leb128.c revision 1618:8c9a4f31d225
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#pragma ident	"%Z%%M%	%I%	%E% SMI"
28
29#include <stdio.h>
30#include <dwarf.h>
31#include <sys/types.h>
32#include <sys/elf.h>
33
34/*
35 * Little Endian Base 128 (LEB128) numbers.
36 * ----------------------------------------
37 *
38 * LEB128 is a scheme for encoding integers densely that exploits the
39 * assumption that most integers are small in magnitude. (This encoding
40 * is equally suitable whether the target machine architecture represents
41 * data in big-endian or little- endian
42 *
43 * Unsigned LEB128 numbers are encoded as follows: start at the low order
44 * end of an unsigned integer and chop it into 7-bit chunks. Place each
45 * chunk into the low order 7 bits of a byte. Typically, several of the
46 * high order bytes will be zero; discard them. Emit the remaining bytes in
47 * a stream, starting with the low order byte; set the high order bit on
48 * each byte except the last emitted byte. The high bit of zero on the last
49 * byte indicates to the decoder that it has encountered the last byte.
50 * The integer zero is a special case, consisting of a single zero byte.
51 *
52 * Signed, 2s complement LEB128 numbers are encoded in a similar except
53 * that the criterion for discarding high order bytes is not whether they
54 * are zero, but whether they consist entirely of sign extension bits.
55 * Consider the 32-bit integer -2. The three high level bytes of the number
56 * are sign extension, thus LEB128 would represent it as a single byte
57 * containing the low order 7 bits, with the high order bit cleared to
58 * indicate the end of the byte stream.
59 *
60 * Note that there is nothing within the LEB128 representation that
61 * indicates whether an encoded number is signed or unsigned. The decoder
62 * must know what type of number to expect.
63 *
64 * DWARF Exception Header Encoding
65 * -------------------------------
66 *
67 * The DWARF Exception Header Encoding is used to describe the type of data
68 * used in the .eh_frame_hdr section. The upper 4 bits indicate how the
69 * value is to be applied. The lower 4 bits indicate the format of the data.
70 *
71 * DWARF Exception Header value format
72 *
73 * Name		Value Meaning
74 * DW_EH_PE_omit	    0xff No value is present.
75 * DW_EH_PE_absptr	    0x00 Value is a void*
76 * DW_EH_PE_uleb128	    0x01 Unsigned value is encoded using the
77 *				 Little Endian Base 128 (LEB128)
78 * DW_EH_PE_udata2	    0x02 A 2 bytes unsigned value.
79 * DW_EH_PE_udata4	    0x03 A 4 bytes unsigned value.
80 * DW_EH_PE_udata8	    0x04 An 8 bytes unsigned value.
81 * DW_EH_PE_signed          0x08 bit on for all signed encodings
82 * DW_EH_PE_sleb128	    0x09 Signed value is encoded using the
83 *				 Little Endian Base 128 (LEB128)
84 * DW_EH_PE_sdata2	    0x0A A 2 bytes signed value.
85 * DW_EH_PE_sdata4	    0x0B A 4 bytes signed value.
86 * DW_EH_PE_sdata8	    0x0C An 8 bytes signed value.
87 *
88 * DWARF Exception Header application
89 *
90 * Name	    Value Meaning
91 * DW_EH_PE_absptr	   0x00 Value is used with no modification.
92 * DW_EH_PE_pcrel	   0x10 Value is reletive to the location of itself
93 * DW_EH_PE_textrel	   0x20
94 * DW_EH_PE_datarel	   0x30 Value is reletive to the beginning of the
95 *				eh_frame_hdr segment ( segment type
96 *			        PT_GNU_EH_FRAME )
97 * DW_EH_PE_funcrel        0x40
98 * DW_EH_PE_aligned        0x50 value is an aligned void*
99 * DW_EH_PE_indirect       0x80 bit to signal indirection after relocation
100 * DW_EH_PE_omit	   0xff No value is present.
101 *
102 */
103
104uint64_t
105uleb_extract(unsigned char *data, uint64_t *dotp)
106{
107	uint64_t	dot = *dotp;
108	uint64_t	res = 0;
109	int		more = 1;
110	int		shift = 0;
111	int		val;
112
113	data += dot;
114
115	while (more) {
116		/*
117		 * Pull off lower 7 bits
118		 */
119		val = (*data) & 0x7f;
120
121		/*
122		 * Add prepend value to head of number.
123		 */
124		res = res | (val << shift);
125
126		/*
127		 * Increment shift & dot pointer
128		 */
129		shift += 7;
130		dot++;
131
132		/*
133		 * Check to see if hi bit is set - if not, this
134		 * is the last byte.
135		 */
136		more = ((*data++) & 0x80) >> 7;
137	}
138	*dotp = dot;
139	return (res);
140}
141
142int64_t
143sleb_extract(unsigned char *data, uint64_t *dotp)
144{
145	uint64_t	dot = *dotp;
146	int64_t		res = 0;
147	int		more = 1;
148	int		shift = 0;
149	int		val;
150
151	data += dot;
152
153	while (more) {
154		/*
155		 * Pull off lower 7 bits
156		 */
157		val = (*data) & 0x7f;
158
159		/*
160		 * Add prepend value to head of number.
161		 */
162		res = res | (val << shift);
163
164		/*
165		 * Increment shift & dot pointer
166		 */
167		shift += 7;
168		dot++;
169
170		/*
171		 * Check to see if hi bit is set - if not, this
172		 * is the last byte.
173		 */
174		more = ((*data++) & 0x80) >> 7;
175	}
176	*dotp = dot;
177
178	/*
179	 * Make sure value is properly sign extended.
180	 */
181	res = (res << (64 - shift)) >> (64 - shift);
182
183	return (res);
184}
185
186uint64_t
187dwarf_ehe_extract(unsigned char *data, uint64_t *dotp, uint_t ehe_flags,
188    unsigned char *eident, uint64_t pcaddr)
189{
190	uint64_t    dot = *dotp;
191	uint_t	    lsb;
192	uint_t	    wordsize;
193	uint_t	    fsize;
194	uint64_t    result;
195
196	if (eident[EI_DATA] == ELFDATA2LSB)
197		lsb = 1;
198	else
199		lsb = 0;
200
201	if (eident[EI_CLASS] == ELFCLASS64)
202		wordsize = 8;
203	else
204		wordsize = 4;
205
206	switch (ehe_flags & 0x0f) {
207	case DW_EH_PE_omit:
208		return (0);
209	case DW_EH_PE_absptr:
210		fsize = wordsize;
211		break;
212	case DW_EH_PE_udata8:
213	case DW_EH_PE_sdata8:
214		fsize = 8;
215		break;
216	case DW_EH_PE_udata4:
217	case DW_EH_PE_sdata4:
218		fsize = 4;
219		break;
220	case DW_EH_PE_udata2:
221	case DW_EH_PE_sdata2:
222		fsize = 2;
223		break;
224	case DW_EH_PE_uleb128:
225		return (uleb_extract(data, dotp));
226	case DW_EH_PE_sleb128:
227		return ((uint64_t)sleb_extract(data, dotp));
228	default:
229		return (0);
230	}
231
232	if (lsb) {
233		/*
234		 * Extract unaligned LSB formated data
235		 */
236		uint_t	cnt;
237
238		result = 0;
239		for (cnt = 0; cnt < fsize;
240		    cnt++, dot++) {
241			uint64_t val;
242			val = data[dot];
243			result |= val << (cnt * 8);
244		}
245	} else {
246		/*
247		 * Extract unaligned MSB formated data
248		 */
249		uint_t	cnt;
250		result = 0;
251		for (cnt = 0; cnt < fsize;
252		    cnt++, dot++) {
253			uint64_t	val;
254			val = data[dot];
255			result |= val << ((fsize - cnt - 1) * 8);
256		}
257	}
258	/*
259	 * perform sign extension
260	 */
261	if ((ehe_flags & DW_EH_PE_signed) &&
262	    (fsize < sizeof (uint64_t))) {
263		int64_t	sresult;
264		uint_t	bitshift;
265		sresult = result;
266		bitshift = (sizeof (uint64_t) - fsize) * 8;
267		sresult = (sresult << bitshift) >> bitshift;
268		result = sresult;
269	}
270
271	/*
272	 * If pcrel and we have a value (ie: we've been
273	 * relocated), then adjust the value.
274	 */
275	if (result && (ehe_flags & DW_EH_PE_pcrel)) {
276		result = pcaddr + result;
277	}
278	*dotp = dot;
279	return (result);
280}
281