elfdump.c revision 5088:26c540f30cd3
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * Dump an elf file.
30 */
31#include	<machdep.h>
32#include	<sys/elf_386.h>
33#include	<sys/elf_amd64.h>
34#include	<sys/elf_SPARC.h>
35#include	<dwarf.h>
36#include	<unistd.h>
37#include	<errno.h>
38#include	<strings.h>
39#include	<debug.h>
40#include	<conv.h>
41#include	<msg.h>
42#include	<_elfdump.h>
43
44
45
46/*
47 * VERSYM_STATE is used to maintain information about the VERSYM section
48 * in the object being analyzed. It is filled in by versions(), and used
49 * by init_symtbl_state() when displaying symbol information.
50 *
51 * max_verndx contains the largest version index that can appear
52 * in a Versym entry. This can never be less than 1: In the case where
53 * there is no verdef/verneed sections, the [0] index is reserved
54 * for local symbols, and the [1] index for globals. If Solaris versioning
55 * rules are in effect and there is a verdef section, then the number
56 * of defined versions provides this number. If GNU versioning is in effect,
57 * then:
58 *	- If there is no verneed section, it is the same as for
59 *		Solaris versioning.
60 *	- If there is a verneed section, the vna_other field of the
61 *		Vernaux structs contain versions, and max_verndx is the
62 *		largest such index.
63 *
64 * The value of the gnu field is based on the presence of
65 * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
66 * Solaris ld does not.
67 */
68typedef struct {
69	Cache	*cache;		/* Pointer to cache entry for VERSYM */
70	Versym	*data;		/* Pointer to versym array */
71	int	gnu;		/* True if object uses GNU versioning rules */
72	int	max_verndx;	/* largest versym index value */
73} VERSYM_STATE;
74
75/*
76 * SYMTBL_STATE is used to maintain information about a single symbol
77 * table section, for use by the routines that display symbol information.
78 */
79typedef struct {
80	const char	*file;		/* Name of file */
81	Ehdr		*ehdr;		/* ELF header for file */
82	Cache		*cache;		/* Cache of all section headers */
83	Word		shnum;		/* # of sections in cache */
84	Cache		*seccache;	/* Cache of symbol table section hdr */
85	Word		secndx;		/* Index of symbol table section hdr */
86	const char	*secname;	/* Name of section */
87	uint_t		flags;		/* Command line option flags */
88	struct {			/* Extended section index data */
89		int	checked;	/* TRUE if already checked for shxndx */
90		Word	*data;		/* NULL, or extended section index */
91					/*	used for symbol table entries */
92		uint_t	n;		/* # items in shxndx.data */
93	} shxndx;
94	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
95	Sym 		*sym;		/* Array of symbols */
96	Word		symn;		/* # of symbols */
97} SYMTBL_STATE;
98
99
100
101/*
102 * Focal point for verifying symbol names.
103 */
104static const char *
105string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
106{
107	/*
108	 * If an error in this routine is due to a property of the string
109	 * section, as opposed to a bad offset into the section (a property of
110	 * the referencing section), then we will detect the same error on
111	 * every call involving those sections. We use these static variables
112	 * to retain the information needed to only issue each such error once.
113	 */
114	static Cache	*last_refsec;	/* Last referencing section seen */
115	static int	strsec_err;	/* True if error issued */
116
117	const char	*strs;
118	Word		strn;
119
120	if (strsec->c_data == NULL)
121		return (NULL);
122
123	strs = (char *)strsec->c_data->d_buf;
124	strn = strsec->c_data->d_size;
125
126	/*
127	 * We only print a diagnostic regarding a bad string table once per
128	 * input section being processed. If the refsec has changed, reset
129	 * our retained error state.
130	 */
131	if (last_refsec != refsec) {
132		last_refsec = refsec;
133		strsec_err = 0;
134	}
135
136	/* Verify that strsec really is a string table */
137	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
138		if (!strsec_err) {
139			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
140			    file, strsec->c_ndx, refsec->c_ndx);
141			strsec_err = 1;
142		}
143		return (MSG_INTL(MSG_STR_UNKNOWN));
144	}
145
146	/*
147	 * Is the string table offset within range of the available strings?
148	 */
149	if (name >= strn) {
150		/*
151		 * Do we have a empty string table?
152		 */
153		if (strs == 0) {
154			if (!strsec_err) {
155				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
156				    file, strsec->c_name);
157				strsec_err = 1;
158			}
159		} else {
160			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
161			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
162			    EC_WORD(name), EC_WORD(strn - 1));
163		}
164
165		/*
166		 * Return the empty string so that the calling function can
167		 * continue it's output diagnostics.
168		 */
169		return (MSG_INTL(MSG_STR_UNKNOWN));
170	}
171	return (strs + name);
172}
173
174/*
175 * Relocations can reference section symbols and standard symbols.  If the
176 * former, establish the section name.
177 */
178static const char *
179relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
180    Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file,
181    uint_t flags)
182{
183	Sym	*sym;
184
185	if (symndx >= symnum) {
186		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
187		    file, EC_WORD(symndx), EC_WORD(relndx));
188		return (MSG_INTL(MSG_STR_UNKNOWN));
189	}
190
191	sym = (Sym *)(syms + symndx);
192
193	/*
194	 * If the symbol represents a section offset construct an appropriate
195	 * string.
196	 */
197	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) && (sym->st_name == 0)) {
198		if (flags & FLG_LONGNAME)
199			(void) snprintf(secstr, secsz,
200			    MSG_INTL(MSG_STR_L_SECTION),
201			    cache[sym->st_shndx].c_name);
202		else
203			(void) snprintf(secstr, secsz,
204			    MSG_INTL(MSG_STR_SECTION),
205			    cache[sym->st_shndx].c_name);
206		return ((const char *)secstr);
207	}
208
209	return (string(csec, symndx, strsec, file, sym->st_name));
210}
211
212/*
213 * Focal point for establishing a string table section.  Data such as the
214 * dynamic information simply points to a string table.  Data such as
215 * relocations, reference a symbol table, which in turn is associated with a
216 * string table.
217 */
218static int
219stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
220    Word *symnum, Cache **symsec, Cache **strsec)
221{
222	Shdr	*shdr = cache[ndx].c_shdr;
223
224	if (symtab) {
225		/*
226		 * Validate the symbol table section.
227		 */
228		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
229			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
230			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
231			return (0);
232		}
233		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
234			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
235			    file, cache[ndx].c_name);
236			return (0);
237		}
238
239		/*
240		 * Obtain, and verify the symbol table data.
241		 */
242		if ((cache[ndx].c_data == NULL) ||
243		    (cache[ndx].c_data->d_buf == NULL)) {
244			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
245			    file, cache[ndx].c_name);
246			return (0);
247		}
248
249		/*
250		 * Establish the string table index.
251		 */
252		ndx = shdr->sh_link;
253		shdr = cache[ndx].c_shdr;
254
255		/*
256		 * Return symbol table information.
257		 */
258		if (symnum)
259			*symnum = (shdr->sh_size / shdr->sh_entsize);
260		if (symsec)
261			*symsec = &cache[ndx];
262	}
263
264	/*
265	 * Validate the associated string table section.
266	 */
267	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
268		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
269		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
270		return (0);
271	}
272
273	if (strsec)
274		*strsec = &cache[shdr->sh_link];
275
276	return (1);
277}
278
279/*
280 * Lookup a symbol and set Sym accordingly.
281 */
282static int
283symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
284    Cache *symtab, const char *file)
285{
286	Shdr	*shdr;
287	Word	symn, cnt;
288	Sym	*syms;
289
290	if (symtab == 0)
291		return (0);
292
293	shdr = symtab->c_shdr;
294
295	/*
296	 * Determine the symbol data and number.
297	 */
298	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
299		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
300		    file, symtab->c_name);
301		return (0);
302	}
303	if (symtab->c_data == NULL)
304		return (0);
305
306	/* LINTED */
307	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
308	syms = (Sym *)symtab->c_data->d_buf;
309
310	/*
311	 * Get the associated string table section.
312	 */
313	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
314		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
315		    file, symtab->c_name, EC_WORD(shdr->sh_link));
316		return (0);
317	}
318
319	/*
320	 * Loop through the symbol table to find a match.
321	 */
322	for (cnt = 0; cnt < symn; syms++, cnt++) {
323		const char	*symname;
324
325		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
326		    syms->st_name);
327
328		if (symname && (strcmp(name, symname) == 0)) {
329			*sym = syms;
330			return (1);
331		}
332	}
333	return (0);
334}
335
336/*
337 * Print section headers.
338 */
339static void
340sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr)
341{
342	size_t	seccnt;
343
344	for (seccnt = 1; seccnt < shnum; seccnt++) {
345		Cache		*_cache = &cache[seccnt];
346		Shdr		*shdr = _cache->c_shdr;
347		const char	*secname = _cache->c_name;
348
349		/*
350		 * Although numerous section header entries can be zero, it's
351		 * usually a sign of trouble if the type is zero.
352		 */
353		if (shdr->sh_type == 0) {
354			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
355			    file, secname, EC_WORD(shdr->sh_type));
356		}
357
358		if (!match(0, secname, seccnt))
359			continue;
360
361		/*
362		 * Identify any sections that are suspicious.  A .got section
363		 * shouldn't exist in a relocatable object.
364		 */
365		if (ehdr->e_type == ET_REL) {
366			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
367			    MSG_ELF_GOT_SIZE) == 0) {
368				(void) fprintf(stderr,
369				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
370				    secname);
371			}
372		}
373
374		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
375		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
376		Elf_shdr(0, ehdr->e_machine, shdr);
377	}
378}
379
380/*
381 * A couple of instances of unwind data are printed as tables of 8 data items
382 * expressed as 0x?? integers.
383 */
384#define	UNWINDTBLSZ	10 + (8 * 5) + 1
385
386static void
387unwindtbl(uint64_t *ndx, uint_t len, uchar_t *data, uint64_t doff,
388    const char *msg, const char *pre, size_t plen)
389{
390	char	buffer[UNWINDTBLSZ];
391	uint_t	boff = plen, cnt = 0;
392
393	dbg_print(0, msg);
394	(void) strncpy(buffer, pre, UNWINDTBLSZ);
395
396	while (*ndx < (len + 4)) {
397		if (cnt == 8) {
398			dbg_print(0, buffer);
399			boff = plen;
400			cnt = 0;
401		}
402		(void) snprintf(&buffer[boff], UNWINDTBLSZ - boff,
403		    MSG_ORIG(MSG_UNW_TBLENTRY), data[doff + (*ndx)++]);
404		boff += 5;
405		cnt++;
406	}
407	if (cnt)
408		dbg_print(0, buffer);
409}
410
411/*
412 * Obtain a specified Phdr entry.
413 */
414static Phdr *
415getphdr(Word phnum, Word type, const char *file, Elf *elf)
416{
417	Word	cnt;
418	Phdr	*phdr;
419
420	if ((phdr = elf_getphdr(elf)) == NULL) {
421		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
422		return (0);
423	}
424
425	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
426		if (phdr->p_type == type)
427			return (phdr);
428	}
429	return (0);
430}
431
432static void
433unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, const char *file,
434    Elf *elf)
435{
436	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
437	Word	cnt;
438	Phdr	*uphdr = 0;
439
440	/*
441	 * For the moment - UNWIND is only relevant for a AMD64 object.
442	 */
443	if (ehdr->e_machine != EM_AMD64)
444		return;
445
446	if (phnum)
447		uphdr = getphdr(phnum, PT_SUNW_UNWIND, file, elf);
448
449	for (cnt = 1; cnt < shnum; cnt++) {
450		Cache		*_cache = &cache[cnt];
451		Shdr		*shdr = _cache->c_shdr;
452		uchar_t		*data;
453		size_t		datasize;
454		uint64_t	off, ndx, frame_ptr, fde_cnt, tabndx;
455		uint_t		vers, frame_ptr_enc, fde_cnt_enc, table_enc;
456
457		/*
458		 * AMD64 - this is a strmcp() just to find the gcc produced
459		 * sections.  Soon gcc should be setting the section type - and
460		 * we'll not need this strcmp().
461		 */
462		if ((shdr->sh_type != SHT_AMD64_UNWIND) &&
463		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
464		    MSG_SCN_FRM_SIZE) != 0) &&
465		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
466		    MSG_SCN_FRMHDR_SIZE) != 0))
467			continue;
468
469		if (!match(0, _cache->c_name, cnt))
470			continue;
471
472		if (_cache->c_data == NULL)
473			continue;
474
475		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
476		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
477
478		data = (uchar_t *)(_cache->c_data->d_buf);
479		datasize = _cache->c_data->d_size;
480		off = 0;
481
482		/*
483		 * Is this a .eh_frame_hdr
484		 */
485		if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
486		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
487		    MSG_SCN_FRMHDR_SIZE) == 0)) {
488			dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
489			ndx = 0;
490
491			vers = data[ndx++];
492			frame_ptr_enc = data[ndx++];
493			fde_cnt_enc = data[ndx++];
494			table_enc = data[ndx++];
495
496			dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
497
498			frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
499			    ehdr->e_ident, shdr->sh_addr + ndx);
500
501			dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
502			    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
503			    EC_XWORD(frame_ptr));
504
505			fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
506			    ehdr->e_ident, shdr->sh_addr + ndx);
507
508			dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
509			    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
510			    EC_XWORD(fde_cnt));
511			dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
512			    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
513			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
514			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
515
516			for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
517				dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
518				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
519				    table_enc, ehdr->e_ident, shdr->sh_addr)),
520				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
521				    table_enc, ehdr->e_ident, shdr->sh_addr)));
522			}
523			continue;
524		}
525
526		/*
527		 * Walk the Eh_frame's
528		 */
529		while (off < datasize) {
530			uint_t		cieid, cielength, cieversion;
531			uint_t		cieretaddr;
532			int		cieRflag, cieLflag, ciePflag, cieZflag;
533			uint_t		cieaugndx, length, id;
534			uint64_t	ciecalign, ciedalign;
535			char		*cieaugstr;
536
537			ndx = 0;
538			/*
539			 * extract length in lsb format
540			 */
541			length = LSB32EXTRACT(data + off + ndx);
542			ndx += 4;
543
544			/*
545			 * extract CIE id in lsb format
546			 */
547			id = LSB32EXTRACT(data + off + ndx);
548			ndx += 4;
549
550			/*
551			 * A CIE record has a id of '0', otherwise this is a
552			 * FDE entry and the 'id' is the CIE pointer.
553			 */
554			if (id == 0) {
555				uint64_t    persVal;
556
557				cielength = length;
558				cieid = id;
559				cieLflag = ciePflag = cieRflag = cieZflag = 0;
560
561				dbg_print(0, MSG_ORIG(MSG_UNW_CIE),
562				    EC_XWORD(shdr->sh_addr + off));
563				dbg_print(0, MSG_ORIG(MSG_UNW_CIELNGTH),
564				    cielength, cieid);
565
566				cieversion = data[off + ndx];
567				ndx += 1;
568				cieaugstr = (char *)(&data[off + ndx]);
569				ndx += strlen(cieaugstr) + 1;
570
571				dbg_print(0, MSG_ORIG(MSG_UNW_CIEVERS),
572				    cieversion, cieaugstr);
573
574				ciecalign = uleb_extract(&data[off], &ndx);
575				ciedalign = sleb_extract(&data[off], &ndx);
576				cieretaddr = data[off + ndx];
577				ndx += 1;
578
579				dbg_print(0, MSG_ORIG(MSG_UNW_CIECALGN),
580				    EC_XWORD(ciecalign), EC_XWORD(ciedalign),
581				    cieretaddr);
582
583				if (cieaugstr[0])
584					dbg_print(0,
585					    MSG_ORIG(MSG_UNW_CIEAXVAL));
586
587				for (cieaugndx = 0; cieaugstr[cieaugndx];
588				    cieaugndx++) {
589					uint_t	val;
590
591					switch (cieaugstr[cieaugndx]) {
592					case 'z':
593						val = uleb_extract(&data[off],
594						    &ndx);
595						dbg_print(0,
596						    MSG_ORIG(MSG_UNW_CIEAXSIZ),
597						    val);
598						cieZflag = 1;
599						break;
600					case 'P':
601						ciePflag = data[off + ndx];
602						ndx += 1;
603
604						persVal = dwarf_ehe_extract(
605						    &data[off], &ndx, ciePflag,
606						    ehdr->e_ident,
607						    shdr->sh_addr + off + ndx);
608						dbg_print(0,
609						    MSG_ORIG(MSG_UNW_CIEAXPERS),
610						    ciePflag,
611						    conv_dwarf_ehe(ciePflag,
612						    &dwarf_ehe_buf),
613						    EC_XWORD(persVal));
614						break;
615					case 'R':
616						val = data[off + ndx];
617						ndx += 1;
618						dbg_print(0,
619						    MSG_ORIG(MSG_UNW_CIEAXCENC),
620						    val, conv_dwarf_ehe(val,
621						    &dwarf_ehe_buf));
622						cieRflag = val;
623						break;
624					case 'L':
625						val = data[off + ndx];
626						ndx += 1;
627						dbg_print(0,
628						    MSG_ORIG(MSG_UNW_CIEAXLSDA),
629						    val, conv_dwarf_ehe(val,
630						    &dwarf_ehe_buf));
631						cieLflag = val;
632						break;
633					default:
634						dbg_print(0,
635						    MSG_ORIG(MSG_UNW_CIEAXUNEC),
636						    cieaugstr[cieaugndx]);
637						break;
638					}
639				}
640				if ((cielength + 4) > ndx)
641					unwindtbl(&ndx, cielength, data, off,
642					    MSG_ORIG(MSG_UNW_CIECFI),
643					    MSG_ORIG(MSG_UNW_CIEPRE),
644					    MSG_UNW_CIEPRE_SIZE);
645				off += cielength + 4;
646
647			} else {
648				uint_t	    fdelength = length;
649				int	    fdecieptr = id;
650				uint64_t    fdeinitloc, fdeaddrrange;
651
652				dbg_print(0, MSG_ORIG(MSG_UNW_FDE),
653				    EC_XWORD(shdr->sh_addr + off));
654				dbg_print(0, MSG_ORIG(MSG_UNW_FDELNGTH),
655				    fdelength, fdecieptr);
656
657				fdeinitloc = dwarf_ehe_extract(&data[off],
658				    &ndx, cieRflag, ehdr->e_ident,
659				    shdr->sh_addr + off + ndx);
660				fdeaddrrange = dwarf_ehe_extract(&data[off],
661				    &ndx, (cieRflag & ~DW_EH_PE_pcrel),
662				    ehdr->e_ident,
663				    shdr->sh_addr + off + ndx);
664
665				dbg_print(0, MSG_ORIG(MSG_UNW_FDEINITLOC),
666				    EC_XWORD(fdeinitloc),
667				    EC_XWORD(fdeaddrrange));
668
669				if (cieaugstr[0])
670					dbg_print(0,
671					    MSG_ORIG(MSG_UNW_FDEAXVAL));
672				if (cieZflag) {
673					uint64_t    val;
674					val = uleb_extract(&data[off], &ndx);
675					dbg_print(0,
676					    MSG_ORIG(MSG_UNW_FDEAXSIZE),
677					    EC_XWORD(val));
678					if (val & cieLflag) {
679						fdeinitloc = dwarf_ehe_extract(
680						    &data[off], &ndx, cieLflag,
681						    ehdr->e_ident,
682						    shdr->sh_addr + off + ndx);
683						dbg_print(0,
684						    MSG_ORIG(MSG_UNW_FDEAXLSDA),
685						    EC_XWORD(val));
686					}
687				}
688				if ((fdelength + 4) > ndx)
689					unwindtbl(&ndx, fdelength, data, off,
690					    MSG_ORIG(MSG_UNW_FDECFI),
691					    MSG_ORIG(MSG_UNW_FDEPRE),
692					    MSG_UNW_FDEPRE_SIZE);
693				off += fdelength + 4;
694			}
695		}
696	}
697}
698
699/*
700 * Print the hardware/software capabilities.  For executables and shared objects
701 * this should be accompanied with a program header.
702 */
703static void
704cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
705    Elf *elf)
706{
707	Word		cnt;
708	Shdr		*cshdr = 0;
709	Cache		*ccache;
710	Off		cphdr_off = 0;
711	Xword		cphdr_sz;
712
713	/*
714	 * Determine if a hardware/software capabilities header exists.
715	 */
716	if (phnum) {
717		Phdr	*phdr;
718
719		if ((phdr = elf_getphdr(elf)) == NULL) {
720			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
721			return;
722		}
723
724		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
725			if (phdr->p_type == PT_SUNWCAP) {
726				cphdr_off = phdr->p_offset;
727				cphdr_sz = phdr->p_filesz;
728				break;
729			}
730		}
731	}
732
733	/*
734	 * Determine if a hardware/software capabilities section exists.
735	 */
736	for (cnt = 1; cnt < shnum; cnt++) {
737		Cache	*_cache = &cache[cnt];
738		Shdr	*shdr = _cache->c_shdr;
739
740		if (shdr->sh_type != SHT_SUNW_cap)
741			continue;
742
743		if (cphdr_off && ((cphdr_off < shdr->sh_offset) ||
744		    (cphdr_off + cphdr_sz) > (shdr->sh_offset + shdr->sh_size)))
745			continue;
746
747		if (_cache->c_data == NULL)
748			continue;
749
750		ccache = _cache;
751		cshdr = shdr;
752		break;
753	}
754
755	if ((cshdr == 0) && (cphdr_off == 0))
756		return;
757
758	/*
759	 * Print the hardware/software capabilities section.
760	 */
761	if (cshdr) {
762		Word	ndx, capn;
763		Cap	*cap = (Cap *)ccache->c_data->d_buf;
764
765		if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
766			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
767			    file, ccache->c_name);
768			return;
769		}
770
771		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
772		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
773
774		Elf_cap_title(0);
775
776		capn = (Word)(cshdr->sh_size / cshdr->sh_entsize);
777
778		for (ndx = 0; ndx < capn; cap++, ndx++) {
779			if (cap->c_tag != CA_SUNW_NULL)
780				Elf_cap_entry(0, cap, ndx, ehdr->e_machine);
781		}
782	} else
783		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
784
785	/*
786	 * If this object is an executable or shared object, then the
787	 * hardware/software capabilities section should have an accompanying
788	 * program header.
789	 */
790	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
791		if (cphdr_off == 0)
792			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
793			    file, ccache->c_name);
794		else if ((cphdr_off != cshdr->sh_offset) ||
795		    (cphdr_sz != cshdr->sh_size))
796			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
797			    file, ccache->c_name);
798	}
799}
800
801/*
802 * Print the interpretor.
803 */
804static void
805interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
806{
807	Word	cnt;
808	Shdr	*ishdr = 0;
809	Cache	*icache;
810	Off	iphdr_off = 0;
811	Xword	iphdr_fsz;
812
813	/*
814	 * Determine if an interp header exists.
815	 */
816	if (phnum) {
817		Phdr	*phdr;
818
819		if ((phdr = getphdr(phnum, PT_INTERP, file, elf)) != 0) {
820			iphdr_off = phdr->p_offset;
821			iphdr_fsz = phdr->p_filesz;
822		}
823	}
824
825	if (iphdr_off == 0)
826		return;
827
828	/*
829	 * Determine if an interp section exists.
830	 */
831	for (cnt = 1; cnt < shnum; cnt++) {
832		Cache	*_cache = &cache[cnt];
833		Shdr	*shdr = _cache->c_shdr;
834
835		/*
836		 * Scan sections to find a section which contains the PT_INTERP
837		 * string.  The target section can't be in a NOBITS section.
838		 */
839		if ((shdr->sh_type == SHT_NOBITS) ||
840		    (iphdr_off < shdr->sh_offset) ||
841		    (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
842			continue;
843
844		icache = _cache;
845		ishdr = shdr;
846		break;
847	}
848
849	/*
850	 * Print the interpreter string based on the offset defined in the
851	 * program header, as this is the offset used by the kernel.
852	 */
853	if (ishdr && icache->c_data) {
854		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
855		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
856		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
857		    (char *)icache->c_data->d_buf +
858		    (iphdr_off - ishdr->sh_offset));
859	} else
860		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
861
862	/*
863	 * If there are any inconsistences between the program header and
864	 * section information, flag them.
865	 */
866	if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
867	    (iphdr_fsz != ishdr->sh_size))) {
868		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
869		    icache->c_name);
870	}
871}
872
873/*
874 * Print the syminfo section.
875 */
876static void
877syminfo(Cache *cache, Word shnum, const char *file)
878{
879	Shdr		*infoshdr;
880	Syminfo		*info;
881	Sym		*syms;
882	Dyn		*dyns;
883	Word		infonum, cnt, ndx, symnum;
884	Cache		*infocache = 0, *symsec, *strsec;
885
886	for (cnt = 1; cnt < shnum; cnt++) {
887		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
888			infocache = &cache[cnt];
889			break;
890		}
891	}
892	if (infocache == 0)
893		return;
894
895	infoshdr = infocache->c_shdr;
896	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
897		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
898		    file, infocache->c_name);
899		return;
900	}
901	if (infocache->c_data == NULL)
902		return;
903
904	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
905	info = (Syminfo *)infocache->c_data->d_buf;
906
907	/*
908	 * Get the data buffer of the associated dynamic section.
909	 */
910	if ((infoshdr->sh_info == 0) || (infoshdr->sh_info >= shnum)) {
911		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
912		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
913		return;
914	}
915	if (cache[infoshdr->sh_info].c_data == NULL)
916		return;
917
918	dyns = cache[infoshdr->sh_info].c_data->d_buf;
919	if (dyns == 0) {
920		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
921		    file, cache[infoshdr->sh_info].c_name);
922		return;
923	}
924
925	/*
926	 * Get the data buffer for the associated symbol table and string table.
927	 */
928	if (stringtbl(cache, 1, cnt, shnum, file,
929	    &symnum, &symsec, &strsec) == 0)
930		return;
931
932	syms = symsec->c_data->d_buf;
933
934	/*
935	 * Loop through the syminfo entries.
936	 */
937	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
938	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
939	Elf_syminfo_title(0);
940
941	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
942		Sym 		*sym;
943		const char	*needed = 0, *name;
944
945		if ((info->si_flags == 0) && (info->si_boundto == 0))
946			continue;
947
948		sym = &syms[ndx];
949		name = string(infocache, ndx, strsec, file, sym->st_name);
950
951		if (info->si_boundto < SYMINFO_BT_LOWRESERVE) {
952			Dyn	*dyn = &dyns[info->si_boundto];
953
954			needed = string(infocache, info->si_boundto,
955			    strsec, file, dyn->d_un.d_val);
956		}
957		Elf_syminfo_entry(0, ndx, info, name, needed);
958	}
959}
960
961/*
962 * Print version definition section entries.
963 */
964static void
965version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
966    const char *file)
967{
968	Word	cnt;
969	char	index[MAXNDXSIZE];
970
971	Elf_ver_def_title(0);
972
973	for (cnt = 1; cnt <= vdf_num; cnt++,
974	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
975		const char	*name, *dep;
976		Half		vcnt = vdf->vd_cnt - 1;
977		Half		ndx = vdf->vd_ndx;
978		Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
979
980		/*
981		 * Obtain the name and first dependency (if any).
982		 */
983		name = string(vcache, cnt, scache, file, vdap->vda_name);
984		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
985		if (vcnt)
986			dep = string(vcache, cnt, scache, file, vdap->vda_name);
987		else
988			dep = MSG_ORIG(MSG_STR_EMPTY);
989
990		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
991		    EC_XWORD(ndx));
992		Elf_ver_line_1(0, index, name, dep,
993		    conv_ver_flags(vdf->vd_flags));
994
995		/*
996		 * Print any additional dependencies.
997		 */
998		if (vcnt) {
999			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1000			for (vcnt--; vcnt; vcnt--,
1001			    vdap = (Verdaux *)((uintptr_t)vdap +
1002			    vdap->vda_next)) {
1003				dep = string(vcache, cnt, scache, file,
1004				    vdap->vda_name);
1005				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
1006			}
1007		}
1008	}
1009}
1010
1011/*
1012 * Print version needed section entries.
1013 *
1014 * entry:
1015 *	vnd - Address of verneed data
1016 *	vnd_num - # of Verneed entries
1017 *	vcache - Cache of verneed section being processed
1018 *	scache - Cache of associated string table section
1019 *	file - Name of object being processed.
1020 *	versym - Information about versym section
1021 *
1022 * exit:
1023 *	The versions have been printed. If GNU style versioning
1024 *	is in effect, versym->max_verndx has been updated to
1025 *	contain the largest version index seen.
1026 */
1027static void
1028version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
1029    const char *file, VERSYM_STATE *versym)
1030{
1031	Word		cnt;
1032	char		index[MAXNDXSIZE];
1033	const char	*index_str;
1034
1035	Elf_ver_need_title(0, versym->gnu);
1036
1037	/*
1038	 * The versym section in an object that follows Solaris versioning
1039	 * rules contains indexes into the verdef section. Symbols defined
1040	 * in other objects (UNDEF) are given a version of 0, indicating that
1041	 * they are not defined by this file, and the Verneed entries do not
1042	 * have associated version indexes. For these reasons, we do not
1043	 * display a version index for Solaris Verneed sections.
1044	 *
1045	 * The GNU versioning rules are different: Symbols defined in other
1046	 * objects receive a version index in the range above those defined
1047	 * by the Verdef section, and the vna_other field of the Vernaux
1048	 * structs inside the Verneed section contain the version index for
1049	 * that item. We therefore  display the index when showing the
1050	 * contents of a GNU Verneed section. You should not expect these
1051	 * indexes to appear in sorted order --- it seems that the GNU ld
1052	 * assigns the versions as symbols are encountered during linking,
1053	 * and then the results are assembled into the Verneed section
1054	 * afterwards.
1055	 */
1056	if (versym->gnu) {
1057		index_str = index;
1058	} else {
1059		/* For Solaris versioning, display a NULL string */
1060		index_str = MSG_ORIG(MSG_STR_EMPTY);
1061	}
1062
1063	for (cnt = 1; cnt <= vnd_num; cnt++,
1064	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1065		const char	*name, *dep;
1066		Half		vcnt = vnd->vn_cnt;
1067		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1068
1069		/*
1070		 * Obtain the name of the needed file and the version name
1071		 * within it that we're dependent on.  Note that the count
1072		 * should be at least one, otherwise this is a pretty bogus
1073		 * entry.
1074		 */
1075		name = string(vcache, cnt, scache, file, vnd->vn_file);
1076		if (vcnt)
1077			dep = string(vcache, cnt, scache, file, vnap->vna_name);
1078		else
1079			dep = MSG_INTL(MSG_STR_NULL);
1080
1081		if (versym->gnu) {
1082			/* Format the version index value */
1083			(void) snprintf(index, MAXNDXSIZE,
1084			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
1085			if (vnap->vna_other > versym->max_verndx)
1086				versym->max_verndx = vnap->vna_other;
1087		}
1088		Elf_ver_line_1(0, index_str, name, dep,
1089		    conv_ver_flags(vnap->vna_flags));
1090
1091		/*
1092		 * Print any additional version dependencies.
1093		 */
1094		if (vcnt) {
1095			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1096			for (vcnt--; vcnt; vcnt--,
1097			    vnap = (Vernaux *)((uintptr_t)vnap +
1098			    vnap->vna_next)) {
1099				dep = string(vcache, cnt, scache, file,
1100				    vnap->vna_name);
1101				if (versym->gnu) {
1102					/* Format the next index value */
1103					(void) snprintf(index, MAXNDXSIZE,
1104					    MSG_ORIG(MSG_FMT_INDEX),
1105					    EC_XWORD(vnap->vna_other));
1106					Elf_ver_line_1(0, index_str,
1107					    MSG_ORIG(MSG_STR_EMPTY), dep,
1108					    conv_ver_flags(vnap->vna_flags));
1109					if (vnap->vna_other >
1110					    versym->max_verndx)
1111						versym->max_verndx =
1112						    vnap->vna_other;
1113				} else {
1114					Elf_ver_line_3(0,
1115					    MSG_ORIG(MSG_STR_EMPTY), dep,
1116					    conv_ver_flags(vnap->vna_flags));
1117				}
1118			}
1119		}
1120	}
1121}
1122
1123/*
1124 * Compute the max_verndx value for a GNU style object with
1125 * a Verneed section. This is only needed if version_need() is not
1126 * called.
1127 *
1128 * entry:
1129 *	vnd - Address of verneed data
1130 *	vnd_num - # of Verneed entries
1131 *	versym - Information about versym section
1132 *
1133 * exit:
1134 *	versym->max_verndx has been updated to contain the largest
1135 *	version index seen.
1136 */
1137static void
1138update_gnu_max_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
1139{
1140	Word		cnt;
1141
1142	for (cnt = 1; cnt <= vnd_num; cnt++,
1143	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1144		Half	vcnt = vnd->vn_cnt;
1145		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1146
1147		if (vnap->vna_other > versym->max_verndx)
1148			versym->max_verndx = vnap->vna_other;
1149
1150		/*
1151		 * Check any additional version dependencies.
1152		 */
1153		if (vcnt) {
1154			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1155			for (vcnt--; vcnt; vcnt--,
1156			    vnap = (Vernaux *)((uintptr_t)vnap +
1157			    vnap->vna_next)) {
1158				if (vnap->vna_other > versym->max_verndx)
1159					versym->max_verndx = vnap->vna_other;
1160			}
1161		}
1162	}
1163}
1164
1165/*
1166 * Display version section information if the flags require it.
1167 * Return version information needed by other output.
1168 *
1169 * entry:
1170 *	cache - Cache of all section headers
1171 *	shnum - # of sections in cache
1172 *	file - Name of file
1173 *	flags - Command line option flags
1174 *	versym - VERSYM_STATE block to be filled in.
1175 */
1176static void
1177versions(Cache *cache, Word shnum, const char *file, uint_t flags,
1178    VERSYM_STATE *versym)
1179{
1180	GElf_Word	cnt;
1181	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
1182
1183
1184	/* Gather information about the version sections */
1185	bzero(versym, sizeof (*versym));
1186	versym->max_verndx = 1;
1187	for (cnt = 1; cnt < shnum; cnt++) {
1188		Cache		*_cache = &cache[cnt];
1189		Shdr		*shdr = _cache->c_shdr;
1190		Dyn		*dyn;
1191		ulong_t		numdyn;
1192
1193		switch (shdr->sh_type) {
1194		case SHT_DYNAMIC:
1195			/*
1196			 * The GNU ld puts a DT_VERSYM entry in the dynamic
1197			 * section so that the runtime linker can use it to
1198			 * implement their versioning rules. They allow multiple
1199			 * incompatible functions with the same name to exist
1200			 * in different versions. The Solaris ld does not
1201			 * support this mechanism, and as such, does not
1202			 * produce DT_VERSYM. We use this fact to determine
1203			 * which ld produced this object, and how to interpret
1204			 * the version values.
1205			 */
1206			if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
1207			    (_cache->c_data == NULL))
1208				continue;
1209			numdyn = shdr->sh_size / shdr->sh_entsize;
1210			dyn = (Dyn *)_cache->c_data->d_buf;
1211			for (; numdyn-- > 0; dyn++)
1212				if (dyn->d_tag == DT_VERSYM) {
1213					versym->gnu = 1;
1214					break;
1215				}
1216			break;
1217
1218		case SHT_SUNW_versym:
1219			/* Record data address for later symbol processing */
1220			if (_cache->c_data != NULL) {
1221				versym->cache = _cache;
1222				versym->data = _cache->c_data->d_buf;
1223				continue;
1224			}
1225			break;
1226
1227		case SHT_SUNW_verdef:
1228		case SHT_SUNW_verneed:
1229			/*
1230			 * Ensure the data is non-NULL and the number
1231			 * of items is non-zero. Otherwise, we don't
1232			 * understand the section, and will not use it.
1233			 */
1234			if ((_cache->c_data == NULL) ||
1235			    (_cache->c_data->d_buf == NULL)) {
1236				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1237				    file, _cache->c_name);
1238				continue;
1239			}
1240			if (shdr->sh_info == 0) {
1241				(void) fprintf(stderr,
1242				    MSG_INTL(MSG_ERR_BADSHINFO),
1243				    file, _cache->c_name,
1244				    EC_WORD(shdr->sh_info));
1245				continue;
1246			}
1247
1248			/* Make sure the string table index is in range */
1249			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1250				(void) fprintf(stderr,
1251				    MSG_INTL(MSG_ERR_BADSHLINK), file,
1252				    _cache->c_name, EC_WORD(shdr->sh_link));
1253				continue;
1254			}
1255
1256			/*
1257			 * The section is usable. Save the cache entry.
1258			 */
1259			if (shdr->sh_type == SHT_SUNW_verdef) {
1260				verdef_cache = _cache;
1261				/*
1262				 * Under Solaris rules, if there is a verdef
1263				 * section, the max versym index is number
1264				 * of version definitions it supplies.
1265				 */
1266				versym->max_verndx = shdr->sh_info;
1267			} else {
1268				verneed_cache = _cache;
1269			}
1270			break;
1271		}
1272	}
1273
1274	if ((flags & FLG_VERSIONS) == 0) {
1275		/*
1276		 * If GNU versioning applies to this object, and there
1277		 * is a Verneed section, then examine it to determine
1278		 * the maximum Versym version index for this file.
1279		 */
1280		if ((versym->gnu) && (verneed_cache != NULL))
1281			update_gnu_max_verndx(
1282			    (Verneed *)verneed_cache->c_data->d_buf,
1283			    verneed_cache->c_shdr->sh_info, versym);
1284		return;
1285	}
1286
1287	/*
1288	 * Now that all the information is available, display the
1289	 * Verdef and Verneed section contents.
1290	 */
1291	if (verdef_cache != NULL) {
1292		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1293		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
1294		    verdef_cache->c_name);
1295		version_def((Verdef *)verdef_cache->c_data->d_buf,
1296		    verdef_cache->c_shdr->sh_info, verdef_cache,
1297		    &cache[verdef_cache->c_shdr->sh_link], file);
1298	}
1299	if (verneed_cache != NULL) {
1300		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1301		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
1302		    verneed_cache->c_name);
1303		/*
1304		 * If GNU versioning applies to this object, version_need()
1305		 * will update versym->max_verndx, and it is not
1306		 * necessary to call update_gnu_max_verndx().
1307		 */
1308		version_need((Verneed *)verneed_cache->c_data->d_buf,
1309		    verneed_cache->c_shdr->sh_info, verneed_cache,
1310		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
1311	}
1312}
1313
1314/*
1315 * Initialize a symbol table state structure
1316 *
1317 * entry:
1318 *	state - State structure to be initialized
1319 *	cache - Cache of all section headers
1320 *	shnum - # of sections in cache
1321 *	secndx - Index of symbol table section
1322 *	ehdr - ELF header for file
1323 *	versym - Information about versym section
1324 *	file - Name of file
1325 *	flags - Command line option flags
1326 */
1327static int
1328init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
1329    Ehdr *ehdr, VERSYM_STATE *versym, const char *file, uint_t flags)
1330{
1331	Shdr *shdr;
1332
1333	state->file = file;
1334	state->ehdr = ehdr;
1335	state->cache = cache;
1336	state->shnum = shnum;
1337	state->seccache = &cache[secndx];
1338	state->secndx = secndx;
1339	state->secname = state->seccache->c_name;
1340	state->flags = flags;
1341	state->shxndx.checked = 0;
1342	state->shxndx.data = NULL;
1343	state->shxndx.n = 0;
1344
1345	shdr = state->seccache->c_shdr;
1346
1347	/*
1348	 * Check the symbol data and per-item size.
1349	 */
1350	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1351		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1352		    file, state->secname);
1353		return (0);
1354	}
1355	if (state->seccache->c_data == NULL)
1356		return (0);
1357
1358	/* LINTED */
1359	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1360	state->sym = (Sym *)state->seccache->c_data->d_buf;
1361
1362	/*
1363	 * Check associated string table section.
1364	 */
1365	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1366		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1367		    file, state->secname, EC_WORD(shdr->sh_link));
1368		return (0);
1369	}
1370
1371	/*
1372	 * Determine if there is a associated Versym section
1373	 * with this Symbol Table.
1374	 */
1375	if (versym->cache &&
1376	    (versym->cache->c_shdr->sh_link == state->secndx))
1377		state->versym = versym;
1378	else
1379		state->versym = NULL;
1380
1381
1382	return (1);
1383}
1384
1385/*
1386 * Determine the extended section index used for symbol tables entries.
1387 */
1388static void
1389symbols_getxindex(SYMTBL_STATE * state)
1390{
1391	uint_t	symn;
1392	Word	symcnt;
1393
1394	state->shxndx.checked = 1;   /* Note that we've been called */
1395	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1396		Cache	*_cache = &state->cache[symcnt];
1397		Shdr	*shdr = _cache->c_shdr;
1398
1399		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1400		    (shdr->sh_link != state->secndx))
1401			continue;
1402
1403		if ((shdr->sh_entsize) &&
1404		    /* LINTED */
1405		    ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1406			continue;
1407
1408		if (_cache->c_data == NULL)
1409			continue;
1410
1411		state->shxndx.data = _cache->c_data->d_buf;
1412		state->shxndx.n = symn;
1413		return;
1414	}
1415}
1416
1417/*
1418 * Produce a line of output for the given symbol
1419 *
1420 * entry:
1421 *	state - Symbol table state
1422 *	symndx - Index of symbol within the table
1423 *	info - Value of st_info (indicates local/global range)
1424 *	symndx_disp - Index to display. This may not be the same
1425 *		as symndx if the display is relative to the logical
1426 *		combination of the SUNW_ldynsym/dynsym tables.
1427 *	sym - Symbol to display
1428 */
1429static void
1430output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1431    Sym *sym)
1432{
1433	/*
1434	 * Symbol types for which we check that the specified
1435	 * address/size land inside the target section.
1436	 */
1437	static const int addr_symtype[STT_NUM] = {
1438		0,			/* STT_NOTYPE */
1439		1,			/* STT_OBJECT */
1440		1,			/* STT_FUNC */
1441		0,			/* STT_SECTION */
1442		0,			/* STT_FILE */
1443		1,			/* STT_COMMON */
1444		0,			/* STT_TLS */
1445	};
1446#if STT_NUM != (STT_TLS + 1)
1447#error "STT_NUM has grown. Update addr_symtype[]"
1448#endif
1449
1450	char		index[MAXNDXSIZE];
1451	const char	*symname, *sec;
1452	Versym		verndx;
1453	int		gnuver;
1454	uchar_t		type;
1455	Shdr		*tshdr;
1456	Word		shndx;
1457	Conv_inv_buf_t	inv_buf;
1458
1459	/* Ensure symbol index is in range */
1460	if (symndx >= state->symn) {
1461		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORTNDX),
1462		    state->file, state->secname, EC_WORD(symndx));
1463		return;
1464	}
1465
1466	/*
1467	 * If we are using extended symbol indexes, find the
1468	 * corresponding SHN_SYMTAB_SHNDX table.
1469	 */
1470	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1471		symbols_getxindex(state);
1472
1473	/* LINTED */
1474	symname = string(state->seccache, symndx,
1475	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1476	    sym->st_name);
1477
1478	tshdr = 0;
1479	sec = NULL;
1480
1481	if (state->ehdr->e_type == ET_CORE) {
1482		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1483	} else if (state->flags & FLG_FAKESHDR) {
1484		/*
1485		 * If we are using fake section headers derived from
1486		 * the program headers, then the section indexes
1487		 * in the symbols do not correspond to these headers.
1488		 * The section names are not available, so all we can
1489		 * do is to display them in numeric form.
1490		 */
1491		sec = conv_sym_shndx(sym->st_shndx, &inv_buf);
1492	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1493	    (sym->st_shndx < state->shnum)) {
1494		shndx = sym->st_shndx;
1495		tshdr = state->cache[shndx].c_shdr;
1496		sec = state->cache[shndx].c_name;
1497	} else if (sym->st_shndx == SHN_XINDEX) {
1498		if (state->shxndx.data) {
1499			Word	_shxndx;
1500
1501			if (symndx > state->shxndx.n) {
1502				(void) fprintf(stderr,
1503				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1504				    state->file, state->secname,
1505				    EC_WORD(symndx));
1506			} else if ((_shxndx =
1507			    state->shxndx.data[symndx]) > state->shnum) {
1508				(void) fprintf(stderr,
1509				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1510				    state->file, state->secname,
1511				    EC_WORD(symndx), EC_WORD(_shxndx));
1512			} else {
1513				shndx = _shxndx;
1514				tshdr = state->cache[shndx].c_shdr;
1515				sec = state->cache[shndx].c_name;
1516			}
1517		} else {
1518			(void) fprintf(stderr,
1519			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1520			    state->file, state->secname, EC_WORD(symndx));
1521		}
1522	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1523	    (sym->st_shndx >= state->shnum)) {
1524		(void) fprintf(stderr,
1525		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1526		    state->secname, demangle(symname, state->flags),
1527		    sym->st_shndx);
1528	}
1529
1530	/*
1531	 * If versioning is available display the
1532	 * version index. If not, then use 0.
1533	 */
1534	if (state->versym) {
1535		Versym test_verndx;
1536
1537		verndx = test_verndx = state->versym->data[symndx];
1538		gnuver = state->versym->gnu;
1539
1540		/*
1541		 * Check to see if this is a defined symbol with a
1542		 * version index that is outside the valid range for
1543		 * the file. The interpretation of this depends on
1544		 * the style of versioning used by the object.
1545		 *
1546		 * Versions >= VER_NDX_LORESERVE have special meanings,
1547		 * and are exempt from this checking.
1548		 *
1549		 * GNU style version indexes use the top bit of the
1550		 * 16-bit index value (0x8000) as the "hidden bit".
1551		 * We must mask off this bit in order to compare
1552		 * the version against the maximum value.
1553		 */
1554		if (gnuver)
1555			test_verndx &= ~0x8000;
1556
1557		if ((test_verndx > state->versym->max_verndx) &&
1558		    (verndx < VER_NDX_LORESERVE))
1559			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1560			    state->file, state->secname, EC_WORD(symndx),
1561			    EC_HALF(test_verndx), state->versym->max_verndx);
1562	} else {
1563		verndx = 0;
1564		gnuver = 0;
1565	}
1566
1567	/*
1568	 * Error checking for TLS.
1569	 */
1570	type = ELF_ST_TYPE(sym->st_info);
1571	if (type == STT_TLS) {
1572		if (tshdr &&
1573		    (sym->st_shndx != SHN_UNDEF) &&
1574		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1575			(void) fprintf(stderr,
1576			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1577			    state->secname, demangle(symname, state->flags));
1578		}
1579	} else if ((type != STT_SECTION) && sym->st_size &&
1580	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1581		(void) fprintf(stderr,
1582		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1583		    state->secname, demangle(symname, state->flags));
1584	}
1585
1586	/*
1587	 * If a symbol with non-zero size has a type that
1588	 * specifies an address, then make sure the location
1589	 * it references is actually contained within the
1590	 * section.  UNDEF symbols don't count in this case,
1591	 * so we ignore them.
1592	 *
1593	 * The meaning of the st_value field in a symbol
1594	 * depends on the type of object. For a relocatable
1595	 * object, it is the offset within the section.
1596	 * For sharable objects, it is the offset relative to
1597	 * the base of the object, and for other types, it is
1598	 * the virtual address. To get an offset within the
1599	 * section for non-ET_REL files, we subtract the
1600	 * base address of the section.
1601	 */
1602	if (addr_symtype[type] && (sym->st_size > 0) &&
1603	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1604	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1605		Word v = sym->st_value;
1606			if (state->ehdr->e_type != ET_REL)
1607				v -= tshdr->sh_addr;
1608		if (((v + sym->st_size) > tshdr->sh_size)) {
1609			(void) fprintf(stderr,
1610			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1611			    state->secname, demangle(symname, state->flags),
1612			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1613			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1614		}
1615	}
1616
1617	/*
1618	 * A typical symbol table uses the sh_info field to indicate one greater
1619	 * than the symbol table index of the last local symbol, STB_LOCAL.
1620	 * Therefore, symbol indexes less than sh_info should have local
1621	 * binding.  Symbol indexes greater than, or equal to sh_info, should
1622	 * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1623	 * value and size, as these symbols may be the result of an mcs(1)
1624	 * section deletion.
1625	 */
1626	if (info) {
1627		uchar_t	bind = ELF_ST_BIND(sym->st_info);
1628
1629		if ((symndx < info) && (bind != STB_LOCAL)) {
1630			(void) fprintf(stderr,
1631			    MSG_INTL(MSG_ERR_BADSYM7), state->file,
1632			    state->secname, demangle(symname, state->flags),
1633			    EC_XWORD(info));
1634
1635		} else if ((symndx >= info) && (bind == STB_LOCAL) &&
1636		    ((sym->st_shndx != SHN_UNDEF) ||
1637		    (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1638		    (sym->st_size != 0) || (sym->st_value != 0))) {
1639			(void) fprintf(stderr,
1640			    MSG_INTL(MSG_ERR_BADSYM8), state->file,
1641			    state->secname, demangle(symname, state->flags),
1642			    EC_XWORD(info));
1643		}
1644	}
1645
1646	(void) snprintf(index, MAXNDXSIZE,
1647	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1648	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index,
1649	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1650}
1651
1652/*
1653 * Search for and process any symbol tables.
1654 */
1655void
1656symbols(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1657    const char *file, uint_t flags)
1658{
1659	SYMTBL_STATE state;
1660	Cache *_cache;
1661	Word secndx;
1662
1663	for (secndx = 1; secndx < shnum; secndx++) {
1664		Word		symcnt;
1665		Shdr		*shdr;
1666
1667		_cache = &cache[secndx];
1668		shdr = _cache->c_shdr;
1669
1670		if ((shdr->sh_type != SHT_SYMTAB) &&
1671		    (shdr->sh_type != SHT_DYNSYM) &&
1672		    (shdr->sh_type != SHT_SUNW_LDYNSYM))
1673			continue;
1674		if (!match(0, _cache->c_name, secndx))
1675			continue;
1676
1677		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
1678		    versym, file, flags))
1679			continue;
1680		/*
1681		 * Loop through the symbol tables entries.
1682		 */
1683		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1684		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
1685		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1686
1687		for (symcnt = 0; symcnt < state.symn; symcnt++)
1688			output_symbol(&state, symcnt, shdr->sh_info, symcnt,
1689			    state.sym + symcnt);
1690	}
1691}
1692
1693/*
1694 * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
1695 * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
1696 */
1697static void
1698sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1699    const char *file, uint_t flags)
1700{
1701	SYMTBL_STATE	ldynsym_state,	dynsym_state;
1702	Cache		*sortcache,	*symcache;
1703	Shdr		*sortshdr,	*symshdr;
1704	Word		sortsecndx,	symsecndx;
1705	Word		ldynsym_cnt;
1706	Word		*ndx;
1707	Word		ndxn;
1708	int		output_cnt = 0;
1709	Conv_inv_buf_t	inv_buf;
1710
1711	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
1712
1713		sortcache = &cache[sortsecndx];
1714		sortshdr = sortcache->c_shdr;
1715
1716		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
1717		    (sortshdr->sh_type != SHT_SUNW_tlssort))
1718			continue;
1719		if (!match(0, sortcache->c_name, sortsecndx))
1720			continue;
1721
1722		/*
1723		 * If the section references a SUNW_ldynsym, then we
1724		 * expect to see the associated .dynsym immediately
1725		 * following. If it references a .dynsym, there is no
1726		 * SUNW_ldynsym. If it is any other type, then we don't
1727		 * know what to do with it.
1728		 */
1729		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
1730			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1731			    file, sortcache->c_name,
1732			    EC_WORD(sortshdr->sh_link));
1733			continue;
1734		}
1735		symcache = &cache[sortshdr->sh_link];
1736		symshdr = symcache->c_shdr;
1737		symsecndx = sortshdr->sh_link;
1738		ldynsym_cnt = 0;
1739		switch (symshdr->sh_type) {
1740		case SHT_SUNW_LDYNSYM:
1741			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
1742			    symsecndx, ehdr, versym, file, flags))
1743				continue;
1744			ldynsym_cnt = ldynsym_state.symn;
1745			/*
1746			 * We know that the dynsym follows immediately
1747			 * after the SUNW_ldynsym, and so, should be at
1748			 * (sortshdr->sh_link + 1). However, elfdump is a
1749			 * diagnostic tool, so we do the full paranoid
1750			 * search instead.
1751			 */
1752			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
1753				symcache = &cache[symsecndx];
1754				symshdr = symcache->c_shdr;
1755				if (symshdr->sh_type == SHT_DYNSYM)
1756					break;
1757			}
1758			if (symsecndx >= shnum) {	/* Dynsym not found! */
1759				(void) fprintf(stderr,
1760				    MSG_INTL(MSG_ERR_NODYNSYM),
1761				    file, sortcache->c_name);
1762				continue;
1763			}
1764			/* Fallthrough to process associated dynsym */
1765			/*FALLTHROUGH*/
1766		case SHT_DYNSYM:
1767			if (!init_symtbl_state(&dynsym_state, cache, shnum,
1768			    symsecndx, ehdr, versym, file, flags))
1769				continue;
1770			break;
1771		default:
1772			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
1773			    file, sortcache->c_name, conv_sec_type(
1774			    ehdr->e_machine, symshdr->sh_type, 0, &inv_buf));
1775			continue;
1776		}
1777
1778		/*
1779		 * Output header
1780		 */
1781		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1782		if (ldynsym_cnt > 0) {
1783			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
1784			    sortcache->c_name, ldynsym_state.secname,
1785			    dynsym_state.secname);
1786			/*
1787			 * The data for .SUNW_ldynsym and dynsym sections
1788			 * is supposed to be adjacent with SUNW_ldynsym coming
1789			 * first. Check, and issue a warning if it isn't so.
1790			 */
1791			if (((ldynsym_state.sym + ldynsym_state.symn)
1792			    != dynsym_state.sym) &&
1793			    ((flags & FLG_FAKESHDR) == 0))
1794				(void) fprintf(stderr,
1795				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
1796				    ldynsym_state.secname,
1797				    dynsym_state.secname);
1798		} else {
1799			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
1800			    sortcache->c_name, dynsym_state.secname);
1801		}
1802		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1803
1804		/* If not first one, insert a line of whitespace */
1805		if (output_cnt++ > 0)
1806			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1807
1808		/*
1809		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
1810		 * symbol indices. Iterate over the array entries,
1811		 * dispaying the referenced symbols.
1812		 */
1813		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
1814		ndx = (Word *)sortcache->c_data->d_buf;
1815		for (; ndxn-- > 0; ndx++) {
1816			if (*ndx >= ldynsym_cnt) {
1817				Word sec_ndx = *ndx - ldynsym_cnt;
1818
1819				output_symbol(&dynsym_state, sec_ndx, 0,
1820				    *ndx, dynsym_state.sym + sec_ndx);
1821			} else {
1822				output_symbol(&ldynsym_state, *ndx, 0,
1823				    *ndx, ldynsym_state.sym + *ndx);
1824			}
1825		}
1826	}
1827}
1828
1829/*
1830 * Search for and process any relocation sections.
1831 */
1832static void
1833reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file,
1834    uint_t flags)
1835{
1836	Word	cnt;
1837
1838	for (cnt = 1; cnt < shnum; cnt++) {
1839		Word		type, symnum;
1840		Xword		relndx, relnum, relsize;
1841		void		*rels;
1842		Sym		*syms;
1843		Cache		*symsec, *strsec;
1844		Cache		*_cache = &cache[cnt];
1845		Shdr		*shdr = _cache->c_shdr;
1846		char		*relname = _cache->c_name;
1847		Conv_inv_buf_t	inv_buf;
1848
1849		if (((type = shdr->sh_type) != SHT_RELA) &&
1850		    (type != SHT_REL))
1851			continue;
1852		if (!match(0, relname, cnt))
1853			continue;
1854
1855		/*
1856		 * Decide entry size.
1857		 */
1858		if (((relsize = shdr->sh_entsize) == 0) ||
1859		    (relsize > shdr->sh_size)) {
1860			if (type == SHT_RELA)
1861				relsize = sizeof (Rela);
1862			else
1863				relsize = sizeof (Rel);
1864		}
1865
1866		/*
1867		 * Determine the number of relocations available.
1868		 */
1869		if (shdr->sh_size == 0) {
1870			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1871			    file, relname);
1872			continue;
1873		}
1874		if (_cache->c_data == NULL)
1875			continue;
1876
1877		rels = _cache->c_data->d_buf;
1878		relnum = shdr->sh_size / relsize;
1879
1880		/*
1881		 * Get the data buffer for the associated symbol table and
1882		 * string table.
1883		 */
1884		if (stringtbl(cache, 1, cnt, shnum, file,
1885		    &symnum, &symsec, &strsec) == 0)
1886			continue;
1887
1888		syms = symsec->c_data->d_buf;
1889
1890		/*
1891		 * Loop through the relocation entries.
1892		 */
1893		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1894		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
1895		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
1896
1897		for (relndx = 0; relndx < relnum; relndx++,
1898		    rels = (void *)((char *)rels + relsize)) {
1899			char		section[BUFSIZ];
1900			const char	*symname;
1901			Word		symndx, reltype;
1902			Rela		*rela;
1903			Rel		*rel;
1904
1905			/*
1906			 * Unravel the relocation and determine the symbol with
1907			 * which this relocation is associated.
1908			 */
1909			if (type == SHT_RELA) {
1910				rela = (Rela *)rels;
1911				symndx = ELF_R_SYM(rela->r_info);
1912				reltype = ELF_R_TYPE(rela->r_info);
1913			} else {
1914				rel = (Rel *)rels;
1915				symndx = ELF_R_SYM(rel->r_info);
1916				reltype = ELF_R_TYPE(rel->r_info);
1917			}
1918
1919			symname = relsymname(cache, _cache, strsec, symndx,
1920			    symnum, relndx, syms, section, BUFSIZ, file,
1921			    flags);
1922
1923			/*
1924			 * A zero symbol index is only valid for a few
1925			 * relocations.
1926			 */
1927			if (symndx == 0) {
1928				Half	mach = ehdr->e_machine;
1929				int	badrel = 0;
1930
1931				if ((mach == EM_SPARC) ||
1932				    (mach == EM_SPARC32PLUS) ||
1933				    (mach == EM_SPARCV9)) {
1934					if ((reltype != R_SPARC_NONE) &&
1935					    (reltype != R_SPARC_REGISTER) &&
1936					    (reltype != R_SPARC_RELATIVE))
1937						badrel++;
1938				} else if (mach == EM_386) {
1939					if ((reltype != R_386_NONE) &&
1940					    (reltype != R_386_RELATIVE))
1941						badrel++;
1942				} else if (mach == EM_AMD64) {
1943					if ((reltype != R_AMD64_NONE) &&
1944					    (reltype != R_AMD64_RELATIVE))
1945						badrel++;
1946				}
1947
1948				if (badrel) {
1949					(void) fprintf(stderr,
1950					    MSG_INTL(MSG_ERR_BADREL1), file,
1951					    conv_reloc_type(mach, reltype,
1952					    0, &inv_buf));
1953				}
1954			}
1955
1956			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
1957			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
1958			    rels, relname, symname, 0);
1959		}
1960	}
1961}
1962
1963/*
1964 * Search for and process a .dynamic section.
1965 */
1966static void
1967dynamic(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
1968{
1969	Word	cnt;
1970
1971	for (cnt = 1; cnt < shnum; cnt++) {
1972		Dyn	*dyn;
1973		ulong_t	numdyn;
1974		int	ndx, end_ndx;
1975		Cache	*_cache = &cache[cnt], *strsec;
1976		Shdr	*shdr = _cache->c_shdr;
1977
1978		if (shdr->sh_type != SHT_DYNAMIC)
1979			continue;
1980
1981		/*
1982		 * Verify the associated string table section.
1983		 */
1984		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
1985			continue;
1986
1987		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1988			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1989			    file, _cache->c_name);
1990			continue;
1991		}
1992		if (_cache->c_data == NULL)
1993			continue;
1994
1995		numdyn = shdr->sh_size / shdr->sh_entsize;
1996		dyn = (Dyn *)_cache->c_data->d_buf;
1997
1998		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1999		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
2000
2001		Elf_dyn_title(0);
2002
2003		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2004			union {
2005				Conv_dyn_flag_buf_t	flag;
2006				Conv_dyn_flag1_buf_t	flag1;
2007				Conv_dyn_posflag1_buf_t	posflag1;
2008				Conv_dyn_feature1_buf_t	feature1;
2009			} c_buf;
2010			const char	*name;
2011
2012			/*
2013			 * Print the information numerically, and if possible
2014			 * as a string.
2015			 */
2016			switch (dyn->d_tag) {
2017			case DT_NULL:
2018				/*
2019				 * Special case: DT_NULLs can come in groups
2020				 * that we prefer to reduce to a single line.
2021				 */
2022				end_ndx = ndx;
2023				while ((end_ndx < (numdyn - 1)) &&
2024				    ((dyn + 1)->d_tag == DT_NULL)) {
2025					dyn++;
2026					end_ndx++;
2027				}
2028				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
2029				ndx = end_ndx;
2030				continue;
2031
2032			/*
2033			 * Print the information numerically, and if possible
2034			 * as a string.
2035			 */
2036			case DT_NEEDED:
2037			case DT_SONAME:
2038			case DT_FILTER:
2039			case DT_AUXILIARY:
2040			case DT_CONFIG:
2041			case DT_RPATH:
2042			case DT_RUNPATH:
2043			case DT_USED:
2044			case DT_DEPAUDIT:
2045			case DT_AUDIT:
2046			case DT_SUNW_AUXILIARY:
2047			case DT_SUNW_FILTER:
2048				name = string(_cache, ndx, strsec,
2049				    file, dyn->d_un.d_ptr);
2050				break;
2051
2052			case DT_FLAGS:
2053				name = conv_dyn_flag(dyn->d_un.d_val,
2054				    0, &c_buf.flag);
2055				break;
2056			case DT_FLAGS_1:
2057				name = conv_dyn_flag1(dyn->d_un.d_val, 0,
2058				    &c_buf.flag1);
2059				break;
2060			case DT_POSFLAG_1:
2061				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
2062				    &c_buf.posflag1);
2063				break;
2064			case DT_FEATURE_1:
2065				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
2066				    &c_buf.feature1);
2067				break;
2068			case DT_DEPRECATED_SPARC_REGISTER:
2069				name = MSG_INTL(MSG_STR_DEPRECATED);
2070				break;
2071			default:
2072				name = MSG_ORIG(MSG_STR_EMPTY);
2073				break;
2074			}
2075
2076			Elf_dyn_entry(0, dyn, ndx, name, ehdr->e_machine);
2077		}
2078	}
2079}
2080
2081/*
2082 * Search for and process a MOVE section.
2083 */
2084static void
2085move(Cache *cache, Word shnum, const char *file, uint_t flags)
2086{
2087	Word		cnt;
2088	const char	*fmt = 0;
2089
2090	for (cnt = 1; cnt < shnum; cnt++) {
2091		Word	movenum, symnum, ndx;
2092		Sym	*syms;
2093		Cache	*_cache = &cache[cnt];
2094		Shdr	*shdr = _cache->c_shdr;
2095		Cache	*symsec, *strsec;
2096		Move	*move;
2097
2098		if (shdr->sh_type != SHT_SUNW_move)
2099			continue;
2100		if (!match(0, _cache->c_name, cnt))
2101			continue;
2102
2103		/*
2104		 * Determine the move data and number.
2105		 */
2106		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2107			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2108			    file, _cache->c_name);
2109			continue;
2110		}
2111		if (_cache->c_data == NULL)
2112			continue;
2113
2114		move = (Move *)_cache->c_data->d_buf;
2115		movenum = shdr->sh_size / shdr->sh_entsize;
2116
2117		/*
2118		 * Get the data buffer for the associated symbol table and
2119		 * string table.
2120		 */
2121		if (stringtbl(cache, 1, cnt, shnum, file,
2122		    &symnum, &symsec, &strsec) == 0)
2123			return;
2124
2125		syms = (Sym *)symsec->c_data->d_buf;
2126
2127		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2128		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
2129		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
2130
2131		if (fmt == 0)
2132			fmt = MSG_INTL(MSG_MOVE_ENTRY);
2133
2134		for (ndx = 0; ndx < movenum; move++, ndx++) {
2135			const char	*symname;
2136			char		index[MAXNDXSIZE], section[BUFSIZ];
2137			Word		symndx, shndx;
2138			Sym		*sym;
2139
2140			/*
2141			 * Check for null entries
2142			 */
2143			if ((move->m_info == 0) && (move->m_value == 0) &&
2144			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
2145			    (move->m_stride == 0)) {
2146				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
2147				    EC_XWORD(move->m_poffset), 0, 0, 0,
2148				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
2149				continue;
2150			}
2151			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
2152			    (symndx >= symnum)) {
2153				(void) fprintf(stderr,
2154				    MSG_INTL(MSG_ERR_BADMINFO), file,
2155				    _cache->c_name, EC_XWORD(move->m_info));
2156
2157				(void) snprintf(index, MAXNDXSIZE,
2158				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2159				dbg_print(0, fmt, index,
2160				    EC_XWORD(move->m_poffset),
2161				    ELF_M_SIZE(move->m_info), move->m_repeat,
2162				    move->m_stride, move->m_value,
2163				    MSG_INTL(MSG_STR_UNKNOWN));
2164				continue;
2165			}
2166
2167			symname = relsymname(cache, _cache, strsec,
2168			    symndx, symnum, ndx, syms, section, BUFSIZ, file,
2169			    flags);
2170			sym = (Sym *)(syms + symndx);
2171
2172			/*
2173			 * Additional sanity check.
2174			 */
2175			shndx = sym->st_shndx;
2176			if (!((shndx == SHN_COMMON) ||
2177			    (((shndx >= 1) && (shndx <= shnum)) &&
2178			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
2179				(void) fprintf(stderr,
2180				    MSG_INTL(MSG_ERR_BADSYM2), file,
2181				    _cache->c_name, demangle(symname, flags));
2182			}
2183
2184			(void) snprintf(index, MAXNDXSIZE,
2185			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2186			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
2187			    ELF_M_SIZE(move->m_info), move->m_repeat,
2188			    move->m_stride, move->m_value,
2189			    demangle(symname, flags));
2190		}
2191	}
2192}
2193
2194/*
2195 * Traverse a note section analyzing each note information block.
2196 * The data buffers size is used to validate references before they are made,
2197 * and is decremented as each element is processed.
2198 */
2199void
2200note_entry(Cache *cache, Word *data, size_t size, const char *file)
2201{
2202	size_t	bsize = size;
2203
2204	/*
2205	 * Print out a single `note' information block.
2206	 */
2207	while (size > 0) {
2208		size_t	namesz, descsz, type, pad, noteoff;
2209
2210		noteoff = bsize - size;
2211		/*
2212		 * Make sure we can at least reference the 3 initial entries
2213		 * (4-byte words) of the note information block.
2214		 */
2215		if (size >= (sizeof (Word) * 3))
2216			size -= (sizeof (Word) * 3);
2217		else {
2218			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
2219			    file, cache->c_name, EC_WORD(noteoff));
2220			return;
2221		}
2222
2223		/*
2224		 * Make sure any specified name string can be referenced.
2225		 */
2226		if ((namesz = *data++) != 0) {
2227			if (size >= namesz)
2228				size -= namesz;
2229			else {
2230				(void) fprintf(stderr,
2231				    MSG_INTL(MSG_NOTE_BADNMSZ), file,
2232				    cache->c_name, EC_WORD(noteoff),
2233				    EC_WORD(namesz));
2234				return;
2235			}
2236		}
2237
2238		/*
2239		 * Make sure any specified descriptor can be referenced.
2240		 */
2241		if ((descsz = *data++) != 0) {
2242			/*
2243			 * If namesz isn't a 4-byte multiple, account for any
2244			 * padding that must exist before the descriptor.
2245			 */
2246			if ((pad = (namesz & (sizeof (Word) - 1))) != 0) {
2247				pad = sizeof (Word) - pad;
2248				size -= pad;
2249			}
2250			if (size >= descsz)
2251				size -= descsz;
2252			else {
2253				(void) fprintf(stderr,
2254				    MSG_INTL(MSG_NOTE_BADDESZ), file,
2255				    cache->c_name, EC_WORD(noteoff),
2256				    EC_WORD(namesz));
2257				return;
2258			}
2259		}
2260
2261		type = *data++;
2262
2263		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2264		dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), EC_WORD(type));
2265
2266		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), EC_WORD(namesz));
2267		if (namesz) {
2268			char	*name = (char *)data;
2269
2270			/*
2271			 * Since the name string may have 'null' bytes
2272			 * in it (ia32 .string) - we just write the
2273			 * whole stream in a single fwrite.
2274			 */
2275			(void) fwrite(name, namesz, 1, stdout);
2276			name = name + ((namesz + (sizeof (Word) - 1)) &
2277			    ~(sizeof (Word) - 1));
2278			/* LINTED */
2279			data = (Word *)name;
2280			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2281		}
2282
2283		/*
2284		 * If multiple information blocks exist within a .note section
2285		 * account for any padding that must exist before the next
2286		 * information block.
2287		 */
2288		if ((pad = (descsz & (sizeof (Word) - 1))) != 0) {
2289			pad = sizeof (Word) - pad;
2290			if (size > pad)
2291				size -= pad;
2292		}
2293
2294		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), EC_WORD(descsz));
2295		if (descsz) {
2296			int		ndx, byte, word;
2297			char		string[58], *str = string;
2298			uchar_t		*desc = (uchar_t *)data;
2299
2300			/*
2301			 * Dump descriptor bytes.
2302			 */
2303			for (ndx = byte = word = 0; descsz; descsz--, desc++) {
2304				int	tok = *desc;
2305
2306				(void) snprintf(str, 58, MSG_ORIG(MSG_NOTE_TOK),
2307				    tok);
2308				str += 3;
2309
2310				if (++byte == 4) {
2311					*str++ = ' ', *str++ = ' ';
2312					word++;
2313					byte = 0;
2314				}
2315				if (word == 4) {
2316					*str = '\0';
2317					dbg_print(0, MSG_ORIG(MSG_NOTE_DESC),
2318					    ndx, string);
2319					word = 0;
2320					ndx += 16;
2321					str = string;
2322				}
2323			}
2324			if (byte || word) {
2325				*str = '\0';
2326				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC),
2327				    ndx, string);
2328			}
2329
2330			desc += pad;
2331			/* LINTED */
2332			data = (Word *)desc;
2333		}
2334	}
2335}
2336
2337/*
2338 * Search for and process a .note section.
2339 */
2340static void
2341note(Cache *cache, Word shnum, const char *file)
2342{
2343	Word	cnt;
2344
2345	/*
2346	 * Otherwise look for any .note sections.
2347	 */
2348	for (cnt = 1; cnt < shnum; cnt++) {
2349		Cache	*_cache = &cache[cnt];
2350		Shdr	*shdr = _cache->c_shdr;
2351
2352		if (shdr->sh_type != SHT_NOTE)
2353			continue;
2354		if (!match(0, _cache->c_name, cnt))
2355			continue;
2356
2357		/*
2358		 * As these sections are often hand rolled, make sure they're
2359		 * properly aligned before proceeding.
2360		 */
2361		if (shdr->sh_offset & (sizeof (Word) - 1)) {
2362			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
2363			    file, _cache->c_name);
2364			continue;
2365		}
2366		if (_cache->c_data == NULL)
2367			continue;
2368
2369		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2370		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
2371		note_entry(_cache, (Word *)_cache->c_data->d_buf,
2372		/* LINTED */
2373		    (Word)_cache->c_data->d_size, file);
2374	}
2375}
2376
2377/*
2378 * Determine an individual hash entry.  This may be the initial hash entry,
2379 * or an associated chain entry.
2380 */
2381static void
2382hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
2383    Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
2384    uint_t flags, int chain)
2385{
2386	Sym		*sym;
2387	const char	*symname, *str;
2388	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
2389	ulong_t		nbkt, nhash;
2390
2391	if (symndx > symn) {
2392		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
2393		    EC_WORD(symndx), EC_WORD(hashndx));
2394		symname = MSG_INTL(MSG_STR_UNKNOWN);
2395	} else {
2396		sym = (Sym *)(syms + symndx);
2397		symname = string(refsec, symndx, strsec, file, sym->st_name);
2398	}
2399
2400	if (chain == 0) {
2401		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
2402		    hashndx);
2403		str = (const char *)_bucket;
2404	} else
2405		str = MSG_ORIG(MSG_STR_EMPTY);
2406
2407	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
2408	    EC_WORD(symndx));
2409	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
2410	    demangle(symname, flags));
2411
2412	/*
2413	 * Determine if this string is in the correct bucket.
2414	 */
2415	nhash = elf_hash(symname);
2416	nbkt = nhash % bkts;
2417
2418	if (nbkt != hashndx) {
2419		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
2420		    hsecname, symname, EC_WORD(hashndx), nbkt);
2421	}
2422}
2423
2424#define	MAXCOUNT	500
2425
2426static void
2427hash(Cache *cache, Word shnum, const char *file, uint_t flags)
2428{
2429	static int	count[MAXCOUNT];
2430	Word		cnt;
2431	ulong_t		ndx, bkts;
2432	char		number[MAXNDXSIZE];
2433
2434	for (cnt = 1; cnt < shnum; cnt++) {
2435		uint_t		*hash, *chain;
2436		Cache		*_cache = &cache[cnt];
2437		Shdr		*sshdr, *hshdr = _cache->c_shdr;
2438		char		*ssecname, *hsecname = _cache->c_name;
2439		Sym		*syms;
2440		Word		symn;
2441
2442		if (hshdr->sh_type != SHT_HASH)
2443			continue;
2444
2445		/*
2446		 * Determine the hash table data and size.
2447		 */
2448		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
2449			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2450			    file, hsecname);
2451			continue;
2452		}
2453		if (_cache->c_data == NULL)
2454			continue;
2455
2456		hash = (uint_t *)_cache->c_data->d_buf;
2457		bkts = *hash;
2458		chain = hash + 2 + bkts;
2459		hash += 2;
2460
2461		/*
2462		 * Get the data buffer for the associated symbol table.
2463		 */
2464		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
2465			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2466			    file, hsecname, EC_WORD(hshdr->sh_link));
2467			continue;
2468		}
2469
2470		_cache = &cache[hshdr->sh_link];
2471		ssecname = _cache->c_name;
2472
2473		if (_cache->c_data == NULL)
2474			continue;
2475
2476		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
2477			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2478			    file, ssecname);
2479			continue;
2480		}
2481
2482		sshdr = _cache->c_shdr;
2483		/* LINTED */
2484		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
2485
2486		/*
2487		 * Get the associated string table section.
2488		 */
2489		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
2490			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2491			    file, ssecname, EC_WORD(sshdr->sh_link));
2492			continue;
2493		}
2494
2495		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2496		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
2497		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
2498
2499		/*
2500		 * Loop through the hash buckets, printing the appropriate
2501		 * symbols.
2502		 */
2503		for (ndx = 0; ndx < bkts; ndx++, hash++) {
2504			Word	_ndx, _cnt;
2505
2506			if (*hash == 0) {
2507				count[0]++;
2508				continue;
2509			}
2510
2511			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
2512			    ndx, *hash, symn, syms, file, bkts, flags, 0);
2513
2514			/*
2515			 * Determine if any other symbols are chained to this
2516			 * bucket.
2517			 */
2518			_ndx = chain[*hash];
2519			_cnt = 1;
2520			while (_ndx) {
2521				hash_entry(_cache, &cache[sshdr->sh_link],
2522				    hsecname, ndx, _ndx, symn, syms, file,
2523				    bkts, flags, 1);
2524				_ndx = chain[_ndx];
2525				_cnt++;
2526			}
2527
2528			if (_cnt >= MAXCOUNT) {
2529				(void) fprintf(stderr,
2530				    MSG_INTL(MSG_HASH_OVERFLW), file,
2531				    _cache->c_name, EC_WORD(ndx),
2532				    EC_WORD(_cnt));
2533			} else
2534				count[_cnt]++;
2535		}
2536		break;
2537	}
2538
2539	/*
2540	 * Print out the count information.
2541	 */
2542	bkts = cnt = 0;
2543	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2544
2545	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
2546		Word	_cnt;
2547
2548		if ((_cnt = count[ndx]) == 0)
2549			continue;
2550
2551		(void) snprintf(number, MAXNDXSIZE,
2552		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
2553		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
2554		    EC_WORD(ndx));
2555		bkts += _cnt;
2556		cnt += (Word)(ndx * _cnt);
2557	}
2558	if (cnt) {
2559		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
2560		    bkts);
2561		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
2562		    EC_WORD(cnt));
2563	}
2564}
2565
2566static void
2567group(Cache *cache, Word shnum, const char *file, uint_t flags)
2568{
2569	Word	scnt;
2570
2571	for (scnt = 1; scnt < shnum; scnt++) {
2572		Cache	*_cache = &cache[scnt];
2573		Shdr	*shdr = _cache->c_shdr;
2574		Word	*grpdata, gcnt, grpcnt, symnum, unknown;
2575		Cache	*symsec, *strsec;
2576		Sym	*syms, *sym;
2577		char	flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
2578
2579		if (shdr->sh_type != SHT_GROUP)
2580			continue;
2581		if (!match(0, _cache->c_name, scnt))
2582			continue;
2583		if ((_cache->c_data == NULL) ||
2584		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
2585			continue;
2586		grpcnt = shdr->sh_size / sizeof (Word);
2587
2588		/*
2589		 * Get the data buffer for the associated symbol table and
2590		 * string table.
2591		 */
2592		if (stringtbl(cache, 1, scnt, shnum, file,
2593		    &symnum, &symsec, &strsec) == 0)
2594			return;
2595
2596		syms = symsec->c_data->d_buf;
2597
2598		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2599		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
2600		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
2601
2602		/*
2603		 * The first element of the group defines the group.  The
2604		 * associated symbol is defined by the sh_link field.
2605		 */
2606		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
2607			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
2608			    file, _cache->c_name, EC_WORD(shdr->sh_info));
2609			return;
2610		}
2611
2612		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
2613		if (grpdata[0] & GRP_COMDAT) {
2614			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
2615		}
2616		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
2617			size_t	len = strlen(flgstrbuf);
2618
2619			(void) snprintf(&flgstrbuf[len],
2620			    (MSG_GRP_COMDAT_SIZE + 10 - len),
2621			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
2622		}
2623		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
2624		sym = (Sym *)(syms + shdr->sh_info);
2625
2626		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
2627		    demangle(string(_cache, 0, strsec, file, sym->st_name),
2628		    flags));
2629
2630		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
2631			char		index[MAXNDXSIZE];
2632			const char	*name;
2633
2634			(void) snprintf(index, MAXNDXSIZE,
2635			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
2636
2637			if (grpdata[gcnt] >= shnum)
2638				name = MSG_INTL(MSG_GRP_INVALSCN);
2639			else
2640				name = cache[grpdata[gcnt]].c_name;
2641
2642			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
2643			    EC_XWORD(grpdata[gcnt]));
2644		}
2645	}
2646}
2647
2648static void
2649got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file, uint_t flags)
2650{
2651	Cache		*gotcache = 0, *symtab = 0, *_cache;
2652	Addr		gotbgn, gotend;
2653	Shdr		*gotshdr;
2654	Word		cnt, gotents, gotndx;
2655	size_t		gentsize;
2656	Got_info	*gottable;
2657	char		*gotdata;
2658	Sym		*gotsym;
2659	Xword		gotsymaddr;
2660
2661	/*
2662	 * First, find the got.
2663	 */
2664	for (cnt = 1; cnt < shnum; cnt++) {
2665		_cache = &cache[cnt];
2666		if (strncmp(_cache->c_name, MSG_ORIG(MSG_ELF_GOT),
2667		    MSG_ELF_GOT_SIZE) == 0) {
2668			gotcache = _cache;
2669			break;
2670		}
2671	}
2672	if (gotcache == 0)
2673		return;
2674
2675	/*
2676	 * A got section within a relocatable object is suspicious.
2677	 */
2678	if (ehdr->e_type == ET_REL) {
2679		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
2680		    _cache->c_name);
2681	}
2682
2683	gotshdr = gotcache->c_shdr;
2684	if (gotshdr->sh_size == 0) {
2685		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2686		    file, gotcache->c_name);
2687		return;
2688	}
2689
2690	gotbgn = gotshdr->sh_addr;
2691	gotend = gotbgn + gotshdr->sh_size;
2692
2693	/*
2694	 * Some architectures don't properly set the sh_entsize for the GOT
2695	 * table.  If it's not set, default to a size of a pointer.
2696	 */
2697	if ((gentsize = gotshdr->sh_entsize) == 0)
2698		gentsize = sizeof (Xword);
2699
2700	if (gotcache->c_data == NULL)
2701		return;
2702
2703	/* LINTED */
2704	gotents = (Word)(gotshdr->sh_size / gentsize);
2705	gotdata = gotcache->c_data->d_buf;
2706
2707	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
2708		int err = errno;
2709		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
2710		    strerror(err));
2711		return;
2712	}
2713
2714	/*
2715	 * Now we scan through all the sections looking for any relocations
2716	 * that may be against the GOT.  Since these may not be isolated to a
2717	 * .rel[a].got section we check them all.
2718	 * While scanning sections save the symbol table entry (a symtab
2719	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
2720	 */
2721	for (cnt = 1; cnt < shnum; cnt++) {
2722		Word		type, symnum;
2723		Xword		relndx, relnum, relsize;
2724		void		*rels;
2725		Sym		*syms;
2726		Cache		*symsec, *strsec;
2727		Cache		*_cache = &cache[cnt];
2728		Shdr		*shdr;
2729
2730		shdr = _cache->c_shdr;
2731		type = shdr->sh_type;
2732
2733		if ((symtab == 0) && (type == SHT_DYNSYM)) {
2734			symtab = _cache;
2735			continue;
2736		}
2737		if (type == SHT_SYMTAB) {
2738			symtab = _cache;
2739			continue;
2740		}
2741		if ((type != SHT_RELA) && (type != SHT_REL))
2742			continue;
2743
2744		/*
2745		 * Decide entry size.
2746		 */
2747		if (((relsize = shdr->sh_entsize) == 0) ||
2748		    (relsize > shdr->sh_size)) {
2749			if (type == SHT_RELA)
2750				relsize = sizeof (Rela);
2751			else
2752				relsize = sizeof (Rel);
2753		}
2754
2755		/*
2756		 * Determine the number of relocations available.
2757		 */
2758		if (shdr->sh_size == 0) {
2759			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2760			    file, _cache->c_name);
2761			continue;
2762		}
2763		if (_cache->c_data == NULL)
2764			continue;
2765
2766		rels = _cache->c_data->d_buf;
2767		relnum = shdr->sh_size / relsize;
2768
2769		/*
2770		 * Get the data buffer for the associated symbol table and
2771		 * string table.
2772		 */
2773		if (stringtbl(cache, 1, cnt, shnum, file,
2774		    &symnum, &symsec, &strsec) == 0)
2775			continue;
2776
2777		syms = symsec->c_data->d_buf;
2778
2779		/*
2780		 * Loop through the relocation entries.
2781		 */
2782		for (relndx = 0; relndx < relnum; relndx++,
2783		    rels = (void *)((char *)rels + relsize)) {
2784			char		section[BUFSIZ];
2785			Addr		offset;
2786			Got_info	*gip;
2787			Word		symndx, reltype;
2788			Rela		*rela;
2789			Rel		*rel;
2790
2791			/*
2792			 * Unravel the relocation.
2793			 */
2794			if (type == SHT_RELA) {
2795				rela = (Rela *)rels;
2796				symndx = ELF_R_SYM(rela->r_info);
2797				reltype = ELF_R_TYPE(rela->r_info);
2798				offset = rela->r_offset;
2799			} else {
2800				rel = (Rel *)rels;
2801				symndx = ELF_R_SYM(rel->r_info);
2802				reltype = ELF_R_TYPE(rel->r_info);
2803				offset = rel->r_offset;
2804			}
2805
2806			/*
2807			 * Only pay attention to relocations against the GOT.
2808			 */
2809			if ((offset < gotbgn) || (offset >= gotend))
2810				continue;
2811
2812			/* LINTED */
2813			gotndx = (Word)((offset - gotbgn) /
2814			    gotshdr->sh_entsize);
2815			gip = &gottable[gotndx];
2816
2817			if (gip->g_reltype != 0) {
2818				(void) fprintf(stderr,
2819				    MSG_INTL(MSG_GOT_MULTIPLE), file,
2820				    EC_WORD(gotndx), EC_ADDR(offset));
2821				continue;
2822			}
2823
2824			if (symndx)
2825				gip->g_symname = relsymname(cache, _cache,
2826				    strsec, symndx, symnum, relndx, syms,
2827				    section, BUFSIZ, file, flags);
2828			gip->g_reltype = reltype;
2829			gip->g_rel = rels;
2830		}
2831	}
2832
2833	if (symlookup(MSG_ORIG(MSG_GOT_SYM), cache, shnum, &gotsym, symtab,
2834	    file))
2835		gotsymaddr = gotsym->st_value;
2836	else
2837		gotsymaddr = gotbgn;
2838
2839	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2840	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
2841	Elf_got_title(0);
2842
2843	for (gotndx = 0; gotndx < gotents; gotndx++) {
2844		Got_info	*gip;
2845		Sword		gindex;
2846		Addr		gaddr;
2847		Xword		gotentry;
2848
2849		gip = &gottable[gotndx];
2850
2851		gaddr = gotbgn + (gotndx * gentsize);
2852		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
2853
2854		if (gentsize == sizeof (Word))
2855			/* LINTED */
2856			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
2857		else
2858			/* LINTED */
2859			gotentry = *((Xword *)(gotdata) + gotndx);
2860
2861		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
2862		    gip->g_reltype, gip->g_rel, gip->g_symname);
2863	}
2864	free(gottable);
2865}
2866
2867void
2868checksum(Elf *elf)
2869{
2870	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2871	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
2872}
2873
2874/*
2875 * This variable is used by regular() to communicate the address of
2876 * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
2877 * the qsort() interface does not include a userdata argument by which
2878 * such arbitrary data can be passed, so we are stuck using global data.
2879 */
2880static Cache *sort_shdr_ndx_arr_cache;
2881
2882
2883/*
2884 * Used with qsort() to sort the section indices so that they can be
2885 * used to access the section headers in order of increasing data offset.
2886 *
2887 * entry:
2888 *	sort_shdr_ndx_arr_cache - Contains address of
2889 *		section header cache.
2890 *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
2891 *
2892 * exit:
2893 *	Returns -1 (less than), 0 (equal) or 1 (greater than).
2894 */
2895static int
2896sort_shdr_ndx_arr(const void *v1, const void *v2)
2897{
2898	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
2899	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
2900
2901	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
2902		return (-1);
2903
2904	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
2905		return (1);
2906
2907	return (0);
2908}
2909
2910
2911static int
2912shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
2913    size_t shnum, Cache **cache_ret)
2914{
2915	Elf_Scn		*scn;
2916	Elf_Data	*data;
2917	size_t		ndx;
2918	Shdr		*nameshdr;
2919	char		*names = 0;
2920	Cache		*cache, *_cache;
2921	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
2922
2923
2924	/*
2925	 * Obtain the .shstrtab data buffer to provide the required section
2926	 * name strings.
2927	 */
2928	if (shstrndx == SHN_UNDEF) {
2929		/*
2930		 * It is rare, but legal, for an object to lack a
2931		 * header string table section.
2932		 */
2933		names = NULL;
2934		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
2935	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
2936		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
2937		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
2938		    EC_XWORD(shstrndx));
2939
2940	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
2941		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
2942		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
2943		    EC_XWORD(shstrndx));
2944
2945	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
2946		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
2947		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
2948		    EC_WORD(elf_ndxscn(scn)));
2949
2950	} else if ((names = data->d_buf) == 0)
2951		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
2952
2953	/*
2954	 * Allocate a cache to maintain a descriptor for each section.
2955	 */
2956	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
2957		int err = errno;
2958		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
2959		    file, strerror(err));
2960		return (0);
2961	}
2962
2963	*cache = cache_init;
2964	_cache = cache;
2965	_cache++;
2966
2967	/*
2968	 * Allocate an array that will hold the section index for
2969	 * each section that has data in the ELF file:
2970	 *
2971	 *	- Is not a NOBITS section
2972	 *	- Data has non-zero length
2973	 *
2974	 * Note that shnum is an upper bound on the size required. It
2975	 * is likely that we won't use a few of these array elements.
2976	 * Allocating a modest amount of extra memory in this case means
2977	 * that we can avoid an extra loop to count the number of needed
2978	 * items, and can fill this array immediately in the first loop
2979	 * below.
2980	 */
2981	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
2982		int err = errno;
2983		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
2984		    file, strerror(err));
2985		return (0);
2986	}
2987	shdr_ndx_arr_cnt = 0;
2988
2989	/*
2990	 * Traverse the sections of the file.  This gathering of data is
2991	 * carried out in two passes.  First, the section headers are captured
2992	 * and the section header names are evaluated.  A verification pass is
2993	 * then carried out over the section information.  Files have been
2994	 * known to exhibit overlapping (and hence erroneous) section header
2995	 * information.
2996	 *
2997	 * Finally, the data for each section is obtained.  This processing is
2998	 * carried out after section verification because should any section
2999	 * header overlap occur, and a file needs translating (ie. xlate'ing
3000	 * information from a non-native architecture file), then the process
3001	 * of translation can corrupt the section header information.  Of
3002	 * course, if there is any section overlap, the data related to the
3003	 * sections is going to be compromised.  However, it is the translation
3004	 * of this data that has caused problems with elfdump()'s ability to
3005	 * extract the data.
3006	 */
3007	for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
3008	    ndx++, _cache++) {
3009		char	scnndxnm[100];
3010
3011		_cache->c_ndx = ndx;
3012		_cache->c_scn = scn;
3013
3014		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
3015			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3016			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3017			    EC_WORD(elf_ndxscn(scn)));
3018		}
3019
3020		/*
3021		 * If this section has data in the file, include it in
3022		 * the array of sections to check for address overlap.
3023		 */
3024		if ((_cache->c_shdr->sh_size != 0) &&
3025		    (_cache->c_shdr->sh_type != SHT_NOBITS))
3026			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
3027
3028		/*
3029		 * If a shstrtab exists, assign the section name.
3030		 */
3031		if (names && _cache->c_shdr) {
3032			if (_cache->c_shdr->sh_name &&
3033			    /* LINTED */
3034			    (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
3035				_cache->c_name =
3036				    names + _cache->c_shdr->sh_name;
3037				continue;
3038			}
3039
3040			/*
3041			 * Generate an error if the section name index is zero
3042			 * or exceeds the shstrtab data.  Fall through to
3043			 * fabricate a section name.
3044			 */
3045			if ((_cache->c_shdr->sh_name == 0) ||
3046			    /* LINTED */
3047			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
3048				(void) fprintf(stderr,
3049				    MSG_INTL(MSG_ERR_BADSHNAME), file,
3050				    EC_WORD(ndx),
3051				    EC_XWORD(_cache->c_shdr->sh_name));
3052			}
3053		}
3054
3055		/*
3056		 * If there exists no shstrtab data, or a section header has no
3057		 * name (an invalid index of 0), then compose a name for the
3058		 * section.
3059		 */
3060		(void) snprintf(scnndxnm, sizeof (scnndxnm),
3061		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
3062
3063		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
3064			int err = errno;
3065			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3066			    file, strerror(err));
3067			return (0);
3068		}
3069		(void) strcpy(_cache->c_name, scnndxnm);
3070	}
3071
3072	/*
3073	 * Having collected all the sections, validate their address range.
3074	 * Cases have existed where the section information has been invalid.
3075	 * This can lead to all sorts of other, hard to diagnose errors, as
3076	 * each section is processed individually (ie. with elf_getdata()).
3077	 * Here, we carry out some address comparisons to catch a family of
3078	 * overlapping memory issues we have observed (likely, there are others
3079	 * that we have yet to discover).
3080	 *
3081	 * Note, should any memory overlap occur, obtaining any additional
3082	 * data from the file is questionable.  However, it might still be
3083	 * possible to inspect the ELF header, Programs headers, or individual
3084	 * sections, so rather than bailing on an error condition, continue
3085	 * processing to see if any data can be salvaged.
3086	 */
3087	if (shdr_ndx_arr_cnt > 1) {
3088		sort_shdr_ndx_arr_cache = cache;
3089		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
3090		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
3091	}
3092	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
3093		Cache	*_cache = cache + shdr_ndx_arr[ndx];
3094		Shdr	*shdr = _cache->c_shdr;
3095		Off	bgn1, bgn = shdr->sh_offset;
3096		Off	end1, end = shdr->sh_offset + shdr->sh_size;
3097		size_t	ndx1;
3098
3099		/*
3100		 * Check the section against all following ones, reporting
3101		 * any overlaps. Since we've sorted the sections by offset,
3102		 * we can stop after the first comparison that fails. There
3103		 * are no overlaps in a properly formed ELF file, in which
3104		 * case this algorithm runs in O(n) time. This will degenerate
3105		 * to O(n^2) for a completely broken file. Such a file is
3106		 * (1) highly unlikely, and (2) unusable, so it is reasonable
3107		 * for the analysis to take longer.
3108		 */
3109		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
3110			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
3111			Shdr	*shdr1 = _cache1->c_shdr;
3112
3113			bgn1 = shdr1->sh_offset;
3114			end1 = shdr1->sh_offset + shdr1->sh_size;
3115
3116			if (((bgn1 <= bgn) && (end1 > bgn)) ||
3117			    ((bgn1 < end) && (end1 >= end))) {
3118				(void) fprintf(stderr,
3119				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
3120				    EC_WORD(elf_ndxscn(_cache->c_scn)),
3121				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
3122				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
3123				    _cache1->c_name, EC_OFF(bgn1),
3124				    EC_OFF(end1));
3125			} else {	/* No overlap, so can stop */
3126				break;
3127			}
3128		}
3129
3130		/*
3131		 * In addition to checking for sections overlapping
3132		 * each other (done above), we should also make sure
3133		 * the section doesn't overlap the section header array.
3134		 */
3135		bgn1 = ehdr->e_shoff;
3136		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
3137
3138		if (((bgn1 <= bgn) && (end1 > bgn)) ||
3139		    ((bgn1 < end) && (end1 >= end))) {
3140			(void) fprintf(stderr,
3141			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
3142			    EC_OFF(end1),
3143			    EC_WORD(elf_ndxscn(_cache->c_scn)),
3144			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
3145		}
3146	}
3147
3148	/*
3149	 * Obtain the data for each section.
3150	 */
3151	for (ndx = 1; ndx < shnum; ndx++) {
3152		Cache	*_cache = &cache[ndx];
3153		Elf_Scn	*scn = _cache->c_scn;
3154
3155		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
3156			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3157			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
3158			    EC_WORD(elf_ndxscn(scn)));
3159		}
3160	}
3161
3162	return (1);
3163}
3164
3165
3166
3167void
3168regular(const char *file, int fd, Elf *elf, uint_t flags, int wfd)
3169{
3170	Elf_Scn		*scn;
3171	Ehdr		*ehdr;
3172	size_t		ndx, shstrndx, shnum, phnum;
3173	Shdr		*shdr;
3174	Cache		*cache;
3175	VERSYM_STATE	versym;
3176
3177	if ((ehdr = elf_getehdr(elf)) == NULL) {
3178		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
3179		return;
3180	}
3181
3182	if (elf_getshnum(elf, &shnum) == 0) {
3183		failure(file, MSG_ORIG(MSG_ELF_GETSHNUM));
3184		return;
3185	}
3186
3187	if (elf_getshstrndx(elf, &shstrndx) == 0) {
3188		failure(file, MSG_ORIG(MSG_ELF_GETSHSTRNDX));
3189		return;
3190	}
3191
3192	if (elf_getphnum(elf, &phnum) == 0) {
3193		failure(file, MSG_ORIG(MSG_ELF_GETPHNUM));
3194		return;
3195	}
3196	/*
3197	 * If the user requested section headers derived from the
3198	 * program headers (-P option) and this file doesn't have
3199	 * any program headers (i.e. ET_REL), then we can't do it.
3200	 */
3201	if ((phnum == 0) && (flags & FLG_FAKESHDR)) {
3202		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
3203		return;
3204	}
3205
3206
3207	if ((scn = elf_getscn(elf, 0)) != NULL) {
3208		if ((shdr = elf_getshdr(scn)) == NULL) {
3209			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3210			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
3211			return;
3212		}
3213	} else
3214		shdr = 0;
3215
3216	/*
3217	 * Print the elf header.
3218	 */
3219	if (flags & FLG_EHDR)
3220		Elf_ehdr(0, ehdr, shdr);
3221
3222	/*
3223	 * If the section headers or program headers have inadequate
3224	 * alignment for the class of object, print a warning. libelf
3225	 * can handle such files, but programs that use them can crash
3226	 * when they dereference unaligned items.
3227	 */
3228	if (ehdr->e_phoff & (sizeof (Addr) - 1))
3229		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
3230	if (ehdr->e_shoff & (sizeof (Addr) - 1))
3231		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
3232
3233	/*
3234	 * Print the program headers.
3235	 */
3236	if ((flags & FLG_PHDR) && (phnum != 0)) {
3237		Conv_inv_buf_t	inv_buf;
3238		Phdr		*phdr;
3239
3240		if ((phdr = elf_getphdr(elf)) == NULL) {
3241			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
3242			return;
3243		}
3244
3245		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
3246			if (!match(0, conv_phdr_type(ehdr->e_machine,
3247			    phdr->p_type, CONV_FMT_ALT_FILE, &inv_buf), ndx))
3248				continue;
3249
3250			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3251			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
3252			Elf_phdr(0, ehdr->e_machine, phdr);
3253		}
3254	}
3255
3256	/*
3257	 * Decide how to proceed if there are no sections, if there's just
3258	 * one section (the first section can act as an extension of the
3259	 * ELF header), or if only program header information was requested.
3260	 */
3261	if ((shnum <= 1) || (flags && (flags & ~(FLG_EHDR | FLG_PHDR)) == 0)) {
3262		/* If a core file, display the note and return */
3263		if ((ehdr->e_type == ET_CORE) && (flags & FLG_NOTE)) {
3264			note(0, shnum, file);
3265			return;
3266		}
3267
3268		/* If only program header info was requested, we're done */
3269		if (flags && (flags & ~(FLG_EHDR | FLG_PHDR)) == 0)
3270			return;
3271
3272		/*
3273		 * Section headers are missing. Resort to synthesizing
3274		 * section headers from the program headers.
3275		 */
3276		if ((flags & FLG_FAKESHDR) == 0) {
3277			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
3278			flags |= FLG_FAKESHDR;
3279		}
3280	}
3281
3282	/*
3283	 * Generate a cache of section headers and related information
3284	 * for use by the rest of elfdump. If requested (or the file
3285	 * contains no section headers), we generate a fake set of
3286	 * headers from the information accessible from the program headers.
3287	 * Otherwise, we use the real section headers contained in the file.
3288	 */
3289
3290	if (flags & FLG_FAKESHDR) {
3291		if (fake_shdr_cache(file, fd, elf, ehdr, &cache, &shnum) == 0)
3292			return;
3293	} else {
3294		if (shdr_cache(file, elf, ehdr, shstrndx, shnum, &cache) == 0)
3295			return;
3296	}
3297
3298	/*
3299	 * If -w was specified, find and write out the section(s) data.
3300	 */
3301	if (wfd) {
3302		for (ndx = 1; ndx < shnum; ndx++) {
3303			Cache	*_cache = &cache[ndx];
3304
3305			if (match(1, _cache->c_name, ndx) && _cache->c_data) {
3306				(void) write(wfd, _cache->c_data->d_buf,
3307				    _cache->c_data->d_size);
3308			}
3309		}
3310	}
3311
3312	if (flags & FLG_SHDR)
3313		sections(file, cache, shnum, ehdr);
3314
3315	if (flags & FLG_INTERP)
3316		interp(file, cache, shnum, phnum, elf);
3317
3318	versions(cache, shnum, file, flags, &versym);
3319
3320	if (flags & FLG_SYMBOLS)
3321		symbols(cache, shnum, ehdr, &versym, file, flags);
3322
3323	if (flags & FLG_SORT)
3324		sunw_sort(cache, shnum, ehdr, &versym, file, flags);
3325
3326	if (flags & FLG_HASH)
3327		hash(cache, shnum, file, flags);
3328
3329	if (flags & FLG_GOT)
3330		got(cache, shnum, ehdr, file, flags);
3331
3332	if (flags & FLG_GROUP)
3333		group(cache, shnum, file, flags);
3334
3335	if (flags & FLG_SYMINFO)
3336		syminfo(cache, shnum, file);
3337
3338	if (flags & FLG_RELOC)
3339		reloc(cache, shnum, ehdr, file, flags);
3340
3341	if (flags & FLG_DYNAMIC)
3342		dynamic(cache, shnum, ehdr, file);
3343
3344	if (flags & FLG_NOTE)
3345		note(cache, shnum, file);
3346
3347	if (flags & FLG_MOVE)
3348		move(cache, shnum, file, flags);
3349
3350	if (flags & FLG_CHECKSUM)
3351		checksum(elf);
3352
3353	if (flags & FLG_CAP)
3354		cap(file, cache, shnum, phnum, ehdr, elf);
3355
3356	if (flags & FLG_UNWIND)
3357		unwind(cache, shnum, phnum, ehdr, file, elf);
3358
3359
3360	/* Release the memory used to cache section headers */
3361	if (flags & FLG_FAKESHDR)
3362		fake_shdr_cache_free(cache, shnum);
3363	else
3364		free(cache);
3365}
3366