util.c revision 11827:d7ef53deac3f
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 *	Copyright (c) 1988 AT&T
29 *	  All Rights Reserved
30 */
31
32/*
33 * Utility routines for run-time linker.  some are duplicated here from libc
34 * (with different names) to avoid name space collisions.
35 */
36#include	<sys/systeminfo.h>
37#include	<stdio.h>
38#include	<sys/time.h>
39#include	<sys/types.h>
40#include	<sys/mman.h>
41#include	<sys/lwp.h>
42#include	<sys/debug.h>
43#include	<stdarg.h>
44#include	<fcntl.h>
45#include	<string.h>
46#include	<dlfcn.h>
47#include	<unistd.h>
48#include	<stdlib.h>
49#include	<sys/auxv.h>
50#include	<limits.h>
51#include	<debug.h>
52#include	<conv.h>
53#include	"_rtld.h"
54#include	"_audit.h"
55#include	"_elf.h"
56#include	"msg.h"
57
58static int ld_flags_env(const char *, Word *, Word *, uint_t, int);
59
60/*
61 * Null function used as place where a debugger can set a breakpoint.
62 */
63void
64rtld_db_dlactivity(Lm_list *lml)
65{
66	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
67	    r_debug.rtd_rdebug.r_state));
68}
69
70/*
71 * Null function used as place where debugger can set a pre .init
72 * processing breakpoint.
73 */
74void
75rtld_db_preinit(Lm_list *lml)
76{
77	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
78	    r_debug.rtd_rdebug.r_state));
79}
80
81/*
82 * Null function used as place where debugger can set a post .init
83 * processing breakpoint.
84 */
85void
86rtld_db_postinit(Lm_list *lml)
87{
88	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
89	    r_debug.rtd_rdebug.r_state));
90}
91
92/*
93 * Debugger Event Notification
94 *
95 * This function centralizes all debugger event notification (ala rtld_db).
96 *
97 * There's a simple intent, focused on insuring the primary link-map control
98 * list (or each link-map list) is consistent, and the indication that objects
99 * have been added or deleted from this list.  Although an RD_ADD and RD_DELETE
100 * event are posted for each of these, most debuggers don't care, as their
101 * view is that these events simply convey an "inconsistent" state.
102 *
103 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we
104 * enter ld.so.1.
105 *
106 * With auditors, we may be in the process of relocating a collection of
107 * objects, and will leave() ld.so.1 to call the auditor.  At this point we
108 * must indicate an RD_CONSISTENT event, but librtld_db will not report an
109 * object to the debuggers until relocation processing has been completed on it.
110 * To allow for the collection of these objects that are pending relocation, an
111 * RD_ADD event is set after completing a series of relocations on the primary
112 * link-map control list.
113 *
114 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is
115 * required later (LML_FLG_DBNOTIF):
116 *
117 *  i	the first time we add or delete an object to the primary link-map
118 *	control list.
119 *  ii	the first time we move a secondary link-map control list to the primary
120 *	link-map control list (effectively, this is like adding a group of
121 *	objects to the primary link-map control list).
122 *
123 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and
124 *
125 *  i	each time we leave the runtime linker.
126 */
127void
128rd_event(Lm_list *lml, rd_event_e event, r_state_e state)
129{
130	void	(*fptr)(Lm_list *);
131
132	switch (event) {
133	case RD_PREINIT:
134		fptr = rtld_db_preinit;
135		break;
136	case RD_POSTINIT:
137		fptr = rtld_db_postinit;
138		break;
139	case RD_DLACTIVITY:
140		switch (state) {
141		case RT_CONSISTENT:
142			lml->lm_flags &= ~LML_FLG_DBNOTIF;
143
144			/*
145			 * Do we need to send a notification?
146			 */
147			if ((rtld_flags & RT_FL_DBNOTIF) == 0)
148				return;
149			rtld_flags &= ~RT_FL_DBNOTIF;
150			break;
151		case RT_ADD:
152		case RT_DELETE:
153			lml->lm_flags |= LML_FLG_DBNOTIF;
154
155			/*
156			 * If we are already in an inconsistent state, no
157			 * notification is required.
158			 */
159			if (rtld_flags & RT_FL_DBNOTIF)
160				return;
161			rtld_flags |= RT_FL_DBNOTIF;
162			break;
163		};
164		fptr = rtld_db_dlactivity;
165		break;
166	default:
167		/*
168		 * RD_NONE - do nothing
169		 */
170		break;
171	};
172
173	/*
174	 * Set event state and call 'notification' function.
175	 *
176	 * The debugging clients have previously been told about these
177	 * notification functions and have set breakpoints on them if they
178	 * are interested in the notification.
179	 */
180	r_debug.rtd_rdebug.r_state = state;
181	r_debug.rtd_rdebug.r_rdevent = event;
182	fptr(lml);
183	r_debug.rtd_rdebug.r_rdevent = RD_NONE;
184}
185
186#if	defined(__sparc) || defined(__x86)
187/*
188 * Stack Cleanup.
189 *
190 * This function is invoked to 'remove' arguments that were passed in on the
191 * stack.  This is most likely if ld.so.1 was invoked directly.  In that case
192 * we want to remove ld.so.1 as well as it's arguments from the argv[] array.
193 * Which means we then need to slide everything above it on the stack down
194 * accordingly.
195 *
196 * While the stack layout is platform specific - it just so happens that __x86,
197 * and __sparc platforms share the following initial stack layout.
198 *
199 *	!_______________________!  high addresses
200 *	!			!
201 *	!	Information	!
202 *	!	Block		!
203 *	!	(size varies)	!
204 *	!_______________________!
205 *	!	0 word		!
206 *	!_______________________!
207 *	!	Auxiliary	!
208 *	!	vector		!
209 *	!	2 word entries	!
210 *	!			!
211 *	!_______________________!
212 *	!	0 word		!
213 *	!_______________________!
214 *	!	Environment	!
215 *	!	pointers	!
216 *	!	...		!
217 *	!	(one word each)	!
218 *	!_______________________!
219 *	!	0 word		!
220 *	!_______________________!
221 *	!	Argument	! low addresses
222 *	!	pointers	!
223 *	!	Argc words	!
224 *	!_______________________!
225 *	!			!
226 *	!	Argc		!
227 *	!_______________________!
228 *	!	...		!
229 *
230 */
231static void
232stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt)
233{
234	int		ndx;
235	long		*argc;
236	char		**oargv, **nargv;
237	char		**oenvp, **nenvp;
238	auxv_t		*oauxv, *nauxv;
239
240	/*
241	 * Slide ARGV[] and update argc.  The argv pointer remains the same,
242	 * however slide the applications arguments over the arguments to
243	 * ld.so.1.
244	 */
245	nargv = &argv[0];
246	oargv = &argv[rmcnt];
247
248	for (ndx = 0; oargv[ndx]; ndx++)
249		nargv[ndx] = oargv[ndx];
250	nargv[ndx] = oargv[ndx];
251
252	argc = (long *)((uintptr_t)argv - sizeof (long *));
253	*argc -= rmcnt;
254
255	/*
256	 * Slide ENVP[], and update the environment array pointer.
257	 */
258	ndx++;
259	nenvp = &nargv[ndx];
260	oenvp = &oargv[ndx];
261	*envp = nenvp;
262
263	for (ndx = 0; oenvp[ndx]; ndx++)
264		nenvp[ndx] = oenvp[ndx];
265	nenvp[ndx] = oenvp[ndx];
266
267	/*
268	 * Slide AUXV[], and update the aux vector pointer.
269	 */
270	ndx++;
271	nauxv = (auxv_t *)&nenvp[ndx];
272	oauxv = (auxv_t *)&oenvp[ndx];
273	*auxv = nauxv;
274
275	for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++)
276		nauxv[ndx] = oauxv[ndx];
277	nauxv[ndx] = oauxv[ndx];
278}
279#else
280/*
281 * Verify that the above routine is appropriate for any new platforms.
282 */
283#error	unsupported architecture!
284#endif
285
286/*
287 * The only command line argument recognized is -e, followed by a runtime
288 * linker environment variable.
289 */
290int
291rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags,
292    Word *lmtflags, int aout)
293{
294	int	ndx;
295
296	for (ndx = 1; argv[ndx]; ndx++) {
297		char	*str;
298
299		if (argv[ndx][0] != '-')
300			break;
301
302		if (argv[ndx][1] == '\0') {
303			ndx++;
304			break;
305		}
306
307		if (argv[ndx][1] != 'e')
308			return (1);
309
310		if (argv[ndx][2] == '\0') {
311			ndx++;
312			if (argv[ndx] == NULL)
313				return (1);
314			str = argv[ndx];
315		} else
316			str = &argv[ndx][2];
317
318		/*
319		 * If the environment variable starts with LD_, strip the LD_.
320		 * Otherwise, take things as is.
321		 */
322		if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') &&
323		    (str[3] != '\0'))
324			str += 3;
325		if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1)
326			return (1);
327	}
328
329	/*
330	 * Make sure an object file has been specified.
331	 */
332	if (argv[ndx] == NULL)
333		return (1);
334
335	/*
336	 * Having gotten the arguments, clean ourselves off of the stack.
337	 */
338	stack_cleanup(argv, envp, auxv, ndx);
339	return (0);
340}
341
342/*
343 * Compare function for PathNode AVL tree.
344 */
345static int
346pnavl_compare(const void *n1, const void *n2)
347{
348	uint_t		hash1, hash2;
349	const char	*st1, *st2;
350	int		rc;
351
352	hash1 = ((PathNode *)n1)->pn_hash;
353	hash2 = ((PathNode *)n2)->pn_hash;
354
355	if (hash1 > hash2)
356		return (1);
357	if (hash1 < hash2)
358		return (-1);
359
360	st1 = ((PathNode *)n1)->pn_name;
361	st2 = ((PathNode *)n2)->pn_name;
362
363	rc = strcmp(st1, st2);
364	if (rc > 0)
365		return (1);
366	if (rc < 0)
367		return (-1);
368	return (0);
369}
370
371/*
372 * Create an AVL tree.
373 */
374static avl_tree_t *
375pnavl_create(size_t size)
376{
377	avl_tree_t	*avlt;
378
379	if ((avlt = malloc(sizeof (avl_tree_t))) == NULL)
380		return (NULL);
381	avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl));
382	return (avlt);
383}
384
385/*
386 * Determine whether a PathNode is recorded.
387 */
388int
389pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash,
390    avl_index_t *where)
391{
392	PathNode	pn;
393
394	/*
395	 * Create the avl tree if required.
396	 */
397	if ((*pnavl == NULL) &&
398	    ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL))
399		return (0);
400
401	pn.pn_name = name;
402	if ((pn.pn_hash = hash) == 0)
403		pn.pn_hash = sgs_str_hash(name);
404
405	if (avl_find(*pnavl, &pn, where) == NULL)
406		return (0);
407
408	return (1);
409}
410
411/*
412 * Determine if a pathname has already been recorded on the full path name
413 * AVL tree.  This tree maintains a node for each path name that ld.so.1 has
414 * successfully loaded.  If the path name does not exist in this AVL tree, then
415 * the next insertion point is deposited in "where".  This value can be used by
416 * fpavl_insert() to expedite the insertion.
417 */
418Rt_map *
419fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where)
420{
421	FullPathNode	fpn, *fpnp;
422
423	/*
424	 * Create the avl tree if required.
425	 */
426	if ((lml->lm_fpavl == NULL) &&
427	    ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL))
428		return (NULL);
429
430	fpn.fpn_node.pn_name = name;
431	if ((fpn.fpn_node.pn_hash = hash) == 0)
432		fpn.fpn_node.pn_hash = sgs_str_hash(name);
433
434	if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL)
435		return (NULL);
436
437	return (fpnp->fpn_lmp);
438}
439
440/*
441 * Insert a name into the FullPathNode AVL tree for the link-map list.  The
442 * objects NAME() is the path that would have originally been searched for, and
443 * is therefore the name to associate with any "where" value.  If the object has
444 * a different PATHNAME(), perhaps because it has resolved to a different file
445 * (see fullpath()), then this name will be recorded as a separate FullPathNode
446 * (see load_file()).
447 */
448int
449fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where)
450{
451	FullPathNode	*fpnp;
452	uint_t		hash = sgs_str_hash(name);
453
454	if (where == 0) {
455		/* LINTED */
456		Rt_map	*_lmp = fpavl_recorded(lml, name, hash, &where);
457
458		/*
459		 * We better not get a hit now, we do not want duplicates in
460		 * the tree.
461		 */
462		ASSERT(_lmp == NULL);
463	}
464
465	/*
466	 * Insert new node in tree.
467	 */
468	if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL)
469		return (0);
470
471	fpnp->fpn_node.pn_name = name;
472	fpnp->fpn_node.pn_hash = hash;
473	fpnp->fpn_lmp = lmp;
474
475	if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) {
476		free(fpnp);
477		return (0);
478	}
479
480	ASSERT(lml->lm_fpavl != NULL);
481	avl_insert(lml->lm_fpavl, fpnp, where);
482	return (1);
483}
484
485/*
486 * Remove an object from the FullPathNode AVL tree.
487 */
488void
489fpavl_remove(Rt_map *lmp)
490{
491	FullPathNode	*fpnp;
492	Aliste		idx;
493
494	for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) {
495		avl_remove(LIST(lmp)->lm_fpavl, fpnp);
496		free(fpnp);
497	}
498	free(FPNODE(lmp));
499	FPNODE(lmp) = NULL;
500}
501
502/*
503 * Insert a path name into the not-found AVL tree.
504 *
505 * This tree maintains a node for each path name that ld.so.1 has explicitly
506 * inspected, but has failed to load during a single ld.so.1 operation.  If the
507 * path name does not exist in this AVL tree, then the next insertion point is
508 * deposited in "where".  This value can be used by nfavl_insert() to expedite
509 * the insertion.
510 */
511void
512nfavl_insert(const char *name, avl_index_t where)
513{
514	PathNode	*pnp;
515	uint_t		hash = sgs_str_hash(name);
516
517	if (where == 0) {
518		/* LINTED */
519		int	in_nfavl = pnavl_recorded(&nfavl, name, hash, &where);
520
521		/*
522		 * We better not get a hit now, we do not want duplicates in
523		 * the tree.
524		 */
525		ASSERT(in_nfavl == 0);
526	}
527
528	/*
529	 * Insert new node in tree.
530	 */
531	if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) {
532		pnp->pn_name = name;
533		pnp->pn_hash = hash;
534		avl_insert(nfavl, pnp, where);
535	}
536}
537
538/*
539 * Insert the directory name, of a full path name, into the secure path AVL
540 * tree.
541 *
542 * This tree is used to maintain a list of directories in which the dependencies
543 * of a secure process have been found.  This list provides a fall-back in the
544 * case that a $ORIGIN expansion is deemed insecure, when the expansion results
545 * in a path name that has already provided dependencies.
546 */
547void
548spavl_insert(const char *name)
549{
550	char		buffer[PATH_MAX], *str;
551	size_t		size;
552	avl_index_t	where;
553	PathNode	*pnp;
554	uint_t		hash;
555
556	/*
557	 * Separate the directory name from the path name.
558	 */
559	if ((str = strrchr(name, '/')) == name)
560		size = 1;
561	else
562		size = str - name;
563
564	(void) strncpy(buffer, name, size);
565	buffer[size] = '\0';
566	hash = sgs_str_hash(buffer);
567
568	/*
569	 * Determine whether this directory name is already recorded, or if
570	 * not, 'where" will provide the insertion point for the new string.
571	 */
572	if (pnavl_recorded(&spavl, buffer, hash, &where))
573		return;
574
575	/*
576	 * Insert new node in tree.
577	 */
578	if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) {
579		pnp->pn_name = strdup(buffer);
580		pnp->pn_hash = hash;
581		avl_insert(spavl, pnp, where);
582	}
583}
584
585/*
586 * Inspect the generic string AVL tree for the given string.  If the string is
587 * not present, duplicate it, and insert the string in the AVL tree.  Return the
588 * duplicated string to the caller.
589 *
590 * These strings are maintained for the life of ld.so.1 and represent path
591 * names, file names, and search paths.  All other AVL trees that maintain
592 * FullPathNode and not-found path names use the same string pointer
593 * established for this string.
594 */
595static avl_tree_t	*stravl = NULL;
596static char		*strbuf = NULL;
597static PathNode		*pnbuf = NULL;
598static size_t		strsize = 0, pnsize = 0;
599
600const char *
601stravl_insert(const char *name, uint_t hash, size_t nsize, int substr)
602{
603	char		str[PATH_MAX];
604	PathNode	*pnp;
605	avl_index_t	where;
606
607	/*
608	 * Create the avl tree if required.
609	 */
610	if ((stravl == NULL) &&
611	    ((stravl = pnavl_create(sizeof (PathNode))) == NULL))
612		return (NULL);
613
614	/*
615	 * Determine the string size if not provided by the caller.
616	 */
617	if (nsize == 0)
618		nsize = strlen(name) + 1;
619	else if (substr) {
620		/*
621		 * The string passed to us may be a multiple path string for
622		 * which we only need the first component.  Using the provided
623		 * size, strip out the required string.
624		 */
625		(void) strncpy(str, name, nsize);
626		str[nsize - 1] = '\0';
627		name = str;
628	}
629
630	/*
631	 * Allocate a PathNode buffer if one doesn't exist, or any existing
632	 * buffer has been used up.
633	 */
634	if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) {
635		pnsize = syspagsz;
636		if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE),
637		    MAP_PRIVATE)) == MAP_FAILED)
638			return (NULL);
639	}
640	/*
641	 * Determine whether this string already exists.
642	 */
643	pnbuf->pn_name = name;
644	if ((pnbuf->pn_hash = hash) == 0)
645		pnbuf->pn_hash = sgs_str_hash(name);
646
647	if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL)
648		return (pnp->pn_name);
649
650	/*
651	 * Allocate a string buffer if one does not exist, or if there is
652	 * insufficient space for the new string in any existing buffer.
653	 */
654	if ((strbuf == NULL) || (nsize > strsize)) {
655		strsize = S_ROUND(nsize, syspagsz);
656
657		if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE),
658		    MAP_PRIVATE)) == MAP_FAILED)
659			return (NULL);
660	}
661
662	(void) memcpy(strbuf, name, nsize);
663	pnp = pnbuf;
664	pnp->pn_name = strbuf;
665	avl_insert(stravl, pnp, where);
666
667	strbuf += nsize;
668	strsize -= nsize;
669	pnbuf++;
670	pnsize -= sizeof (PathNode);
671	return (pnp->pn_name);
672}
673
674/*
675 * Prior to calling an object, either via a .plt or through dlsym(), make sure
676 * its .init has fired.  Through topological sorting, ld.so.1 attempts to fire
677 * init's in the correct order, however, this order is typically based on needed
678 * dependencies and non-lazy relocation bindings.  Lazy relocations (.plts) can
679 * still occur and result in bindings that were not captured during topological
680 * sorting.  This routine compensates for this lack of binding information, and
681 * provides for dynamic .init firing.
682 */
683void
684is_dep_init(Rt_map *dlmp, Rt_map *clmp)
685{
686	Rt_map	**tobj;
687
688	/*
689	 * If the caller is an auditor, and the destination isn't, then don't
690	 * run any .inits (see comments in load_completion()).
691	 */
692	if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) &&
693	    (LIST(clmp) != LIST(dlmp)))
694		return;
695
696	if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST))
697		return;
698
699	if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) ==
700	    (FLG_RT_RELOCED | FLG_RT_INITDONE))
701		return;
702
703	if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) ==
704	    (FLG_RT_RELOCED | FLG_RT_INITCALL)) {
705		DBG_CALL(Dbg_util_no_init(dlmp));
706		return;
707	}
708
709	if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) {
710		tobj[0] = dlmp;
711		call_init(tobj, DBG_INIT_DYN);
712	}
713}
714
715/*
716 * Execute .{preinit|init|fini}array sections
717 */
718void
719call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype)
720{
721	int	start, stop, incr, ndx;
722	uint_t	arraycnt = (uint_t)(arraysz / sizeof (Addr));
723
724	if (array == NULL)
725		return;
726
727	/*
728	 * initarray & preinitarray are walked from beginning to end - while
729	 * finiarray is walked from end to beginning.
730	 */
731	if (shtype == SHT_FINI_ARRAY) {
732		start = arraycnt - 1;
733		stop = incr = -1;
734	} else {
735		start = 0;
736		stop = arraycnt;
737		incr = 1;
738	}
739
740	/*
741	 * Call the .*array[] entries
742	 */
743	for (ndx = start; ndx != stop; ndx += incr) {
744		void (*fptr)(void) = (void(*)())array[ndx];
745
746		DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype));
747
748		leave(LIST(lmp), 0);
749		(*fptr)();
750		(void) enter(0);
751	}
752}
753
754
755/*
756 * Execute any .init sections.  These are passed to us in an lmp array which
757 * (by default) will have been sorted.
758 */
759void
760call_init(Rt_map **tobj, int flag)
761{
762	Rt_map		**_tobj, **_nobj;
763	static APlist	*pending = NULL;
764
765	/*
766	 * If we're in the middle of an INITFIRST, this must complete before
767	 * any new init's are fired.  In this case add the object list to the
768	 * pending queue and return.  We'll pick up the queue after any
769	 * INITFIRST objects have their init's fired.
770	 */
771	if (rtld_flags & RT_FL_INITFIRST) {
772		(void) aplist_append(&pending, tobj, AL_CNT_PENDING);
773		return;
774	}
775
776	/*
777	 * Traverse the tobj array firing each objects init.
778	 */
779	for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) {
780		Rt_map	*lmp = *_tobj;
781		void	(*iptr)() = INIT(lmp);
782		uint_t	rtldflags;
783
784		if (FLAGS(lmp) & FLG_RT_INITCALL)
785			continue;
786
787		FLAGS(lmp) |= FLG_RT_INITCALL;
788
789		/*
790		 * It is possible, that during the initial handshake with libc,
791		 * an interposition object has resolved a symbol binding, and
792		 * that this objects .init must be fired.  As we're about to
793		 * run user code, make sure any dynamic linking errors remain
794		 * internal (ie., only obtainable from dlerror()), and are not
795		 * flushed to stderr.
796		 */
797		rtldflags = (rtld_flags & RT_FL_APPLIC) ? 0 : RT_FL_APPLIC;
798		rtld_flags |= rtldflags;
799
800		/*
801		 * Establish an initfirst state if necessary - no other inits
802		 * will be fired (because of additional relocation bindings)
803		 * when in this state.
804		 */
805		if (FLAGS(lmp) & FLG_RT_INITFRST)
806			rtld_flags |= RT_FL_INITFIRST;
807
808		if (INITARRAY(lmp) || iptr)
809			DBG_CALL(Dbg_util_call_init(lmp, flag));
810
811		if (iptr) {
812			leave(LIST(lmp), 0);
813			(*iptr)();
814			(void) enter(0);
815		}
816
817		call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp,
818		    SHT_INIT_ARRAY);
819
820		if (INITARRAY(lmp) || iptr)
821			DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE));
822
823		/*
824		 * Return to a non-application setting if necessary.
825		 */
826		rtld_flags &= ~rtldflags;
827
828		/*
829		 * Set the initdone flag regardless of whether this object
830		 * actually contains an .init section.  This flag prevents us
831		 * from processing this section again for an .init and also
832		 * signifies that a .fini must be called should it exist.
833		 * Clear the sort field for use in later .fini processing.
834		 */
835		FLAGS(lmp) |= FLG_RT_INITDONE;
836		SORTVAL(lmp) = -1;
837
838		/*
839		 * If we're firing an INITFIRST object, and other objects must
840		 * be fired which are not INITFIRST, make sure we grab any
841		 * pending objects that might have been delayed as this
842		 * INITFIRST was processed.
843		 */
844		if ((rtld_flags & RT_FL_INITFIRST) &&
845		    ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) {
846			Aliste	idx;
847			Rt_map	**pobj;
848
849			rtld_flags &= ~RT_FL_INITFIRST;
850
851			for (APLIST_TRAVERSE(pending, idx, pobj)) {
852				aplist_delete(pending, &idx);
853				call_init(pobj, DBG_INIT_PEND);
854			}
855		}
856	}
857	free(tobj);
858}
859
860/*
861 * Function called by atexit(3C).  Calls all .fini sections related with the
862 * mains dependent shared libraries in the order in which the shared libraries
863 * have been loaded.  Skip any .fini defined in the main executable, as this
864 * will be called by crt0 (main was never marked as initdone).
865 */
866void
867call_fini(Lm_list * lml, Rt_map ** tobj)
868{
869	Rt_map **_tobj;
870
871	for (_tobj = tobj; *_tobj != NULL; _tobj++) {
872		Rt_map		*clmp, * lmp = *_tobj;
873		Aliste		idx;
874		Bnd_desc	*bdp;
875
876		/*
877		 * Only fire a .fini if the objects corresponding .init has
878		 * completed.  We collect all .fini sections of objects that
879		 * had their .init collected, but that doesn't mean that at
880		 * the time of collection, that the .init had completed.
881		 */
882		if (FLAGS(lmp) & FLG_RT_INITDONE) {
883			void	(*fptr)(void) = FINI(lmp);
884
885			if (FINIARRAY(lmp) || fptr)
886				DBG_CALL(Dbg_util_call_fini(lmp));
887
888			call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp,
889			    SHT_FINI_ARRAY);
890
891			if (fptr) {
892				leave(LIST(lmp), 0);
893				(*fptr)();
894				(void) enter(0);
895			}
896		}
897
898		/*
899		 * Skip main, this is explicitly called last in atexit_fini().
900		 */
901		if (FLAGS(lmp) & FLG_RT_ISMAIN)
902			continue;
903
904		/*
905		 * Audit `close' operations at this point.  The library has
906		 * exercised its last instructions (regardless of whether it
907		 * will be unmapped or not).
908		 *
909		 * First call any global auditing.
910		 */
911		if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE)
912			_audit_objclose(auditors->ad_list, lmp);
913
914		/*
915		 * Finally determine whether this object has local auditing
916		 * requirements by inspecting itself and then its dependencies.
917		 */
918		if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0)
919			continue;
920
921		if (AFLAGS(lmp) & LML_TFLG_AUD_OBJCLOSE)
922			_audit_objclose(AUDITORS(lmp)->ad_list, lmp);
923
924		for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) {
925			clmp = bdp->b_caller;
926
927			if (AFLAGS(clmp) & LML_TFLG_AUD_OBJCLOSE) {
928				_audit_objclose(AUDITORS(clmp)->ad_list, lmp);
929				break;
930			}
931		}
932	}
933	DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d,
934	    pltcntu32, pltcntu44, pltcntfull, pltcntfar));
935
936	free(tobj);
937}
938
939void
940atexit_fini()
941{
942	Rt_map	**tobj, *lmp;
943	Lm_list	*lml;
944	Aliste	idx;
945
946	(void) enter(0);
947
948	rtld_flags |= RT_FL_ATEXIT;
949
950	lml = &lml_main;
951	lml->lm_flags |= LML_FLG_ATEXIT;
952	lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
953	lmp = (Rt_map *)lml->lm_head;
954
955	/*
956	 * Reverse topologically sort the main link-map for .fini execution.
957	 */
958	if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
959	    (tobj != (Rt_map **)S_ERROR))
960		call_fini(lml, tobj);
961
962	/*
963	 * Add an explicit close to main and ld.so.1.  Although main's .fini is
964	 * collected in call_fini() to provide for FINITARRAY processing, its
965	 * audit_objclose is explicitly skipped.  This provides for it to be
966	 * called last, here.  This is the reverse of the explicit calls to
967	 * audit_objopen() made in setup().
968	 */
969	if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) {
970		audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head);
971		audit_objclose(lmp, lmp);
972	}
973
974	/*
975	 * Now that all .fini code has been run, see what unreferenced objects
976	 * remain.
977	 */
978	unused(lml);
979
980	/*
981	 * Traverse any alternative link-map lists.
982	 */
983	for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
984		/*
985		 * Ignore the base-link-map list, which has already been
986		 * processed, and the runtime linkers link-map list, which is
987		 * typically processed last.
988		 */
989		if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM))
990			continue;
991
992		if ((lmp = (Rt_map *)lml->lm_head) == NULL)
993			continue;
994
995		lml->lm_flags |= LML_FLG_ATEXIT;
996		lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
997
998		/*
999		 * Reverse topologically sort the link-map for .fini execution.
1000		 */
1001		if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
1002		    (tobj != (Rt_map **)S_ERROR))
1003			call_fini(lml, tobj);
1004
1005		unused(lml);
1006	}
1007
1008	/*
1009	 * Finally reverse topologically sort the runtime linkers link-map for
1010	 * .fini execution.
1011	 */
1012	lml = &lml_rtld;
1013	lml->lm_flags |= LML_FLG_ATEXIT;
1014	lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
1015	lmp = (Rt_map *)lml->lm_head;
1016
1017	if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
1018	    (tobj != (Rt_map **)S_ERROR))
1019		call_fini(lml, tobj);
1020
1021	leave(&lml_main, 0);
1022}
1023
1024
1025/*
1026 * This routine is called to complete any runtime linker activity which may have
1027 * resulted in objects being loaded.  This is called from all user entry points
1028 * and from any internal dl*() requests.
1029 */
1030void
1031load_completion(Rt_map *nlmp)
1032{
1033	Rt_map	**tobj = NULL;
1034	Lm_list	*nlml;
1035
1036	/*
1037	 * Establish any .init processing.  Note, in a world of lazy loading,
1038	 * objects may have been loaded regardless of whether the users request
1039	 * was fulfilled (i.e., a dlsym() request may have failed to find a
1040	 * symbol but objects might have been loaded during its search).  Thus,
1041	 * any tsorting starts from the nlmp (new link-maps) pointer and not
1042	 * necessarily from the link-map that may have satisfied the request.
1043	 *
1044	 * Note, the primary link-map has an initialization phase where dynamic
1045	 * .init firing is suppressed.  This provides for a simple and clean
1046	 * handshake with the primary link-maps libc, which is important for
1047	 * establishing uberdata.  In addition, auditors often obtain handles
1048	 * to primary link-map objects as the objects are loaded, so as to
1049	 * inspect the link-map for symbols.  This inspection is allowed without
1050	 * running any code on the primary link-map, as running this code may
1051	 * reenter the auditor, who may not yet have finished its own
1052	 * initialization.
1053	 */
1054	if (nlmp)
1055		nlml = LIST(nlmp);
1056
1057	if (nlmp && nlml->lm_init && ((nlml != &lml_main) ||
1058	    (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
1059		if ((tobj = tsort(nlmp, nlml->lm_init,
1060		    RT_SORT_REV)) == (Rt_map **)S_ERROR)
1061			tobj = NULL;
1062	}
1063
1064	/*
1065	 * Make sure any alternative link-map retrieves any external interfaces
1066	 * and initializes threads.
1067	 */
1068	if (nlmp && (nlml != &lml_main)) {
1069		(void) rt_get_extern(nlml, nlmp);
1070		rt_thr_init(nlml);
1071	}
1072
1073	/*
1074	 * Traverse the list of new link-maps and register any dynamic TLS.
1075	 * This storage is established for any objects not on the primary
1076	 * link-map, and for any objects added to the primary link-map after
1077	 * static TLS has been registered.
1078	 */
1079	if (nlmp && nlml->lm_tls && ((nlml != &lml_main) ||
1080	    (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
1081		Rt_map	*lmp;
1082
1083		for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) {
1084			if (PTTLS(lmp) && PTTLS(lmp)->p_memsz)
1085				tls_modaddrem(lmp, TM_FLG_MODADD);
1086		}
1087		nlml->lm_tls = 0;
1088	}
1089
1090	/*
1091	 * Fire any .init's.
1092	 */
1093	if (tobj)
1094		call_init(tobj, DBG_INIT_SORT);
1095}
1096
1097/*
1098 * Append an item to the specified link map control list.
1099 */
1100void
1101lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp)
1102{
1103	Lm_cntl	*lmc;
1104	int	add = 1;
1105
1106	/*
1107	 * Indicate that this link-map list has a new object.
1108	 */
1109	(lml->lm_obj)++;
1110
1111	/*
1112	 * If we're about to add a new object to the main link-map control list,
1113	 * alert the debuggers that we are about to mess with this list.
1114	 * Additions of individual objects to the main link-map control list
1115	 * occur during initial setup as the applications immediate dependencies
1116	 * are loaded.  Individual objects are also loaded on the main link-map
1117	 * control list of new alternative link-map control lists.
1118	 */
1119	if ((lmco == ALIST_OFF_DATA) &&
1120	    ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1121		rd_event(lml, RD_DLACTIVITY, RT_ADD);
1122
1123	/* LINTED */
1124	lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco);
1125
1126	/*
1127	 * A link-map list header points to one of more link-map control lists
1128	 * (see include/rtld.h).  The initial list, pointed to by lm_cntl, is
1129	 * the list of relocated objects.  Other lists maintain objects that
1130	 * are still being analyzed or relocated.  This list provides the core
1131	 * link-map list information used by all ld.so.1 routines.
1132	 */
1133	if (lmc->lc_head == NULL) {
1134		/*
1135		 * If this is the first link-map for the given control list,
1136		 * initialize the list.
1137		 */
1138		lmc->lc_head = lmc->lc_tail = lmp;
1139		add = 0;
1140
1141	} else if (FLAGS(lmp) & FLG_RT_OBJINTPO) {
1142		Rt_map	*tlmp;
1143
1144		/*
1145		 * If this is an interposer then append the link-map following
1146		 * any other interposers (these are objects that have been
1147		 * previously preloaded, or were identified with -z interpose).
1148		 * Interposers can only be inserted on the first link-map
1149		 * control list, as once relocation has started, interposition
1150		 * from new interposers can't be guaranteed.
1151		 *
1152		 * NOTE: We do not interpose on the head of a list.  This model
1153		 * evolved because dynamic executables have already been fully
1154		 * relocated within themselves and thus can't be interposed on.
1155		 * Nowadays it's possible to have shared objects at the head of
1156		 * a list, which conceptually means they could be interposed on.
1157		 * But, shared objects can be created via dldump() and may only
1158		 * be partially relocated (just relatives), in which case they
1159		 * are interposable, but are marked as fixed (ET_EXEC).
1160		 *
1161		 * Thus we really don't have a clear method of deciding when the
1162		 * head of a link-map is interposable.  So, to be consistent,
1163		 * for now only add interposers after the link-map lists head
1164		 * object.
1165		 */
1166		for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp;
1167		    tlmp = NEXT_RT_MAP(tlmp)) {
1168
1169			if (FLAGS(tlmp) & FLG_RT_OBJINTPO)
1170				continue;
1171
1172			/*
1173			 * Insert the new link-map before this non-interposer,
1174			 * and indicate an interposer is found.
1175			 */
1176			NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp;
1177			PREV(lmp) = PREV(tlmp);
1178
1179			NEXT(lmp) = (Link_map *)tlmp;
1180			PREV(tlmp) = (Link_map *)lmp;
1181
1182			lmc->lc_flags |= LMC_FLG_REANALYZE;
1183			add = 0;
1184			break;
1185		}
1186	}
1187
1188	/*
1189	 * Fall through to appending the new link map to the tail of the list.
1190	 * If we're processing the initial objects of this link-map list, add
1191	 * them to the backward compatibility list.
1192	 */
1193	if (add) {
1194		NEXT(lmc->lc_tail) = (Link_map *)lmp;
1195		PREV(lmp) = (Link_map *)lmc->lc_tail;
1196		lmc->lc_tail = lmp;
1197	}
1198
1199	/*
1200	 * Having added this link-map to a control list, indicate which control
1201	 * list the link-map belongs to.  Note, control list information is
1202	 * always maintained as an offset, as the Alist can be reallocated.
1203	 */
1204	CNTL(lmp) = lmco;
1205
1206	/*
1207	 * Indicate if an interposer is found.  Note that the first object on a
1208	 * link-map can be explicitly defined as an interposer so that it can
1209	 * provide interposition over direct binding requests.
1210	 */
1211	if (FLAGS(lmp) & MSK_RT_INTPOSE)
1212		lml->lm_flags |= LML_FLG_INTRPOSE;
1213
1214	/*
1215	 * For backward compatibility with debuggers, the link-map list contains
1216	 * pointers to the main control list.
1217	 */
1218	if (lmco == ALIST_OFF_DATA) {
1219		lml->lm_head = lmc->lc_head;
1220		lml->lm_tail = lmc->lc_tail;
1221	}
1222}
1223
1224/*
1225 * Delete an item from the specified link map control list.
1226 */
1227void
1228lm_delete(Lm_list *lml, Rt_map *lmp)
1229{
1230	Lm_cntl	*lmc;
1231
1232	/*
1233	 * If the control list pointer hasn't been initialized, this object
1234	 * never got added to a link-map list.
1235	 */
1236	if (CNTL(lmp) == 0)
1237		return;
1238
1239	/*
1240	 * If we're about to delete an object from the main link-map control
1241	 * list, alert the debuggers that we are about to mess with this list.
1242	 */
1243	if ((CNTL(lmp) == ALIST_OFF_DATA) &&
1244	    ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1245		rd_event(lml, RD_DLACTIVITY, RT_DELETE);
1246
1247	/* LINTED */
1248	lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp));
1249
1250	if (lmc->lc_head == lmp)
1251		lmc->lc_head = NEXT_RT_MAP(lmp);
1252	else
1253		NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp);
1254
1255	if (lmc->lc_tail == lmp)
1256		lmc->lc_tail = PREV_RT_MAP(lmp);
1257	else
1258		PREV(NEXT_RT_MAP(lmp)) = PREV(lmp);
1259
1260	/*
1261	 * For backward compatibility with debuggers, the link-map list contains
1262	 * pointers to the main control list.
1263	 */
1264	if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) {
1265		lml->lm_head = lmc->lc_head;
1266		lml->lm_tail = lmc->lc_tail;
1267	}
1268
1269	/*
1270	 * Indicate we have one less object on this control list.
1271	 */
1272	(lml->lm_obj)--;
1273}
1274
1275/*
1276 * Move a link-map control list to another.  Objects that are being relocated
1277 * are maintained on secondary control lists.  Once their relocation is
1278 * complete, the entire list is appended to the previous control list, as this
1279 * list must have been the trigger for generating the new control list.
1280 */
1281void
1282lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc)
1283{
1284	Rt_map	*lmp;
1285
1286	/*
1287	 * If we're about to add a new family of objects to the main link-map
1288	 * control list, alert the debuggers that we are about to mess with this
1289	 * list.  Additions of object families to the main link-map control
1290	 * list occur during lazy loading, filtering and dlopen().
1291	 */
1292	if ((plmco == ALIST_OFF_DATA) &&
1293	    ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1294		rd_event(lml, RD_DLACTIVITY, RT_ADD);
1295
1296	DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco));
1297
1298	/*
1299	 * Indicate each new link-map has been moved to the previous link-map
1300	 * control list.
1301	 */
1302	for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) {
1303		CNTL(lmp) = plmco;
1304
1305		/*
1306		 * If these objects are being added to the main link-map
1307		 * control list, indicate that there are init's available
1308		 * for harvesting.
1309		 */
1310		if (plmco == ALIST_OFF_DATA) {
1311			lml->lm_init++;
1312			lml->lm_flags |= LML_FLG_OBJADDED;
1313		}
1314	}
1315
1316	/*
1317	 * Move the new link-map control list, to the callers link-map control
1318	 * list.
1319	 */
1320	if (plmc->lc_head == NULL) {
1321		plmc->lc_head = nlmc->lc_head;
1322		PREV(nlmc->lc_head) = NULL;
1323	} else {
1324		NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head;
1325		PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail;
1326	}
1327
1328	plmc->lc_tail = nlmc->lc_tail;
1329	nlmc->lc_head = nlmc->lc_tail = NULL;
1330
1331	/*
1332	 * For backward compatibility with debuggers, the link-map list contains
1333	 * pointers to the main control list.
1334	 */
1335	if (plmco == ALIST_OFF_DATA) {
1336		lml->lm_head = plmc->lc_head;
1337		lml->lm_tail = plmc->lc_tail;
1338	}
1339}
1340
1341/*
1342 * Create, or assign a link-map control list.  Each link-map list contains a
1343 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the
1344 * description in include/rtld.h).  During the initial construction of a
1345 * process, objects are added to this main control list.  This control list is
1346 * never deleted, unless an alternate link-map list has been requested (say for
1347 * auditors), and the associated objects could not be loaded or relocated.
1348 *
1349 * Once relocation has started, any lazy loadable objects, or filtees, are
1350 * processed on a new, temporary control list.  Only when these objects have
1351 * been fully relocated, are they moved to the main link-map control list.
1352 * Once the objects are moved, this temporary control list is deleted (see
1353 * remove_cntl()).
1354 *
1355 * A dlopen() always requires a new temporary link-map control list.
1356 * Typically, a dlopen() occurs on a link-map list that had already started
1357 * relocation, however, auditors can dlopen() objects on the main link-map
1358 * list while under initial construction, before any relocation has begun.
1359 * Hence, dlopen() requests are explicitly flagged.
1360 */
1361Aliste
1362create_cntl(Lm_list *lml, int dlopen)
1363{
1364	/*
1365	 * If the head link-map object has already been relocated, create a
1366	 * new, temporary, control list.
1367	 */
1368	if (dlopen || (lml->lm_head == NULL) ||
1369	    (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) {
1370		Lm_cntl *lmc;
1371
1372		if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl),
1373		    AL_CNT_LMLISTS)) == NULL)
1374			return (NULL);
1375
1376		return ((Aliste)((char *)lmc - (char *)lml->lm_lists));
1377	}
1378
1379	return (ALIST_OFF_DATA);
1380}
1381
1382/*
1383 * Environment variables can have a variety of defined permutations, and thus
1384 * the following infrastructure exists to allow this variety and to select the
1385 * required definition.
1386 *
1387 * Environment variables can be defined as 32- or 64-bit specific, and if so
1388 * they will take precedence over any instruction set neutral form.  Typically
1389 * this is only useful when the environment value is an informational string.
1390 *
1391 * Environment variables may be obtained from the standard user environment or
1392 * from a configuration file.  The latter provides a fallback if no user
1393 * environment setting is found, and can take two forms:
1394 *
1395 *  -	a replaceable definition - this will be used if no user environment
1396 *	setting has been seen, or
1397 *
1398 *  -	an permanent definition - this will be used no matter what user
1399 *	environment setting is seen.  In the case of list variables it will be
1400 *	appended to any process environment setting seen.
1401 *
1402 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to
1403 * override any replaceable environment variables from a configuration file.
1404 */
1405static	u_longlong_t		rplgen;		/* replaceable generic */
1406						/*	variables */
1407static	u_longlong_t		rplisa;		/* replaceable ISA specific */
1408						/*	variables */
1409static	u_longlong_t		prmgen;		/* permanent generic */
1410						/*	variables */
1411static	u_longlong_t		prmisa;		/* permanent ISA specific */
1412						/*	variables */
1413
1414/*
1415 * Classify an environment variables type.
1416 */
1417#define	ENV_TYP_IGNORE		0x1		/* ignore - variable is for */
1418						/*	the wrong ISA */
1419#define	ENV_TYP_ISA		0x2		/* variable is ISA specific */
1420#define	ENV_TYP_CONFIG		0x4		/* variable obtained from a */
1421						/*	config file */
1422#define	ENV_TYP_PERMANT		0x8		/* variable is permanent */
1423
1424/*
1425 * Identify all environment variables.
1426 */
1427#define	ENV_FLG_AUDIT		0x0000000000001ULL
1428#define	ENV_FLG_AUDIT_ARGS	0x0000000000002ULL
1429#define	ENV_FLG_BIND_NOW	0x0000000000004ULL
1430#define	ENV_FLG_BIND_NOT	0x0000000000008ULL
1431#define	ENV_FLG_BINDINGS	0x0000000000010ULL
1432#define	ENV_FLG_CONFGEN		0x0000000000020ULL
1433#define	ENV_FLG_CONFIG		0x0000000000040ULL
1434#define	ENV_FLG_DEBUG		0x0000000000080ULL
1435#define	ENV_FLG_DEBUG_OUTPUT	0x0000000000100ULL
1436#define	ENV_FLG_DEMANGLE	0x0000000000200ULL
1437#define	ENV_FLG_FLAGS		0x0000000000400ULL
1438#define	ENV_FLG_INIT		0x0000000000800ULL
1439#define	ENV_FLG_LIBPATH		0x0000000001000ULL
1440#define	ENV_FLG_LOADAVAIL	0x0000000002000ULL
1441#define	ENV_FLG_LOADFLTR	0x0000000004000ULL
1442#define	ENV_FLG_NOAUDIT		0x0000000008000ULL
1443#define	ENV_FLG_NOAUXFLTR	0x0000000010000ULL
1444#define	ENV_FLG_NOBAPLT		0x0000000020000ULL
1445#define	ENV_FLG_NOCONFIG	0x0000000040000ULL
1446#define	ENV_FLG_NODIRCONFIG	0x0000000080000ULL
1447#define	ENV_FLG_NODIRECT	0x0000000100000ULL
1448#define	ENV_FLG_NOENVCONFIG	0x0000000200000ULL
1449#define	ENV_FLG_NOLAZY		0x0000000400000ULL
1450#define	ENV_FLG_NOOBJALTER	0x0000000800000ULL
1451#define	ENV_FLG_NOVERSION	0x0000001000000ULL
1452#define	ENV_FLG_PRELOAD		0x0000002000000ULL
1453#define	ENV_FLG_PROFILE		0x0000004000000ULL
1454#define	ENV_FLG_PROFILE_OUTPUT	0x0000008000000ULL
1455#define	ENV_FLG_SIGNAL		0x0000010000000ULL
1456#define	ENV_FLG_TRACE_OBJS	0x0000020000000ULL
1457#define	ENV_FLG_TRACE_PTHS	0x0000040000000ULL
1458#define	ENV_FLG_UNREF		0x0000080000000ULL
1459#define	ENV_FLG_UNUSED		0x0000100000000ULL
1460#define	ENV_FLG_VERBOSE		0x0000200000000ULL
1461#define	ENV_FLG_WARN		0x0000400000000ULL
1462#define	ENV_FLG_NOFLTCONFIG	0x0000800000000ULL
1463#define	ENV_FLG_BIND_LAZY	0x0001000000000ULL
1464#define	ENV_FLG_NOUNRESWEAK	0x0002000000000ULL
1465#define	ENV_FLG_NOPAREXT	0x0004000000000ULL
1466#define	ENV_FLG_HWCAP		0x0008000000000ULL
1467#define	ENV_FLG_SFCAP		0x0010000000000ULL
1468#define	ENV_FLG_MACHCAP		0x0020000000000ULL
1469#define	ENV_FLG_PLATCAP		0x0040000000000ULL
1470#define	ENV_FLG_CAP_FILES	0x0080000000000ULL
1471
1472#define	SEL_REPLACE		0x0001
1473#define	SEL_PERMANT		0x0002
1474#define	SEL_ACT_RT		0x0100	/* setting rtld_flags */
1475#define	SEL_ACT_RT2		0x0200	/* setting rtld_flags2 */
1476#define	SEL_ACT_STR		0x0400	/* setting string value */
1477#define	SEL_ACT_LML		0x0800	/* setting lml_flags */
1478#define	SEL_ACT_LMLT		0x1000	/* setting lml_tflags */
1479#define	SEL_ACT_SPEC_1		0x2000	/* for FLG_{FLAGS, LIBPATH} */
1480#define	SEL_ACT_SPEC_2		0x4000	/* need special handling */
1481
1482/*
1483 * Pattern match an LD_XXXX environment variable.  s1 points to the XXXX part
1484 * and len specifies its length (comparing a strings length before the string
1485 * itself speed things up).  s2 points to the token itself which has already
1486 * had any leading white-space removed.
1487 */
1488static void
1489ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags,
1490    Word *lmtflags, uint_t env_flags, int aout)
1491{
1492	u_longlong_t	variable = 0;
1493	ushort_t	select = 0;
1494	const char	**str;
1495	Word		val = 0;
1496
1497	/*
1498	 * Determine whether we're dealing with a replaceable or permanent
1499	 * string.
1500	 */
1501	if (env_flags & ENV_TYP_PERMANT) {
1502		/*
1503		 * If the string is from a configuration file and defined as
1504		 * permanent, assign it as permanent.
1505		 */
1506		select |= SEL_PERMANT;
1507	} else
1508		select |= SEL_REPLACE;
1509
1510	/*
1511	 * Parse the variable given.
1512	 *
1513	 * The LD_AUDIT family.
1514	 */
1515	if (*s1 == 'A') {
1516		if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1,
1517		    MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) {
1518			/*
1519			 * Replaceable and permanent audit objects can exist.
1520			 */
1521			select |= SEL_ACT_STR;
1522			str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit;
1523			variable = ENV_FLG_AUDIT;
1524		} else if ((len == MSG_LD_AUDIT_ARGS_SIZE) &&
1525		    (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS),
1526		    MSG_LD_AUDIT_ARGS_SIZE) == 0)) {
1527			/*
1528			 * A specialized variable for plt_exit() use, not
1529			 * documented for general use.
1530			 */
1531			select |= SEL_ACT_SPEC_2;
1532			variable = ENV_FLG_AUDIT_ARGS;
1533		}
1534	}
1535	/*
1536	 * The LD_BIND family.
1537	 */
1538	else if (*s1 == 'B') {
1539		if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1,
1540		    MSG_ORIG(MSG_LD_BIND_LAZY),
1541		    MSG_LD_BIND_LAZY_SIZE) == 0)) {
1542			select |= SEL_ACT_RT2;
1543			val = RT_FL2_BINDLAZY;
1544			variable = ENV_FLG_BIND_LAZY;
1545		} else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1,
1546		    MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) {
1547			select |= SEL_ACT_RT2;
1548			val = RT_FL2_BINDNOW;
1549			variable = ENV_FLG_BIND_NOW;
1550		} else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1,
1551		    MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) {
1552			/*
1553			 * Another trick, enabled to help debug AOUT
1554			 * applications under BCP, but not documented for
1555			 * general use.
1556			 */
1557			select |= SEL_ACT_RT;
1558			val = RT_FL_NOBIND;
1559			variable = ENV_FLG_BIND_NOT;
1560		} else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1,
1561		    MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) {
1562			/*
1563			 * This variable is simply for backward compatibility.
1564			 * If this and LD_DEBUG are both specified, only one of
1565			 * the strings is going to get processed.
1566			 */
1567			select |= SEL_ACT_SPEC_2;
1568			variable = ENV_FLG_BINDINGS;
1569		}
1570	}
1571	/*
1572	 * LD_CAP_FILES and LD_CONFIG family.
1573	 */
1574	else if (*s1 == 'C') {
1575		if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1,
1576		    MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) {
1577			select |= SEL_ACT_STR;
1578			str = (select & SEL_REPLACE) ?
1579			    &rpl_cap_files : &prm_cap_files;
1580			variable = ENV_FLG_CAP_FILES;
1581		} else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1,
1582		    MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) {
1583			/*
1584			 * Set by crle(1) to indicate it's building a
1585			 * configuration file, not documented for general use.
1586			 */
1587			select |= SEL_ACT_SPEC_2;
1588			variable = ENV_FLG_CONFGEN;
1589		} else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1,
1590		    MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) {
1591			/*
1592			 * Secure applications must use a default configuration
1593			 * file.  A setting from a configuration file doesn't
1594			 * make sense (given we must be reading a configuration
1595			 * file to have gotten this).
1596			 */
1597			if ((rtld_flags & RT_FL_SECURE) ||
1598			    (env_flags & ENV_TYP_CONFIG))
1599				return;
1600			select |= SEL_ACT_STR;
1601			str = &config->c_name;
1602			variable = ENV_FLG_CONFIG;
1603		}
1604	}
1605	/*
1606	 * The LD_DEBUG family and LD_DEMANGLE.
1607	 */
1608	else if (*s1 == 'D') {
1609		if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1,
1610		    MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) {
1611			select |= SEL_ACT_STR;
1612			str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug;
1613			variable = ENV_FLG_DEBUG;
1614		} else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1,
1615		    MSG_ORIG(MSG_LD_DEBUG_OUTPUT),
1616		    MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) {
1617			select |= SEL_ACT_STR;
1618			str = &dbg_file;
1619			variable = ENV_FLG_DEBUG_OUTPUT;
1620		} else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1,
1621		    MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) {
1622			select |= SEL_ACT_RT;
1623			val = RT_FL_DEMANGLE;
1624			variable = ENV_FLG_DEMANGLE;
1625		}
1626	}
1627	/*
1628	 * LD_FLAGS - collect the best variable definition.  On completion of
1629	 * environment variable processing pass the result to ld_flags_env()
1630	 * where they'll be decomposed and passed back to this routine.
1631	 */
1632	else if (*s1 == 'F') {
1633		if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1,
1634		    MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) {
1635			select |= SEL_ACT_SPEC_1;
1636			str = (select & SEL_REPLACE) ? &rpl_ldflags :
1637			    &prm_ldflags;
1638			variable = ENV_FLG_FLAGS;
1639		}
1640	}
1641	/*
1642	 * LD_HWCAP.
1643	 */
1644	else if (*s1 == 'H') {
1645		if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1,
1646		    MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) {
1647			select |= SEL_ACT_STR;
1648			str = (select & SEL_REPLACE) ?
1649			    &rpl_hwcap : &prm_hwcap;
1650			variable = ENV_FLG_HWCAP;
1651		}
1652	}
1653	/*
1654	 * LD_INIT (internal, used by ldd(1)).
1655	 */
1656	else if (*s1 == 'I') {
1657		if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1,
1658		    MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) {
1659			select |= SEL_ACT_LML;
1660			val = LML_FLG_TRC_INIT;
1661			variable = ENV_FLG_INIT;
1662		}
1663	}
1664	/*
1665	 * The LD_LIBRARY_PATH and LD_LOAD families.
1666	 */
1667	else if (*s1 == 'L') {
1668		if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1,
1669		    MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) {
1670			select |= SEL_ACT_SPEC_1;
1671			str = (select & SEL_REPLACE) ? &rpl_libpath :
1672			    &prm_libpath;
1673			variable = ENV_FLG_LIBPATH;
1674		} else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1,
1675		    MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) {
1676			/*
1677			 * Internal use by crle(1), not documented for general
1678			 * use.
1679			 */
1680			select |= SEL_ACT_LML;
1681			val = LML_FLG_LOADAVAIL;
1682			variable = ENV_FLG_LOADAVAIL;
1683		} else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1,
1684		    MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) {
1685			select |= SEL_ACT_SPEC_2;
1686			variable = ENV_FLG_LOADFLTR;
1687		}
1688	}
1689	/*
1690	 * LD_MACHCAP.
1691	 */
1692	else if (*s1 == 'M') {
1693		if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1,
1694		    MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) {
1695			select |= SEL_ACT_STR;
1696			str = (select & SEL_REPLACE) ?
1697			    &rpl_machcap : &prm_machcap;
1698			variable = ENV_FLG_MACHCAP;
1699		}
1700	}
1701	/*
1702	 * The LD_NO family.
1703	 */
1704	else if (*s1 == 'N') {
1705		if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1,
1706		    MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) {
1707			select |= SEL_ACT_RT;
1708			val = RT_FL_NOAUDIT;
1709			variable = ENV_FLG_NOAUDIT;
1710		} else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1,
1711		    MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) {
1712			select |= SEL_ACT_RT;
1713			val = RT_FL_NOAUXFLTR;
1714			variable = ENV_FLG_NOAUXFLTR;
1715		} else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1,
1716		    MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) {
1717			select |= SEL_ACT_RT;
1718			val = RT_FL_NOBAPLT;
1719			variable = ENV_FLG_NOBAPLT;
1720		} else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1,
1721		    MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) {
1722			select |= SEL_ACT_RT;
1723			val = RT_FL_NOCFG;
1724			variable = ENV_FLG_NOCONFIG;
1725		} else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1,
1726		    MSG_ORIG(MSG_LD_NODIRCONFIG),
1727		    MSG_LD_NODIRCONFIG_SIZE) == 0)) {
1728			select |= SEL_ACT_RT;
1729			val = RT_FL_NODIRCFG;
1730			variable = ENV_FLG_NODIRCONFIG;
1731		} else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1,
1732		    MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) {
1733			select |= SEL_ACT_LMLT;
1734			val = LML_TFLG_NODIRECT;
1735			variable = ENV_FLG_NODIRECT;
1736		} else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1,
1737		    MSG_ORIG(MSG_LD_NOENVCONFIG),
1738		    MSG_LD_NOENVCONFIG_SIZE) == 0)) {
1739			select |= SEL_ACT_RT;
1740			val = RT_FL_NOENVCFG;
1741			variable = ENV_FLG_NOENVCONFIG;
1742		} else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1,
1743		    MSG_ORIG(MSG_LD_NOFLTCONFIG),
1744		    MSG_LD_NOFLTCONFIG_SIZE) == 0)) {
1745			select |= SEL_ACT_RT2;
1746			val = RT_FL2_NOFLTCFG;
1747			variable = ENV_FLG_NOFLTCONFIG;
1748		} else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1,
1749		    MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) {
1750			select |= SEL_ACT_LMLT;
1751			val = LML_TFLG_NOLAZYLD;
1752			variable = ENV_FLG_NOLAZY;
1753		} else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1,
1754		    MSG_ORIG(MSG_LD_NOOBJALTER),
1755		    MSG_LD_NOOBJALTER_SIZE) == 0)) {
1756			select |= SEL_ACT_RT;
1757			val = RT_FL_NOOBJALT;
1758			variable = ENV_FLG_NOOBJALTER;
1759		} else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1,
1760		    MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) {
1761			select |= SEL_ACT_RT;
1762			val = RT_FL_NOVERSION;
1763			variable = ENV_FLG_NOVERSION;
1764		} else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1,
1765		    MSG_ORIG(MSG_LD_NOUNRESWEAK),
1766		    MSG_LD_NOUNRESWEAK_SIZE) == 0)) {
1767			/*
1768			 * LD_NOUNRESWEAK (internal, used by ldd(1)).
1769			 */
1770			select |= SEL_ACT_LML;
1771			val = LML_FLG_TRC_NOUNRESWEAK;
1772			variable = ENV_FLG_NOUNRESWEAK;
1773		} else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1,
1774		    MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) {
1775			select |= SEL_ACT_LML;
1776			val = LML_FLG_TRC_NOPAREXT;
1777			variable = ENV_FLG_NOPAREXT;
1778		}
1779	}
1780	/*
1781	 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family.
1782	 */
1783	else if (*s1 == 'P') {
1784		if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1,
1785		    MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) {
1786			select |= SEL_ACT_STR;
1787			str = (select & SEL_REPLACE) ?
1788			    &rpl_platcap : &prm_platcap;
1789			variable = ENV_FLG_PLATCAP;
1790		} else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1,
1791		    MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) {
1792			select |= SEL_ACT_STR;
1793			str = (select & SEL_REPLACE) ? &rpl_preload :
1794			    &prm_preload;
1795			variable = ENV_FLG_PRELOAD;
1796		} else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1,
1797		    MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) {
1798			/*
1799			 * Only one user library can be profiled at a time.
1800			 */
1801			select |= SEL_ACT_SPEC_2;
1802			variable = ENV_FLG_PROFILE;
1803		} else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1,
1804		    MSG_ORIG(MSG_LD_PROFILE_OUTPUT),
1805		    MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) {
1806			/*
1807			 * Only one user library can be profiled at a time.
1808			 */
1809			select |= SEL_ACT_STR;
1810			str = &profile_out;
1811			variable = ENV_FLG_PROFILE_OUTPUT;
1812		}
1813	}
1814	/*
1815	 * LD_SFCAP and LD_SIGNAL.
1816	 */
1817	else if (*s1 == 'S') {
1818		if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1,
1819		    MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) {
1820			select |= SEL_ACT_STR;
1821			str = (select & SEL_REPLACE) ?
1822			    &rpl_sfcap : &prm_sfcap;
1823			variable = ENV_FLG_SFCAP;
1824		} else if ((len == MSG_LD_SIGNAL_SIZE) &&
1825		    (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL),
1826		    MSG_LD_SIGNAL_SIZE) == 0) &&
1827		    ((rtld_flags & RT_FL_SECURE) == 0)) {
1828			select |= SEL_ACT_SPEC_2;
1829			variable = ENV_FLG_SIGNAL;
1830		}
1831	}
1832	/*
1833	 * The LD_TRACE family (internal, used by ldd(1)).  This definition is
1834	 * the key to enabling all other ldd(1) specific environment variables.
1835	 * In case an auditor is called, which in turn might exec(2) a
1836	 * subprocess, this variable is disabled, so that any subprocess
1837	 * escapes ldd(1) processing.
1838	 */
1839	else if (*s1 == 'T') {
1840		if (((len == MSG_LD_TRACE_OBJS_SIZE) &&
1841		    (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS),
1842		    MSG_LD_TRACE_OBJS_SIZE) == 0)) ||
1843		    ((len == MSG_LD_TRACE_OBJS_E_SIZE) &&
1844		    (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E),
1845		    MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) ||
1846		    ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A),
1847		    MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) {
1848			char	*s0 = (char *)s1;
1849
1850			select |= SEL_ACT_SPEC_2;
1851			variable = ENV_FLG_TRACE_OBJS;
1852
1853#if	defined(__sparc) || defined(__x86)
1854			/*
1855			 * The simplest way to "disable" this variable is to
1856			 * truncate this string to "LD_'\0'". This string is
1857			 * ignored by any ld.so.1 environment processing.
1858			 * Use of such interfaces as unsetenv(3c) are overkill,
1859			 * and would drag too much libc implementation detail
1860			 * into ld.so.1.
1861			 */
1862			*s0 = '\0';
1863#else
1864/*
1865 * Verify that the above write is appropriate for any new platforms.
1866 */
1867#error	unsupported architecture!
1868#endif
1869		} else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1,
1870		    MSG_ORIG(MSG_LD_TRACE_PTHS),
1871		    MSG_LD_TRACE_PTHS_SIZE) == 0)) {
1872			select |= SEL_ACT_LML;
1873			val = LML_FLG_TRC_SEARCH;
1874			variable = ENV_FLG_TRACE_PTHS;
1875		}
1876	}
1877	/*
1878	 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)).
1879	 */
1880	else if (*s1 == 'U') {
1881		if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1,
1882		    MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) {
1883			select |= SEL_ACT_LML;
1884			val = LML_FLG_TRC_UNREF;
1885			variable = ENV_FLG_UNREF;
1886		} else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1,
1887		    MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) {
1888			select |= SEL_ACT_LML;
1889			val = LML_FLG_TRC_UNUSED;
1890			variable = ENV_FLG_UNUSED;
1891		}
1892	}
1893	/*
1894	 * LD_VERBOSE (internal, used by ldd(1)).
1895	 */
1896	else if (*s1 == 'V') {
1897		if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1,
1898		    MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) {
1899			select |= SEL_ACT_LML;
1900			val = LML_FLG_TRC_VERBOSE;
1901			variable = ENV_FLG_VERBOSE;
1902		}
1903	}
1904	/*
1905	 * LD_WARN (internal, used by ldd(1)).
1906	 */
1907	else if (*s1 == 'W') {
1908		if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1,
1909		    MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) {
1910			select |= SEL_ACT_LML;
1911			val = LML_FLG_TRC_WARN;
1912			variable = ENV_FLG_WARN;
1913		}
1914	}
1915
1916	if (variable == 0)
1917		return;
1918
1919	/*
1920	 * If the variable is already processed with and ISA specific variable,
1921	 * no further processing is needed.
1922	 */
1923	if (((select & SEL_REPLACE) && (rplisa & variable)) ||
1924	    ((select & SEL_PERMANT) && (prmisa & variable)))
1925		return;
1926
1927	/*
1928	 * Mark the appropriate variables.
1929	 */
1930	if (env_flags & ENV_TYP_ISA) {
1931		/*
1932		 * This is an ISA setting.
1933		 */
1934		if (select & SEL_REPLACE) {
1935			if (rplisa & variable)
1936				return;
1937			rplisa |= variable;
1938		} else {
1939			prmisa |= variable;
1940		}
1941	} else {
1942		/*
1943		 * This is a non-ISA setting.
1944		 */
1945		if (select & SEL_REPLACE) {
1946			if (rplgen & variable)
1947				return;
1948			rplgen |= variable;
1949		} else
1950			prmgen |= variable;
1951	}
1952
1953	/*
1954	 * Now perform the setting.
1955	 */
1956	if (select & SEL_ACT_RT) {
1957		if (s2)
1958			rtld_flags |= val;
1959		else
1960			rtld_flags &= ~val;
1961	} else if (select & SEL_ACT_RT2) {
1962		if (s2)
1963			rtld_flags2 |= val;
1964		else
1965			rtld_flags2 &= ~val;
1966	} else if (select & SEL_ACT_STR) {
1967		*str = s2;
1968	} else if (select & SEL_ACT_LML) {
1969		if (s2)
1970			*lmflags |= val;
1971		else
1972			*lmflags &= ~val;
1973	} else if (select & SEL_ACT_LMLT) {
1974		if (s2)
1975			*lmtflags |= val;
1976		else
1977			*lmtflags &= ~val;
1978	} else if (select & SEL_ACT_SPEC_1) {
1979		/*
1980		 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH
1981		 */
1982		*str = s2;
1983		if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) {
1984			if (s2) {
1985				if (variable == ENV_FLG_FLAGS)
1986					env_info |= ENV_INF_FLAGCFG;
1987				else
1988					env_info |= ENV_INF_PATHCFG;
1989			} else {
1990				if (variable == ENV_FLG_FLAGS)
1991					env_info &= ~ENV_INF_FLAGCFG;
1992				else
1993					env_info &= ~ENV_INF_PATHCFG;
1994			}
1995		}
1996	} else if (select & SEL_ACT_SPEC_2) {
1997		/*
1998		 * variables can be: ENV_FLG_
1999		 * 	AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE,
2000		 *	SIGNAL, TRACE_OBJS
2001		 */
2002		switch (variable) {
2003		case ENV_FLG_AUDIT_ARGS:
2004			if (s2) {
2005				audit_argcnt = atoi(s2);
2006				audit_argcnt += audit_argcnt % 2;
2007			} else
2008				audit_argcnt = 0;
2009			break;
2010		case ENV_FLG_BINDINGS:
2011			if (s2)
2012				rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS);
2013			else
2014				rpl_debug = NULL;
2015			break;
2016		case ENV_FLG_CONFGEN:
2017			if (s2) {
2018				rtld_flags |= RT_FL_CONFGEN;
2019				*lmflags |= LML_FLG_IGNRELERR;
2020			} else {
2021				rtld_flags &= ~RT_FL_CONFGEN;
2022				*lmflags &= ~LML_FLG_IGNRELERR;
2023			}
2024			break;
2025		case ENV_FLG_LOADFLTR:
2026			if (s2) {
2027				*lmtflags |= LML_TFLG_LOADFLTR;
2028				if (*s2 == '2')
2029					rtld_flags |= RT_FL_WARNFLTR;
2030			} else {
2031				*lmtflags &= ~LML_TFLG_LOADFLTR;
2032				rtld_flags &= ~RT_FL_WARNFLTR;
2033			}
2034			break;
2035		case ENV_FLG_PROFILE:
2036			profile_name = s2;
2037			if (s2) {
2038				if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) {
2039					return;
2040				}
2041				/* BEGIN CSTYLED */
2042				if (rtld_flags & RT_FL_SECURE) {
2043					profile_lib =
2044#if	defined(_ELF64)
2045					    MSG_ORIG(MSG_PTH_LDPROFSE_64);
2046#else
2047					    MSG_ORIG(MSG_PTH_LDPROFSE);
2048#endif
2049				} else {
2050					profile_lib =
2051#if	defined(_ELF64)
2052					    MSG_ORIG(MSG_PTH_LDPROF_64);
2053#else
2054					    MSG_ORIG(MSG_PTH_LDPROF);
2055#endif
2056				}
2057				/* END CSTYLED */
2058			} else
2059				profile_lib = NULL;
2060			break;
2061		case ENV_FLG_SIGNAL:
2062			killsig = s2 ? atoi(s2) : SIGKILL;
2063			break;
2064		case ENV_FLG_TRACE_OBJS:
2065			if (s2) {
2066				*lmflags |= LML_FLG_TRC_ENABLE;
2067				if (*s2 == '2')
2068					*lmflags |= LML_FLG_TRC_LDDSTUB;
2069			} else
2070				*lmflags &=
2071				    ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB);
2072			break;
2073		}
2074	}
2075}
2076
2077/*
2078 * Determine whether we have an architecture specific environment variable.
2079 * If we do, and we're the wrong architecture, it'll just get ignored.
2080 * Otherwise the variable is processed in it's architecture neutral form.
2081 */
2082static int
2083ld_arch_env(const char *s1, size_t *len)
2084{
2085	size_t	_len = *len - 3;
2086
2087	if (s1[_len++] == '_') {
2088		if ((s1[_len] == '3') && (s1[_len + 1] == '2')) {
2089#if	defined(_ELF64)
2090			return (ENV_TYP_IGNORE);
2091#else
2092			*len = *len - 3;
2093			return (ENV_TYP_ISA);
2094#endif
2095		}
2096		if ((s1[_len] == '6') && (s1[_len + 1] == '4')) {
2097#if	defined(_ELF64)
2098			*len = *len - 3;
2099			return (ENV_TYP_ISA);
2100#else
2101			return (ENV_TYP_IGNORE);
2102#endif
2103		}
2104	}
2105	return (0);
2106}
2107
2108
2109/*
2110 * Process an LD_FLAGS environment variable.  The value can be a comma
2111 * separated set of tokens, which are sent (in upper case) into the generic
2112 * LD_XXXX environment variable engine.  For example:
2113 *
2114 *	LD_FLAGS=bind_now		->	LD_BIND_NOW=1
2115 *	LD_FLAGS=library_path=/foo:.	->	LD_LIBRARY_PATH=/foo:.
2116 *	LD_FLAGS=debug=files:detail	->	LD_DEBUG=files:detail
2117 * or
2118 *	LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail
2119 */
2120static int
2121ld_flags_env(const char *str, Word *lmflags, Word *lmtflags,
2122    uint_t env_flags, int aout)
2123{
2124	char	*nstr, *sstr, *estr = NULL;
2125	size_t	nlen, len;
2126
2127	if (str == NULL)
2128		return (0);
2129
2130	/*
2131	 * Create a new string as we're going to transform the token(s) into
2132	 * uppercase and separate tokens with nulls.
2133	 */
2134	len = strlen(str);
2135	if ((nstr = malloc(len + 1)) == NULL)
2136		return (1);
2137	(void) strcpy(nstr, str);
2138
2139	for (sstr = nstr; sstr; sstr++, len--) {
2140		int	flags;
2141
2142		if ((*sstr != '\0') && (*sstr != ',')) {
2143			if (estr == NULL) {
2144				if (*sstr == '=')
2145					estr = sstr;
2146				else {
2147					/*
2148					 * Translate token to uppercase.  Don't
2149					 * use toupper(3C) as including this
2150					 * code doubles the size of ld.so.1.
2151					 */
2152					if ((*sstr >= 'a') && (*sstr <= 'z'))
2153						*sstr = *sstr - ('a' - 'A');
2154				}
2155			}
2156			continue;
2157		}
2158
2159		*sstr = '\0';
2160		if (estr) {
2161			nlen = estr - nstr;
2162			if ((*++estr == '\0') || (*estr == ','))
2163				estr = NULL;
2164		} else
2165			nlen = sstr - nstr;
2166
2167		/*
2168		 * Fabricate a boolean definition for any unqualified variable.
2169		 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null).
2170		 * The value is sufficient to assert any boolean variables, plus
2171		 * the term "(null)" is specifically chosen in case someone
2172		 * mistakenly supplies something like LD_FLAGS=library_path.
2173		 */
2174		if (estr == NULL)
2175			estr = (char *)MSG_INTL(MSG_STR_NULL);
2176
2177		/*
2178		 * Determine whether the environment variable is 32- or 64-bit
2179		 * specific.  The length, len, will reflect the architecture
2180		 * neutral portion of the string.
2181		 */
2182		if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) {
2183			ld_generic_env(nstr, nlen, estr, lmflags,
2184			    lmtflags, (env_flags | flags), aout);
2185		}
2186		if (len == 0)
2187			return (0);
2188
2189		nstr = sstr + 1;
2190		estr = NULL;
2191	}
2192	return (0);
2193}
2194
2195
2196/*
2197 * Process a single environment string.  Only strings starting with `LD_' are
2198 * reserved for our use.  By convention, all strings should be of the form
2199 * `LD_XXXX=', if the string is followed by a non-null value the appropriate
2200 * functionality is enabled.  Also pick off applicable locale variables.
2201 */
2202#define	LOC_LANG	1
2203#define	LOC_MESG	2
2204#define	LOC_ALL		3
2205
2206static void
2207ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags,
2208    int aout)
2209{
2210	const char	*s2;
2211	static		size_t	loc = 0;
2212
2213	if (*s1++ != 'L')
2214		return;
2215
2216	/*
2217	 * See if we have any locale environment settings.  These environment
2218	 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which
2219	 * is higher than LANG.
2220	 */
2221	s2 = s1;
2222	if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) {
2223		if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) {
2224			s2 += MSG_LC_ALL_SIZE;
2225			if ((*s2 != '\0') && (loc < LOC_ALL)) {
2226				glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2227				loc = LOC_ALL;
2228			}
2229		} else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES),
2230		    MSG_LC_MESSAGES_SIZE) == 0) {
2231			s2 += MSG_LC_MESSAGES_SIZE;
2232			if ((*s2 != '\0') && (loc < LOC_MESG)) {
2233				glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2234				loc = LOC_MESG;
2235			}
2236		}
2237		return;
2238	}
2239
2240	s2 = s1;
2241	if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') &&
2242	    (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) {
2243		glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2244		loc = LOC_LANG;
2245		return;
2246	}
2247
2248	/*
2249	 * Pick off any LD_XXXX environment variables.
2250	 */
2251	if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) {
2252		size_t	len;
2253		int	flags;
2254
2255		/*
2256		 * In a branded process we must ignore all LD_XXXX env vars
2257		 * because they are intended for the brand's linker.
2258		 * To affect the Solaris linker, use LD_BRAND_XXXX instead.
2259		 */
2260		if (rtld_flags2 & RT_FL2_BRANDED) {
2261			if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX),
2262			    MSG_LD_BRAND_PREFIX_SIZE) != 0)
2263				return;
2264			s1 += MSG_LD_BRAND_PREFIX_SIZE;
2265		}
2266
2267		/*
2268		 * Environment variables with no value (ie. LD_XXXX=) typically
2269		 * have no impact, however if environment variables are defined
2270		 * within a configuration file, these null user settings can be
2271		 * used to disable any configuration replaceable definitions.
2272		 */
2273		if ((s2 = strchr(s1, '=')) == NULL) {
2274			len = strlen(s1);
2275			s2 = NULL;
2276		} else if (*++s2 == '\0') {
2277			len = strlen(s1) - 1;
2278			s2 = NULL;
2279		} else {
2280			len = s2 - s1 - 1;
2281			while (conv_strproc_isspace(*s2))
2282				s2++;
2283		}
2284
2285		/*
2286		 * Determine whether the environment variable is 32- or 64-bit
2287		 * specific.  The length, len, will reflect the architecture
2288		 * neutral portion of the string.
2289		 */
2290		if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE)
2291			return;
2292		env_flags |= flags;
2293
2294		ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout);
2295	}
2296}
2297
2298/*
2299 * Internal getenv routine.  Called immediately after ld.so.1 initializes
2300 * itself.
2301 */
2302int
2303readenv_user(const char **envp, Word *lmflags, Word *lmtflags, int aout)
2304{
2305	char	*locale;
2306
2307	if (envp == NULL)
2308		return (0);
2309
2310	while (*envp != NULL)
2311		ld_str_env(*envp++, lmflags, lmtflags, 0, aout);
2312
2313	/*
2314	 * Having collected the best representation of any LD_FLAGS, process
2315	 * these strings.
2316	 */
2317	if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2318		return (1);
2319
2320	/*
2321	 * Don't allow environment controlled auditing when tracing or if
2322	 * explicitly disabled.  Trigger all tracing modes from
2323	 * LML_FLG_TRC_ENABLE.
2324	 */
2325	if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2326		rpl_audit = profile_lib = profile_name = NULL;
2327	if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2328		*lmflags &= ~LML_MSK_TRC;
2329
2330	/*
2331	 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins.
2332	 */
2333	if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) ==
2334	    (RT_FL2_BINDNOW | RT_FL2_BINDLAZY))
2335		rtld_flags2 &= ~RT_FL2_BINDLAZY;
2336
2337	/*
2338	 * When using ldd(1) -r or -d against an executable, assert -p.
2339	 */
2340	if ((*lmflags &
2341	    (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN)
2342		*lmflags |= LML_FLG_TRC_NOPAREXT;
2343
2344	/*
2345	 * If we have a locale setting make sure its worth processing further.
2346	 * C and POSIX locales don't need any processing.  In addition, to
2347	 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow
2348	 * the locale to contain a segment that leads upward in the file system
2349	 * hierarchy (i.e. no '..' segments).   Given that we'll be confined to
2350	 * the /usr/lib/locale hierarchy, there is no need to extensively
2351	 * validate the mode or ownership of any message file (as libc's
2352	 * generic handling of message files does).  Duplicate the string so
2353	 * that new locale setting can generically cleanup any previous locales.
2354	 */
2355	if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) {
2356		if (((*locale == 'C') && (*(locale + 1) == '\0')) ||
2357		    (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) ||
2358		    (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL))
2359			glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL;
2360		else
2361			glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale);
2362	}
2363	return (0);
2364}
2365
2366/*
2367 * Configuration environment processing.  Called after the a.out has been
2368 * processed (as the a.out can specify its own configuration file).
2369 */
2370int
2371readenv_config(Rtc_env * envtbl, Addr addr, int aout)
2372{
2373	Word	*lmflags = &(lml_main.lm_flags);
2374	Word	*lmtflags = &(lml_main.lm_tflags);
2375
2376	if (envtbl == NULL)
2377		return (0);
2378
2379	while (envtbl->env_str) {
2380		uint_t	env_flags = ENV_TYP_CONFIG;
2381
2382		if (envtbl->env_flags & RTC_ENV_PERMANT)
2383			env_flags |= ENV_TYP_PERMANT;
2384
2385		ld_str_env((const char *)(envtbl->env_str + addr),
2386		    lmflags, lmtflags, env_flags, 0);
2387		envtbl++;
2388	}
2389
2390	/*
2391	 * Having collected the best representation of any LD_FLAGS, process
2392	 * these strings.
2393	 */
2394	if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2395		return (1);
2396	if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG,
2397	    aout) == 1)
2398		return (1);
2399
2400	/*
2401	 * Don't allow environment controlled auditing when tracing or if
2402	 * explicitly disabled.  Trigger all tracing modes from
2403	 * LML_FLG_TRC_ENABLE.
2404	 */
2405	if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2406		prm_audit = profile_lib = profile_name = NULL;
2407	if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2408		*lmflags &= ~LML_MSK_TRC;
2409
2410	return (0);
2411}
2412
2413int
2414dowrite(Prfbuf * prf)
2415{
2416	/*
2417	 * We do not have a valid file descriptor, so we are unable
2418	 * to flush the buffer.
2419	 */
2420	if (prf->pr_fd == -1)
2421		return (0);
2422	(void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf);
2423	prf->pr_cur = prf->pr_buf;
2424	return (1);
2425}
2426
2427/*
2428 * Simplified printing.  The following conversion specifications are supported:
2429 *
2430 *	% [#] [-] [min field width] [. precision] s|d|x|c
2431 *
2432 *
2433 * dorprf takes the output buffer in the form of Prfbuf which permits
2434 * the verification of the output buffer size and the concatenation
2435 * of data to an already existing output buffer.  The Prfbuf
2436 * structure contains the following:
2437 *
2438 *  pr_buf	pointer to the beginning of the output buffer.
2439 *  pr_cur	pointer to the next available byte in the output buffer.  By
2440 *		setting pr_cur ahead of pr_buf you can append to an already
2441 *		existing buffer.
2442 *  pr_len	the size of the output buffer.  By setting pr_len to '0' you
2443 *		disable protection from overflows in the output buffer.
2444 *  pr_fd	a pointer to the file-descriptor the buffer will eventually be
2445 *		output to.  If pr_fd is set to '-1' then it's assumed there is
2446 *		no output buffer, and doprf() will return with an error to
2447 *		indicate an output buffer overflow.  If pr_fd is > -1 then when
2448 *		the output buffer is filled it will be flushed to pr_fd and will
2449 *		then be	available for additional data.
2450 */
2451#define	FLG_UT_MINUS	0x0001	/* - */
2452#define	FLG_UT_SHARP	0x0002	/* # */
2453#define	FLG_UT_DOTSEEN	0x0008	/* dot appeared in format spec */
2454
2455/*
2456 * This macro is for use from within doprf only.  It is to be used for checking
2457 * the output buffer size and placing characters into the buffer.
2458 */
2459#define	PUTC(c) \
2460	{ \
2461		char tmpc; \
2462		\
2463		tmpc = (c); \
2464		if (bufsiz && (bp >= bufend)) { \
2465			prf->pr_cur = bp; \
2466			if (dowrite(prf) == 0) \
2467				return (0); \
2468			bp = prf->pr_cur; \
2469		} \
2470		*bp++ = tmpc; \
2471	}
2472
2473/*
2474 * Define a local buffer size for building a numeric value - large enough to
2475 * hold a 64-bit value.
2476 */
2477#define	NUM_SIZE	22
2478
2479size_t
2480doprf(const char *format, va_list args, Prfbuf *prf)
2481{
2482	char	c;
2483	char	*bp = prf->pr_cur;
2484	char	*bufend = prf->pr_buf + prf->pr_len;
2485	size_t	bufsiz = prf->pr_len;
2486
2487	while ((c = *format++) != '\0') {
2488		if (c != '%') {
2489			PUTC(c);
2490		} else {
2491			int	base = 0, flag = 0, width = 0, prec = 0;
2492			size_t	_i;
2493			int	_c, _n;
2494			char	*_s;
2495			int	ls = 0;
2496again:
2497			c = *format++;
2498			switch (c) {
2499			case '-':
2500				flag |= FLG_UT_MINUS;
2501				goto again;
2502			case '#':
2503				flag |= FLG_UT_SHARP;
2504				goto again;
2505			case '.':
2506				flag |= FLG_UT_DOTSEEN;
2507				goto again;
2508			case '0':
2509			case '1':
2510			case '2':
2511			case '3':
2512			case '4':
2513			case '5':
2514			case '6':
2515			case '7':
2516			case '8':
2517			case '9':
2518				if (flag & FLG_UT_DOTSEEN)
2519					prec = (prec * 10) + c - '0';
2520				else
2521					width = (width * 10) + c - '0';
2522				goto again;
2523			case 'x':
2524			case 'X':
2525				base = 16;
2526				break;
2527			case 'd':
2528			case 'D':
2529			case 'u':
2530				base = 10;
2531				flag &= ~FLG_UT_SHARP;
2532				break;
2533			case 'l':
2534				base = 10;
2535				ls++; /* number of l's (long or long long) */
2536				if ((*format == 'l') ||
2537				    (*format == 'd') || (*format == 'D') ||
2538				    (*format == 'x') || (*format == 'X') ||
2539				    (*format == 'o') || (*format == 'O') ||
2540				    (*format == 'u') || (*format == 'U'))
2541					goto again;
2542				break;
2543			case 'o':
2544			case 'O':
2545				base = 8;
2546				break;
2547			case 'c':
2548				_c = va_arg(args, int);
2549
2550				for (_i = 24; _i > 0; _i -= 8) {
2551					if ((c = ((_c >> _i) & 0x7f)) != 0) {
2552						PUTC(c);
2553					}
2554				}
2555				if ((c = ((_c >> _i) & 0x7f)) != 0) {
2556					PUTC(c);
2557				}
2558				break;
2559			case 's':
2560				_s = va_arg(args, char *);
2561				_i = strlen(_s);
2562				/* LINTED */
2563				_n = (int)(width - _i);
2564				if (!prec)
2565					/* LINTED */
2566					prec = (int)_i;
2567
2568				if (width && !(flag & FLG_UT_MINUS)) {
2569					while (_n-- > 0)
2570						PUTC(' ');
2571				}
2572				while (((c = *_s++) != 0) && prec--) {
2573					PUTC(c);
2574				}
2575				if (width && (flag & FLG_UT_MINUS)) {
2576					while (_n-- > 0)
2577						PUTC(' ');
2578				}
2579				break;
2580			case '%':
2581				PUTC('%');
2582				break;
2583			default:
2584				break;
2585			}
2586
2587			/*
2588			 * Numeric processing
2589			 */
2590			if (base) {
2591				char		local[NUM_SIZE];
2592				size_t		ssize = 0, psize = 0;
2593				const char	*string =
2594				    MSG_ORIG(MSG_STR_HEXNUM);
2595				const char	*prefix =
2596				    MSG_ORIG(MSG_STR_EMPTY);
2597				u_longlong_t	num;
2598
2599				switch (ls) {
2600				case 0:	/* int */
2601					num = (u_longlong_t)
2602					    va_arg(args, uint_t);
2603					break;
2604				case 1:	/* long */
2605					num = (u_longlong_t)
2606					    va_arg(args, ulong_t);
2607					break;
2608				case 2:	/* long long */
2609					num = va_arg(args, u_longlong_t);
2610					break;
2611				}
2612
2613				if (flag & FLG_UT_SHARP) {
2614					if (base == 16) {
2615						prefix = MSG_ORIG(MSG_STR_HEX);
2616						psize = 2;
2617					} else {
2618						prefix = MSG_ORIG(MSG_STR_ZERO);
2619						psize = 1;
2620					}
2621				}
2622				if ((base == 10) && (long)num < 0) {
2623					prefix = MSG_ORIG(MSG_STR_NEGATE);
2624					psize = MSG_STR_NEGATE_SIZE;
2625					num = (u_longlong_t)(-(longlong_t)num);
2626				}
2627
2628				/*
2629				 * Convert the numeric value into a local
2630				 * string (stored in reverse order).
2631				 */
2632				_s = local;
2633				do {
2634					*_s++ = string[num % base];
2635					num /= base;
2636					ssize++;
2637				} while (num);
2638
2639				ASSERT(ssize < sizeof (local));
2640
2641				/*
2642				 * Provide any precision or width padding.
2643				 */
2644				if (prec) {
2645					/* LINTED */
2646					_n = (int)(prec - ssize);
2647					while ((_n-- > 0) &&
2648					    (ssize < sizeof (local))) {
2649						*_s++ = '0';
2650						ssize++;
2651					}
2652				}
2653				if (width && !(flag & FLG_UT_MINUS)) {
2654					/* LINTED */
2655					_n = (int)(width - ssize - psize);
2656					while (_n-- > 0) {
2657						PUTC(' ');
2658					}
2659				}
2660
2661				/*
2662				 * Print any prefix and the numeric string
2663				 */
2664				while (*prefix)
2665					PUTC(*prefix++);
2666				do {
2667					PUTC(*--_s);
2668				} while (_s > local);
2669
2670				/*
2671				 * Provide any width padding.
2672				 */
2673				if (width && (flag & FLG_UT_MINUS)) {
2674					/* LINTED */
2675					_n = (int)(width - ssize - psize);
2676					while (_n-- > 0)
2677						PUTC(' ');
2678				}
2679			}
2680		}
2681	}
2682
2683	PUTC('\0');
2684	prf->pr_cur = bp;
2685	return (1);
2686}
2687
2688static int
2689doprintf(const char *format, va_list args, Prfbuf *prf)
2690{
2691	char	*ocur = prf->pr_cur;
2692
2693	if (doprf(format, args, prf) == 0)
2694		return (0);
2695	/* LINTED */
2696	return ((int)(prf->pr_cur - ocur));
2697}
2698
2699/* VARARGS2 */
2700int
2701sprintf(char *buf, const char *format, ...)
2702{
2703	va_list	args;
2704	int	len;
2705	Prfbuf	prf;
2706
2707	va_start(args, format);
2708	prf.pr_buf = prf.pr_cur = buf;
2709	prf.pr_len = 0;
2710	prf.pr_fd = -1;
2711	len = doprintf(format, args, &prf);
2712	va_end(args);
2713
2714	/*
2715	 * sprintf() return value excludes the terminating null byte.
2716	 */
2717	return (len - 1);
2718}
2719
2720/* VARARGS3 */
2721int
2722snprintf(char *buf, size_t n, const char *format, ...)
2723{
2724	va_list	args;
2725	int	len;
2726	Prfbuf	prf;
2727
2728	va_start(args, format);
2729	prf.pr_buf = prf.pr_cur = buf;
2730	prf.pr_len = n;
2731	prf.pr_fd = -1;
2732	len = doprintf(format, args, &prf);
2733	va_end(args);
2734
2735	return (len);
2736}
2737
2738/* VARARGS2 */
2739int
2740bufprint(Prfbuf *prf, const char *format, ...)
2741{
2742	va_list	args;
2743	int	len;
2744
2745	va_start(args, format);
2746	len = doprintf(format, args, prf);
2747	va_end(args);
2748
2749	return (len);
2750}
2751
2752/*PRINTFLIKE1*/
2753int
2754printf(const char *format, ...)
2755{
2756	va_list	args;
2757	char 	buffer[ERRSIZE];
2758	Prfbuf	prf;
2759
2760	va_start(args, format);
2761	prf.pr_buf = prf.pr_cur = buffer;
2762	prf.pr_len = ERRSIZE;
2763	prf.pr_fd = 1;
2764	(void) doprf(format, args, &prf);
2765	va_end(args);
2766	/*
2767	 * Trim trailing '\0' form buffer
2768	 */
2769	prf.pr_cur--;
2770	return (dowrite(&prf));
2771}
2772
2773static char	errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL;
2774
2775/*
2776 * All error messages go through eprintf().  During process initialization,
2777 * these messages are directed to the standard error, however once control has
2778 * been passed to the applications code these messages are stored in an internal
2779 * buffer for use with dlerror().  Note, fatal error conditions that may occur
2780 * while running the application will still cause a standard error message, see
2781 * rtldexit() in this file for details.
2782 * The RT_FL_APPLIC flag serves to indicate the transition between process
2783 * initialization and when the applications code is running.
2784 */
2785/*PRINTFLIKE3*/
2786void
2787eprintf(Lm_list *lml, Error error, const char *format, ...)
2788{
2789	va_list		args;
2790	int		overflow = 0;
2791	static int	lock = 0;
2792	Prfbuf		prf;
2793
2794	if (lock || (nextptr == (errbuf + ERRSIZE)))
2795		return;
2796
2797	/*
2798	 * Note: this lock is here to prevent the same thread from recursively
2799	 * entering itself during a eprintf.  ie: during eprintf malloc() fails
2800	 * and we try and call eprintf ... and then malloc() fails ....
2801	 */
2802	lock = 1;
2803
2804	/*
2805	 * If we have completed startup initialization, all error messages
2806	 * must be saved.  These are reported through dlerror().  If we're
2807	 * still in the initialization stage, output the error directly and
2808	 * add a newline.
2809	 */
2810	va_start(args, format);
2811
2812	prf.pr_buf = prf.pr_cur = nextptr;
2813	prf.pr_len = ERRSIZE - (nextptr - errbuf);
2814
2815	if (!(rtld_flags & RT_FL_APPLIC))
2816		prf.pr_fd = 2;
2817	else
2818		prf.pr_fd = -1;
2819
2820	if (error > ERR_NONE) {
2821		if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN))
2822			error = ERR_WARNING;
2823		if (error == ERR_WARNING) {
2824			if (err_strs[ERR_WARNING] == NULL)
2825				err_strs[ERR_WARNING] =
2826				    MSG_INTL(MSG_ERR_WARNING);
2827		} else if (error == ERR_FATAL) {
2828			if (err_strs[ERR_FATAL] == NULL)
2829				err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL);
2830		} else if (error == ERR_ELF) {
2831			if (err_strs[ERR_ELF] == NULL)
2832				err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF);
2833		}
2834		if (procname) {
2835			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1),
2836			    rtldname, procname, err_strs[error]) == 0)
2837				overflow = 1;
2838		} else {
2839			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2840			    rtldname, err_strs[error]) == 0)
2841				overflow = 1;
2842		}
2843		if (overflow == 0) {
2844			/*
2845			 * Remove the terminating '\0'.
2846			 */
2847			prf.pr_cur--;
2848		}
2849	}
2850
2851	if ((overflow == 0) && doprf(format, args, &prf) == 0)
2852		overflow = 1;
2853
2854	/*
2855	 * If this is an ELF error, it will have been generated by a support
2856	 * object that has a dependency on libelf.  ld.so.1 doesn't generate any
2857	 * ELF error messages as it doesn't interact with libelf.  Determine the
2858	 * ELF error string.
2859	 */
2860	if ((overflow == 0) && (error == ERR_ELF)) {
2861		static int		(*elfeno)() = 0;
2862		static const char	*(*elfemg)();
2863		const char		*emsg;
2864		Rt_map			*dlmp, *lmp = lml_rtld.lm_head;
2865
2866		if (NEXT(lmp) && (elfeno == 0)) {
2867			if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT,
2868			    MSG_ORIG(MSG_SYM_ELFERRMSG),
2869			    lmp, &dlmp)) == NULL) ||
2870			    ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT,
2871			    MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL))
2872				elfeno = 0;
2873		}
2874
2875		/*
2876		 * Lookup the message; equivalent to elf_errmsg(elf_errno()).
2877		 */
2878		if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) {
2879			prf.pr_cur--;
2880			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2881			    emsg) == 0)
2882				overflow = 1;
2883		}
2884	}
2885
2886	/*
2887	 * Push out any message that's been built.  Note, in the case of an
2888	 * overflow condition, this message may be incomplete, in which case
2889	 * make sure any partial string is null terminated.
2890	 */
2891	if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) {
2892		*(prf.pr_cur - 1) = '\n';
2893		(void) dowrite(&prf);
2894	}
2895	if (overflow)
2896		*(prf.pr_cur - 1) = '\0';
2897
2898	DBG_CALL(Dbg_util_str(lml, nextptr));
2899	va_end(args);
2900
2901	/*
2902	 * Determine if there was insufficient space left in the buffer to
2903	 * complete the message.  If so, we'll have printed out as much as had
2904	 * been processed if we're not yet executing the application.
2905	 * Otherwise, there will be some debugging diagnostic indicating
2906	 * as much of the error message as possible.  Write out a final buffer
2907	 * overflow diagnostic - unlocalized, so we don't chance more errors.
2908	 */
2909	if (overflow) {
2910		char	*str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW);
2911
2912		if ((rtld_flags & RT_FL_SILENCERR) == 0) {
2913			lasterr = str;
2914
2915			if ((rtld_flags & RT_FL_APPLIC) == 0) {
2916				(void) write(2, str, strlen(str));
2917				(void) write(2, MSG_ORIG(MSG_STR_NL),
2918				    MSG_STR_NL_SIZE);
2919			}
2920		}
2921		DBG_CALL(Dbg_util_str(lml, str));
2922
2923		lock = 0;
2924		nextptr = errbuf + ERRSIZE;
2925		return;
2926	}
2927
2928	/*
2929	 * If the application has started, then error messages are being saved
2930	 * for retrieval by dlerror(), or possible flushing from rtldexit() in
2931	 * the case of a fatal error.  In this case, establish the next error
2932	 * pointer.  If we haven't started the application, the whole message
2933	 * buffer can be reused.
2934	 */
2935	if ((rtld_flags & RT_FL_SILENCERR) == 0) {
2936		lasterr = nextptr;
2937
2938		/*
2939		 * Note, should we encounter an error such as ENOMEM, there may
2940		 * be a number of the same error messages (ie. an operation
2941		 * fails with ENOMEM, and then the attempts to construct the
2942		 * error message itself, which incurs additional ENOMEM errors).
2943		 * Compare any previous error message with the one we've just
2944		 * created to prevent any duplication clutter.
2945		 */
2946		if ((rtld_flags & RT_FL_APPLIC) &&
2947		    ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) {
2948			prevptr = nextptr;
2949			nextptr = prf.pr_cur;
2950			*nextptr = '\0';
2951		}
2952	}
2953	lock = 0;
2954}
2955
2956
2957#if	DEBUG
2958/*
2959 * Provide assfail() for ASSERT() statements.  See <sys/debug.h> for further
2960 * details.
2961 */
2962int
2963assfail(const char *a, const char *f, int l)
2964{
2965	(void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l);
2966	(void) _lwp_kill(_lwp_self(), SIGABRT);
2967	return (0);
2968}
2969#endif
2970
2971/*
2972 * Exit.  If we arrive here with a non zero status it's because of a fatal
2973 * error condition (most commonly a relocation error).  If the application has
2974 * already had control, then the actual fatal error message will have been
2975 * recorded in the dlerror() message buffer.  Print the message before really
2976 * exiting.
2977 */
2978void
2979rtldexit(Lm_list * lml, int status)
2980{
2981	if (status) {
2982		if (rtld_flags & RT_FL_APPLIC) {
2983			/*
2984			 * If the error buffer has been used, write out all
2985			 * pending messages - lasterr is simply a pointer to
2986			 * the last message in this buffer.  However, if the
2987			 * buffer couldn't be created at all, lasterr points
2988			 * to a constant error message string.
2989			 */
2990			if (*errbuf) {
2991				char	*errptr = errbuf;
2992				char	*errend = errbuf + ERRSIZE;
2993
2994				while ((errptr < errend) && *errptr) {
2995					size_t	size = strlen(errptr);
2996					(void) write(2, errptr, size);
2997					(void) write(2, MSG_ORIG(MSG_STR_NL),
2998					    MSG_STR_NL_SIZE);
2999					errptr += (size + 1);
3000				}
3001			}
3002			if (lasterr && ((lasterr < errbuf) ||
3003			    (lasterr > (errbuf + ERRSIZE)))) {
3004				(void) write(2, lasterr, strlen(lasterr));
3005				(void) write(2, MSG_ORIG(MSG_STR_NL),
3006				    MSG_STR_NL_SIZE);
3007			}
3008		}
3009		leave(lml, 0);
3010		(void) _lwp_kill(_lwp_self(), killsig);
3011	}
3012	_exit(status);
3013}
3014
3015/*
3016 * Map anonymous memory via MAP_ANON (added in Solaris 8).
3017 */
3018void *
3019dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3020{
3021	caddr_t	va;
3022
3023	if ((va = (caddr_t)mmap(addr, len, prot,
3024	    (flags | MAP_ANON), -1, 0)) == MAP_FAILED) {
3025		int	err = errno;
3026		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON),
3027		    strerror(err));
3028		return (MAP_FAILED);
3029	}
3030	return (va);
3031}
3032
3033static int	nu_fd = FD_UNAVAIL;
3034
3035void *
3036nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3037{
3038	caddr_t	va;
3039	int	err;
3040
3041	if (nu_fd == FD_UNAVAIL) {
3042		if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL),
3043		    O_RDONLY)) == FD_UNAVAIL) {
3044			err = errno;
3045			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
3046			    MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3047			return (MAP_FAILED);
3048		}
3049	}
3050
3051	if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) ==
3052	    MAP_FAILED) {
3053		err = errno;
3054		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
3055		    MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3056	}
3057	return (va);
3058}
3059
3060/*
3061 * Generic entry point from user code - simply grabs a lock, and bumps the
3062 * entrance count.
3063 */
3064int
3065enter(int flags)
3066{
3067	if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) {
3068		if (!thr_flg_nolock)
3069			(void) rt_mutex_lock(&rtldlock);
3070		if (rtld_flags & RT_FL_OPERATION) {
3071			ld_entry_cnt++;
3072
3073			/*
3074			 * Reset the diagnostic time information for each new
3075			 * "operation".  Thus timing diagnostics are relative
3076			 * to entering ld.so.1.
3077			 */
3078			if (DBG_ISTIME() &&
3079			    (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) {
3080				DBG_DELTATIME = DBG_TOTALTIME;
3081				DBG_ONRESET();
3082			}
3083		}
3084		return (1);
3085	}
3086	return (0);
3087}
3088
3089/*
3090 * Determine whether a search path has been used.
3091 */
3092static void
3093is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj)
3094{
3095	Pdesc	*pdp;
3096	Aliste	idx;
3097
3098	for (ALIST_TRAVERSE(alp, idx, pdp)) {
3099		const char	*fmt, *name;
3100
3101		if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED))
3102			continue;
3103
3104		/*
3105		 * If this pathname originated from an expanded token, use the
3106		 * original for any diagnostic output.
3107		 */
3108		if ((name = pdp->pd_oname) == NULL)
3109			name = pdp->pd_pname;
3110
3111		if (unref == 0) {
3112			if ((*nl)++ == 0)
3113				DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3114			DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags,
3115			    (pdp->pd_flags & PD_FLG_DUPLICAT), obj));
3116			continue;
3117		}
3118
3119		if (pdp->pd_flags & LA_SER_LIBPATH) {
3120			if (pdp->pd_flags & LA_SER_CONFIG) {
3121				if (pdp->pd_flags & PD_FLG_DUPLICAT)
3122					fmt = MSG_INTL(MSG_DUP_LDLIBPATHC);
3123				else
3124					fmt = MSG_INTL(MSG_USD_LDLIBPATHC);
3125			} else {
3126				if (pdp->pd_flags & PD_FLG_DUPLICAT)
3127					fmt = MSG_INTL(MSG_DUP_LDLIBPATH);
3128				else
3129					fmt = MSG_INTL(MSG_USD_LDLIBPATH);
3130			}
3131		} else if (pdp->pd_flags & LA_SER_RUNPATH) {
3132			fmt = MSG_INTL(MSG_USD_RUNPATH);
3133		} else
3134			continue;
3135
3136		if ((*nl)++ == 0)
3137			(void) printf(MSG_ORIG(MSG_STR_NL));
3138		(void) printf(fmt, name, obj);
3139	}
3140}
3141
3142/*
3143 * Generate diagnostics as to whether an object has been used.  A symbolic
3144 * reference that gets bound to an object marks it as used.  Dependencies that
3145 * are unused when RTLD_NOW is in effect should be removed from future builds
3146 * of an object.  Dependencies that are unused without RTLD_NOW in effect are
3147 * candidates for lazy-loading.
3148 *
3149 * Unreferenced objects identify objects that are defined as dependencies but
3150 * are unreferenced by the caller.  These unreferenced objects may however be
3151 * referenced by other objects within the process, and therefore don't qualify
3152 * as completely unused.  They are still an unnecessary overhead.
3153 *
3154 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail"
3155 * debugging.
3156 */
3157void
3158unused(Lm_list *lml)
3159{
3160	Rt_map		*lmp;
3161	int		nl = 0;
3162	Word		unref, unuse;
3163
3164	/*
3165	 * If we're not tracing unused references or dependencies, or debugging
3166	 * there's nothing to do.
3167	 */
3168	unref = lml->lm_flags & LML_FLG_TRC_UNREF;
3169	unuse = lml->lm_flags & LML_FLG_TRC_UNUSED;
3170
3171	if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0))
3172		return;
3173
3174	/*
3175	 * Detect unused global search paths.
3176	 */
3177	if (rpl_libdirs)
3178		is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name);
3179	if (prm_libdirs)
3180		is_path_used(lml, unref, &nl, prm_libdirs, config->c_name);
3181
3182	nl = 0;
3183	lmp = lml->lm_head;
3184	if (RLIST(lmp))
3185		is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
3186
3187	/*
3188	 * Traverse the link-maps looking for unreferenced or unused
3189	 * dependencies.  Ignore the first object on a link-map list, as this
3190	 * is always used.
3191	 */
3192	nl = 0;
3193	for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) {
3194		/*
3195		 * Determine if this object contains any runpaths that have
3196		 * not been used.
3197		 */
3198		if (RLIST(lmp))
3199			is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
3200
3201		/*
3202		 * If tracing unreferenced objects, or under debugging,
3203		 * determine whether any of this objects callers haven't
3204		 * referenced it.
3205		 */
3206		if (unref || DBG_ENABLED) {
3207			Bnd_desc	*bdp;
3208			Aliste		idx;
3209
3210			for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) {
3211				Rt_map	*clmp;
3212
3213				if (bdp->b_flags & BND_REFER)
3214					continue;
3215
3216				clmp = bdp->b_caller;
3217				if (FLAGS1(clmp) & FL1_RT_LDDSTUB)
3218					continue;
3219
3220				/* BEGIN CSTYLED */
3221				if (nl++ == 0) {
3222					if (unref)
3223					    (void) printf(MSG_ORIG(MSG_STR_NL));
3224					else
3225					    DBG_CALL(Dbg_util_nl(lml,
3226						DBG_NL_STD));
3227				}
3228
3229				if (unref)
3230				    (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT),
3231					NAME(lmp), NAME(clmp));
3232				else
3233				    DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp)));
3234				/* END CSTYLED */
3235			}
3236		}
3237
3238		/*
3239		 * If tracing unused objects simply display those objects that
3240		 * haven't been referenced by anyone.
3241		 */
3242		if (FLAGS1(lmp) & FL1_RT_USED)
3243			continue;
3244
3245		if (nl++ == 0) {
3246			if (unref || unuse)
3247				(void) printf(MSG_ORIG(MSG_STR_NL));
3248			else
3249				DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3250		}
3251		if (CYCGROUP(lmp)) {
3252			if (unref || unuse)
3253				(void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT),
3254				    NAME(lmp), CYCGROUP(lmp));
3255			else
3256				DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0,
3257				    CYCGROUP(lmp)));
3258		} else {
3259			if (unref || unuse)
3260				(void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT),
3261				    NAME(lmp));
3262			else
3263				DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0));
3264		}
3265	}
3266
3267	DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3268}
3269
3270/*
3271 * Generic cleanup routine called prior to returning control to the user.
3272 * Insures that any ld.so.1 specific file descriptors or temporary mapping are
3273 * released, and any locks dropped.
3274 */
3275void
3276leave(Lm_list *lml, int flags)
3277{
3278	Lm_list		*elml = lml;
3279	Rt_map		*clmp;
3280	Aliste		idx;
3281
3282	/*
3283	 * Alert the debuggers that the link-maps are consistent.  Note, in the
3284	 * case of tearing down a whole link-map list, lml will be null.  In
3285	 * this case use the main link-map list to test for a notification.
3286	 */
3287	if (elml == NULL)
3288		elml = &lml_main;
3289	if (elml->lm_flags & LML_FLG_DBNOTIF)
3290		rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT);
3291
3292	/*
3293	 * Alert any auditors that the link-maps are consistent.
3294	 */
3295	for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) {
3296		audit_activity(clmp, LA_ACT_CONSISTENT);
3297
3298		aplist_delete(elml->lm_actaudit, &idx);
3299	}
3300
3301	if (nu_fd != FD_UNAVAIL) {
3302		(void) close(nu_fd);
3303		nu_fd = FD_UNAVAIL;
3304	}
3305
3306	/*
3307	 * Reinitialize error message pointer, and any overflow indication.
3308	 */
3309	nextptr = errbuf;
3310	prevptr = NULL;
3311
3312	/*
3313	 * Defragment any freed memory.
3314	 */
3315	if (aplist_nitems(free_alp))
3316		defrag();
3317
3318	/*
3319	 * Don't drop our lock if we are running on our link-map list as
3320	 * there's little point in doing so since we are single-threaded.
3321	 *
3322	 * LML_FLG_HOLDLOCK is set for:
3323	 *  -	 The ld.so.1's link-map list.
3324	 *  -	 The auditor's link-map if the environment is pre-UPM.
3325	 */
3326	if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK))
3327		return;
3328
3329	if (rt_bind_clear(0) & THR_FLG_RTLD) {
3330		if (!thr_flg_nolock)
3331			(void) rt_mutex_unlock(&rtldlock);
3332		(void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags);
3333	}
3334}
3335
3336int
3337callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags)
3338{
3339	APlist		*calp, *dalp;
3340	Aliste		idx1, idx2;
3341	Grp_hdl		*ghp1, *ghp2;
3342
3343	/*
3344	 * An object can always find symbols within itself.
3345	 */
3346	if (clmp == dlmp)
3347		return (1);
3348
3349	/*
3350	 * The search for a singleton must look in every loaded object.
3351	 */
3352	if (slflags & LKUP_SINGLETON)
3353		return (1);
3354
3355	/*
3356	 * Don't allow an object to bind to an object that is being deleted
3357	 * unless the binder is also being deleted.
3358	 */
3359	if ((FLAGS(dlmp) & FLG_RT_DELETE) &&
3360	    ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
3361		return (0);
3362
3363	/*
3364	 * An object with world access can always bind to an object with global
3365	 * visibility.
3366	 */
3367	if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) &&
3368	    (MODE(dlmp) & RTLD_GLOBAL))
3369		return (1);
3370
3371	/*
3372	 * An object with local access can only bind to an object that is a
3373	 * member of the same group.
3374	 */
3375	if (((MODE(clmp) & RTLD_GROUP) == 0) ||
3376	    ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL))
3377		return (0);
3378
3379	/*
3380	 * Traverse the list of groups the caller is a part of.
3381	 */
3382	for (APLIST_TRAVERSE(calp, idx1, ghp1)) {
3383		/*
3384		 * If we're testing for the ability of two objects to bind to
3385		 * each other regardless of a specific group, ignore that group.
3386		 */
3387		if (ghp && (ghp1 == ghp))
3388			continue;
3389
3390		/*
3391		 * Traverse the list of groups the destination is a part of.
3392		 */
3393		for (APLIST_TRAVERSE(dalp, idx2, ghp2)) {
3394			Grp_desc	*gdp;
3395			Aliste		idx3;
3396
3397			if (ghp1 != ghp2)
3398				continue;
3399
3400			/*
3401			 * Make sure the relationship between the destination
3402			 * and the caller provide symbols for relocation.
3403			 * Parents are maintained as callers, but unless the
3404			 * destination object was opened with RTLD_PARENT, the
3405			 * parent doesn't provide symbols for the destination
3406			 * to relocate against.
3407			 */
3408			for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) {
3409				if (dlmp != gdp->gd_depend)
3410					continue;
3411
3412				if (gdp->gd_flags & GPD_RELOC)
3413					return (1);
3414			}
3415		}
3416	}
3417	return (0);
3418}
3419
3420/*
3421 * Initialize the environ symbol.  Traditionally this is carried out by the crt
3422 * code prior to jumping to main.  However, init sections get fired before this
3423 * variable is initialized, so ld.so.1 sets this directly from the AUX vector
3424 * information.  In addition, a process may have multiple link-maps (ld.so.1's
3425 * debugging and preloading objects), and link auditing, and each may need an
3426 * environ variable set.
3427 *
3428 * This routine is called after a relocation() pass, and thus provides for:
3429 *
3430 *  -	setting environ on the main link-map after the initial application and
3431 *	its dependencies have been established.  Typically environ lives in the
3432 *	application (provided by its crt), but in older applications it might
3433 *	be in libc.  Who knows what's expected of applications not built on
3434 *	Solaris.
3435 *
3436 *  -	after loading a new shared object.  We can add shared objects to various
3437 *	link-maps, and any link-map dependencies requiring getopt() require
3438 *	their own environ.  In addition, lazy loading might bring in the
3439 *	supplier of environ (libc used to be a lazy loading candidate) after
3440 *	the link-map has been established and other objects are present.
3441 *
3442 * This routine handles all these scenarios, without adding unnecessary overhead
3443 * to ld.so.1.
3444 */
3445void
3446set_environ(Lm_list *lml)
3447{
3448	Slookup		sl;
3449	Sresult		sr;
3450	uint_t		binfo;
3451
3452	/*
3453	 * Initialize the symbol lookup, and symbol result, data structures.
3454	 */
3455	SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head,
3456	    ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK);
3457	SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON));
3458
3459	if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) {
3460		Rt_map	*dlmp = sr.sr_dmap;
3461
3462		lml->lm_environ = (char ***)sr.sr_sym->st_value;
3463
3464		if (!(FLAGS(dlmp) & FLG_RT_FIXED))
3465			lml->lm_environ =
3466			    (char ***)((uintptr_t)lml->lm_environ +
3467			    (uintptr_t)ADDR(dlmp));
3468		*(lml->lm_environ) = (char **)environ;
3469		lml->lm_flags |= LML_FLG_ENVIRON;
3470	}
3471}
3472
3473/*
3474 * Determine whether we have a secure executable.  Uid and gid information
3475 * can be passed to us via the aux vector, however if these values are -1
3476 * then use the appropriate system call to obtain them.
3477 *
3478 *  -	If the user is the root they can do anything
3479 *
3480 *  -	If the real and effective uid's don't match, or the real and
3481 *	effective gid's don't match then this is determined to be a `secure'
3482 *	application.
3483 *
3484 * This function is called prior to any dependency processing (see _setup.c).
3485 * Any secure setting will remain in effect for the life of the process.
3486 */
3487void
3488security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags)
3489{
3490	if (auxflags != -1) {
3491		if ((auxflags & AF_SUN_SETUGID) != 0)
3492			rtld_flags |= RT_FL_SECURE;
3493		return;
3494	}
3495
3496	if (uid == (uid_t)-1)
3497		uid = getuid();
3498	if (uid) {
3499		if (euid == (uid_t)-1)
3500			euid = geteuid();
3501		if (uid != euid)
3502			rtld_flags |= RT_FL_SECURE;
3503		else {
3504			if (gid == (gid_t)-1)
3505				gid = getgid();
3506			if (egid == (gid_t)-1)
3507				egid = getegid();
3508			if (gid != egid)
3509				rtld_flags |= RT_FL_SECURE;
3510		}
3511	}
3512}
3513
3514/*
3515 * Determine whether ld.so.1 itself is owned by root and has its mode setuid.
3516 */
3517int
3518is_rtld_setuid()
3519{
3520	rtld_stat_t	status;
3521
3522	if ((rtld_flags2 & RT_FL2_SETUID) ||
3523	    ((rtld_stat(NAME(lml_rtld.lm_head), &status) == 0) &&
3524	    (status.st_uid == 0) && (status.st_mode & S_ISUID))) {
3525		rtld_flags2 |= RT_FL2_SETUID;
3526		return (1);
3527	}
3528	return (0);
3529}
3530
3531/*
3532 * Determine that systems platform name.  Normally, this name is provided from
3533 * the AT_SUN_PLATFORM aux vector from the kernel.  This routine provides a
3534 * fall back.
3535 */
3536void
3537platform_name(Syscapset *scapset)
3538{
3539	char	info[SYS_NMLN];
3540	size_t	size;
3541
3542	if ((scapset->sc_platsz = size =
3543	    sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1)
3544		return;
3545
3546	if ((scapset->sc_plat = malloc(size)) == NULL) {
3547		scapset->sc_platsz = (size_t)-1;
3548		return;
3549	}
3550	(void) strcpy(scapset->sc_plat, info);
3551}
3552
3553/*
3554 * Determine that systems machine name.  Normally, this name is provided from
3555 * the AT_SUN_MACHINE aux vector from the kernel.  This routine provides a
3556 * fall back.
3557 */
3558void
3559machine_name(Syscapset *scapset)
3560{
3561	char	info[SYS_NMLN];
3562	size_t	size;
3563
3564	if ((scapset->sc_machsz = size =
3565	    sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1)
3566		return;
3567
3568	if ((scapset->sc_mach = malloc(size)) == NULL) {
3569		scapset->sc_machsz = (size_t)-1;
3570		return;
3571	}
3572	(void) strcpy(scapset->sc_mach, info);
3573}
3574
3575/*
3576 * _REENTRANT code gets errno redefined to a function so provide for return
3577 * of the thread errno if applicable.  This has no meaning in ld.so.1 which
3578 * is basically singled threaded.  Provide the interface for our dependencies.
3579 */
3580#undef errno
3581int *
3582___errno()
3583{
3584	extern	int	errno;
3585
3586	return (&errno);
3587}
3588
3589/*
3590 * Determine whether a symbol name should be demangled.
3591 */
3592const char *
3593demangle(const char *name)
3594{
3595	if (rtld_flags & RT_FL_DEMANGLE)
3596		return (conv_demangle_name(name));
3597	else
3598		return (name);
3599}
3600
3601#ifndef _LP64
3602/*
3603 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64()
3604 * underneath while preserving the object size limits of a non-largefile
3605 * enabled 32-bit process. The purpose of this is to prevent large inode
3606 * values from causing stat() to fail.
3607 */
3608inline static int
3609rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf)
3610{
3611	extern int	errno;
3612
3613	/*
3614	 * Although we used a 64-bit capable stat(), the 32-bit rtld
3615	 * can only handle objects < 2GB in size. If this object is
3616	 * too big, turn the success into an overflow error.
3617	 */
3618	if ((lbuf->st_size & 0xffffffff80000000) != 0) {
3619		errno = EOVERFLOW;
3620		return (-1);
3621	}
3622
3623	/*
3624	 * Transfer the information needed by rtld into a rtld_stat_t
3625	 * structure that preserves the non-largile types for everything
3626	 * except inode.
3627	 */
3628	buf->st_dev = lbuf->st_dev;
3629	buf->st_ino = lbuf->st_ino;
3630	buf->st_mode = lbuf->st_mode;
3631	buf->st_uid = lbuf->st_uid;
3632	buf->st_size = (off_t)lbuf->st_size;
3633	buf->st_mtim = lbuf->st_mtim;
3634#ifdef sparc
3635	buf->st_blksize = lbuf->st_blksize;
3636#endif
3637
3638	return (r);
3639}
3640
3641int
3642rtld_stat(const char *restrict path, rtld_stat_t *restrict buf)
3643{
3644	struct stat64	lbuf;
3645	int		r;
3646
3647	r = stat64(path, &lbuf);
3648	if (r != -1)
3649		r = rtld_stat_process(r, &lbuf, buf);
3650	return (r);
3651}
3652
3653int
3654rtld_fstat(int fildes, rtld_stat_t *restrict buf)
3655{
3656	struct stat64	lbuf;
3657	int		r;
3658
3659	r = fstat64(fildes, &lbuf);
3660	if (r != -1)
3661		r = rtld_stat_process(r, &lbuf, buf);
3662	return (r);
3663}
3664#endif
3665