sparc_elf.c revision 6206:6b0ed502a8e7
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 *	Copyright (c) 1988 AT&T
24 *	  All Rights Reserved
25 *
26 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27 * Use is subject to license terms.
28 */
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * SPARC machine dependent and ELF file class dependent functions.
33 * Contains routines for performing function binding and symbol relocations.
34 */
35#include	"_synonyms.h"
36
37#include	<stdio.h>
38#include	<sys/elf.h>
39#include	<sys/elf_SPARC.h>
40#include	<sys/mman.h>
41#include	<dlfcn.h>
42#include	<synch.h>
43#include	<string.h>
44#include	<debug.h>
45#include	<reloc.h>
46#include	<conv.h>
47#include	"_rtld.h"
48#include	"_audit.h"
49#include	"_elf.h"
50#include	"msg.h"
51
52
53extern void	iflush_range(caddr_t, size_t);
54extern void	plt_full_range(uintptr_t, uintptr_t);
55
56
57int
58elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr)
59{
60	/*
61	 * Check machine type and flags.
62	 */
63	if (ehdr->e_machine != EM_SPARC) {
64		if (ehdr->e_machine != EM_SPARC32PLUS) {
65			rej->rej_type = SGS_REJ_MACH;
66			rej->rej_info = (uint_t)ehdr->e_machine;
67			return (0);
68		}
69		if ((ehdr->e_flags & EF_SPARC_32PLUS) == 0) {
70			rej->rej_type = SGS_REJ_MISFLAG;
71			rej->rej_info = (uint_t)ehdr->e_flags;
72			return (0);
73		}
74		if ((ehdr->e_flags & ~at_flags) & EF_SPARC_32PLUS_MASK) {
75			rej->rej_type = SGS_REJ_BADFLAG;
76			rej->rej_info = (uint_t)ehdr->e_flags;
77			return (0);
78		}
79	} else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) {
80		rej->rej_type = SGS_REJ_BADFLAG;
81		rej->rej_info = (uint_t)ehdr->e_flags;
82		return (0);
83	}
84	return (1);
85}
86
87void
88ldso_plt_init(Rt_map * lmp)
89{
90	/*
91	 * There is no need to analyze ld.so because we don't map in any of
92	 * its dependencies.  However we may map these dependencies in later
93	 * (as if ld.so had dlopened them), so initialize the plt and the
94	 * permission information.
95	 */
96	if (PLTGOT(lmp))
97		elf_plt_init((PLTGOT(lmp)), (caddr_t)lmp);
98}
99
100/*
101 * elf_plt_write() will test to see how far away our destination
102 *	address lies.  If it is close enough that a branch can
103 *	be used instead of a jmpl - we will fill the plt in with
104 * 	single branch.  The branches are much quicker then
105 *	a jmpl instruction - see bug#4356879 for further
106 *	details.
107 *
108 *	NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since
109 *		librtld/dldump update PLT's who's physical
110 *		address is not the same as the 'virtual' runtime
111 *		address.
112 */
113Pltbindtype
114/* ARGSUSED4 */
115elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval,
116	Xword pltndx)
117{
118	Rela		*rel = (Rela *)rptr;
119	uintptr_t	vpltaddr, pltaddr;
120	long		disp;
121
122
123	pltaddr = addr + rel->r_offset;
124	vpltaddr = vaddr + rel->r_offset;
125	disp = symval - vpltaddr - 4;
126
127	/*
128	 * Test if the destination address is close enough to use
129	 * a ba,a... instruction to reach it.
130	 */
131	if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) {
132		uint_t		*pltent, bainstr;
133		Pltbindtype	rc;
134
135		pltent = (uint_t *)pltaddr;
136		/*
137		 * The
138		 *
139		 *	ba,a,pt %icc, <dest>
140		 *
141		 * is the most efficient of the PLT's.  If we
142		 * are within +-20 bits *and* running on a
143		 * v8plus architecture - use that branch.
144		 */
145		if ((at_flags & EF_SPARC_32PLUS) &&
146		    S_INRANGE(disp, 20)) {
147			bainstr = M_BA_A_PT;	/* ba,a,pt %icc,<dest> */
148			bainstr |= (S_MASK(19) & (disp >> 2));
149			rc = PLT_T_21D;
150			DBG_CALL(pltcnt21d++);
151		} else {
152			/*
153			 * Otherwise - we fall back to the good old
154			 *
155			 *	ba,a	<dest>
156			 *
157			 * Which still beats a jmpl instruction.
158			 */
159			bainstr = M_BA_A;		/* ba,a <dest> */
160			bainstr |= (S_MASK(22) & (disp >> 2));
161			rc = PLT_T_24D;
162			DBG_CALL(pltcnt24d++);
163		}
164
165		pltent[2] = M_NOP;		/* nop instr */
166		pltent[1] = bainstr;
167
168		iflush_range((char *)(&pltent[1]), 4);
169		pltent[0] = M_NOP;		/* nop instr */
170		iflush_range((char *)(&pltent[0]), 4);
171		return (rc);
172	}
173
174	/*
175	 * The PLT destination is not in reach of
176	 * a branch instruction - so we fall back
177	 * to a 'jmpl' sequence.
178	 */
179	plt_full_range(pltaddr, symval);
180	DBG_CALL(pltcntfull++);
181	return (PLT_T_FULL);
182}
183
184
185/*
186 * Local storage space created on the stack created for this glue
187 * code includes space for:
188 *		0x4	pointer to dyn_data
189 *		0x4	size prev stack frame
190 */
191static const uchar_t dyn_plt_template[] = {
192/* 0x00 */	0x80, 0x90, 0x00, 0x1e,	/* tst   %fp */
193/* 0x04 */	0x02, 0x80, 0x00, 0x04, /* be    0x14 */
194/* 0x08 */	0x82, 0x27, 0x80, 0x0e,	/* sub   %sp, %fp, %g1 */
195/* 0x0c */	0x10, 0x80, 0x00, 0x03, /* ba	 0x20 */
196/* 0x10 */	0x01, 0x00, 0x00, 0x00, /* nop */
197/* 0x14 */	0x82, 0x10, 0x20, 0x60, /* mov	0x60, %g1 */
198/* 0x18 */	0x9d, 0xe3, 0xbf, 0x98,	/* save	%sp, -0x68, %sp */
199/* 0x1c */	0xc2, 0x27, 0xbf, 0xf8,	/* st	%g1, [%fp + -0x8] */
200/* 0x20 */	0x03, 0x00, 0x00, 0x00,	/* sethi %hi(val), %g1 */
201/* 0x24 */	0x82, 0x10, 0x60, 0x00, /* or	 %g1, %lo(val), %g1 */
202/* 0x28 */	0x40, 0x00, 0x00, 0x00,	/* call  <rel_addr> */
203/* 0x2c */	0xc2, 0x27, 0xbf, 0xfc	/* st    %g1, [%fp + -0x4] */
204};
205
206int	dyn_plt_ent_size = sizeof (dyn_plt_template) +
207		sizeof (uintptr_t) +	/* reflmp */
208		sizeof (uintptr_t) +	/* deflmp */
209		sizeof (ulong_t) +	/* symndx */
210		sizeof (ulong_t) +	/* sb_flags */
211		sizeof (Sym);		/* symdef */
212
213/*
214 * the dynamic plt entry is:
215 *
216 *	tst	%fp
217 *	be	1f
218 *	nop
219 *	sub	%sp, %fp, %g1
220 *	ba	2f
221 *	nop
222 * 1:
223 *	mov	SA(MINFRAME), %g1	! if %fp is null this is the
224 *					!   'minimum stack'.  %fp is null
225 *					!   on the initial stack frame
226 * 2:
227 *	save	%sp, -(SA(MINFRAME) + 2 * CLONGSIZE), %sp
228 *	st	%g1, [%fp + -0x8] ! store prev_stack size in [%fp - 8]
229 *	sethi	%hi(dyn_data), %g1
230 *	or	%g1, %lo(dyn_data), %g1
231 *	call	elf_plt_trace
232 *	st	%g1, [%fp + -0x4] ! store dyn_data ptr in [%fp - 4]
233 * dyn data:
234 *	uintptr_t	reflmp
235 *	uintptr_t	deflmp
236 *	ulong_t		symndx
237 *	ulong_t		sb_flags
238 *	Sym		symdef
239 */
240static caddr_t
241elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp,
242    Sym *sym, ulong_t symndx, ulong_t pltndx, caddr_t to, ulong_t sb_flags,
243    int *fail)
244{
245	extern ulong_t	elf_plt_trace();
246	uintptr_t	dyn_plt, *dyndata;
247
248	/*
249	 * If both pltenter & pltexit have been disabled there
250	 * there is no reason to even create the glue code.
251	 */
252	if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) ==
253	    (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) {
254		(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr,
255		    rptr, (uintptr_t)to, pltndx);
256		return (to);
257	}
258
259	/*
260	 * We only need to add the glue code if there is an auditing
261	 * library that is interested in this binding.
262	 */
263	dyn_plt = (uintptr_t)AUDINFO(rlmp)->ai_dynplts +
264	    (pltndx * dyn_plt_ent_size);
265
266	/*
267	 * Have we initialized this dynamic plt entry yet?  If we haven't do it
268	 * now.  Otherwise this function has been called before, but from a
269	 * different plt (ie. from another shared object).  In that case
270	 * we just set the plt to point to the new dyn_plt.
271	 */
272	if (*(uint_t *)dyn_plt == 0) {
273		Sym	*symp;
274		Xword	symvalue;
275		Lm_list	*lml = LIST(rlmp);
276
277		(void) memcpy((void *)dyn_plt, dyn_plt_template,
278		    sizeof (dyn_plt_template));
279		dyndata = (uintptr_t *)(dyn_plt + sizeof (dyn_plt_template));
280
281		/*
282		 * relocating:
283		 *	sethi	%hi(dyndata), %g1
284		 */
285		symvalue = (Xword)dyndata;
286		if (do_reloc_rtld(R_SPARC_HI22, (uchar_t *)(dyn_plt + 0x20),
287		    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
288		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
289			*fail = 1;
290			return (0);
291		}
292
293		/*
294		 * relocating:
295		 *	or	%g1, %lo(dyndata), %g1
296		 */
297		symvalue = (Xword)dyndata;
298		if (do_reloc_rtld(R_SPARC_LO10, (uchar_t *)(dyn_plt + 0x24),
299		    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
300		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
301			*fail = 1;
302			return (0);
303		}
304
305		/*
306		 * relocating:
307		 *	call	elf_plt_trace
308		 */
309		symvalue = (Xword)((uintptr_t)&elf_plt_trace -
310		    (dyn_plt + 0x28));
311		if (do_reloc_rtld(R_SPARC_WDISP30, (uchar_t *)(dyn_plt + 0x28),
312		    &symvalue, MSG_ORIG(MSG_SYM_ELFPLTTRACE),
313		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
314			*fail = 1;
315			return (0);
316		}
317
318		*dyndata++ = (uintptr_t)rlmp;
319		*dyndata++ = (uintptr_t)dlmp;
320		*(ulong_t *)dyndata++ = symndx;
321		*(ulong_t *)dyndata++ = sb_flags;
322		symp = (Sym *)dyndata;
323		*symp = *sym;
324		symp->st_name += (Word)STRTAB(dlmp);
325		symp->st_value = (Addr)to;
326
327		iflush_range((void *)dyn_plt, sizeof (dyn_plt_template));
328	}
329
330	(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr,
331	    rptr, (uintptr_t)dyn_plt, 0);
332	return ((caddr_t)dyn_plt);
333}
334
335
336/*
337 * Function binding routine - invoked on the first call to a function through
338 * the procedure linkage table;
339 * passes first through an assembly language interface.
340 *
341 * Takes the address of the PLT entry where the call originated,
342 * the offset into the relocation table of the associated
343 * relocation entry and the address of the link map (rt_private_map struct)
344 * for the entry.
345 *
346 * Returns the address of the function referenced after re-writing the PLT
347 * entry to invoke the function directly.
348 *
349 * On error, causes process to terminate with a signal.
350 */
351ulong_t
352elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from)
353{
354	Rt_map		*nlmp, *llmp;
355	ulong_t		addr, vaddr, reloff, symval, rsymndx;
356	char		*name;
357	Rela		*rptr;
358	Sym		*rsym, *nsym;
359	Xword		pltndx;
360	uint_t		binfo, sb_flags = 0;
361	Slookup		sl;
362	Pltbindtype	pbtype;
363	int		entry, lmflags;
364	uint_t		dbg_class;
365	Lm_list		*lml = LIST(lmp);
366
367	/*
368	 * For compatibility with libthread (TI_VERSION 1) we track the entry
369	 * value.  A zero value indicates we have recursed into ld.so.1 to
370	 * further process a locking request.  Under this recursion we disable
371	 * tsort and cleanup activities.
372	 */
373	entry = enter();
374
375	if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) {
376		dbg_class = dbg_desc->d_class;
377		dbg_desc->d_class = 0;
378	}
379
380	/*
381	 * Must calculate true plt relocation address from reloc.
382	 * Take offset, subtract number of reserved PLT entries, and divide
383	 * by PLT entry size, which should give the index of the plt
384	 * entry (and relocation entry since they have been defined to be
385	 * in the same order).  Then we must multiply by the size of
386	 * a relocation entry, which will give us the offset of the
387	 * plt relocation entry from the start of them given by JMPREL(lm).
388	 */
389	addr = pltoff - M_PLT_RESERVSZ;
390	pltndx = addr / M_PLT_ENTSIZE;
391
392	/*
393	 * Perform some basic sanity checks.  If we didn't get a load map
394	 * or the plt offset is invalid then its possible someone has walked
395	 * over the plt entries or jumped to plt0 out of the blue.
396	 */
397	if (!lmp || ((addr % M_PLT_ENTSIZE) != 0)) {
398		Conv_inv_buf_t	inv_buf;
399
400		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF),
401		    conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf),
402		    EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from));
403		rtldexit(lml, 1);
404	}
405	reloff = pltndx * sizeof (Rela);
406
407	/*
408	 * Use relocation entry to get symbol table entry and symbol name.
409	 */
410	addr = (ulong_t)JMPREL(lmp);
411	rptr = (Rela *)(addr + reloff);
412	rsymndx = ELF_R_SYM(rptr->r_info);
413	rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp)));
414	name = (char *)(STRTAB(lmp) + rsym->st_name);
415
416	/*
417	 * Determine the last link-map of this list, this'll be the starting
418	 * point for any tsort() processing.
419	 */
420	llmp = lml->lm_tail;
421
422	/*
423	 * Find definition for symbol.  Initialize the symbol lookup data
424	 * structure.
425	 */
426	SLOOKUP_INIT(sl, name, lmp, lml->lm_head, ld_entry_cnt, 0,
427	    rsymndx, rsym, 0, LKUP_DEFT);
428
429	if ((nsym = lookup_sym(&sl, &nlmp, &binfo)) == 0) {
430		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
431		    demangle(name));
432		rtldexit(lml, 1);
433	}
434
435	symval = nsym->st_value;
436	if (!(FLAGS(nlmp) & FLG_RT_FIXED) &&
437	    (nsym->st_shndx != SHN_ABS))
438		symval += ADDR(nlmp);
439	if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) {
440		/*
441		 * Record that this new link map is now bound to the caller.
442		 */
443		if (bind_one(lmp, nlmp, BND_REFER) == 0)
444			rtldexit(lml, 1);
445	}
446
447	if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_SYMBIND) {
448		ulong_t	symndx = (((uintptr_t)nsym -
449		    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
450
451		symval = audit_symbind(lmp, nlmp, nsym, symndx, symval,
452		    &sb_flags);
453	}
454
455	if (FLAGS(lmp) & FLG_RT_FIXED)
456		vaddr = 0;
457	else
458		vaddr = ADDR(lmp);
459
460	pbtype = PLT_T_NONE;
461	if (!(rtld_flags & RT_FL_NOBIND)) {
462		if (((lml->lm_tflags | FLAGS1(lmp)) &
463		    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
464		    AUDINFO(lmp)->ai_dynplts) {
465			int	fail = 0;
466			ulong_t	symndx = (((uintptr_t)nsym -
467			    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
468
469			symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr,
470			    rptr, lmp, nlmp, nsym, symndx, pltndx,
471			    (caddr_t)symval, sb_flags, &fail);
472			if (fail)
473				rtldexit(lml, 1);
474		} else {
475			/*
476			 * Write standard PLT entry to jump directly
477			 * to newly bound function.
478			 */
479			pbtype = elf_plt_write((uintptr_t)vaddr,
480			    (uintptr_t)vaddr, rptr, symval, pltndx);
481		}
482	}
483
484	/*
485	 * Print binding information and rebuild PLT entry.
486	 */
487	DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)),
488	    pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value, name, binfo));
489
490	/*
491	 * Complete any processing for newly loaded objects.  Note we don't
492	 * know exactly where any new objects are loaded (we know the object
493	 * that supplied the symbol, but others may have been loaded lazily as
494	 * we searched for the symbol), so sorting starts from the last
495	 * link-map know on entry to this routine.
496	 */
497	if (entry)
498		load_completion(llmp);
499
500	/*
501	 * Some operations like dldump() or dlopen()'ing a relocatable object
502	 * result in objects being loaded on rtld's link-map, make sure these
503	 * objects are initialized also.
504	 */
505	if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init)
506		load_completion(nlmp);
507
508	/*
509	 * If the object we've bound to is in the process of being initialized
510	 * by another thread, determine whether we should block.
511	 */
512	is_dep_ready(nlmp, lmp, DBG_WAIT_SYMBOL);
513
514	/*
515	 * Make sure the object to which we've bound has had it's .init fired.
516	 * Cleanup before return to user code.
517	 */
518	if (entry) {
519		is_dep_init(nlmp, lmp);
520		leave(lml);
521	}
522
523	if (lmflags & LML_FLG_RTLDLM)
524		dbg_desc->d_class = dbg_class;
525
526	return (symval);
527}
528
529
530/*
531 * Read and process the relocations for one link object, we assume all
532 * relocation sections for loadable segments are stored contiguously in
533 * the file.
534 */
535int
536elf_reloc(Rt_map *lmp, uint_t plt)
537{
538	ulong_t		relbgn, relend, relsiz, basebgn, pltbgn, pltend;
539	ulong_t		roffset, rsymndx, psymndx = 0, etext = ETEXT(lmp);
540	ulong_t		emap, dsymndx, pltndx;
541	uchar_t		rtype;
542	long		reladd, value, pvalue;
543	Sym		*symref, *psymref, *symdef, *psymdef;
544	char		*name, *pname;
545	Rt_map		*_lmp, *plmp;
546	int		textrel = 0, ret = 1, noplt = 0;
547	long		relacount = RELACOUNT(lmp);
548	Rela		*rel;
549	Pltbindtype	pbtype;
550	uint_t		binfo, pbinfo;
551	APlist		*bound = NULL;
552
553	/*
554	 * If an object has any DT_REGISTER entries associated with
555	 * it, they are processed now.
556	 */
557	if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) {
558		if (elf_regsyms(lmp) == 0)
559			return (0);
560	}
561
562	/*
563	 * Although only necessary for lazy binding, initialize the first
564	 * procedure linkage table entry to go to elf_rtbndr().  dbx(1) seems
565	 * to find this useful.
566	 */
567	if ((plt == 0) && PLTGOT(lmp)) {
568		if ((ulong_t)PLTGOT(lmp) < etext) {
569			if (elf_set_prot(lmp, PROT_WRITE) == 0)
570				return (0);
571			textrel = 1;
572		}
573		elf_plt_init(PLTGOT(lmp), (caddr_t)lmp);
574	}
575
576	/*
577	 * Initialize the plt start and end addresses.
578	 */
579	if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0)
580		pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp));
581
582	/*
583	 * If we've been called upon to promote an RTLD_LAZY object to an
584	 * RTLD_NOW then we're only interested in scaning the .plt table.
585	 */
586	if (plt) {
587		relbgn = pltbgn;
588		relend = pltend;
589	} else {
590		/*
591		 * The relocation sections appear to the run-time linker as a
592		 * single table.  Determine the address of the beginning and end
593		 * of this table.  There are two different interpretations of
594		 * the ABI at this point:
595		 *
596		 *   o	The REL table and its associated RELSZ indicate the
597		 *	concatenation of *all* relocation sections (this is the
598		 *	model our link-editor constructs).
599		 *
600		 *   o	The REL table and its associated RELSZ indicate the
601		 *	concatenation of all *but* the .plt relocations.  These
602		 *	relocations are specified individually by the JMPREL and
603		 *	PLTRELSZ entries.
604		 *
605		 * Determine from our knowledege of the relocation range and
606		 * .plt range, the range of the total relocation table.  Note
607		 * that one other ABI assumption seems to be that the .plt
608		 * relocations always follow any other relocations, the
609		 * following range checking drops that assumption.
610		 */
611		relbgn = (ulong_t)(REL(lmp));
612		relend = relbgn + (ulong_t)(RELSZ(lmp));
613		if (pltbgn) {
614			if (!relbgn || (relbgn > pltbgn))
615				relbgn = pltbgn;
616			if (!relbgn || (relend < pltend))
617				relend = pltend;
618		}
619	}
620	if (!relbgn || (relbgn == relend)) {
621		DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE));
622		return (1);
623	}
624
625	relsiz = (ulong_t)(RELENT(lmp));
626	basebgn = ADDR(lmp);
627	emap = ADDR(lmp) + MSIZE(lmp);
628
629	DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START));
630
631	/*
632	 * If we're processing in lazy mode there is no need to scan the
633	 * .rela.plt table.
634	 */
635	if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0))
636		noplt = 1;
637
638	/*
639	 * Loop through relocations.
640	 */
641	while (relbgn < relend) {
642		Addr		vaddr;
643		uint_t		sb_flags = 0;
644
645		rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
646
647		/*
648		 * If this is a RELATIVE relocation in a shared object (the
649		 * common case), and if we are not debugging, then jump into a
650		 * tighter relocation loop (elf_reloc_relative).  Only make the
651		 * jump if we've been given a hint on the number of relocations.
652		 */
653		if ((rtype == R_SPARC_RELATIVE) &&
654		    ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) {
655			/*
656			 * It's possible that the relative relocation block
657			 * has relocations against the text segment as well
658			 * as the data segment.  Since our optimized relocation
659			 * engine does not check which segment the relocation
660			 * is against - just mprotect it now if it's been
661			 * marked as containing TEXTREL's.
662			 */
663			if ((textrel == 0) && (FLAGS1(lmp) & FL1_RT_TEXTREL)) {
664				if (elf_set_prot(lmp, PROT_WRITE) == 0) {
665					ret = 0;
666					break;
667				}
668				textrel = 1;
669			}
670			if (relacount) {
671				relbgn = elf_reloc_relacount(relbgn, relacount,
672				    relsiz, basebgn);
673				relacount = 0;
674			} else {
675				relbgn = elf_reloc_relative(relbgn, relend,
676				    relsiz, basebgn, etext, emap);
677			}
678			if (relbgn >= relend)
679				break;
680			rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
681		}
682
683		roffset = ((Rela *)relbgn)->r_offset;
684
685		reladd = (long)(((Rela *)relbgn)->r_addend);
686		rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info);
687
688		rel = (Rela *)relbgn;
689		relbgn += relsiz;
690
691		/*
692		 * Optimizations.
693		 */
694		if (rtype == R_SPARC_NONE)
695			continue;
696		if (noplt && ((ulong_t)rel >= pltbgn) &&
697		    ((ulong_t)rel < pltend)) {
698			relbgn = pltend;
699			continue;
700		}
701
702		if (rtype != R_SPARC_REGISTER) {
703			/*
704			 * If this is a shared object, add the base address
705			 * to offset.
706			 */
707			if (!(FLAGS(lmp) & FLG_RT_FIXED))
708				roffset += basebgn;
709
710			/*
711			 * If this relocation is not against part of the image
712			 * mapped into memory we skip it.
713			 */
714			if ((roffset < ADDR(lmp)) || (roffset > (ADDR(lmp) +
715			    MSIZE(lmp)))) {
716				elf_reloc_bad(lmp, (void *)rel, rtype, roffset,
717				    rsymndx);
718				continue;
719			}
720		}
721
722		/*
723		 * If we're promoting .plts try and determine if this one has
724		 * already been written.  An uninitialized .plts' second
725		 * instruction is a branch.  Note, elf_plt_write() optimizes
726		 * .plt relocations, and it's possible that a relocated entry
727		 * is a branch.  If this is the case, we can't tell the
728		 * difference between an uninitialized .plt and a relocated,
729		 * .plt that uses a branch.  In this case, we'll simply redo
730		 * the relocation calculation, which is a bit sad.
731		 */
732		if (plt) {
733			ulong_t	*_roffset = (ulong_t *)roffset;
734
735			_roffset++;
736			if ((*_roffset & (~(S_MASK(22)))) != M_BA_A)
737				continue;
738		}
739
740		binfo = 0;
741		pltndx = (ulong_t)-1;
742		pbtype = PLT_T_NONE;
743		/*
744		 * If a symbol index is specified then get the symbol table
745		 * entry, locate the symbol definition, and determine its
746		 * address.
747		 */
748		if (rsymndx) {
749			/*
750			 * Get the local symbol table entry.
751			 */
752			symref = (Sym *)((ulong_t)SYMTAB(lmp) +
753			    (rsymndx * SYMENT(lmp)));
754
755			/*
756			 * If this is a local symbol, just use the base address.
757			 * (we should have no local relocations in the
758			 * executable).
759			 */
760			if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) {
761				value = basebgn;
762				name = (char *)0;
763
764				/*
765				 * Special case TLS relocations.
766				 */
767				if (rtype == R_SPARC_TLS_DTPMOD32) {
768					/*
769					 * Use the TLS modid.
770					 */
771					value = TLSMODID(lmp);
772
773				} else if (rtype == R_SPARC_TLS_TPOFF32) {
774					if ((value = elf_static_tls(lmp, symref,
775					    rel, rtype, 0, roffset, 0)) == 0) {
776						ret = 0;
777						break;
778					}
779				}
780			} else {
781				/*
782				 * If the symbol index is equal to the previous
783				 * symbol index relocation we processed then
784				 * reuse the previous values. (Note that there
785				 * have been cases where a relocation exists
786				 * against a copy relocation symbol, our ld(1)
787				 * should optimize this away, but make sure we
788				 * don't use the same symbol information should
789				 * this case exist).
790				 */
791				if ((rsymndx == psymndx) &&
792				    (rtype != R_SPARC_COPY)) {
793					/* LINTED */
794					if (psymdef == 0) {
795						DBG_CALL(Dbg_bind_weak(lmp,
796						    (Addr)roffset, (Addr)
797						    (roffset - basebgn), name));
798						continue;
799					}
800					/* LINTED */
801					value = pvalue;
802					/* LINTED */
803					name = pname;
804					symdef = psymdef;
805					/* LINTED */
806					symref = psymref;
807					/* LINTED */
808					_lmp = plmp;
809					/* LINTED */
810					binfo = pbinfo;
811
812					if ((LIST(_lmp)->lm_tflags |
813					    FLAGS1(_lmp)) &
814					    LML_TFLG_AUD_SYMBIND) {
815						value = audit_symbind(lmp, _lmp,
816						    /* LINTED */
817						    symdef, dsymndx, value,
818						    &sb_flags);
819					}
820				} else {
821					Slookup		sl;
822
823					/*
824					 * Lookup the symbol definition.
825					 * Initialize the symbol lookup data
826					 * structure.
827					 */
828					name = (char *)(STRTAB(lmp) +
829					    symref->st_name);
830
831					SLOOKUP_INIT(sl, name, lmp, 0,
832					    ld_entry_cnt, 0, rsymndx, symref,
833					    rtype, LKUP_STDRELOC);
834
835					symdef = lookup_sym(&sl, &_lmp, &binfo);
836
837					/*
838					 * If the symbol is not found and the
839					 * reference was not to a weak symbol,
840					 * report an error.  Weak references
841					 * may be unresolved.
842					 */
843					/* BEGIN CSTYLED */
844					if (symdef == 0) {
845					    if (sl.sl_bind != STB_WEAK) {
846						if (elf_reloc_error(lmp, name,
847						    rel, binfo))
848							continue;
849
850						ret = 0;
851						break;
852
853					    } else {
854						psymndx = rsymndx;
855						psymdef = 0;
856
857						DBG_CALL(Dbg_bind_weak(lmp,
858						    (Addr)roffset, (Addr)
859						    (roffset - basebgn), name));
860						continue;
861					    }
862					}
863					/* END CSTYLED */
864
865					/*
866					 * If symbol was found in an object
867					 * other than the referencing object
868					 * then record the binding.
869					 */
870					if ((lmp != _lmp) && ((FLAGS1(_lmp) &
871					    FL1_RT_NOINIFIN) == 0)) {
872						if (aplist_test(&bound, _lmp,
873						    AL_CNT_RELBIND) == 0) {
874							ret = 0;
875							break;
876						}
877					}
878
879					/*
880					 * Calculate the location of definition;
881					 * symbol value plus base address of
882					 * containing shared object.
883					 */
884					if (IS_SIZE(rtype))
885						value = symdef->st_size;
886					else
887						value = symdef->st_value;
888
889					if (!(FLAGS(_lmp) & FLG_RT_FIXED) &&
890					    !(IS_SIZE(rtype)) &&
891					    (symdef->st_shndx != SHN_ABS) &&
892					    (ELF_ST_TYPE(symdef->st_info) !=
893					    STT_TLS))
894						value += ADDR(_lmp);
895
896					/*
897					 * Retain this symbol index and the
898					 * value in case it can be used for the
899					 * subsequent relocations.
900					 */
901					if (rtype != R_SPARC_COPY) {
902						psymndx = rsymndx;
903						pvalue = value;
904						pname = name;
905						psymdef = symdef;
906						psymref = symref;
907						plmp = _lmp;
908						pbinfo = binfo;
909					}
910					if ((LIST(_lmp)->lm_tflags |
911					    FLAGS1(_lmp)) &
912					    LML_TFLG_AUD_SYMBIND) {
913						dsymndx = (((uintptr_t)symdef -
914						    (uintptr_t)SYMTAB(_lmp)) /
915						    SYMENT(_lmp));
916						value = audit_symbind(lmp, _lmp,
917						    symdef, dsymndx, value,
918						    &sb_flags);
919					}
920				}
921
922				/*
923				 * If relocation is PC-relative, subtract
924				 * offset address.
925				 */
926				if (IS_PC_RELATIVE(rtype))
927					value -= roffset;
928
929				/*
930				 * Special case TLS relocations.
931				 */
932				if (rtype == R_SPARC_TLS_DTPMOD32) {
933					/*
934					 * Relocation value is the TLS modid.
935					 */
936					value = TLSMODID(_lmp);
937
938				} else if (rtype == R_SPARC_TLS_TPOFF32) {
939					if ((value = elf_static_tls(_lmp,
940					    symdef, rel, rtype, name, roffset,
941					    value)) == 0) {
942						ret = 0;
943						break;
944					}
945				}
946			}
947		} else {
948			/*
949			 * Special cases.
950			 */
951			if (rtype == R_SPARC_REGISTER) {
952				/*
953				 * A register symbol associated with symbol
954				 * index 0 is initialized (i.e. relocated) to
955				 * a constant in the r_addend field rather than
956				 * to a symbol value.
957				 */
958				value = 0;
959
960			} else if (rtype == R_SPARC_TLS_DTPMOD32) {
961				/*
962				 * TLS relocation value is the TLS modid.
963				 */
964				value = TLSMODID(lmp);
965			} else
966				value = basebgn;
967			name = (char *)0;
968		}
969
970		DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH,
971		    M_REL_SHT_TYPE, rel, NULL, name));
972
973		/*
974		 * If this object has relocations in the text segment, turn
975		 * off the write protect.
976		 */
977		if ((rtype != R_SPARC_REGISTER) && (roffset < etext) &&
978		    (textrel == 0)) {
979			if (elf_set_prot(lmp, PROT_WRITE) == 0) {
980				ret = 0;
981				break;
982			}
983			textrel = 1;
984		}
985
986		/*
987		 * Call relocation routine to perform required relocation.
988		 */
989		switch (rtype) {
990		case R_SPARC_REGISTER:
991			/*
992			 * The v9 ABI 4.2.4 says that system objects may,
993			 * but are not required to, use register symbols
994			 * to inidcate how they use global registers. Thus
995			 * at least %g6, %g7 must be allowed in addition
996			 * to %g2 and %g3.
997			 */
998			value += reladd;
999			if (roffset == STO_SPARC_REGISTER_G1) {
1000				set_sparc_g1(value);
1001			} else if (roffset == STO_SPARC_REGISTER_G2) {
1002				set_sparc_g2(value);
1003			} else if (roffset == STO_SPARC_REGISTER_G3) {
1004				set_sparc_g3(value);
1005			} else if (roffset == STO_SPARC_REGISTER_G4) {
1006				set_sparc_g4(value);
1007			} else if (roffset == STO_SPARC_REGISTER_G5) {
1008				set_sparc_g5(value);
1009			} else if (roffset == STO_SPARC_REGISTER_G6) {
1010				set_sparc_g6(value);
1011			} else if (roffset == STO_SPARC_REGISTER_G7) {
1012				set_sparc_g7(value);
1013			} else {
1014				eprintf(LIST(lmp), ERR_FATAL,
1015				    MSG_INTL(MSG_REL_BADREG), NAME(lmp),
1016				    EC_ADDR(roffset));
1017				ret = 0;
1018				break;
1019			}
1020
1021			DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD,
1022			    M_MACH, (Xword)roffset, (Xword)value));
1023			break;
1024		case R_SPARC_COPY:
1025			if (elf_copy_reloc(name, symref, lmp, (void *)roffset,
1026			    symdef, _lmp, (const void *)value) == 0)
1027				ret = 0;
1028			break;
1029		case R_SPARC_JMP_SLOT:
1030			pltndx = ((ulong_t)rel -
1031			    (uintptr_t)JMPREL(lmp)) / relsiz;
1032
1033			if (FLAGS(lmp) & FLG_RT_FIXED)
1034				vaddr = 0;
1035			else
1036				vaddr = ADDR(lmp);
1037
1038			if (((LIST(lmp)->lm_tflags | FLAGS1(lmp)) &
1039			    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
1040			    AUDINFO(lmp)->ai_dynplts) {
1041				int	fail = 0;
1042				ulong_t	symndx = (((uintptr_t)symdef -
1043				    (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp));
1044
1045				(void) elf_plt_trace_write((caddr_t)vaddr,
1046				    (Rela *)rel, lmp, _lmp, symdef, symndx,
1047				    pltndx, (caddr_t)value, sb_flags, &fail);
1048				if (fail)
1049					ret = 0;
1050			} else {
1051				/*
1052				 * Write standard PLT entry to jump directly
1053				 * to newly bound function.
1054				 */
1055				DBG_CALL(Dbg_reloc_apply_val(LIST(lmp),
1056				    ELF_DBG_RTLD, (Xword)roffset,
1057				    (Xword)value));
1058				pbtype = elf_plt_write((uintptr_t)vaddr,
1059				    (uintptr_t)vaddr, (void *)rel, value,
1060				    pltndx);
1061			}
1062			break;
1063		default:
1064			value += reladd;
1065
1066			/*
1067			 * Write the relocation out.  If this relocation is a
1068			 * common basic write, skip the doreloc() engine.
1069			 */
1070			if ((rtype == R_SPARC_GLOB_DAT) ||
1071			    (rtype == R_SPARC_32)) {
1072				if (roffset & 0x3) {
1073					Conv_inv_buf_t inv_buf;
1074
1075					eprintf(LIST(lmp), ERR_FATAL,
1076					    MSG_INTL(MSG_REL_NONALIGN),
1077					    conv_reloc_SPARC_type(rtype,
1078					    0, &inv_buf),
1079					    NAME(lmp), demangle(name),
1080					    EC_OFF(roffset));
1081					ret = 0;
1082				} else
1083					*(uint_t *)roffset += value;
1084			} else {
1085				if (do_reloc_rtld(rtype, (uchar_t *)roffset,
1086				    (Xword *)&value, name,
1087				    NAME(lmp), LIST(lmp)) == 0)
1088					ret = 0;
1089			}
1090
1091			/*
1092			 * The value now contains the 'bit-shifted' value that
1093			 * was or'ed into memory (this was set by
1094			 * do_reloc_rtld()).
1095			 */
1096			DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD,
1097			    (Xword)roffset, (Xword)value));
1098
1099			/*
1100			 * If this relocation is against a text segment, make
1101			 * sure that the instruction cache is flushed.
1102			 */
1103			if (textrel)
1104				iflush_range((caddr_t)roffset, 0x4);
1105		}
1106
1107		if ((ret == 0) &&
1108		    ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0))
1109			break;
1110
1111		if (binfo) {
1112			DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset,
1113			    (Off)(roffset - basebgn), pltndx, pbtype,
1114			    _lmp, (Addr)value, symdef->st_value, name, binfo));
1115		}
1116	}
1117
1118	return (relocate_finish(lmp, bound, textrel, ret));
1119}
1120
1121/*
1122 * Provide a machine specific interface to the conversion routine.  By calling
1123 * the machine specific version, rather than the generic version, we insure that
1124 * the data tables/strings for all known machine versions aren't dragged into
1125 * ld.so.1.
1126 */
1127const char *
1128_conv_reloc_type(uint_t rel)
1129{
1130	static Conv_inv_buf_t	inv_buf;
1131
1132	return (conv_reloc_SPARC_type(rel, 0, &inv_buf));
1133}
1134