sparc_elf.c revision 1976:f0691a145b7e
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * SPARC V9 machine dependent and ELF file class dependent functions.
30 * Contains routines for performing function binding and symbol relocations.
31 */
32#include	"_synonyms.h"
33
34#include	<stdio.h>
35#include	<sys/elf.h>
36#include	<sys/elf_SPARC.h>
37#include	<sys/mman.h>
38#include	<dlfcn.h>
39#include	<synch.h>
40#include	<string.h>
41#include	<debug.h>
42#include	<reloc.h>
43#include	<conv.h>
44#include	"_rtld.h"
45#include	"_audit.h"
46#include	"_elf.h"
47#include	"msg.h"
48
49extern void	iflush_range(caddr_t, size_t);
50extern void	plt_upper_32(uintptr_t, uintptr_t);
51extern void	plt_upper_44(uintptr_t, uintptr_t);
52extern void	plt_full_range(uintptr_t, uintptr_t);
53extern void	elf_rtbndr(Rt_map *, ulong_t, caddr_t);
54extern void	elf_rtbndr_far(Rt_map *, ulong_t, caddr_t);
55
56
57int
58elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr)
59{
60	/*
61	 * Check machine type and flags.
62	 */
63	if (ehdr->e_flags & EF_SPARC_EXT_MASK) {
64		/*
65		 * Check vendor-specific extensions.
66		 */
67		if (ehdr->e_flags & EF_SPARC_HAL_R1) {
68			rej->rej_type = SGS_REJ_HAL;
69			rej->rej_info = (uint_t)ehdr->e_flags;
70			return (0);
71		}
72		if ((ehdr->e_flags & EF_SPARC_SUN_US3) & ~at_flags) {
73			rej->rej_type = SGS_REJ_US3;
74			rej->rej_info = (uint_t)ehdr->e_flags;
75			return (0);
76		}
77
78		/*
79		 * Generic check.
80		 * All of our 64-bit SPARC's support the US1 (UltraSPARC 1)
81		 * instructions so that bit isn't worth checking for explicitly.
82		 */
83		if ((ehdr->e_flags & EF_SPARC_EXT_MASK) & ~at_flags) {
84			rej->rej_type = SGS_REJ_BADFLAG;
85			rej->rej_info = (uint_t)ehdr->e_flags;
86			return (0);
87		}
88	} else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) {
89		rej->rej_type = SGS_REJ_BADFLAG;
90		rej->rej_info = (uint_t)ehdr->e_flags;
91		return (0);
92	}
93	return (1);
94}
95
96
97void
98ldso_plt_init(Rt_map * lmp)
99{
100	/*
101	 * There is no need to analyze ld.so because we don't map in any of
102	 * its dependencies.  However we may map these dependencies in later
103	 * (as if ld.so had dlopened them), so initialize the plt and the
104	 * permission information.
105	 */
106	if (PLTGOT(lmp)) {
107		Xword pltoff;
108
109		/*
110		 * Install the lm pointer in .PLT2 as per the ABI.
111		 */
112		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
113		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
114
115		/*
116		 * The V9 ABI states that the first 32k PLT entries
117		 * use .PLT1, with .PLT0 used by the "latter" entries.
118		 * We don't currently implement the extendend format,
119		 * so install an error handler in .PLT0 to catch anyone
120		 * trying to use it.
121		 */
122		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
123
124		/*
125		 * Initialize .PLT1
126		 */
127		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
128		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
129	}
130}
131
132/*
133 * elf_plt_write() will test to see how far away our destination
134 *	address lies.  If it is close enough that a branch can
135 *	be used instead of a jmpl - we will fill the plt in with
136 * 	single branch.  The branches are much quicker then
137 *	a jmpl instruction - see bug#4356879 for further
138 *	details.
139 *
140 *	NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since
141 *		librtld/dldump update PLT's who's physical
142 *		address is not the same as the 'virtual' runtime
143 *		address.
144 */
145Pltbindtype
146elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval,
147	Xword pltndx)
148{
149	Rela		*rel = (Rela *)rptr;
150	uintptr_t	nsym = ~symval;
151	uintptr_t	vpltaddr, pltaddr;
152	long		disp;
153
154
155	pltaddr = addr + rel->r_offset;
156	vpltaddr = vaddr + rel->r_offset;
157	disp = symval - vpltaddr - 4;
158
159	if (pltndx >= (M64_PLT_NEARPLTS - M_PLT_XNumber)) {
160		*((Sxword *)pltaddr) = (uintptr_t)symval +
161			(uintptr_t)rel->r_addend - vaddr;
162		DBG_CALL(pltcntfar++);
163		return (PLT_T_FAR);
164	}
165
166	/*
167	 * Test if the destination address is close enough to use
168	 * a ba,a... instruction to reach it.
169	 */
170	if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) {
171		uint_t		*pltent, bainstr;
172		Pltbindtype	rc;
173
174		pltent = (uint_t *)pltaddr;
175		/*
176		 * The
177		 *
178		 *	ba,a,pt %icc, <dest>
179		 *
180		 * is the most efficient of the PLT's.  If we
181		 * are within +-20 bits - use that branch.
182		 */
183		if (S_INRANGE(disp, 20)) {
184			bainstr = M_BA_A_PT;	/* ba,a,pt %icc,<dest> */
185			/* LINTED */
186			bainstr |= (uint_t)(S_MASK(19) & (disp >> 2));
187			rc = PLT_T_21D;
188			DBG_CALL(pltcnt21d++);
189		} else {
190			/*
191			 * Otherwise - we fall back to the good old
192			 *
193			 *	ba,a	<dest>
194			 *
195			 * Which still beats a jmpl instruction.
196			 */
197			bainstr = M_BA_A;		/* ba,a <dest> */
198			/* LINTED */
199			bainstr |= (uint_t)(S_MASK(22) & (disp >> 2));
200			rc = PLT_T_24D;
201			DBG_CALL(pltcnt24d++);
202		}
203
204		pltent[2] = M_NOP;		/* nop instr */
205		pltent[1] = bainstr;
206
207		iflush_range((char *)(&pltent[1]), 4);
208		pltent[0] = M_NOP;		/* nop instr */
209		iflush_range((char *)(&pltent[0]), 4);
210		return (rc);
211	}
212
213	if ((nsym >> 32) == 0) {
214		plt_upper_32(pltaddr, symval);
215		DBG_CALL(pltcntu32++);
216		return (PLT_T_U32);
217	}
218
219	if ((nsym >> 44) == 0) {
220		plt_upper_44(pltaddr, symval);
221		DBG_CALL(pltcntu44++);
222		return (PLT_T_U44);
223	}
224
225	/*
226	 * The PLT destination is not in reach of
227	 * a branch instruction - so we fall back
228	 * to a 'jmpl' sequence.
229	 */
230	plt_full_range(pltaddr, symval);
231	DBG_CALL(pltcntfull++);
232	return (PLT_T_FULL);
233}
234
235
236
237/*
238 * Once relocated, the following 6 instruction sequence moves
239 * a 64-bit immediate value into register %g1
240 */
241#define	VAL64_TO_G1 \
242/* 0x00 */	0x0b, 0x00, 0x00, 0x00,	/* sethi %hh(value), %g5 */ \
243/* 0x04 */	0x8a, 0x11, 0x60, 0x00,	/* or %g5, %hm(value), %g5 */ \
244/* 0x08 */	0x8b, 0x29, 0x70, 0x20,	/* sllx %g5, 32, %g5 */ \
245/* 0x0c */	0x03, 0x00, 0x00, 0x00,	/* sethi %lm(value), %g1 */ \
246/* 0x10 */	0x82, 0x10, 0x60, 0x00,	/* or %g1, %lo(value), %g1 */ \
247/* 0x14 */	0x82, 0x10, 0x40, 0x05	/* or %g1, %g5, %g1 */
248
249/*
250 * Local storage space created on the stack created for this glue
251 * code includes space for:
252 *		0x8	pointer to dyn_data
253 *		0x8	size prev stack frame
254 */
255static const Byte dyn_plt_template[] = {
256/* 0x0 */	0x2a, 0xcf, 0x80, 0x03,	/* brnz,a,pt %fp, 0xc	*/
257/* 0x4 */	0x82, 0x27, 0x80, 0x0e,	/* sub %fp, %sp, %g1 */
258/* 0x8 */	0x82, 0x10, 0x20, 0xb0,	/* mov 176, %g1	*/
259/* 0xc */	0x9d, 0xe3, 0xbf, 0x40,	/* save %sp, -192, %sp	*/
260/* 0x10 */	0xc2, 0x77, 0xa7, 0xef,	/* stx %g1, [%fp + 2031] */
261
262					/* store prev stack size */
263/* 0x14 */	VAL64_TO_G1,		/* dyn_data to g1 */
264/* 0x2c */	0xc2, 0x77, 0xa7, 0xf7,	/* stx %g1, [%fp + 2039] */
265
266/* 0x30 */	VAL64_TO_G1,		/* elf_plt_trace() addr to g1 */
267
268					/* Call to elf_plt_trace() via g1 */
269/* 0x48 */	0x9f, 0xc0, 0x60, 0x00,	/* jmpl ! link r[15] to addr in g1 */
270/* 0x4c */	0x01, 0x00, 0x00, 0x00	/* nop ! for jmpl delay slot *AND* */
271					/*	to get 8-byte alignment */
272};
273
274
275int	dyn_plt_ent_size = sizeof (dyn_plt_template) +
276		sizeof (Addr) +		/* reflmp */
277		sizeof (Addr) +		/* deflmp */
278		sizeof (Word) +		/* symndx */
279		sizeof (Word) +		/* sb_flags */
280		sizeof (Sym);		/* symdef */
281
282
283/*
284 * the dynamic plt entry is:
285 *
286 *	brnz,a,pt	%fp, 1f
287 *	sub     	%sp, %fp, %g1
288 *	mov     	SA(MINFRAME), %g1
289 * 1:
290 *	save    	%sp, -(SA(MINFRAME) + (2 * CLONGSIZE)), %sp
291 *
292 *	! store prev stack size
293 *	stx     	%g1, [%fp + STACK_BIAS - (2 * CLONGSIZE)]
294 *
295 * 2:
296 *	! move dyn_data to %g1
297 *	sethi   	%hh(dyn_data), %g5
298 *	or      	%g5, %hm(dyn_data), %g5
299 *	sllx    	%g5, 32, %g5
300 *	sethi   	%lm(dyn_data), %g1
301 *	or      	%g1, %lo(dyn_data), %g1
302 *	or      	%g1, %g5, %g1
303 *
304 *	! store dyn_data ptr on frame (from %g1)
305 *	 stx     	%g1, [%fp + STACK_BIAS - CLONGSIZE]
306 *
307 *	! Move address of elf_plt_trace() into %g1
308 *	[Uses same 6 instructions as shown at label 2: above. Not shown.]
309 *
310 *	! Use JMPL to make call. CALL instruction is limited to 30-bits.
311 *	! of displacement.
312 *	jmp1		%g1, %o7
313 *
314 *	! JMPL has a delay slot that must be filled. And, the sequence
315 *	! of instructions needs to have 8-byte alignment. This NOP does both.
316 *	! The alignment is needed for the data we put following the
317 *	! instruction.
318 *	nop
319 *
320 * dyn data:
321 *	Addr		reflmp
322 *	Addr		deflmp
323 *	Word		symndx
324 *	Word		sb_flags
325 *	Sym		symdef  (Elf64_Sym = 24-bytes)
326 */
327
328
329/*
330 * Relocate the instructions given by the VAL64_TO_G1 macro above.
331 * The arguments parallel those of do_reloc().
332 *
333 * entry:
334 *	off - Address of 1st instruction in sequence.
335 *	value - Value being relocated (addend)
336 *	sym - Name of value being relocated.
337 *	lml - link map list
338 *
339 * exit:
340 *	Returns TRUE for success, FALSE for failure.
341 */
342static int
343reloc_val64_to_g1(Byte *off, Addr *value, const char *sym, Lm_list *lml)
344{
345	Xword	tmp_value;
346
347	/*
348	 * relocating:
349	 *	sethi	%hh(value), %g5
350	 */
351	tmp_value = (Xword)value;
352	if (do_reloc(R_SPARC_HH22, off, &tmp_value, sym,
353	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
354		return (0);
355	}
356
357	/*
358	 * relocating:
359	 *	or	%g5, %hm(value), %g5
360	 */
361	tmp_value = (Xword)value;
362	if (do_reloc(R_SPARC_HM10, off + 4, &tmp_value, sym,
363	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
364		return (0);
365	}
366
367	/*
368	 * relocating:
369	 *	sethi	%lm(value), %g1
370	 */
371	tmp_value = (Xword)value;
372	if (do_reloc(R_SPARC_LM22, off + 12, &tmp_value, sym,
373	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
374		return (0);
375	}
376
377	/*
378	 * relocating:
379	 *	or	%g1, %lo(value), %g1
380	 */
381	tmp_value = (Xword)value;
382	if (do_reloc(R_SPARC_LO10, off + 16, &tmp_value, sym,
383	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
384		return (0);
385	}
386
387	return (1);
388}
389
390static caddr_t
391elf_plt_trace_write(caddr_t addr, Rela * rptr, Rt_map * rlmp, Rt_map * dlmp,
392    Sym * sym, uint_t symndx, ulong_t pltndx, caddr_t to, uint_t sb_flags,
393    int *fail)
394{
395	extern ulong_t	elf_plt_trace();
396	Addr		dyn_plt, *dyndata;
397
398	/*
399	 * If both pltenter & pltexit have been disabled there
400	 * there is no reason to even create the glue code.
401	 */
402	if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) ==
403	    (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) {
404		(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr,
405		    rptr, (uintptr_t)to, pltndx);
406		return (to);
407	}
408
409	/*
410	 * We only need to add the glue code if there is an auditing
411	 * library that is interested in this binding.
412	 */
413	dyn_plt = (Xword)AUDINFO(rlmp)->ai_dynplts +
414	    (pltndx * dyn_plt_ent_size);
415
416	/*
417	 * Have we initialized this dynamic plt entry yet?  If we haven't do it
418	 * now.  Otherwise this function has been called before, but from a
419	 * different plt (ie. from another shared object).  In that case
420	 * we just set the plt to point to the new dyn_plt.
421	 */
422	if (*(Word *)dyn_plt == 0) {
423		Sym	*symp;
424		Lm_list	*lml = LIST(rlmp);
425
426		(void) memcpy((void *)dyn_plt, dyn_plt_template,
427		    sizeof (dyn_plt_template));
428		dyndata = (Addr *)(dyn_plt + sizeof (dyn_plt_template));
429
430		/*
431		 * relocating:
432		 *	VAL64_TO_G1(dyndata)
433		 *	VAL64_TO_G1(&elf_plt_trace)
434		 */
435		if (!(reloc_val64_to_g1((Byte *) (dyn_plt + 0x14), dyndata,
436					MSG_ORIG(MSG_SYM_LADYNDATA), lml) &&
437			reloc_val64_to_g1((Byte *) (dyn_plt + 0x30),
438					(Addr *)&elf_plt_trace,
439					MSG_ORIG(MSG_SYM_ELFPLTTRACE), lml))) {
440			*fail = 1;
441			return (0);
442		}
443
444		*dyndata++ = (Addr)rlmp;
445		*dyndata++ = (Addr)dlmp;
446
447		/*
448		 * symndx in the high word, sb_flags in the low.
449		 */
450		*dyndata = (Addr)sb_flags;
451		*(Word *)dyndata = symndx;
452		dyndata++;
453
454		symp = (Sym *)dyndata;
455		*symp = *sym;
456		symp->st_value = (Addr)to;
457		iflush_range((void *)dyn_plt, sizeof (dyn_plt_template));
458	}
459
460	(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr,
461	    (uintptr_t)dyn_plt, pltndx);
462	return ((caddr_t)dyn_plt);
463}
464
465/*
466 * Function binding routine - invoked on the first call to a function through
467 * the procedure linkage table;
468 * passes first through an assembly language interface.
469 *
470 * Takes the address of the PLT entry where the call originated,
471 * the offset into the relocation table of the associated
472 * relocation entry and the address of the link map (rt_private_map struct)
473 * for the entry.
474 *
475 * Returns the address of the function referenced after re-writing the PLT
476 * entry to invoke the function directly.
477 *
478 * On error, causes process to terminate with a signal.
479 */
480
481ulong_t
482elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from)
483{
484	Rt_map		*nlmp, *llmp;
485	Addr		addr, vaddr, reloff, symval;
486	char		*name;
487	Rela		*rptr;
488	Sym		*sym, *nsym;
489	Xword		pltndx;
490	uint_t		binfo, sb_flags = 0;
491	ulong_t		rsymndx;
492	Slookup		sl;
493	Pltbindtype	pbtype;
494	int		entry, lmflags, farplt = 0;
495	uint_t		dbg_class;
496	Lm_list		*lml = LIST(lmp);
497
498	/*
499	 * For compatibility with libthread (TI_VERSION 1) we track the entry
500	 * value.  A zero value indicates we have recursed into ld.so.1 to
501	 * further process a locking request.  Under this recursion we disable
502	 * tsort and cleanup activities.
503	 */
504	entry = enter();
505
506	if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) {
507		dbg_class = dbg_desc->d_class;
508		dbg_desc->d_class = 0;
509	}
510
511	/*
512	 * Must calculate true plt relocation address from reloc.
513	 * Take offset, subtract number of reserved PLT entries, and divide
514	 * by PLT entry size, which should give the index of the plt
515	 * entry (and relocation entry since they have been defined to be
516	 * in the same order).  Then we must multiply by the size of
517	 * a relocation entry, which will give us the offset of the
518	 * plt relocation entry from the start of them given by JMPREL(lm).
519	 */
520	addr = pltoff - M_PLT_RESERVSZ;
521
522	if (pltoff < (M64_PLT_NEARPLTS * M_PLT_ENTSIZE)) {
523		pltndx = addr / M_PLT_ENTSIZE;
524	} else {
525		ulong_t	pltblockoff;
526
527		pltblockoff = pltoff - (M64_PLT_NEARPLTS * M_PLT_ENTSIZE);
528		pltndx = M64_PLT_NEARPLTS +
529			((pltblockoff / M64_PLT_FBLOCKSZ) * M64_PLT_FBLKCNTS) +
530			((pltblockoff % M64_PLT_FBLOCKSZ) / M64_PLT_FENTSIZE) -
531			M_PLT_XNumber;
532		farplt = 1;
533	}
534
535	/*
536	 * Perform some basic sanity checks.  If we didn't get a load map
537	 * or the plt offset is invalid then its possible someone has walked
538	 * over the plt entries or jumped to plt[01] out of the blue.
539	 */
540	if (!lmp || (!farplt && (addr % M_PLT_ENTSIZE) != 0) ||
541	    (farplt && (addr % M_PLT_INSSIZE))) {
542		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF),
543		    conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0),
544		    EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from));
545		rtldexit(lml, 1);
546	}
547	reloff = pltndx * sizeof (Rela);
548
549	/*
550	 * Use relocation entry to get symbol table entry and symbol name.
551	 */
552	addr = (ulong_t)JMPREL(lmp);
553	rptr = (Rela *)(addr + reloff);
554	rsymndx = ELF_R_SYM(rptr->r_info);
555	sym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp)));
556	name = (char *)(STRTAB(lmp) + sym->st_name);
557
558	/*
559	 * Determine the last link-map of this list, this'll be the starting
560	 * point for any tsort() processing.
561	 */
562	llmp = lml->lm_tail;
563
564	/*
565	 * Find definition for symbol.
566	 */
567	sl.sl_name = name;
568	sl.sl_cmap = lmp;
569	sl.sl_imap = lml->lm_head;
570	sl.sl_hash = 0;
571	sl.sl_rsymndx = rsymndx;
572	sl.sl_flags = LKUP_DEFT;
573	if ((nsym = lookup_sym(&sl, &nlmp, &binfo)) == 0) {
574		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
575		    demangle(name));
576		rtldexit(lml, 1);
577	}
578
579	symval = nsym->st_value;
580	if (!(FLAGS(nlmp) & FLG_RT_FIXED) &&
581	    (nsym->st_shndx != SHN_ABS))
582		symval += ADDR(nlmp);
583	if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) {
584		/*
585		 * Record that this new link map is now bound to the caller.
586		 */
587		if (bind_one(lmp, nlmp, BND_REFER) == 0)
588			rtldexit(lml, 1);
589	}
590
591	if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_SYMBIND) {
592		/* LINTED */
593		uint_t	symndx = (uint_t)(((uintptr_t)nsym -
594			(uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
595
596		symval = audit_symbind(lmp, nlmp, nsym, symndx, symval,
597			&sb_flags);
598	}
599
600	if (FLAGS(lmp) & FLG_RT_FIXED)
601		vaddr = 0;
602	else
603		vaddr = ADDR(lmp);
604
605	pbtype = PLT_T_NONE;
606	if (!(rtld_flags & RT_FL_NOBIND)) {
607		if (((lml->lm_tflags | FLAGS1(lmp)) &
608		    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
609		    AUDINFO(lmp)->ai_dynplts) {
610			int	fail = 0;
611			/* LINTED */
612			uint_t	symndx = (uint_t)(((uintptr_t)nsym -
613				(uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
614
615			symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr,
616			    rptr, lmp, nlmp, nsym, symndx, pltndx,
617			    (caddr_t)symval, sb_flags, &fail);
618			if (fail)
619				rtldexit(lml, 1);
620		} else {
621			/*
622			 * Write standard PLT entry to jump directly
623			 * to newly bound function.
624			 */
625			pbtype = elf_plt_write((uintptr_t)vaddr,
626				(uintptr_t)vaddr, rptr, symval, pltndx);
627		}
628	}
629
630	/*
631	 * Print binding information and rebuild PLT entry.
632	 */
633	DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)),
634	    (Xword)pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value,
635	    name, binfo));
636
637	/*
638	 * Complete any processing for newly loaded objects.  Note we don't
639	 * know exactly where any new objects are loaded (we know the object
640	 * that supplied the symbol, but others may have been loaded lazily as
641	 * we searched for the symbol), so sorting starts from the last
642	 * link-map know on entry to this routine.
643	 */
644	if (entry)
645		load_completion(llmp, lmp);
646
647	/*
648	 * Some operations like dldump() or dlopen()'ing a relocatable object
649	 * result in objects being loaded on rtld's link-map, make sure these
650	 * objects are initialized also.
651	 */
652	if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init)
653		load_completion(nlmp, 0);
654
655	/*
656	 * If the object we've bound to is in the process of being initialized
657	 * by another thread, determine whether we should block.
658	 */
659	is_dep_ready(nlmp, lmp, DBG_WAIT_SYMBOL);
660
661	/*
662	 * Make sure the object to which we've bound has had it's .init fired.
663	 * Cleanup before return to user code.
664	 */
665	if (entry) {
666		is_dep_init(nlmp, lmp);
667		leave(LIST(lmp));
668	}
669
670	if (lmflags & LML_FLG_RTLDLM)
671		dbg_desc->d_class = dbg_class;
672
673	return (symval);
674}
675
676
677static int
678bindpltpad(Rt_map *lmp, List *padlist, Addr value, void **pltaddr,
679    const char *fname, const char *sname)
680{
681	Listnode	*lnp, *prevlnp;
682	Pltpadinfo	*pip;
683	void		*plt;
684	uintptr_t	pltoff;
685	Rela		rel;
686	int		i;
687
688	prevlnp = 0;
689	for (LIST_TRAVERSE(padlist, lnp, pip)) {
690		if (pip->pp_addr == value) {
691			*pltaddr = pip->pp_plt;
692			DBG_CALL(Dbg_bind_pltpad_from(lmp, (Addr)*pltaddr,
693			    sname));
694			return (1);
695		}
696		if (pip->pp_addr > value)
697			break;
698		prevlnp = lnp;
699	}
700
701	plt = PLTPAD(lmp);
702	pltoff = (uintptr_t)plt - (uintptr_t)ADDR(lmp);
703
704	PLTPAD(lmp) = (void *)((uintptr_t)PLTPAD(lmp) + M_PLT_ENTSIZE);
705
706	if (PLTPAD(lmp) > PLTPADEND(lmp)) {
707		/*
708		 * Just fail in usual relocation way
709		 */
710		*pltaddr = (void *)value;
711		return (1);
712	}
713	rel.r_offset = pltoff;
714	rel.r_info = 0;
715	rel.r_addend = 0;
716
717
718	/*
719	 * elf_plt_write assumes the plt was previously filled
720	 * with NOP's, so fill it in now.
721	 */
722	for (i = 0; i < (M_PLT_ENTSIZE / sizeof (uint_t)); i++) {
723		((uint_t *)plt)[i] = M_NOP;
724	}
725	iflush_range((caddr_t)plt, M_PLT_ENTSIZE);
726
727	(void) elf_plt_write(ADDR(lmp), ADDR(lmp), &rel, value, 0);
728
729	if ((pip = calloc(sizeof (Pltpadinfo), 1)) == 0)
730		return (0);
731	pip->pp_addr = value;
732	pip->pp_plt = plt;
733
734	if (prevlnp)
735		lnp = list_insert(padlist, pip, prevlnp);
736	else
737		lnp = list_prepend(padlist, pip);
738
739	if (!lnp) {
740		free(pip);
741		return (0);
742	}
743
744	*pltaddr = plt;
745	DBG_CALL(Dbg_bind_pltpad_to(lmp, (Addr)*pltaddr, fname, sname));
746	return (1);
747}
748
749/*
750 * Read and process the relocations for one link object, we assume all
751 * relocation sections for loadable segments are stored contiguously in
752 * the file.
753 */
754int
755elf_reloc(Rt_map *lmp, uint_t plt)
756{
757	ulong_t		relbgn, relend, relsiz, basebgn, pltbgn, pltend;
758	ulong_t		roffset, rsymndx, psymndx = 0, etext = ETEXT(lmp);
759	ulong_t		emap, pltndx;
760	uint_t		dsymndx, binfo, pbinfo;
761	Byte		rtype;
762	long		reladd;
763	Addr		value, pvalue;
764	Sym		*symref, *psymref, *symdef, *psymdef;
765	char		*name, *pname;
766	Rt_map		*_lmp, *plmp;
767	int		textrel = 0, ret = 1, noplt = 0;
768	long		relacount = RELACOUNT(lmp);
769	Rela		*rel;
770	Pltbindtype	pbtype;
771	List		pltpadlist = {0, 0};
772	Alist		*bound = 0;
773
774	/*
775	 * If an object has any DT_REGISTER entries associated with
776	 * it, they are processed now.
777	 */
778	if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) {
779		if (elf_regsyms(lmp) == 0)
780			return (0);
781	}
782
783	/*
784	 * Although only necessary for lazy binding, initialize the first
785	 * procedure linkage table entry to go to elf_rtbndr().  dbx(1) seems
786	 * to find this useful.
787	 */
788	if ((plt == 0) && PLTGOT(lmp)) {
789		Xword pltoff;
790
791		if ((ulong_t)PLTGOT(lmp) < etext) {
792			if (elf_set_prot(lmp, PROT_WRITE) == 0)
793				return (0);
794			textrel = 1;
795		}
796
797		/*
798		 * Install the lm pointer in .PLT2 as per the ABI.
799		 */
800		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
801		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
802
803		/*
804		 * The V9 ABI states that the first 32k PLT entries
805		 * use .PLT1, with .PLT0 used by the "latter" entries.
806		 * We don't currently implement the extendend format,
807		 * so install an error handler in .PLT0 to catch anyone
808		 * trying to use it.
809		 */
810		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
811
812		/*
813		 * Initialize .PLT1
814		 */
815		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
816		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
817	}
818
819	/*
820	 * Initialize the plt start and end addresses.
821	 */
822	if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0)
823		pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp));
824
825	/*
826	 * If we've been called upon to promote an RTLD_LAZY object to an
827	 * RTLD_NOW then we're only interested in scaning the .plt table.
828	 */
829	if (plt) {
830		relbgn = pltbgn;
831		relend = pltend;
832	} else {
833		/*
834		 * The relocation sections appear to the run-time linker as a
835		 * single table.  Determine the address of the beginning and end
836		 * of this table.  There are two different interpretations of
837		 * the ABI at this point:
838		 *
839		 *   o	The REL table and its associated RELSZ indicate the
840		 *	concatenation of *all* relocation sections (this is the
841		 *	model our link-editor constructs).
842		 *
843		 *   o	The REL table and its associated RELSZ indicate the
844		 *	concatenation of all *but* the .plt relocations.  These
845		 *	relocations are specified individually by the JMPREL and
846		 *	PLTRELSZ entries.
847		 *
848		 * Determine from our knowledege of the relocation range and
849		 * .plt range, the range of the total relocation table.  Note
850		 * that one other ABI assumption seems to be that the .plt
851		 * relocations always follow any other relocations, the
852		 * following range checking drops that assumption.
853		 */
854		relbgn = (ulong_t)(REL(lmp));
855		relend = relbgn + (ulong_t)(RELSZ(lmp));
856		if (pltbgn) {
857			if (!relbgn || (relbgn > pltbgn))
858				relbgn = pltbgn;
859			if (!relbgn || (relend < pltend))
860				relend = pltend;
861		}
862	}
863	if (!relbgn || (relbgn == relend)) {
864		DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE));
865		return (1);
866	}
867
868	relsiz = (ulong_t)(RELENT(lmp));
869	basebgn = ADDR(lmp);
870	emap = ADDR(lmp) + MSIZE(lmp);
871
872	DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START));
873
874	/*
875	 * If we're processing in lazy mode there is no need to scan the
876	 * .rela.plt table.
877	 */
878	if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0))
879		noplt = 1;
880
881	/*
882	 * Loop through relocations.
883	 */
884	while (relbgn < relend) {
885		Addr		vaddr;
886		uint_t		sb_flags = 0;
887
888		rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info);
889
890		/*
891		 * If this is a RELATIVE relocation in a shared object
892		 * (the common case), and if we are not debugging, then
893		 * jump into a tighter relocaiton loop (elf_reloc_relacount)
894		 * Only make the jump if we've been given a hint on the
895		 * number of relocations.
896		 */
897		if ((rtype == R_SPARC_RELATIVE) &&
898		    ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) {
899			/*
900			 * It's possible that the relative relocation block
901			 * has relocations against the text segment as well
902			 * as the data segment.  Since our optimized relocation
903			 * engine does not check which segment the relocation
904			 * is against - just mprotect it now if it's been
905			 * marked as containing TEXTREL's.
906			 */
907			if ((textrel == 0) && (FLAGS1(lmp) & FL1_RT_TEXTREL)) {
908				if (elf_set_prot(lmp, PROT_WRITE) == 0) {
909					ret = 0;
910					break;
911				}
912				textrel = 1;
913			}
914			if (relacount) {
915				relbgn = elf_reloc_relacount(relbgn, relacount,
916				    relsiz, basebgn);
917				relacount = 0;
918			} else {
919				relbgn = elf_reloc_relative(relbgn, relend,
920				    relsiz, basebgn, etext, emap);
921			}
922			if (relbgn >= relend)
923				break;
924			rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info);
925		}
926
927		roffset = ((Rela *)relbgn)->r_offset;
928
929		reladd = (long)(((Rela *)relbgn)->r_addend);
930		rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info);
931
932		rel = (Rela *)relbgn;
933		relbgn += relsiz;
934
935		/*
936		 * Optimizations.
937		 */
938		if (rtype == R_SPARC_NONE)
939			continue;
940		if (noplt && ((ulong_t)rel >= pltbgn) &&
941		    ((ulong_t)rel < pltend)) {
942			relbgn = pltend;
943			continue;
944		}
945
946		if (rtype != R_SPARC_REGISTER) {
947			/*
948			 * If this is a shared object, add the base address
949			 * to offset.
950			 */
951			if (!(FLAGS(lmp) & FLG_RT_FIXED))
952				roffset += basebgn;
953
954			/*
955			 * If this relocation is not against part of the image
956			 * mapped into memory we skip it.
957			 */
958			if ((roffset < ADDR(lmp)) || (roffset > (ADDR(lmp) +
959			    MSIZE(lmp)))) {
960				elf_reloc_bad(lmp, (void *)rel, rtype, roffset,
961				    rsymndx);
962				continue;
963			}
964		}
965
966		/*
967		 * If we're promoting plts determine if this one has already
968		 * been written. An uninitialized plts' second instruction is a
969		 * branch.
970		 */
971		if (plt) {
972			uchar_t	*_roffset = (uchar_t *)roffset;
973
974			_roffset += M_PLT_INSSIZE;
975			/* LINTED */
976			if ((*(uint_t *)_roffset &
977			    (~(S_MASK(19)))) != M_BA_A_XCC)
978				continue;
979		}
980
981		binfo = 0;
982		pltndx = (ulong_t)-1;
983		pbtype = PLT_T_NONE;
984		/*
985		 * If a symbol index is specified then get the symbol table
986		 * entry, locate the symbol definition, and determine its
987		 * address.
988		 */
989		if (rsymndx) {
990			/*
991			 * Get the local symbol table entry.
992			 */
993			symref = (Sym *)((ulong_t)SYMTAB(lmp) +
994			    (rsymndx * SYMENT(lmp)));
995
996			/*
997			 * If this is a local symbol, just use the base address.
998			 * (we should have no local relocations in the
999			 * executable).
1000			 */
1001			if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) {
1002				value = basebgn;
1003				name = (char *)0;
1004
1005				/*
1006				 * TLS relocation - value for DTPMOD relocation
1007				 * is the TLS modid.
1008				 */
1009				if (rtype == M_R_DTPMOD)
1010					value = TLSMODID(lmp);
1011			} else {
1012				/*
1013				 * If the symbol index is equal to the previous
1014				 * symbol index relocation we processed then
1015				 * reuse the previous values. (Note that there
1016				 * have been cases where a relocation exists
1017				 * against a copy relocation symbol, our ld(1)
1018				 * should optimize this away, but make sure we
1019				 * don't use the same symbol information should
1020				 * this case exist).
1021				 */
1022				if ((rsymndx == psymndx) &&
1023				    (rtype != R_SPARC_COPY)) {
1024					/* LINTED */
1025					if (psymdef == 0) {
1026						DBG_CALL(Dbg_bind_weak(lmp,
1027						    (Addr)roffset, (Addr)
1028						    (roffset - basebgn), name));
1029						continue;
1030					}
1031					/* LINTED */
1032					value = pvalue;
1033					/* LINTED */
1034					name = pname;
1035					symdef = psymdef;
1036					/* LINTED */
1037					symref = psymref;
1038					/* LINTED */
1039					_lmp = plmp;
1040					/* LINTED */
1041					binfo = pbinfo;
1042
1043					if ((LIST(_lmp)->lm_tflags |
1044					    FLAGS1(_lmp)) &
1045					    LML_TFLG_AUD_SYMBIND) {
1046						value = audit_symbind(lmp, _lmp,
1047						    /* LINTED */
1048						    symdef, dsymndx, value,
1049						    &sb_flags);
1050					}
1051				} else {
1052					Slookup		sl;
1053					uchar_t		bind;
1054
1055					/*
1056					 * Lookup the symbol definition.
1057					 */
1058					name = (char *)(STRTAB(lmp) +
1059					    symref->st_name);
1060
1061					sl.sl_name = name;
1062					sl.sl_cmap = lmp;
1063					sl.sl_imap = 0;
1064					sl.sl_hash = 0;
1065					sl.sl_rsymndx = rsymndx;
1066
1067					if (rtype == R_SPARC_COPY)
1068						sl.sl_flags = LKUP_COPY;
1069					else
1070						sl.sl_flags = LKUP_DEFT;
1071
1072					sl.sl_flags |= LKUP_ALLCNTLIST;
1073
1074					if (rtype != R_SPARC_JMP_SLOT)
1075						sl.sl_flags |= LKUP_SPEC;
1076
1077					bind = ELF_ST_BIND(symref->st_info);
1078					if (bind == STB_WEAK)
1079						sl.sl_flags |= LKUP_WEAK;
1080
1081					symdef = lookup_sym(&sl, &_lmp, &binfo);
1082
1083					/*
1084					 * If the symbol is not found and the
1085					 * reference was not to a weak symbol,
1086					 * report an error.  Weak references
1087					 * may be unresolved.
1088					 * chkmsg: MSG_INTL(MSG_LDD_SYM_NFOUND)
1089					 */
1090					if (symdef == 0) {
1091					    Lm_list	*lml = LIST(lmp);
1092
1093					    if (bind != STB_WEAK) {
1094						if (lml->lm_flags &
1095						    LML_FLG_IGNRELERR) {
1096						    continue;
1097						} else if (lml->lm_flags &
1098						    LML_FLG_TRC_WARN) {
1099						    (void) printf(MSG_INTL(
1100							MSG_LDD_SYM_NFOUND),
1101							demangle(name),
1102							NAME(lmp));
1103						    continue;
1104						} else {
1105						    eprintf(lml, ERR_FATAL,
1106							MSG_INTL(MSG_REL_NOSYM),
1107							NAME(lmp),
1108							demangle(name));
1109						    ret = 0;
1110						    break;
1111						}
1112					    } else {
1113						psymndx = rsymndx;
1114						psymdef = 0;
1115
1116						DBG_CALL(Dbg_bind_weak(lmp,
1117						    (Addr)roffset, (Addr)
1118						    (roffset - basebgn), name));
1119						continue;
1120					    }
1121					}
1122
1123					/*
1124					 * If symbol was found in an object
1125					 * other than the referencing object
1126					 * then record the binding.
1127					 */
1128					if ((lmp != _lmp) && ((FLAGS1(_lmp) &
1129					    FL1_RT_NOINIFIN) == 0)) {
1130						if (alist_test(&bound, _lmp,
1131						    sizeof (Rt_map *),
1132						    AL_CNT_RELBIND) == 0) {
1133							ret = 0;
1134							break;
1135						}
1136					}
1137
1138					/*
1139					 * Calculate the location of definition;
1140					 * symbol value plus base address of
1141					 * containing shared object.
1142					 */
1143					value = symdef->st_value;
1144					if (!(FLAGS(_lmp) & FLG_RT_FIXED) &&
1145					    (symdef->st_shndx != SHN_ABS) &&
1146					    (ELF_ST_TYPE(symdef->st_info) !=
1147					    STT_TLS))
1148						value += ADDR(_lmp);
1149
1150					/*
1151					 * Retain this symbol index and the
1152					 * value in case it can be used for the
1153					 * subsequent relocations.
1154					 */
1155					if (rtype != R_SPARC_COPY) {
1156						psymndx = rsymndx;
1157						pvalue = value;
1158						pname = name;
1159						psymdef = symdef;
1160						psymref = symref;
1161						plmp = _lmp;
1162						pbinfo = binfo;
1163					}
1164					if ((LIST(_lmp)->lm_tflags |
1165					    FLAGS1(_lmp)) &
1166					    LML_TFLG_AUD_SYMBIND) {
1167						/* LINTED */
1168						dsymndx = (((uintptr_t)symdef -
1169						    (uintptr_t)SYMTAB(_lmp)) /
1170						    SYMENT(_lmp));
1171						value = audit_symbind(lmp, _lmp,
1172						    symdef, dsymndx, value,
1173						    &sb_flags);
1174					}
1175				}
1176
1177				/*
1178				 * If relocation is PC-relative, subtract
1179				 * offset address.
1180				 */
1181				if (IS_PC_RELATIVE(rtype))
1182					value -= roffset;
1183
1184				/*
1185				 * TLS relocation - value for DTPMOD relocation
1186				 * is the TLS modid.
1187				 */
1188				if (rtype == M_R_DTPMOD)
1189					value = TLSMODID(_lmp);
1190				else if (rtype == M_R_TPOFF)
1191					value = -(TLSSTATOFF(_lmp) - value);
1192			}
1193		} else {
1194			/*
1195			 * Special cases, a regsiter symbol associated with
1196			 * symbol index 0 is initialized (i.e. relocated) to
1197			 * a constant in the r_addend field rather than to a
1198			 * symbol value.
1199			 *
1200			 * A DTPMOD relocation is a local binding to a TLS
1201			 * symbol.  Fill in the TLSMODID for the current object.
1202			 */
1203			if (rtype == R_SPARC_REGISTER)
1204				value = 0;
1205			else if (rtype == M_R_DTPMOD)
1206				value = TLSMODID(lmp);
1207			else
1208				value = basebgn;
1209			name = (char *)0;
1210		}
1211
1212		/*
1213		 * If this object has relocations in the text segment, turn
1214		 * off the write protect.
1215		 */
1216		if ((rtype != R_SPARC_REGISTER) && (roffset < etext) &&
1217		    (textrel == 0)) {
1218			if (elf_set_prot(lmp, PROT_WRITE) == 0) {
1219				ret = 0;
1220				break;
1221			}
1222			textrel = 1;
1223		}
1224
1225		/*
1226		 * Call relocation routine to perform required relocation.
1227		 */
1228		DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH,
1229		    M_REL_SHT_TYPE, rel, NULL, name));
1230
1231		switch (rtype) {
1232		case R_SPARC_REGISTER:
1233			/*
1234			 * The v9 ABI 4.2.4 says that system objects may,
1235			 * but are not required to, use register symbols
1236			 * to inidcate how they use global registers. Thus
1237			 * at least %g6, %g7 must be allowed in addition
1238			 * to %g2 and %g3.
1239			 */
1240			value += reladd;
1241			if (roffset == STO_SPARC_REGISTER_G1) {
1242				set_sparc_g1(value);
1243			} else if (roffset == STO_SPARC_REGISTER_G2) {
1244				set_sparc_g2(value);
1245			} else if (roffset == STO_SPARC_REGISTER_G3) {
1246				set_sparc_g3(value);
1247			} else if (roffset == STO_SPARC_REGISTER_G4) {
1248				set_sparc_g4(value);
1249			} else if (roffset == STO_SPARC_REGISTER_G5) {
1250				set_sparc_g5(value);
1251			} else if (roffset == STO_SPARC_REGISTER_G6) {
1252				set_sparc_g6(value);
1253			} else if (roffset == STO_SPARC_REGISTER_G7) {
1254				set_sparc_g7(value);
1255			} else {
1256				eprintf(LIST(lmp), ERR_FATAL,
1257				    MSG_INTL(MSG_REL_BADREG), NAME(lmp),
1258				    EC_ADDR(roffset));
1259				ret = 0;
1260				break;
1261			}
1262
1263			DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD,
1264			    M_MACH, (Xword)roffset, (Xword)value));
1265			break;
1266		case R_SPARC_COPY:
1267			if (elf_copy_reloc(name, symref, lmp, (void *)roffset,
1268			    symdef, _lmp, (const void *)value) == 0)
1269				ret = 0;
1270			break;
1271		case R_SPARC_JMP_SLOT:
1272			pltndx = ((uintptr_t)rel -
1273				(uintptr_t)JMPREL(lmp)) / relsiz;
1274
1275			if (FLAGS(lmp) & FLG_RT_FIXED)
1276				vaddr = 0;
1277			else
1278				vaddr = ADDR(lmp);
1279
1280			if (((LIST(lmp)->lm_tflags | FLAGS1(lmp)) &
1281			    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
1282			    AUDINFO(lmp)->ai_dynplts) {
1283				int	fail = 0;
1284				/* LINTED */
1285				uint_t	symndx = (uint_t)(((uintptr_t)symdef -
1286					(uintptr_t)SYMTAB(_lmp)) /
1287					SYMENT(_lmp));
1288
1289				(void) elf_plt_trace_write((caddr_t)vaddr,
1290				    (Rela *)rel, lmp, _lmp, symdef, symndx,
1291				    pltndx, (caddr_t)value, sb_flags, &fail);
1292				if (fail)
1293					ret = 0;
1294			} else {
1295				/*
1296				 * Write standard PLT entry to jump directly
1297				 * to newly bound function.
1298				 */
1299				DBG_CALL(Dbg_reloc_apply_val(LIST(lmp),
1300				    ELF_DBG_RTLD, (Xword)roffset,
1301				    (Xword)value));
1302				pbtype = elf_plt_write((uintptr_t)vaddr,
1303				    (uintptr_t)vaddr, (void *)rel, value,
1304				    pltndx);
1305			}
1306			break;
1307		case R_SPARC_WDISP30:
1308			if (PLTPAD(lmp) &&
1309			    (S_INRANGE((Sxword)value, 29) == 0)) {
1310				void *	plt = 0;
1311
1312				if (bindpltpad(lmp, &pltpadlist,
1313				    value + roffset, &plt,
1314				    NAME(_lmp), name) == 0) {
1315					ret = 0;
1316					break;
1317				}
1318				value = (Addr)((Addr)plt - roffset);
1319			}
1320			/* FALLTHROUGH */
1321		default:
1322			value += reladd;
1323			if (IS_EXTOFFSET(rtype))
1324				value += (Word)ELF_R_TYPE_DATA(rel->r_info);
1325
1326			/*
1327			 * Write the relocation out.  If this relocation is a
1328			 * common basic write, skip the doreloc() engine.
1329			 */
1330			if ((rtype == R_SPARC_GLOB_DAT) ||
1331			    (rtype == R_SPARC_64)) {
1332				if (roffset & 0x7) {
1333					eprintf(LIST(lmp), ERR_FATAL,
1334					    MSG_INTL(MSG_REL_NONALIGN),
1335					    conv_reloc_SPARC_type(rtype, 0),
1336					    NAME(lmp), demangle(name),
1337					    EC_OFF(roffset));
1338					ret = 0;
1339				} else
1340					*(ulong_t *)roffset += value;
1341			} else {
1342				if (do_reloc(rtype, (uchar_t *)roffset,
1343				    (Xword *)&value, name,
1344				    NAME(lmp), LIST(lmp)) == 0)
1345					ret = 0;
1346			}
1347
1348			/*
1349			 * The value now contains the 'bit-shifted' value that
1350			 * was or'ed into memory (this was set by do_reloc()).
1351			 */
1352			DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD,
1353			    (Xword)roffset, (Xword)value));
1354
1355			/*
1356			 * If this relocation is against a text segment, make
1357			 * sure that the instruction cache is flushed.
1358			 */
1359			if (textrel)
1360				iflush_range((caddr_t)roffset, 0x4);
1361		}
1362
1363		if ((ret == 0) &&
1364		    ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0))
1365			break;
1366
1367		if (binfo) {
1368			DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset,
1369			    (Off)(roffset - basebgn), pltndx, pbtype,
1370			    _lmp, (Addr)value, symdef->st_value, name, binfo));
1371		}
1372	}
1373
1374	/*
1375	 * Free up any items on the pltpadlist if it was allocated
1376	 */
1377	if (pltpadlist.head) {
1378		Listnode *	lnp;
1379		Listnode *	plnp;
1380		Pltpadinfo *	pip;
1381
1382		plnp = 0;
1383		for (LIST_TRAVERSE(&pltpadlist, lnp, pip)) {
1384			if (plnp != 0)
1385				free(plnp);
1386			free(pip);
1387			plnp = lnp;
1388		}
1389		if (plnp != 0)
1390			free(plnp);
1391	}
1392
1393	return (relocate_finish(lmp, bound, textrel, ret));
1394}
1395
1396/*
1397 * Provide a machine specific interface to the conversion routine.  By calling
1398 * the machine specific version, rather than the generic version, we insure that
1399 * the data tables/strings for all known machine versions aren't dragged into
1400 * ld.so.1.
1401 */
1402const char *
1403_conv_reloc_type(uint_t rel)
1404{
1405	return (conv_reloc_SPARC_type(rel, 0));
1406}
1407