816				state->dts_cred.dcr_action |=
11817				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11818
11819			/*
11820			 * If we have all privs in whatever zone this is,
11821			 * we can do destructive things to processes which
11822			 * have altered credentials.
11823			 */
11824			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
11825			    cr->cr_zone->zone_privset)) {
11826				state->dts_cred.dcr_action |=
11827				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
11828			}
11829		}
11830
11831		/*
11832		 * Holding the dtrace_proc privilege gives control over fasttrap
11833		 * and pid providers.  We need to grant wider destructive
11834		 * privileges in the event that the user has proc_owner and/or
11835		 * proc_zone.
11836		 */
11837		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11838			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11839				state->dts_cred.dcr_action |=
11840				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11841
11842			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
11843				state->dts_cred.dcr_action |=
11844				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11845		}
11846	}
11847
11848	return (state);
11849}
11850
11851static int
11852dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
11853{
11854	dtrace_optval_t *opt = state->dts_options, size;
11855	processorid_t cpu;
11856	int flags = 0, rval;
11857
11858	ASSERT(MUTEX_HELD(&dtrace_lock));
11859	ASSERT(MUTEX_HELD(&cpu_lock));
11860	ASSERT(which < DTRACEOPT_MAX);
11861	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
11862	    (state == dtrace_anon.dta_state &&
11863	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
11864
11865	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
11866		return (0);
11867
11868	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
11869		cpu = opt[DTRACEOPT_CPU];
11870
11871	if (which == DTRACEOPT_SPECSIZE)
11872		flags |= DTRACEBUF_NOSWITCH;
11873
11874	if (which == DTRACEOPT_BUFSIZE) {
11875		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
11876			flags |= DTRACEBUF_RING;
11877
11878		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
11879			flags |= DTRACEBUF_FILL;
11880
11881		if (state != dtrace_anon.dta_state ||
11882		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
11883			flags |= DTRACEBUF_INACTIVE;
11884	}
11885
11886	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
11887		/*
11888		 * The size must be 8-byte aligned.  If the size is not 8-byte
11889		 * aligned, drop it down by the difference.
11890		 */
11891		if (size & (sizeof (uint64_t) - 1))
11892			size -= size & (sizeof (uint64_t) - 1);
11893
11894		if (size < state->dts_reserve) {
11895			/*
11896			 * Buffers always must be large enough to accommodate
11897			 * their prereserved space.  We return E2BIG instead
11898			 * of ENOMEM in this case to allow for user-level
11899			 * software to differentiate the cases.
11900			 */
11901			return (E2BIG);
11902		}
11903
11904		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
11905
11906		if (rval != ENOMEM) {
11907			opt[which] = size;
11908			return (rval);
11909		}
11910
11911		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11912			return (rval);
11913	}
11914
11915	return (ENOMEM);
11916}
11917
11918static int
11919dtrace_state_buffers(dtrace_state_t *state)
11920{
11921	dtrace_speculation_t *spec = state->dts_speculations;
11922	int rval, i;
11923
11924	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
11925	    DTRACEOPT_BUFSIZE)) != 0)
11926		return (rval);
11927
11928	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
11929	    DTRACEOPT_AGGSIZE)) != 0)
11930		return (rval);
11931
11932	for (i = 0; i < state->dts_nspeculations; i++) {
11933		if ((rval = dtrace_state_buffer(state,
11934		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
11935			return (rval);
11936	}
11937
11938	return (0);
11939}
11940
11941static void
11942dtrace_state_prereserve(dtrace_state_t *state)
11943{
11944	dtrace_ecb_t *ecb;
11945	dtrace_probe_t *probe;
11946
11947	state->dts_reserve = 0;
11948
11949	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
11950		return;
11951
11952	/*
11953	 * If our buffer policy is a "fill" buffer policy, we need to set the
11954	 * prereserved space to be the space required by the END probes.
11955	 */
11956	probe = dtrace_probes[dtrace_probeid_end - 1];
11957	ASSERT(probe != NULL);
11958
11959	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
11960		if (ecb->dte_state != state)
11961			continue;
11962
11963		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
11964	}
11965}
11966
11967static int
11968dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
11969{
11970	dtrace_optval_t *opt = state->dts_options, sz, nspec;
11971	dtrace_speculation_t *spec;
11972	dtrace_buffer_t *buf;
11973	cyc_handler_t hdlr;
11974	cyc_time_t when;
11975	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11976	dtrace_icookie_t cookie;
11977
11978	mutex_enter(&cpu_lock);
11979	mutex_enter(&dtrace_lock);
11980
11981	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
11982		rval = EBUSY;
11983		goto out;
11984	}
11985
11986	/*
11987	 * Before we can perform any checks, we must prime all of the
11988	 * retained enablings that correspond to this state.
11989	 */
11990	dtrace_enabling_prime(state);
11991
11992	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
11993		rval = EACCES;
11994		goto out;
11995	}
11996
11997	dtrace_state_prereserve(state);
11998
11999	/*
12000	 * Now we want to do is try to allocate our speculations.
12001	 * We do not automatically resize the number of speculations; if
12002	 * this fails, we will fail the operation.
12003	 */
12004	nspec = opt[DTRACEOPT_NSPEC];
12005	ASSERT(nspec != DTRACEOPT_UNSET);
12006
12007	if (nspec > INT_MAX) {
12008		rval = ENOMEM;
12009		goto out;
12010	}
12011
12012	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
12013
12014	if (spec == NULL) {
12015		rval = ENOMEM;
12016		goto out;
12017	}
12018
12019	state->dts_speculations = spec;
12020	state->dts_nspeculations = (int)nspec;
12021
12022	for (i = 0; i < nspec; i++) {
12023		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
12024			rval = ENOMEM;
12025			goto err;
12026		}
12027
12028		spec[i].dtsp_buffer = buf;
12029	}
12030
12031	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
12032		if (dtrace_anon.dta_state == NULL) {
12033			rval = ENOENT;
12034			goto out;
12035		}
12036
12037		if (state->dts_necbs != 0) {
12038			rval = EALREADY;
12039			goto out;
12040		}
12041
12042		state->dts_anon = dtrace_anon_grab();
12043		ASSERT(state->dts_anon != NULL);
12044		state = state->dts_anon;
12045
12046		/*
12047		 * We want "grabanon" to be set in the grabbed state, so we'll
12048		 * copy that option value from the grabbing state into the
12049		 * grabbed state.
12050		 */
12051		state->dts_options[DTRACEOPT_GRABANON] =
12052		    opt[DTRACEOPT_GRABANON];
12053
12054		*cpu = dtrace_anon.dta_beganon;
12055
12056		/*
12057		 * If the anonymous state is active (as it almost certainly
12058		 * is if the anonymous enabling ultimately matched anything),
12059		 * we don't allow any further option processing -- but we
12060		 * don't return failure.
12061		 */
12062		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12063			goto out;
12064	}
12065
12066	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
12067	    opt[DTRACEOPT_AGGSIZE] != 0) {
12068		if (state->dts_aggregations == NULL) {
12069			/*
12070			 * We're not going to create an aggregation buffer
12071			 * because we don't have any ECBs that contain
12072			 * aggregations -- set this option to 0.
12073			 */
12074			opt[DTRACEOPT_AGGSIZE] = 0;
12075		} else {
12076			/*
12077			 * If we have an aggregation buffer, we must also have
12078			 * a buffer to use as scratch.
12079			 */
12080			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
12081			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
12082				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
12083			}
12084		}
12085	}
12086
12087	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
12088	    opt[DTRACEOPT_SPECSIZE] != 0) {
12089		if (!state->dts_speculates) {
12090			/*
12091			 * We're not going to create speculation buffers
12092			 * because we don't have any ECBs that actually
12093			 * speculate -- set the speculation size to 0.
12094			 */
12095			opt[DTRACEOPT_SPECSIZE] = 0;
12096		}
12097	}
12098
12099	/*
12100	 * The bare minimum size for any buffer that we're actually going to
12101	 * do anything to is sizeof (uint64_t).
12102	 */
12103	sz = sizeof (uint64_t);
12104
12105	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
12106	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
12107	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
12108		/*
12109		 * A buffer size has been explicitly set to 0 (or to a size
12110		 * that will be adjusted to 0) and we need the space -- we
12111		 * need to return failure.  We return ENOSPC to differentiate
12112		 * it from failing to allocate a buffer due to failure to meet
12113		 * the reserve (for which we return E2BIG).
12114		 */
12115		rval = ENOSPC;
12116		goto out;
12117	}
12118
12119	if ((rval = dtrace_state_buffers(state)) != 0)
12120		goto err;
12121
12122	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
12123		sz = dtrace_dstate_defsize;
12124
12125	do {
12126		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
12127
12128		if (rval == 0)
12129			break;
12130
12131		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12132			goto err;
12133	} while (sz >>= 1);
12134
12135	opt[DTRACEOPT_DYNVARSIZE] = sz;
12136
12137	if (rval != 0)
12138		goto err;
12139
12140	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
12141		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
12142
12143	if (opt[DTRACEOPT_CLEANRATE] == 0)
12144		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12145
12146	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
12147		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
12148
12149	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
12150		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12151
12152	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
12153	hdlr.cyh_arg = state;
12154	hdlr.cyh_level = CY_LOW_LEVEL;
12155
12156	when.cyt_when = 0;
12157	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
12158
12159	state->dts_cleaner = cyclic_add(&hdlr, &when);
12160
12161	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
12162	hdlr.cyh_arg = state;
12163	hdlr.cyh_level = CY_LOW_LEVEL;
12164
12165	when.cyt_when = 0;
12166	when.cyt_interval = dtrace_deadman_interval;
12167
12168	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
12169	state->dts_deadman = cyclic_add(&hdlr, &when);
12170
12171	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
12172
12173	/*
12174	 * Now it's time to actually fire the BEGIN probe.  We need to disable
12175	 * interrupts here both to record the CPU on which we fired the BEGIN
12176	 * probe (the data from this CPU will be processed first at user
12177	 * level) and to manually activate the buffer for this CPU.
12178	 */
12179	cookie = dtrace_interrupt_disable();
12180	*cpu = CPU->cpu_id;
12181	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
12182	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12183
12184	dtrace_probe(dtrace_probeid_begin,
12185	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12186	dtrace_interrupt_enable(cookie);
12187	/*
12188	 * We may have had an exit action from a BEGIN probe; only change our
12189	 * state to ACTIVE if we're still in WARMUP.
12190	 */
12191	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
12192	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
12193
12194	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
12195		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
12196
12197	/*
12198	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
12199	 * want each CPU to transition its principal buffer out of the
12200	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
12201	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
12202	 * atomically transition from processing none of a state's ECBs to
12203	 * processing all of them.
12204	 */
12205	dtrace_xcall(DTRACE_CPUALL,
12206	    (dtrace_xcall_t)dtrace_buffer_activate, state);
12207	goto out;
12208
12209err:
12210	dtrace_buffer_free(state->dts_buffer);
12211	dtrace_buffer_free(state->dts_aggbuffer);
12212
12213	if ((nspec = state->dts_nspeculations) == 0) {
12214		ASSERT(state->dts_speculations == NULL);
12215		goto out;
12216	}
12217
12218	spec = state->dts_speculations;
12219	ASSERT(spec != NULL);
12220
12221	for (i = 0; i < state->dts_nspeculations; i++) {
12222		if ((buf = spec[i].dtsp_buffer) == NULL)
12223			break;
12224
12225		dtrace_buffer_free(buf);
12226		kmem_free(buf, bufsize);
12227	}
12228
12229	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12230	state->dts_nspeculations = 0;
12231	state->dts_speculations = NULL;
12232
12233out:
12234	mutex_exit(&dtrace_lock);
12235	mutex_exit(&cpu_lock);
12236
12237	return (rval);
12238}
12239
12240static int
12241dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
12242{
12243	dtrace_icookie_t cookie;
12244
12245	ASSERT(MUTEX_HELD(&dtrace_lock));
12246
12247	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
12248	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
12249		return (EINVAL);
12250
12251	/*
12252	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
12253	 * to be sure that every CPU has seen it.  See below for the details
12254	 * on why this is done.
12255	 */
12256	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
12257	dtrace_sync();
12258
12259	/*
12260	 * By this point, it is impossible for any CPU to be still processing
12261	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
12262	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
12263	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
12264	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
12265	 * iff we're in the END probe.
12266	 */
12267	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
12268	dtrace_sync();
12269	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
12270
12271	/*
12272	 * Finally, we can release the reserve and call the END probe.  We
12273	 * disable interrupts across calling the END probe to allow us to
12274	 * return the CPU on which we actually called the END probe.  This
12275	 * allows user-land to be sure that this CPU's principal buffer is
12276	 * processed last.
12277	 */
12278	state->dts_reserve = 0;
12279
12280	cookie = dtrace_interrupt_disable();
12281	*cpu = CPU->cpu_id;
12282	dtrace_probe(dtrace_probeid_end,
12283	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12284	dtrace_interrupt_enable(cookie);
12285
12286	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
12287	dtrace_sync();
12288
12289	return (0);
12290}
12291
12292static int
12293dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
12294    dtrace_optval_t val)
12295{
12296	ASSERT(MUTEX_HELD(&dtrace_lock));
12297
12298	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12299		return (EBUSY);
12300
12301	if (option >= DTRACEOPT_MAX)
12302		return (EINVAL);
12303
12304	if (option != DTRACEOPT_CPU && val < 0)
12305		return (EINVAL);
12306
12307	switch (option) {
12308	case DTRACEOPT_DESTRUCTIVE:
12309		if (dtrace_destructive_disallow)
12310			return (EACCES);
12311
12312		state->dts_cred.dcr_destructive = 1;
12313		break;
12314
12315	case DTRACEOPT_BUFSIZE:
12316	case DTRACEOPT_DYNVARSIZE:
12317	case DTRACEOPT_AGGSIZE:
12318	case DTRACEOPT_SPECSIZE:
12319	case DTRACEOPT_STRSIZE:
12320		if (val < 0)
12321			return (EINVAL);
12322
12323		if (val >= LONG_MAX) {
12324			/*
12325			 * If this is an otherwise negative value, set it to
12326			 * the highest multiple of 128m less than LONG_MAX.
12327			 * Technically, we're adjusting the size without
12328			 * regard to the buffer resizing policy, but in fact,
12329			 * this has no effect -- if we set the buffer size to
12330			 * ~LONG_MAX and the buffer policy is ultimately set to
12331			 * be "manual", the buffer allocation is guaranteed to
12332			 * fail, if only because the allocation requires two
12333			 * buffers.  (We set the the size to the highest
12334			 * multiple of 128m because it ensures that the size
12335			 * will remain a multiple of a megabyte when
12336			 * repeatedly halved -- all the way down to 15m.)
12337			 */
12338			val = LONG_MAX - (1 << 27) + 1;
12339		}
12340	}
12341
12342	state->dts_options[option] = val;
12343
12344	return (0);
12345}
12346
12347static void
12348dtrace_state_destroy(dtrace_state_t *state)
12349{
12350	dtrace_ecb_t *ecb;
12351	dtrace_vstate_t *vstate = &state->dts_vstate;
12352	minor_t minor = getminor(state->dts_dev);
12353	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12354	dtrace_speculation_t *spec = state->dts_speculations;
12355	int nspec = state->dts_nspeculations;
12356	uint32_t match;
12357
12358	ASSERT(MUTEX_HELD(&dtrace_lock));
12359	ASSERT(MUTEX_HELD(&cpu_lock));
12360
12361	/*
12362	 * First, retract any retained enablings for this state.
12363	 */
12364	dtrace_enabling_retract(state);
12365	ASSERT(state->dts_nretained == 0);
12366
12367	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
12368	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
12369		/*
12370		 * We have managed to come into dtrace_state_destroy() on a
12371		 * hot enabling -- almost certainly because of a disorderly
12372		 * shutdown of a consumer.  (That is, a consumer that is
12373		 * exiting without having called dtrace_stop().) In this case,
12374		 * we're going to set our activity to be KILLED, and then
12375		 * issue a sync to be sure that everyone is out of probe
12376		 * context before we start blowing away ECBs.
12377		 */
12378		state->dts_activity = DTRACE_ACTIVITY_KILLED;
12379		dtrace_sync();
12380	}
12381
12382	/*
12383	 * Release the credential hold we took in dtrace_state_create().
12384	 */
12385	if (state->dts_cred.dcr_cred != NULL)
12386		crfree(state->dts_cred.dcr_cred);
12387
12388	/*
12389	 * Now we can safely disable and destroy any enabled probes.  Because
12390	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
12391	 * (especially if they're all enabled), we take two passes through the
12392	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
12393	 * in the second we disable whatever is left over.
12394	 */
12395	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
12396		for (i = 0; i < state->dts_necbs; i++) {
12397			if ((ecb = state->dts_ecbs[i]) == NULL)
12398				continue;
12399
12400			if (match && ecb->dte_probe != NULL) {
12401				dtrace_probe_t *probe = ecb->dte_probe;
12402				dtrace_provider_t *prov = probe->dtpr_provider;
12403
12404				if (!(prov->dtpv_priv.dtpp_flags & match))
12405					continue;
12406			}
12407
12408			dtrace_ecb_disable(ecb);
12409			dtrace_ecb_destroy(ecb);
12410		}
12411
12412		if (!match)
12413			break;
12414	}
12415
12416	/*
12417	 * Before we free the buffers, perform one more sync to assure that
12418	 * every CPU is out of probe context.
12419	 */
12420	dtrace_sync();
12421
12422	dtrace_buffer_free(state->dts_buffer);
12423	dtrace_buffer_free(state->dts_aggbuffer);
12424
12425	for (i = 0; i < nspec; i++)
12426		dtrace_buffer_free(spec[i].dtsp_buffer);
12427
12428	if (state->dts_cleaner != CYCLIC_NONE)
12429		cyclic_remove(state->dts_cleaner);
12430
12431	if (state->dts_deadman != CYCLIC_NONE)
12432		cyclic_remove(state->dts_deadman);
12433
12434	dtrace_dstate_fini(&vstate->dtvs_dynvars);
12435	dtrace_vstate_fini(vstate);
12436	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
12437
12438	if (state->dts_aggregations != NULL) {
12439#ifdef DEBUG
12440		for (i = 0; i < state->dts_naggregations; i++)
12441			ASSERT(state->dts_aggregations[i] == NULL);
12442#endif
12443		ASSERT(state->dts_naggregations > 0);
12444		kmem_free(state->dts_aggregations,
12445		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
12446	}
12447
12448	kmem_free(state->dts_buffer, bufsize);
12449	kmem_free(state->dts_aggbuffer, bufsize);
12450
12451	for (i = 0; i < nspec; i++)
12452		kmem_free(spec[i].dtsp_buffer, bufsize);
12453
12454	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12455
12456	dtrace_format_destroy(state);
12457
12458	vmem_destroy(state->dts_aggid_arena);
12459	ddi_soft_state_free(dtrace_softstate, minor);
12460	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12461}
12462
12463/*
12464 * DTrace Anonymous Enabling Functions
12465 */
12466static dtrace_state_t *
12467dtrace_anon_grab(void)
12468{
12469	dtrace_state_t *state;
12470
12471	ASSERT(MUTEX_HELD(&dtrace_lock));
12472
12473	if ((state = dtrace_anon.dta_state) == NULL) {
12474		ASSERT(dtrace_anon.dta_enabling == NULL);
12475		return (NULL);
12476	}
12477
12478	ASSERT(dtrace_anon.dta_enabling != NULL);
12479	ASSERT(dtrace_retained != NULL);
12480
12481	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
12482	dtrace_anon.dta_enabling = NULL;
12483	dtrace_anon.dta_state = NULL;
12484
12485	return (state);
12486}
12487
12488static void
12489dtrace_anon_property(void)
12490{
12491	int i, rv;
12492	dtrace_state_t *state;
12493	dof_hdr_t *dof;
12494	char c[32];		/* enough for "dof-data-" + digits */
12495
12496	ASSERT(MUTEX_HELD(&dtrace_lock));
12497	ASSERT(MUTEX_HELD(&cpu_lock));
12498
12499	for (i = 0; ; i++) {
12500		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
12501
12502		dtrace_err_verbose = 1;
12503
12504		if ((dof = dtrace_dof_property(c)) == NULL) {
12505			dtrace_err_verbose = 0;
12506			break;
12507		}
12508
12509		/*
12510		 * We want to create anonymous state, so we need to transition
12511		 * the kernel debugger to indicate that DTrace is active.  If
12512		 * this fails (e.g. because the debugger has modified text in
12513		 * some way), we won't continue with the processing.
12514		 */
12515		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
12516			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
12517			    "enabling ignored.");
12518			dtrace_dof_destroy(dof);
12519			break;
12520		}
12521
12522		/*
12523		 * If we haven't allocated an anonymous state, we'll do so now.
12524		 */
12525		if ((state = dtrace_anon.dta_state) == NULL) {
12526			state = dtrace_state_create(NULL, NULL);
12527			dtrace_anon.dta_state = state;
12528
12529			if (state == NULL) {
12530				/*
12531				 * This basically shouldn't happen:  the only
12532				 * failure mode from dtrace_state_create() is a
12533				 * failure of ddi_soft_state_zalloc() that
12534				 * itself should never happen.  Still, the
12535				 * interface allows for a failure mode, and
12536				 * we want to fail as gracefully as possible:
12537				 * we'll emit an error message and cease
12538				 * processing anonymous state in this case.
12539				 */
12540				cmn_err(CE_WARN, "failed to create "
12541				    "anonymous state");
12542				dtrace_dof_destroy(dof);
12543				break;
12544			}
12545		}
12546
12547		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
12548		    &dtrace_anon.dta_enabling, 0, B_TRUE);
12549
12550		if (rv == 0)
12551			rv = dtrace_dof_options(dof, state);
12552
12553		dtrace_err_verbose = 0;
12554		dtrace_dof_destroy(dof);
12555
12556		if (rv != 0) {
12557			/*
12558			 * This is malformed DOF; chuck any anonymous state
12559			 * that we created.
12560			 */
12561			ASSERT(dtrace_anon.dta_enabling == NULL);
12562			dtrace_state_destroy(state);
12563			dtrace_anon.dta_state = NULL;
12564			break;
12565		}
12566
12567		ASSERT(dtrace_anon.dta_enabling != NULL);
12568	}
12569
12570	if (dtrace_anon.dta_enabling != NULL) {
12571		int rval;
12572
12573		/*
12574		 * dtrace_enabling_retain() can only fail because we are
12575		 * trying to retain more enablings than are allowed -- but
12576		 * we only have one anonymous enabling, and we are guaranteed
12577		 * to be allowed at least one retained enabling; we assert
12578		 * that dtrace_enabling_retain() returns success.
12579		 */
12580		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
12581		ASSERT(rval == 0);
12582
12583		dtrace_enabling_dump(dtrace_anon.dta_enabling);
12584	}
12585}
12586
12587/*
12588 * DTrace Helper Functions
12589 */
12590static void
12591dtrace_helper_trace(dtrace_helper_action_t *helper,
12592    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
12593{
12594	uint32_t size, next, nnext, i;
12595	dtrace_helptrace_t *ent;
12596	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12597
12598	if (!dtrace_helptrace_enabled)
12599		return;
12600
12601	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
12602
12603	/*
12604	 * What would a tracing framework be without its own tracing
12605	 * framework?  (Well, a hell of a lot simpler, for starters...)
12606	 */
12607	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
12608	    sizeof (uint64_t) - sizeof (uint64_t);
12609
12610	/*
12611	 * Iterate until we can allocate a slot in the trace buffer.
12612	 */
12613	do {
12614		next = dtrace_helptrace_next;
12615
12616		if (next + size < dtrace_helptrace_bufsize) {
12617			nnext = next + size;
12618		} else {
12619			nnext = size;
12620		}
12621	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
12622
12623	/*
12624	 * We have our slot; fill it in.
12625	 */
12626	if (nnext == size)
12627		next = 0;
12628
12629	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
12630	ent->dtht_helper = helper;
12631	ent->dtht_where = where;
12632	ent->dtht_nlocals = vstate->dtvs_nlocals;
12633
12634	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
12635	    mstate->dtms_fltoffs : -1;
12636	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
12637	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
12638
12639	for (i = 0; i < vstate->dtvs_nlocals; i++) {
12640		dtrace_statvar_t *svar;
12641
12642		if ((svar = vstate->dtvs_locals[i]) == NULL)
12643			continue;
12644
12645		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
12646		ent->dtht_locals[i] =
12647		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
12648	}
12649}
12650
12651static uint64_t
12652dtrace_helper(int which, dtrace_mstate_t *mstate,
12653    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
12654{
12655	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12656	uint64_t sarg0 = mstate->dtms_arg[0];
12657	uint64_t sarg1 = mstate->dtms_arg[1];
12658	uint64_t rval;
12659	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
12660	dtrace_helper_action_t *helper;
12661	dtrace_vstate_t *vstate;
12662	dtrace_difo_t *pred;
12663	int i, trace = dtrace_helptrace_enabled;
12664
12665	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
12666
12667	if (helpers == NULL)
12668		return (0);
12669
12670	if ((helper = helpers->dthps_actions[which]) == NULL)
12671		return (0);
12672
12673	vstate = &helpers->dthps_vstate;
12674	mstate->dtms_arg[0] = arg0;
12675	mstate->dtms_arg[1] = arg1;
12676
12677	/*
12678	 * Now iterate over each helper.  If its predicate evaluates to 'true',
12679	 * we'll call the corresponding actions.  Note that the below calls
12680	 * to dtrace_dif_emulate() may set faults in machine state.  This is
12681	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
12682	 * the stored DIF offset with its own (which is the desired behavior).
12683	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
12684	 * from machine state; this is okay, too.
12685	 */
12686	for (; helper != NULL; helper = helper->dtha_next) {
12687		if ((pred = helper->dtha_predicate) != NULL) {
12688			if (trace)
12689				dtrace_helper_trace(helper, mstate, vstate, 0);
12690
12691			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
12692				goto next;
12693
12694			if (*flags & CPU_DTRACE_FAULT)
12695				goto err;
12696		}
12697
12698		for (i = 0; i < helper->dtha_nactions; i++) {
12699			if (trace)
12700				dtrace_helper_trace(helper,
12701				    mstate, vstate, i + 1);
12702
12703			rval = dtrace_dif_emulate(helper->dtha_actions[i],
12704			    mstate, vstate, state);
12705
12706			if (*flags & CPU_DTRACE_FAULT)
12707				goto err;
12708		}
12709
12710next:
12711		if (trace)
12712			dtrace_helper_trace(helper, mstate, vstate,
12713			    DTRACE_HELPTRACE_NEXT);
12714	}
12715
12716	if (trace)
12717		dtrace_helper_trace(helper, mstate, vstate,
12718		    DTRACE_HELPTRACE_DONE);
12719
12720	/*
12721	 * Restore the arg0 that we saved upon entry.
12722	 */
12723	mstate->dtms_arg[0] = sarg0;
12724	mstate->dtms_arg[1] = sarg1;
12725
12726	return (rval);
12727
12728err:
12729	if (trace)
12730		dtrace_helper_trace(helper, mstate, vstate,
12731		    DTRACE_HELPTRACE_ERR);
12732
12733	/*
12734	 * Restore the arg0 that we saved upon entry.
12735	 */
12736	mstate->dtms_arg[0] = sarg0;
12737	mstate->dtms_arg[1] = sarg1;
12738
12739	return (NULL);
12740}
12741
12742static void
12743dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
12744    dtrace_vstate_t *vstate)
12745{
12746	int i;
12747
12748	if (helper->dtha_predicate != NULL)
12749		dtrace_difo_release(helper->dtha_predicate, vstate);
12750
12751	for (i = 0; i < helper->dtha_nactions; i++) {
12752		ASSERT(helper->dtha_actions[i] != NULL);
12753		dtrace_difo_release(helper->dtha_actions[i], vstate);
12754	}
12755
12756	kmem_free(helper->dtha_actions,
12757	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
12758	kmem_free(helper, sizeof (dtrace_helper_action_t));
12759}
12760
12761static int
12762dtrace_helper_destroygen(int gen)
12763{
12764	proc_t *p = curproc;
12765	dtrace_helpers_t *help = p->p_dtrace_helpers;
12766	dtrace_vstate_t *vstate;
12767	int i;
12768
12769	ASSERT(MUTEX_HELD(&dtrace_lock));
12770
12771	if (help == NULL || gen > help->dthps_generation)
12772		return (EINVAL);
12773
12774	vstate = &help->dthps_vstate;
12775
12776	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12777		dtrace_helper_action_t *last = NULL, *h, *next;
12778
12779		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12780			next = h->dtha_next;
12781
12782			if (h->dtha_generation == gen) {
12783				if (last != NULL) {
12784					last->dtha_next = next;
12785				} else {
12786					help->dthps_actions[i] = next;
12787				}
12788
12789				dtrace_helper_action_destroy(h, vstate);
12790			} else {
12791				last = h;
12792			}
12793		}
12794	}
12795
12796	/*
12797	 * Interate until we've cleared out all helper providers with the
12798	 * given generation number.
12799	 */
12800	for (;;) {
12801		dtrace_helper_provider_t *prov;
12802
12803		/*
12804		 * Look for a helper provider with the right generation. We
12805		 * have to start back at the beginning of the list each time
12806		 * because we drop dtrace_lock. It's unlikely that we'll make
12807		 * more than two passes.
12808		 */
12809		for (i = 0; i < help->dthps_nprovs; i++) {
12810			prov = help->dthps_provs[i];
12811
12812			if (prov->dthp_generation == gen)
12813				break;
12814		}
12815
12816		/*
12817		 * If there were no matches, we're done.
12818		 */
12819		if (i == help->dthps_nprovs)
12820			break;
12821
12822		/*
12823		 * Move the last helper provider into this slot.
12824		 */
12825		help->dthps_nprovs--;
12826		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
12827		help->dthps_provs[help->dthps_nprovs] = NULL;
12828
12829		mutex_exit(&dtrace_lock);
12830
12831		/*
12832		 * If we have a meta provider, remove this helper provider.
12833		 */
12834		mutex_enter(&dtrace_meta_lock);
12835		if (dtrace_meta_pid != NULL) {
12836			ASSERT(dtrace_deferred_pid == NULL);
12837			dtrace_helper_provider_remove(&prov->dthp_prov,
12838			    p->p_pid);
12839		}
12840		mutex_exit(&dtrace_meta_lock);
12841
12842		dtrace_helper_provider_destroy(prov);
12843
12844		mutex_enter(&dtrace_lock);
12845	}
12846
12847	return (0);
12848}
12849
12850static int
12851dtrace_helper_validate(dtrace_helper_action_t *helper)
12852{
12853	int err = 0, i;
12854	dtrace_difo_t *dp;
12855
12856	if ((dp = helper->dtha_predicate) != NULL)
12857		err += dtrace_difo_validate_helper(dp);
12858
12859	for (i = 0; i < helper->dtha_nactions; i++)
12860		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
12861
12862	return (err == 0);
12863}
12864
12865static int
12866dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
12867{
12868	dtrace_helpers_t *help;
12869	dtrace_helper_action_t *helper, *last;
12870	dtrace_actdesc_t *act;
12871	dtrace_vstate_t *vstate;
12872	dtrace_predicate_t *pred;
12873	int count = 0, nactions = 0, i;
12874
12875	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
12876		return (EINVAL);
12877
12878	help = curproc->p_dtrace_helpers;
12879	last = help->dthps_actions[which];
12880	vstate = &help->dthps_vstate;
12881
12882	for (count = 0; last != NULL; last = last->dtha_next) {
12883		count++;
12884		if (last->dtha_next == NULL)
12885			break;
12886	}
12887
12888	/*
12889	 * If we already have dtrace_helper_actions_max helper actions for this
12890	 * helper action type, we'll refuse to add a new one.
12891	 */
12892	if (count >= dtrace_helper_actions_max)
12893		return (ENOSPC);
12894
12895	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
12896	helper->dtha_generation = help->dthps_generation;
12897
12898	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
12899		ASSERT(pred->dtp_difo != NULL);
12900		dtrace_difo_hold(pred->dtp_difo);
12901		helper->dtha_predicate = pred->dtp_difo;
12902	}
12903
12904	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
12905		if (act->dtad_kind != DTRACEACT_DIFEXPR)
12906			goto err;
12907
12908		if (act->dtad_difo == NULL)
12909			goto err;
12910
12911		nactions++;
12912	}
12913
12914	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
12915	    (helper->dtha_nactions = nactions), KM_SLEEP);
12916
12917	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
12918		dtrace_difo_hold(act->dtad_difo);
12919		helper->dtha_actions[i++] = act->dtad_difo;
12920	}
12921
12922	if (!dtrace_helper_validate(helper))
12923		goto err;
12924
12925	if (last == NULL) {
12926		help->dthps_actions[which] = helper;
12927	} else {
12928		last->dtha_next = helper;
12929	}
12930
12931	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
12932		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
12933		dtrace_helptrace_next = 0;
12934	}
12935
12936	return (0);
12937err:
12938	dtrace_helper_action_destroy(helper, vstate);
12939	return (EINVAL);
12940}
12941
12942static void
12943dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
12944    dof_helper_t *dofhp)
12945{
12946	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
12947
12948	mutex_enter(&dtrace_meta_lock);
12949	mutex_enter(&dtrace_lock);
12950
12951	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
12952		/*
12953		 * If the dtrace module is loaded but not attached, or if
12954		 * there aren't isn't a meta provider registered to deal with
12955		 * these provider descriptions, we need to postpone creating
12956		 * the actual providers until later.
12957		 */
12958
12959		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
12960		    dtrace_deferred_pid != help) {
12961			help->dthps_deferred = 1;
12962			help->dthps_pid = p->p_pid;
12963			help->dthps_next = dtrace_deferred_pid;
12964			help->dthps_prev = NULL;
12965			if (dtrace_deferred_pid != NULL)
12966				dtrace_deferred_pid->dthps_prev = help;
12967			dtrace_deferred_pid = help;
12968		}
12969
12970		mutex_exit(&dtrace_lock);
12971
12972	} else if (dofhp != NULL) {
12973		/*
12974		 * If the dtrace module is loaded and we have a particular
12975		 * helper provider description, pass that off to the
12976		 * meta provider.
12977		 */
12978
12979		mutex_exit(&dtrace_lock);
12980
12981		dtrace_helper_provide(dofhp, p->p_pid);
12982
12983	} else {
12984		/*
12985		 * Otherwise, just pass all the helper provider descriptions
12986		 * off to the meta provider.
12987		 */
12988
12989		int i;
12990		mutex_exit(&dtrace_lock);
12991
12992		for (i = 0; i < help->dthps_nprovs; i++) {
12993			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
12994			    p->p_pid);
12995		}
12996	}
12997
12998	mutex_exit(&dtrace_meta_lock);
12999}
13000
13001static int
13002dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
13003{
13004	dtrace_helpers_t *help;
13005	dtrace_helper_provider_t *hprov, **tmp_provs;
13006	uint_t tmp_maxprovs, i;
13007
13008	ASSERT(MUTEX_HELD(&dtrace_lock));
13009
13010	help = curproc->p_dtrace_helpers;
13011	ASSERT(help != NULL);
13012
13013	/*
13014	 * If we already have dtrace_helper_providers_max helper providers,
13015	 * we're refuse to add a new one.
13016	 */
13017	if (help->dthps_nprovs >= dtrace_helper_providers_max)
13018		return (ENOSPC);
13019
13020	/*
13021	 * Check to make sure this isn't a duplicate.
13022	 */
13023	for (i = 0; i < help->dthps_nprovs; i++) {
13024		if (dofhp->dofhp_addr ==
13025		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
13026			return (EALREADY);
13027	}
13028
13029	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
13030	hprov->dthp_prov = *dofhp;
13031	hprov->dthp_ref = 1;
13032	hprov->dthp_generation = gen;
13033
13034	/*
13035	 * Allocate a bigger table for helper providers if it's already full.
13036	 */
13037	if (help->dthps_maxprovs == help->dthps_nprovs) {
13038		tmp_maxprovs = help->dthps_maxprovs;
13039		tmp_provs = help->dthps_provs;
13040
13041		if (help->dthps_maxprovs == 0)
13042			help->dthps_maxprovs = 2;
13043		else
13044			help->dthps_maxprovs *= 2;
13045		if (help->dthps_maxprovs > dtrace_helper_providers_max)
13046			help->dthps_maxprovs = dtrace_helper_providers_max;
13047
13048		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
13049
13050		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
13051		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13052
13053		if (tmp_provs != NULL) {
13054			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
13055			    sizeof (dtrace_helper_provider_t *));
13056			kmem_free(tmp_provs, tmp_maxprovs *
13057			    sizeof (dtrace_helper_provider_t *));
13058		}
13059	}
13060
13061	help->dthps_provs[help->dthps_nprovs] = hprov;
13062	help->dthps_nprovs++;
13063
13064	return (0);
13065}
13066
13067static void
13068dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
13069{
13070	mutex_enter(&dtrace_lock);
13071
13072	if (--hprov->dthp_ref == 0) {
13073		dof_hdr_t *dof;
13074		mutex_exit(&dtrace_lock);
13075		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
13076		dtrace_dof_destroy(dof);
13077		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
13078	} else {
13079		mutex_exit(&dtrace_lock);
13080	}
13081}
13082
13083static int
13084dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
13085{
13086	uintptr_t daddr = (uintptr_t)dof;
13087	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
13088	dof_provider_t *provider;
13089	dof_probe_t *probe;
13090	uint8_t *arg;
13091	char *strtab, *typestr;
13092	dof_stridx_t typeidx;
13093	size_t typesz;
13094	uint_t nprobes, j, k;
13095
13096	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
13097
13098	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
13099		dtrace_dof_error(dof, "misaligned section offset");
13100		return (-1);
13101	}
13102
13103	/*
13104	 * The section needs to be large enough to contain the DOF provider
13105	 * structure appropriate for the given version.
13106	 */
13107	if (sec->dofs_size <
13108	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
13109	    offsetof(dof_provider_t, dofpv_prenoffs) :
13110	    sizeof (dof_provider_t))) {
13111		dtrace_dof_error(dof, "provider section too small");
13112		return (-1);
13113	}
13114
13115	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
13116	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
13117	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
13118	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
13119	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
13120
13121	if (str_sec == NULL || prb_sec == NULL ||
13122	    arg_sec == NULL || off_sec == NULL)
13123		return (-1);
13124
13125	enoff_sec = NULL;
13126
13127	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13128	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
13129	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
13130	    provider->dofpv_prenoffs)) == NULL)
13131		return (-1);
13132
13133	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
13134
13135	if (provider->dofpv_name >= str_sec->dofs_size ||
13136	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
13137		dtrace_dof_error(dof, "invalid provider name");
13138		return (-1);
13139	}
13140
13141	if (prb_sec->dofs_entsize == 0 ||
13142	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
13143		dtrace_dof_error(dof, "invalid entry size");
13144		return (-1);
13145	}
13146
13147	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
13148		dtrace_dof_error(dof, "misaligned entry size");
13149		return (-1);
13150	}
13151
13152	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
13153		dtrace_dof_error(dof, "invalid entry size");
13154		return (-1);
13155	}
13156
13157	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
13158		dtrace_dof_error(dof, "misaligned section offset");
13159		return (-1);
13160	}
13161
13162	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
13163		dtrace_dof_error(dof, "invalid entry size");
13164		return (-1);
13165	}
13166
13167	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
13168
13169	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
13170
13171	/*
13172	 * Take a pass through the probes to check for errors.
13173	 */
13174	for (j = 0; j < nprobes; j++) {
13175		probe = (dof_probe_t *)(uintptr_t)(daddr +
13176		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
13177
13178		if (probe->dofpr_func >= str_sec->dofs_size) {
13179			dtrace_dof_error(dof, "invalid function name");
13180			return (-1);
13181		}
13182
13183		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
13184			dtrace_dof_error(dof, "function name too long");
13185			return (-1);
13186		}
13187
13188		if (probe->dofpr_name >= str_sec->dofs_size ||
13189		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
13190			dtrace_dof_error(dof, "invalid probe name");
13191			return (-1);
13192		}
13193
13194		/*
13195		 * The offset count must not wrap the index, and the offsets
13196		 * must also not overflow the section's data.
13197		 */
13198		if (probe->dofpr_offidx + probe->dofpr_noffs <
13199		    probe->dofpr_offidx ||
13200		    (probe->dofpr_offidx + probe->dofpr_noffs) *
13201		    off_sec->dofs_entsize > off_sec->dofs_size) {
13202			dtrace_dof_error(dof, "invalid probe offset");
13203			return (-1);
13204		}
13205
13206		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
13207			/*
13208			 * If there's no is-enabled offset section, make sure
13209			 * there aren't any is-enabled offsets. Otherwise
13210			 * perform the same checks as for probe offsets
13211			 * (immediately above).
13212			 */
13213			if (enoff_sec == NULL) {
13214				if (probe->dofpr_enoffidx != 0 ||
13215				    probe->dofpr_nenoffs != 0) {
13216					dtrace_dof_error(dof, "is-enabled "
13217					    "offsets with null section");
13218					return (-1);
13219				}
13220			} else if (probe->dofpr_enoffidx +
13221			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
13222			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
13223			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
13224				dtrace_dof_error(dof, "invalid is-enabled "
13225				    "offset");
13226				return (-1);
13227			}
13228
13229			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
13230				dtrace_dof_error(dof, "zero probe and "
13231				    "is-enabled offsets");
13232				return (-1);
13233			}
13234		} else if (probe->dofpr_noffs == 0) {
13235			dtrace_dof_error(dof, "zero probe offsets");
13236			return (-1);
13237		}
13238
13239		if (probe->dofpr_argidx + probe->dofpr_xargc <
13240		    probe->dofpr_argidx ||
13241		    (probe->dofpr_argidx + probe->dofpr_xargc) *
13242		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
13243			dtrace_dof_error(dof, "invalid args");
13244			return (-1);
13245		}
13246
13247		typeidx = probe->dofpr_nargv;
13248		typestr = strtab + probe->dofpr_nargv;
13249		for (k = 0; k < probe->dofpr_nargc; k++) {
13250			if (typeidx >= str_sec->dofs_size) {
13251				dtrace_dof_error(dof, "bad "
13252				    "native argument type");
13253				return (-1);
13254			}
13255
13256			typesz = strlen(typestr) + 1;
13257			if (typesz > DTRACE_ARGTYPELEN) {
13258				dtrace_dof_error(dof, "native "
13259				    "argument type too long");
13260				return (-1);
13261			}
13262			typeidx += typesz;
13263			typestr += typesz;
13264		}
13265
13266		typeidx = probe->dofpr_xargv;
13267		typestr = strtab + probe->dofpr_xargv;
13268		for (k = 0; k < probe->dofpr_xargc; k++) {
13269			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
13270				dtrace_dof_error(dof, "bad "
13271				    "native argument index");
13272				return (-1);
13273			}
13274
13275			if (typeidx >= str_sec->dofs_size) {
13276				dtrace_dof_error(dof, "bad "
13277				    "translated argument type");
13278				return (-1);
13279			}
13280
13281			typesz = strlen(typestr) + 1;
13282			if (typesz > DTRACE_ARGTYPELEN) {
13283				dtrace_dof_error(dof, "translated argument "
13284				    "type too long");
13285				return (-1);
13286			}
13287
13288			typeidx += typesz;
13289			typestr += typesz;
13290		}
13291	}
13292
13293	return (0);
13294}
13295
13296static int
13297dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
13298{
13299	dtrace_helpers_t *help;
13300	dtrace_vstate_t *vstate;
13301	dtrace_enabling_t *enab = NULL;
13302	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
13303	uintptr_t daddr = (uintptr_t)dof;
13304
13305	ASSERT(MUTEX_HELD(&dtrace_lock));
13306
13307	if ((help = curproc->p_dtrace_helpers) == NULL)
13308		help = dtrace_helpers_create(curproc);
13309
13310	vstate = &help->dthps_vstate;
13311
13312	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
13313	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
13314		dtrace_dof_destroy(dof);
13315		return (rv);
13316	}
13317
13318	/*
13319	 * Look for helper providers and validate their descriptions.
13320	 */
13321	if (dhp != NULL) {
13322		for (i = 0; i < dof->dofh_secnum; i++) {
13323			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
13324			    dof->dofh_secoff + i * dof->dofh_secsize);
13325
13326			if (sec->dofs_type != DOF_SECT_PROVIDER)
13327				continue;
13328
13329			if (dtrace_helper_provider_validate(dof, sec) != 0) {
13330				dtrace_enabling_destroy(enab);
13331				dtrace_dof_destroy(dof);
13332				return (-1);
13333			}
13334
13335			nprovs++;
13336		}
13337	}
13338
13339	/*
13340	 * Now we need to walk through the ECB descriptions in the enabling.
13341	 */
13342	for (i = 0; i < enab->dten_ndesc; i++) {
13343		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
13344		dtrace_probedesc_t *desc = &ep->dted_probe;
13345
13346		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
13347			continue;
13348
13349		if (strcmp(desc->dtpd_mod, "helper") != 0)
13350			continue;
13351
13352		if (strcmp(desc->dtpd_func, "ustack") != 0)
13353			continue;
13354
13355		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
13356		    ep)) != 0) {
13357			/*
13358			 * Adding this helper action failed -- we are now going
13359			 * to rip out the entire generation and return failure.
13360			 */
13361			(void) dtrace_helper_destroygen(help->dthps_generation);
13362			dtrace_enabling_destroy(enab);
13363			dtrace_dof_destroy(dof);
13364			return (-1);
13365		}
13366
13367		nhelpers++;
13368	}
13369
13370	if (nhelpers < enab->dten_ndesc)
13371		dtrace_dof_error(dof, "unmatched helpers");
13372
13373	gen = help->dthps_generation++;
13374	dtrace_enabling_destroy(enab);
13375
13376	if (dhp != NULL && nprovs > 0) {
13377		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
13378		if (dtrace_helper_provider_add(dhp, gen) == 0) {
13379			mutex_exit(&dtrace_lock);
13380			dtrace_helper_provider_register(curproc, help, dhp);
13381			mutex_enter(&dtrace_lock);
13382
13383			destroy = 0;
13384		}
13385	}
13386
13387	if (destroy)
13388		dtrace_dof_destroy(dof);
13389
13390	return (gen);
13391}
13392
13393static dtrace_helpers_t *
13394dtrace_helpers_create(proc_t *p)
13395{
13396	dtrace_helpers_t *help;
13397
13398	ASSERT(MUTEX_HELD(&dtrace_lock));
13399	ASSERT(p->p_dtrace_helpers == NULL);
13400
13401	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
13402	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
13403	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
13404
13405	p->p_dtrace_helpers = help;
13406	dtrace_helpers++;
13407
13408	return (help);
13409}
13410
13411static void
13412dtrace_helpers_destroy(void)
13413{
13414	dtrace_helpers_t *help;
13415	dtrace_vstate_t *vstate;
13416	proc_t *p = curproc;
13417	int i;
13418
13419	mutex_enter(&dtrace_lock);
13420
13421	ASSERT(p->p_dtrace_helpers != NULL);
13422	ASSERT(dtrace_helpers > 0);
13423
13424	help = p->p_dtrace_helpers;
13425	vstate = &help->dthps_vstate;
13426
13427	/*
13428	 * We're now going to lose the help from this process.
13429	 */
13430	p->p_dtrace_helpers = NULL;
13431	dtrace_sync();
13432
13433	/*
13434	 * Destory the helper actions.
13435	 */
13436	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13437		dtrace_helper_action_t *h, *next;
13438
13439		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13440			next = h->dtha_next;
13441			dtrace_helper_action_destroy(h, vstate);
13442			h = next;
13443		}
13444	}
13445
13446	mutex_exit(&dtrace_lock);
13447
13448	/*
13449	 * Destroy the helper providers.
13450	 */
13451	if (help->dthps_maxprovs > 0) {
13452		mutex_enter(&dtrace_meta_lock);
13453		if (dtrace_meta_pid != NULL) {
13454			ASSERT(dtrace_deferred_pid == NULL);
13455
13456			for (i = 0; i < help->dthps_nprovs; i++) {
13457				dtrace_helper_provider_remove(
13458				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
13459			}
13460		} else {
13461			mutex_enter(&dtrace_lock);
13462			ASSERT(help->dthps_deferred == 0 ||
13463			    help->dthps_next != NULL ||
13464			    help->dthps_prev != NULL ||
13465			    help == dtrace_deferred_pid);
13466
13467			/*
13468			 * Remove the helper from the deferred list.
13469			 */
13470			if (help->dthps_next != NULL)
13471				help->dthps_next->dthps_prev = help->dthps_prev;
13472			if (help->dthps_prev != NULL)
13473				help->dthps_prev->dthps_next = help->dthps_next;
13474			if (dtrace_deferred_pid == help) {
13475				dtrace_deferred_pid = help->dthps_next;
13476				ASSERT(help->dthps_prev == NULL);
13477			}
13478
13479			mutex_exit(&dtrace_lock);
13480		}
13481
13482		mutex_exit(&dtrace_meta_lock);
13483
13484		for (i = 0; i < help->dthps_nprovs; i++) {
13485			dtrace_helper_provider_destroy(help->dthps_provs[i]);
13486		}
13487
13488		kmem_free(help->dthps_provs, help->dthps_maxprovs *
13489		    sizeof (dtrace_helper_provider_t *));
13490	}
13491
13492	mutex_enter(&dtrace_lock);
13493
13494	dtrace_vstate_fini(&help->dthps_vstate);
13495	kmem_free(help->dthps_actions,
13496	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
13497	kmem_free(help, sizeof (dtrace_helpers_t));
13498
13499	--dtrace_helpers;
13500	mutex_exit(&dtrace_lock);
13501}
13502
13503static void
13504dtrace_helpers_duplicate(proc_t *from, proc_t *to)
13505{
13506	dtrace_helpers_t *help, *newhelp;
13507	dtrace_helper_action_t *helper, *new, *last;
13508	dtrace_difo_t *dp;
13509	dtrace_vstate_t *vstate;
13510	int i, j, sz, hasprovs = 0;
13511
13512	mutex_enter(&dtrace_lock);
13513	ASSERT(from->p_dtrace_helpers != NULL);
13514	ASSERT(dtrace_helpers > 0);
13515
13516	help = from->p_dtrace_helpers;
13517	newhelp = dtrace_helpers_create(to);
13518	ASSERT(to->p_dtrace_helpers != NULL);
13519
13520	newhelp->dthps_generation = help->dthps_generation;
13521	vstate = &newhelp->dthps_vstate;
13522
13523	/*
13524	 * Duplicate the helper actions.
13525	 */
13526	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13527		if ((helper = help->dthps_actions[i]) == NULL)
13528			continue;
13529
13530		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
13531			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
13532			    KM_SLEEP);
13533			new->dtha_generation = helper->dtha_generation;
13534
13535			if ((dp = helper->dtha_predicate) != NULL) {
13536				dp = dtrace_difo_duplicate(dp, vstate);
13537				new->dtha_predicate = dp;
13538			}
13539
13540			new->dtha_nactions = helper->dtha_nactions;
13541			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
13542			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
13543
13544			for (j = 0; j < new->dtha_nactions; j++) {
13545				dtrace_difo_t *dp = helper->dtha_actions[j];
13546
13547				ASSERT(dp != NULL);
13548				dp = dtrace_difo_duplicate(dp, vstate);
13549				new->dtha_actions[j] = dp;
13550			}
13551
13552			if (last != NULL) {
13553				last->dtha_next = new;
13554			} else {
13555				newhelp->dthps_actions[i] = new;
13556			}
13557
13558			last = new;
13559		}
13560	}
13561
13562	/*
13563	 * Duplicate the helper providers and register them with the
13564	 * DTrace framework.
13565	 */
13566	if (help->dthps_nprovs > 0) {
13567		newhelp->dthps_nprovs = help->dthps_nprovs;
13568		newhelp->dthps_maxprovs = help->dthps_nprovs;
13569		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
13570		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13571		for (i = 0; i < newhelp->dthps_nprovs; i++) {
13572			newhelp->dthps_provs[i] = help->dthps_provs[i];
13573			newhelp->dthps_provs[i]->dthp_ref++;
13574		}
13575
13576		hasprovs = 1;
13577	}
13578
13579	mutex_exit(&dtrace_lock);
13580
13581	if (hasprovs)
13582		dtrace_helper_provider_register(to, newhelp, NULL);
13583}
13584
13585/*
13586 * DTrace Hook Functions
13587 */
13588static void
13589dtrace_module_loaded(struct modctl *ctl)
13590{
13591	dtrace_provider_t *prv;
13592
13593	mutex_enter(&dtrace_provider_lock);
13594	mutex_enter(&mod_lock);
13595
13596	ASSERT(ctl->mod_busy);
13597
13598	/*
13599	 * We're going to call each providers per-module provide operation
13600	 * specifying only this module.
13601	 */
13602	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
13603		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
13604
13605	mutex_exit(&mod_lock);
13606	mutex_exit(&dtrace_provider_lock);
13607
13608	/*
13609	 * If we have any retained enablings, we need to match against them.
13610	 * Enabling probes requires that cpu_lock be held, and we cannot hold
13611	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
13612	 * module.  (In particular, this happens when loading scheduling
13613	 * classes.)  So if we have any retained enablings, we need to dispatch
13614	 * our task queue to do the match for us.
13615	 */
13616	mutex_enter(&dtrace_lock);
13617
13618	if (dtrace_retained == NULL) {
13619		mutex_exit(&dtrace_lock);
13620		return;
13621	}
13622
13623	(void) taskq_dispatch(dtrace_taskq,
13624	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
13625
13626	mutex_exit(&dtrace_lock);
13627
13628	/*
13629	 * And now, for a little heuristic sleaze:  in general, we want to
13630	 * match modules as soon as they load.  However, we cannot guarantee
13631	 * this, because it would lead us to the lock ordering violation
13632	 * outlined above.  The common case, of course, is that cpu_lock is
13633	 * _not_ held -- so we delay here for a clock tick, hoping that that's
13634	 * long enough for the task queue to do its work.  If it's not, it's
13635	 * not a serious problem -- it just means that the module that we
13636	 * just loaded may not be immediately instrumentable.
13637	 */
13638	delay(1);
13639}
13640
13641static void
13642dtrace_module_unloaded(struct modctl *ctl)
13643{
13644	dtrace_probe_t template, *probe, *first, *next;
13645	dtrace_provider_t *prov;
13646
13647	template.dtpr_mod = ctl->mod_modname;
13648
13649	mutex_enter(&dtrace_provider_lock);
13650	mutex_enter(&mod_lock);
13651	mutex_enter(&dtrace_lock);
13652
13653	if (dtrace_bymod == NULL) {
13654		/*
13655		 * The DTrace module is loaded (obviously) but not attached;
13656		 * we don't have any work to do.
13657		 */
13658		mutex_exit(&dtrace_provider_lock);
13659		mutex_exit(&mod_lock);
13660		mutex_exit(&dtrace_lock);
13661		return;
13662	}
13663
13664	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
13665	    probe != NULL; probe = probe->dtpr_nextmod) {
13666		if (probe->dtpr_ecb != NULL) {
13667			mutex_exit(&dtrace_provider_lock);
13668			mutex_exit(&mod_lock);
13669			mutex_exit(&dtrace_lock);
13670
13671			/*
13672			 * This shouldn't _actually_ be possible -- we're
13673			 * unloading a module that has an enabled probe in it.
13674			 * (It's normally up to the provider to make sure that
13675			 * this can't happen.)  However, because dtps_enable()
13676			 * doesn't have a failure mode, there can be an
13677			 * enable/unload race.  Upshot:  we don't want to
13678			 * assert, but we're not going to disable the
13679			 * probe, either.
13680			 */
13681			if (dtrace_err_verbose) {
13682				cmn_err(CE_WARN, "unloaded module '%s' had "
13683				    "enabled probes", ctl->mod_modname);
13684			}
13685
13686			return;
13687		}
13688	}
13689
13690	probe = first;
13691
13692	for (first = NULL; probe != NULL; probe = next) {
13693		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
13694
13695		dtrace_probes[probe->dtpr_id - 1] = NULL;
13696
13697		next = probe->dtpr_nextmod;
13698		dtrace_hash_remove(dtrace_bymod, probe);
13699		dtrace_hash_remove(dtrace_byfunc, probe);
13700		dtrace_hash_remove(dtrace_byname, probe);
13701
13702		if (first == NULL) {
13703			first = probe;
13704			probe->dtpr_nextmod = NULL;
13705		} else {
13706			probe->dtpr_nextmod = first;
13707			first = probe;
13708		}
13709	}
13710
13711	/*
13712	 * We've removed all of the module's probes from the hash chains and
13713	 * from the probe array.  Now issue a dtrace_sync() to be sure that
13714	 * everyone has cleared out from any probe array processing.
13715	 */
13716	dtrace_sync();
13717
13718	for (probe = first; probe != NULL; probe = first) {
13719		first = probe->dtpr_nextmod;
13720		prov = probe->dtpr_provider;
13721		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
13722		    probe->dtpr_arg);
13723		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
13724		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
13725		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
13726		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
13727		kmem_free(probe, sizeof (dtrace_probe_t));
13728	}
13729
13730	mutex_exit(&dtrace_lock);
13731	mutex_exit(&mod_lock);
13732	mutex_exit(&dtrace_provider_lock);
13733}
13734
13735void
13736dtrace_suspend(void)
13737{
13738	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
13739}
13740
13741void
13742dtrace_resume(void)
13743{
13744	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
13745}
13746
13747static int
13748dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
13749{
13750	ASSERT(MUTEX_HELD(&cpu_lock));
13751	mutex_enter(&dtrace_lock);
13752
13753	switch (what) {
13754	case CPU_CONFIG: {
13755		dtrace_state_t *state;
13756		dtrace_optval_t *opt, rs, c;
13757
13758		/*
13759		 * For now, we only allocate a new buffer for anonymous state.
13760		 */
13761		if ((state = dtrace_anon.dta_state) == NULL)
13762			break;
13763
13764		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13765			break;
13766
13767		opt = state->dts_options;
13768		c = opt[DTRACEOPT_CPU];
13769
13770		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
13771			break;
13772
13773		/*
13774		 * Regardless of what the actual policy is, we're going to
13775		 * temporarily set our resize policy to be manual.  We're
13776		 * also going to temporarily set our CPU option to denote
13777		 * the newly configured CPU.
13778		 */
13779		rs = opt[DTRACEOPT_BUFRESIZE];
13780		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
13781		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
13782
13783		(void) dtrace_state_buffers(state);
13784
13785		opt[DTRACEOPT_BUFRESIZE] = rs;
13786		opt[DTRACEOPT_CPU] = c;
13787
13788		break;
13789	}
13790
13791	case CPU_UNCONFIG:
13792		/*
13793		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
13794		 * buffer will be freed when the consumer exits.)
13795		 */
13796		break;
13797
13798	default:
13799		break;
13800	}
13801
13802	mutex_exit(&dtrace_lock);
13803	return (0);
13804}
13805
13806static void
13807dtrace_cpu_setup_initial(processorid_t cpu)
13808{
13809	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
13810}
13811
13812static void
13813dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
13814{
13815	if (dtrace_toxranges >= dtrace_toxranges_max) {
13816		int osize, nsize;
13817		dtrace_toxrange_t *range;
13818
13819		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
13820
13821		if (osize == 0) {
13822			ASSERT(dtrace_toxrange == NULL);
13823			ASSERT(dtrace_toxranges_max == 0);
13824			dtrace_toxranges_max = 1;
13825		} else {
13826			dtrace_toxranges_max <<= 1;
13827		}
13828
13829		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
13830		range = kmem_zalloc(nsize, KM_SLEEP);
13831
13832		if (dtrace_toxrange != NULL) {
13833			ASSERT(osize != 0);
13834			bcopy(dtrace_toxrange, range, osize);
13835			kmem_free(dtrace_toxrange, osize);
13836		}
13837
13838		dtrace_toxrange = range;
13839	}
13840
13841	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
13842	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
13843
13844	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
13845	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
13846	dtrace_toxranges++;
13847}
13848
13849/*
13850 * DTrace Driver Cookbook Functions
13851 */
13852/*ARGSUSED*/
13853static int
13854dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
13855{
13856	dtrace_provider_id_t id;
13857	dtrace_state_t *state = NULL;
13858	dtrace_enabling_t *enab;
13859
13860	mutex_enter(&cpu_lock);
13861	mutex_enter(&dtrace_provider_lock);
13862	mutex_enter(&dtrace_lock);
13863
13864	if (ddi_soft_state_init(&dtrace_softstate,
13865	    sizeof (dtrace_state_t), 0) != 0) {
13866		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
13867		mutex_exit(&cpu_lock);
13868		mutex_exit(&dtrace_provider_lock);
13869		mutex_exit(&dtrace_lock);
13870		return (DDI_FAILURE);
13871	}
13872
13873	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
13874	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
13875	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
13876	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
13877		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
13878		ddi_remove_minor_node(devi, NULL);
13879		ddi_soft_state_fini(&dtrace_softstate);
13880		mutex_exit(&cpu_lock);
13881		mutex_exit(&dtrace_provider_lock);
13882		mutex_exit(&dtrace_lock);
13883		return (DDI_FAILURE);
13884	}
13885
13886	ddi_report_dev(devi);
13887	dtrace_devi = devi;
13888
13889	dtrace_modload = dtrace_module_loaded;
13890	dtrace_modunload = dtrace_module_unloaded;
13891	dtrace_cpu_init = dtrace_cpu_setup_initial;
13892	dtrace_helpers_cleanup = dtrace_helpers_destroy;
13893	dtrace_helpers_fork = dtrace_helpers_duplicate;
13894	dtrace_cpustart_init = dtrace_suspend;
13895	dtrace_cpustart_fini = dtrace_resume;
13896	dtrace_debugger_init = dtrace_suspend;
13897	dtrace_debugger_fini = dtrace_resume;
13898	dtrace_kreloc_init = dtrace_suspend;
13899	dtrace_kreloc_fini = dtrace_resume;
13900
13901	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
13902
13903	ASSERT(MUTEX_HELD(&cpu_lock));
13904
13905	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
13906	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13907	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
13908	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
13909	    VM_SLEEP | VMC_IDENTIFIER);
13910	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
13911	    1, INT_MAX, 0);
13912
13913	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
13914	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
13915	    NULL, NULL, NULL, NULL, NULL, 0);
13916
13917	ASSERT(MUTEX_HELD(&cpu_lock));
13918	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
13919	    offsetof(dtrace_probe_t, dtpr_nextmod),
13920	    offsetof(dtrace_probe_t, dtpr_prevmod));
13921
13922	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
13923	    offsetof(dtrace_probe_t, dtpr_nextfunc),
13924	    offsetof(dtrace_probe_t, dtpr_prevfunc));
13925
13926	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
13927	    offsetof(dtrace_probe_t, dtpr_nextname),
13928	    offsetof(dtrace_probe_t, dtpr_prevname));
13929
13930	if (dtrace_retain_max < 1) {
13931		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
13932		    "setting to 1", dtrace_retain_max);
13933		dtrace_retain_max = 1;
13934	}
13935
13936	/*
13937	 * Now discover our toxic ranges.
13938	 */
13939	dtrace_toxic_ranges(dtrace_toxrange_add);
13940
13941	/*
13942	 * Before we register ourselves as a provider to our own framework,
13943	 * we would like to assert that dtrace_provider is NULL -- but that's
13944	 * not true if we were loaded as a dependency of a DTrace provider.
13945	 * Once we've registered, we can assert that dtrace_provider is our
13946	 * pseudo provider.
13947	 */
13948	(void) dtrace_register("dtrace", &dtrace_provider_attr,
13949	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
13950
13951	ASSERT(dtrace_provider != NULL);
13952	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
13953
13954	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
13955	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
13956	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
13957	    dtrace_provider, NULL, NULL, "END", 0, NULL);
13958	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
13959	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
13960
13961	dtrace_anon_property();
13962	mutex_exit(&cpu_lock);
13963
13964	/*
13965	 * If DTrace helper tracing is enabled, we need to allocate the
13966	 * trace buffer and initialize the values.
13967	 */
13968	if (dtrace_helptrace_enabled) {
13969		ASSERT(dtrace_helptrace_buffer == NULL);
13970		dtrace_helptrace_buffer =
13971		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
13972		dtrace_helptrace_next = 0;
13973	}
13974
13975	/*
13976	 * If there are already providers, we must ask them to provide their
13977	 * probes, and then match any anonymous enabling against them.  Note
13978	 * that there should be no other retained enablings at this time:
13979	 * the only retained enablings at this time should be the anonymous
13980	 * enabling.
13981	 */
13982	if (dtrace_anon.dta_enabling != NULL) {
13983		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
13984
13985		dtrace_enabling_provide(NULL);
13986		state = dtrace_anon.dta_state;
13987
13988		/*
13989		 * We couldn't hold cpu_lock across the above call to
13990		 * dtrace_enabling_provide(), but we must hold it to actually
13991		 * enable the probes.  We have to drop all of our locks, pick
13992		 * up cpu_lock, and regain our locks before matching the
13993		 * retained anonymous enabling.
13994		 */
13995		mutex_exit(&dtrace_lock);
13996		mutex_exit(&dtrace_provider_lock);
13997
13998		mutex_enter(&cpu_lock);
13999		mutex_enter(&dtrace_provider_lock);
14000		mutex_enter(&dtrace_lock);
14001
14002		if ((enab = dtrace_anon.dta_enabling) != NULL)
14003			(void) dtrace_enabling_match(enab, NULL);
14004
14005		mutex_exit(&cpu_lock);
14006	}
14007
14008	mutex_exit(&dtrace_lock);
14009	mutex_exit(&dtrace_provider_lock);
14010
14011	if (state != NULL) {
14012		/*
14013		 * If we created any anonymous state, set it going now.
14014		 */
14015		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
14016	}
14017
14018	return (DDI_SUCCESS);
14019}
14020
14021/*ARGSUSED*/
14022static int
14023dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
14024{
14025	dtrace_state_t *state;
14026	uint32_t priv;
14027	uid_t uid;
14028	zoneid_t zoneid;
14029
14030	if (getminor(*devp) == DTRACEMNRN_HELPER)
14031		return (0);
14032
14033	/*
14034	 * If this wasn't an open with the "helper" minor, then it must be
14035	 * the "dtrace" minor.
14036	 */
14037	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
14038
14039	/*
14040	 * If no DTRACE_PRIV_* bits are set in the credential, then the
14041	 * caller lacks sufficient permission to do anything with DTrace.
14042	 */
14043	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
14044	if (priv == DTRACE_PRIV_NONE)
14045		return (EACCES);
14046
14047	/*
14048	 * Ask all providers to provide all their probes.
14049	 */
14050	mutex_enter(&dtrace_provider_lock);
14051	dtrace_probe_provide(NULL, NULL);
14052	mutex_exit(&dtrace_provider_lock);
14053
14054	mutex_enter(&cpu_lock);
14055	mutex_enter(&dtrace_lock);
14056	dtrace_opens++;
14057	dtrace_membar_producer();
14058
14059	/*
14060	 * If the kernel debugger is active (that is, if the kernel debugger
14061	 * modified text in some way), we won't allow the open.
14062	 */
14063	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14064		dtrace_opens--;
14065		mutex_exit(&cpu_lock);
14066		mutex_exit(&dtrace_lock);
14067		return (EBUSY);
14068	}
14069
14070	state = dtrace_state_create(devp, cred_p);
14071	mutex_exit(&cpu_lock);
14072
14073	if (state == NULL) {
14074		if (--dtrace_opens == 0)
14075			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14076		mutex_exit(&dtrace_lock);
14077		return (EAGAIN);
14078	}
14079
14080	mutex_exit(&dtrace_lock);
14081
14082	return (0);
14083}
14084
14085/*ARGSUSED*/
14086static int
14087dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
14088{
14089	minor_t minor = getminor(dev);
14090	dtrace_state_t *state;
14091
14092	if (minor == DTRACEMNRN_HELPER)
14093		return (0);
14094
14095	state = ddi_get_soft_state(dtrace_softstate, minor);
14096
14097	mutex_enter(&cpu_lock);
14098	mutex_enter(&dtrace_lock);
14099
14100	if (state->dts_anon) {
14101		/*
14102		 * There is anonymous state. Destroy that first.
14103		 */
14104		ASSERT(dtrace_anon.dta_state == NULL);
14105		dtrace_state_destroy(state->dts_anon);
14106	}
14107
14108	dtrace_state_destroy(state);
14109	ASSERT(dtrace_opens > 0);
14110	if (--dtrace_opens == 0)
14111		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14112
14113	mutex_exit(&dtrace_lock);
14114	mutex_exit(&cpu_lock);
14115
14116	return (0);
14117}
14118
14119/*ARGSUSED*/
14120static int
14121dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
14122{
14123	int rval;
14124	dof_helper_t help, *dhp = NULL;
14125
14126	switch (cmd) {
14127	case DTRACEHIOC_ADDDOF:
14128		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
14129			dtrace_dof_error(NULL, "failed to copyin DOF helper");
14130			return (EFAULT);
14131		}
14132
14133		dhp = &help;
14134		arg = (intptr_t)help.dofhp_dof;
14135		/*FALLTHROUGH*/
14136
14137	case DTRACEHIOC_ADD: {
14138		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
14139
14140		if (dof == NULL)
14141			return (rval);
14142
14143		mutex_enter(&dtrace_lock);
14144
14145		/*
14146		 * dtrace_helper_slurp() takes responsibility for the dof --
14147		 * it may free it now or it may save it and free it later.
14148		 */
14149		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
14150			*rv = rval;
14151			rval = 0;
14152		} else {
14153			rval = EINVAL;
14154		}
14155
14156		mutex_exit(&dtrace_lock);
14157		return (rval);
14158	}
14159
14160	case DTRACEHIOC_REMOVE: {
14161		mutex_enter(&dtrace_lock);
14162		rval = dtrace_helper_destroygen(arg);
14163		mutex_exit(&dtrace_lock);
14164
14165		return (rval);
14166	}
14167
14168	default:
14169		break;
14170	}
14171
14172	return (ENOTTY);
14173}
14174
14175/*ARGSUSED*/
14176static int
14177dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
14178{
14179	minor_t minor = getminor(dev);
14180	dtrace_state_t *state;
14181	int rval;
14182
14183	if (minor == DTRACEMNRN_HELPER)
14184		return (dtrace_ioctl_helper(cmd, arg, rv));
14185
14186	state = ddi_get_soft_state(dtrace_softstate, minor);
14187
14188	if (state->dts_anon) {
14189		ASSERT(dtrace_anon.dta_state == NULL);
14190		state = state->dts_anon;
14191	}
14192
14193	switch (cmd) {
14194	case DTRACEIOC_PROVIDER: {
14195		dtrace_providerdesc_t pvd;
14196		dtrace_provider_t *pvp;
14197
14198		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
14199			return (EFAULT);
14200
14201		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
14202		mutex_enter(&dtrace_provider_lock);
14203
14204		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
14205			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
14206				break;
14207		}
14208
14209		mutex_exit(&dtrace_provider_lock);
14210
14211		if (pvp == NULL)
14212			return (ESRCH);
14213
14214		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
14215		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
14216		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
14217			return (EFAULT);
14218
14219		return (0);
14220	}
14221
14222	case DTRACEIOC_EPROBE: {
14223		dtrace_eprobedesc_t epdesc;
14224		dtrace_ecb_t *ecb;
14225		dtrace_action_t *act;
14226		void *buf;
14227		size_t size;
14228		uintptr_t dest;
14229		int nrecs;
14230
14231		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
14232			return (EFAULT);
14233
14234		mutex_enter(&dtrace_lock);
14235
14236		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
14237			mutex_exit(&dtrace_lock);
14238			return (EINVAL);
14239		}
14240
14241		if (ecb->dte_probe == NULL) {
14242			mutex_exit(&dtrace_lock);
14243			return (EINVAL);
14244		}
14245
14246		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
14247		epdesc.dtepd_uarg = ecb->dte_uarg;
14248		epdesc.dtepd_size = ecb->dte_size;
14249
14250		nrecs = epdesc.dtepd_nrecs;
14251		epdesc.dtepd_nrecs = 0;
14252		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14253			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14254				continue;
14255
14256			epdesc.dtepd_nrecs++;
14257		}
14258
14259		/*
14260		 * Now that we have the size, we need to allocate a temporary
14261		 * buffer in which to store the complete description.  We need
14262		 * the temporary buffer to be able to drop dtrace_lock()
14263		 * across the copyout(), below.
14264		 */
14265		size = sizeof (dtrace_eprobedesc_t) +
14266		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
14267
14268		buf = kmem_alloc(size, KM_SLEEP);
14269		dest = (uintptr_t)buf;
14270
14271		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
14272		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
14273
14274		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14275			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14276				continue;
14277
14278			if (nrecs-- == 0)
14279				break;
14280
14281			bcopy(&act->dta_rec, (void *)dest,
14282			    sizeof (dtrace_recdesc_t));
14283			dest += sizeof (dtrace_recdesc_t);
14284		}
14285
14286		mutex_exit(&dtrace_lock);
14287
14288		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14289			kmem_free(buf, size);
14290			return (EFAULT);
14291		}
14292
14293		kmem_free(buf, size);
14294		return (0);
14295	}
14296
14297	case DTRACEIOC_AGGDESC: {
14298		dtrace_aggdesc_t aggdesc;
14299		dtrace_action_t *act;
14300		dtrace_aggregation_t *agg;
14301		int nrecs;
14302		uint32_t offs;
14303		dtrace_recdesc_t *lrec;
14304		void *buf;
14305		size_t size;
14306		uintptr_t dest;
14307
14308		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
14309			return (EFAULT);
14310
14311		mutex_enter(&dtrace_lock);
14312
14313		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
14314			mutex_exit(&dtrace_lock);
14315			return (EINVAL);
14316		}
14317
14318		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
14319
14320		nrecs = aggdesc.dtagd_nrecs;
14321		aggdesc.dtagd_nrecs = 0;
14322
14323		offs = agg->dtag_base;
14324		lrec = &agg->dtag_action.dta_rec;
14325		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
14326
14327		for (act = agg->dtag_first; ; act = act->dta_next) {
14328			ASSERT(act->dta_intuple ||
14329			    DTRACEACT_ISAGG(act->dta_kind));
14330
14331			/*
14332			 * If this action has a record size of zero, it
14333			 * denotes an argument to the aggregating action.
14334			 * Because the presence of this record doesn't (or
14335			 * shouldn't) affect the way the data is interpreted,
14336			 * we don't copy it out to save user-level the
14337			 * confusion of dealing with a zero-length record.
14338			 */
14339			if (act->dta_rec.dtrd_size == 0) {
14340				ASSERT(agg->dtag_hasarg);
14341				continue;
14342			}
14343
14344			aggdesc.dtagd_nrecs++;
14345
14346			if (act == &agg->dtag_action)
14347				break;
14348		}
14349
14350		/*
14351		 * Now that we have the size, we need to allocate a temporary
14352		 * buffer in which to store the complete description.  We need
14353		 * the temporary buffer to be able to drop dtrace_lock()
14354		 * across the copyout(), below.
14355		 */
14356		size = sizeof (dtrace_aggdesc_t) +
14357		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
14358
14359		buf = kmem_alloc(size, KM_SLEEP);
14360		dest = (uintptr_t)buf;
14361
14362		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
14363		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
14364
14365		for (act = agg->dtag_first; ; act = act->dta_next) {
14366			dtrace_recdesc_t rec = act->dta_rec;
14367
14368			/*
14369			 * See the comment in the above loop for why we pass
14370			 * over zero-length records.
14371			 */
14372			if (rec.dtrd_size == 0) {
14373				ASSERT(agg->dtag_hasarg);
14374				continue;
14375			}
14376
14377			if (nrecs-- == 0)
14378				break;
14379
14380			rec.dtrd_offset -= offs;
14381			bcopy(&rec, (void *)dest, sizeof (rec));
14382			dest += sizeof (dtrace_recdesc_t);
14383
14384			if (act == &agg->dtag_action)
14385				break;
14386		}
14387
14388		mutex_exit(&dtrace_lock);
14389
14390		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14391			kmem_free(buf, size);
14392			return (EFAULT);
14393		}
14394
14395		kmem_free(buf, size);
14396		return (0);
14397	}
14398
14399	case DTRACEIOC_ENABLE: {
14400		dof_hdr_t *dof;
14401		dtrace_enabling_t *enab = NULL;
14402		dtrace_vstate_t *vstate;
14403		int err = 0;
14404
14405		*rv = 0;
14406
14407		/*
14408		 * If a NULL argument has been passed, we take this as our
14409		 * cue to reevaluate our enablings.
14410		 */
14411		if (arg == NULL) {
14412			mutex_enter(&cpu_lock);
14413			mutex_enter(&dtrace_lock);
14414			err = dtrace_enabling_matchstate(state, rv);
14415			mutex_exit(&dtrace_lock);
14416			mutex_exit(&cpu_lock);
14417
14418			return (err);
14419		}
14420
14421		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
14422			return (rval);
14423
14424		mutex_enter(&cpu_lock);
14425		mutex_enter(&dtrace_lock);
14426		vstate = &state->dts_vstate;
14427
14428		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14429			mutex_exit(&dtrace_lock);
14430			mutex_exit(&cpu_lock);
14431			dtrace_dof_destroy(dof);
14432			return (EBUSY);
14433		}
14434
14435		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
14436			mutex_exit(&dtrace_lock);
14437			mutex_exit(&cpu_lock);
14438			dtrace_dof_destroy(dof);
14439			return (EINVAL);
14440		}
14441
14442		if ((rval = dtrace_dof_options(dof, state)) != 0) {
14443			dtrace_enabling_destroy(enab);
14444			mutex_exit(&dtrace_lock);
14445			mutex_exit(&cpu_lock);
14446			dtrace_dof_destroy(dof);
14447			return (rval);
14448		}
14449
14450		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
14451			err = dtrace_enabling_retain(enab);
14452		} else {
14453			dtrace_enabling_destroy(enab);
14454		}
14455
14456		mutex_exit(&cpu_lock);
14457		mutex_exit(&dtrace_lock);
14458		dtrace_dof_destroy(dof);
14459
14460		return (err);
14461	}
14462
14463	case DTRACEIOC_REPLICATE: {
14464		dtrace_repldesc_t desc;
14465		dtrace_probedesc_t *match = &desc.dtrpd_match;
14466		dtrace_probedesc_t *create = &desc.dtrpd_create;
14467		int err;
14468
14469		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14470			return (EFAULT);
14471
14472		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14473		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14474		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14475		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14476
14477		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14478		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14479		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14480		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14481
14482		mutex_enter(&dtrace_lock);
14483		err = dtrace_enabling_replicate(state, match, create);
14484		mutex_exit(&dtrace_lock);
14485
14486		return (err);
14487	}
14488
14489	case DTRACEIOC_PROBEMATCH:
14490	case DTRACEIOC_PROBES: {
14491		dtrace_probe_t *probe = NULL;
14492		dtrace_probedesc_t desc;
14493		dtrace_probekey_t pkey;
14494		dtrace_id_t i;
14495		int m = 0;
14496		uint32_t priv;
14497		uid_t uid;
14498		zoneid_t zoneid;
14499
14500		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14501			return (EFAULT);
14502
14503		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14504		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14505		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14506		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14507
14508		/*
14509		 * Before we attempt to match this probe, we want to give
14510		 * all providers the opportunity to provide it.
14511		 */
14512		if (desc.dtpd_id == DTRACE_IDNONE) {
14513			mutex_enter(&dtrace_provider_lock);
14514			dtrace_probe_provide(&desc, NULL);
14515			mutex_exit(&dtrace_provider_lock);
14516			desc.dtpd_id++;
14517		}
14518
14519		if (cmd == DTRACEIOC_PROBEMATCH)  {
14520			dtrace_probekey(&desc, &pkey);
14521			pkey.dtpk_id = DTRACE_IDNONE;
14522		}
14523
14524		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
14525
14526		mutex_enter(&dtrace_lock);
14527
14528		if (cmd == DTRACEIOC_PROBEMATCH) {
14529			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14530				if ((probe = dtrace_probes[i - 1]) != NULL &&
14531				    (m = dtrace_match_probe(probe, &pkey,
14532				    priv, uid, zoneid)) != 0)
14533					break;
14534			}
14535
14536			if (m < 0) {
14537				mutex_exit(&dtrace_lock);
14538				return (EINVAL);
14539			}
14540
14541		} else {
14542			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14543				if ((probe = dtrace_probes[i - 1]) != NULL &&
14544				    dtrace_match_priv(probe, priv, uid, zoneid))
14545					break;
14546			}
14547		}
14548
14549		if (probe == NULL) {
14550			mutex_exit(&dtrace_lock);
14551			return (ESRCH);
14552		}
14553
14554		dtrace_probe_description(probe, &desc);
14555		mutex_exit(&dtrace_lock);
14556
14557		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14558			return (EFAULT);
14559
14560		return (0);
14561	}
14562
14563	case DTRACEIOC_PROBEARG: {
14564		dtrace_argdesc_t desc;
14565		dtrace_probe_t *probe;
14566		dtrace_provider_t *prov;
14567
14568		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14569			return (EFAULT);
14570
14571		if (desc.dtargd_id == DTRACE_IDNONE)
14572			return (EINVAL);
14573
14574		if (desc.dtargd_ndx == DTRACE_ARGNONE)
14575			return (EINVAL);
14576
14577		mutex_enter(&dtrace_provider_lock);
14578		mutex_enter(&mod_lock);
14579		mutex_enter(&dtrace_lock);
14580
14581		if (desc.dtargd_id > dtrace_nprobes) {
14582			mutex_exit(&dtrace_lock);
14583			mutex_exit(&mod_lock);
14584			mutex_exit(&dtrace_provider_lock);
14585			return (EINVAL);
14586		}
14587
14588		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
14589			mutex_exit(&dtrace_lock);
14590			mutex_exit(&mod_lock);
14591			mutex_exit(&dtrace_provider_lock);
14592			return (EINVAL);
14593		}
14594
14595		mutex_exit(&dtrace_lock);
14596
14597		prov = probe->dtpr_provider;
14598
14599		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
14600			/*
14601			 * There isn't any typed information for this probe.
14602			 * Set the argument number to DTRACE_ARGNONE.
14603			 */
14604			desc.dtargd_ndx = DTRACE_ARGNONE;
14605		} else {
14606			desc.dtargd_native[0] = '\0';
14607			desc.dtargd_xlate[0] = '\0';
14608			desc.dtargd_mapping = desc.dtargd_ndx;
14609
14610			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
14611			    probe->dtpr_id, probe->dtpr_arg, &desc);
14612		}
14613
14614		mutex_exit(&mod_lock);
14615		mutex_exit(&dtrace_provider_lock);
14616
14617		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14618			return (EFAULT);
14619
14620		return (0);
14621	}
14622
14623	case DTRACEIOC_GO: {
14624		processorid_t cpuid;
14625		rval = dtrace_state_go(state, &cpuid);
14626
14627		if (rval != 0)
14628			return (rval);
14629
14630		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
14631			return (EFAULT);
14632
14633		return (0);
14634	}
14635
14636	case DTRACEIOC_STOP: {
14637		processorid_t cpuid;
14638
14639		mutex_enter(&dtrace_lock);
14640		rval = dtrace_state_stop(state, &cpuid);
14641		mutex_exit(&dtrace_lock);
14642
14643		if (rval != 0)
14644			return (rval);
14645
14646		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
14647			return (EFAULT);
14648
14649		return (0);
14650	}
14651
14652	case DTRACEIOC_DOFGET: {
14653		dof_hdr_t hdr, *dof;
14654		uint64_t len;
14655
14656		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
14657			return (EFAULT);
14658
14659		mutex_enter(&dtrace_lock);
14660		dof = dtrace_dof_create(state);
14661		mutex_exit(&dtrace_lock);
14662
14663		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
14664		rval = copyout(dof, (void *)arg, len);
14665		dtrace_dof_destroy(dof);
14666
14667		return (rval == 0 ? 0 : EFAULT);
14668	}
14669
14670	case DTRACEIOC_AGGSNAP:
14671	case DTRACEIOC_BUFSNAP: {
14672		dtrace_bufdesc_t desc;
14673		caddr_t cached;
14674		dtrace_buffer_t *buf;
14675
14676		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14677			return (EFAULT);
14678
14679		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
14680			return (EINVAL);
14681
14682		mutex_enter(&dtrace_lock);
14683
14684		if (cmd == DTRACEIOC_BUFSNAP) {
14685			buf = &state->dts_buffer[desc.dtbd_cpu];
14686		} else {
14687			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
14688		}
14689
14690		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
14691			size_t sz = buf->dtb_offset;
14692
14693			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
14694				mutex_exit(&dtrace_lock);
14695				return (EBUSY);
14696			}
14697
14698			/*
14699			 * If this buffer has already been consumed, we're
14700			 * going to indicate that there's nothing left here
14701			 * to consume.
14702			 */
14703			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
14704				mutex_exit(&dtrace_lock);
14705
14706				desc.dtbd_size = 0;
14707				desc.dtbd_drops = 0;
14708				desc.dtbd_errors = 0;
14709				desc.dtbd_oldest = 0;
14710				sz = sizeof (desc);
14711
14712				if (copyout(&desc, (void *)arg, sz) != 0)
14713					return (EFAULT);
14714
14715				return (0);
14716			}
14717
14718			/*
14719			 * If this is a ring buffer that has wrapped, we want
14720			 * to copy the whole thing out.
14721			 */
14722			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
14723				dtrace_buffer_polish(buf);
14724				sz = buf->dtb_size;
14725			}
14726
14727			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
14728				mutex_exit(&dtrace_lock);
14729				return (EFAULT);
14730			}
14731
14732			desc.dtbd_size = sz;
14733			desc.dtbd_drops = buf->dtb_drops;
14734			desc.dtbd_errors = buf->dtb_errors;
14735			desc.dtbd_oldest = buf->dtb_xamot_offset;
14736
14737			mutex_exit(&dtrace_lock);
14738
14739			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14740				return (EFAULT);
14741
14742			buf->dtb_flags |= DTRACEBUF_CONSUMED;
14743
14744			return (0);
14745		}
14746
14747		if (buf->dtb_tomax == NULL) {
14748			ASSERT(buf->dtb_xamot == NULL);
14749			mutex_exit(&dtrace_lock);
14750			return (ENOENT);
14751		}
14752
14753		cached = buf->dtb_tomax;
14754		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
14755
14756		dtrace_xcall(desc.dtbd_cpu,
14757		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
14758
14759		state->dts_errors += buf->dtb_xamot_errors;
14760
14761		/*
14762		 * If the buffers did not actually switch, then the cross call
14763		 * did not take place -- presumably because the given CPU is
14764		 * not in the ready set.  If this is the case, we'll return
14765		 * ENOENT.
14766		 */
14767		if (buf->dtb_tomax == cached) {
14768			ASSERT(buf->dtb_xamot != cached);
14769			mutex_exit(&dtrace_lock);
14770			return (ENOENT);
14771		}
14772
14773		ASSERT(cached == buf->dtb_xamot);
14774
14775		/*
14776		 * We have our snapshot; now copy it out.
14777		 */
14778		if (copyout(buf->dtb_xamot, desc.dtbd_data,
14779		    buf->dtb_xamot_offset) != 0) {
14780			mutex_exit(&dtrace_lock);
14781			return (EFAULT);
14782		}
14783
14784		desc.dtbd_size = buf->dtb_xamot_offset;
14785		desc.dtbd_drops = buf->dtb_xamot_drops;
14786		desc.dtbd_errors = buf->dtb_xamot_errors;
14787		desc.dtbd_oldest = 0;
14788
14789		mutex_exit(&dtrace_lock);
14790
14791		/*
14792		 * Finally, copy out the buffer description.
14793		 */
14794		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14795			return (EFAULT);
14796
14797		return (0);
14798	}
14799
14800	case DTRACEIOC_CONF: {
14801		dtrace_conf_t conf;
14802
14803		bzero(&conf, sizeof (conf));
14804		conf.dtc_difversion = DIF_VERSION;
14805		conf.dtc_difintregs = DIF_DIR_NREGS;
14806		conf.dtc_diftupregs = DIF_DTR_NREGS;
14807		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
14808
14809		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
14810			return (EFAULT);
14811
14812		return (0);
14813	}
14814
14815	case DTRACEIOC_STATUS: {
14816		dtrace_status_t stat;
14817		dtrace_dstate_t *dstate;
14818		int i, j;
14819		uint64_t nerrs;
14820
14821		/*
14822		 * See the comment in dtrace_state_deadman() for the reason
14823		 * for setting dts_laststatus to INT64_MAX before setting
14824		 * it to the correct value.
14825		 */
14826		state->dts_laststatus = INT64_MAX;
14827		dtrace_membar_producer();
14828		state->dts_laststatus = dtrace_gethrtime();
14829
14830		bzero(&stat, sizeof (stat));
14831
14832		mutex_enter(&dtrace_lock);
14833
14834		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
14835			mutex_exit(&dtrace_lock);
14836			return (ENOENT);
14837		}
14838
14839		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
14840			stat.dtst_exiting = 1;
14841
14842		nerrs = state->dts_errors;
14843		dstate = &state->dts_vstate.dtvs_dynvars;
14844
14845		for (i = 0; i < NCPU; i++) {
14846			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
14847
14848			stat.dtst_dyndrops += dcpu->dtdsc_drops;
14849			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
14850			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
14851
14852			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
14853				stat.dtst_filled++;
14854
14855			nerrs += state->dts_buffer[i].dtb_errors;
14856
14857			for (j = 0; j < state->dts_nspeculations; j++) {
14858				dtrace_speculation_t *spec;
14859				dtrace_buffer_t *buf;
14860
14861				spec = &state->dts_speculations[j];
14862				buf = &spec->dtsp_buffer[i];
14863				stat.dtst_specdrops += buf->dtb_xamot_drops;
14864			}
14865		}
14866
14867		stat.dtst_specdrops_busy = state->dts_speculations_busy;
14868		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
14869		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
14870		stat.dtst_dblerrors = state->dts_dblerrors;
14871		stat.dtst_killed =
14872		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
14873		stat.dtst_errors = nerrs;
14874
14875		mutex_exit(&dtrace_lock);
14876
14877		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
14878			return (EFAULT);
14879
14880		return (0);
14881	}
14882
14883	case DTRACEIOC_FORMAT: {
14884		dtrace_fmtdesc_t fmt;
14885		char *str;
14886		int len;
14887
14888		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
14889			return (EFAULT);
14890
14891		mutex_enter(&dtrace_lock);
14892
14893		if (fmt.dtfd_format == 0 ||
14894		    fmt.dtfd_format > state->dts_nformats) {
14895			mutex_exit(&dtrace_lock);
14896			return (EINVAL);
14897		}
14898
14899		/*
14900		 * Format strings are allocated contiguously and they are
14901		 * never freed; if a format index is less than the number
14902		 * of formats, we can assert that the format map is non-NULL
14903		 * and that the format for the specified index is non-NULL.
14904		 */
14905		ASSERT(state->dts_formats != NULL);
14906		str = state->dts_formats[fmt.dtfd_format - 1];
14907		ASSERT(str != NULL);
14908
14909		len = strlen(str) + 1;
14910
14911		if (len > fmt.dtfd_length) {
14912			fmt.dtfd_length = len;
14913
14914			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
14915				mutex_exit(&dtrace_lock);
14916				return (EINVAL);
14917			}
14918		} else {
14919			if (copyout(str, fmt.dtfd_string, len) != 0) {
14920				mutex_exit(&dtrace_lock);
14921				return (EINVAL);
14922			}
14923		}
14924
14925		mutex_exit(&dtrace_lock);
14926		return (0);
14927	}
14928
14929	default:
14930		break;
14931	}
14932
14933	return (ENOTTY);
14934}
14935
14936/*ARGSUSED*/
14937static int
14938dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
14939{
14940	dtrace_state_t *state;
14941
14942	switch (cmd) {
14943	case DDI_DETACH:
14944		break;
14945
14946	case DDI_SUSPEND:
14947		return (DDI_SUCCESS);
14948
14949	default:
14950		return (DDI_FAILURE);
14951	}
14952
14953	mutex_enter(&cpu_lock);
14954	mutex_enter(&dtrace_provider_lock);
14955	mutex_enter(&dtrace_lock);
14956
14957	ASSERT(dtrace_opens == 0);
14958
14959	if (dtrace_helpers > 0) {
14960		mutex_exit(&dtrace_provider_lock);
14961		mutex_exit(&dtrace_lock);
14962		mutex_exit(&cpu_lock);
14963		return (DDI_FAILURE);
14964	}
14965
14966	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
14967		mutex_exit(&dtrace_provider_lock);
14968		mutex_exit(&dtrace_lock);
14969		mutex_exit(&cpu_lock);
14970		return (DDI_FAILURE);
14971	}
14972
14973	dtrace_provider = NULL;
14974
14975	if ((state = dtrace_anon_grab()) != NULL) {
14976		/*
14977		 * If there were ECBs on this state, the provider should
14978		 * have not been allowed to detach; assert that there is
14979		 * none.
14980		 */
14981		ASSERT(state->dts_necbs == 0);
14982		dtrace_state_destroy(state);
14983
14984		/*
14985		 * If we're being detached with anonymous state, we need to
14986		 * indicate to the kernel debugger that DTrace is now inactive.
14987		 */
14988		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14989	}
14990
14991	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
14992	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14993	dtrace_cpu_init = NULL;
14994	dtrace_helpers_cleanup = NULL;
14995	dtrace_helpers_fork = NULL;
14996	dtrace_cpustart_init = NULL;
14997	dtrace_cpustart_fini = NULL;
14998	dtrace_debugger_init = NULL;
14999	dtrace_debugger_fini = NULL;
15000	dtrace_kreloc_init = NULL;
15001	dtrace_kreloc_fini = NULL;
15002	dtrace_modload = NULL;
15003	dtrace_modunload = NULL;
15004
15005	mutex_exit(&cpu_lock);
15006
15007	if (dtrace_helptrace_enabled) {
15008		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
15009		dtrace_helptrace_buffer = NULL;
15010	}
15011
15012	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
15013	dtrace_probes = NULL;
15014	dtrace_nprobes = 0;
15015
15016	dtrace_hash_destroy(dtrace_bymod);
15017	dtrace_hash_destroy(dtrace_byfunc);
15018	dtrace_hash_destroy(dtrace_byname);
15019	dtrace_bymod = NULL;
15020	dtrace_byfunc = NULL;
15021	dtrace_byname = NULL;
15022
15023	kmem_cache_destroy(dtrace_state_cache);
15024	vmem_destroy(dtrace_minor);
15025	vmem_destroy(dtrace_arena);
15026
15027	if (dtrace_toxrange != NULL) {
15028		kmem_free(dtrace_toxrange,
15029		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
15030		dtrace_toxrange = NULL;
15031		dtrace_toxranges = 0;
15032		dtrace_toxranges_max = 0;
15033	}
15034
15035	ddi_remove_minor_node(dtrace_devi, NULL);
15036	dtrace_devi = NULL;
15037
15038	ddi_soft_state_fini(&dtrace_softstate);
15039
15040	ASSERT(dtrace_vtime_references == 0);
15041	ASSERT(dtrace_opens == 0);
15042	ASSERT(dtrace_retained == NULL);
15043
15044	mutex_exit(&dtrace_lock);
15045	mutex_exit(&dtrace_provider_lock);
15046
15047	/*
15048	 * We don't destroy the task queue until after we have dropped our
15049	 * locks (taskq_destroy() may block on running tasks).  To prevent
15050	 * attempting to do work after we have effectively detached but before
15051	 * the task queue has been destroyed, all tasks dispatched via the
15052	 * task queue must check that DTrace is still attached before
15053	 * performing any operation.
15054	 */
15055	taskq_destroy(dtrace_taskq);
15056	dtrace_taskq = NULL;
15057
15058	return (DDI_SUCCESS);
15059}
15060
15061/*ARGSUSED*/
15062static int
15063dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
15064{
15065	int error;
15066
15067	switch (infocmd) {
15068	case DDI_INFO_DEVT2DEVINFO:
15069		*result = (void *)dtrace_devi;
15070		error = DDI_SUCCESS;
15071		break;
15072	case DDI_INFO_DEVT2INSTANCE:
15073		*result = (void *)0;
15074		error = DDI_SUCCESS;
15075		break;
15076	default:
15077		error = DDI_FAILURE;
15078	}
15079	return (error);
15080}
15081
15082static struct cb_ops dtrace_cb_ops = {
15083	dtrace_open,		/* open */
15084	dtrace_close,		/* close */
15085	nulldev,		/* strategy */
15086	nulldev,		/* print */
15087	nodev,			/* dump */
15088	nodev,			/* read */
15089	nodev,			/* write */
15090	dtrace_ioctl,		/* ioctl */
15091	nodev,			/* devmap */
15092	nodev,			/* mmap */
15093	nodev,			/* segmap */
15094	nochpoll,		/* poll */
15095	ddi_prop_op,		/* cb_prop_op */
15096	0,			/* streamtab  */
15097	D_NEW | D_MP		/* Driver compatibility flag */
15098};
15099
15100static struct dev_ops dtrace_ops = {
15101	DEVO_REV,		/* devo_rev */
15102	0,			/* refcnt */
15103	dtrace_info,		/* get_dev_info */
15104	nulldev,		/* identify */
15105	nulldev,		/* probe */
15106	dtrace_attach,		/* attach */
15107	dtrace_detach,		/* detach */
15108	nodev,			/* reset */
15109	&dtrace_cb_ops,		/* driver operations */
15110	NULL,			/* bus operations */
15111	nodev			/* dev power */
15112};
15113
15114static struct modldrv modldrv = {
15115	&mod_driverops,		/* module type (this is a pseudo driver) */
15116	"Dynamic Tracing",	/* name of module */
15117	&dtrace_ops,		/* driver ops */
15118};
15119
15120static struct modlinkage modlinkage = {
15121	MODREV_1,
15122	(void *)&modldrv,
15123	NULL
15124};
15125
15126int
15127_init(void)
15128{
15129	return (mod_install(&modlinkage));
15130}
15131
15132int
15133_info(struct modinfo *modinfop)
15134{
15135	return (mod_info(&modlinkage, modinfop));
15136}
15137
15138int
15139_fini(void)
15140{
15141	return (mod_remove(&modlinkage));
15142}
15143