rt.c revision 6247:ad4c702ff226
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28/*	  All Rights Reserved  	*/
29
30#pragma ident	"%Z%%M%	%I%	%E% SMI"
31
32#include <sys/types.h>
33#include <sys/param.h>
34#include <sys/sysmacros.h>
35#include <sys/cred.h>
36#include <sys/proc.h>
37#include <sys/pcb.h>
38#include <sys/signal.h>
39#include <sys/user.h>
40#include <sys/priocntl.h>
41#include <sys/class.h>
42#include <sys/disp.h>
43#include <sys/procset.h>
44#include <sys/cmn_err.h>
45#include <sys/debug.h>
46#include <sys/rt.h>
47#include <sys/rtpriocntl.h>
48#include <sys/kmem.h>
49#include <sys/systm.h>
50#include <sys/schedctl.h>
51#include <sys/errno.h>
52#include <sys/cpuvar.h>
53#include <sys/vmsystm.h>
54#include <sys/time.h>
55#include <sys/policy.h>
56#include <sys/sdt.h>
57#include <sys/cpupart.h>
58#include <sys/modctl.h>
59
60static pri_t	rt_init(id_t, int, classfuncs_t **);
61
62static struct sclass csw = {
63	"RT",
64	rt_init,
65	0
66};
67
68static struct modlsched modlsched = {
69	&mod_schedops, "realtime scheduling class", &csw
70};
71
72static struct modlinkage modlinkage = {
73	MODREV_1, (void *)&modlsched, NULL
74};
75
76int
77_init()
78{
79	return (mod_install(&modlinkage));
80}
81
82int
83_fini()
84{
85	return (EBUSY);		/* don't remove RT for now */
86}
87
88int
89_info(struct modinfo *modinfop)
90{
91	return (mod_info(&modlinkage, modinfop));
92}
93
94
95/*
96 * Class specific code for the real-time class
97 */
98
99/*
100 * Extern declarations for variables defined in the rt master file
101 */
102#define	RTMAXPRI 59
103
104pri_t rt_maxpri = RTMAXPRI;	/* maximum real-time priority */
105rtdpent_t *rt_dptbl;	  /* real-time dispatcher parameter table */
106
107/*
108 * control flags (kparms->rt_cflags).
109 */
110#define	RT_DOPRI	0x01	/* change priority */
111#define	RT_DOTQ		0x02	/* change RT time quantum */
112#define	RT_DOSIG	0x04	/* change RT time quantum signal */
113
114static int	rt_admin(caddr_t, cred_t *);
115static int	rt_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
116static int	rt_fork(kthread_t *, kthread_t *, void *);
117static int	rt_getclinfo(void *);
118static int	rt_getclpri(pcpri_t *);
119static int	rt_parmsin(void *);
120static int	rt_parmsout(void *, pc_vaparms_t *);
121static int	rt_vaparmsin(void *, pc_vaparms_t *);
122static int	rt_vaparmsout(void *, pc_vaparms_t *);
123static int	rt_parmsset(kthread_t *, void *, id_t, cred_t *);
124static int	rt_donice(kthread_t *, cred_t *, int, int *);
125static int	rt_doprio(kthread_t *, cred_t *, int, int *);
126static void	rt_exitclass(void *);
127static int	rt_canexit(kthread_t *, cred_t *);
128static void	rt_forkret(kthread_t *, kthread_t *);
129static void	rt_nullsys();
130static void	rt_parmsget(kthread_t *, void *);
131static void	rt_preempt(kthread_t *);
132static void	rt_setrun(kthread_t *);
133static void	rt_tick(kthread_t *);
134static void	rt_wakeup(kthread_t *);
135static pri_t	rt_swapin(kthread_t *, int);
136static pri_t	rt_swapout(kthread_t *, int);
137static pri_t	rt_globpri(kthread_t *);
138static void	rt_yield(kthread_t *);
139static int	rt_alloc(void **, int);
140static void	rt_free(void *);
141
142static void	rt_change_priority(kthread_t *, rtproc_t *);
143
144static id_t	rt_cid;		/* real-time class ID */
145static rtproc_t	rt_plisthead;	/* dummy rtproc at head of rtproc list */
146static kmutex_t	rt_dptblock;	/* protects realtime dispatch table */
147static kmutex_t	rt_list_lock;	/* protects RT thread list */
148
149extern rtdpent_t *rt_getdptbl(void);
150
151static struct classfuncs rt_classfuncs = {
152	/* class ops */
153	rt_admin,
154	rt_getclinfo,
155	rt_parmsin,
156	rt_parmsout,
157	rt_vaparmsin,
158	rt_vaparmsout,
159	rt_getclpri,
160	rt_alloc,
161	rt_free,
162	/* thread ops */
163	rt_enterclass,
164	rt_exitclass,
165	rt_canexit,
166	rt_fork,
167	rt_forkret,
168	rt_parmsget,
169	rt_parmsset,
170	rt_nullsys,	/* stop */
171	rt_nullsys,	/* exit */
172	rt_nullsys,	/* active */
173	rt_nullsys,	/* inactive */
174	rt_swapin,
175	rt_swapout,
176	rt_nullsys,	/* trapret */
177	rt_preempt,
178	rt_setrun,
179	rt_nullsys,	/* sleep */
180	rt_tick,
181	rt_wakeup,
182	rt_donice,
183	rt_globpri,
184	rt_nullsys,	/* set_process_group */
185	rt_yield,
186	rt_doprio,
187};
188
189/*
190 * Real-time class initialization. Called by dispinit() at boot time.
191 * We can ignore the clparmsz argument since we know that the smallest
192 * possible parameter buffer is big enough for us.
193 */
194/* ARGSUSED */
195pri_t
196rt_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
197{
198	rt_dptbl = rt_getdptbl();
199	rt_cid = cid;	/* Record our class ID */
200
201	/*
202	 * Initialize the rtproc list.
203	 */
204	rt_plisthead.rt_next = rt_plisthead.rt_prev = &rt_plisthead;
205
206	/*
207	 * We're required to return a pointer to our classfuncs
208	 * structure and the highest global priority value we use.
209	 */
210	*clfuncspp = &rt_classfuncs;
211	mutex_init(&rt_dptblock, NULL, MUTEX_DEFAULT, NULL);
212	mutex_init(&rt_list_lock, NULL, MUTEX_DEFAULT, NULL);
213	return (rt_dptbl[rt_maxpri].rt_globpri);
214}
215
216/*
217 * Get or reset the rt_dptbl values per the user's request.
218 */
219/* ARGSUSED */
220static int
221rt_admin(caddr_t uaddr, cred_t *reqpcredp)
222{
223	rtadmin_t	rtadmin;
224	rtdpent_t	*tmpdpp;
225	size_t		userdpsz;
226	size_t		rtdpsz;
227	int		i;
228
229	if (get_udatamodel() == DATAMODEL_NATIVE) {
230		if (copyin(uaddr, &rtadmin, sizeof (rtadmin_t)))
231			return (EFAULT);
232	}
233#ifdef _SYSCALL32_IMPL
234	else {
235		/* rtadmin struct from ILP32 callers */
236		rtadmin32_t rtadmin32;
237		if (copyin(uaddr, &rtadmin32, sizeof (rtadmin32_t)))
238			return (EFAULT);
239		rtadmin.rt_dpents =
240		    (struct rtdpent *)(uintptr_t)rtadmin32.rt_dpents;
241		rtadmin.rt_ndpents = rtadmin32.rt_ndpents;
242		rtadmin.rt_cmd = rtadmin32.rt_cmd;
243	}
244#endif /* _SYSCALL32_IMPL */
245
246	rtdpsz = (rt_maxpri + 1) * sizeof (rtdpent_t);
247
248	switch (rtadmin.rt_cmd) {
249
250	case RT_GETDPSIZE:
251		rtadmin.rt_ndpents = rt_maxpri + 1;
252
253		if (get_udatamodel() == DATAMODEL_NATIVE) {
254			if (copyout(&rtadmin, uaddr, sizeof (rtadmin_t)))
255				return (EFAULT);
256		}
257#ifdef _SYSCALL32_IMPL
258		else {
259			/* return rtadmin struct to ILP32 callers */
260			rtadmin32_t rtadmin32;
261			rtadmin32.rt_dpents =
262			    (caddr32_t)(uintptr_t)rtadmin.rt_dpents;
263			rtadmin32.rt_ndpents = rtadmin.rt_ndpents;
264			rtadmin32.rt_cmd = rtadmin.rt_cmd;
265			if (copyout(&rtadmin32, uaddr, sizeof (rtadmin32_t)))
266				return (EFAULT);
267		}
268#endif /* _SYSCALL32_IMPL */
269
270		break;
271
272	case RT_GETDPTBL:
273		userdpsz = MIN(rtadmin.rt_ndpents * sizeof (rtdpent_t),
274		    rtdpsz);
275		if (copyout(rt_dptbl, rtadmin.rt_dpents, userdpsz))
276			return (EFAULT);
277		rtadmin.rt_ndpents = userdpsz / sizeof (rtdpent_t);
278
279		if (get_udatamodel() == DATAMODEL_NATIVE) {
280			if (copyout(&rtadmin, uaddr, sizeof (rtadmin_t)))
281				return (EFAULT);
282		}
283#ifdef _SYSCALL32_IMPL
284		else {
285			/* return rtadmin struct to ILP32 callers */
286			rtadmin32_t rtadmin32;
287			rtadmin32.rt_dpents =
288			    (caddr32_t)(uintptr_t)rtadmin.rt_dpents;
289			rtadmin32.rt_ndpents = rtadmin.rt_ndpents;
290			rtadmin32.rt_cmd = rtadmin.rt_cmd;
291			if (copyout(&rtadmin32, uaddr, sizeof (rtadmin32_t)))
292				return (EFAULT);
293		}
294#endif /* _SYSCALL32_IMPL */
295		break;
296
297	case RT_SETDPTBL:
298		/*
299		 * We require that the requesting process has sufficient
300		 * priveleges.  We also require that the table supplied by
301		 * the user exactly match the current rt_dptbl in size.
302		 */
303		if (secpolicy_dispadm(reqpcredp) != 0)
304			return (EPERM);
305		if (rtadmin.rt_ndpents * sizeof (rtdpent_t) != rtdpsz)
306			return (EINVAL);
307
308		/*
309		 * We read the user supplied table into a temporary buffer
310		 * where the time quantum values are validated before
311		 * being copied to the rt_dptbl.
312		 */
313		tmpdpp = kmem_alloc(rtdpsz, KM_SLEEP);
314		if (copyin(rtadmin.rt_dpents, tmpdpp, rtdpsz)) {
315			kmem_free(tmpdpp, rtdpsz);
316			return (EFAULT);
317		}
318		for (i = 0; i < rtadmin.rt_ndpents; i++) {
319
320			/*
321			 * Validate the user supplied time quantum values.
322			 */
323			if (tmpdpp[i].rt_quantum <= 0 &&
324			    tmpdpp[i].rt_quantum != RT_TQINF) {
325				kmem_free(tmpdpp, rtdpsz);
326				return (EINVAL);
327			}
328		}
329
330		/*
331		 * Copy the user supplied values over the current rt_dptbl
332		 * values.  The rt_globpri member is read-only so we don't
333		 * overwrite it.
334		 */
335		mutex_enter(&rt_dptblock);
336		for (i = 0; i < rtadmin.rt_ndpents; i++)
337			rt_dptbl[i].rt_quantum = tmpdpp[i].rt_quantum;
338		mutex_exit(&rt_dptblock);
339		kmem_free(tmpdpp, rtdpsz);
340		break;
341
342	default:
343		return (EINVAL);
344	}
345	return (0);
346}
347
348
349/*
350 * Allocate a real-time class specific proc structure and
351 * initialize it with the parameters supplied. Also move thread
352 * to specified real-time priority.
353 */
354/* ARGSUSED */
355static int
356rt_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
357    void *bufp)
358{
359	rtkparms_t *rtkparmsp = (rtkparms_t *)parmsp;
360	rtproc_t *rtpp;
361
362	/*
363	 * For a thread to enter the real-time class the thread
364	 * which initiates the request must be privileged.
365	 * This may have been checked previously but if our
366	 * caller passed us a credential structure we assume it
367	 * hasn't and we check it here.
368	 */
369	if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0)
370		return (EPERM);
371
372	rtpp = (rtproc_t *)bufp;
373	ASSERT(rtpp != NULL);
374
375	/*
376	 * If this thread's lwp is swapped out, it will be brought in
377	 * when it is put onto the runqueue.
378	 *
379	 * Now, Initialize the rtproc structure.
380	 */
381	if (rtkparmsp == NULL) {
382		/*
383		 * Use default values
384		 */
385		rtpp->rt_pri = 0;
386		rtpp->rt_pquantum = rt_dptbl[0].rt_quantum;
387		rtpp->rt_tqsignal = 0;
388	} else {
389		/*
390		 * Use supplied values
391		 */
392		if ((rtkparmsp->rt_cflags & RT_DOPRI) == 0)
393			rtpp->rt_pri = 0;
394		else
395			rtpp->rt_pri = rtkparmsp->rt_pri;
396
397		if (rtkparmsp->rt_tqntm == RT_TQINF)
398			rtpp->rt_pquantum = RT_TQINF;
399		else if (rtkparmsp->rt_tqntm == RT_TQDEF ||
400		    (rtkparmsp->rt_cflags & RT_DOTQ) == 0)
401			rtpp->rt_pquantum = rt_dptbl[rtpp->rt_pri].rt_quantum;
402		else
403			rtpp->rt_pquantum = rtkparmsp->rt_tqntm;
404
405		if ((rtkparmsp->rt_cflags & RT_DOSIG) == 0)
406			rtpp->rt_tqsignal = 0;
407		else
408			rtpp->rt_tqsignal = rtkparmsp->rt_tqsig;
409	}
410	rtpp->rt_flags = 0;
411	rtpp->rt_tp = t;
412	/*
413	 * Reset thread priority
414	 */
415	thread_lock(t);
416	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
417	t->t_cid = cid;
418	t->t_cldata = (void *)rtpp;
419	t->t_schedflag &= ~TS_RUNQMATCH;
420	rt_change_priority(t, rtpp);
421	thread_unlock(t);
422	/*
423	 * Link new structure into rtproc list
424	 */
425	mutex_enter(&rt_list_lock);
426	rtpp->rt_next = rt_plisthead.rt_next;
427	rtpp->rt_prev = &rt_plisthead;
428	rt_plisthead.rt_next->rt_prev = rtpp;
429	rt_plisthead.rt_next = rtpp;
430	mutex_exit(&rt_list_lock);
431	return (0);
432}
433
434
435/*
436 * Free rtproc structure of thread.
437 */
438static void
439rt_exitclass(void *procp)
440{
441	rtproc_t *rtprocp = (rtproc_t *)procp;
442
443	mutex_enter(&rt_list_lock);
444	rtprocp->rt_prev->rt_next = rtprocp->rt_next;
445	rtprocp->rt_next->rt_prev = rtprocp->rt_prev;
446	mutex_exit(&rt_list_lock);
447	kmem_free(rtprocp, sizeof (rtproc_t));
448}
449
450
451/*
452 * Allocate and initialize real-time class specific
453 * proc structure for child.
454 */
455/* ARGSUSED */
456static int
457rt_fork(kthread_t *t, kthread_t *ct, void *bufp)
458{
459	rtproc_t *prtpp;
460	rtproc_t *crtpp;
461
462	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
463
464	/*
465	 * Initialize child's rtproc structure
466	 */
467	crtpp = (rtproc_t *)bufp;
468	ASSERT(crtpp != NULL);
469	prtpp = (rtproc_t *)t->t_cldata;
470	thread_lock(t);
471	crtpp->rt_timeleft = crtpp->rt_pquantum = prtpp->rt_pquantum;
472	crtpp->rt_pri = prtpp->rt_pri;
473	crtpp->rt_flags = prtpp->rt_flags & ~RTBACKQ;
474	crtpp->rt_tqsignal = prtpp->rt_tqsignal;
475
476	crtpp->rt_tp = ct;
477	thread_unlock(t);
478
479	/*
480	 * Link new structure into rtproc list
481	 */
482	ct->t_cldata = (void *)crtpp;
483	mutex_enter(&rt_list_lock);
484	crtpp->rt_next = rt_plisthead.rt_next;
485	crtpp->rt_prev = &rt_plisthead;
486	rt_plisthead.rt_next->rt_prev = crtpp;
487	rt_plisthead.rt_next = crtpp;
488	mutex_exit(&rt_list_lock);
489	return (0);
490}
491
492
493/*
494 * The child goes to the back of its dispatcher queue while the
495 * parent continues to run after a real time thread forks.
496 */
497/* ARGSUSED */
498static void
499rt_forkret(kthread_t *t, kthread_t *ct)
500{
501	proc_t *pp = ttoproc(t);
502	proc_t *cp = ttoproc(ct);
503
504	ASSERT(t == curthread);
505	ASSERT(MUTEX_HELD(&pidlock));
506
507	/*
508	 * Grab the child's p_lock before dropping pidlock to ensure
509	 * the process does not disappear before we set it running.
510	 */
511	mutex_enter(&cp->p_lock);
512	mutex_exit(&pidlock);
513	continuelwps(cp);
514	mutex_exit(&cp->p_lock);
515
516	mutex_enter(&pp->p_lock);
517	continuelwps(pp);
518	mutex_exit(&pp->p_lock);
519}
520
521
522/*
523 * Get information about the real-time class into the buffer
524 * pointed to by rtinfop.  The maximum configured real-time
525 * priority is the only information we supply.  We ignore the
526 * class and credential arguments because anyone can have this
527 * information.
528 */
529/* ARGSUSED */
530static int
531rt_getclinfo(void *infop)
532{
533	rtinfo_t *rtinfop = (rtinfo_t *)infop;
534	rtinfop->rt_maxpri = rt_maxpri;
535	return (0);
536}
537
538/*
539 * Return the user mode scheduling priority range.
540 */
541static int
542rt_getclpri(pcpri_t *pcprip)
543{
544	pcprip->pc_clpmax = rt_maxpri;
545	pcprip->pc_clpmin = 0;
546	return (0);
547}
548
549static void
550rt_nullsys()
551{
552}
553
554/* ARGSUSED */
555static int
556rt_canexit(kthread_t *t, cred_t *cred)
557{
558	/*
559	 * Thread can always leave RT class
560	 */
561	return (0);
562}
563
564/*
565 * Get the real-time scheduling parameters of the thread pointed to by
566 * rtprocp into the buffer pointed to by rtkparmsp.
567 */
568static void
569rt_parmsget(kthread_t *t, void *parmsp)
570{
571	rtproc_t	*rtprocp = (rtproc_t *)t->t_cldata;
572	rtkparms_t	*rtkparmsp = (rtkparms_t *)parmsp;
573
574	rtkparmsp->rt_pri = rtprocp->rt_pri;
575	rtkparmsp->rt_tqntm = rtprocp->rt_pquantum;
576	rtkparmsp->rt_tqsig = rtprocp->rt_tqsignal;
577}
578
579
580
581/*
582 * Check the validity of the real-time parameters in the buffer
583 * pointed to by rtprmsp.
584 * We convert the rtparms buffer from the user supplied format to
585 * our internal format (i.e. time quantum expressed in ticks).
586 */
587static int
588rt_parmsin(void *prmsp)
589{
590	rtparms_t *rtprmsp = (rtparms_t *)prmsp;
591	longlong_t	ticks;
592	uint_t		cflags;
593
594	/*
595	 * First check the validity of parameters and convert
596	 * the buffer to kernel format.
597	 */
598	if ((rtprmsp->rt_pri < 0 || rtprmsp->rt_pri > rt_maxpri) &&
599	    rtprmsp->rt_pri != RT_NOCHANGE)
600		return (EINVAL);
601
602	cflags = (rtprmsp->rt_pri != RT_NOCHANGE ? RT_DOPRI : 0);
603
604	if ((rtprmsp->rt_tqsecs == 0 && rtprmsp->rt_tqnsecs == 0) ||
605	    rtprmsp->rt_tqnsecs >= NANOSEC)
606		return (EINVAL);
607
608	if (rtprmsp->rt_tqnsecs != RT_NOCHANGE)
609		cflags |= RT_DOTQ;
610
611	if (rtprmsp->rt_tqnsecs >= 0) {
612		if ((ticks = SEC_TO_TICK((longlong_t)rtprmsp->rt_tqsecs) +
613		    NSEC_TO_TICK_ROUNDUP(rtprmsp->rt_tqnsecs)) > INT_MAX)
614			return (ERANGE);
615
616		((rtkparms_t *)rtprmsp)->rt_tqntm = (int)ticks;
617	} else {
618		if (rtprmsp->rt_tqnsecs != RT_NOCHANGE &&
619		    rtprmsp->rt_tqnsecs != RT_TQINF &&
620		    rtprmsp->rt_tqnsecs != RT_TQDEF)
621			return (EINVAL);
622
623		((rtkparms_t *)rtprmsp)->rt_tqntm = rtprmsp->rt_tqnsecs;
624	}
625	((rtkparms_t *)rtprmsp)->rt_cflags = cflags;
626
627	return (0);
628}
629
630
631/*
632 * Check the validity of the real-time parameters in the pc_vaparms_t
633 * structure vaparmsp and put them in the buffer pointed to by rtprmsp.
634 * pc_vaparms_t contains (key, value) pairs of parameter.
635 * rt_vaparmsin() is the variable parameter version of rt_parmsin().
636 */
637static int
638rt_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp)
639{
640	uint_t		secs = 0;
641	uint_t		cnt;
642	int		nsecs = 0;
643	int		priflag, secflag, nsecflag, sigflag;
644	longlong_t	ticks;
645	rtkparms_t	*rtprmsp = (rtkparms_t *)prmsp;
646	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
647
648
649	/*
650	 * First check the validity of parameters and convert them
651	 * from the user supplied format to the internal format.
652	 */
653	priflag = secflag = nsecflag = sigflag = 0;
654	rtprmsp->rt_cflags = 0;
655
656	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
657		return (EINVAL);
658
659	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
660
661		switch (vpp->pc_key) {
662		case RT_KY_PRI:
663			if (priflag++)
664				return (EINVAL);
665			rtprmsp->rt_cflags |= RT_DOPRI;
666			rtprmsp->rt_pri = (pri_t)vpp->pc_parm;
667			if (rtprmsp->rt_pri < 0 || rtprmsp->rt_pri > rt_maxpri)
668				return (EINVAL);
669			break;
670
671		case RT_KY_TQSECS:
672			if (secflag++)
673				return (EINVAL);
674			rtprmsp->rt_cflags |= RT_DOTQ;
675			secs = (uint_t)vpp->pc_parm;
676			break;
677
678		case RT_KY_TQNSECS:
679			if (nsecflag++)
680				return (EINVAL);
681			rtprmsp->rt_cflags |= RT_DOTQ;
682			nsecs = (int)vpp->pc_parm;
683			break;
684
685		case RT_KY_TQSIG:
686			if (sigflag++)
687				return (EINVAL);
688			rtprmsp->rt_cflags |= RT_DOSIG;
689			rtprmsp->rt_tqsig = (int)vpp->pc_parm;
690			if (rtprmsp->rt_tqsig < 0 || rtprmsp->rt_tqsig >= NSIG)
691				return (EINVAL);
692			break;
693
694		default:
695			return (EINVAL);
696		}
697	}
698
699	if (vaparmsp->pc_vaparmscnt == 0) {
700		/*
701		 * Use default parameters.
702		 */
703		rtprmsp->rt_pri = 0;
704		rtprmsp->rt_tqntm = RT_TQDEF;
705		rtprmsp->rt_tqsig = 0;
706		rtprmsp->rt_cflags = RT_DOPRI | RT_DOTQ | RT_DOSIG;
707	} else if ((rtprmsp->rt_cflags & RT_DOTQ) != 0) {
708		if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC)
709			return (EINVAL);
710
711		if (nsecs >= 0) {
712			if ((ticks = SEC_TO_TICK((longlong_t)secs) +
713			    NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX)
714				return (ERANGE);
715
716			rtprmsp->rt_tqntm = (int)ticks;
717		} else {
718			if (nsecs != RT_TQINF && nsecs != RT_TQDEF)
719				return (EINVAL);
720			rtprmsp->rt_tqntm = nsecs;
721		}
722	}
723
724	return (0);
725}
726
727/*
728 * Do required processing on the real-time parameter buffer
729 * before it is copied out to the user.
730 * All we have to do is convert the buffer from kernel to user format
731 * (i.e. convert time quantum from ticks to seconds-nanoseconds).
732 */
733/* ARGSUSED */
734static int
735rt_parmsout(void *prmsp, pc_vaparms_t *vaparmsp)
736{
737	rtkparms_t	*rtkprmsp = (rtkparms_t *)prmsp;
738
739	if (vaparmsp != NULL)
740		return (0);
741
742	if (rtkprmsp->rt_tqntm < 0) {
743		/*
744		 * Quantum field set to special value (e.g. RT_TQINF)
745		 */
746		((rtparms_t *)rtkprmsp)->rt_tqnsecs = rtkprmsp->rt_tqntm;
747		((rtparms_t *)rtkprmsp)->rt_tqsecs = 0;
748	} else {
749		/* Convert quantum from ticks to seconds-nanoseconds */
750
751		timestruc_t ts;
752		TICK_TO_TIMESTRUC(rtkprmsp->rt_tqntm, &ts);
753		((rtparms_t *)rtkprmsp)->rt_tqsecs = ts.tv_sec;
754		((rtparms_t *)rtkprmsp)->rt_tqnsecs = ts.tv_nsec;
755	}
756
757	return (0);
758}
759
760
761/*
762 * Copy all selected real-time class parameters to the user.
763 * The parameters are specified by a key.
764 */
765static int
766rt_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
767{
768	rtkparms_t	*rtkprmsp = (rtkparms_t *)prmsp;
769	timestruc_t	ts;
770	uint_t		cnt;
771	uint_t		secs;
772	int		nsecs;
773	int		priflag, secflag, nsecflag, sigflag;
774	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
775
776	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
777
778	priflag = secflag = nsecflag = sigflag = 0;
779
780	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
781		return (EINVAL);
782
783	if (rtkprmsp->rt_tqntm < 0) {
784		/*
785		 * Quantum field set to special value (e.g. RT_TQINF).
786		 */
787		secs = 0;
788		nsecs = rtkprmsp->rt_tqntm;
789	} else {
790		/*
791		 * Convert quantum from ticks to seconds-nanoseconds.
792		 */
793		TICK_TO_TIMESTRUC(rtkprmsp->rt_tqntm, &ts);
794		secs = ts.tv_sec;
795		nsecs = ts.tv_nsec;
796	}
797
798
799	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
800
801		switch (vpp->pc_key) {
802		case RT_KY_PRI:
803			if (priflag++)
804				return (EINVAL);
805			if (copyout(&rtkprmsp->rt_pri,
806			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
807				return (EFAULT);
808			break;
809
810		case RT_KY_TQSECS:
811			if (secflag++)
812				return (EINVAL);
813			if (copyout(&secs, (caddr_t)(uintptr_t)vpp->pc_parm,
814			    sizeof (uint_t)))
815				return (EFAULT);
816			break;
817
818		case RT_KY_TQNSECS:
819			if (nsecflag++)
820				return (EINVAL);
821			if (copyout(&nsecs, (caddr_t)(uintptr_t)vpp->pc_parm,
822			    sizeof (int)))
823				return (EFAULT);
824			break;
825
826		case RT_KY_TQSIG:
827			if (sigflag++)
828				return (EINVAL);
829			if (copyout(&rtkprmsp->rt_tqsig,
830			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int)))
831				return (EFAULT);
832			break;
833
834		default:
835			return (EINVAL);
836		}
837	}
838
839	return (0);
840}
841
842
843/*
844 * Set the scheduling parameters of the thread pointed to by rtprocp
845 * to those specified in the buffer pointed to by rtkprmsp.
846 * Note that the parameters are expected to be in kernel format
847 * (i.e. time quantm expressed in ticks).  Real time parameters copied
848 * in from the user should be processed by rt_parmsin() before they are
849 * passed to this function.
850 */
851static int
852rt_parmsset(kthread_t *tx, void *prmsp, id_t reqpcid, cred_t *reqpcredp)
853{
854	rtkparms_t *rtkprmsp = (rtkparms_t *)prmsp;
855	rtproc_t *rtpp = (rtproc_t *)tx->t_cldata;
856
857	ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
858
859	/*
860	 * Basic permissions enforced by generic kernel code
861	 * for all classes require that a thread attempting
862	 * to change the scheduling parameters of a target thread
863	 * be privileged or have a real or effective UID
864	 * matching that of the target thread. We are not
865	 * called unless these basic permission checks have
866	 * already passed. The real-time class requires in addition
867	 * that the requesting thread be real-time unless it is privileged.
868	 * This may also have been checked previously but if our caller
869	 * passes us a credential structure we assume it hasn't and
870	 * we check it here.
871	 */
872	if (reqpcredp != NULL && reqpcid != rt_cid &&
873	    secpolicy_setpriority(reqpcredp) != 0)
874		return (EPERM);
875
876	thread_lock(tx);
877	if ((rtkprmsp->rt_cflags & RT_DOPRI) != 0) {
878		rtpp->rt_pri = rtkprmsp->rt_pri;
879		rt_change_priority(tx, rtpp);
880	}
881	if (rtkprmsp->rt_tqntm == RT_TQINF)
882		rtpp->rt_pquantum = RT_TQINF;
883	else if (rtkprmsp->rt_tqntm == RT_TQDEF)
884		rtpp->rt_timeleft = rtpp->rt_pquantum =
885		    rt_dptbl[rtpp->rt_pri].rt_quantum;
886	else if ((rtkprmsp->rt_cflags & RT_DOTQ) != 0)
887		rtpp->rt_timeleft = rtpp->rt_pquantum = rtkprmsp->rt_tqntm;
888
889	if ((rtkprmsp->rt_cflags & RT_DOSIG) != 0)
890		rtpp->rt_tqsignal = rtkprmsp->rt_tqsig;
891
892	thread_unlock(tx);
893	return (0);
894}
895
896
897/*
898 * Arrange for thread to be placed in appropriate location
899 * on dispatcher queue.  Runs at splhi() since the clock
900 * interrupt can cause RTBACKQ to be set.
901 */
902static void
903rt_preempt(kthread_t *t)
904{
905	rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
906	klwp_t *lwp;
907
908	ASSERT(THREAD_LOCK_HELD(t));
909
910	/*
911	 * If the state is user I allow swapping because I know I won't
912	 * be holding any locks.
913	 */
914	if ((lwp = curthread->t_lwp) != NULL && lwp->lwp_state == LWP_USER)
915		t->t_schedflag &= ~TS_DONT_SWAP;
916	if ((rtpp->rt_flags & RTBACKQ) != 0) {
917		rtpp->rt_timeleft = rtpp->rt_pquantum;
918		rtpp->rt_flags &= ~RTBACKQ;
919		setbackdq(t);
920	} else
921		setfrontdq(t);
922
923}
924
925/*
926 * Return the global priority associated with this rt_pri.
927 */
928static pri_t
929rt_globpri(kthread_t *t)
930{
931	rtproc_t *rtprocp = (rtproc_t *)t->t_cldata;
932	return (rt_dptbl[rtprocp->rt_pri].rt_globpri);
933}
934
935static void
936rt_setrun(kthread_t *t)
937{
938	rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
939
940	ASSERT(THREAD_LOCK_HELD(t));
941
942	rtpp->rt_timeleft = rtpp->rt_pquantum;
943	rtpp->rt_flags &= ~RTBACKQ;
944	setbackdq(t);
945}
946
947/*
948 * Returns the priority of the thread, -1 if the thread is loaded or ineligible
949 * for swapin.
950 *
951 * FX and RT threads are designed so that they don't swapout; however, it
952 * is possible that while the thread is swapped out and in another class, it
953 * can be changed to FX or RT.  Since these threads should be swapped in as
954 * soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin
955 * returns SHRT_MAX - 1, so that it gives deference to any swapped out RT
956 * threads.
957 */
958/* ARGSUSED */
959static pri_t
960rt_swapin(kthread_t *t, int flags)
961{
962	pri_t	tpri = -1;
963
964	ASSERT(THREAD_LOCK_HELD(t));
965
966	if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
967		tpri = (pri_t)SHRT_MAX;
968	}
969
970	return (tpri);
971}
972
973/*
974 * Return an effective priority for swapout.
975 */
976/* ARGSUSED */
977static pri_t
978rt_swapout(kthread_t *t, int flags)
979{
980	ASSERT(THREAD_LOCK_HELD(t));
981
982	return (-1);
983}
984
985/*
986 * Check for time slice expiration (unless thread has infinite time
987 * slice).  If time slice has expired arrange for thread to be preempted
988 * and placed on back of queue.
989 */
990static void
991rt_tick(kthread_t *t)
992{
993	rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
994
995	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
996
997	thread_lock(t);
998	if ((rtpp->rt_pquantum != RT_TQINF && --rtpp->rt_timeleft == 0) ||
999	    (t->t_state == TS_ONPROC && DISP_MUST_SURRENDER(t))) {
1000		if (rtpp->rt_timeleft == 0 && rtpp->rt_tqsignal) {
1001			thread_unlock(t);
1002			sigtoproc(ttoproc(t), t, rtpp->rt_tqsignal);
1003			thread_lock(t);
1004		}
1005		rtpp->rt_flags |= RTBACKQ;
1006		cpu_surrender(t);
1007	}
1008	thread_unlock(t);
1009}
1010
1011
1012/*
1013 * Place the thread waking up on the dispatcher queue.
1014 */
1015static void
1016rt_wakeup(kthread_t *t)
1017{
1018	rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
1019
1020	ASSERT(THREAD_LOCK_HELD(t));
1021
1022	rtpp->rt_timeleft = rtpp->rt_pquantum;
1023	rtpp->rt_flags &= ~RTBACKQ;
1024	setbackdq(t);
1025}
1026
1027static void
1028rt_yield(kthread_t *t)
1029{
1030	rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
1031
1032	ASSERT(t == curthread);
1033	ASSERT(THREAD_LOCK_HELD(t));
1034
1035	rtpp->rt_flags &= ~RTBACKQ;
1036	setbackdq(t);
1037}
1038
1039/* ARGSUSED */
1040static int
1041rt_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1042{
1043	return (EINVAL);
1044}
1045
1046/*
1047 * Increment the priority of the specified thread by incr and
1048 * return the new value in *retvalp.
1049 */
1050static int
1051rt_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1052{
1053	int newpri;
1054	rtproc_t *rtpp = (rtproc_t *)(t->t_cldata);
1055	rtkparms_t rtkparms;
1056
1057	/* If there's no change to the priority, just return current setting */
1058	if (incr == 0) {
1059		*retvalp = rtpp->rt_pri;
1060		return (0);
1061	}
1062
1063	newpri = rtpp->rt_pri + incr;
1064	if (newpri > rt_maxpri || newpri < 0)
1065		return (EINVAL);
1066
1067	*retvalp = newpri;
1068	rtkparms.rt_pri = newpri;
1069	rtkparms.rt_tqntm = RT_NOCHANGE;
1070	rtkparms.rt_tqsig = 0;
1071	rtkparms.rt_cflags = RT_DOPRI;
1072	return (rt_parmsset(t, &rtkparms, rt_cid, cr));
1073}
1074
1075static int
1076rt_alloc(void **p, int flag)
1077{
1078	void *bufp;
1079	bufp = kmem_alloc(sizeof (rtproc_t), flag);
1080	if (bufp == NULL) {
1081		return (ENOMEM);
1082	} else {
1083		*p = bufp;
1084		return (0);
1085	}
1086}
1087
1088static void
1089rt_free(void *bufp)
1090{
1091	if (bufp)
1092		kmem_free(bufp, sizeof (rtproc_t));
1093}
1094
1095static void
1096rt_change_priority(kthread_t *t, rtproc_t *rtpp)
1097{
1098	pri_t new_pri;
1099
1100	ASSERT(THREAD_LOCK_HELD(t));
1101
1102	new_pri = rt_dptbl[rtpp->rt_pri].rt_globpri;
1103
1104	t->t_cpri = rtpp->rt_pri;
1105	if (t == curthread || t->t_state == TS_ONPROC) {
1106		cpu_t	*cp = t->t_disp_queue->disp_cpu;
1107		THREAD_CHANGE_PRI(t, new_pri);
1108		if (t == cp->cpu_dispthread)
1109			cp->cpu_dispatch_pri = DISP_PRIO(t);
1110		if (DISP_MUST_SURRENDER(t)) {
1111			rtpp->rt_flags |= RTBACKQ;
1112			cpu_surrender(t);
1113		} else {
1114			rtpp->rt_timeleft = rtpp->rt_pquantum;
1115		}
1116	} else {
1117		/*
1118		 * When the priority of a thread is changed,
1119		 * it may be necessary to adjust its position
1120		 * on a sleep queue or dispatch queue.  The
1121		 * function thread_change_pri() accomplishes this.
1122		 */
1123		if (thread_change_pri(t, new_pri, 0)) {
1124			/*
1125			 * The thread was on a run queue.
1126			 * Reset its CPU timeleft.
1127			 */
1128			rtpp->rt_timeleft = rtpp->rt_pquantum;
1129		} else {
1130			rtpp->rt_flags |= RTBACKQ;
1131		}
1132	}
1133}
1134