util.c revision 4947:e92895a4c96a
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 *	Copyright (c) 1988 AT&T
24 *	  All Rights Reserved
25 *
26 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
27 * Use is subject to license terms.
28 */
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * Utility routines for run-time linker.  some are duplicated here from libc
33 * (with different names) to avoid name space collisions.
34 */
35#include	"_synonyms.h"
36#include	<stdio.h>
37#include	<sys/types.h>
38#include	<sys/mman.h>
39#include	<sys/lwp.h>
40#include	<sys/debug.h>
41#include	<stdarg.h>
42#include	<fcntl.h>
43#include	<string.h>
44#include	<ctype.h>
45#include	<dlfcn.h>
46#include	<unistd.h>
47#include	<stdlib.h>
48#include	<sys/auxv.h>
49#include	<debug.h>
50#include	<conv.h>
51#include	"_rtld.h"
52#include	"_audit.h"
53#include	"_elf.h"
54#include	"msg.h"
55
56static int ld_flags_env(const char *, Word *, Word *, uint_t, int);
57
58/*
59 * All error messages go through eprintf().  During process initialization these
60 * messages should be directed to the standard error, however once control has
61 * been passed to the applications code these messages should be stored in an
62 * internal buffer for use with dlerror().  Note, fatal error conditions that
63 * may occur while running the application will still cause a standard error
64 * message, see rtldexit() in this file for details.
65 * The `application' flag serves to indicate the transition between process
66 * initialization and when the applications code is running.
67 */
68
69/*
70 * Null function used as place where a debugger can set a breakpoint.
71 */
72void
73rtld_db_dlactivity(Lm_list *lml)
74{
75	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
76	    r_debug.rtd_rdebug.r_state));
77}
78
79/*
80 * Null function used as place where debugger can set a pre .init
81 * processing breakpoint.
82 */
83void
84rtld_db_preinit(Lm_list *lml)
85{
86	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
87	    r_debug.rtd_rdebug.r_state));
88}
89
90/*
91 * Null function used as place where debugger can set a post .init
92 * processing breakpoint.
93 */
94void
95rtld_db_postinit(Lm_list *lml)
96{
97	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
98	    r_debug.rtd_rdebug.r_state));
99}
100
101/*
102 * Debugger Event Notification
103 *
104 * This function centralizes all debugger event notification (ala rtld_db).
105 *
106 * There's a simple intent, focused on insuring the primary link-map control
107 * list (or each link-map list) is consistent, and the indication that objects
108 * have been added or deleted from this list.  Although an RD_ADD and RD_DELETE
109 * event are posted for each of these, most debuggers don't care, as their
110 * view is that these events simply convey an "inconsistent" state.
111 *
112 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we
113 * enter ld.so.1.
114 *
115 * With auditors, we may be in the process of relocating a collection of
116 * objects, and will leave() ld.so.1 to call the auditor.  At this point we
117 * must indicate an RD_CONSISTENT event, but librtld_db will not report an
118 * object to the debuggers until relocation processing has been completed on it.
119 * To allow for the collection of these objects that are pending relocation, an
120 * RD_ADD event is set after completing a series of relocations on the primary
121 * link-map control list.
122 *
123 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is
124 * required later (LML_FLG_DBNOTIF):
125 *
126 *  i	the first time we add or delete an object to the primary link-map
127 *	control list.
128 *  ii	the first time we move a secondary link-map control list to the primary
129 *	link-map control list (effectively, this is like adding a group of
130 *	objects to the primary link-map control list).
131 *
132 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and
133 *
134 *  i	each time we leave the runtime linker.
135 */
136void
137rd_event(Lm_list *lml, rd_event_e event, r_state_e state)
138{
139	void	(*fptr)(Lm_list *);
140
141	switch (event) {
142	case RD_PREINIT:
143		fptr = rtld_db_preinit;
144		break;
145	case RD_POSTINIT:
146		fptr = rtld_db_postinit;
147		break;
148	case RD_DLACTIVITY:
149		switch (state) {
150		case RT_CONSISTENT:
151			lml->lm_flags &= ~LML_FLG_DBNOTIF;
152
153			/*
154			 * Do we need to send a notification?
155			 */
156			if ((rtld_flags & RT_FL_DBNOTIF) == 0)
157				return;
158			rtld_flags &= ~RT_FL_DBNOTIF;
159			break;
160		case RT_ADD:
161		case RT_DELETE:
162			lml->lm_flags |= LML_FLG_DBNOTIF;
163
164			/*
165			 * If we are already in an inconsistent state, no
166			 * notification is required.
167			 */
168			if (rtld_flags & RT_FL_DBNOTIF)
169				return;
170			rtld_flags |= RT_FL_DBNOTIF;
171			break;
172		};
173		fptr = rtld_db_dlactivity;
174		break;
175	default:
176		/*
177		 * RD_NONE - do nothing
178		 */
179		break;
180	};
181
182	/*
183	 * Set event state and call 'notification' function.
184	 *
185	 * The debugging clients have previously been told about these
186	 * notification functions and have set breakpoints on them if they
187	 * are interested in the notification.
188	 */
189	r_debug.rtd_rdebug.r_state = state;
190	r_debug.rtd_rdebug.r_rdevent = event;
191	fptr(lml);
192	r_debug.rtd_rdebug.r_rdevent = RD_NONE;
193}
194
195#if	defined(__sparc) || defined(__x86)
196/*
197 * Stack Cleanup.
198 *
199 * This function is invoked to 'remove' arguments that were passed in on the
200 * stack.  This is most likely if ld.so.1 was invoked directly.  In that case
201 * we want to remove ld.so.1 as well as it's arguments from the argv[] array.
202 * Which means we then need to slide everything above it on the stack down
203 * accordingly.
204 *
205 * While the stack layout is platform specific - it just so happens that __x86,
206 * and __sparc platforms share the following initial stack layout.
207 *
208 *	!_______________________!  high addresses
209 *	!			!
210 *	!	Information	!
211 *	!	Block		!
212 *	!	(size varies)	!
213 *	!_______________________!
214 *	!	0 word		!
215 *	!_______________________!
216 *	!	Auxiliary	!
217 *	!	vector		!
218 *	!	2 word entries	!
219 *	!			!
220 *	!_______________________!
221 *	!	0 word		!
222 *	!_______________________!
223 *	!	Environment	!
224 *	!	pointers	!
225 *	!	...		!
226 *	!	(one word each)	!
227 *	!_______________________!
228 *	!	0 word		!
229 *	!_______________________!
230 *	!	Argument	! low addresses
231 *	!	pointers	!
232 *	!	Argc words	!
233 *	!_______________________!
234 *	!			!
235 *	!	Argc		!
236 *	!_______________________!
237 *	!	...		!
238 *
239 */
240static void
241stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt)
242{
243	int		ndx;
244	long		*argc;
245	char		**oargv, **nargv;
246	char		**oenvp, **nenvp;
247	auxv_t		*oauxv, *nauxv;
248
249	/*
250	 * Slide ARGV[] and update argc.  The argv pointer remains the same,
251	 * however slide the applications arguments over the arguments to
252	 * ld.so.1.
253	 */
254	nargv = &argv[0];
255	oargv = &argv[rmcnt];
256
257	for (ndx = 0; oargv[ndx]; ndx++)
258		nargv[ndx] = oargv[ndx];
259	nargv[ndx] = oargv[ndx];
260
261	argc = (long *)((uintptr_t)argv - sizeof (long *));
262	*argc -= rmcnt;
263
264	/*
265	 * Slide ENVP[], and update the environment array pointer.
266	 */
267	ndx++;
268	nenvp = &nargv[ndx];
269	oenvp = &oargv[ndx];
270	*envp = nenvp;
271
272	for (ndx = 0; oenvp[ndx]; ndx++)
273		nenvp[ndx] = oenvp[ndx];
274	nenvp[ndx] = oenvp[ndx];
275
276	/*
277	 * Slide AUXV[], and update the aux vector pointer.
278	 */
279	ndx++;
280	nauxv = (auxv_t *)&nenvp[ndx];
281	oauxv = (auxv_t *)&oenvp[ndx];
282	*auxv = nauxv;
283
284	for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++)
285		nauxv[ndx] = oauxv[ndx];
286	nauxv[ndx] = oauxv[ndx];
287}
288#else
289/*
290 * Verify that the above routine is appropriate for any new platforms.
291 */
292#error	unsupported architecture!
293#endif
294
295/*
296 * The only command line argument recognized is -e, followed by a runtime
297 * linker environment variable.
298 */
299int
300rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags,
301    Word *lmtflags, int aout)
302{
303	int	ndx;
304
305	for (ndx = 1; argv[ndx]; ndx++) {
306		char	*str;
307
308		if (argv[ndx][0] != '-')
309			break;
310
311		if (argv[ndx][1] == '\0') {
312			ndx++;
313			break;
314		}
315
316		if (argv[ndx][1] != 'e')
317			return (1);
318
319		if (argv[ndx][2] == '\0') {
320			ndx++;
321			if (argv[ndx] == NULL)
322				return (1);
323			str = argv[ndx];
324		} else
325			str = &argv[ndx][2];
326
327		/*
328		 * If the environment variable starts with LD_, strip the LD_.
329		 * Otherwise, take things as is.
330		 */
331		if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') &&
332		    (str[3] != '\0'))
333			str += 3;
334		if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1)
335			return (1);
336	}
337
338	/*
339	 * Make sure an object file has been specified.
340	 */
341	if (argv[ndx] == 0)
342		return (1);
343
344	/*
345	 * Having gotten the arguments, clean ourselves off of the stack.
346	 */
347	stack_cleanup(argv, envp, auxv, ndx);
348	return (0);
349}
350
351/*
352 * Compare function for FullpathNode AVL tree.
353 */
354static int
355fpavl_compare(const void * n1, const void * n2)
356{
357	uint_t		hash1, hash2;
358	const char	*st1, *st2;
359	int		rc;
360
361	hash1 = ((FullpathNode *)n1)->fpn_hash;
362	hash2 = ((FullpathNode *)n2)->fpn_hash;
363
364	if (hash1 > hash2)
365		return (1);
366	if (hash1 < hash2)
367		return (-1);
368
369	st1 = ((FullpathNode *)n1)->fpn_name;
370	st2 = ((FullpathNode *)n2)->fpn_name;
371
372	rc = strcmp(st1, st2);
373	if (rc > 0)
374		return (1);
375	if (rc < 0)
376		return (-1);
377	return (0);
378}
379
380
381/*
382 * Determine if a given pathname has already been loaded in the AVL tree.
383 * If the pathname does not exist in the AVL tree, the next insertion point
384 * is deposited in "where".  This value can be used by fpavl_insert() to
385 * expedite the insertion.
386 */
387Rt_map *
388fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where)
389{
390	FullpathNode	fpn, *fpnp;
391	avl_tree_t	*avlt;
392
393	/*
394	 * Create the avl tree if required.
395	 */
396	if ((avlt = lml->lm_fpavl) == NULL) {
397		if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0)
398			return (0);
399		avl_create(avlt, fpavl_compare, sizeof (FullpathNode),
400		    SGSOFFSETOF(FullpathNode, fpn_avl));
401		lml->lm_fpavl = avlt;
402	}
403
404	fpn.fpn_name = name;
405	fpn.fpn_hash = sgs_str_hash(name);
406
407	if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL)
408		return (NULL);
409
410	return (fpnp->fpn_lmp);
411}
412
413
414/*
415 * Insert a name into the FullpathNode AVL tree for the link-map list.  The
416 * objects NAME() is the path that would have originally been searched for, and
417 * is therefore the name to associate with any "where" value.  If the object has
418 * a different PATHNAME(), perhaps because it has resolved to a different file
419 * (see fullpath), then this name is recorded also.  See load_file().
420 */
421int
422fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where)
423{
424	FullpathNode	*fpnp;
425
426	if (where == 0) {
427		/* LINTED */
428		Rt_map	*_lmp = fpavl_loaded(lml, name, &where);
429
430		/*
431		 * We better not get a hit now, we do not want duplicates in
432		 * the tree.
433		 */
434		ASSERT(_lmp == 0);
435	}
436
437	/*
438	 * Insert new node in tree
439	 */
440	if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0)
441		return (0);
442
443	fpnp->fpn_name = name;
444	fpnp->fpn_hash = sgs_str_hash(name);
445	fpnp->fpn_lmp = lmp;
446
447	if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *),
448	    AL_CNT_FPNODE) == 0) {
449		free(fpnp);
450		return (0);
451	}
452
453	ASSERT(lml->lm_fpavl != NULL);
454	avl_insert(lml->lm_fpavl, fpnp, where);
455	return (1);
456}
457
458/*
459 * Remove an object from the Fullpath AVL tree.  Note, this is called *before*
460 * the objects link-map is torn down (remove_so), which is where any NAME() and
461 * PATHNAME() strings will be deallocated.
462 */
463void
464fpavl_remove(Rt_map *lmp)
465{
466	FullpathNode	**fpnpp;
467	Aliste		off;
468
469	for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) {
470		FullpathNode	*fpnp = *fpnpp;
471
472		avl_remove(LIST(lmp)->lm_fpavl, fpnp);
473		free(fpnp);
474	}
475	free(FPNODE(lmp));
476	FPNODE(lmp) = 0;
477}
478
479
480/*
481 * Prior to calling an object, either via a .plt or through dlsym(), make sure
482 * its .init has fired.  Through topological sorting, ld.so.1 attempts to fire
483 * init's in the correct order, however, this order is typically based on needed
484 * dependencies and non-lazy relocation bindings.  Lazy relocations (.plts) can
485 * still occur and result in bindings that were not captured during topological
486 * sorting.  This routine compensates for this lack of binding information, and
487 * provides for dynamic .init firing.
488 */
489void
490is_dep_init(Rt_map * dlmp, Rt_map * clmp)
491{
492	Rt_map **	tobj;
493
494	/*
495	 * If the caller is an auditor, and the destination isn't, then don't
496	 * run any .inits (see comments in load_completion()).
497	 */
498	if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) &&
499	    (LIST(clmp) != LIST(dlmp)))
500		return;
501
502	if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST)))
503		return;
504
505	if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) ==
506	    (FLG_RT_RELOCED | FLG_RT_INITDONE))
507		return;
508
509	if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) ==
510	    (FLG_RT_RELOCED | FLG_RT_INITCALL)) {
511		DBG_CALL(Dbg_util_no_init(dlmp));
512		return;
513	}
514
515	if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) {
516		tobj[0] = dlmp;
517		call_init(tobj, DBG_INIT_DYN);
518	}
519}
520
521/*
522 * In a threaded environment insure the thread responsible for loading an object
523 * has completed .init processing for that object before any new thread is
524 * allowed to access the object.  This check is only valid with libthread
525 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes.
526 *
527 * When a new link-map is created, the thread that causes it to be loaded is
528 * identified by THREADID(dlmp).  Compare this with the current thread to
529 * determine if it must be blocked.
530 *
531 * NOTE, there are a number of instances (typically only for .plt processing)
532 * where we must skip this test:
533 *
534 *   .	any thread id of 0 - threads that call thr_exit() may be in this state
535 *	thus we can't deduce what tid they used to be.  Also some of the
536 *	lib/libthread worker threads have this id and must bind (to themselves
537 *	or libc) for libthread to function.
538 *
539 *   .	libthread itself binds to libc, and as libthread is INITFIRST
540 *	libc's .init can't have fired yet.  Luckly libc's .init is not required
541 *	by libthreads binding.
542 *
543 *   .	if the caller is an auditor, and the destination isn't, then don't
544 *	block (see comments in load_completion()).
545 */
546void
547is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what)
548{
549	thread_t	tid;
550
551	if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) &&
552	    (LIST(clmp) != LIST(dlmp)))
553		return;
554
555	if ((rtld_flags & RT_FL_CONCUR) &&
556	    ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) &&
557	    ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) &&
558	    ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) {
559		while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) {
560			FLAGS1(dlmp) |= FL1_RT_INITWAIT;
561			DBG_CALL(Dbg_util_wait(clmp, dlmp, what));
562			(void) rt_cond_wait(CONDVAR(dlmp), &rtldlock);
563		}
564	}
565}
566
567/*
568 * Execute .{preinit|init|fini}array sections
569 */
570void
571call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype)
572{
573	int	start, stop, incr, ndx;
574	uint_t	arraycnt = (uint_t)(arraysz / sizeof (Addr));
575
576	if (array == NULL)
577		return;
578
579	/*
580	 * initarray & preinitarray are walked from beginning to end - while
581	 * finiarray is walked from end to beginning.
582	 */
583	if (shtype == SHT_FINI_ARRAY) {
584		start = arraycnt - 1;
585		stop = incr = -1;
586	} else {
587		start = 0;
588		stop = arraycnt;
589		incr = 1;
590	}
591
592	/*
593	 * Call the .*array[] entries
594	 */
595	for (ndx = start; ndx != stop; ndx += incr) {
596		void (*fptr)(void) = (void(*)())array[ndx];
597
598		DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype));
599
600		leave(LIST(lmp));
601		(*fptr)();
602		(void) enter();
603	}
604}
605
606
607/*
608 * Execute any .init sections.  These are passed to us in an lmp array which
609 * (by default) will have been sorted.
610 */
611void
612call_init(Rt_map ** tobj, int flag)
613{
614	Rt_map **	_tobj, ** _nobj;
615	static List	pending = { NULL, NULL };
616
617	/*
618	 * If we're in the middle of an INITFIRST, this must complete before
619	 * any new init's are fired.  In this case add the object list to the
620	 * pending queue and return.  We'll pick up the queue after any
621	 * INITFIRST objects have their init's fired.
622	 */
623	if (rtld_flags & RT_FL_INITFIRST) {
624		(void) list_append(&pending, tobj);
625		return;
626	}
627
628	/*
629	 * Traverse the tobj array firing each objects init.
630	 */
631	for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) {
632		Rt_map *	lmp = *_tobj;
633		void (*		iptr)() = INIT(lmp);
634
635		if (FLAGS(lmp) & FLG_RT_INITCALL)
636			continue;
637
638		FLAGS(lmp) |= FLG_RT_INITCALL;
639
640		/*
641		 * Establish an initfirst state if necessary - no other inits
642		 * will be fired (because of additional relocation bindings)
643		 * when in this state.
644		 */
645		if (FLAGS(lmp) & FLG_RT_INITFRST)
646			rtld_flags |= RT_FL_INITFIRST;
647
648		if (INITARRAY(lmp) || iptr) {
649			Aliste		off;
650			Bnd_desc **	bdpp;
651
652			/*
653			 * Make sure that all dependencies that have been
654			 * relocated to are initialized before this objects
655			 * .init is executed.  This insures that a dependency
656			 * on an external item that must first be initialized
657			 * by its associated object is satisfied.
658			 */
659			for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) {
660				Bnd_desc *	bdp = *bdpp;
661
662				if ((bdp->b_flags & BND_REFER) == 0)
663					continue;
664				is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT);
665			}
666			DBG_CALL(Dbg_util_call_init(lmp, flag));
667		}
668
669		if (iptr) {
670			leave(LIST(lmp));
671			(*iptr)();
672			(void) enter();
673		}
674
675		call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp,
676		    SHT_INIT_ARRAY);
677
678		if (INITARRAY(lmp) || iptr)
679			DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE));
680
681		/*
682		 * Set the initdone flag regardless of whether this object
683		 * actually contains an .init section.  This flag prevents us
684		 * from processing this section again for an .init and also
685		 * signifies that a .fini must be called should it exist.
686		 * Clear the sort field for use in later .fini processing.
687		 */
688		FLAGS(lmp) |= FLG_RT_INITDONE;
689		SORTVAL(lmp) = -1;
690
691		/*
692		 * Wake anyone up who might be waiting on this .init.
693		 */
694		if (FLAGS1(lmp) & FL1_RT_INITWAIT) {
695			DBG_CALL(Dbg_util_broadcast(lmp));
696			(void) rt_cond_broadcast(CONDVAR(lmp));
697			FLAGS1(lmp) &= ~FL1_RT_INITWAIT;
698		}
699
700		/*
701		 * If we're firing an INITFIRST object, and other objects must
702		 * be fired which are not INITFIRST, make sure we grab any
703		 * pending objects that might have been delayed as this
704		 * INITFIRST was processed.
705		 */
706		if ((rtld_flags & RT_FL_INITFIRST) &&
707		    ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) {
708			Listnode *	lnp;
709			Rt_map **	pobj;
710
711			rtld_flags &= ~RT_FL_INITFIRST;
712
713			while ((lnp = pending.head) != NULL) {
714				if ((pending.head = lnp->next) == NULL)
715					pending.tail = NULL;
716				pobj = lnp->data;
717				free(lnp);
718
719				call_init(pobj, DBG_INIT_PEND);
720			}
721		}
722	}
723	free(tobj);
724}
725
726/*
727 * Function called by atexit(3C).  Calls all .fini sections related with the
728 * mains dependent shared libraries in the order in which the shared libraries
729 * have been loaded.  Skip any .fini defined in the main executable, as this
730 * will be called by crt0 (main was never marked as initdone).
731 */
732void
733call_fini(Lm_list * lml, Rt_map ** tobj)
734{
735	Rt_map **_tobj;
736
737	for (_tobj = tobj; *_tobj != NULL; _tobj++) {
738		Rt_map *	clmp, * lmp = *_tobj;
739		Aliste		off;
740		Bnd_desc **	bdpp;
741
742		/*
743		 * If concurrency checking isn't enabled only fire .fini if
744		 * .init has completed.  We collect all .fini sections of
745		 * objects that had their .init collected, but that doesn't
746		 * mean at the time that the .init had completed.
747		 */
748		if ((rtld_flags & RT_FL_CONCUR) ||
749		    (FLAGS(lmp) & FLG_RT_INITDONE)) {
750			void	(*fptr)(void) = FINI(lmp);
751
752			if (FINIARRAY(lmp) || fptr) {
753				/*
754				 * If concurrency checking is enabled make sure
755				 * this object's .init is completed before
756				 * calling any .fini.
757				 */
758				is_dep_ready(lmp, lmp, DBG_WAIT_FINI);
759				DBG_CALL(Dbg_util_call_fini(lmp));
760			}
761
762			call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp,
763			    SHT_FINI_ARRAY);
764
765			if (fptr) {
766				leave(LIST(lmp));
767				(*fptr)();
768				(void) enter();
769			}
770		}
771
772		/*
773		 * Skip main, this is explicitly called last in atexit_fini().
774		 */
775		if (FLAGS(lmp) & FLG_RT_ISMAIN)
776			continue;
777
778		/*
779		 * Audit `close' operations at this point.  The library has
780		 * exercised its last instructions (regardless of whether it
781		 * will be unmapped or not).
782		 *
783		 * First call any global auditing.
784		 */
785		if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE)
786			_audit_objclose(&(auditors->ad_list), lmp);
787
788		/*
789		 * Finally determine whether this object has local auditing
790		 * requirements by inspecting itself and then its dependencies.
791		 */
792		if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0)
793			continue;
794
795		if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE)
796			_audit_objclose(&(AUDITORS(lmp)->ad_list), lmp);
797
798		for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) {
799			Bnd_desc *	bdp = *bdpp;
800
801			clmp = bdp->b_caller;
802
803			if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) {
804				_audit_objclose(&(AUDITORS(clmp)->ad_list),
805				    lmp);
806				break;
807			}
808		}
809	}
810	DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d,
811	    pltcntu32, pltcntu44, pltcntfull, pltcntfar));
812
813	free(tobj);
814}
815
816void
817atexit_fini()
818{
819	Rt_map **	tobj, * lmp;
820	Lm_list *	lml;
821	Listnode *	lnp;
822
823	(void) enter();
824
825	rtld_flags |= RT_FL_ATEXIT;
826
827	lml = &lml_main;
828	lml->lm_flags |= LML_FLG_ATEXIT;
829	lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
830	lmp = (Rt_map *)lml->lm_head;
831
832	/*
833	 * Display any objects that haven't been referenced so far.
834	 */
835	unused(lml);
836
837	/*
838	 * Reverse topologically sort the main link-map for .fini execution.
839	 */
840	if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
841	    (tobj != (Rt_map **)S_ERROR))
842		call_fini(lml, tobj);
843
844	/*
845	 * Add an explicit close to main and ld.so.1.  Although main's .fini is
846	 * collected in call_fini() to provide for FINITARRAY processing, its
847	 * audit_objclose is explicitly skipped.  This provides for it to be
848	 * called last, here.  This is the reverse of the explicit calls to
849	 * audit_objopen() made in setup().
850	 */
851	if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) {
852		audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head);
853		audit_objclose(lmp, lmp);
854	}
855
856	/*
857	 * Now that all .fini code has been run, see what unreferenced objects
858	 * remain.  Any difference between this and the above unused() would
859	 * indicate an object is only being used for .fini processing, which
860	 * might be fine, but might also indicate an overhead whose removal
861	 * would be worth considering.
862	 */
863	unused(lml);
864
865	/*
866	 * Traverse any alternative link-map lists.
867	 */
868	for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) {
869		/*
870		 * Ignore the base-link-map list, which has already been
871		 * processed, and the runtime linkers link-map list, which is
872		 * typically processed last.
873		 */
874		if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM))
875			continue;
876
877		if ((lmp = (Rt_map *)lml->lm_head) == 0)
878			continue;
879
880		lml->lm_flags |= LML_FLG_ATEXIT;
881		lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
882
883		/*
884		 * Reverse topologically sort the link-map for .fini execution.
885		 */
886		if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
887		    (tobj != (Rt_map **)S_ERROR))
888			call_fini(lml, tobj);
889
890		unused(lml);
891	}
892
893	/*
894	 * Finally reverse topologically sort the runtime linkers link-map for
895	 * .fini execution.
896	 */
897	lml = &lml_rtld;
898	lml->lm_flags |= LML_FLG_ATEXIT;
899	lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
900	lmp = (Rt_map *)lml->lm_head;
901
902	if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
903	    (tobj != (Rt_map **)S_ERROR))
904		call_fini(lml, tobj);
905
906	leave(&lml_main);
907}
908
909
910/*
911 * This routine is called to complete any runtime linker activity which may have
912 * resulted in objects being loaded.  This is called from all user entry points
913 * and from any internal dl*() requests.
914 */
915void
916load_completion(Rt_map *nlmp)
917{
918	Rt_map	**tobj = 0;
919	Lm_list	*nlml;
920
921	/*
922	 * Establish any .init processing.  Note, in a world of lazy loading,
923	 * objects may have been loaded regardless of whether the users request
924	 * was fulfilled (i.e., a dlsym() request may have failed to find a
925	 * symbol but objects might have been loaded during its search).  Thus,
926	 * any tsorting starts from the nlmp (new link-maps) pointer and not
927	 * necessarily from the link-map that may have satisfied the request.
928	 *
929	 * Note, the primary link-map has an initialization phase where dynamic
930	 * .init firing is suppressed.  This provides for a simple and clean
931	 * handshake with the primary link-maps libc, which is important for
932	 * establishing uberdata.  In addition, auditors often obtain handles
933	 * to primary link-map objects as the objects are loaded, so as to
934	 * inspect the link-map for symbols.  This inspection is allowed without
935	 * running any code on the primary link-map, as running this code may
936	 * reenter the auditor, who may not yet have finished its own
937	 * initialization.
938	 */
939	if (nlmp)
940		nlml = LIST(nlmp);
941
942	if (nlmp && nlml->lm_init &&
943	    ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) {
944		if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init,
945		    RT_SORT_REV)) == (Rt_map **)S_ERROR)
946			tobj = 0;
947	}
948
949	/*
950	 * Make sure any alternative link-map retrieves any external interfaces
951	 * and initializes threads.
952	 */
953	if (nlmp && (nlml != &lml_main)) {
954		(void) rt_get_extern(nlml, nlmp);
955		rt_thr_init(nlml);
956	}
957
958	/*
959	 * Traverse the list of new link-maps and register any dynamic TLS.
960	 * This storage is established for any objects not on the primary
961	 * link-map, and for any objects added to the primary link-map after
962	 * static TLS has been registered.
963	 */
964	if (nlmp && nlml->lm_tls &&
965	    ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) {
966		Rt_map	*lmp;
967
968		for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) {
969			if (PTTLS(lmp) && PTTLS(lmp)->p_memsz)
970				tls_modaddrem(lmp, TM_FLG_MODADD);
971		}
972		nlml->lm_tls = 0;
973	}
974
975	/*
976	 * Fire any .init's.
977	 */
978	if (tobj)
979		call_init(tobj, DBG_INIT_SORT);
980}
981
982/*
983 * Append an item to the specified list, and return a pointer to the list
984 * node created.
985 */
986Listnode *
987list_append(List *lst, const void *item)
988{
989	Listnode *	_lnp;
990
991	if ((_lnp = malloc(sizeof (Listnode))) == 0)
992		return (0);
993
994	_lnp->data = (void *)item;
995	_lnp->next = NULL;
996
997	if (lst->head == NULL)
998		lst->tail = lst->head = _lnp;
999	else {
1000		lst->tail->next = _lnp;
1001		lst->tail = lst->tail->next;
1002	}
1003	return (_lnp);
1004}
1005
1006
1007/*
1008 * Add an item after specified listnode, and return a pointer to the list
1009 * node created.
1010 */
1011Listnode *
1012list_insert(List *lst, const void *item, Listnode *lnp)
1013{
1014	Listnode *	_lnp;
1015
1016	if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0)
1017		return (0);
1018
1019	_lnp->data = (void *)item;
1020	_lnp->next = lnp->next;
1021	if (_lnp->next == NULL)
1022		lst->tail = _lnp;
1023	lnp->next = _lnp;
1024	return (_lnp);
1025}
1026
1027/*
1028 * Prepend an item to the specified list, and return a pointer to the
1029 * list node created.
1030 */
1031Listnode *
1032list_prepend(List * lst, const void * item)
1033{
1034	Listnode *	_lnp;
1035
1036	if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0)
1037		return (0);
1038
1039	_lnp->data = (void *)item;
1040
1041	if (lst->head == NULL) {
1042		_lnp->next = NULL;
1043		lst->tail = lst->head = _lnp;
1044	} else {
1045		_lnp->next = lst->head;
1046		lst->head = _lnp;
1047	}
1048	return (_lnp);
1049}
1050
1051
1052/*
1053 * Delete a 'listnode' from a list.
1054 */
1055void
1056list_delete(List *lst, void *item)
1057{
1058	Listnode	*clnp, *plnp;
1059
1060	for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) {
1061		if (item == clnp->data)
1062			break;
1063		plnp = clnp;
1064	}
1065
1066	if (clnp == 0)
1067		return;
1068
1069	if (lst->head == clnp)
1070		lst->head = clnp->next;
1071	if (lst->tail == clnp)
1072		lst->tail = plnp;
1073
1074	if (plnp)
1075		plnp->next = clnp->next;
1076
1077	free(clnp);
1078}
1079
1080/*
1081 * Append an item to the specified link map control list.
1082 */
1083void
1084lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp)
1085{
1086	Lm_cntl	*lmc;
1087	int	add = 1;
1088
1089	/*
1090	 * Indicate that this link-map list has a new object.
1091	 */
1092	(lml->lm_obj)++;
1093
1094	/*
1095	 * If we're about to add a new object to the main link-map control list,
1096	 * alert the debuggers that we are about to mess with this list.
1097	 * Additions of individual objects to the main link-map control list
1098	 * occur during initial setup as the applications immediate dependencies
1099	 * are loaded.  Individual objects are also loaded on the main link-map
1100	 * control list of new alternative link-map control lists.
1101	 */
1102	if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1103		rd_event(lml, RD_DLACTIVITY, RT_ADD);
1104
1105	/* LINTED */
1106	lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco);
1107
1108	/*
1109	 * A link-map list header points to one of more link-map control lists
1110	 * (see include/rtld.h).  The initial list, pointed to by lm_cntl, is
1111	 * the list of relocated objects.  Other lists maintain objects that
1112	 * are still being analyzed or relocated.  This list provides the core
1113	 * link-map list information used by all ld.so.1 routines.
1114	 */
1115	if (lmc->lc_head == NULL) {
1116		/*
1117		 * If this is the first link-map for the given control list,
1118		 * initialize the list.
1119		 */
1120		lmc->lc_head = lmc->lc_tail = lmp;
1121		add = 0;
1122
1123	} else if (FLAGS(lmp) & FLG_RT_OBJINTPO) {
1124		Rt_map	*tlmp;
1125
1126		/*
1127		 * If this is an interposer then append the link-map following
1128		 * any other interposers (these are objects that have been
1129		 * previously preloaded, or were identified with -z interpose).
1130		 * Interposers can only be inserted on the first link-map
1131		 * control list, as once relocation has started, interposition
1132		 * from new interposers can't be guaranteed.
1133		 *
1134		 * NOTE: We do not interpose on the head of a list.  This model
1135		 * evolved because dynamic executables have already been fully
1136		 * relocated within themselves and thus can't be interposed on.
1137		 * Nowadays it's possible to have shared objects at the head of
1138		 * a list, which conceptually means they could be interposed on.
1139		 * But, shared objects can be created via dldump() and may only
1140		 * be partially relocated (just relatives), in which case they
1141		 * are interposable, but are marked as fixed (ET_EXEC).
1142		 *
1143		 * Thus we really don't have a clear method of deciding when the
1144		 * head of a link-map is interposable.  So, to be consistent,
1145		 * for now only add interposers after the link-map lists head
1146		 * object.
1147		 */
1148		for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp;
1149		    tlmp = (Rt_map *)NEXT(tlmp)) {
1150
1151			if (FLAGS(tlmp) & FLG_RT_OBJINTPO)
1152				continue;
1153
1154			/*
1155			 * Insert the new link-map before this non-interposer,
1156			 * and indicate an interposer is found.
1157			 */
1158			NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp;
1159			PREV(lmp) = PREV(tlmp);
1160
1161			NEXT(lmp) = (Link_map *)tlmp;
1162			PREV(tlmp) = (Link_map *)lmp;
1163
1164			lmc->lc_flags |= LMC_FLG_REANALYZE;
1165			add = 0;
1166			break;
1167		}
1168	}
1169
1170	/*
1171	 * Fall through to appending the new link map to the tail of the list.
1172	 * If we're processing the initial objects of this link-map list, add
1173	 * them to the backward compatibility list.
1174	 */
1175	if (add) {
1176		NEXT(lmc->lc_tail) = (Link_map *)lmp;
1177		PREV(lmp) = (Link_map *)lmc->lc_tail;
1178		lmc->lc_tail = lmp;
1179	}
1180
1181	/*
1182	 * Having added this link-map to a control list, indicate which control
1183	 * list the link-map belongs to.  Note, control list information is
1184	 * always maintained as an offset, as the Alist can be reallocated.
1185	 */
1186	CNTL(lmp) = lmco;
1187
1188	/*
1189	 * Indicate if an interposer is found.  Note that the first object on a
1190	 * link-map can be explicitly defined as an interposer so that it can
1191	 * provide interposition over direct binding requests.
1192	 */
1193	if (FLAGS(lmp) & MSK_RT_INTPOSE)
1194		lml->lm_flags |= LML_FLG_INTRPOSE;
1195
1196	/*
1197	 * For backward compatibility with debuggers, the link-map list contains
1198	 * pointers to the main control list.
1199	 */
1200	if (lmco == ALO_DATA) {
1201		lml->lm_head = lmc->lc_head;
1202		lml->lm_tail = lmc->lc_tail;
1203	}
1204}
1205
1206/*
1207 * Delete an item from the specified link map control list.
1208 */
1209void
1210lm_delete(Lm_list *lml, Rt_map *lmp)
1211{
1212	Lm_cntl	*lmc;
1213
1214	/*
1215	 * If the control list pointer hasn't been initialized, this object
1216	 * never got added to a link-map list.
1217	 */
1218	if (CNTL(lmp) == 0)
1219		return;
1220
1221	/*
1222	 * If we're about to delete an object from the main link-map control
1223	 * list, alert the debuggers that we are about to mess with this list.
1224	 */
1225	if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1226		rd_event(lml, RD_DLACTIVITY, RT_DELETE);
1227
1228	/* LINTED */
1229	lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp));
1230
1231	if (lmc->lc_head == lmp)
1232		lmc->lc_head = (Rt_map *)NEXT(lmp);
1233	else
1234		NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp);
1235
1236	if (lmc->lc_tail == lmp)
1237		lmc->lc_tail = (Rt_map *)PREV(lmp);
1238	else
1239		PREV((Rt_map *)NEXT(lmp)) = PREV(lmp);
1240
1241	/*
1242	 * For backward compatibility with debuggers, the link-map list contains
1243	 * pointers to the main control list.
1244	 */
1245	if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) {
1246		lml->lm_head = lmc->lc_head;
1247		lml->lm_tail = lmc->lc_tail;
1248	}
1249
1250	/*
1251	 * Indicate we have one less object on this control list.
1252	 */
1253	(lml->lm_obj)--;
1254}
1255
1256/*
1257 * Move a link-map control list to another.  Objects that are being relocated
1258 * are maintained on secondary control lists.  Once their relocation is
1259 * complete, the entire list is appended to the previous control list, as this
1260 * list must have been the trigger for generating the new control list.
1261 */
1262void
1263lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc)
1264{
1265	Rt_map	*lmp;
1266
1267	/*
1268	 * If we're about to add a new family of objects to the main link-map
1269	 * control list, alert the debuggers that we are about to mess with this
1270	 * list.  Additions of object families to the main link-map control
1271	 * list occur during lazy loading, filtering and dlopen().
1272	 */
1273	if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1274		rd_event(lml, RD_DLACTIVITY, RT_ADD);
1275
1276	DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco));
1277
1278	/*
1279	 * Indicate each new link-map has been moved to the previous link-map
1280	 * control list.
1281	 */
1282	for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp))
1283		CNTL(lmp) = plmco;
1284
1285	/*
1286	 * Move the new link-map control list, to the callers link-map control
1287	 * list.
1288	 */
1289	if (plmc->lc_head == 0) {
1290		plmc->lc_head = nlmc->lc_head;
1291		PREV(nlmc->lc_head) = 0;
1292	} else {
1293		NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head;
1294		PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail;
1295	}
1296
1297	plmc->lc_tail = nlmc->lc_tail;
1298	nlmc->lc_head = nlmc->lc_tail = 0;
1299
1300	/*
1301	 * For backward compatibility with debuggers, the link-map list contains
1302	 * pointers to the main control list.
1303	 */
1304	if (plmco == ALO_DATA) {
1305		lml->lm_head = plmc->lc_head;
1306		lml->lm_tail = plmc->lc_tail;
1307	}
1308}
1309
1310/*
1311 * Environment variables can have a variety of defined permutations, and thus
1312 * the following infrastructure exists to allow this variety and to select the
1313 * required definition.
1314 *
1315 * Environment variables can be defined as 32- or 64-bit specific, and if so
1316 * they will take precedence over any instruction set neutral form.  Typically
1317 * this is only useful when the environment value is an informational string.
1318 *
1319 * Environment variables may be obtained from the standard user environment or
1320 * from a configuration file.  The latter provides a fallback if no user
1321 * environment setting is found, and can take two forms:
1322 *
1323 *  .	a replaceable definition - this will be used if no user environment
1324 *	setting has been seen, or
1325 *
1326 *  .	an permanent definition - this will be used no matter what user
1327 *	environment setting is seen.  In the case of list variables it will be
1328 *	appended to any process environment setting seen.
1329 *
1330 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to
1331 * override any replaceable environment variables from a configuration file.
1332 */
1333static	u_longlong_t		rplgen;		/* replaceable generic */
1334						/*	variables */
1335static	u_longlong_t		rplisa;		/* replaceable ISA specific */
1336						/*	variables */
1337static	u_longlong_t		prmgen;		/* permanent generic */
1338						/*	variables */
1339static	u_longlong_t		prmisa;		/* permanent ISA specific */
1340						/*	variables */
1341
1342/*
1343 * Classify an environment variables type.
1344 */
1345#define	ENV_TYP_IGNORE		0x1		/* ignore - variable is for */
1346						/*	the wrong ISA */
1347#define	ENV_TYP_ISA		0x2		/* variable is ISA specific */
1348#define	ENV_TYP_CONFIG		0x4		/* variable obtained from a */
1349						/*	config file */
1350#define	ENV_TYP_PERMANT		0x8		/* variable is permanent */
1351
1352/*
1353 * Identify all environment variables.
1354 */
1355#define	ENV_FLG_AUDIT		0x0000000001ULL
1356#define	ENV_FLG_AUDIT_ARGS	0x0000000002ULL
1357#define	ENV_FLG_BIND_NOW	0x0000000004ULL
1358#define	ENV_FLG_BIND_NOT	0x0000000008ULL
1359#define	ENV_FLG_BINDINGS	0x0000000010ULL
1360#define	ENV_FLG_CONCURRENCY	0x0000000020ULL
1361#define	ENV_FLG_CONFGEN		0x0000000040ULL
1362#define	ENV_FLG_CONFIG		0x0000000080ULL
1363#define	ENV_FLG_DEBUG		0x0000000100ULL
1364#define	ENV_FLG_DEBUG_OUTPUT	0x0000000200ULL
1365#define	ENV_FLG_DEMANGLE	0x0000000400ULL
1366#define	ENV_FLG_FLAGS		0x0000000800ULL
1367#define	ENV_FLG_INIT		0x0000001000ULL
1368#define	ENV_FLG_LIBPATH		0x0000002000ULL
1369#define	ENV_FLG_LOADAVAIL	0x0000004000ULL
1370#define	ENV_FLG_LOADFLTR	0x0000008000ULL
1371#define	ENV_FLG_NOAUDIT		0x0000010000ULL
1372#define	ENV_FLG_NOAUXFLTR	0x0000020000ULL
1373#define	ENV_FLG_NOBAPLT		0x0000040000ULL
1374#define	ENV_FLG_NOCONFIG	0x0000080000ULL
1375#define	ENV_FLG_NODIRCONFIG	0x0000100000ULL
1376#define	ENV_FLG_NODIRECT	0x0000200000ULL
1377#define	ENV_FLG_NOENVCONFIG	0x0000400000ULL
1378#define	ENV_FLG_NOLAZY		0x0000800000ULL
1379#define	ENV_FLG_NOOBJALTER	0x0001000000ULL
1380#define	ENV_FLG_NOVERSION	0x0002000000ULL
1381#define	ENV_FLG_PRELOAD		0x0004000000ULL
1382#define	ENV_FLG_PROFILE		0x0008000000ULL
1383#define	ENV_FLG_PROFILE_OUTPUT	0x0010000000ULL
1384#define	ENV_FLG_SIGNAL		0x0020000000ULL
1385#define	ENV_FLG_TRACE_OBJS	0x0040000000ULL
1386#define	ENV_FLG_TRACE_PTHS	0x0080000000ULL
1387#define	ENV_FLG_UNREF		0x0100000000ULL
1388#define	ENV_FLG_UNUSED		0x0200000000ULL
1389#define	ENV_FLG_VERBOSE		0x0400000000ULL
1390#define	ENV_FLG_WARN		0x0800000000ULL
1391#define	ENV_FLG_NOFLTCONFIG	0x1000000000ULL
1392#define	ENV_FLG_BIND_LAZY	0x2000000000ULL
1393#define	ENV_FLG_NOUNRESWEAK	0x4000000000ULL
1394
1395#ifdef	SIEBEL_DISABLE
1396#define	ENV_FLG_FIX_1		0x8000000000ULL
1397#endif
1398
1399#define	SEL_REPLACE		0x0001
1400#define	SEL_PERMANT		0x0002
1401#define	SEL_ACT_RT		0x0100	/* setting rtld_flags */
1402#define	SEL_ACT_RT2		0x0200	/* setting rtld_flags2 */
1403#define	SEL_ACT_STR		0x0400	/* setting string value */
1404#define	SEL_ACT_LML		0x0800	/* setting lml_flags */
1405#define	SEL_ACT_LMLT		0x1000	/* setting lml_tflags */
1406#define	SEL_ACT_SPEC_1		0x2000	/* For FLG_{FLAGS, LIBPATH} */
1407#define	SEL_ACT_SPEC_2		0x4000	/* need special handling */
1408
1409/*
1410 * Pattern match an LD_XXXX environment variable.  s1 points to the XXXX part
1411 * and len specifies its length (comparing a strings length before the string
1412 * itself speed things up).  s2 points to the token itself which has already
1413 * had any leading white-space removed.
1414 */
1415static void
1416ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags,
1417    Word *lmtflags, uint_t env_flags, int aout)
1418{
1419	u_longlong_t	variable = 0;
1420	ushort_t	select = 0;
1421	const char	**str;
1422	Word		val = 0;
1423
1424	/*
1425	 * Determine whether we're dealing with a replaceable or permanent
1426	 * string.
1427	 */
1428	if (env_flags & ENV_TYP_PERMANT) {
1429		/*
1430		 * If the string is from a configuration file and defined as
1431		 * permanent, assign it as permanent.
1432		 */
1433		select |= SEL_PERMANT;
1434	} else
1435		select |= SEL_REPLACE;
1436
1437	/*
1438	 * Parse the variable given.
1439	 *
1440	 * The LD_AUDIT family.
1441	 */
1442	if (*s1 == 'A') {
1443		if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1,
1444		    MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) {
1445			/*
1446			 * Replaceable and permanent audit objects can exist.
1447			 */
1448			select |= SEL_ACT_STR;
1449			if (select & SEL_REPLACE)
1450				str = &rpl_audit;
1451			else {
1452				str = &prm_audit;
1453				rpl_audit = 0;
1454			}
1455			variable = ENV_FLG_AUDIT;
1456		} else if ((len == MSG_LD_AUDIT_ARGS_SIZE) &&
1457		    (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS),
1458		    MSG_LD_AUDIT_ARGS_SIZE) == 0)) {
1459			/*
1460			 * A specialized variable for plt_exit() use, not
1461			 * documented for general use.
1462			 */
1463			select |= SEL_ACT_SPEC_2;
1464			variable = ENV_FLG_AUDIT_ARGS;
1465		}
1466	}
1467	/*
1468	 * The LD_BIND family and LD_BREADTH (historic).
1469	 */
1470	else if (*s1 == 'B') {
1471		if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1,
1472		    MSG_ORIG(MSG_LD_BIND_LAZY),
1473		    MSG_LD_BIND_LAZY_SIZE) == 0)) {
1474			select |= SEL_ACT_RT2;
1475			val = RT_FL2_BINDLAZY;
1476			variable = ENV_FLG_BIND_LAZY;
1477		} else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1,
1478		    MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) {
1479			select |= SEL_ACT_RT2;
1480			val = RT_FL2_BINDNOW;
1481			variable = ENV_FLG_BIND_NOW;
1482		} else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1,
1483		    MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) {
1484			/*
1485			 * Another trick, enabled to help debug AOUT
1486			 * applications under BCP, but not documented for
1487			 * general use.
1488			 */
1489			select |= SEL_ACT_RT;
1490			val = RT_FL_NOBIND;
1491			variable = ENV_FLG_BIND_NOT;
1492		} else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1,
1493		    MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) {
1494			/*
1495			 * This variable is simply for backward compatibility.
1496			 * If this and LD_DEBUG are both specified, only one of
1497			 * the strings is going to get processed.
1498			 */
1499			select |= SEL_ACT_SPEC_2;
1500			variable = ENV_FLG_BINDINGS;
1501#ifndef LD_BREADTH_DISABLED
1502		} else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1,
1503		    MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) {
1504			/*
1505			 * Besides some old patches this is no longer available.
1506			 */
1507			rtld_flags |= RT_FL_BREADTH;
1508			return;
1509#endif
1510		}
1511	}
1512	/*
1513	 * LD_CONCURRENCY and LD_CONFIG family.
1514	 */
1515	else if (*s1 == 'C') {
1516		if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1,
1517		    MSG_ORIG(MSG_LD_CONCURRENCY),
1518		    MSG_LD_CONCURRENCY_SIZE) == 0)) {
1519			/*
1520			 * Waiting in the wings, as concurrency checking isn't
1521			 * yet enabled.
1522			 */
1523			select |= SEL_ACT_SPEC_2;
1524			variable = ENV_FLG_CONCURRENCY;
1525		} else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1,
1526		    MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) {
1527			/*
1528			 * Set by crle(1) to indicate it's building a
1529			 * configuration file, not documented for general use.
1530			 */
1531			select |= SEL_ACT_SPEC_2;
1532			variable = ENV_FLG_CONFGEN;
1533		} else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1,
1534		    MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) {
1535			/*
1536			 * Secure applications must use a default configuration
1537			 * file.  A setting from a configuration file doesn't
1538			 * make sense (given we must be reading a configuration
1539			 * file to have gotten this).
1540			 */
1541			if ((rtld_flags & RT_FL_SECURE) ||
1542			    (env_flags & ENV_TYP_CONFIG))
1543				return;
1544			select |= SEL_ACT_STR;
1545			str = &config->c_name;
1546			variable = ENV_FLG_CONFIG;
1547		}
1548	}
1549	/*
1550	 * The LD_DEBUG family and LD_DEMANGLE.
1551	 */
1552	else if (*s1 == 'D') {
1553		if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1,
1554		    MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) {
1555			select |= SEL_ACT_STR;
1556			if (select & SEL_REPLACE)
1557				str = &rpl_debug;
1558			else {
1559				str = &prm_debug;
1560				rpl_debug = 0;
1561			}
1562			variable = ENV_FLG_DEBUG;
1563		} else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1,
1564		    MSG_ORIG(MSG_LD_DEBUG_OUTPUT),
1565		    MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) {
1566			select |= SEL_ACT_STR;
1567			str = &dbg_file;
1568			variable = ENV_FLG_DEBUG_OUTPUT;
1569		} else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1,
1570		    MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) {
1571			select |= SEL_ACT_RT;
1572			val = RT_FL_DEMANGLE;
1573			variable = ENV_FLG_DEMANGLE;
1574		}
1575	}
1576	/*
1577	 * LD_FLAGS - collect the best variable definition.  On completion of
1578	 * environment variable processing pass the result to ld_flags_env()
1579	 * where they'll be decomposed and passed back to this routine.
1580	 */
1581	else if (*s1 == 'F') {
1582		if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1,
1583		    MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) {
1584			select |= SEL_ACT_SPEC_1;
1585			if (select & SEL_REPLACE)
1586				str = &rpl_ldflags;
1587			else {
1588				str = &prm_ldflags;
1589				rpl_ldflags = 0;
1590			}
1591			variable = ENV_FLG_FLAGS;
1592		}
1593	}
1594	/*
1595	 * LD_INIT (internal, used by ldd(1)).
1596	 */
1597	else if (*s1 == 'I') {
1598		if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1,
1599		    MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) {
1600			select |= SEL_ACT_LML;
1601			val = LML_FLG_TRC_INIT;
1602			variable = ENV_FLG_INIT;
1603		}
1604	}
1605	/*
1606	 * The LD_LIBRARY_PATH and LD_LOAD families.
1607	 */
1608	else if (*s1 == 'L') {
1609		if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1,
1610		    MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) {
1611			select |= SEL_ACT_SPEC_1;
1612			if (select & SEL_REPLACE)
1613				str = &rpl_libpath;
1614			else {
1615				str = &prm_libpath;
1616				rpl_libpath = 0;
1617			}
1618			variable = ENV_FLG_LIBPATH;
1619		} else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1,
1620		    MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) {
1621			/*
1622			 * Internal use by crle(1), not documented for general
1623			 * use.
1624			 */
1625			select |= SEL_ACT_LML;
1626			val = LML_FLG_LOADAVAIL;
1627			variable = ENV_FLG_LOADAVAIL;
1628		} else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1,
1629		    MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) {
1630			select |= SEL_ACT_SPEC_2;
1631			variable = ENV_FLG_LOADFLTR;
1632		}
1633	}
1634	/*
1635	 * The LD_NO family.
1636	 */
1637	else if (*s1 == 'N') {
1638		if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1,
1639		    MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) {
1640			select |= SEL_ACT_RT;
1641			val = RT_FL_NOAUDIT;
1642			variable = ENV_FLG_NOAUDIT;
1643		} else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1,
1644		    MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) {
1645			select |= SEL_ACT_RT;
1646			val = RT_FL_NOAUXFLTR;
1647			variable = ENV_FLG_NOAUXFLTR;
1648		} else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1,
1649		    MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) {
1650			select |= SEL_ACT_RT;
1651			val = RT_FL_NOBAPLT;
1652			variable = ENV_FLG_NOBAPLT;
1653		} else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1,
1654		    MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) {
1655			select |= SEL_ACT_RT;
1656			val = RT_FL_NOCFG;
1657			variable = ENV_FLG_NOCONFIG;
1658		} else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1,
1659		    MSG_ORIG(MSG_LD_NODIRCONFIG),
1660		    MSG_LD_NODIRCONFIG_SIZE) == 0)) {
1661			select |= SEL_ACT_RT;
1662			val = RT_FL_NODIRCFG;
1663			variable = ENV_FLG_NODIRCONFIG;
1664		} else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1,
1665		    MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) {
1666			select |= SEL_ACT_LMLT;
1667			val = LML_TFLG_NODIRECT;
1668			variable = ENV_FLG_NODIRECT;
1669		} else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1,
1670		    MSG_ORIG(MSG_LD_NOENVCONFIG),
1671		    MSG_LD_NOENVCONFIG_SIZE) == 0)) {
1672			select |= SEL_ACT_RT;
1673			val = RT_FL_NOENVCFG;
1674			variable = ENV_FLG_NOENVCONFIG;
1675		} else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1,
1676		    MSG_ORIG(MSG_LD_NOFLTCONFIG),
1677		    MSG_LD_NOFLTCONFIG_SIZE) == 0)) {
1678			select |= SEL_ACT_RT2;
1679			val = RT_FL2_NOFLTCFG;
1680			variable = ENV_FLG_NOFLTCONFIG;
1681		} else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1,
1682		    MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) {
1683			select |= SEL_ACT_LMLT;
1684			val = LML_TFLG_NOLAZYLD;
1685			variable = ENV_FLG_NOLAZY;
1686		} else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1,
1687		    MSG_ORIG(MSG_LD_NOOBJALTER),
1688		    MSG_LD_NOOBJALTER_SIZE) == 0)) {
1689			select |= SEL_ACT_RT;
1690			val = RT_FL_NOOBJALT;
1691			variable = ENV_FLG_NOOBJALTER;
1692		} else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1,
1693		    MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) {
1694			select |= SEL_ACT_RT;
1695			val = RT_FL_NOVERSION;
1696			variable = ENV_FLG_NOVERSION;
1697		} else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1,
1698		    MSG_ORIG(MSG_LD_NOUNRESWEAK),
1699		    MSG_LD_NOUNRESWEAK_SIZE) == 0)) {
1700			/*
1701			 * LD_NOUNRESWEAK (internal, used by ldd(1)).
1702			 */
1703			select |= SEL_ACT_LML;
1704			val = LML_FLG_TRC_NOUNRESWEAK;
1705			variable = ENV_FLG_NOUNRESWEAK;
1706		}
1707	}
1708	/*
1709	 * LD_ORIGIN.
1710	 */
1711	else if (*s1 == 'O') {
1712#ifndef	EXPAND_RELATIVE
1713		if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1,
1714		    MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) {
1715			/*
1716			 * Besides some old patches this is no longer required.
1717			 */
1718			rtld_flags |= RT_FL_RELATIVE;
1719		}
1720#endif
1721		return;
1722	}
1723	/*
1724	 * LD_PRELOAD and LD_PROFILE family.
1725	 */
1726	else if (*s1 == 'P') {
1727		if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1,
1728		    MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) {
1729			select |= SEL_ACT_STR;
1730			if (select & SEL_REPLACE)
1731				str = &rpl_preload;
1732			else  {
1733				str = &prm_preload;
1734				rpl_preload = 0;
1735			}
1736			variable = ENV_FLG_PRELOAD;
1737		} else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1,
1738		    MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) {
1739			/*
1740			 * Only one user library can be profiled at a time.
1741			 */
1742			select |= SEL_ACT_SPEC_2;
1743			variable = ENV_FLG_PROFILE;
1744		} else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1,
1745		    MSG_ORIG(MSG_LD_PROFILE_OUTPUT),
1746		    MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) {
1747			/*
1748			 * Only one user library can be profiled at a time.
1749			 */
1750			select |= SEL_ACT_STR;
1751			str = &profile_out;
1752			variable = ENV_FLG_PROFILE_OUTPUT;
1753		}
1754	}
1755	/*
1756	 * LD_SIGNAL.
1757	 */
1758	else if (*s1 == 'S') {
1759		if (rtld_flags & RT_FL_SECURE)
1760			return;
1761		if ((len == MSG_LD_SIGNAL_SIZE) &&
1762		    (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL),
1763		    MSG_LD_SIGNAL_SIZE) == 0)) {
1764			select |= SEL_ACT_SPEC_2;
1765			variable = ENV_FLG_SIGNAL;
1766		}
1767	}
1768	/*
1769	 * The LD_TRACE family (internal, used by ldd(1)).  This definition is
1770	 * the key to enabling all other ldd(1) specific environment variables.
1771	 * In case an auditor is called, which in turn might exec(2) a
1772	 * subprocess, this variable is disabled, so that any subprocess
1773	 * escapes ldd(1) processing.
1774	 */
1775	else if (*s1 == 'T') {
1776		if (((len == MSG_LD_TRACE_OBJS_SIZE) &&
1777		    (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS),
1778		    MSG_LD_TRACE_OBJS_SIZE) == 0)) ||
1779		    ((len == MSG_LD_TRACE_OBJS_E_SIZE) &&
1780		    (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E),
1781		    MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) ||
1782		    ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A),
1783		    MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) {
1784			char	*s0 = (char *)s1;
1785
1786			select |= SEL_ACT_SPEC_2;
1787			variable = ENV_FLG_TRACE_OBJS;
1788
1789#if	defined(__sparc) || defined(__x86)
1790			/*
1791			 * The simplest way to "disable" this variable is to
1792			 * truncate this string to "LD_'\0'". This string is
1793			 * ignored by any ld.so.1 environment processing.
1794			 * Use of such interfaces as unsetenv(3c) are overkill,
1795			 * and would drag too much libc implementation detail
1796			 * into ld.so.1.
1797			 */
1798			*s0 = '\0';
1799#else
1800/*
1801 * Verify that the above write is appropriate for any new platforms.
1802 */
1803#error	unsupported architecture!
1804#endif
1805		} else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1,
1806		    MSG_ORIG(MSG_LD_TRACE_PTHS),
1807		    MSG_LD_TRACE_PTHS_SIZE) == 0)) {
1808			select |= SEL_ACT_LML;
1809			val = LML_FLG_TRC_SEARCH;
1810			variable = ENV_FLG_TRACE_PTHS;
1811		}
1812	}
1813	/*
1814	 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)).
1815	 */
1816	else if (*s1 == 'U') {
1817		if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1,
1818		    MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) {
1819			select |= SEL_ACT_LML;
1820			val = LML_FLG_TRC_UNREF;
1821			variable = ENV_FLG_UNREF;
1822		} else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1,
1823		    MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) {
1824			select |= SEL_ACT_LML;
1825			val = LML_FLG_TRC_UNUSED;
1826			variable = ENV_FLG_UNUSED;
1827		}
1828	}
1829	/*
1830	 * LD_VERBOSE (internal, used by ldd(1)).
1831	 */
1832	else if (*s1 == 'V') {
1833		if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1,
1834		    MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) {
1835			select |= SEL_ACT_LML;
1836			val = LML_FLG_TRC_VERBOSE;
1837			variable = ENV_FLG_VERBOSE;
1838		}
1839	}
1840	/*
1841	 * LD_WARN (internal, used by ldd(1)).
1842	 */
1843	else if (*s1 == 'W') {
1844		if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1,
1845		    MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) {
1846			select |= SEL_ACT_LML;
1847			val = LML_FLG_TRC_WARN;
1848			variable = ENV_FLG_WARN;
1849		}
1850#ifdef	SIEBEL_DISABLE
1851	}
1852	/*
1853	 * LD__FIX__ (undocumented, enable future technology that can't be
1854	 * delivered in a patch release).
1855	 */
1856	else if (*s1 == '_') {
1857		if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1,
1858		    MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) {
1859			select |= SEL_ACT_RT;
1860			val = RT_FL_DISFIX_1;
1861			variable = ENV_FLG_FIX_1;
1862		}
1863#endif
1864	}
1865	if (variable == 0)
1866		return;
1867
1868	/*
1869	 * If the variable is already processed with ISA specific variable,
1870	 * no further processing needed.
1871	 */
1872	if (((select & SEL_REPLACE) && (rplisa & variable)) ||
1873	    ((select & SEL_PERMANT) && (prmisa & variable)))
1874		return;
1875
1876	/*
1877	 * Now mark the appropriate variables.
1878	 * If the replaceable variable is already set, then the
1879	 * process environment variable must be set. Any replaceable
1880	 * variable specified in a configuration file can be ignored.
1881	 */
1882	if (env_flags & ENV_TYP_ISA) {
1883		/*
1884		 * This is ISA setting. We do the setting
1885		 * even if s2 is NULL.
1886		 * If s2 is NULL, we might need to undo
1887		 * the setting.
1888		 */
1889		if (select & SEL_REPLACE) {
1890			if (rplisa & variable)
1891				return;
1892			rplisa |= variable;
1893		} else {
1894			prmisa |= variable;
1895		}
1896	} else if (s2) {
1897		/*
1898		 * This is non0-ISA setting
1899		 */
1900		if (select & SEL_REPLACE) {
1901			if (rplgen & variable)
1902				return;
1903			rplgen |= variable;
1904		} else
1905			prmgen |= variable;
1906	} else
1907		/*
1908		 * This is non-ISA setting which
1909		 * can be ignored.
1910		 */
1911		return;
1912
1913	/*
1914	 * Now perform the setting.
1915	 */
1916	if (select & SEL_ACT_RT) {
1917		if (s2)
1918			rtld_flags |= val;
1919		else
1920			rtld_flags &= ~val;
1921	} else if (select & SEL_ACT_RT2) {
1922		if (s2)
1923			rtld_flags2 |= val;
1924		else
1925			rtld_flags2 &= ~val;
1926	} else if (select & SEL_ACT_STR)
1927		*str = s2;
1928	else if (select & SEL_ACT_LML) {
1929		if (s2)
1930			*lmflags |= val;
1931		else
1932			*lmflags &= ~val;
1933	} else if (select & SEL_ACT_LMLT) {
1934		if (s2)
1935			*lmtflags |= val;
1936		else
1937			*lmtflags &= ~val;
1938	} else if (select & SEL_ACT_SPEC_1) {
1939		/*
1940		 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH
1941		 */
1942		*str = s2;
1943		if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) {
1944			if (s2) {
1945				if (variable == ENV_FLG_FLAGS)
1946					env_info |= ENV_INF_FLAGCFG;
1947				else
1948					env_info |= ENV_INF_PATHCFG;
1949			} else {
1950				if (variable == ENV_FLG_FLAGS)
1951					env_info &= ~ENV_INF_FLAGCFG;
1952				else
1953					env_info &= ~ENV_INF_PATHCFG;
1954			}
1955		}
1956	} else if (select & SEL_ACT_SPEC_2) {
1957		/*
1958		 * variables can be: ENV_FLG_
1959		 * 	AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN,
1960		 *	LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS
1961		 */
1962		if (variable == ENV_FLG_AUDIT_ARGS) {
1963			if (s2) {
1964				audit_argcnt = atoi(s2);
1965				audit_argcnt += audit_argcnt % 2;
1966			} else
1967				audit_argcnt = 0;
1968		} else if (variable == ENV_FLG_BINDINGS) {
1969			if (s2)
1970				rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS);
1971			else
1972				rpl_debug = 0;
1973		} else if (variable == ENV_FLG_CONCURRENCY) {
1974			if (s2)
1975				rtld_flags &= ~RT_FL_NOCONCUR;
1976			else
1977				rtld_flags |= RT_FL_NOCONCUR;
1978		} else if (variable == ENV_FLG_CONFGEN) {
1979			if (s2) {
1980				rtld_flags |= RT_FL_CONFGEN;
1981				*lmflags |= LML_FLG_IGNRELERR;
1982			} else {
1983				rtld_flags &= ~RT_FL_CONFGEN;
1984				*lmflags &= ~LML_FLG_IGNRELERR;
1985			}
1986		} else if (variable == ENV_FLG_LOADFLTR) {
1987			if (s2) {
1988				*lmtflags |= LML_TFLG_LOADFLTR;
1989				if (*s2 == '2')
1990					rtld_flags |= RT_FL_WARNFLTR;
1991			} else {
1992				*lmtflags &= ~LML_TFLG_LOADFLTR;
1993				rtld_flags &= ~RT_FL_WARNFLTR;
1994			}
1995		} else if (variable == ENV_FLG_PROFILE) {
1996			profile_name = s2;
1997			if (s2) {
1998				if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) {
1999					return;
2000				}
2001				/* BEGIN CSTYLED */
2002				if (rtld_flags & RT_FL_SECURE) {
2003					profile_lib =
2004#if	defined(_ELF64)
2005					    MSG_ORIG(MSG_PTH_LDPROFSE_64);
2006#else
2007					    MSG_ORIG(MSG_PTH_LDPROFSE);
2008#endif
2009				} else {
2010					profile_lib =
2011#if	defined(_ELF64)
2012					    MSG_ORIG(MSG_PTH_LDPROF_64);
2013#else
2014					    MSG_ORIG(MSG_PTH_LDPROF);
2015#endif
2016				}
2017				/* END CSTYLED */
2018			} else
2019				profile_lib = 0;
2020		} else if (variable == ENV_FLG_SIGNAL) {
2021			killsig = s2 ? atoi(s2) : SIGKILL;
2022		} else if (variable == ENV_FLG_TRACE_OBJS) {
2023			if (s2) {
2024				*lmflags |= LML_FLG_TRC_ENABLE;
2025				if (*s2 == '2')
2026					*lmflags |= LML_FLG_TRC_LDDSTUB;
2027			} else
2028				*lmflags &=
2029				    ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB);
2030		}
2031	}
2032}
2033
2034/*
2035 * Determine whether we have an architecture specific environment variable.
2036 * If we do, and we're the wrong architecture, it'll just get ignored.
2037 * Otherwise the variable is processed in it's architecture neutral form.
2038 */
2039static int
2040ld_arch_env(const char *s1, size_t *len)
2041{
2042	size_t	_len = *len - 3;
2043
2044	if (s1[_len++] == '_') {
2045		if ((s1[_len] == '3') && (s1[_len + 1] == '2')) {
2046#if	defined(_ELF64)
2047			return (ENV_TYP_IGNORE);
2048#else
2049			*len = *len - 3;
2050			return (ENV_TYP_ISA);
2051#endif
2052		}
2053		if ((s1[_len] == '6') && (s1[_len + 1] == '4')) {
2054#if	defined(_ELF64)
2055			*len = *len - 3;
2056			return (ENV_TYP_ISA);
2057#else
2058			return (ENV_TYP_IGNORE);
2059#endif
2060		}
2061	}
2062	return (0);
2063}
2064
2065
2066/*
2067 * Process an LD_FLAGS environment variable.  The value can be a comma
2068 * separated set of tokens, which are sent (in upper case) into the generic
2069 * LD_XXXX environment variable engine.  For example:
2070 *
2071 *	LD_FLAGS=bind_now		->	LD_BIND_NOW=1
2072 *	LD_FLAGS=library_path=/foo:.	->	LD_LIBRARY_PATH=/foo:.
2073 *	LD_FLAGS=debug=files:detail	->	LD_DEBUG=files:detail
2074 * or
2075 *	LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail
2076 */
2077static int
2078ld_flags_env(const char *str, Word *lmflags, Word *lmtflags,
2079    uint_t env_flags, int aout)
2080{
2081	char	*nstr, *sstr, *estr = 0;
2082	size_t	nlen, len;
2083
2084	if (str == 0)
2085		return (0);
2086
2087	/*
2088	 * Create a new string as we're going to transform the token(s) into
2089	 * uppercase and separate tokens with nulls.
2090	 */
2091	len = strlen(str);
2092	if ((nstr = malloc(len + 1)) == 0)
2093		return (1);
2094	(void) strcpy(nstr, str);
2095
2096	for (sstr = nstr; sstr; sstr++, len--) {
2097		int	flags;
2098
2099		if ((*sstr != '\0') && (*sstr != ',')) {
2100			if (estr == 0) {
2101				if (*sstr == '=')
2102					estr = sstr;
2103				else {
2104					/*
2105					 * Translate token to uppercase.  Don't
2106					 * use toupper(3C) as including this
2107					 * code doubles the size of ld.so.1.
2108					 */
2109					if ((*sstr >= 'a') && (*sstr <= 'z'))
2110						*sstr = *sstr - ('a' - 'A');
2111				}
2112			}
2113			continue;
2114		}
2115
2116		*sstr = '\0';
2117		if (estr) {
2118			nlen = estr - nstr;
2119			if ((*++estr == '\0') || (*estr == ','))
2120				estr = 0;
2121		} else
2122			nlen = sstr - nstr;
2123
2124		/*
2125		 * Fabricate a boolean definition for any unqualified variable.
2126		 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null).
2127		 * The value is sufficient to assert any boolean variables, plus
2128		 * the term "(null)" is specifically chosen in case someone
2129		 * mistakenly supplies something like LD_FLAGS=library_path.
2130		 */
2131		if (estr == 0)
2132			estr = (char *)MSG_INTL(MSG_STR_NULL);
2133
2134		/*
2135		 * Determine whether the environment variable is 32- or 64-bit
2136		 * specific.  The length, len, will reflect the architecture
2137		 * neutral portion of the string.
2138		 */
2139		if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) {
2140			ld_generic_env(nstr, nlen, estr, lmflags,
2141			    lmtflags, (env_flags | flags), aout);
2142		}
2143		if (len == 0)
2144			return (0);
2145
2146		nstr = sstr + 1;
2147		estr = 0;
2148	}
2149	return (0);
2150}
2151
2152
2153/*
2154 * Process a single environment string.  Only strings starting with `LD_' are
2155 * reserved for our use.  By convention, all strings should be of the form
2156 * `LD_XXXX=', if the string is followed by a non-null value the appropriate
2157 * functionality is enabled.  Also pick off applicable locale variables.
2158 */
2159#define	LOC_LANG	1
2160#define	LOC_MESG	2
2161#define	LOC_ALL		3
2162
2163static void
2164ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags,
2165    int aout)
2166{
2167	const char	*s2;
2168	static		size_t	loc = 0;
2169
2170	if (*s1++ != 'L')
2171		return;
2172
2173	/*
2174	 * See if we have any locale environment settings.  These environment
2175	 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which
2176	 * is higher than LANG.
2177	 */
2178	s2 = s1;
2179	if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) {
2180		if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) {
2181			s2 += MSG_LC_ALL_SIZE;
2182			if ((*s2 != '\0') && (loc < LOC_ALL)) {
2183				glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2184				loc = LOC_ALL;
2185			}
2186		} else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES),
2187		    MSG_LC_MESSAGES_SIZE) == 0) {
2188			s2 += MSG_LC_MESSAGES_SIZE;
2189			if ((*s2 != '\0') && (loc < LOC_MESG)) {
2190				glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2191				loc = LOC_MESG;
2192			}
2193		}
2194		return;
2195	}
2196
2197	s2 = s1;
2198	if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') &&
2199	    (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) {
2200		glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2201		loc = LOC_LANG;
2202		return;
2203	}
2204
2205	/*
2206	 * Pick off any LD_XXXX environment variables.
2207	 */
2208	if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) {
2209		size_t	len;
2210		int	flags;
2211
2212		/*
2213		 * In a branded process we must ignore all LD_XXXX env vars
2214		 * because they are intended for the brand's linker.
2215		 * To affect the Solaris linker, use LD_BRAND_XXXX instead.
2216		 */
2217		if (rtld_flags2 & RT_FL2_BRANDED) {
2218			if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX),
2219			    MSG_LD_BRAND_PREFIX_SIZE) != 0)
2220				return;
2221			s1 += MSG_LD_BRAND_PREFIX_SIZE;
2222		}
2223
2224		/*
2225		 * Environment variables with no value (ie. LD_XXXX=) typically
2226		 * have no impact, however if environment variables are defined
2227		 * within a configuration file, these null user settings can be
2228		 * used to disable any configuration replaceable definitions.
2229		 */
2230		if ((s2 = strchr(s1, '=')) == 0) {
2231			len = strlen(s1);
2232			s2 = 0;
2233		} else if (*++s2 == '\0') {
2234			len = strlen(s1) - 1;
2235			s2 = 0;
2236		} else {
2237			len = s2 - s1 - 1;
2238			while (isspace(*s2))
2239				s2++;
2240		}
2241
2242		/*
2243		 * Determine whether the environment variable is 32- or 64-bit
2244		 * specific.  The length, len, will reflect the architecture
2245		 * neutral portion of the string.
2246		 */
2247		if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE)
2248			return;
2249		env_flags |= flags;
2250
2251		ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout);
2252	}
2253}
2254
2255/*
2256 * Internal getenv routine.  Called immediately after ld.so.1 initializes
2257 * itself.
2258 */
2259int
2260readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout)
2261{
2262	char	*locale;
2263
2264	if (envp == (const char **)0)
2265		return (0);
2266
2267	while (*envp != (const char *)0)
2268		ld_str_env(*envp++, lmflags, lmtflags, 0, aout);
2269
2270	/*
2271	 * Having collected the best representation of any LD_FLAGS, process
2272	 * these strings.
2273	 */
2274	if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2275		return (1);
2276
2277	/*
2278	 * Don't allow environment controlled auditing when tracing or if
2279	 * explicitly disabled.  Trigger all tracing modes from
2280	 * LML_FLG_TRC_ENABLE.
2281	 */
2282	if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2283		rpl_audit = profile_lib = profile_name = 0;
2284	if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2285		*lmflags &= ~LML_MSK_TRC;
2286
2287	/*
2288	 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins.
2289	 */
2290	if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) ==
2291	    (RT_FL2_BINDNOW | RT_FL2_BINDLAZY))
2292		rtld_flags2 &= ~RT_FL2_BINDLAZY;
2293
2294	/*
2295	 * If we have a locale setting make sure its worth processing further.
2296	 * C and POSIX locales don't need any processing.  In addition, to
2297	 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow
2298	 * the locale to contain a segment that leads upward in the file system
2299	 * hierarchy (i.e. no '..' segments).   Given that we'll be confined to
2300	 * the /usr/lib/locale hierarchy, there is no need to extensively
2301	 * validate the mode or ownership of any message file (as libc's
2302	 * generic handling of message files does).  Duplicate the string so
2303	 * that new locale setting can generically cleanup any previous locales.
2304	 */
2305	if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) {
2306		if (((*locale == 'C') && (*(locale + 1) == '\0')) ||
2307		    (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) ||
2308		    (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL))
2309			glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0;
2310		else
2311			glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale);
2312	}
2313	return (0);
2314}
2315
2316/*
2317 * Configuration environment processing.  Called after the a.out has been
2318 * processed (as the a.out can specify its own configuration file).
2319 */
2320int
2321readenv_config(Rtc_env * envtbl, Addr addr, int aout)
2322{
2323	Word *	lmflags = &(lml_main.lm_flags);
2324	Word *	lmtflags = &(lml_main.lm_tflags);
2325
2326	if (envtbl == (Rtc_env *)0)
2327		return (0);
2328
2329	while (envtbl->env_str) {
2330		uint_t	env_flags = ENV_TYP_CONFIG;
2331
2332		if (envtbl->env_flags & RTC_ENV_PERMANT)
2333			env_flags |= ENV_TYP_PERMANT;
2334
2335		ld_str_env((const char *)(envtbl->env_str + addr),
2336		    lmflags, lmtflags, env_flags, 0);
2337		envtbl++;
2338	}
2339
2340	/*
2341	 * Having collected the best representation of any LD_FLAGS, process
2342	 * these strings.
2343	 */
2344	if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2345		return (1);
2346	if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG,
2347	    aout) == 1)
2348		return (1);
2349
2350	/*
2351	 * Don't allow environment controlled auditing when tracing or if
2352	 * explicitly disabled.  Trigger all tracing modes from
2353	 * LML_FLG_TRC_ENABLE.
2354	 */
2355	if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2356		prm_audit = profile_lib = profile_name = 0;
2357	if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2358		*lmflags &= ~LML_MSK_TRC;
2359
2360	return (0);
2361}
2362
2363int
2364dowrite(Prfbuf * prf)
2365{
2366	/*
2367	 * We do not have a valid file descriptor, so we are unable
2368	 * to flush the buffer.
2369	 */
2370	if (prf->pr_fd == -1)
2371		return (0);
2372	(void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf);
2373	prf->pr_cur = prf->pr_buf;
2374	return (1);
2375}
2376
2377/*
2378 * Simplified printing.  The following conversion specifications are supported:
2379 *
2380 *	% [#] [-] [min field width] [. precision] s|d|x|c
2381 *
2382 *
2383 * dorprf takes the output buffer in the form of Prfbuf which permits
2384 * the verification of the output buffer size and the concatenation
2385 * of data to an already existing output buffer.  The Prfbuf
2386 * structure contains the following:
2387 *
2388 *  pr_buf	pointer to the beginning of the output buffer.
2389 *  pr_cur	pointer to the next available byte in the output buffer.  By
2390 *		setting pr_cur ahead of pr_buf you can append to an already
2391 *		existing buffer.
2392 *  pr_len	the size of the output buffer.  By setting pr_len to '0' you
2393 *		disable protection from overflows in the output buffer.
2394 *  pr_fd	a pointer to the file-descriptor the buffer will eventually be
2395 *		output to.  If pr_fd is set to '-1' then it's assumed there is
2396 *		no output buffer, and doprf() will return with an error to
2397 *		indicate an output buffer overflow.  If pr_fd is > -1 then when
2398 *		the output buffer is filled it will be flushed to pr_fd and will
2399 *		then be	available for additional data.
2400 */
2401#define	FLG_UT_MINUS	0x0001	/* - */
2402#define	FLG_UT_SHARP	0x0002	/* # */
2403#define	FLG_UT_DOTSEEN	0x0008	/* dot appeared in format spec */
2404
2405/*
2406 * This macro is for use from within doprf only.  It is to be used for checking
2407 * the output buffer size and placing characters into the buffer.
2408 */
2409#define	PUTC(c) \
2410	{ \
2411		char tmpc; \
2412		\
2413		tmpc = (c); \
2414		if (bufsiz && (bp >= bufend)) { \
2415			prf->pr_cur = bp; \
2416			if (dowrite(prf) == 0) \
2417				return (0); \
2418			bp = prf->pr_cur; \
2419		} \
2420		*bp++ = tmpc; \
2421	}
2422
2423/*
2424 * Define a local buffer size for building a numeric value - large enough to
2425 * hold a 64-bit value.
2426 */
2427#define	NUM_SIZE	22
2428
2429size_t
2430doprf(const char *format, va_list args, Prfbuf *prf)
2431{
2432	char	c;
2433	char	*bp = prf->pr_cur;
2434	char	*bufend = prf->pr_buf + prf->pr_len;
2435	size_t	bufsiz = prf->pr_len;
2436
2437	while ((c = *format++) != '\0') {
2438		if (c != '%') {
2439			PUTC(c);
2440		} else {
2441			int	base = 0, flag = 0, width = 0, prec = 0;
2442			size_t	_i;
2443			int	_c, _n;
2444			char	*_s;
2445			int	ls = 0;
2446again:
2447			c = *format++;
2448			switch (c) {
2449			case '-':
2450				flag |= FLG_UT_MINUS;
2451				goto again;
2452			case '#':
2453				flag |= FLG_UT_SHARP;
2454				goto again;
2455			case '.':
2456				flag |= FLG_UT_DOTSEEN;
2457				goto again;
2458			case '0':
2459			case '1':
2460			case '2':
2461			case '3':
2462			case '4':
2463			case '5':
2464			case '6':
2465			case '7':
2466			case '8':
2467			case '9':
2468				if (flag & FLG_UT_DOTSEEN)
2469					prec = (prec * 10) + c - '0';
2470				else
2471					width = (width * 10) + c - '0';
2472				goto again;
2473			case 'x':
2474			case 'X':
2475				base = 16;
2476				break;
2477			case 'd':
2478			case 'D':
2479			case 'u':
2480				base = 10;
2481				flag &= ~FLG_UT_SHARP;
2482				break;
2483			case 'l':
2484				base = 10;
2485				ls++; /* number of l's (long or long long) */
2486				if ((*format == 'l') ||
2487				    (*format == 'd') || (*format == 'D') ||
2488				    (*format == 'x') || (*format == 'X') ||
2489				    (*format == 'o') || (*format == 'O'))
2490					goto again;
2491				break;
2492			case 'o':
2493			case 'O':
2494				base = 8;
2495				break;
2496			case 'c':
2497				_c = va_arg(args, int);
2498
2499				for (_i = 24; _i > 0; _i -= 8) {
2500					if ((c = ((_c >> _i) & 0x7f)) != 0) {
2501						PUTC(c);
2502					}
2503				}
2504				if ((c = ((_c >> _i) & 0x7f)) != 0) {
2505					PUTC(c);
2506				}
2507				break;
2508			case 's':
2509				_s = va_arg(args, char *);
2510				_i = strlen(_s);
2511				/* LINTED */
2512				_n = (int)(width - _i);
2513				if (!prec)
2514					/* LINTED */
2515					prec = (int)_i;
2516
2517				if (width && !(flag & FLG_UT_MINUS)) {
2518					while (_n-- > 0)
2519						PUTC(' ');
2520				}
2521				while (((c = *_s++) != 0) && prec--) {
2522					PUTC(c);
2523				}
2524				if (width && (flag & FLG_UT_MINUS)) {
2525					while (_n-- > 0)
2526						PUTC(' ');
2527				}
2528				break;
2529			case '%':
2530				PUTC('%');
2531				break;
2532			default:
2533				break;
2534			}
2535
2536			/*
2537			 * Numeric processing
2538			 */
2539			if (base) {
2540				char		local[NUM_SIZE];
2541				size_t		ssize = 0, psize = 0;
2542				const char	*string =
2543				    MSG_ORIG(MSG_STR_HEXNUM);
2544				const char	*prefix =
2545				    MSG_ORIG(MSG_STR_EMPTY);
2546				u_longlong_t	num;
2547
2548				switch (ls) {
2549				case 0:	/* int */
2550					num = (u_longlong_t)
2551					    va_arg(args, uint_t);
2552					break;
2553				case 1:	/* long */
2554					num = (u_longlong_t)
2555					    va_arg(args, ulong_t);
2556					break;
2557				case 2:	/* long long */
2558					num = va_arg(args, u_longlong_t);
2559					break;
2560				}
2561
2562				if (flag & FLG_UT_SHARP) {
2563					if (base == 16) {
2564						prefix = MSG_ORIG(MSG_STR_HEX);
2565						psize = 2;
2566					} else {
2567						prefix = MSG_ORIG(MSG_STR_ZERO);
2568						psize = 1;
2569					}
2570				}
2571				if ((base == 10) && (long)num < 0) {
2572					prefix = MSG_ORIG(MSG_STR_NEGATE);
2573					psize = MSG_STR_NEGATE_SIZE;
2574					num = (u_longlong_t)(-(longlong_t)num);
2575				}
2576
2577				/*
2578				 * Convert the numeric value into a local
2579				 * string (stored in reverse order).
2580				 */
2581				_s = local;
2582				do {
2583					*_s++ = string[num % base];
2584					num /= base;
2585					ssize++;
2586				} while (num);
2587
2588				ASSERT(ssize < sizeof (local));
2589
2590				/*
2591				 * Provide any precision or width padding.
2592				 */
2593				if (prec) {
2594					/* LINTED */
2595					_n = (int)(prec - ssize);
2596					while ((_n-- > 0) &&
2597					    (ssize < sizeof (local))) {
2598						*_s++ = '0';
2599						ssize++;
2600					}
2601				}
2602				if (width && !(flag & FLG_UT_MINUS)) {
2603					/* LINTED */
2604					_n = (int)(width - ssize - psize);
2605					while (_n-- > 0) {
2606						PUTC(' ');
2607					}
2608				}
2609
2610				/*
2611				 * Print any prefix and the numeric string
2612				 */
2613				while (*prefix)
2614					PUTC(*prefix++);
2615				do {
2616					PUTC(*--_s);
2617				} while (_s > local);
2618
2619				/*
2620				 * Provide any width padding.
2621				 */
2622				if (width && (flag & FLG_UT_MINUS)) {
2623					/* LINTED */
2624					_n = (int)(width - ssize - psize);
2625					while (_n-- > 0)
2626						PUTC(' ');
2627				}
2628			}
2629		}
2630	}
2631
2632	PUTC('\0');
2633	prf->pr_cur = bp;
2634	return (1);
2635}
2636
2637static int
2638doprintf(const char *format, va_list args, Prfbuf *prf)
2639{
2640	char	*ocur = prf->pr_cur;
2641
2642	if (doprf(format, args, prf) == 0)
2643		return (0);
2644	/* LINTED */
2645	return ((int)(prf->pr_cur - ocur));
2646}
2647
2648/* VARARGS2 */
2649int
2650sprintf(char *buf, const char *format, ...)
2651{
2652	va_list	args;
2653	int	len;
2654	Prfbuf	prf;
2655
2656	va_start(args, format);
2657	prf.pr_buf = prf.pr_cur = buf;
2658	prf.pr_len = 0;
2659	prf.pr_fd = -1;
2660	len = doprintf(format, args, &prf);
2661	va_end(args);
2662
2663	/*
2664	 * sprintf() return value excludes the terminating null byte.
2665	 */
2666	return (len - 1);
2667}
2668
2669/* VARARGS3 */
2670int
2671snprintf(char *buf, size_t n, const char *format, ...)
2672{
2673	va_list	args;
2674	int	len;
2675	Prfbuf	prf;
2676
2677	va_start(args, format);
2678	prf.pr_buf = prf.pr_cur = buf;
2679	prf.pr_len = n;
2680	prf.pr_fd = -1;
2681	len = doprintf(format, args, &prf);
2682	va_end(args);
2683
2684	return (len);
2685}
2686
2687/* VARARGS2 */
2688int
2689bufprint(Prfbuf *prf, const char *format, ...)
2690{
2691	va_list	args;
2692	int	len;
2693
2694	va_start(args, format);
2695	len = doprintf(format, args, prf);
2696	va_end(args);
2697
2698	return (len);
2699}
2700
2701/*PRINTFLIKE1*/
2702int
2703printf(const char *format, ...)
2704{
2705	va_list	args;
2706	char 	buffer[ERRSIZE];
2707	Prfbuf	prf;
2708
2709	va_start(args, format);
2710	prf.pr_buf = prf.pr_cur = buffer;
2711	prf.pr_len = ERRSIZE;
2712	prf.pr_fd = 1;
2713	(void) doprf(format, args, &prf);
2714	va_end(args);
2715	/*
2716	 * Trim trailing '\0' form buffer
2717	 */
2718	prf.pr_cur--;
2719	return (dowrite(&prf));
2720}
2721
2722static char	errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0;
2723
2724/*PRINTFLIKE3*/
2725void
2726eprintf(Lm_list *lml, Error error, const char *format, ...)
2727{
2728	va_list		args;
2729	int		overflow = 0;
2730	static int	lock = 0;
2731	Prfbuf		prf;
2732
2733	if (lock || (nextptr == (errbuf + ERRSIZE)))
2734		return;
2735
2736	/*
2737	 * Note: this lock is here to prevent the same thread from recursively
2738	 * entering itself during a eprintf.  ie: during eprintf malloc() fails
2739	 * and we try and call eprintf ... and then malloc() fails ....
2740	 */
2741	lock = 1;
2742
2743	/*
2744	 * If we have completed startup initialization, all error messages
2745	 * must be saved.  These are reported through dlerror().  If we're
2746	 * still in the initialization stage, output the error directly and
2747	 * add a newline.
2748	 */
2749	va_start(args, format);
2750
2751	prf.pr_buf = prf.pr_cur = nextptr;
2752	prf.pr_len = ERRSIZE - (nextptr - errbuf);
2753
2754	if (!(rtld_flags & RT_FL_APPLIC))
2755		prf.pr_fd = 2;
2756	else
2757		prf.pr_fd = -1;
2758
2759	if (error > ERR_NONE) {
2760		if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN))
2761			error = ERR_WARNING;
2762		if (error == ERR_WARNING) {
2763			if (err_strs[ERR_WARNING] == 0)
2764				err_strs[ERR_WARNING] =
2765				    MSG_INTL(MSG_ERR_WARNING);
2766		} else if (error == ERR_FATAL) {
2767			if (err_strs[ERR_FATAL] == 0)
2768				err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL);
2769		} else if (error == ERR_ELF) {
2770			if (err_strs[ERR_ELF] == 0)
2771				err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF);
2772		}
2773		if (procname) {
2774			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1),
2775			    rtldname, procname, err_strs[error]) == 0)
2776				overflow = 1;
2777		} else {
2778			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2779			    rtldname, err_strs[error]) == 0)
2780				overflow = 1;
2781		}
2782		if (overflow == 0) {
2783			/*
2784			 * Remove the terminating '\0'.
2785			 */
2786			prf.pr_cur--;
2787		}
2788	}
2789
2790	if ((overflow == 0) && doprf(format, args, &prf) == 0)
2791		overflow = 1;
2792
2793	/*
2794	 * If this is an ELF error, it will have been generated by a support
2795	 * object that has a dependency on libelf.  ld.so.1 doesn't generate any
2796	 * ELF error messages as it doesn't interact with libelf.  Determine the
2797	 * ELF error string.
2798	 */
2799	if ((overflow == 0) && (error == ERR_ELF)) {
2800		static int		(*elfeno)() = 0;
2801		static const char	*(*elfemg)();
2802		const char		*emsg;
2803		Rt_map			*dlmp, *lmp = lml_rtld.lm_head;
2804
2805		if (NEXT(lmp) && (elfeno == 0)) {
2806			if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT,
2807			    MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) ||
2808			    ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT,
2809			    MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0))
2810				elfeno = 0;
2811		}
2812
2813		/*
2814		 * Lookup the message; equivalent to elf_errmsg(elf_errno()).
2815		 */
2816		if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) {
2817			prf.pr_cur--;
2818			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2819			    emsg) == 0)
2820				overflow = 1;
2821		}
2822	}
2823
2824	/*
2825	 * Push out any message that's been built.  Note, in the case of an
2826	 * overflow condition, this message may be incomplete, in which case
2827	 * make sure any partial string is null terminated.
2828	 */
2829	if (overflow)
2830		*(prf.pr_cur) = '\0';
2831	if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) {
2832		*(prf.pr_cur - 1) = '\n';
2833		(void) dowrite(&prf);
2834	}
2835
2836	DBG_CALL(Dbg_util_str(lml, nextptr));
2837	va_end(args);
2838
2839	/*
2840	 * Determine if there was insufficient space left in the buffer to
2841	 * complete the message.  If so, we'll have printed out as much as had
2842	 * been processed if we're not yet executing the application.
2843	 * Otherwise, there will be some debugging diagnostic indicating
2844	 * as much of the error message as possible.  Write out a final buffer
2845	 * overflow diagnostic - unlocalized, so we don't chance more errors.
2846	 */
2847	if (overflow) {
2848		char	*str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW);
2849
2850		if ((rtld_flags & RT_FL_SILENCERR) == 0) {
2851			lasterr = str;
2852
2853			if ((rtld_flags & RT_FL_APPLIC) == 0) {
2854				(void) write(2, str, strlen(str));
2855				(void) write(2, MSG_ORIG(MSG_STR_NL),
2856				    MSG_STR_NL_SIZE);
2857			}
2858		}
2859		DBG_CALL(Dbg_util_str(lml, str));
2860
2861		lock = 0;
2862		nextptr = errbuf + ERRSIZE;
2863		return;
2864	}
2865
2866	/*
2867	 * If the application has started, then error messages are being saved
2868	 * for retrieval by dlerror(), or possible flushing from rtldexit() in
2869	 * the case of a fatal error.  In this case, establish the next error
2870	 * pointer.  If we haven't started the application, the whole message
2871	 * buffer can be reused.
2872	 */
2873	if ((rtld_flags & RT_FL_SILENCERR) == 0) {
2874		lasterr = nextptr;
2875
2876		/*
2877		 * Note, should we encounter an error such as ENOMEM, there may
2878		 * be a number of the same error messages (ie. an operation
2879		 * fails with ENOMEM, and then the attempts to construct the
2880		 * error message itself, which incurs additional ENOMEM errors).
2881		 * Compare any previous error message with the one we've just
2882		 * created to prevent any duplication clutter.
2883		 */
2884		if ((rtld_flags & RT_FL_APPLIC) &&
2885		    ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) {
2886			prevptr = nextptr;
2887			nextptr = prf.pr_cur;
2888			*nextptr = '\0';
2889		}
2890	}
2891	lock = 0;
2892}
2893
2894
2895#if	DEBUG
2896/*
2897 * Provide assfail() for ASSERT() statements,
2898 * see <sys/debug.h> for further details.
2899 */
2900int
2901assfail(const char *a, const char *f, int l)
2902{
2903	(void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l);
2904	(void) _lwp_kill(_lwp_self(), SIGABRT);
2905	return (0);
2906}
2907#endif
2908
2909/*
2910 * Exit.  If we arrive here with a non zero status it's because of a fatal
2911 * error condition (most commonly a relocation error).  If the application has
2912 * already had control, then the actual fatal error message will have been
2913 * recorded in the dlerror() message buffer.  Print the message before really
2914 * exiting.
2915 */
2916void
2917rtldexit(Lm_list * lml, int status)
2918{
2919	if (status) {
2920		if (rtld_flags & RT_FL_APPLIC) {
2921			/*
2922			 * If the error buffer has been used, write out all
2923			 * pending messages - lasterr is simply a pointer to
2924			 * the last message in this buffer.  However, if the
2925			 * buffer couldn't be created at all, lasterr points
2926			 * to a constant error message string.
2927			 */
2928			if (*errbuf) {
2929				char	*errptr = errbuf;
2930				char	*errend = errbuf + ERRSIZE;
2931
2932				while ((errptr < errend) && *errptr) {
2933					size_t	size = strlen(errptr);
2934					(void) write(2, errptr, size);
2935					(void) write(2, MSG_ORIG(MSG_STR_NL),
2936					    MSG_STR_NL_SIZE);
2937					errptr += (size + 1);
2938				}
2939			}
2940			if (lasterr && ((lasterr < errbuf) ||
2941			    (lasterr > (errbuf + ERRSIZE)))) {
2942				(void) write(2, lasterr, strlen(lasterr));
2943				(void) write(2, MSG_ORIG(MSG_STR_NL),
2944				    MSG_STR_NL_SIZE);
2945			}
2946		}
2947		leave(lml);
2948		(void) _lwp_kill(_lwp_self(), killsig);
2949	}
2950	_exit(status);
2951}
2952
2953/*
2954 * Routines to co-ordinate the opening of /dev/zero and /proc.
2955 * dz_fd is exported for possible use by libld.so, and to insure it gets
2956 * closed on leaving ld.so.1.
2957 */
2958int	dz_fd = FD_UNAVAIL;
2959
2960void
2961dz_init(int fd)
2962{
2963	dz_fd = fd;
2964}
2965
2966
2967/*
2968 * mmap() a page from MAP_ANON
2969 *
2970 * Note: MAP_ANON is only on Solaris8++, we use this routine to
2971 *       not only mmap(MAP_ANON) but to also probe if it is available
2972 *	 on the current OS.
2973 */
2974Am_ret
2975anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags)
2976{
2977#if defined(MAP_ANON)
2978	static int	noanon = 0;
2979	caddr_t		va;
2980
2981	if (noanon == 0) {
2982		if ((va = (caddr_t)mmap(*addr, len, prot,
2983		    (flags | MAP_ANON), -1, 0)) != MAP_FAILED) {
2984			*addr = va;
2985			return (AM_OK);
2986		}
2987
2988		if ((errno != EBADF) && (errno != EINVAL)) {
2989			int	err = errno;
2990			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON),
2991			    MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
2992			return (AM_ERROR);
2993		} else
2994			noanon = 1;
2995	}
2996#endif
2997	return (AM_NOSUP);
2998}
2999
3000/*
3001 * Map anonymous memory from /dev/zero, or via MAP_ANON.
3002 *
3003 * (MAP_ANON only appears on Solaris 8, so we need fall-back
3004 * behavior for older systems.)
3005 */
3006caddr_t
3007dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3008{
3009	caddr_t	va;
3010	int	err;
3011	Am_ret	amret;
3012
3013	amret = anon_map(lml, &addr, len, prot, flags);
3014
3015	if (amret == AM_OK)
3016		return (addr);
3017	if (amret == AM_ERROR)
3018		return (MAP_FAILED);
3019
3020	/* amret == AM_NOSUP -> fallback to a devzero mmaping */
3021
3022	if (dz_fd == FD_UNAVAIL) {
3023		if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO),
3024		    O_RDONLY)) == FD_UNAVAIL) {
3025			err = errno;
3026			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
3027			    MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
3028			return (MAP_FAILED);
3029		}
3030	}
3031
3032	if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) {
3033		err = errno;
3034		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
3035		    MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
3036	}
3037	return (va);
3038}
3039
3040static int	pr_fd = FD_UNAVAIL;
3041
3042int
3043pr_open(Lm_list *lml)
3044{
3045	char	proc[16];
3046
3047	if (pr_fd == FD_UNAVAIL) {
3048		(void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC),
3049		    (int)getpid());
3050		if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) {
3051			int	err = errno;
3052
3053			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc,
3054			    strerror(err));
3055		}
3056	}
3057	return (pr_fd);
3058}
3059
3060static int	nu_fd = FD_UNAVAIL;
3061
3062caddr_t
3063nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3064{
3065	caddr_t	va;
3066	int	err;
3067
3068	if (nu_fd == FD_UNAVAIL) {
3069		if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL),
3070		    O_RDONLY)) == FD_UNAVAIL) {
3071			err = errno;
3072			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
3073			    MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3074			return (MAP_FAILED);
3075		}
3076	}
3077
3078	if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) ==
3079	    MAP_FAILED) {
3080		err = errno;
3081		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
3082		    MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3083	}
3084	return (va);
3085}
3086
3087/*
3088 * Generic entry point from user code - simply grabs a lock.
3089 */
3090int
3091enter(void)
3092{
3093	if (rt_bind_guard(THR_FLG_RTLD)) {
3094		(void) rt_mutex_lock(&rtldlock);
3095		return (1);
3096	}
3097	return (0);
3098}
3099
3100/*
3101 * Generate diagnostics as to whether an object has been used.  A symbolic
3102 * reference that gets bound to an object marks it as used.  Dependencies that
3103 * are unused when RTLD_NOW is in effect should be removed from future builds
3104 * of an object.  Dependencies that are unused without RTLD_NOW in effect are
3105 * candidates for lazy-loading.
3106 * Unreferenced objects identify objects that are defined as dependencies but
3107 * are unreferenced by the caller (they may however be referenced by other
3108 * objects within the process, and therefore don't qualify as completely unused.
3109 */
3110void
3111unused(Lm_list *lml)
3112{
3113	Rt_map		*lmp;
3114	int		nl = 0;
3115	Word		tracing;
3116
3117	/*
3118	 * If we're not tracing unused references or dependencies, or debugging
3119	 * there's nothing to do.
3120	 */
3121	tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED);
3122
3123	if ((tracing == 0) && (DBG_ENABLED == 0))
3124		return;
3125
3126	/*
3127	 * Traverse the link-maps looking for unreferenced or unused
3128	 * dependencies.  Ignore the first object on a link-map list, as this
3129	 * is effectively always used.
3130	 */
3131	for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp;
3132	    lmp = (Rt_map *)NEXT(lmp)) {
3133		/*
3134		 * If tracing unreferenced objects, or under debugging,
3135		 * determine whether any of this objects callers haven't
3136		 * referenced it.
3137		 */
3138		if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) {
3139			Bnd_desc **	bdpp;
3140			Aliste		off;
3141
3142			for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) {
3143				Bnd_desc *	bdp = *bdpp;
3144				Rt_map *	clmp;
3145
3146				if (bdp->b_flags & BND_REFER)
3147					continue;
3148
3149				clmp = bdp->b_caller;
3150				if (FLAGS1(clmp) & FL1_RT_LDDSTUB)
3151					continue;
3152
3153				/* BEGIN CSTYLED */
3154				if (nl++ == 0) {
3155					if (tracing & LML_FLG_TRC_UNREF)
3156					    (void) printf(MSG_ORIG(MSG_STR_NL));
3157					else
3158					    DBG_CALL(Dbg_util_nl(lml,
3159						DBG_NL_STD));
3160				}
3161
3162				if (tracing & LML_FLG_TRC_UNREF)
3163				    (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT),
3164					NAME(lmp), NAME(clmp));
3165				else
3166				    DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp)));
3167				/* END CSTYLED */
3168			}
3169		}
3170
3171		/*
3172		 * If tracing unused objects simply display those objects that
3173		 * haven't been referenced by anyone.
3174		 */
3175		if (FLAGS1(lmp) & FL1_RT_USED)
3176			continue;
3177
3178		if (nl++ == 0) {
3179			if (tracing)
3180				(void) printf(MSG_ORIG(MSG_STR_NL));
3181			else
3182				DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3183		}
3184		if (CYCGROUP(lmp)) {
3185			if (tracing)
3186				(void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT),
3187				    NAME(lmp), CYCGROUP(lmp));
3188			else
3189				DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0,
3190				    CYCGROUP(lmp)));
3191		} else {
3192			if (tracing)
3193				(void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT),
3194				    NAME(lmp));
3195			else
3196				DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0));
3197		}
3198	}
3199
3200	DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3201}
3202
3203/*
3204 * Initialization routine for the Fmap structure.  If the fmap structure is
3205 * already in use, any mapping is released.  The structure is then initialized
3206 * in preparation for further use.
3207 */
3208void
3209fmap_setup()
3210{
3211#if defined(MAP_ALIGN)
3212	/*
3213	 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment
3214	 * value.  Otherwise, if fm_addr is non-null it indicates a mapping that
3215	 * should now be freed.
3216	 */
3217	if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0))
3218		(void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize);
3219
3220	/*
3221	 * Providing we haven't determined that this system doesn't support
3222	 * MAP_ALIGN, initialize the mapping address with the default segment
3223	 * alignment.
3224	 */
3225	if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) {
3226		fmap->fm_maddr = (char *)M_SEGM_ALIGN;
3227		fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN;
3228	} else {
3229		fmap->fm_maddr = 0;
3230		fmap->fm_mflags = MAP_PRIVATE;
3231	}
3232#else
3233	if (fmap->fm_maddr)
3234		(void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize);
3235
3236	fmap->fm_maddr = 0;
3237	fmap->fm_mflags = MAP_PRIVATE;
3238#endif
3239
3240	fmap->fm_msize = FMAP_SIZE;
3241	fmap->fm_hwptr = 0;
3242}
3243
3244/*
3245 * Generic cleanup routine called prior to returning control to the user.
3246 * Insures that any ld.so.1 specific file descriptors or temporary mapping are
3247 * released, and any locks dropped.
3248 */
3249void
3250leave(Lm_list *lml)
3251{
3252	Lm_list	*elml = lml;
3253	Rt_map	**clmpp;
3254	Aliste	off;
3255
3256	/*
3257	 * Alert the debuggers that the link-maps are consistent.  Note, in the
3258	 * case of tearing down a whole link-map list, lml will be null.  In
3259	 * this case use the main link-map list to test for a notification.
3260	 */
3261	if (elml == 0)
3262		elml = &lml_main;
3263	if (elml->lm_flags & LML_FLG_DBNOTIF)
3264		rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT);
3265
3266	/*
3267	 * Alert any auditors that the link-maps are consistent.
3268	 */
3269	for (ALIST_TRAVERSE(elml->lm_actaudit, off, clmpp)) {
3270		audit_activity(*clmpp, LA_ACT_CONSISTENT);
3271
3272		(void) alist_delete(elml->lm_actaudit, 0, &off);
3273	}
3274
3275	if (dz_fd != FD_UNAVAIL) {
3276		(void) close(dz_fd);
3277		dz_fd = FD_UNAVAIL;
3278	}
3279
3280	if (pr_fd != FD_UNAVAIL) {
3281		(void) close(pr_fd);
3282		pr_fd = FD_UNAVAIL;
3283	}
3284
3285	if (nu_fd != FD_UNAVAIL) {
3286		(void) close(nu_fd);
3287		nu_fd = FD_UNAVAIL;
3288	}
3289
3290	fmap_setup();
3291
3292	/*
3293	 * Reinitialize error message pointer, and any overflow indication.
3294	 */
3295	nextptr = errbuf;
3296	prevptr = 0;
3297
3298	/*
3299	 * Don't drop our lock if we are running on our link-map list as
3300	 * there's little point in doing so since we are single-threaded.
3301	 *
3302	 * LML_FLG_HOLDLOCK is set for:
3303	 *	*) The ld.so.1's link-map list.
3304	 *	*) The auditor's link-map if the environment is
3305	 *	   libc/libthread un-unified.
3306	 */
3307	if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK))
3308		return;
3309
3310	if (rt_bind_clear(0) & THR_FLG_RTLD) {
3311		(void) rt_mutex_unlock(&rtldlock);
3312		(void) rt_bind_clear(THR_FLG_RTLD);
3313	}
3314}
3315
3316int
3317callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp)
3318{
3319	Alist		*calp, *dalp;
3320	Aliste		off1, off2;
3321	Grp_hdl		**ghpp1, **ghpp2;
3322
3323	/*
3324	 * An object can always find symbols within itself.
3325	 */
3326	if (clmp == dlmp)
3327		return (1);
3328
3329	/*
3330	 * Don't allow an object to bind to an object that is being deleted
3331	 * unless the binder is also being deleted.
3332	 */
3333	if ((FLAGS(dlmp) & FLG_RT_DELETE) &&
3334	    ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
3335		return (0);
3336
3337	/*
3338	 * An object with world access can always bind to an object with global
3339	 * visibility.
3340	 */
3341	if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL))
3342		return (1);
3343
3344	/*
3345	 * An object with local access can only bind to an object that is a
3346	 * member of the same group.
3347	 */
3348	if (((MODE(clmp) & RTLD_GROUP) == 0) ||
3349	    ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0))
3350		return (0);
3351
3352	/*
3353	 * Traverse the list of groups the caller is a part of.
3354	 */
3355	for (ALIST_TRAVERSE(calp, off1, ghpp1)) {
3356		/*
3357		 * If we're testing for the ability of two objects to bind to
3358		 * each other regardless of a specific group, ignore that group.
3359		 */
3360		if (ghp && (*ghpp1 == ghp))
3361			continue;
3362
3363		/*
3364		 * Traverse the list of groups the destination is a part of.
3365		 */
3366		for (ALIST_TRAVERSE(dalp, off2, ghpp2)) {
3367			Grp_desc	*gdp;
3368			Aliste		off3;
3369
3370			if (*ghpp1 != *ghpp2)
3371				continue;
3372
3373			/*
3374			 * Make sure the relationship between the destination
3375			 * and the caller provide symbols for relocation.
3376			 * Parents are maintained as callers, but unless the
3377			 * destination object was opened with RTLD_PARENT, the
3378			 * parent doesn't provide symbols for the destination
3379			 * to relocate against.
3380			 */
3381			for (ALIST_TRAVERSE((*ghpp2)->gh_depends, off3, gdp)) {
3382				if (dlmp != gdp->gd_depend)
3383					continue;
3384
3385				if (gdp->gd_flags & GPD_RELOC)
3386					return (1);
3387			}
3388		}
3389	}
3390	return (0);
3391}
3392
3393/*
3394 * Initialize the environ symbol.  Traditionally this is carried out by the crt
3395 * code prior to jumping to main.  However, init sections get fired before this
3396 * variable is initialized, so ld.so.1 sets this directly from the AUX vector
3397 * information.  In addition, a process may have multiple link-maps (ld.so.1's
3398 * debugging and preloading objects), and link auditing, and each may need an
3399 * environ variable set.
3400 *
3401 * This routine is called after a relocation() pass, and thus provides for:
3402 *
3403 *  o	setting environ on the main link-map after the initial application and
3404 *	its dependencies have been established.  Typically environ lives in the
3405 *	application (provided by its crt), but in older applications it might
3406 *	be in libc.  Who knows what's expected of applications not built on
3407 *	Solaris.
3408 *
3409 *  o	after loading a new shared object.  We can add shared objects to various
3410 *	link-maps, and any link-map dependencies requiring getopt() require
3411 *	their own environ.  In addition, lazy loading might bring in the
3412 *	supplier of environ (libc used to be a lazy loading candidate) after
3413 *	the link-map has been established and other objects are present.
3414 *
3415 * This routine handles all these scenarios, without adding unnecessary overhead
3416 * to ld.so.1.
3417 */
3418void
3419set_environ(Lm_list *lml)
3420{
3421	Rt_map *	dlmp;
3422	Sym *		sym;
3423	Slookup		sl;
3424	uint_t		binfo;
3425
3426	sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON);
3427	sl.sl_cmap = lml->lm_head;
3428	sl.sl_imap = lml->lm_head;
3429	sl.sl_hash = 0;
3430	sl.sl_rsymndx = 0;
3431	sl.sl_flags = LKUP_WEAK;
3432
3433	if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) {
3434		lml->lm_environ = (char ***)sym->st_value;
3435
3436		if (!(FLAGS(dlmp) & FLG_RT_FIXED))
3437			lml->lm_environ =
3438			    (char ***)((uintptr_t)lml->lm_environ +
3439			    (uintptr_t)ADDR(dlmp));
3440		*(lml->lm_environ) = (char **)environ;
3441		lml->lm_flags |= LML_FLG_ENVIRON;
3442	}
3443}
3444
3445/*
3446 * Determine whether we have a secure executable.  Uid and gid information
3447 * can be passed to us via the aux vector, however if these values are -1
3448 * then use the appropriate system call to obtain them.
3449 *
3450 *  o	If the user is the root they can do anything
3451 *
3452 *  o	If the real and effective uid's don't match, or the real and
3453 *	effective gid's don't match then this is determined to be a `secure'
3454 *	application.
3455 *
3456 * This function is called prior to any dependency processing (see _setup.c).
3457 * Any secure setting will remain in effect for the life of the process.
3458 */
3459void
3460security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags)
3461{
3462#ifdef AT_SUN_AUXFLAGS
3463	if (auxflags != -1) {
3464		if ((auxflags & AF_SUN_SETUGID) != 0)
3465			rtld_flags |= RT_FL_SECURE;
3466		return;
3467	}
3468#endif
3469	if (uid == (uid_t)-1)
3470		uid = getuid();
3471	if (uid) {
3472		if (euid == (uid_t)-1)
3473			euid = geteuid();
3474		if (uid != euid)
3475			rtld_flags |= RT_FL_SECURE;
3476		else {
3477			if (gid == (gid_t)-1)
3478				gid = getgid();
3479			if (egid == (gid_t)-1)
3480				egid = getegid();
3481			if (gid != egid)
3482				rtld_flags |= RT_FL_SECURE;
3483		}
3484	}
3485}
3486
3487/*
3488 * _REENTRANT code gets errno redefined to a function so provide for return
3489 * of the thread errno if applicable.  This has no meaning in ld.so.1 which
3490 * is basically singled threaded.  Provide the interface for our dependencies.
3491 */
3492#undef errno
3493#pragma weak _private___errno = ___errno
3494int *
3495___errno()
3496{
3497	extern	int	errno;
3498
3499	return (&errno);
3500}
3501
3502/*
3503 * The interface with the c library which is supplied through libdl.so.1.
3504 * A non-null argument allows a function pointer array to be passed to us which
3505 * is used to re-initialize the linker libc table.
3506 */
3507void
3508_ld_libc(void * ptr)
3509{
3510	get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr);
3511}
3512
3513/*
3514 * Determine whether a symbol name should be demangled.
3515 */
3516const char *
3517demangle(const char *name)
3518{
3519	if (rtld_flags & RT_FL_DEMANGLE)
3520		return (conv_demangle_name(name));
3521	else
3522		return (name);
3523}
3524