amd64_elf.c revision 1976:f0691a145b7e
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * amd64 machine dependent and ELF file class dependent functions.
30 * Contains routines for performing function binding and symbol relocations.
31 */
32#include	"_synonyms.h"
33
34#include	<stdio.h>
35#include	<sys/elf.h>
36#include	<sys/elf_amd64.h>
37#include	<sys/mman.h>
38#include	<dlfcn.h>
39#include	<synch.h>
40#include	<string.h>
41#include	<debug.h>
42#include	<reloc.h>
43#include	<conv.h>
44#include	"_rtld.h"
45#include	"_audit.h"
46#include	"_elf.h"
47#include	"msg.h"
48
49
50extern void	elf_rtbndr(Rt_map *, ulong_t, caddr_t);
51
52int
53elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr)
54{
55	/*
56	 * Check machine type and flags.
57	 */
58	if (ehdr->e_flags != 0) {
59		rej->rej_type = SGS_REJ_BADFLAG;
60		rej->rej_info = (uint_t)ehdr->e_flags;
61		return (0);
62	}
63	return (1);
64}
65
66void
67ldso_plt_init(Rt_map * lmp)
68{
69	/*
70	 * There is no need to analyze ld.so because we don't map in any of
71	 * its dependencies.  However we may map these dependencies in later
72	 * (as if ld.so had dlopened them), so initialize the plt and the
73	 * permission information.
74	 */
75	if (PLTGOT(lmp))
76		elf_plt_init((void *)(PLTGOT(lmp)), (caddr_t)lmp);
77}
78
79static const uchar_t dyn_plt_template[] = {
80/* 0x00 */  0x55,			/* pushq %rbp */
81/* 0x01 */  0x48, 0x89, 0xe5,		/* movq  %rsp, %rbp */
82/* 0x04 */  0x48, 0x83, 0xec, 0x10,	/* subq	 $0x10, %rsp */
83/* 0x08 */  0x4c, 0x8d, 0x1d, 0x00,	/* leaq  trace_fields(%rip), %r11 */
84		0x00, 0x00, 0x00,
85/* 0x0f */  0x4c, 0x89, 0x5d, 0xf8,	/* movq  %r11, -0x8(%rbp) */
86/* 0x13 */  0x49, 0xbb, 0x00, 0x00, 	/* movq  $elf_plt_trace, %r11 */
87		0x00, 0x00, 0x00,
88		0x00, 0x00, 0x00,
89/* 0x1d */  0x41, 0xff, 0xe3		/* jmp   *%r11 */
90/* 0x20 */
91};
92
93/*
94 * And the virutal outstanding relocations against the
95 * above block are:
96 *
97 *	reloc		offset	Addend	symbol
98 *	R_AMD64_PC32	0x0b	-4	trace_fields
99 *	R_AMD64_64	0x15	0	elf_plt_trace
100 */
101
102#define	TRCREL1OFF	0x0b
103#define	TRCREL2OFF	0x15
104
105int	dyn_plt_ent_size = sizeof (dyn_plt_template);
106
107/*
108 * the dynamic plt entry is:
109 *
110 *	pushq	%rbp
111 *	movq	%rsp, %rbp
112 *	subq	$0x10, %rsp
113 *	leaq	trace_fields(%rip), %r11
114 *	movq	%r11, -0x8(%rbp)
115 *	movq	$elf_plt_trace, %r11
116 *	jmp	*%r11
117 * dyn_data:
118 *	.align  8
119 *	uintptr_t	reflmp
120 *	uintptr_t	deflmp
121 *	uint_t		symndx
122 *	uint_t		sb_flags
123 *	Sym		symdef
124 */
125static caddr_t
126elf_plt_trace_write(ulong_t roffset, Rt_map *rlmp, Rt_map *dlmp, Sym *sym,
127    uint_t symndx, uint_t pltndx, caddr_t to, uint_t sb_flags, int *fail)
128{
129	extern int	elf_plt_trace();
130	ulong_t		got_entry;
131	uchar_t		*dyn_plt;
132	uintptr_t	*dyndata;
133
134
135	/*
136	 * We only need to add the glue code if there is an auditing
137	 * library that is interested in this binding.
138	 */
139	dyn_plt = (uchar_t *)((uintptr_t)AUDINFO(rlmp)->ai_dynplts +
140		(pltndx * dyn_plt_ent_size));
141
142	/*
143	 * Have we initialized this dynamic plt entry yet?  If we haven't do it
144	 * now.  Otherwise this function has been called before, but from a
145	 * different plt (ie. from another shared object).  In that case
146	 * we just set the plt to point to the new dyn_plt.
147	 */
148	if (*dyn_plt == 0) {
149		Sym *	symp;
150		Xword	symvalue;
151		Lm_list	*lml = LIST(rlmp);
152
153		(void) memcpy((void *)dyn_plt, dyn_plt_template,
154		    sizeof (dyn_plt_template));
155		dyndata = (uintptr_t *)((uintptr_t)dyn_plt +
156		    ROUND(sizeof (dyn_plt_template), M_WORD_ALIGN));
157
158		/*
159		 * relocate:
160		 *	leaq	trace_fields(%rip), %r11
161		 *	R_AMD64_PC32	0x0b	-4	trace_fields
162		 */
163		symvalue = (Xword)((uintptr_t)dyndata -
164		    (uintptr_t)(&dyn_plt[TRCREL1OFF]) - 4);
165		if (do_reloc(R_AMD64_PC32, &dyn_plt[TRCREL1OFF],
166		    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
167		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
168			*fail = 1;
169			return (0);
170		}
171
172		/*
173		 * relocating:
174		 *	movq	$elf_plt_trace, %r11
175		 *	R_AMD64_64	0x15	0	elf_plt_trace
176		 */
177		symvalue = (Xword)elf_plt_trace;
178		if (do_reloc(R_AMD64_64, &dyn_plt[TRCREL2OFF],
179		    &symvalue, MSG_ORIG(MSG_SYM_ELFPLTTRACE),
180		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
181			*fail = 1;
182			return (0);
183		}
184
185		*dyndata++ = (uintptr_t)rlmp;
186		*dyndata++ = (uintptr_t)dlmp;
187		*dyndata = (uintptr_t)(((uint64_t)sb_flags << 32) | symndx);
188		dyndata++;
189		symp = (Sym *)dyndata;
190		*symp = *sym;
191		symp->st_value = (Addr)to;
192	}
193
194	got_entry = (ulong_t)roffset;
195	*(ulong_t *)got_entry = (ulong_t)dyn_plt;
196	return ((caddr_t)dyn_plt);
197}
198
199
200/*
201 * Function binding routine - invoked on the first call to a function through
202 * the procedure linkage table;
203 * passes first through an assembly language interface.
204 *
205 * Takes the offset into the relocation table of the associated
206 * relocation entry and the address of the link map (rt_private_map struct)
207 * for the entry.
208 *
209 * Returns the address of the function referenced after re-writing the PLT
210 * entry to invoke the function directly.
211 *
212 * On error, causes process to terminate with a signal.
213 */
214ulong_t
215elf_bndr(Rt_map *lmp, ulong_t pltndx, caddr_t from)
216{
217	Rt_map		*nlmp, * llmp;
218	ulong_t		addr, reloff, symval, rsymndx;
219	char		*name;
220	Rela		*rptr;
221	Sym		*sym, *nsym;
222	uint_t		binfo, sb_flags = 0, dbg_class;
223	Slookup		sl;
224	int		entry, lmflags;
225	Lm_list		*lml;
226
227	/*
228	 * For compatibility with libthread (TI_VERSION 1) we track the entry
229	 * value.  A zero value indicates we have recursed into ld.so.1 to
230	 * further process a locking request.  Under this recursion we disable
231	 * tsort and cleanup activities.
232	 */
233	entry = enter();
234
235	lml = LIST(lmp);
236	if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) {
237		dbg_class = dbg_desc->d_class;
238		dbg_desc->d_class = 0;
239	}
240
241	/*
242	 * Perform some basic sanity checks.  If we didn't get a load map or
243	 * the relocation offset is invalid then its possible someone has walked
244	 * over the .got entries or jumped to plt0 out of the blue.
245	 */
246	if ((!lmp) && (pltndx <=
247	    (ulong_t)PLTRELSZ(lmp) / (ulong_t)RELENT(lmp))) {
248		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF),
249		    conv_reloc_amd64_type(R_AMD64_JUMP_SLOT, 0),
250		    EC_NATPTR(lmp), EC_XWORD(pltndx), EC_NATPTR(from));
251		rtldexit(lml, 1);
252	}
253	reloff = pltndx * (ulong_t)RELENT(lmp);
254
255	/*
256	 * Use relocation entry to get symbol table entry and symbol name.
257	 */
258	addr = (ulong_t)JMPREL(lmp);
259	rptr = (Rela *)(addr + reloff);
260	rsymndx = ELF_R_SYM(rptr->r_info);
261	sym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp)));
262	name = (char *)(STRTAB(lmp) + sym->st_name);
263
264	/*
265	 * Determine the last link-map of this list, this'll be the starting
266	 * point for any tsort() processing.
267	 */
268	llmp = lml->lm_tail;
269
270	/*
271	 * Find definition for symbol.
272	 */
273	sl.sl_name = name;
274	sl.sl_cmap = lmp;
275	sl.sl_imap = lml->lm_head;
276	sl.sl_hash = 0;
277	sl.sl_rsymndx = rsymndx;
278	sl.sl_flags = LKUP_DEFT;
279
280	if ((nsym = lookup_sym(&sl, &nlmp, &binfo)) == 0) {
281		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
282		    demangle(name));
283		rtldexit(lml, 1);
284	}
285
286	symval = nsym->st_value;
287	if (!(FLAGS(nlmp) & FLG_RT_FIXED) &&
288	    (nsym->st_shndx != SHN_ABS))
289		symval += ADDR(nlmp);
290	if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) {
291		/*
292		 * Record that this new link map is now bound to the caller.
293		 */
294		if (bind_one(lmp, nlmp, BND_REFER) == 0)
295			rtldexit(lml, 1);
296	}
297
298	if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_SYMBIND) {
299		uint_t	symndx = (((uintptr_t)nsym -
300			(uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
301		symval = audit_symbind(lmp, nlmp, nsym, symndx, symval,
302			&sb_flags);
303	}
304
305	if (!(rtld_flags & RT_FL_NOBIND)) {
306		addr = rptr->r_offset;
307		if (!(FLAGS(lmp) & FLG_RT_FIXED))
308			addr += ADDR(lmp);
309		if (((lml->lm_tflags | FLAGS1(lmp)) &
310		    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
311		    AUDINFO(lmp)->ai_dynplts) {
312			int	fail = 0;
313			uint_t	pltndx = reloff / sizeof (Rela);
314			uint_t	symndx = (((uintptr_t)nsym -
315						(uintptr_t)SYMTAB(nlmp)) /
316						SYMENT(nlmp));
317
318			symval = (ulong_t)elf_plt_trace_write(addr, lmp, nlmp,
319			    nsym, symndx, pltndx, (caddr_t)symval, sb_flags,
320			    &fail);
321			if (fail)
322				rtldexit(lml, 1);
323		} else {
324			/*
325			 * Write standard PLT entry to jump directly
326			 * to newly bound function.
327			 */
328			*(ulong_t *)addr = symval;
329		}
330	}
331
332	/*
333	 * Print binding information and rebuild PLT entry.
334	 */
335	DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)),
336	    (Xword)(reloff / sizeof (Rela)), PLT_T_FULL, nlmp,
337	    (Addr)symval, nsym->st_value, name, binfo));
338
339	/*
340	 * Complete any processing for newly loaded objects.  Note we don't
341	 * know exactly where any new objects are loaded (we know the object
342	 * that supplied the symbol, but others may have been loaded lazily as
343	 * we searched for the symbol), so sorting starts from the last
344	 * link-map know on entry to this routine.
345	 */
346	if (entry)
347		load_completion(llmp, lmp);
348
349	/*
350	 * Some operations like dldump() or dlopen()'ing a relocatable object
351	 * result in objects being loaded on rtld's link-map, make sure these
352	 * objects are initialized also.
353	 */
354	if ((lml->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init)
355		load_completion(nlmp, 0);
356
357	/*
358	 * If the object we've bound to is in the process of being initialized
359	 * by another thread, determine whether we should block.
360	 */
361	is_dep_ready(nlmp, lmp, DBG_WAIT_SYMBOL);
362
363	/*
364	 * Make sure the object to which we've bound has had it's .init fired.
365	 * Cleanup before return to user code.
366	 */
367	if (entry) {
368		is_dep_init(nlmp, lmp);
369		leave(lml);
370	}
371
372	if (lmflags & LML_FLG_RTLDLM)
373		dbg_desc->d_class = dbg_class;
374
375	return (symval);
376}
377
378
379/*
380 * When the relocation loop realizes that it's dealing with relative
381 * relocations in a shared object, it breaks into this tighter loop
382 * as an optimization.
383 */
384ulong_t
385elf_reloc_relative(ulong_t relbgn, ulong_t relend, ulong_t relsiz,
386    ulong_t basebgn, ulong_t etext, ulong_t emap)
387{
388	ulong_t roffset = ((Rela *)relbgn)->r_offset;
389	char rtype;
390
391	do {
392		roffset += basebgn;
393
394		/*
395		 * If this relocation is against an address not mapped in,
396		 * then break out of the relative relocation loop, falling
397		 * back on the main relocation loop.
398		 */
399		if (roffset < etext || roffset > emap)
400			break;
401
402		/*
403		 * Perform the actual relocation.
404		 */
405		*((ulong_t *)roffset) = basebgn +
406		    ((Rela *)relbgn)->r_addend;
407
408		relbgn += relsiz;
409
410		if (relbgn >= relend)
411			break;
412
413		rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info);
414		roffset = ((Rela *)relbgn)->r_offset;
415
416	} while (rtype == R_AMD64_RELATIVE);
417
418	return (relbgn);
419}
420
421/*
422 * This is the tightest loop for RELATIVE relocations for those
423 * objects built with the DT_RELACOUNT .dynamic entry.
424 */
425ulong_t
426elf_reloc_relacount(ulong_t relbgn, ulong_t relacount, ulong_t relsiz,
427    ulong_t basebgn)
428{
429	ulong_t roffset = ((Rela *) relbgn)->r_offset;
430
431	for (; relacount; relacount--) {
432		roffset += basebgn;
433
434		/*
435		 * Perform the actual relocation.
436		 */
437		*((ulong_t *)roffset) = basebgn +
438		    ((Rela *)relbgn)->r_addend;
439
440		relbgn += relsiz;
441
442		roffset = ((Rela *)relbgn)->r_offset;
443
444	}
445
446	return (relbgn);
447}
448
449/*
450 * Read and process the relocations for one link object, we assume all
451 * relocation sections for loadable segments are stored contiguously in
452 * the file.
453 */
454int
455elf_reloc(Rt_map *lmp, uint_t plt)
456{
457	ulong_t		relbgn, relend, relsiz, basebgn;
458	ulong_t		pltbgn, pltend, _pltbgn, _pltend;
459	ulong_t		roffset, rsymndx, psymndx = 0, etext = ETEXT(lmp);
460	ulong_t		emap, dsymndx;
461	uchar_t		rtype;
462	long		reladd, value, pvalue;
463	Sym		*symref, *psymref, *symdef, *psymdef;
464	char		*name, *pname;
465	Rt_map		*_lmp, *plmp;
466	int		textrel = 0, ret = 1, noplt = 0;
467	int		relacount = RELACOUNT(lmp), plthint = 0;
468	Rela		*rel;
469	uint_t		binfo, pbinfo;
470	Alist		*bound = 0;
471
472	/*
473	 * Although only necessary for lazy binding, initialize the first
474	 * global offset entry to go to elf_rtbndr().  dbx(1) seems
475	 * to find this useful.
476	 */
477	if ((plt == 0) && PLTGOT(lmp)) {
478		if ((ulong_t)PLTGOT(lmp) < etext) {
479			if (elf_set_prot(lmp, PROT_WRITE) == 0)
480				return (0);
481			textrel = 1;
482		}
483		elf_plt_init((void *)PLTGOT(lmp), (caddr_t)lmp);
484	}
485
486	/*
487	 * Initialize the plt start and end addresses.
488	 */
489	if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0)
490		pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp));
491
492
493	relsiz = (ulong_t)(RELENT(lmp));
494	basebgn = ADDR(lmp);
495	emap = ADDR(lmp) + MSIZE(lmp);
496
497	if (PLTRELSZ(lmp))
498		plthint = PLTRELSZ(lmp) / relsiz;
499
500	/*
501	 * If we've been called upon to promote an RTLD_LAZY object to an
502	 * RTLD_NOW then we're only interested in scaning the .plt table.
503	 * An uninitialized .plt is the case where the associated got entry
504	 * points back to the plt itself.  Determine the range of the real .plt
505	 * entries using the _PROCEDURE_LINKAGE_TABLE_ symbol.
506	 */
507	if (plt) {
508		Slookup	sl;
509
510		relbgn = pltbgn;
511		relend = pltend;
512		if (!relbgn || (relbgn == relend))
513			return (1);
514
515		sl.sl_name = MSG_ORIG(MSG_SYM_PLT);
516		sl.sl_cmap = lmp;
517		sl.sl_imap = lmp;
518		sl.sl_hash = elf_hash(MSG_ORIG(MSG_SYM_PLT));
519		sl.sl_rsymndx = 0;
520		sl.sl_flags = LKUP_DEFT;
521
522		if ((symdef = elf_find_sym(&sl, &_lmp, &binfo)) == 0)
523			return (1);
524
525		_pltbgn = symdef->st_value;
526		if (!(FLAGS(lmp) & FLG_RT_FIXED) &&
527		    (symdef->st_shndx != SHN_ABS))
528			_pltbgn += basebgn;
529		_pltend = _pltbgn + (((PLTRELSZ(lmp) / relsiz)) *
530			M_PLT_ENTSIZE) + M_PLT_RESERVSZ;
531
532	} else {
533		/*
534		 * The relocation sections appear to the run-time linker as a
535		 * single table.  Determine the address of the beginning and end
536		 * of this table.  There are two different interpretations of
537		 * the ABI at this point:
538		 *
539		 *   o	The REL table and its associated RELSZ indicate the
540		 *	concatenation of *all* relocation sections (this is the
541		 *	model our link-editor constructs).
542		 *
543		 *   o	The REL table and its associated RELSZ indicate the
544		 *	concatenation of all *but* the .plt relocations.  These
545		 *	relocations are specified individually by the JMPREL and
546		 *	PLTRELSZ entries.
547		 *
548		 * Determine from our knowledege of the relocation range and
549		 * .plt range, the range of the total relocation table.  Note
550		 * that one other ABI assumption seems to be that the .plt
551		 * relocations always follow any other relocations, the
552		 * following range checking drops that assumption.
553		 */
554		relbgn = (ulong_t)(REL(lmp));
555		relend = relbgn + (ulong_t)(RELSZ(lmp));
556		if (pltbgn) {
557			if (!relbgn || (relbgn > pltbgn))
558				relbgn = pltbgn;
559			if (!relbgn || (relend < pltend))
560				relend = pltend;
561		}
562	}
563	if (!relbgn || (relbgn == relend)) {
564		DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE));
565		return (1);
566	}
567	DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START));
568
569	/*
570	 * If we're processing a dynamic executable in lazy mode there is no
571	 * need to scan the .rel.plt table, however if we're processing a shared
572	 * object in lazy mode the .got addresses associated to each .plt must
573	 * be relocated to reflect the location of the shared object.
574	 */
575	if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0) &&
576	    (FLAGS(lmp) & FLG_RT_FIXED))
577		noplt = 1;
578
579	/*
580	 * Loop through relocations.
581	 */
582	while (relbgn < relend) {
583		uint_t	sb_flags = 0;
584
585		rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info);
586
587		/*
588		 * If this is a RELATIVE relocation in a shared object (the
589		 * common case), and if we are not debugging, then jump into a
590		 * tighter relocation loop (elf_reloc_relative).  Only make the
591		 * jump if we've been given a hint on the number of relocations.
592		 */
593		if ((rtype == R_AMD64_RELATIVE) &&
594		    ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) {
595			/*
596			 * It's possible that the relative relocation block
597			 * has relocations against the text segment as well
598			 * as the data segment.  Since our optimized relocation
599			 * engine does not check which segment the relocation
600			 * is against - just mprotect it now if it's been
601			 * marked as containing TEXTREL's.
602			 */
603			if ((textrel == 0) && (FLAGS1(lmp) & FL1_RT_TEXTREL)) {
604				if (elf_set_prot(lmp, PROT_WRITE) == 0) {
605					ret = 0;
606					break;
607				}
608				textrel = 1;
609			}
610			if (relacount) {
611				relbgn = elf_reloc_relacount(relbgn, relacount,
612				    relsiz, basebgn);
613				relacount = 0;
614			} else {
615				relbgn = elf_reloc_relative(relbgn, relend,
616				    relsiz, basebgn, etext, emap);
617			}
618			if (relbgn >= relend)
619				break;
620			rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info);
621		}
622
623		roffset = ((Rela *)relbgn)->r_offset;
624
625		/*
626		 * If this is a shared object, add the base address to offset.
627		 */
628		if (!(FLAGS(lmp) & FLG_RT_FIXED)) {
629
630
631			/*
632			 * If we're processing lazy bindings, we have to step
633			 * through the plt entries and add the base address
634			 * to the corresponding got entry.
635			 */
636			if (plthint && (plt == 0) &&
637			    (rtype == R_AMD64_JUMP_SLOT) &&
638			    ((MODE(lmp) & RTLD_NOW) == 0)) {
639				/*
640				 * The PLT relocations (for lazy bindings)
641				 * are additive to what's already in the GOT.
642				 * This differs to what happens in
643				 * elf_reloc_relacount() and that's why we
644				 * just do it inline here.
645				 */
646				for (roffset = ((Rela *)relbgn)->r_offset;
647				    plthint; plthint--) {
648					roffset += basebgn;
649
650					/*
651					 * Perform the actual relocation.
652					 */
653					*((ulong_t *)roffset) += basebgn;
654
655					relbgn += relsiz;
656					roffset = ((Rela *)relbgn)->r_offset;
657
658				}
659				continue;
660			}
661			roffset += basebgn;
662		}
663
664		reladd = (long)(((Rela *)relbgn)->r_addend);
665		rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info);
666		rel = (Rela *)relbgn;
667		relbgn += relsiz;
668
669		/*
670		 * Optimizations.
671		 */
672		if (rtype == R_AMD64_NONE)
673			continue;
674		if (noplt && ((ulong_t)rel >= pltbgn) &&
675		    ((ulong_t)rel < pltend)) {
676			relbgn = pltend;
677			continue;
678		}
679
680		/*
681		 * If this relocation is not against part of the image
682		 * mapped into memory we skip it.
683		 */
684		if ((roffset < ADDR(lmp)) || (roffset > (ADDR(lmp) +
685		    MSIZE(lmp)))) {
686			elf_reloc_bad(lmp, (void *)rel, rtype, roffset,
687			    rsymndx);
688			continue;
689		}
690
691		/*
692		 * If we're promoting plts determine if this one has already
693		 * been written.
694		 */
695		if (plt) {
696			if ((*(ulong_t *)roffset < _pltbgn) ||
697			    (*(ulong_t *)roffset > _pltend))
698				continue;
699		}
700
701		binfo = 0;
702		/*
703		 * If a symbol index is specified then get the symbol table
704		 * entry, locate the symbol definition, and determine its
705		 * address.
706		 */
707		if (rsymndx) {
708			/*
709			 * Get the local symbol table entry.
710			 */
711			symref = (Sym *)((ulong_t)SYMTAB(lmp) +
712				(rsymndx * SYMENT(lmp)));
713
714			/*
715			 * If this is a local symbol, just use the base address.
716			 * (we should have no local relocations in the
717			 * executable).
718			 */
719			if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) {
720				value = basebgn;
721				name = (char *)0;
722
723				/*
724				 * TLS relocation - value for DTPMOD64
725				 * relocation is the TLS modid.
726				 */
727				if (rtype == R_AMD64_DTPMOD64)
728					value = TLSMODID(lmp);
729			} else {
730				/*
731				 * If the symbol index is equal to the previous
732				 * symbol index relocation we processed then
733				 * reuse the previous values. (Note that there
734				 * have been cases where a relocation exists
735				 * against a copy relocation symbol, our ld(1)
736				 * should optimize this away, but make sure we
737				 * don't use the same symbol information should
738				 * this case exist).
739				 */
740				if ((rsymndx == psymndx) &&
741				    (rtype != R_AMD64_COPY)) {
742					/* LINTED */
743					if (psymdef == 0) {
744						DBG_CALL(Dbg_bind_weak(lmp,
745						    (Addr)roffset, (Addr)
746						    (roffset - basebgn), name));
747						continue;
748					}
749					/* LINTED */
750					value = pvalue;
751					/* LINTED */
752					name = pname;
753					/* LINTED */
754					symdef = psymdef;
755					/* LINTED */
756					symref = psymref;
757					/* LINTED */
758					_lmp = plmp;
759					/* LINTED */
760					binfo = pbinfo;
761
762					if ((LIST(_lmp)->lm_tflags |
763					    FLAGS1(_lmp)) &
764					    LML_TFLG_AUD_SYMBIND) {
765						value = audit_symbind(lmp, _lmp,
766						    /* LINTED */
767						    symdef, dsymndx, value,
768						    &sb_flags);
769					}
770				} else {
771					Slookup		sl;
772					uchar_t		bind;
773
774					/*
775					 * Lookup the symbol definition.
776					 */
777					name = (char *)(STRTAB(lmp) +
778					    symref->st_name);
779
780					sl.sl_name = name;
781					sl.sl_cmap = lmp;
782					sl.sl_imap = 0;
783					sl.sl_hash = 0;
784					sl.sl_rsymndx = rsymndx;
785
786					if (rtype == R_AMD64_COPY)
787						sl.sl_flags = LKUP_COPY;
788					else
789						sl.sl_flags = LKUP_DEFT;
790
791					sl.sl_flags |= LKUP_ALLCNTLIST;
792
793					if (rtype != R_AMD64_JUMP_SLOT)
794						sl.sl_flags |= LKUP_SPEC;
795
796					bind = ELF_ST_BIND(symref->st_info);
797					if (bind == STB_WEAK)
798						sl.sl_flags |= LKUP_WEAK;
799
800					symdef = lookup_sym(&sl, &_lmp, &binfo);
801
802					/*
803					 * If the symbol is not found and the
804					 * reference was not to a weak symbol,
805					 * report an error.  Weak references
806					 * may be unresolved.
807					 * chkmsg: MSG_INTL(MSG_LDD_SYM_NFOUND)
808					 */
809					if (symdef == 0) {
810					    Lm_list	*lml = LIST(lmp);
811
812					    if (bind != STB_WEAK) {
813						if (lml->lm_flags &
814						    LML_FLG_IGNRELERR) {
815						    continue;
816						} else if (lml->lm_flags &
817						    LML_FLG_TRC_WARN) {
818						    (void) printf(MSG_INTL(
819							MSG_LDD_SYM_NFOUND),
820							demangle(name),
821							NAME(lmp));
822						    continue;
823						} else {
824						    eprintf(lml, ERR_FATAL,
825							MSG_INTL(MSG_REL_NOSYM),
826							NAME(lmp),
827							demangle(name));
828						    ret = 0;
829						    break;
830						}
831					    } else {
832						psymndx = rsymndx;
833						psymdef = 0;
834
835						DBG_CALL(Dbg_bind_weak(lmp,
836						    (Addr)roffset, (Addr)
837						    (roffset - basebgn), name));
838						continue;
839					    }
840					}
841
842					/*
843					 * If symbol was found in an object
844					 * other than the referencing object
845					 * then record the binding.
846					 */
847					if ((lmp != _lmp) && ((FLAGS1(_lmp) &
848					    FL1_RT_NOINIFIN) == 0)) {
849						if (alist_test(&bound, _lmp,
850						    sizeof (Rt_map *),
851						    AL_CNT_RELBIND) == 0) {
852							ret = 0;
853							break;
854						}
855					}
856
857					/*
858					 * Calculate the location of definition;
859					 * symbol value plus base address of
860					 * containing shared object.
861					 */
862					value = symdef->st_value;
863					if (!(FLAGS(_lmp) & FLG_RT_FIXED) &&
864					    (symdef->st_shndx != SHN_ABS) &&
865					    (ELF_ST_TYPE(symdef->st_info) !=
866					    STT_TLS))
867						value += ADDR(_lmp);
868
869					/*
870					 * Retain this symbol index and the
871					 * value in case it can be used for the
872					 * subsequent relocations.
873					 */
874					if (rtype != R_AMD64_COPY) {
875						psymndx = rsymndx;
876						pvalue = value;
877						pname = name;
878						psymdef = symdef;
879						psymref = symref;
880						plmp = _lmp;
881						pbinfo = binfo;
882					}
883					if ((LIST(_lmp)->lm_tflags |
884					    FLAGS1(_lmp)) &
885					    LML_TFLG_AUD_SYMBIND) {
886						dsymndx = (((uintptr_t)symdef -
887						    (uintptr_t)SYMTAB(_lmp)) /
888						    SYMENT(_lmp));
889						value = audit_symbind(lmp, _lmp,
890						    symdef, dsymndx, value,
891						    &sb_flags);
892					}
893				}
894
895				/*
896				 * If relocation is PC-relative, subtract
897				 * offset address.
898				 */
899				if (IS_PC_RELATIVE(rtype))
900					value -= roffset;
901
902				/*
903				 * TLS relocation - value for DTPMOD64
904				 * relocation is the TLS modid.
905				 */
906				if (rtype == R_AMD64_DTPMOD64)
907					value = TLSMODID(_lmp);
908				else if ((rtype == R_AMD64_TPOFF64) ||
909				    (rtype == R_AMD64_TPOFF32))
910					value = -(TLSSTATOFF(_lmp) - value);
911			}
912		} else {
913			/*
914			 * Special case:
915			 *
916			 * A DTPMOD32 relocation is a local binding to a TLS
917			 * symbol.  Fill in the TLSMODID for the current object.
918			 */
919			if (rtype == R_AMD64_DTPMOD64)
920				value = TLSMODID(lmp);
921			else
922				value = basebgn;
923			name = (char *)0;
924		}
925
926		/*
927		 * If this object has relocations in the text segment, turn
928		 * off the write protect.
929		 */
930		if ((roffset < etext) && (textrel == 0)) {
931			if (elf_set_prot(lmp, PROT_WRITE) == 0) {
932				ret = 0;
933				break;
934			}
935			textrel = 1;
936		}
937
938		/*
939		 * Call relocation routine to perform required relocation.
940		 */
941		DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH,
942		    M_REL_SHT_TYPE, rel, NULL, name));
943
944		switch (rtype) {
945		case R_AMD64_COPY:
946			if (elf_copy_reloc(name, symref, lmp, (void *)roffset,
947			    symdef, _lmp, (const void *)value) == 0)
948				ret = 0;
949			break;
950		case R_AMD64_JUMP_SLOT:
951			if (((LIST(lmp)->lm_tflags | FLAGS1(lmp)) &
952			    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
953			    AUDINFO(lmp)->ai_dynplts) {
954				int	fail = 0;
955				int	pltndx = (((ulong_t)rel -
956					(uintptr_t)JMPREL(lmp)) / relsiz);
957				int	symndx = (((uintptr_t)symdef -
958					    (uintptr_t)SYMTAB(_lmp)) /
959					    SYMENT(_lmp));
960
961				(void) elf_plt_trace_write(roffset, lmp, _lmp,
962				    symdef, symndx, pltndx, (caddr_t)value,
963				    sb_flags, &fail);
964				if (fail)
965					ret = 0;
966			} else {
967				/*
968				 * Write standard PLT entry to jump directly
969				 * to newly bound function.
970				 */
971				DBG_CALL(Dbg_reloc_apply_val(LIST(lmp),
972				    ELF_DBG_RTLD, (Xword)roffset,
973				    (Xword)value));
974				*(ulong_t *)roffset = value;
975			}
976			break;
977		default:
978			value += reladd;
979			/*
980			 * Write the relocation out.
981			 */
982			if (do_reloc(rtype, (uchar_t *)roffset,
983			    (Xword *)&value, name, NAME(lmp), LIST(lmp)) == 0)
984				ret = 0;
985
986			DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD,
987			    (Xword)roffset, (Xword)value));
988		}
989
990		if ((ret == 0) &&
991		    ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0))
992			break;
993
994		if (binfo) {
995			DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset,
996			    (Off)(roffset - basebgn), (Xword)(-1), PLT_T_FULL,
997			    _lmp, (Addr)value, symdef->st_value, name, binfo));
998		}
999	}
1000
1001	return (relocate_finish(lmp, bound, textrel, ret));
1002}
1003
1004/*
1005 * Initialize the first few got entries so that function calls go to
1006 * elf_rtbndr:
1007 *
1008 *	GOT[GOT_XLINKMAP] =	the address of the link map
1009 *	GOT[GOT_XRTLD] =	the address of rtbinder
1010 */
1011void
1012elf_plt_init(void *got, caddr_t l)
1013{
1014	uint64_t	*_got;
1015	/* LINTED */
1016	Rt_map		*lmp = (Rt_map *)l;
1017
1018	_got = (uint64_t *)got + M_GOT_XLINKMAP;
1019	*_got = (uint64_t)lmp;
1020	_got = (uint64_t *)got + M_GOT_XRTLD;
1021	*_got = (uint64_t)elf_rtbndr;
1022}
1023
1024/*
1025 * Plt writing interface to allow debugging initialization to be generic.
1026 */
1027Pltbindtype
1028/* ARGSUSED1 */
1029elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval,
1030	Xword pltndx)
1031{
1032	Rela		*rel = (Rela*)rptr;
1033	uintptr_t	pltaddr;
1034
1035	pltaddr = addr + rel->r_offset;
1036	*(ulong_t *)pltaddr = (ulong_t)symval + rel->r_addend;
1037	DBG_CALL(pltcntfull++);
1038	return (PLT_T_FULL);
1039}
1040
1041/*
1042 * Provide a machine specific interface to the conversion routine.  By calling
1043 * the machine specific version, rather than the generic version, we insure that
1044 * the data tables/strings for all known machine versions aren't dragged into
1045 * ld.so.1.
1046 */
1047const char *
1048_conv_reloc_type(uint_t rel)
1049{
1050	return (conv_reloc_amd64_type(rel, 0));
1051}
1052