Pcore.c revision 2712:f74a135872bc
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <sys/types.h>
29#include <sys/utsname.h>
30#include <sys/sysmacros.h>
31
32#include <alloca.h>
33#include <rtld_db.h>
34#include <libgen.h>
35#include <limits.h>
36#include <string.h>
37#include <stdlib.h>
38#include <unistd.h>
39#include <errno.h>
40#include <gelf.h>
41#include <stddef.h>
42
43#include "Pcontrol.h"
44#include "P32ton.h"
45#include "Putil.h"
46
47/*
48 * Pcore.c - Code to initialize a ps_prochandle from a core dump.  We
49 * allocate an additional structure to hold information from the core
50 * file, and attach this to the standard ps_prochandle in place of the
51 * ability to examine /proc/<pid>/ files.
52 */
53
54/*
55 * Basic i/o function for reading and writing from the process address space
56 * stored in the core file and associated shared libraries.  We compute the
57 * appropriate fd and offsets, and let the provided prw function do the rest.
58 */
59static ssize_t
60core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
61    ssize_t (*prw)(int, void *, size_t, off64_t))
62{
63	ssize_t resid = n;
64
65	while (resid != 0) {
66		map_info_t *mp = Paddr2mptr(P, addr);
67
68		uintptr_t mapoff;
69		ssize_t len;
70		off64_t off;
71		int fd;
72
73		if (mp == NULL)
74			break;	/* No mapping for this address */
75
76		if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
77			if (mp->map_file == NULL || mp->map_file->file_fd < 0)
78				break;	/* No file or file not open */
79
80			fd = mp->map_file->file_fd;
81		} else
82			fd = P->asfd;
83
84		mapoff = addr - mp->map_pmap.pr_vaddr;
85		len = MIN(resid, mp->map_pmap.pr_size - mapoff);
86		off = mp->map_offset + mapoff;
87
88		if ((len = prw(fd, buf, len, off)) <= 0)
89			break;
90
91		resid -= len;
92		addr += len;
93		buf = (char *)buf + len;
94	}
95
96	/*
97	 * Important: Be consistent with the behavior of i/o on the as file:
98	 * writing to an invalid address yields EIO; reading from an invalid
99	 * address falls through to returning success and zero bytes.
100	 */
101	if (resid == n && n != 0 && prw != pread64) {
102		errno = EIO;
103		return (-1);
104	}
105
106	return (n - resid);
107}
108
109static ssize_t
110Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr)
111{
112	return (core_rw(P, buf, n, addr, pread64));
113}
114
115static ssize_t
116Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr)
117{
118	return (core_rw(P, (void *)buf, n, addr,
119	    (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
120}
121
122static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core };
123
124/*
125 * Return the lwp_info_t for the given lwpid.  If no such lwpid has been
126 * encountered yet, allocate a new structure and return a pointer to it.
127 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
128 */
129static lwp_info_t *
130lwpid2info(struct ps_prochandle *P, lwpid_t id)
131{
132	lwp_info_t *lwp = list_next(&P->core->core_lwp_head);
133	lwp_info_t *next;
134	uint_t i;
135
136	for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) {
137		if (lwp->lwp_id == id) {
138			P->core->core_lwp = lwp;
139			return (lwp);
140		}
141		if (lwp->lwp_id < id) {
142			break;
143		}
144	}
145
146	next = lwp;
147	if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
148		return (NULL);
149
150	list_link(lwp, next);
151	lwp->lwp_id = id;
152
153	P->core->core_lwp = lwp;
154	P->core->core_nlwp++;
155
156	return (lwp);
157}
158
159/*
160 * The core file itself contains a series of NOTE segments containing saved
161 * structures from /proc at the time the process died.  For each note we
162 * comprehend, we define a function to read it in from the core file,
163 * convert it to our native data model if necessary, and store it inside
164 * the ps_prochandle.  Each function is invoked by Pfgrab_core() with the
165 * seek pointer on P->asfd positioned appropriately.  We populate a table
166 * of pointers to these note functions below.
167 */
168
169static int
170note_pstatus(struct ps_prochandle *P, size_t nbytes)
171{
172#ifdef _LP64
173	if (P->core->core_dmodel == PR_MODEL_ILP32) {
174		pstatus32_t ps32;
175
176		if (nbytes < sizeof (pstatus32_t) ||
177		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
178			goto err;
179
180		pstatus_32_to_n(&ps32, &P->status);
181
182	} else
183#endif
184	if (nbytes < sizeof (pstatus_t) ||
185	    read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
186		goto err;
187
188	P->orig_status = P->status;
189	P->pid = P->status.pr_pid;
190
191	return (0);
192
193err:
194	dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
195	return (-1);
196}
197
198static int
199note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
200{
201	lwp_info_t *lwp;
202	lwpstatus_t lps;
203
204#ifdef _LP64
205	if (P->core->core_dmodel == PR_MODEL_ILP32) {
206		lwpstatus32_t l32;
207
208		if (nbytes < sizeof (lwpstatus32_t) ||
209		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
210			goto err;
211
212		lwpstatus_32_to_n(&l32, &lps);
213	} else
214#endif
215	if (nbytes < sizeof (lwpstatus_t) ||
216	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
217		goto err;
218
219	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
220		dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
221		return (-1);
222	}
223
224	/*
225	 * Erase a useless and confusing artifact of the kernel implementation:
226	 * the lwps which did *not* create the core will show SIGKILL.  We can
227	 * be assured this is bogus because SIGKILL can't produce core files.
228	 */
229	if (lps.pr_cursig == SIGKILL)
230		lps.pr_cursig = 0;
231
232	(void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
233	return (0);
234
235err:
236	dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
237	return (-1);
238}
239
240static int
241note_psinfo(struct ps_prochandle *P, size_t nbytes)
242{
243#ifdef _LP64
244	if (P->core->core_dmodel == PR_MODEL_ILP32) {
245		psinfo32_t ps32;
246
247		if (nbytes < sizeof (psinfo32_t) ||
248		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
249			goto err;
250
251		psinfo_32_to_n(&ps32, &P->psinfo);
252	} else
253#endif
254	if (nbytes < sizeof (psinfo_t) ||
255	    read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
256		goto err;
257
258	dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
259	dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
260	dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
261
262	return (0);
263
264err:
265	dprintf("Pgrab_core: failed to read NT_PSINFO\n");
266	return (-1);
267}
268
269static int
270note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
271{
272	lwp_info_t *lwp;
273	lwpsinfo_t lps;
274
275#ifdef _LP64
276	if (P->core->core_dmodel == PR_MODEL_ILP32) {
277		lwpsinfo32_t l32;
278
279		if (nbytes < sizeof (lwpsinfo32_t) ||
280		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
281			goto err;
282
283		lwpsinfo_32_to_n(&l32, &lps);
284	} else
285#endif
286	if (nbytes < sizeof (lwpsinfo_t) ||
287	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
288		goto err;
289
290	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
291		dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
292		return (-1);
293	}
294
295	(void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
296	return (0);
297
298err:
299	dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
300	return (-1);
301}
302
303static int
304note_platform(struct ps_prochandle *P, size_t nbytes)
305{
306	char *plat;
307
308	if (P->core->core_platform != NULL)
309		return (0);	/* Already seen */
310
311	if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
312		if (read(P->asfd, plat, nbytes) != nbytes) {
313			dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
314			free(plat);
315			return (-1);
316		}
317		plat[nbytes - 1] = '\0';
318		P->core->core_platform = plat;
319	}
320
321	return (0);
322}
323
324static int
325note_utsname(struct ps_prochandle *P, size_t nbytes)
326{
327	size_t ubytes = sizeof (struct utsname);
328	struct utsname *utsp;
329
330	if (P->core->core_uts != NULL || nbytes < ubytes)
331		return (0);	/* Already seen or bad size */
332
333	if ((utsp = malloc(ubytes)) == NULL)
334		return (-1);
335
336	if (read(P->asfd, utsp, ubytes) != ubytes) {
337		dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
338		free(utsp);
339		return (-1);
340	}
341
342	if (_libproc_debug) {
343		dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
344		dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
345		dprintf("uts.release = \"%s\"\n", utsp->release);
346		dprintf("uts.version = \"%s\"\n", utsp->version);
347		dprintf("uts.machine = \"%s\"\n", utsp->machine);
348	}
349
350	P->core->core_uts = utsp;
351	return (0);
352}
353
354static int
355note_content(struct ps_prochandle *P, size_t nbytes)
356{
357	core_content_t content;
358
359	if (sizeof (P->core->core_content) != nbytes)
360		return (-1);
361
362	if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
363		return (-1);
364
365	P->core->core_content = content;
366
367	dprintf("core content = %llx\n", content);
368
369	return (0);
370}
371
372static int
373note_cred(struct ps_prochandle *P, size_t nbytes)
374{
375	prcred_t *pcrp;
376	int ngroups;
377	const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
378
379	/*
380	 * We allow for prcred_t notes that are actually smaller than a
381	 * prcred_t since the last member isn't essential if there are
382	 * no group memberships. This allows for more flexibility when it
383	 * comes to slightly malformed -- but still valid -- notes.
384	 */
385	if (P->core->core_cred != NULL || nbytes < min_size)
386		return (0);	/* Already seen or bad size */
387
388	ngroups = (nbytes - min_size) / sizeof (gid_t);
389	nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
390
391	if ((pcrp = malloc(nbytes)) == NULL)
392		return (-1);
393
394	if (read(P->asfd, pcrp, nbytes) != nbytes) {
395		dprintf("Pgrab_core: failed to read NT_PRCRED\n");
396		free(pcrp);
397		return (-1);
398	}
399
400	if (pcrp->pr_ngroups > ngroups) {
401		dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
402		    pcrp->pr_ngroups, ngroups);
403		pcrp->pr_ngroups = ngroups;
404	}
405
406	P->core->core_cred = pcrp;
407	return (0);
408}
409
410#if defined(__i386) || defined(__amd64)
411static int
412note_ldt(struct ps_prochandle *P, size_t nbytes)
413{
414	struct ssd *pldt;
415	uint_t nldt;
416
417	if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd))
418		return (0);	/* Already seen or bad size */
419
420	nldt = nbytes / sizeof (struct ssd);
421	nbytes = nldt * sizeof (struct ssd);
422
423	if ((pldt = malloc(nbytes)) == NULL)
424		return (-1);
425
426	if (read(P->asfd, pldt, nbytes) != nbytes) {
427		dprintf("Pgrab_core: failed to read NT_LDT\n");
428		free(pldt);
429		return (-1);
430	}
431
432	P->core->core_ldt = pldt;
433	P->core->core_nldt = nldt;
434	return (0);
435}
436#endif	/* __i386 */
437
438static int
439note_priv(struct ps_prochandle *P, size_t nbytes)
440{
441	prpriv_t *pprvp;
442
443	if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t))
444		return (0);	/* Already seen or bad size */
445
446	if ((pprvp = malloc(nbytes)) == NULL)
447		return (-1);
448
449	if (read(P->asfd, pprvp, nbytes) != nbytes) {
450		dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
451		free(pprvp);
452		return (-1);
453	}
454
455	P->core->core_priv = pprvp;
456	P->core->core_priv_size = nbytes;
457	return (0);
458}
459
460static int
461note_priv_info(struct ps_prochandle *P, size_t nbytes)
462{
463	extern void *__priv_parse_info();
464	priv_impl_info_t *ppii;
465
466	if (P->core->core_privinfo != NULL ||
467	    nbytes < sizeof (priv_impl_info_t))
468		return (0);	/* Already seen or bad size */
469
470	if ((ppii = malloc(nbytes)) == NULL)
471		return (-1);
472
473	if (read(P->asfd, ppii, nbytes) != nbytes ||
474	    PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
475		dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
476		free(ppii);
477		return (-1);
478	}
479
480	P->core->core_privinfo = __priv_parse_info(ppii);
481	P->core->core_ppii = ppii;
482	return (0);
483}
484
485static int
486note_zonename(struct ps_prochandle *P, size_t nbytes)
487{
488	char *zonename;
489
490	if (P->core->core_zonename != NULL)
491		return (0);	/* Already seen */
492
493	if (nbytes != 0) {
494		if ((zonename = malloc(nbytes)) == NULL)
495			return (-1);
496		if (read(P->asfd, zonename, nbytes) != nbytes) {
497			dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
498			free(zonename);
499			return (-1);
500		}
501		zonename[nbytes - 1] = '\0';
502		P->core->core_zonename = zonename;
503	}
504
505	return (0);
506}
507
508static int
509note_auxv(struct ps_prochandle *P, size_t nbytes)
510{
511	size_t n, i;
512
513#ifdef _LP64
514	if (P->core->core_dmodel == PR_MODEL_ILP32) {
515		auxv32_t *a32;
516
517		n = nbytes / sizeof (auxv32_t);
518		nbytes = n * sizeof (auxv32_t);
519		a32 = alloca(nbytes);
520
521		if (read(P->asfd, a32, nbytes) != nbytes) {
522			dprintf("Pgrab_core: failed to read NT_AUXV\n");
523			return (-1);
524		}
525
526		if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
527			return (-1);
528
529		for (i = 0; i < n; i++)
530			auxv_32_to_n(&a32[i], &P->auxv[i]);
531
532	} else {
533#endif
534		n = nbytes / sizeof (auxv_t);
535		nbytes = n * sizeof (auxv_t);
536
537		if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
538			return (-1);
539
540		if (read(P->asfd, P->auxv, nbytes) != nbytes) {
541			free(P->auxv);
542			P->auxv = NULL;
543			return (-1);
544		}
545#ifdef _LP64
546	}
547#endif
548
549	if (_libproc_debug) {
550		for (i = 0; i < n; i++) {
551			dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
552			    P->auxv[i].a_type, P->auxv[i].a_un.a_val);
553		}
554	}
555
556	/*
557	 * Defensive coding for loops which depend upon the auxv array being
558	 * terminated by an AT_NULL element; in each case, we've allocated
559	 * P->auxv to have an additional element which we force to be AT_NULL.
560	 */
561	P->auxv[n].a_type = AT_NULL;
562	P->auxv[n].a_un.a_val = 0L;
563	P->nauxv = (int)n;
564
565	return (0);
566}
567
568#ifdef __sparc
569static int
570note_xreg(struct ps_prochandle *P, size_t nbytes)
571{
572	lwp_info_t *lwp = P->core->core_lwp;
573	size_t xbytes = sizeof (prxregset_t);
574	prxregset_t *xregs;
575
576	if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
577		return (0);	/* No lwp yet, already seen, or bad size */
578
579	if ((xregs = malloc(xbytes)) == NULL)
580		return (-1);
581
582	if (read(P->asfd, xregs, xbytes) != xbytes) {
583		dprintf("Pgrab_core: failed to read NT_PRXREG\n");
584		free(xregs);
585		return (-1);
586	}
587
588	lwp->lwp_xregs = xregs;
589	return (0);
590}
591
592static int
593note_gwindows(struct ps_prochandle *P, size_t nbytes)
594{
595	lwp_info_t *lwp = P->core->core_lwp;
596
597	if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
598		return (0);	/* No lwp yet or already seen or no data */
599
600	if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
601		return (-1);
602
603	/*
604	 * Since the amount of gwindows data varies with how many windows were
605	 * actually saved, we just read up to the minimum of the note size
606	 * and the size of the gwindows_t type.  It doesn't matter if the read
607	 * fails since we have to zero out gwindows first anyway.
608	 */
609#ifdef _LP64
610	if (P->core->core_dmodel == PR_MODEL_ILP32) {
611		gwindows32_t g32;
612
613		(void) memset(&g32, 0, sizeof (g32));
614		(void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
615		gwindows_32_to_n(&g32, lwp->lwp_gwins);
616
617	} else {
618#endif
619		(void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
620		(void) read(P->asfd, lwp->lwp_gwins,
621		    MIN(nbytes, sizeof (gwindows_t)));
622#ifdef _LP64
623	}
624#endif
625	return (0);
626}
627
628#ifdef __sparcv9
629static int
630note_asrs(struct ps_prochandle *P, size_t nbytes)
631{
632	lwp_info_t *lwp = P->core->core_lwp;
633	int64_t *asrs;
634
635	if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
636		return (0);	/* No lwp yet, already seen, or bad size */
637
638	if ((asrs = malloc(sizeof (asrset_t))) == NULL)
639		return (-1);
640
641	if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
642		dprintf("Pgrab_core: failed to read NT_ASRS\n");
643		free(asrs);
644		return (-1);
645	}
646
647	lwp->lwp_asrs = asrs;
648	return (0);
649}
650#endif	/* __sparcv9 */
651#endif	/* __sparc */
652
653/*ARGSUSED*/
654static int
655note_notsup(struct ps_prochandle *P, size_t nbytes)
656{
657	dprintf("skipping unsupported note type\n");
658	return (0);
659}
660
661/*
662 * Populate a table of function pointers indexed by Note type with our
663 * functions to process each type of core file note:
664 */
665static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
666	note_notsup,		/*  0	unassigned		*/
667	note_notsup,		/*  1	NT_PRSTATUS (old)	*/
668	note_notsup,		/*  2	NT_PRFPREG (old)	*/
669	note_notsup,		/*  3	NT_PRPSINFO (old)	*/
670#ifdef __sparc
671	note_xreg,		/*  4	NT_PRXREG		*/
672#else
673	note_notsup,		/*  4	NT_PRXREG		*/
674#endif
675	note_platform,		/*  5	NT_PLATFORM		*/
676	note_auxv,		/*  6	NT_AUXV			*/
677#ifdef __sparc
678	note_gwindows,		/*  7	NT_GWINDOWS		*/
679#ifdef __sparcv9
680	note_asrs,		/*  8	NT_ASRS			*/
681#else
682	note_notsup,		/*  8	NT_ASRS			*/
683#endif
684#else
685	note_notsup,		/*  7	NT_GWINDOWS		*/
686	note_notsup,		/*  8	NT_ASRS			*/
687#endif
688#if defined(__i386) || defined(__amd64)
689	note_ldt,		/*  9	NT_LDT			*/
690#else
691	note_notsup,		/*  9	NT_LDT			*/
692#endif
693	note_pstatus,		/* 10	NT_PSTATUS		*/
694	note_notsup,		/* 11	unassigned		*/
695	note_notsup,		/* 12	unassigned		*/
696	note_psinfo,		/* 13	NT_PSINFO		*/
697	note_cred,		/* 14	NT_PRCRED		*/
698	note_utsname,		/* 15	NT_UTSNAME		*/
699	note_lwpstatus,		/* 16	NT_LWPSTATUS		*/
700	note_lwpsinfo,		/* 17	NT_LWPSINFO		*/
701	note_priv,		/* 18	NT_PRPRIV		*/
702	note_priv_info,		/* 19	NT_PRPRIVINFO		*/
703	note_content,		/* 20	NT_CONTENT		*/
704	note_zonename,		/* 21	NT_ZONENAME		*/
705};
706
707/*
708 * Add information on the address space mapping described by the given
709 * PT_LOAD program header.  We fill in more information on the mapping later.
710 */
711static int
712core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
713{
714	int err = 0;
715	prmap_t pmap;
716
717	dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n",
718	    (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
719	    (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
720
721	pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
722	pmap.pr_size = php->p_memsz;
723
724	/*
725	 * If Pgcore() or elfcore() fail to write a mapping, they will set
726	 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
727	 */
728	if (php->p_flags & PF_SUNW_FAILURE) {
729		(void) pread64(P->asfd, &err,
730		    sizeof (err), (off64_t)php->p_offset);
731
732		Perror_printf(P, "core file data for mapping at %p not saved: "
733		    "%s\n", (void *)(uintptr_t)php->p_vaddr, strerror(err));
734		dprintf("core file data for mapping at %p not saved: %s\n",
735		    (void *)(uintptr_t)php->p_vaddr, strerror(err));
736
737	} else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) {
738		Perror_printf(P, "core file may be corrupt -- data for mapping "
739		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
740		dprintf("core file may be corrupt -- data for mapping "
741		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
742	}
743
744	/*
745	 * The mapping name and offset will hopefully be filled in
746	 * by the librtld_db agent.  Unfortunately, if it isn't a
747	 * shared library mapping, this information is gone forever.
748	 */
749	pmap.pr_mapname[0] = '\0';
750	pmap.pr_offset = 0;
751
752	pmap.pr_mflags = 0;
753	if (php->p_flags & PF_R)
754		pmap.pr_mflags |= MA_READ;
755	if (php->p_flags & PF_W)
756		pmap.pr_mflags |= MA_WRITE;
757	if (php->p_flags & PF_X)
758		pmap.pr_mflags |= MA_EXEC;
759
760	if (php->p_filesz == 0)
761		pmap.pr_mflags |= MA_RESERVED1;
762
763	/*
764	 * At the time of adding this mapping, we just zero the pagesize.
765	 * Once we've processed more of the core file, we'll have the
766	 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
767	 */
768	pmap.pr_pagesize = 0;
769
770	/*
771	 * Unfortunately whether or not the mapping was a System V
772	 * shared memory segment is lost.  We use -1 to mark it as not shm.
773	 */
774	pmap.pr_shmid = -1;
775
776	return (Padd_mapping(P, php->p_offset, NULL, &pmap));
777}
778
779/*
780 * Given a virtual address, name the mapping at that address using the
781 * specified name, and return the map_info_t pointer.
782 */
783static map_info_t *
784core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
785{
786	map_info_t *mp = Paddr2mptr(P, addr);
787
788	if (mp != NULL) {
789		(void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
790		mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
791	}
792
793	return (mp);
794}
795
796/*
797 * libproc uses libelf for all of its symbol table manipulation. This function
798 * takes a symbol table and string table from a core file and places them
799 * in a memory backed elf file.
800 */
801static void
802fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
803    GElf_Shdr *symtab, GElf_Shdr *strtab)
804{
805	size_t size;
806	off64_t off, base;
807	map_info_t *mp;
808	file_info_t *fp;
809	Elf_Scn *scn;
810	Elf_Data *data;
811
812	if (symtab->sh_addr == 0 ||
813	    (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
814	    (fp = mp->map_file) == NULL ||
815	    fp->file_symtab.sym_data != NULL) {
816		dprintf("fake_up_symtab: invalid section\n");
817		return;
818	}
819
820	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
821		struct {
822			Elf32_Ehdr ehdr;
823			Elf32_Shdr shdr[3];
824			char data[1];
825		} *b;
826
827		base = sizeof (b->ehdr) + sizeof (b->shdr);
828		size = base + symtab->sh_size + strtab->sh_size;
829
830		if ((b = calloc(1, size)) == NULL)
831			return;
832
833		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
834		    sizeof (ehdr->e_ident));
835		b->ehdr.e_type = ehdr->e_type;
836		b->ehdr.e_machine = ehdr->e_machine;
837		b->ehdr.e_version = ehdr->e_version;
838		b->ehdr.e_flags = ehdr->e_flags;
839		b->ehdr.e_ehsize = sizeof (b->ehdr);
840		b->ehdr.e_shoff = sizeof (b->ehdr);
841		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
842		b->ehdr.e_shnum = 3;
843		off = 0;
844
845		b->shdr[1].sh_size = symtab->sh_size;
846		b->shdr[1].sh_type = SHT_SYMTAB;
847		b->shdr[1].sh_offset = off + base;
848		b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
849		b->shdr[1].sh_link = 2;
850		b->shdr[1].sh_info =  symtab->sh_info;
851		b->shdr[1].sh_addralign = symtab->sh_addralign;
852
853		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
854		    symtab->sh_offset) != b->shdr[1].sh_size) {
855			dprintf("fake_up_symtab: pread of symtab[1] failed\n");
856			free(b);
857			return;
858		}
859
860		off += b->shdr[1].sh_size;
861
862		b->shdr[2].sh_flags = SHF_STRINGS;
863		b->shdr[2].sh_size = strtab->sh_size;
864		b->shdr[2].sh_type = SHT_STRTAB;
865		b->shdr[2].sh_offset = off + base;
866		b->shdr[2].sh_info =  strtab->sh_info;
867		b->shdr[2].sh_addralign = 1;
868
869		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
870		    strtab->sh_offset) != b->shdr[2].sh_size) {
871			dprintf("fake_up_symtab: pread of symtab[2] failed\n");
872			free(b);
873			return;
874		}
875
876		off += b->shdr[2].sh_size;
877
878		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
879		if (fp->file_symtab.sym_elf == NULL) {
880			free(b);
881			return;
882		}
883
884		fp->file_symtab.sym_elfmem = b;
885#ifdef _LP64
886	} else {
887		struct {
888			Elf64_Ehdr ehdr;
889			Elf64_Shdr shdr[3];
890			char data[1];
891		} *b;
892
893		base = sizeof (b->ehdr) + sizeof (b->shdr);
894		size = base + symtab->sh_size + strtab->sh_size;
895
896		if ((b = calloc(1, size)) == NULL)
897			return;
898
899		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
900		    sizeof (ehdr->e_ident));
901		b->ehdr.e_type = ehdr->e_type;
902		b->ehdr.e_machine = ehdr->e_machine;
903		b->ehdr.e_version = ehdr->e_version;
904		b->ehdr.e_flags = ehdr->e_flags;
905		b->ehdr.e_ehsize = sizeof (b->ehdr);
906		b->ehdr.e_shoff = sizeof (b->ehdr);
907		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
908		b->ehdr.e_shnum = 3;
909		off = 0;
910
911		b->shdr[1].sh_size = symtab->sh_size;
912		b->shdr[1].sh_type = SHT_SYMTAB;
913		b->shdr[1].sh_offset = off + base;
914		b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
915		b->shdr[1].sh_link = 2;
916		b->shdr[1].sh_info =  symtab->sh_info;
917		b->shdr[1].sh_addralign = symtab->sh_addralign;
918
919		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
920		    symtab->sh_offset) != b->shdr[1].sh_size) {
921			free(b);
922			return;
923		}
924
925		off += b->shdr[1].sh_size;
926
927		b->shdr[2].sh_flags = SHF_STRINGS;
928		b->shdr[2].sh_size = strtab->sh_size;
929		b->shdr[2].sh_type = SHT_STRTAB;
930		b->shdr[2].sh_offset = off + base;
931		b->shdr[2].sh_info =  strtab->sh_info;
932		b->shdr[2].sh_addralign = 1;
933
934		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
935		    strtab->sh_offset) != b->shdr[2].sh_size) {
936			free(b);
937			return;
938		}
939
940		off += b->shdr[2].sh_size;
941
942		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
943		if (fp->file_symtab.sym_elf == NULL) {
944			free(b);
945			return;
946		}
947
948		fp->file_symtab.sym_elfmem = b;
949#endif
950	}
951
952	if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
953	    (fp->file_symtab.sym_data = elf_getdata(scn, NULL)) == NULL ||
954	    (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
955	    (data = elf_getdata(scn, NULL)) == NULL) {
956		dprintf("fake_up_symtab: failed to get section data at %p\n",
957		    (void *)scn);
958		goto err;
959	}
960
961	fp->file_symtab.sym_strs = data->d_buf;
962	fp->file_symtab.sym_strsz = data->d_size;
963	fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
964	fp->file_symtab.sym_hdr = *symtab;
965	fp->file_symtab.sym_strhdr = *strtab;
966
967	optimize_symtab(&fp->file_symtab);
968
969	return;
970err:
971	(void) elf_end(fp->file_symtab.sym_elf);
972	free(fp->file_symtab.sym_elfmem);
973	fp->file_symtab.sym_elf = NULL;
974	fp->file_symtab.sym_elfmem = NULL;
975}
976
977static void
978core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
979{
980	dst->p_type = src->p_type;
981	dst->p_flags = src->p_flags;
982	dst->p_offset = (Elf64_Off)src->p_offset;
983	dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
984	dst->p_paddr = (Elf64_Addr)src->p_paddr;
985	dst->p_filesz = (Elf64_Xword)src->p_filesz;
986	dst->p_memsz = (Elf64_Xword)src->p_memsz;
987	dst->p_align = (Elf64_Xword)src->p_align;
988}
989
990static void
991core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
992{
993	dst->sh_name = src->sh_name;
994	dst->sh_type = src->sh_type;
995	dst->sh_flags = (Elf64_Xword)src->sh_flags;
996	dst->sh_addr = (Elf64_Addr)src->sh_addr;
997	dst->sh_offset = (Elf64_Off)src->sh_offset;
998	dst->sh_size = (Elf64_Xword)src->sh_size;
999	dst->sh_link = src->sh_link;
1000	dst->sh_info = src->sh_info;
1001	dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1002	dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1003}
1004
1005/*
1006 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1007 */
1008static int
1009core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1010{
1011#ifdef _BIG_ENDIAN
1012	uchar_t order = ELFDATA2MSB;
1013#else
1014	uchar_t order = ELFDATA2LSB;
1015#endif
1016	Elf32_Ehdr e32;
1017	int is_noelf = -1;
1018	int isa_err = 0;
1019
1020	/*
1021	 * Because 32-bit libelf cannot deal with large files, we need to read,
1022	 * check, and convert the file header manually in case type == ET_CORE.
1023	 */
1024	if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1025		if (perr != NULL)
1026			*perr = G_FORMAT;
1027		goto err;
1028	}
1029	if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1030	    e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1031	    e32.e_version != EV_CURRENT) {
1032		if (perr != NULL) {
1033			if (is_noelf == 0 && isa_err) {
1034				*perr = G_ISAINVAL;
1035			} else {
1036				*perr = G_FORMAT;
1037			}
1038		}
1039		goto err;
1040	}
1041
1042	/*
1043	 * If the file is 64-bit and we are 32-bit, fail with G_LP64.  If the
1044	 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1045	 * and convert it to a elf_file_header_t.  Otherwise, the file is
1046	 * 32-bit, so convert e32 to a elf_file_header_t.
1047	 */
1048	if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1049#ifdef _LP64
1050		Elf64_Ehdr e64;
1051
1052		if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1053			if (perr != NULL)
1054				*perr = G_FORMAT;
1055			goto err;
1056		}
1057
1058		(void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1059		efp->e_hdr.e_type = e64.e_type;
1060		efp->e_hdr.e_machine = e64.e_machine;
1061		efp->e_hdr.e_version = e64.e_version;
1062		efp->e_hdr.e_entry = e64.e_entry;
1063		efp->e_hdr.e_phoff = e64.e_phoff;
1064		efp->e_hdr.e_shoff = e64.e_shoff;
1065		efp->e_hdr.e_flags = e64.e_flags;
1066		efp->e_hdr.e_ehsize = e64.e_ehsize;
1067		efp->e_hdr.e_phentsize = e64.e_phentsize;
1068		efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1069		efp->e_hdr.e_shentsize = e64.e_shentsize;
1070		efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1071		efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1072#else	/* _LP64 */
1073		if (perr != NULL)
1074			*perr = G_LP64;
1075		goto err;
1076#endif	/* _LP64 */
1077	} else {
1078		(void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1079		efp->e_hdr.e_type = e32.e_type;
1080		efp->e_hdr.e_machine = e32.e_machine;
1081		efp->e_hdr.e_version = e32.e_version;
1082		efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1083		efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1084		efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1085		efp->e_hdr.e_flags = e32.e_flags;
1086		efp->e_hdr.e_ehsize = e32.e_ehsize;
1087		efp->e_hdr.e_phentsize = e32.e_phentsize;
1088		efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1089		efp->e_hdr.e_shentsize = e32.e_shentsize;
1090		efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1091		efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1092	}
1093
1094	/*
1095	 * If the number of section headers or program headers or the section
1096	 * header string table index would overflow their respective fields
1097	 * in the ELF header, they're stored in the section header at index
1098	 * zero. To simplify use elsewhere, we look for those sentinel values
1099	 * here.
1100	 */
1101	if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1102	    efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1103	    efp->e_hdr.e_phnum == PN_XNUM) {
1104		GElf_Shdr shdr;
1105
1106		dprintf("extended ELF header\n");
1107
1108		if (efp->e_hdr.e_shoff == 0) {
1109			if (perr != NULL)
1110				*perr = G_FORMAT;
1111			goto err;
1112		}
1113
1114		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1115			Elf32_Shdr shdr32;
1116
1117			if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1118			    efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1119				if (perr != NULL)
1120					*perr = G_FORMAT;
1121				goto err;
1122			}
1123
1124			core_shdr_to_gelf(&shdr32, &shdr);
1125		} else {
1126			if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1127			    efp->e_hdr.e_shoff) != sizeof (shdr)) {
1128				if (perr != NULL)
1129					*perr = G_FORMAT;
1130				goto err;
1131			}
1132		}
1133
1134		if (efp->e_hdr.e_shnum == 0) {
1135			efp->e_hdr.e_shnum = shdr.sh_size;
1136			dprintf("section header count %lu\n",
1137			    (ulong_t)shdr.sh_size);
1138		}
1139
1140		if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1141			efp->e_hdr.e_shstrndx = shdr.sh_link;
1142			dprintf("section string index %u\n", shdr.sh_link);
1143		}
1144
1145		if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1146			efp->e_hdr.e_phnum = shdr.sh_info;
1147			dprintf("program header count %u\n", shdr.sh_info);
1148		}
1149
1150	} else if (efp->e_hdr.e_phoff != 0) {
1151		GElf_Phdr phdr;
1152		uint64_t phnum;
1153
1154		/*
1155		 * It's possible this core file came from a system that
1156		 * accidentally truncated the e_phnum field without correctly
1157		 * using the extended format in the section header at index
1158		 * zero. We try to detect and correct that specific type of
1159		 * corruption by using the knowledge that the core dump
1160		 * routines usually place the data referenced by the first
1161		 * program header immediately after the last header element.
1162		 */
1163		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1164			Elf32_Phdr phdr32;
1165
1166			if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1167			    efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1168				if (perr != NULL)
1169					*perr = G_FORMAT;
1170				goto err;
1171			}
1172
1173			core_phdr_to_gelf(&phdr32, &phdr);
1174		} else {
1175			if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1176			    efp->e_hdr.e_phoff) != sizeof (phdr)) {
1177				if (perr != NULL)
1178					*perr = G_FORMAT;
1179				goto err;
1180			}
1181		}
1182
1183		phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1184		    (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1185		phnum /= efp->e_hdr.e_phentsize;
1186
1187		if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1188			dprintf("suspicious program header count %u %u\n",
1189			    (uint_t)phnum, efp->e_hdr.e_phnum);
1190
1191			/*
1192			 * If the new program header count we computed doesn't
1193			 * jive with count in the ELF header, we'll use the
1194			 * data that's there and hope for the best.
1195			 *
1196			 * If it does, it's also possible that the section
1197			 * header offset is incorrect; we'll check that and
1198			 * possibly try to fix it.
1199			 */
1200			if (phnum <= INT_MAX &&
1201			    (uint16_t)phnum == efp->e_hdr.e_phnum) {
1202
1203				if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1204				    efp->e_hdr.e_phentsize *
1205				    (uint_t)efp->e_hdr.e_phnum) {
1206					efp->e_hdr.e_shoff =
1207					    efp->e_hdr.e_phoff +
1208					    efp->e_hdr.e_phentsize * phnum;
1209				}
1210
1211				efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1212				dprintf("using new program header count\n");
1213			} else {
1214				dprintf("inconsistent program header count\n");
1215			}
1216		}
1217	}
1218
1219	/*
1220	 * The libelf implementation was never ported to be large-file aware.
1221	 * This is typically not a problem for your average executable or
1222	 * shared library, but a large 32-bit core file can exceed 2GB in size.
1223	 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1224	 * in Pfgrab_core() below will do its own i/o and struct conversion.
1225	 */
1226
1227	if (type == ET_CORE) {
1228		efp->e_elf = NULL;
1229		return (0);
1230	}
1231
1232	if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1233		if (perr != NULL)
1234			*perr = G_ELF;
1235		goto err;
1236	}
1237
1238	return (0);
1239
1240err:
1241	efp->e_elf = NULL;
1242	return (-1);
1243}
1244
1245/*
1246 * Open the specified file and then do a core_elf_fdopen on it.
1247 */
1248static int
1249core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1250{
1251	(void) memset(efp, 0, sizeof (elf_file_t));
1252
1253	if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1254		if (core_elf_fdopen(efp, type, perr) == 0)
1255			return (0);
1256
1257		(void) close(efp->e_fd);
1258		efp->e_fd = -1;
1259	}
1260
1261	return (-1);
1262}
1263
1264/*
1265 * Close the ELF handle and file descriptor.
1266 */
1267static void
1268core_elf_close(elf_file_t *efp)
1269{
1270	if (efp->e_elf != NULL) {
1271		(void) elf_end(efp->e_elf);
1272		efp->e_elf = NULL;
1273	}
1274
1275	if (efp->e_fd != -1) {
1276		(void) close(efp->e_fd);
1277		efp->e_fd = -1;
1278	}
1279}
1280
1281/*
1282 * Given an ELF file for a statically linked executable, locate the likely
1283 * primary text section and fill in rl_base with its virtual address.
1284 */
1285static map_info_t *
1286core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1287{
1288	GElf_Phdr phdr;
1289	uint_t i;
1290	size_t nphdrs;
1291
1292	if (elf_getphnum(elf, &nphdrs) == 0)
1293		return (NULL);
1294
1295	for (i = 0; i < nphdrs; i++) {
1296		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1297		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1298			rlp->rl_base = phdr.p_vaddr;
1299			return (Paddr2mptr(P, rlp->rl_base));
1300		}
1301	}
1302
1303	return (NULL);
1304}
1305
1306/*
1307 * Given an ELF file and the librtld_db structure corresponding to its primary
1308 * text mapping, deduce where its data segment was loaded and fill in
1309 * rl_data_base and prmap_t.pr_offset accordingly.
1310 */
1311static map_info_t *
1312core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1313{
1314	GElf_Ehdr ehdr;
1315	GElf_Phdr phdr;
1316	map_info_t *mp;
1317	uint_t i, pagemask;
1318	size_t nphdrs;
1319
1320	rlp->rl_data_base = NULL;
1321
1322	/*
1323	 * Find the first loadable, writeable Phdr and compute rl_data_base
1324	 * as the virtual address at which is was loaded.
1325	 */
1326	if (gelf_getehdr(elf, &ehdr) == NULL ||
1327	    elf_getphnum(elf, &nphdrs) == 0)
1328		return (NULL);
1329
1330	for (i = 0; i < nphdrs; i++) {
1331		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1332		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1333			rlp->rl_data_base = phdr.p_vaddr;
1334			if (ehdr.e_type == ET_DYN)
1335				rlp->rl_data_base += rlp->rl_base;
1336			break;
1337		}
1338	}
1339
1340	/*
1341	 * If we didn't find an appropriate phdr or if the address we
1342	 * computed has no mapping, return NULL.
1343	 */
1344	if (rlp->rl_data_base == NULL ||
1345	    (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1346		return (NULL);
1347
1348	/*
1349	 * It wouldn't be procfs-related code if we didn't make use of
1350	 * unclean knowledge of segvn, even in userland ... the prmap_t's
1351	 * pr_offset field will be the segvn offset from mmap(2)ing the
1352	 * data section, which will be the file offset & PAGEMASK.
1353	 */
1354	pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1355	mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1356
1357	return (mp);
1358}
1359
1360/*
1361 * Librtld_db agent callback for iterating over load object mappings.
1362 * For each load object, we allocate a new file_info_t, perform naming,
1363 * and attempt to construct a symbol table for the load object.
1364 */
1365static int
1366core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1367{
1368	char lname[PATH_MAX];
1369	file_info_t *fp;
1370	map_info_t *mp;
1371
1372	if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1373		dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1374		return (1); /* Keep going; forget this if we can't get a name */
1375	}
1376
1377	dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1378	    lname, (void *)rlp->rl_base);
1379
1380	if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1381		dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1382		return (1); /* No mapping; advance to next mapping */
1383	}
1384
1385	if ((fp = mp->map_file) == NULL) {
1386		if ((fp = malloc(sizeof (file_info_t))) == NULL) {
1387			P->core->core_errno = errno;
1388			dprintf("failed to malloc mapping data\n");
1389			return (0); /* Abort */
1390		}
1391
1392		(void) memset(fp, 0, sizeof (file_info_t));
1393
1394		list_link(fp, &P->file_head);
1395		mp->map_file = fp;
1396		P->num_files++;
1397
1398		fp->file_ref = 1;
1399		fp->file_fd = -1;
1400	}
1401
1402	if ((fp->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
1403		P->core->core_errno = errno;
1404		dprintf("failed to malloc mapping data\n");
1405		return (0); /* Abort */
1406	}
1407
1408	*fp->file_lo = *rlp;
1409
1410	if (fp->file_lname == NULL &&
1411	    strcmp(mp->map_pmap.pr_mapname, "a.out") == 0) {
1412		/*
1413		 * Naming dance part 1: if the file_info_t is unnamed and
1414		 * it represents the main executable, name it after the
1415		 * execname.
1416		 */
1417		fp->file_lname = P->execname ?
1418		    strdup(P->execname) : strdup("a.out");
1419	}
1420
1421	if (lname[0] != '\0') {
1422		/*
1423		 * Naming dance part 2: if we got a name from librtld_db, then
1424		 * copy this name to the prmap_t if it is unnamed.  If the
1425		 * file_info_t is unnamed, name it after the lname.
1426		 */
1427		if (mp->map_pmap.pr_mapname[0] == '\0') {
1428			(void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
1429			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1430		}
1431
1432		if (fp->file_lname == NULL)
1433			fp->file_lname = strdup(lname);
1434
1435	} else if (fp->file_lname == NULL &&
1436	    mp->map_pmap.pr_mapname[0] != '\0') {
1437		/*
1438		 * Naming dance part 3: if the mapping is named and the
1439		 * file_info_t is not, name the file after the mapping.
1440		 */
1441		fp->file_lname = strdup(mp->map_pmap.pr_mapname);
1442	}
1443
1444	if (fp->file_lname != NULL)
1445		fp->file_lbase = basename(fp->file_lname);
1446
1447	/*
1448	 * Associate the file and the mapping, and attempt to build
1449	 * a symbol table for this file.
1450	 */
1451	(void) strcpy(fp->file_pname, mp->map_pmap.pr_mapname);
1452	fp->file_map = mp;
1453
1454	Pbuild_file_symtab(P, fp);
1455
1456	if (fp->file_elf == NULL) {
1457		dprintf("core_iter_mapping: no symtab - going to next\n");
1458		return (1); /* No symbol table; advance to next mapping */
1459	}
1460
1461	/*
1462	 * Locate the start of a data segment associated with this file.
1463	 * Starting with that data segment, name all mappings that
1464	 * fall within this file's address range after the file and
1465	 * establish their mp->map_file links.
1466	 */
1467	if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
1468		dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
1469		    fp->file_pname, (void *)fp->file_lo->rl_data_base,
1470		    mp->map_pmap.pr_offset);
1471
1472		for (; mp < P->mappings + P->map_count; mp++) {
1473			if (mp->map_pmap.pr_vaddr > fp->file_lo->rl_bend)
1474				break;
1475			if (mp->map_file == NULL) {
1476				dprintf("%s: associating segment at %p\n",
1477				    fp->file_pname,
1478				    (void *)mp->map_pmap.pr_vaddr);
1479				mp->map_file = fp;
1480				fp->file_ref++;
1481			} else {
1482				dprintf("%s: segment at %p already associated "
1483				    "with %s\n", fp->file_pname,
1484				    (void *)mp->map_pmap.pr_vaddr,
1485				    mp->map_file->file_pname);
1486			}
1487
1488			if (!(mp->map_pmap.pr_mflags & MA_BREAK))
1489				(void) strcpy(mp->map_pmap.pr_mapname,
1490				    fp->file_pname);
1491		}
1492	} else {
1493		dprintf("core_iter_mapping: no data found for %s\n",
1494		    fp->file_pname);
1495	}
1496
1497	return (1); /* Advance to next mapping */
1498}
1499
1500/*
1501 * Callback function for Pfindexec().  In order to confirm a given pathname,
1502 * we verify that we can open it as an ELF file of type ET_EXEC.
1503 */
1504static int
1505core_exec_open(const char *path, void *efp)
1506{
1507	return (core_elf_open(efp, path, ET_EXEC, NULL) == 0);
1508}
1509
1510/*
1511 * Attempt to load any section headers found in the core file.  If present,
1512 * this will refer to non-loadable data added to the core file by the kernel
1513 * based on coreadm(1M) settings, including CTF data and the symbol table.
1514 */
1515static void
1516core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
1517{
1518	GElf_Shdr *shp, *shdrs = NULL;
1519	char *shstrtab = NULL;
1520	ulong_t shstrtabsz;
1521	const char *name;
1522	map_info_t *mp;
1523
1524	size_t nbytes;
1525	void *buf;
1526	int i;
1527
1528	if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
1529		dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
1530		    efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
1531		return;
1532	}
1533
1534	/*
1535	 * Read the section header table from the core file and then iterate
1536	 * over the section headers, converting each to a GElf_Shdr.
1537	 */
1538	if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
1539		dprintf("failed to malloc %u section headers: %s\n",
1540		    (uint_t)efp->e_hdr.e_shnum, strerror(errno));
1541		return;
1542	}
1543
1544	nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1545	if ((buf = malloc(nbytes)) == NULL) {
1546		dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
1547		    strerror(errno));
1548		free(shdrs);
1549		goto out;
1550	}
1551
1552	if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
1553		dprintf("failed to read section headers at off %lld: %s\n",
1554		    (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
1555		free(buf);
1556		goto out;
1557	}
1558
1559	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1560		void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
1561
1562		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
1563			core_shdr_to_gelf(p, &shdrs[i]);
1564		else
1565			(void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
1566	}
1567
1568	free(buf);
1569	buf = NULL;
1570
1571	/*
1572	 * Read the .shstrtab section from the core file, terminating it with
1573	 * an extra \0 so that a corrupt section will not cause us to die.
1574	 */
1575	shp = &shdrs[efp->e_hdr.e_shstrndx];
1576	shstrtabsz = shp->sh_size;
1577
1578	if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
1579		dprintf("failed to allocate %lu bytes for shstrtab\n",
1580		    (ulong_t)shstrtabsz);
1581		goto out;
1582	}
1583
1584	if (pread64(efp->e_fd, shstrtab, shstrtabsz,
1585	    shp->sh_offset) != shstrtabsz) {
1586		dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
1587		    shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
1588		goto out;
1589	}
1590
1591	shstrtab[shstrtabsz] = '\0';
1592
1593	/*
1594	 * Now iterate over each section in the section header table, locating
1595	 * sections of interest and initializing more of the ps_prochandle.
1596	 */
1597	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1598		shp = &shdrs[i];
1599		name = shstrtab + shp->sh_name;
1600
1601		if (shp->sh_name >= shstrtabsz) {
1602			dprintf("skipping section [%d]: corrupt sh_name\n", i);
1603			continue;
1604		}
1605
1606		if (shp->sh_link >= efp->e_hdr.e_shnum) {
1607			dprintf("skipping section [%d]: corrupt sh_link\n", i);
1608			continue;
1609		}
1610
1611		dprintf("found section header %s (sh_addr 0x%llx)\n",
1612		    name, (u_longlong_t)shp->sh_addr);
1613
1614		if (strcmp(name, ".SUNW_ctf") == 0) {
1615			if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
1616				dprintf("no map at addr 0x%llx for %s [%d]\n",
1617				    (u_longlong_t)shp->sh_addr, name, i);
1618				continue;
1619			}
1620
1621			if (mp->map_file == NULL ||
1622			    mp->map_file->file_ctf_buf != NULL) {
1623				dprintf("no mapping file or duplicate buffer "
1624				    "for %s [%d]\n", name, i);
1625				continue;
1626			}
1627
1628			if ((buf = malloc(shp->sh_size)) == NULL ||
1629			    pread64(efp->e_fd, buf, shp->sh_size,
1630			    shp->sh_offset) != shp->sh_size) {
1631				dprintf("skipping section %s [%d]: %s\n",
1632				    name, i, strerror(errno));
1633				free(buf);
1634				continue;
1635			}
1636
1637			mp->map_file->file_ctf_size = shp->sh_size;
1638			mp->map_file->file_ctf_buf = buf;
1639
1640			if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
1641				mp->map_file->file_ctf_dyn = 1;
1642
1643		} else if (strcmp(name, ".symtab") == 0) {
1644			fake_up_symtab(P, &efp->e_hdr,
1645			    shp, &shdrs[shp->sh_link]);
1646		}
1647	}
1648out:
1649	free(shstrtab);
1650	free(shdrs);
1651}
1652
1653/*
1654 * Main engine for core file initialization: given an fd for the core file
1655 * and an optional pathname, construct the ps_prochandle.  The aout_path can
1656 * either be a suggested executable pathname, or a suggested directory to
1657 * use as a possible current working directory.
1658 */
1659struct ps_prochandle *
1660Pfgrab_core(int core_fd, const char *aout_path, int *perr)
1661{
1662	struct ps_prochandle *P;
1663	map_info_t *stk_mp, *brk_mp;
1664	const char *execname;
1665	char *interp;
1666	int i, notes, pagesize;
1667	uintptr_t addr, base_addr;
1668	struct stat64 stbuf;
1669	void *phbuf, *php;
1670	size_t nbytes;
1671
1672	elf_file_t aout;
1673	elf_file_t core;
1674
1675	Elf_Scn *scn, *intp_scn = NULL;
1676	Elf_Data *dp;
1677
1678	GElf_Phdr phdr, note_phdr;
1679	GElf_Shdr shdr;
1680	GElf_Xword nleft;
1681
1682	if (elf_version(EV_CURRENT) == EV_NONE) {
1683		dprintf("libproc ELF version is more recent than libelf\n");
1684		*perr = G_ELF;
1685		return (NULL);
1686	}
1687
1688	aout.e_elf = NULL;
1689	aout.e_fd = -1;
1690
1691	core.e_elf = NULL;
1692	core.e_fd = core_fd;
1693
1694	/*
1695	 * Allocate and initialize a ps_prochandle structure for the core.
1696	 * There are several key pieces of initialization here:
1697	 *
1698	 * 1. The PS_DEAD state flag marks this prochandle as a core file.
1699	 *    PS_DEAD also thus prevents all operations which require state
1700	 *    to be PS_STOP from operating on this handle.
1701	 *
1702	 * 2. We keep the core file fd in P->asfd since the core file contains
1703	 *    the remnants of the process address space.
1704	 *
1705	 * 3. We set the P->info_valid bit because all information about the
1706	 *    core is determined by the end of this function; there is no need
1707	 *    for proc_update_maps() to reload mappings at any later point.
1708	 *
1709	 * 4. The read/write ops vector uses our core_rw() function defined
1710	 *    above to handle i/o requests.
1711	 */
1712	if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
1713		*perr = G_STRANGE;
1714		return (NULL);
1715	}
1716
1717	(void) memset(P, 0, sizeof (struct ps_prochandle));
1718	(void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
1719	P->state = PS_DEAD;
1720	P->pid = (pid_t)-1;
1721	P->asfd = core.e_fd;
1722	P->ctlfd = -1;
1723	P->statfd = -1;
1724	P->agentctlfd = -1;
1725	P->agentstatfd = -1;
1726	P->info_valid = 1;
1727	P->ops = &P_core_ops;
1728
1729	Pinitsym(P);
1730
1731	/*
1732	 * Fstat and open the core file and make sure it is a valid ELF core.
1733	 */
1734	if (fstat64(P->asfd, &stbuf) == -1) {
1735		*perr = G_STRANGE;
1736		goto err;
1737	}
1738
1739	if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
1740		goto err;
1741
1742	/*
1743	 * Allocate and initialize a core_info_t to hang off the ps_prochandle
1744	 * structure.  We keep all core-specific information in this structure.
1745	 */
1746	if ((P->core = malloc(sizeof (core_info_t))) == NULL) {
1747		*perr = G_STRANGE;
1748		goto err;
1749	}
1750
1751	list_link(&P->core->core_lwp_head, NULL);
1752	P->core->core_errno = 0;
1753	P->core->core_lwp = NULL;
1754	P->core->core_nlwp = 0;
1755	P->core->core_size = stbuf.st_size;
1756	P->core->core_platform = NULL;
1757	P->core->core_uts = NULL;
1758	P->core->core_cred = NULL;
1759	/*
1760	 * In the days before adjustable core file content, this was the
1761	 * default core file content. For new core files, this value will
1762	 * be overwritten by the NT_CONTENT note section.
1763	 */
1764	P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
1765	    CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
1766	    CC_CONTENT_SHANON;
1767	P->core->core_priv = NULL;
1768	P->core->core_priv_size = 0;
1769	P->core->core_privinfo = NULL;
1770	P->core->core_zonename = NULL;
1771	P->core->core_ppii = NULL;
1772
1773#if defined(__i386) || defined(__amd64)
1774	P->core->core_ldt = NULL;
1775	P->core->core_nldt = 0;
1776#endif
1777
1778	switch (core.e_hdr.e_ident[EI_CLASS]) {
1779	case ELFCLASS32:
1780		P->core->core_dmodel = PR_MODEL_ILP32;
1781		break;
1782	case ELFCLASS64:
1783		P->core->core_dmodel = PR_MODEL_LP64;
1784		break;
1785	default:
1786		*perr = G_FORMAT;
1787		goto err;
1788	}
1789
1790	/*
1791	 * Because the core file may be a large file, we can't use libelf to
1792	 * read the Phdrs.  We use e_phnum and e_phentsize to simplify things.
1793	 */
1794	nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
1795
1796	if ((phbuf = malloc(nbytes)) == NULL) {
1797		*perr = G_STRANGE;
1798		goto err;
1799	}
1800
1801	if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
1802		*perr = G_STRANGE;
1803		free(phbuf);
1804		goto err;
1805	}
1806
1807	/*
1808	 * Iterate through the program headers in the core file.
1809	 * We're interested in two types of Phdrs: PT_NOTE (which
1810	 * contains a set of saved /proc structures), and PT_LOAD (which
1811	 * represents a memory mapping from the process's address space).
1812	 * In the case of PT_NOTE, we're interested in the last PT_NOTE
1813	 * in the core file; currently the first PT_NOTE (if present)
1814	 * contains /proc structs in the pre-2.6 unstructured /proc format.
1815	 */
1816	for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
1817		if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
1818			(void) memcpy(&phdr, php, sizeof (GElf_Phdr));
1819		else
1820			core_phdr_to_gelf(php, &phdr);
1821
1822		switch (phdr.p_type) {
1823		case PT_NOTE:
1824			note_phdr = phdr;
1825			notes++;
1826			break;
1827
1828		case PT_LOAD:
1829			if (core_add_mapping(P, &phdr) == -1) {
1830				*perr = G_STRANGE;
1831				free(phbuf);
1832				goto err;
1833			}
1834			break;
1835		}
1836
1837		php = (char *)php + core.e_hdr.e_phentsize;
1838	}
1839
1840	free(phbuf);
1841
1842	Psort_mappings(P);
1843
1844	/*
1845	 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
1846	 * was present, abort.  The core file is either corrupt or too old.
1847	 */
1848	if (notes == 0 || notes == 1) {
1849		*perr = G_NOTE;
1850		goto err;
1851	}
1852
1853	/*
1854	 * Advance the seek pointer to the start of the PT_NOTE data
1855	 */
1856	if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
1857		dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
1858		*perr = G_STRANGE;
1859		goto err;
1860	}
1861
1862	/*
1863	 * Now process the PT_NOTE structures.  Each one is preceded by
1864	 * an Elf{32/64}_Nhdr structure describing its type and size.
1865	 *
1866	 *  +--------+
1867	 *  | header |
1868	 *  +--------+
1869	 *  | name   |
1870	 *  | ...    |
1871	 *  +--------+
1872	 *  | desc   |
1873	 *  | ...    |
1874	 *  +--------+
1875	 */
1876	for (nleft = note_phdr.p_filesz; nleft > 0; ) {
1877		Elf64_Nhdr nhdr;
1878		off64_t off, namesz;
1879
1880		/*
1881		 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
1882		 * as different types, they are both of the same content and
1883		 * size, so we don't need to worry about 32/64 conversion here.
1884		 */
1885		if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
1886			dprintf("Pgrab_core: failed to read ELF note header\n");
1887			*perr = G_NOTE;
1888			goto err;
1889		}
1890
1891		/*
1892		 * According to the System V ABI, the amount of padding
1893		 * following the name field should align the description
1894		 * field on a 4 byte boundary for 32-bit binaries or on an 8
1895		 * byte boundary for 64-bit binaries. However, this change
1896		 * was not made correctly during the 64-bit port so all
1897		 * descriptions can assume only 4-byte alignment. We ignore
1898		 * the name field and the padding to 4-byte alignment.
1899		 */
1900		namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
1901		if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
1902			dprintf("failed to seek past name and padding\n");
1903			*perr = G_STRANGE;
1904			goto err;
1905		}
1906
1907		dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
1908		    nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
1909
1910		off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
1911
1912		/*
1913		 * Invoke the note handler function from our table
1914		 */
1915		if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
1916			if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
1917				*perr = G_NOTE;
1918				goto err;
1919			}
1920		} else
1921			(void) note_notsup(P, nhdr.n_descsz);
1922
1923		/*
1924		 * Seek past the current note data to the next Elf_Nhdr
1925		 */
1926		if (lseek64(P->asfd, off + nhdr.n_descsz,
1927		    SEEK_SET) == (off64_t)-1) {
1928			dprintf("Pgrab_core: failed to seek to next nhdr\n");
1929			*perr = G_STRANGE;
1930			goto err;
1931		}
1932
1933		/*
1934		 * Subtract the size of the header and its data from what
1935		 * we have left to process.
1936		 */
1937		nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz;
1938	}
1939
1940	if (nleft != 0) {
1941		dprintf("Pgrab_core: note section malformed\n");
1942		*perr = G_STRANGE;
1943		goto err;
1944	}
1945
1946	if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
1947		pagesize = getpagesize();
1948		dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
1949	}
1950
1951	/*
1952	 * Locate and label the mappings corresponding to the end of the
1953	 * heap (MA_BREAK) and the base of the stack (MA_STACK).
1954	 */
1955	if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
1956	    (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
1957	    P->status.pr_brksize - 1)) != NULL)
1958		brk_mp->map_pmap.pr_mflags |= MA_BREAK;
1959	else
1960		brk_mp = NULL;
1961
1962	if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
1963		stk_mp->map_pmap.pr_mflags |= MA_STACK;
1964
1965	/*
1966	 * At this point, we have enough information to look for the
1967	 * executable and open it: we have access to the auxv, a psinfo_t,
1968	 * and the ability to read from mappings provided by the core file.
1969	 */
1970	(void) Pfindexec(P, aout_path, core_exec_open, &aout);
1971	dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
1972	execname = P->execname ? P->execname : "a.out";
1973
1974	/*
1975	 * Iterate through the sections, looking for the .dynamic and .interp
1976	 * sections.  If we encounter them, remember their section pointers.
1977	 */
1978	for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
1979		char *sname;
1980
1981		if ((gelf_getshdr(scn, &shdr) == NULL) ||
1982		    (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
1983		    (size_t)shdr.sh_name)) == NULL)
1984			continue;
1985
1986		if (strcmp(sname, ".interp") == 0)
1987			intp_scn = scn;
1988	}
1989
1990	/*
1991	 * Get the AT_BASE auxv element.  If this is missing (-1), then
1992	 * we assume this is a statically-linked executable.
1993	 */
1994	base_addr = Pgetauxval(P, AT_BASE);
1995
1996	/*
1997	 * In order to get librtld_db initialized, we'll need to identify
1998	 * and name the mapping corresponding to the run-time linker.  The
1999	 * AT_BASE auxv element tells us the address where it was mapped,
2000	 * and the .interp section of the executable tells us its path.
2001	 * If for some reason that doesn't pan out, just use ld.so.1.
2002	 */
2003	if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2004	    dp->d_size != 0) {
2005		dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2006		interp = dp->d_buf;
2007
2008	} else if (base_addr != (uintptr_t)-1L) {
2009		if (P->core->core_dmodel == PR_MODEL_LP64)
2010			interp = "/usr/lib/64/ld.so.1";
2011		else
2012			interp = "/usr/lib/ld.so.1";
2013
2014		dprintf(".interp section is missing or could not be read; "
2015		    "defaulting to %s\n", interp);
2016	} else
2017		dprintf("detected statically linked executable\n");
2018
2019	/*
2020	 * If we have an AT_BASE element, name the mapping at that address
2021	 * using the interpreter pathname.  Name the corresponding data
2022	 * mapping after the interpreter as well.
2023	 */
2024	if (base_addr != (uintptr_t)-1L) {
2025		elf_file_t intf;
2026
2027		P->map_ldso = core_name_mapping(P, base_addr, interp);
2028
2029		if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2030			rd_loadobj_t rl;
2031			map_info_t *dmp;
2032
2033			rl.rl_base = base_addr;
2034			dmp = core_find_data(P, intf.e_elf, &rl);
2035
2036			if (dmp != NULL) {
2037				dprintf("renamed data at %p to %s\n",
2038				    (void *)rl.rl_data_base, interp);
2039				(void) strncpy(dmp->map_pmap.pr_mapname,
2040				    interp, PRMAPSZ);
2041				dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2042			}
2043		}
2044
2045		core_elf_close(&intf);
2046	}
2047
2048	/*
2049	 * If we have an AT_ENTRY element, name the mapping at that address
2050	 * using the special name "a.out" just like /proc does.
2051	 */
2052	if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2053		P->map_exec = core_name_mapping(P, addr, "a.out");
2054
2055	/*
2056	 * If we're a statically linked executable, then just locate the
2057	 * executable's text and data and name them after the executable.
2058	 */
2059	if (base_addr == (uintptr_t)-1L) {
2060		map_info_t *tmp, *dmp;
2061		file_info_t *fp;
2062		rd_loadobj_t rl;
2063
2064		if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2065		    (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2066			(void) strncpy(tmp->map_pmap.pr_mapname,
2067			    execname, PRMAPSZ);
2068			tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2069			(void) strncpy(dmp->map_pmap.pr_mapname,
2070			    execname, PRMAPSZ);
2071			dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2072		}
2073
2074		if ((P->map_exec = tmp) != NULL &&
2075		    (fp = malloc(sizeof (file_info_t))) != NULL) {
2076
2077			(void) memset(fp, 0, sizeof (file_info_t));
2078
2079			list_link(fp, &P->file_head);
2080			tmp->map_file = fp;
2081			P->num_files++;
2082
2083			fp->file_ref = 1;
2084			fp->file_fd = -1;
2085
2086			fp->file_lo = malloc(sizeof (rd_loadobj_t));
2087			fp->file_lname = strdup(execname);
2088
2089			if (fp->file_lo)
2090				*fp->file_lo = rl;
2091			if (fp->file_lname)
2092				fp->file_lbase = basename(fp->file_lname);
2093
2094			(void) strcpy(fp->file_pname,
2095			    P->mappings[0].map_pmap.pr_mapname);
2096			fp->file_map = tmp;
2097
2098			Pbuild_file_symtab(P, fp);
2099
2100			if (dmp != NULL) {
2101				dmp->map_file = fp;
2102				fp->file_ref++;
2103			}
2104		}
2105	}
2106
2107	core_elf_close(&aout);
2108
2109	/*
2110	 * We now have enough information to initialize librtld_db.
2111	 * After it warms up, we can iterate through the load object chain
2112	 * in the core, which will allow us to construct the file info
2113	 * we need to provide symbol information for the other shared
2114	 * libraries, and also to fill in the missing mapping names.
2115	 */
2116	rd_log(_libproc_debug);
2117
2118	if ((P->rap = rd_new(P)) != NULL) {
2119		(void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2120		    core_iter_mapping, P);
2121
2122		if (P->core->core_errno != 0) {
2123			errno = P->core->core_errno;
2124			*perr = G_STRANGE;
2125			goto err;
2126		}
2127	} else
2128		dprintf("failed to initialize rtld_db agent\n");
2129
2130	/*
2131	 * If there are sections, load them and process the data from any
2132	 * sections that we can use to annotate the file_info_t's.
2133	 */
2134	core_load_shdrs(P, &core);
2135
2136	/*
2137	 * If we previously located a stack or break mapping, and they are
2138	 * still anonymous, we now assume that they were MAP_ANON mappings.
2139	 * If brk_mp turns out to now have a name, then the heap is still
2140	 * sitting at the end of the executable's data+bss mapping: remove
2141	 * the previous MA_BREAK setting to be consistent with /proc.
2142	 */
2143	if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2144		stk_mp->map_pmap.pr_mflags |= MA_ANON;
2145	if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2146		brk_mp->map_pmap.pr_mflags |= MA_ANON;
2147	else if (brk_mp != NULL)
2148		brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2149
2150	*perr = 0;
2151	return (P);
2152
2153err:
2154	Pfree(P);
2155	core_elf_close(&aout);
2156	return (NULL);
2157}
2158
2159/*
2160 * Grab a core file using a pathname.  We just open it and call Pfgrab_core().
2161 */
2162struct ps_prochandle *
2163Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2164{
2165	int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2166
2167	if ((fd = open64(core, oflag)) >= 0)
2168		return (Pfgrab_core(fd, aout, perr));
2169
2170	if (errno != ENOENT)
2171		*perr = G_STRANGE;
2172	else
2173		*perr = G_NOCORE;
2174
2175	return (NULL);
2176}
2177