thread.c revision 5206:34f0b41fc3c5
1193323Sed/*
2193323Sed * CDDL HEADER START
3193323Sed *
4193323Sed * The contents of this file are subject to the terms of the
5193323Sed * Common Development and Distribution License (the "License").
6193323Sed * You may not use this file except in compliance with the License.
7193323Sed *
8193323Sed * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9193323Sed * or http://www.opensolaris.org/os/licensing.
10193323Sed * See the License for the specific language governing permissions
11193323Sed * and limitations under the License.
12193323Sed *
13193323Sed * When distributing Covered Code, include this CDDL HEADER in each
14193323Sed * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15193323Sed * If applicable, add the following below this CDDL HEADER, with the
16193323Sed * fields enclosed by brackets "[]" replaced with your own identifying
17193323Sed * information: Portions Copyright [yyyy] [name of copyright owner]
18193323Sed *
19193323Sed * CDDL HEADER END
20193323Sed */
21193323Sed/*
22193323Sed * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23193323Sed * Use is subject to license terms.
24193323Sed */
25193323Sed
26193323Sed#pragma ident	"%Z%%M%	%I%	%E% SMI"
27193323Sed
28193323Sed#include <sys/types.h>
29193323Sed#include <sys/param.h>
30198090Srdivacky#include <sys/sysmacros.h>
31198090Srdivacky#include <sys/signal.h>
32193323Sed#include <sys/stack.h>
33193323Sed#include <sys/pcb.h>
34198090Srdivacky#include <sys/user.h>
35198090Srdivacky#include <sys/systm.h>
36198090Srdivacky#include <sys/sysinfo.h>
37198090Srdivacky#include <sys/errno.h>
38198090Srdivacky#include <sys/cmn_err.h>
39193323Sed#include <sys/cred.h>
40198090Srdivacky#include <sys/resource.h>
41198090Srdivacky#include <sys/task.h>
42198090Srdivacky#include <sys/project.h>
43198090Srdivacky#include <sys/proc.h>
44198090Srdivacky#include <sys/debug.h>
45198090Srdivacky#include <sys/disp.h>
46198090Srdivacky#include <sys/class.h>
47193323Sed#include <vm/seg_kmem.h>
48198090Srdivacky#include <vm/seg_kp.h>
49198090Srdivacky#include <sys/machlock.h>
50198090Srdivacky#include <sys/kmem.h>
51198090Srdivacky#include <sys/varargs.h>
52193323Sed#include <sys/turnstile.h>
53193323Sed#include <sys/poll.h>
54193323Sed#include <sys/vtrace.h>
55193323Sed#include <sys/callb.h>
56193323Sed#include <c2/audit.h>
57193323Sed#include <sys/tnf.h>
58193323Sed#include <sys/sobject.h>
59198090Srdivacky#include <sys/cpupart.h>
60193323Sed#include <sys/pset.h>
61198090Srdivacky#include <sys/door.h>
62198090Srdivacky#include <sys/spl.h>
63193323Sed#include <sys/copyops.h>
64#include <sys/rctl.h>
65#include <sys/brand.h>
66#include <sys/pool.h>
67#include <sys/zone.h>
68#include <sys/tsol/label.h>
69#include <sys/tsol/tndb.h>
70#include <sys/cpc_impl.h>
71#include <sys/sdt.h>
72#include <sys/reboot.h>
73#include <sys/kdi.h>
74#include <sys/waitq.h>
75#include <sys/cpucaps.h>
76#include <sys/kiconv.h>
77
78struct kmem_cache *thread_cache;	/* cache of free threads */
79struct kmem_cache *lwp_cache;		/* cache of free lwps */
80struct kmem_cache *turnstile_cache;	/* cache of free turnstiles */
81
82/*
83 * allthreads is only for use by kmem_readers.  All kernel loops can use
84 * the current thread as a start/end point.
85 */
86static kthread_t *allthreads = &t0;	/* circular list of all threads */
87
88static kcondvar_t reaper_cv;		/* synchronization var */
89kthread_t	*thread_deathrow;	/* circular list of reapable threads */
90kthread_t	*lwp_deathrow;		/* circular list of reapable threads */
91kmutex_t	reaplock;		/* protects lwp and thread deathrows */
92kmutex_t	thread_free_lock;	/* protects clock from reaper */
93int	thread_reapcnt = 0;		/* number of threads on deathrow */
94int	lwp_reapcnt = 0;		/* number of lwps on deathrow */
95int	reaplimit = 16;			/* delay reaping until reaplimit */
96
97extern int nthread;
98
99id_t	syscid;				/* system scheduling class ID */
100void	*segkp_thread;			/* cookie for segkp pool */
101
102int lwp_cache_sz = 32;
103int t_cache_sz = 8;
104static kt_did_t next_t_id = 1;
105
106/*
107 * Min/Max stack sizes for stack size parameters
108 */
109#define	MAX_STKSIZE	(32 * DEFAULTSTKSZ)
110#define	MIN_STKSIZE	DEFAULTSTKSZ
111
112/*
113 * default_stksize overrides lwp_default_stksize if it is set.
114 */
115int	default_stksize;
116int	lwp_default_stksize;
117
118static zone_key_t zone_thread_key;
119
120/*
121 * forward declarations for internal thread specific data (tsd)
122 */
123static void *tsd_realloc(void *, size_t, size_t);
124
125void thread_reaper(void);
126
127/*ARGSUSED*/
128static int
129turnstile_constructor(void *buf, void *cdrarg, int kmflags)
130{
131	bzero(buf, sizeof (turnstile_t));
132	return (0);
133}
134
135/*ARGSUSED*/
136static void
137turnstile_destructor(void *buf, void *cdrarg)
138{
139	turnstile_t *ts = buf;
140
141	ASSERT(ts->ts_free == NULL);
142	ASSERT(ts->ts_waiters == 0);
143	ASSERT(ts->ts_inheritor == NULL);
144	ASSERT(ts->ts_sleepq[0].sq_first == NULL);
145	ASSERT(ts->ts_sleepq[1].sq_first == NULL);
146}
147
148void
149thread_init(void)
150{
151	kthread_t *tp;
152	extern char sys_name[];
153	extern void idle();
154	struct cpu *cpu = CPU;
155
156	mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
157
158#if defined(__i386) || defined(__amd64)
159	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
160	    PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
161
162	/*
163	 * "struct _klwp" includes a "struct pcb", which includes a
164	 * "struct fpu", which needs to be 16-byte aligned on amd64
165	 * (and even on i386 for fxsave/fxrstor).
166	 */
167	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
168	    16, NULL, NULL, NULL, NULL, NULL, 0);
169#else
170	/*
171	 * Allocate thread structures from static_arena.  This prevents
172	 * issues where a thread tries to relocate its own thread
173	 * structure and touches it after the mapping has been suspended.
174	 */
175	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
176	    PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
177
178	lwp_stk_cache_init();
179
180	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
181	    0, NULL, NULL, NULL, NULL, NULL, 0);
182#endif
183
184	turnstile_cache = kmem_cache_create("turnstile_cache",
185	    sizeof (turnstile_t), 0,
186	    turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
187
188	label_init();
189	cred_init();
190
191	/*
192	 * Initialize various resource management facilities.
193	 */
194	rctl_init();
195	cpucaps_init();
196	/*
197	 * Zone_init() should be called before project_init() so that project ID
198	 * for the first project is initialized correctly.
199	 */
200	zone_init();
201	project_init();
202	brand_init();
203	kiconv_init();
204	task_init();
205	tcache_init();
206	pool_init();
207
208	curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
209
210	/*
211	 * Originally, we had two parameters to set default stack
212	 * size: one for lwp's (lwp_default_stksize), and one for
213	 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
214	 * Now we have a third parameter that overrides both if it is
215	 * set to a legal stack size, called default_stksize.
216	 */
217
218	if (default_stksize == 0) {
219		default_stksize = DEFAULTSTKSZ;
220	} else if (default_stksize % PAGESIZE != 0 ||
221	    default_stksize > MAX_STKSIZE ||
222	    default_stksize < MIN_STKSIZE) {
223		cmn_err(CE_WARN, "Illegal stack size. Using %d",
224		    (int)DEFAULTSTKSZ);
225		default_stksize = DEFAULTSTKSZ;
226	} else {
227		lwp_default_stksize = default_stksize;
228	}
229
230	if (lwp_default_stksize == 0) {
231		lwp_default_stksize = default_stksize;
232	} else if (lwp_default_stksize % PAGESIZE != 0 ||
233	    lwp_default_stksize > MAX_STKSIZE ||
234	    lwp_default_stksize < MIN_STKSIZE) {
235		cmn_err(CE_WARN, "Illegal stack size. Using %d",
236		    default_stksize);
237		lwp_default_stksize = default_stksize;
238	}
239
240	segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
241	    lwp_default_stksize,
242	    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
243
244	segkp_thread = segkp_cache_init(segkp, t_cache_sz,
245	    default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
246
247	(void) getcid(sys_name, &syscid);
248	curthread->t_cid = syscid;	/* current thread is t0 */
249
250	/*
251	 * Set up the first CPU's idle thread.
252	 * It runs whenever the CPU has nothing worthwhile to do.
253	 */
254	tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
255	cpu->cpu_idle_thread = tp;
256	tp->t_preempt = 1;
257	tp->t_disp_queue = cpu->cpu_disp;
258	ASSERT(tp->t_disp_queue != NULL);
259	tp->t_bound_cpu = cpu;
260	tp->t_affinitycnt = 1;
261
262	/*
263	 * Registering a thread in the callback table is usually
264	 * done in the initialization code of the thread. In this
265	 * case, we do it right after thread creation to avoid
266	 * blocking idle thread while registering itself. It also
267	 * avoids the possibility of reregistration in case a CPU
268	 * restarts its idle thread.
269	 */
270	CALLB_CPR_INIT_SAFE(tp, "idle");
271
272	/*
273	 * Create the thread_reaper daemon. From this point on, exited
274	 * threads will get reaped.
275	 */
276	(void) thread_create(NULL, 0, (void (*)())thread_reaper,
277	    NULL, 0, &p0, TS_RUN, minclsyspri);
278
279	/*
280	 * Finish initializing the kernel memory allocator now that
281	 * thread_create() is available.
282	 */
283	kmem_thread_init();
284
285	if (boothowto & RB_DEBUG)
286		kdi_dvec_thravail();
287}
288
289/*
290 * Create a thread.
291 *
292 * thread_create() blocks for memory if necessary.  It never fails.
293 *
294 * If stk is NULL, the thread is created at the base of the stack
295 * and cannot be swapped.
296 */
297kthread_t *
298thread_create(
299	caddr_t	stk,
300	size_t	stksize,
301	void	(*proc)(),
302	void	*arg,
303	size_t	len,
304	proc_t	 *pp,
305	int	state,
306	pri_t	pri)
307{
308	kthread_t *t;
309	extern struct classfuncs sys_classfuncs;
310	turnstile_t *ts;
311
312	/*
313	 * Every thread keeps a turnstile around in case it needs to block.
314	 * The only reason the turnstile is not simply part of the thread
315	 * structure is that we may have to break the association whenever
316	 * more than one thread blocks on a given synchronization object.
317	 * From a memory-management standpoint, turnstiles are like the
318	 * "attached mblks" that hang off dblks in the streams allocator.
319	 */
320	ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
321
322	if (stk == NULL) {
323		/*
324		 * alloc both thread and stack in segkp chunk
325		 */
326
327		if (stksize < default_stksize)
328			stksize = default_stksize;
329
330		if (stksize == default_stksize) {
331			stk = (caddr_t)segkp_cache_get(segkp_thread);
332		} else {
333			stksize = roundup(stksize, PAGESIZE);
334			stk = (caddr_t)segkp_get(segkp, stksize,
335			    (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
336		}
337
338		ASSERT(stk != NULL);
339
340		/*
341		 * The machine-dependent mutex code may require that
342		 * thread pointers (since they may be used for mutex owner
343		 * fields) have certain alignment requirements.
344		 * PTR24_ALIGN is the size of the alignment quanta.
345		 * XXX - assumes stack grows toward low addresses.
346		 */
347		if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
348			cmn_err(CE_PANIC, "thread_create: proposed stack size"
349			    " too small to hold thread.");
350#ifdef STACK_GROWTH_DOWN
351		stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
352		stksize &= -PTR24_ALIGN;	/* make thread aligned */
353		t = (kthread_t *)(stk + stksize);
354		bzero(t, sizeof (kthread_t));
355#ifdef	C2_AUDIT
356		if (audit_active)
357			audit_thread_create(t);
358#endif
359		t->t_stk = stk + stksize;
360		t->t_stkbase = stk;
361#else	/* stack grows to larger addresses */
362		stksize -= SA(sizeof (kthread_t));
363		t = (kthread_t *)(stk);
364		bzero(t, sizeof (kthread_t));
365		t->t_stk = stk + sizeof (kthread_t);
366		t->t_stkbase = stk + stksize + sizeof (kthread_t);
367#endif	/* STACK_GROWTH_DOWN */
368		t->t_flag |= T_TALLOCSTK;
369		t->t_swap = stk;
370	} else {
371		t = kmem_cache_alloc(thread_cache, KM_SLEEP);
372		bzero(t, sizeof (kthread_t));
373		ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
374#ifdef	C2_AUDIT
375		if (audit_active)
376			audit_thread_create(t);
377#endif
378		/*
379		 * Initialize t_stk to the kernel stack pointer to use
380		 * upon entry to the kernel
381		 */
382#ifdef STACK_GROWTH_DOWN
383		t->t_stk = stk + stksize;
384		t->t_stkbase = stk;
385#else
386		t->t_stk = stk;			/* 3b2-like */
387		t->t_stkbase = stk + stksize;
388#endif /* STACK_GROWTH_DOWN */
389	}
390
391	/* set default stack flag */
392	if (stksize == lwp_default_stksize)
393		t->t_flag |= T_DFLTSTK;
394
395	t->t_ts = ts;
396
397	/*
398	 * p_cred could be NULL if it thread_create is called before cred_init
399	 * is called in main.
400	 */
401	mutex_enter(&pp->p_crlock);
402	if (pp->p_cred)
403		crhold(t->t_cred = pp->p_cred);
404	mutex_exit(&pp->p_crlock);
405	t->t_start = gethrestime_sec();
406	t->t_startpc = proc;
407	t->t_procp = pp;
408	t->t_clfuncs = &sys_classfuncs.thread;
409	t->t_cid = syscid;
410	t->t_pri = pri;
411	t->t_stime = lbolt;
412	t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
413	t->t_bind_cpu = PBIND_NONE;
414	t->t_bind_pset = PS_NONE;
415	t->t_plockp = &pp->p_lock;
416	t->t_copyops = NULL;
417	t->t_taskq = NULL;
418	t->t_anttime = 0;
419	t->t_hatdepth = 0;
420
421	t->t_dtrace_vtime = 1;	/* assure vtimestamp is always non-zero */
422
423	CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
424#ifndef NPROBE
425	/* Kernel probe */
426	tnf_thread_create(t);
427#endif /* NPROBE */
428	LOCK_INIT_CLEAR(&t->t_lock);
429
430	/*
431	 * Callers who give us a NULL proc must do their own
432	 * stack initialization.  e.g. lwp_create()
433	 */
434	if (proc != NULL) {
435		t->t_stk = thread_stk_init(t->t_stk);
436		thread_load(t, proc, arg, len);
437	}
438
439	/*
440	 * Put a hold on project0. If this thread is actually in a
441	 * different project, then t_proj will be changed later in
442	 * lwp_create().  All kernel-only threads must be in project 0.
443	 */
444	t->t_proj = project_hold(proj0p);
445
446	lgrp_affinity_init(&t->t_lgrp_affinity);
447
448	mutex_enter(&pidlock);
449	nthread++;
450	t->t_did = next_t_id++;
451	t->t_prev = curthread->t_prev;
452	t->t_next = curthread;
453
454	/*
455	 * Add the thread to the list of all threads, and initialize
456	 * its t_cpu pointer.  We need to block preemption since
457	 * cpu_offline walks the thread list looking for threads
458	 * with t_cpu pointing to the CPU being offlined.  We want
459	 * to make sure that the list is consistent and that if t_cpu
460	 * is set, the thread is on the list.
461	 */
462	kpreempt_disable();
463	curthread->t_prev->t_next = t;
464	curthread->t_prev = t;
465
466	/*
467	 * Threads should never have a NULL t_cpu pointer so assign it
468	 * here.  If the thread is being created with state TS_RUN a
469	 * better CPU may be chosen when it is placed on the run queue.
470	 *
471	 * We need to keep kernel preemption disabled when setting all
472	 * three fields to keep them in sync.  Also, always create in
473	 * the default partition since that's where kernel threads go
474	 * (if this isn't a kernel thread, t_cpupart will be changed
475	 * in lwp_create before setting the thread runnable).
476	 */
477	t->t_cpupart = &cp_default;
478
479	/*
480	 * For now, affiliate this thread with the root lgroup.
481	 * Since the kernel does not (presently) allocate its memory
482	 * in a locality aware fashion, the root is an appropriate home.
483	 * If this thread is later associated with an lwp, it will have
484	 * it's lgroup re-assigned at that time.
485	 */
486	lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
487
488	/*
489	 * Inherit the current cpu.  If this cpu isn't part of the chosen
490	 * lgroup, a new cpu will be chosen by cpu_choose when the thread
491	 * is ready to run.
492	 */
493	if (CPU->cpu_part == &cp_default)
494		t->t_cpu = CPU;
495	else
496		t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
497		    t->t_pri, NULL);
498
499	t->t_disp_queue = t->t_cpu->cpu_disp;
500	kpreempt_enable();
501
502	/*
503	 * Initialize thread state and the dispatcher lock pointer.
504	 * Need to hold onto pidlock to block allthreads walkers until
505	 * the state is set.
506	 */
507	switch (state) {
508	case TS_RUN:
509		curthread->t_oldspl = splhigh();	/* get dispatcher spl */
510		THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
511		CL_SETRUN(t);
512		thread_unlock(t);
513		break;
514
515	case TS_ONPROC:
516		THREAD_ONPROC(t, t->t_cpu);
517		break;
518
519	case TS_FREE:
520		/*
521		 * Free state will be used for intr threads.
522		 * The interrupt routine must set the thread dispatcher
523		 * lock pointer (t_lockp) if starting on a CPU
524		 * other than the current one.
525		 */
526		THREAD_FREEINTR(t, CPU);
527		break;
528
529	case TS_STOPPED:
530		THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
531		break;
532
533	default:			/* TS_SLEEP, TS_ZOMB or TS_TRANS */
534		cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
535	}
536	mutex_exit(&pidlock);
537	return (t);
538}
539
540/*
541 * Move thread to project0 and take care of project reference counters.
542 */
543void
544thread_rele(kthread_t *t)
545{
546	kproject_t *kpj;
547
548	thread_lock(t);
549
550	ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
551	kpj = ttoproj(t);
552	t->t_proj = proj0p;
553
554	thread_unlock(t);
555
556	if (kpj != proj0p) {
557		project_rele(kpj);
558		(void) project_hold(proj0p);
559	}
560}
561
562void
563thread_exit(void)
564{
565	kthread_t *t = curthread;
566
567	if ((t->t_proc_flag & TP_ZTHREAD) != 0)
568		cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
569
570	tsd_exit();		/* Clean up this thread's TSD */
571
572	kcpc_passivate();	/* clean up performance counter state */
573
574	/*
575	 * No kernel thread should have called poll() without arranging
576	 * calling pollcleanup() here.
577	 */
578	ASSERT(t->t_pollstate == NULL);
579	ASSERT(t->t_schedctl == NULL);
580	if (t->t_door)
581		door_slam();	/* in case thread did an upcall */
582
583#ifndef NPROBE
584	/* Kernel probe */
585	if (t->t_tnf_tpdp)
586		tnf_thread_exit();
587#endif /* NPROBE */
588
589	thread_rele(t);
590	t->t_preempt++;
591
592	/*
593	 * remove thread from the all threads list so that
594	 * death-row can use the same pointers.
595	 */
596	mutex_enter(&pidlock);
597	t->t_next->t_prev = t->t_prev;
598	t->t_prev->t_next = t->t_next;
599	ASSERT(allthreads != t);	/* t0 never exits */
600	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
601	mutex_exit(&pidlock);
602
603	if (t->t_ctx != NULL)
604		exitctx(t);
605	if (t->t_procp->p_pctx != NULL)
606		exitpctx(t->t_procp);
607
608	t->t_state = TS_ZOMB;	/* set zombie thread */
609
610	swtch_from_zombie();	/* give up the CPU */
611	/* NOTREACHED */
612}
613
614/*
615 * Check to see if the specified thread is active (defined as being on
616 * the thread list).  This is certainly a slow way to do this; if there's
617 * ever a reason to speed it up, we could maintain a hash table of active
618 * threads indexed by their t_did.
619 */
620static kthread_t *
621did_to_thread(kt_did_t tid)
622{
623	kthread_t *t;
624
625	ASSERT(MUTEX_HELD(&pidlock));
626	for (t = curthread->t_next; t != curthread; t = t->t_next) {
627		if (t->t_did == tid)
628			break;
629	}
630	if (t->t_did == tid)
631		return (t);
632	else
633		return (NULL);
634}
635
636/*
637 * Wait for specified thread to exit.  Returns immediately if the thread
638 * could not be found, meaning that it has either already exited or never
639 * existed.
640 */
641void
642thread_join(kt_did_t tid)
643{
644	kthread_t *t;
645
646	ASSERT(tid != curthread->t_did);
647	ASSERT(tid != t0.t_did);
648
649	mutex_enter(&pidlock);
650	/*
651	 * Make sure we check that the thread is on the thread list
652	 * before blocking on it; otherwise we could end up blocking on
653	 * a cv that's already been freed.  In other words, don't cache
654	 * the thread pointer across calls to cv_wait.
655	 *
656	 * The choice of loop invariant means that whenever a thread
657	 * is taken off the allthreads list, a cv_broadcast must be
658	 * performed on that thread's t_joincv to wake up any waiters.
659	 * The broadcast doesn't have to happen right away, but it
660	 * shouldn't be postponed indefinitely (e.g., by doing it in
661	 * thread_free which may only be executed when the deathrow
662	 * queue is processed.
663	 */
664	while (t = did_to_thread(tid))
665		cv_wait(&t->t_joincv, &pidlock);
666	mutex_exit(&pidlock);
667}
668
669void
670thread_free(kthread_t *t)
671{
672	ASSERT(t != &t0 && t->t_state == TS_FREE);
673	ASSERT(t->t_door == NULL);
674	ASSERT(t->t_schedctl == NULL);
675	ASSERT(t->t_pollstate == NULL);
676
677	t->t_pri = 0;
678	t->t_pc = 0;
679	t->t_sp = 0;
680	t->t_wchan0 = NULL;
681	t->t_wchan = NULL;
682	if (t->t_cred != NULL) {
683		crfree(t->t_cred);
684		t->t_cred = 0;
685	}
686	if (t->t_pdmsg) {
687		kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
688		t->t_pdmsg = NULL;
689	}
690#ifdef	C2_AUDIT
691	if (audit_active)
692		audit_thread_free(t);
693#endif
694#ifndef NPROBE
695	if (t->t_tnf_tpdp)
696		tnf_thread_free(t);
697#endif /* NPROBE */
698	if (t->t_cldata) {
699		CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
700	}
701	if (t->t_rprof != NULL) {
702		kmem_free(t->t_rprof, sizeof (*t->t_rprof));
703		t->t_rprof = NULL;
704	}
705	t->t_lockp = NULL;	/* nothing should try to lock this thread now */
706	if (t->t_lwp)
707		lwp_freeregs(t->t_lwp, 0);
708	if (t->t_ctx)
709		freectx(t, 0);
710	t->t_stk = NULL;
711	if (t->t_lwp)
712		lwp_stk_fini(t->t_lwp);
713	lock_clear(&t->t_lock);
714
715	if (t->t_ts->ts_waiters > 0)
716		panic("thread_free: turnstile still active");
717
718	kmem_cache_free(turnstile_cache, t->t_ts);
719
720	free_afd(&t->t_activefd);
721
722	/*
723	 * Barrier for clock thread.  The clock holds this lock to
724	 * keep the thread from going away while it's looking at it.
725	 */
726	mutex_enter(&thread_free_lock);
727	mutex_exit(&thread_free_lock);
728
729	ASSERT(ttoproj(t) == proj0p);
730	project_rele(ttoproj(t));
731
732	lgrp_affinity_free(&t->t_lgrp_affinity);
733
734	/*
735	 * Free thread struct and its stack.
736	 */
737	if (t->t_flag & T_TALLOCSTK) {
738		/* thread struct is embedded in stack */
739		segkp_release(segkp, t->t_swap);
740		mutex_enter(&pidlock);
741		nthread--;
742		mutex_exit(&pidlock);
743	} else {
744		if (t->t_swap) {
745			segkp_release(segkp, t->t_swap);
746			t->t_swap = NULL;
747		}
748		if (t->t_lwp) {
749			kmem_cache_free(lwp_cache, t->t_lwp);
750			t->t_lwp = NULL;
751		}
752		mutex_enter(&pidlock);
753		nthread--;
754		mutex_exit(&pidlock);
755		kmem_cache_free(thread_cache, t);
756	}
757}
758
759/*
760 * Removes threads associated with the given zone from a deathrow queue.
761 * tp is a pointer to the head of the deathrow queue, and countp is a
762 * pointer to the current deathrow count.  Returns a linked list of
763 * threads removed from the list.
764 */
765static kthread_t *
766thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
767{
768	kthread_t *tmp, *list = NULL;
769	cred_t *cr;
770
771	ASSERT(MUTEX_HELD(&reaplock));
772	while (*tp != NULL) {
773		if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
774			tmp = *tp;
775			*tp = tmp->t_forw;
776			tmp->t_forw = list;
777			list = tmp;
778			(*countp)--;
779		} else {
780			tp = &(*tp)->t_forw;
781		}
782	}
783	return (list);
784}
785
786static void
787thread_reap_list(kthread_t *t)
788{
789	kthread_t *next;
790
791	while (t != NULL) {
792		next = t->t_forw;
793		thread_free(t);
794		t = next;
795	}
796}
797
798/* ARGSUSED */
799static void
800thread_zone_destroy(zoneid_t zoneid, void *unused)
801{
802	kthread_t *t, *l;
803
804	mutex_enter(&reaplock);
805	/*
806	 * Pull threads and lwps associated with zone off deathrow lists.
807	 */
808	t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
809	l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
810	mutex_exit(&reaplock);
811
812	/*
813	 * Reap threads
814	 */
815	thread_reap_list(t);
816
817	/*
818	 * Reap lwps
819	 */
820	thread_reap_list(l);
821}
822
823/*
824 * cleanup zombie threads that are on deathrow.
825 */
826void
827thread_reaper()
828{
829	kthread_t *t, *l;
830	callb_cpr_t cprinfo;
831
832	/*
833	 * Register callback to clean up threads when zone is destroyed.
834	 */
835	zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
836
837	CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
838	for (;;) {
839		mutex_enter(&reaplock);
840		while (thread_deathrow == NULL && lwp_deathrow == NULL) {
841			CALLB_CPR_SAFE_BEGIN(&cprinfo);
842			cv_wait(&reaper_cv, &reaplock);
843			CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
844		}
845		t = thread_deathrow;
846		l = lwp_deathrow;
847		thread_deathrow = NULL;
848		lwp_deathrow = NULL;
849		thread_reapcnt = 0;
850		lwp_reapcnt = 0;
851		mutex_exit(&reaplock);
852
853		/*
854		 * Reap threads
855		 */
856		thread_reap_list(t);
857
858		/*
859		 * Reap lwps
860		 */
861		thread_reap_list(l);
862	}
863}
864
865/*
866 * This is called by resume() to put a zombie thread onto deathrow.
867 * The thread's state is changed to TS_FREE to indicate that is reapable.
868 * This is called from the idle thread so it must not block (just spin).
869 */
870void
871reapq_add(kthread_t *t)
872{
873	mutex_enter(&reaplock);
874
875	/*
876	 * lwp_deathrow contains only threads with lwp linkage
877	 * that are of the default stacksize. Anything else goes
878	 * on thread_deathrow.
879	 */
880	if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) {
881		t->t_forw = lwp_deathrow;
882		lwp_deathrow = t;
883		lwp_reapcnt++;
884	} else {
885		t->t_forw = thread_deathrow;
886		thread_deathrow = t;
887		thread_reapcnt++;
888	}
889	if (lwp_reapcnt + thread_reapcnt > reaplimit)
890		cv_signal(&reaper_cv);	/* wake the reaper */
891	t->t_state = TS_FREE;
892	lock_clear(&t->t_lock);
893
894	/*
895	 * Before we return, we need to grab and drop the thread lock for
896	 * the dead thread.  At this point, the current thread is the idle
897	 * thread, and the dead thread's CPU lock points to the current
898	 * CPU -- and we must grab and drop the lock to synchronize with
899	 * a racing thread walking a blocking chain that the zombie thread
900	 * was recently in.  By this point, that blocking chain is (by
901	 * definition) stale:  the dead thread is not holding any locks, and
902	 * is therefore not in any blocking chains -- but if we do not regrab
903	 * our lock before freeing the dead thread's data structures, the
904	 * thread walking the (stale) blocking chain will die on memory
905	 * corruption when it attempts to drop the dead thread's lock.  We
906	 * only need do this once because there is no way for the dead thread
907	 * to ever again be on a blocking chain:  once we have grabbed and
908	 * dropped the thread lock, we are guaranteed that anyone that could
909	 * have seen this thread in a blocking chain can no longer see it.
910	 */
911	thread_lock(t);
912	thread_unlock(t);
913
914	mutex_exit(&reaplock);
915}
916
917/*
918 * Install thread context ops for the current thread.
919 */
920void
921installctx(
922	kthread_t *t,
923	void	*arg,
924	void	(*save)(void *),
925	void	(*restore)(void *),
926	void	(*fork)(void *, void *),
927	void	(*lwp_create)(void *, void *),
928	void	(*exit)(void *),
929	void	(*free)(void *, int))
930{
931	struct ctxop *ctx;
932
933	ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
934	ctx->save_op = save;
935	ctx->restore_op = restore;
936	ctx->fork_op = fork;
937	ctx->lwp_create_op = lwp_create;
938	ctx->exit_op = exit;
939	ctx->free_op = free;
940	ctx->arg = arg;
941	ctx->next = t->t_ctx;
942	t->t_ctx = ctx;
943}
944
945/*
946 * Remove the thread context ops from a thread.
947 */
948int
949removectx(
950	kthread_t *t,
951	void	*arg,
952	void	(*save)(void *),
953	void	(*restore)(void *),
954	void	(*fork)(void *, void *),
955	void	(*lwp_create)(void *, void *),
956	void	(*exit)(void *),
957	void	(*free)(void *, int))
958{
959	struct ctxop *ctx, *prev_ctx;
960
961	/*
962	 * The incoming kthread_t (which is the thread for which the
963	 * context ops will be removed) should be one of the following:
964	 *
965	 * a) the current thread,
966	 *
967	 * b) a thread of a process that's being forked (SIDL),
968	 *
969	 * c) a thread that belongs to the same process as the current
970	 *    thread and for which the current thread is the agent thread,
971	 *
972	 * d) a thread that is TS_STOPPED which is indicative of it
973	 *    being (if curthread is not an agent) a thread being created
974	 *    as part of an lwp creation.
975	 */
976	ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
977	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
978
979	/*
980	 * Serialize modifications to t->t_ctx to prevent the agent thread
981	 * and the target thread from racing with each other during lwp exit.
982	 */
983	mutex_enter(&t->t_ctx_lock);
984	prev_ctx = NULL;
985	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
986		if (ctx->save_op == save && ctx->restore_op == restore &&
987		    ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
988		    ctx->exit_op == exit && ctx->free_op == free &&
989		    ctx->arg == arg) {
990			if (prev_ctx)
991				prev_ctx->next = ctx->next;
992			else
993				t->t_ctx = ctx->next;
994			mutex_exit(&t->t_ctx_lock);
995			if (ctx->free_op != NULL)
996				(ctx->free_op)(ctx->arg, 0);
997			kmem_free(ctx, sizeof (struct ctxop));
998			return (1);
999		}
1000		prev_ctx = ctx;
1001	}
1002	mutex_exit(&t->t_ctx_lock);
1003
1004	return (0);
1005}
1006
1007void
1008savectx(kthread_t *t)
1009{
1010	struct ctxop *ctx;
1011
1012	ASSERT(t == curthread);
1013	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1014		if (ctx->save_op != NULL)
1015			(ctx->save_op)(ctx->arg);
1016}
1017
1018void
1019restorectx(kthread_t *t)
1020{
1021	struct ctxop *ctx;
1022
1023	ASSERT(t == curthread);
1024	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1025		if (ctx->restore_op != NULL)
1026			(ctx->restore_op)(ctx->arg);
1027}
1028
1029void
1030forkctx(kthread_t *t, kthread_t *ct)
1031{
1032	struct ctxop *ctx;
1033
1034	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1035		if (ctx->fork_op != NULL)
1036			(ctx->fork_op)(t, ct);
1037}
1038
1039/*
1040 * Note that this operator is only invoked via the _lwp_create
1041 * system call.  The system may have other reasons to create lwps
1042 * e.g. the agent lwp or the doors unreferenced lwp.
1043 */
1044void
1045lwp_createctx(kthread_t *t, kthread_t *ct)
1046{
1047	struct ctxop *ctx;
1048
1049	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1050		if (ctx->lwp_create_op != NULL)
1051			(ctx->lwp_create_op)(t, ct);
1052}
1053
1054/*
1055 * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1056 * needed when the thread/LWP leaves the processor for the last time. This
1057 * routine is not intended to deal with freeing memory; freectx() is used for
1058 * that purpose during thread_free(). This routine is provided to allow for
1059 * clean-up that can't wait until thread_free().
1060 */
1061void
1062exitctx(kthread_t *t)
1063{
1064	struct ctxop *ctx;
1065
1066	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1067		if (ctx->exit_op != NULL)
1068			(ctx->exit_op)(t);
1069}
1070
1071/*
1072 * freectx is called from thread_free() and exec() to get
1073 * rid of old thread context ops.
1074 */
1075void
1076freectx(kthread_t *t, int isexec)
1077{
1078	struct ctxop *ctx;
1079
1080	while ((ctx = t->t_ctx) != NULL) {
1081		t->t_ctx = ctx->next;
1082		if (ctx->free_op != NULL)
1083			(ctx->free_op)(ctx->arg, isexec);
1084		kmem_free(ctx, sizeof (struct ctxop));
1085	}
1086}
1087
1088/*
1089 * Set the thread running; arrange for it to be swapped in if necessary.
1090 */
1091void
1092setrun_locked(kthread_t *t)
1093{
1094	ASSERT(THREAD_LOCK_HELD(t));
1095	if (t->t_state == TS_SLEEP) {
1096		/*
1097		 * Take off sleep queue.
1098		 */
1099		SOBJ_UNSLEEP(t->t_sobj_ops, t);
1100	} else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1101		/*
1102		 * Already on dispatcher queue.
1103		 */
1104		return;
1105	} else if (t->t_state == TS_WAIT) {
1106		waitq_setrun(t);
1107	} else if (t->t_state == TS_STOPPED) {
1108		/*
1109		 * All of the sending of SIGCONT (TC_XSTART) and /proc
1110		 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1111		 * requested that the thread be run.
1112		 * Just calling setrun() is not sufficient to set a stopped
1113		 * thread running.  TP_TXSTART is always set if the thread
1114		 * is not stopped by a jobcontrol stop signal.
1115		 * TP_TPSTART is always set if /proc is not controlling it.
1116		 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1117		 * The thread won't be stopped unless one of these
1118		 * three mechanisms did it.
1119		 *
1120		 * These flags must be set before calling setrun_locked(t).
1121		 * They can't be passed as arguments because the streams
1122		 * code calls setrun() indirectly and the mechanism for
1123		 * doing so admits only one argument.  Note that the
1124		 * thread must be locked in order to change t_schedflags.
1125		 */
1126		if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1127			return;
1128		/*
1129		 * Process is no longer stopped (a thread is running).
1130		 */
1131		t->t_whystop = 0;
1132		t->t_whatstop = 0;
1133		/*
1134		 * Strictly speaking, we do not have to clear these
1135		 * flags here; they are cleared on entry to stop().
1136		 * However, they are confusing when doing kernel
1137		 * debugging or when they are revealed by ps(1).
1138		 */
1139		t->t_schedflag &= ~TS_ALLSTART;
1140		THREAD_TRANSITION(t);	/* drop stopped-thread lock */
1141		ASSERT(t->t_lockp == &transition_lock);
1142		ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1143		/*
1144		 * Let the class put the process on the dispatcher queue.
1145		 */
1146		CL_SETRUN(t);
1147	}
1148}
1149
1150void
1151setrun(kthread_t *t)
1152{
1153	thread_lock(t);
1154	setrun_locked(t);
1155	thread_unlock(t);
1156}
1157
1158/*
1159 * Unpin an interrupted thread.
1160 *	When an interrupt occurs, the interrupt is handled on the stack
1161 *	of an interrupt thread, taken from a pool linked to the CPU structure.
1162 *
1163 *	When swtch() is switching away from an interrupt thread because it
1164 *	blocked or was preempted, this routine is called to complete the
1165 *	saving of the interrupted thread state, and returns the interrupted
1166 *	thread pointer so it may be resumed.
1167 *
1168 *	Called by swtch() only at high spl.
1169 */
1170kthread_t *
1171thread_unpin()
1172{
1173	kthread_t	*t = curthread;	/* current thread */
1174	kthread_t	*itp;		/* interrupted thread */
1175	int		i;		/* interrupt level */
1176	extern int	intr_passivate();
1177
1178	ASSERT(t->t_intr != NULL);
1179
1180	itp = t->t_intr;		/* interrupted thread */
1181	t->t_intr = NULL;		/* clear interrupt ptr */
1182
1183	/*
1184	 * Get state from interrupt thread for the one
1185	 * it interrupted.
1186	 */
1187
1188	i = intr_passivate(t, itp);
1189
1190	TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1191	    "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1192	    i, t, t, itp, itp);
1193
1194	/*
1195	 * Dissociate the current thread from the interrupted thread's LWP.
1196	 */
1197	t->t_lwp = NULL;
1198
1199	/*
1200	 * Interrupt handlers above the level that spinlocks block must
1201	 * not block.
1202	 */
1203#if DEBUG
1204	if (i < 0 || i > LOCK_LEVEL)
1205		cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1206#endif
1207
1208	/*
1209	 * Compute the CPU's base interrupt level based on the active
1210	 * interrupts.
1211	 */
1212	ASSERT(CPU->cpu_intr_actv & (1 << i));
1213	set_base_spl();
1214
1215	return (itp);
1216}
1217
1218/*
1219 * Create and initialize an interrupt thread.
1220 *	Returns non-zero on error.
1221 *	Called at spl7() or better.
1222 */
1223void
1224thread_create_intr(struct cpu *cp)
1225{
1226	kthread_t *tp;
1227
1228	tp = thread_create(NULL, 0,
1229	    (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1230
1231	/*
1232	 * Set the thread in the TS_FREE state.  The state will change
1233	 * to TS_ONPROC only while the interrupt is active.  Think of these
1234	 * as being on a private free list for the CPU.  Being TS_FREE keeps
1235	 * inactive interrupt threads out of debugger thread lists.
1236	 *
1237	 * We cannot call thread_create with TS_FREE because of the current
1238	 * checks there for ONPROC.  Fix this when thread_create takes flags.
1239	 */
1240	THREAD_FREEINTR(tp, cp);
1241
1242	/*
1243	 * Nobody should ever reference the credentials of an interrupt
1244	 * thread so make it NULL to catch any such references.
1245	 */
1246	tp->t_cred = NULL;
1247	tp->t_flag |= T_INTR_THREAD;
1248	tp->t_cpu = cp;
1249	tp->t_bound_cpu = cp;
1250	tp->t_disp_queue = cp->cpu_disp;
1251	tp->t_affinitycnt = 1;
1252	tp->t_preempt = 1;
1253
1254	/*
1255	 * Don't make a user-requested binding on this thread so that
1256	 * the processor can be offlined.
1257	 */
1258	tp->t_bind_cpu = PBIND_NONE;	/* no USER-requested binding */
1259	tp->t_bind_pset = PS_NONE;
1260
1261#if defined(__i386) || defined(__amd64)
1262	tp->t_stk -= STACK_ALIGN;
1263	*(tp->t_stk) = 0;		/* terminate intr thread stack */
1264#endif
1265
1266	/*
1267	 * Link onto CPU's interrupt pool.
1268	 */
1269	tp->t_link = cp->cpu_intr_thread;
1270	cp->cpu_intr_thread = tp;
1271}
1272
1273/*
1274 * TSD -- THREAD SPECIFIC DATA
1275 */
1276static kmutex_t		tsd_mutex;	 /* linked list spin lock */
1277static uint_t		tsd_nkeys;	 /* size of destructor array */
1278/* per-key destructor funcs */
1279static void 		(**tsd_destructor)(void *);
1280/* list of tsd_thread's */
1281static struct tsd_thread	*tsd_list;
1282
1283/*
1284 * Default destructor
1285 *	Needed because NULL destructor means that the key is unused
1286 */
1287/* ARGSUSED */
1288void
1289tsd_defaultdestructor(void *value)
1290{}
1291
1292/*
1293 * Create a key (index into per thread array)
1294 *	Locks out tsd_create, tsd_destroy, and tsd_exit
1295 *	May allocate memory with lock held
1296 */
1297void
1298tsd_create(uint_t *keyp, void (*destructor)(void *))
1299{
1300	int	i;
1301	uint_t	nkeys;
1302
1303	/*
1304	 * if key is allocated, do nothing
1305	 */
1306	mutex_enter(&tsd_mutex);
1307	if (*keyp) {
1308		mutex_exit(&tsd_mutex);
1309		return;
1310	}
1311	/*
1312	 * find an unused key
1313	 */
1314	if (destructor == NULL)
1315		destructor = tsd_defaultdestructor;
1316
1317	for (i = 0; i < tsd_nkeys; ++i)
1318		if (tsd_destructor[i] == NULL)
1319			break;
1320
1321	/*
1322	 * if no unused keys, increase the size of the destructor array
1323	 */
1324	if (i == tsd_nkeys) {
1325		if ((nkeys = (tsd_nkeys << 1)) == 0)
1326			nkeys = 1;
1327		tsd_destructor =
1328		    (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1329		    (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1330		    (size_t)(nkeys * sizeof (void (*)(void *))));
1331		tsd_nkeys = nkeys;
1332	}
1333
1334	/*
1335	 * allocate the next available unused key
1336	 */
1337	tsd_destructor[i] = destructor;
1338	*keyp = i + 1;
1339	mutex_exit(&tsd_mutex);
1340}
1341
1342/*
1343 * Destroy a key -- this is for unloadable modules
1344 *
1345 * Assumes that the caller is preventing tsd_set and tsd_get
1346 * Locks out tsd_create, tsd_destroy, and tsd_exit
1347 * May free memory with lock held
1348 */
1349void
1350tsd_destroy(uint_t *keyp)
1351{
1352	uint_t key;
1353	struct tsd_thread *tsd;
1354
1355	/*
1356	 * protect the key namespace and our destructor lists
1357	 */
1358	mutex_enter(&tsd_mutex);
1359	key = *keyp;
1360	*keyp = 0;
1361
1362	ASSERT(key <= tsd_nkeys);
1363
1364	/*
1365	 * if the key is valid
1366	 */
1367	if (key != 0) {
1368		uint_t k = key - 1;
1369		/*
1370		 * for every thread with TSD, call key's destructor
1371		 */
1372		for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1373			/*
1374			 * no TSD for key in this thread
1375			 */
1376			if (key > tsd->ts_nkeys)
1377				continue;
1378			/*
1379			 * call destructor for key
1380			 */
1381			if (tsd->ts_value[k] && tsd_destructor[k])
1382				(*tsd_destructor[k])(tsd->ts_value[k]);
1383			/*
1384			 * reset value for key
1385			 */
1386			tsd->ts_value[k] = NULL;
1387		}
1388		/*
1389		 * actually free the key (NULL destructor == unused)
1390		 */
1391		tsd_destructor[k] = NULL;
1392	}
1393
1394	mutex_exit(&tsd_mutex);
1395}
1396
1397/*
1398 * Quickly return the per thread value that was stored with the specified key
1399 * Assumes the caller is protecting key from tsd_create and tsd_destroy
1400 */
1401void *
1402tsd_get(uint_t key)
1403{
1404	return (tsd_agent_get(curthread, key));
1405}
1406
1407/*
1408 * Set a per thread value indexed with the specified key
1409 */
1410int
1411tsd_set(uint_t key, void *value)
1412{
1413	return (tsd_agent_set(curthread, key, value));
1414}
1415
1416/*
1417 * Like tsd_get(), except that the agent lwp can get the tsd of
1418 * another thread in the same process (the agent thread only runs when the
1419 * process is completely stopped by /proc), or syslwp is creating a new lwp.
1420 */
1421void *
1422tsd_agent_get(kthread_t *t, uint_t key)
1423{
1424	struct tsd_thread *tsd = t->t_tsd;
1425
1426	ASSERT(t == curthread ||
1427	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1428
1429	if (key && tsd != NULL && key <= tsd->ts_nkeys)
1430		return (tsd->ts_value[key - 1]);
1431	return (NULL);
1432}
1433
1434/*
1435 * Like tsd_set(), except that the agent lwp can set the tsd of
1436 * another thread in the same process, or syslwp can set the tsd
1437 * of a thread it's in the middle of creating.
1438 *
1439 * Assumes the caller is protecting key from tsd_create and tsd_destroy
1440 * May lock out tsd_destroy (and tsd_create), may allocate memory with
1441 * lock held
1442 */
1443int
1444tsd_agent_set(kthread_t *t, uint_t key, void *value)
1445{
1446	struct tsd_thread *tsd = t->t_tsd;
1447
1448	ASSERT(t == curthread ||
1449	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1450
1451	if (key == 0)
1452		return (EINVAL);
1453	if (tsd == NULL)
1454		tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1455	if (key <= tsd->ts_nkeys) {
1456		tsd->ts_value[key - 1] = value;
1457		return (0);
1458	}
1459
1460	ASSERT(key <= tsd_nkeys);
1461
1462	/*
1463	 * lock out tsd_destroy()
1464	 */
1465	mutex_enter(&tsd_mutex);
1466	if (tsd->ts_nkeys == 0) {
1467		/*
1468		 * Link onto list of threads with TSD
1469		 */
1470		if ((tsd->ts_next = tsd_list) != NULL)
1471			tsd_list->ts_prev = tsd;
1472		tsd_list = tsd;
1473	}
1474
1475	/*
1476	 * Allocate thread local storage and set the value for key
1477	 */
1478	tsd->ts_value = tsd_realloc(tsd->ts_value,
1479	    tsd->ts_nkeys * sizeof (void *),
1480	    key * sizeof (void *));
1481	tsd->ts_nkeys = key;
1482	tsd->ts_value[key - 1] = value;
1483	mutex_exit(&tsd_mutex);
1484
1485	return (0);
1486}
1487
1488
1489/*
1490 * Return the per thread value that was stored with the specified key
1491 *	If necessary, create the key and the value
1492 *	Assumes the caller is protecting *keyp from tsd_destroy
1493 */
1494void *
1495tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1496{
1497	void *value;
1498	uint_t key = *keyp;
1499	struct tsd_thread *tsd = curthread->t_tsd;
1500
1501	if (tsd == NULL)
1502		tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1503	if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1504		return (value);
1505	if (key == 0)
1506		tsd_create(keyp, destroy);
1507	(void) tsd_set(*keyp, value = (*allocate)());
1508
1509	return (value);
1510}
1511
1512/*
1513 * Called from thread_exit() to run the destructor function for each tsd
1514 *	Locks out tsd_create and tsd_destroy
1515 *	Assumes that the destructor *DOES NOT* use tsd
1516 */
1517void
1518tsd_exit(void)
1519{
1520	int i;
1521	struct tsd_thread *tsd = curthread->t_tsd;
1522
1523	if (tsd == NULL)
1524		return;
1525
1526	if (tsd->ts_nkeys == 0) {
1527		kmem_free(tsd, sizeof (*tsd));
1528		curthread->t_tsd = NULL;
1529		return;
1530	}
1531
1532	/*
1533	 * lock out tsd_create and tsd_destroy, call
1534	 * the destructor, and mark the value as destroyed.
1535	 */
1536	mutex_enter(&tsd_mutex);
1537
1538	for (i = 0; i < tsd->ts_nkeys; i++) {
1539		if (tsd->ts_value[i] && tsd_destructor[i])
1540			(*tsd_destructor[i])(tsd->ts_value[i]);
1541		tsd->ts_value[i] = NULL;
1542	}
1543
1544	/*
1545	 * remove from linked list of threads with TSD
1546	 */
1547	if (tsd->ts_next)
1548		tsd->ts_next->ts_prev = tsd->ts_prev;
1549	if (tsd->ts_prev)
1550		tsd->ts_prev->ts_next = tsd->ts_next;
1551	if (tsd_list == tsd)
1552		tsd_list = tsd->ts_next;
1553
1554	mutex_exit(&tsd_mutex);
1555
1556	/*
1557	 * free up the TSD
1558	 */
1559	kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1560	kmem_free(tsd, sizeof (struct tsd_thread));
1561	curthread->t_tsd = NULL;
1562}
1563
1564/*
1565 * realloc
1566 */
1567static void *
1568tsd_realloc(void *old, size_t osize, size_t nsize)
1569{
1570	void *new;
1571
1572	new = kmem_zalloc(nsize, KM_SLEEP);
1573	if (old) {
1574		bcopy(old, new, osize);
1575		kmem_free(old, osize);
1576	}
1577	return (new);
1578}
1579
1580/*
1581 * Check to see if an interrupt thread might be active at a given ipl.
1582 * If so return true.
1583 * We must be conservative--it is ok to give a false yes, but a false no
1584 * will cause disaster.  (But if the situation changes after we check it is
1585 * ok--the caller is trying to ensure that an interrupt routine has been
1586 * exited).
1587 * This is used when trying to remove an interrupt handler from an autovector
1588 * list in avintr.c.
1589 */
1590int
1591intr_active(struct cpu *cp, int level)
1592{
1593	if (level <= LOCK_LEVEL)
1594		return (cp->cpu_thread != cp->cpu_dispthread);
1595	else
1596		return (CPU_ON_INTR(cp));
1597}
1598
1599/*
1600 * Return non-zero if an interrupt is being serviced.
1601 */
1602int
1603servicing_interrupt()
1604{
1605	int onintr = 0;
1606
1607	/* Are we an interrupt thread */
1608	if (curthread->t_flag & T_INTR_THREAD)
1609		return (1);
1610	/* Are we servicing a high level interrupt? */
1611	if (CPU_ON_INTR(CPU)) {
1612		kpreempt_disable();
1613		onintr = CPU_ON_INTR(CPU);
1614		kpreempt_enable();
1615	}
1616	return (onintr);
1617}
1618
1619
1620/*
1621 * Change the dispatch priority of a thread in the system.
1622 * Used when raising or lowering a thread's priority.
1623 * (E.g., priority inheritance)
1624 *
1625 * Since threads are queued according to their priority, we
1626 * we must check the thread's state to determine whether it
1627 * is on a queue somewhere. If it is, we've got to:
1628 *
1629 *	o Dequeue the thread.
1630 *	o Change its effective priority.
1631 *	o Enqueue the thread.
1632 *
1633 * Assumptions: The thread whose priority we wish to change
1634 * must be locked before we call thread_change_(e)pri().
1635 * The thread_change(e)pri() function doesn't drop the thread
1636 * lock--that must be done by its caller.
1637 */
1638void
1639thread_change_epri(kthread_t *t, pri_t disp_pri)
1640{
1641	uint_t	state;
1642
1643	ASSERT(THREAD_LOCK_HELD(t));
1644
1645	/*
1646	 * If the inherited priority hasn't actually changed,
1647	 * just return.
1648	 */
1649	if (t->t_epri == disp_pri)
1650		return;
1651
1652	state = t->t_state;
1653
1654	/*
1655	 * If it's not on a queue, change the priority with
1656	 * impunity.
1657	 */
1658	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1659		t->t_epri = disp_pri;
1660
1661		if (state == TS_ONPROC) {
1662			cpu_t *cp = t->t_disp_queue->disp_cpu;
1663
1664			if (t == cp->cpu_dispthread)
1665				cp->cpu_dispatch_pri = DISP_PRIO(t);
1666		}
1667		return;
1668	}
1669
1670	/*
1671	 * It's either on a sleep queue or a run queue.
1672	 */
1673	if (state == TS_SLEEP) {
1674		/*
1675		 * Take the thread out of its sleep queue.
1676		 * Change the inherited priority.
1677		 * Re-enqueue the thread.
1678		 * Each synchronization object exports a function
1679		 * to do this in an appropriate manner.
1680		 */
1681		SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1682	} else if (state == TS_WAIT) {
1683		/*
1684		 * Re-enqueue a thread on the wait queue if its
1685		 * effective priority needs to change.
1686		 */
1687		if (disp_pri != t->t_epri)
1688			waitq_change_pri(t, disp_pri);
1689	} else {
1690		/*
1691		 * The thread is on a run queue.
1692		 * Note: setbackdq() may not put the thread
1693		 * back on the same run queue where it originally
1694		 * resided.
1695		 */
1696		(void) dispdeq(t);
1697		t->t_epri = disp_pri;
1698		setbackdq(t);
1699	}
1700}	/* end of thread_change_epri */
1701
1702/*
1703 * Function: Change the t_pri field of a thread.
1704 * Side Effects: Adjust the thread ordering on a run queue
1705 *		 or sleep queue, if necessary.
1706 * Returns: 1 if the thread was on a run queue, else 0.
1707 */
1708int
1709thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1710{
1711	uint_t	state;
1712	int	on_rq = 0;
1713
1714	ASSERT(THREAD_LOCK_HELD(t));
1715
1716	state = t->t_state;
1717	THREAD_WILLCHANGE_PRI(t, disp_pri);
1718
1719	/*
1720	 * If it's not on a queue, change the priority with
1721	 * impunity.
1722	 */
1723	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1724		t->t_pri = disp_pri;
1725
1726		if (state == TS_ONPROC) {
1727			cpu_t *cp = t->t_disp_queue->disp_cpu;
1728
1729			if (t == cp->cpu_dispthread)
1730				cp->cpu_dispatch_pri = DISP_PRIO(t);
1731		}
1732		return (0);
1733	}
1734
1735	/*
1736	 * It's either on a sleep queue or a run queue.
1737	 */
1738	if (state == TS_SLEEP) {
1739		/*
1740		 * If the priority has changed, take the thread out of
1741		 * its sleep queue and change the priority.
1742		 * Re-enqueue the thread.
1743		 * Each synchronization object exports a function
1744		 * to do this in an appropriate manner.
1745		 */
1746		if (disp_pri != t->t_pri)
1747			SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1748	} else if (state == TS_WAIT) {
1749		/*
1750		 * Re-enqueue a thread on the wait queue if its
1751		 * priority needs to change.
1752		 */
1753		if (disp_pri != t->t_pri)
1754			waitq_change_pri(t, disp_pri);
1755	} else {
1756		/*
1757		 * The thread is on a run queue.
1758		 * Note: setbackdq() may not put the thread
1759		 * back on the same run queue where it originally
1760		 * resided.
1761		 *
1762		 * We still requeue the thread even if the priority
1763		 * is unchanged to preserve round-robin (and other)
1764		 * effects between threads of the same priority.
1765		 */
1766		on_rq = dispdeq(t);
1767		ASSERT(on_rq);
1768		t->t_pri = disp_pri;
1769		if (front) {
1770			setfrontdq(t);
1771		} else {
1772			setbackdq(t);
1773		}
1774	}
1775	return (on_rq);
1776}
1777