elfdump.c revision 4734:a4708faa3e85
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * Dump an elf file.
30 */
31#include	<machdep.h>
32#include	<sys/elf_386.h>
33#include	<sys/elf_amd64.h>
34#include	<sys/elf_SPARC.h>
35#include	<dwarf.h>
36#include	<unistd.h>
37#include	<errno.h>
38#include	<strings.h>
39#include	<debug.h>
40#include	<conv.h>
41#include	<msg.h>
42#include	<_elfdump.h>
43
44
45
46/*
47 * VERSYM_STATE is used to maintain information about the VERSYM section
48 * in the object being analyzed. It is filled in by versions(), and used
49 * by init_symtbl_state() when displaying symbol information.
50 *
51 * max_verndx contains the largest version index that can appear
52 * in a Versym entry. This can never be less than 1: In the case where
53 * there is no verdef/verneed sections, the [0] index is reserved
54 * for local symbols, and the [1] index for globals. If Solaris versioning
55 * rules are in effect and there is a verdef section, then the number
56 * of defined versions provides this number. If GNU versioning is in effect,
57 * then:
58 *	- If there is no verneed section, it is the same as for
59 *		Solaris versioning.
60 *	- If there is a verneed section, the vna_other field of the
61 *		Vernaux structs contain versions, and max_verndx is the
62 *		largest such index.
63 *
64 * The value of the gnu field is based on the presence of
65 * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
66 * Solaris ld does not.
67 */
68typedef struct {
69	Cache	*cache;		/* Pointer to cache entry for VERSYM */
70	Versym	*data;		/* Pointer to versym array */
71	int	gnu;		/* True if object uses GNU versioning rules */
72	int	max_verndx;	/* largest versym index value */
73} VERSYM_STATE;
74
75/*
76 * SYMTBL_STATE is used to maintain information about a single symbol
77 * table section, for use by the routines that display symbol information.
78 */
79typedef struct {
80	const char	*file;		/* Name of file */
81	Ehdr		*ehdr;		/* ELF header for file */
82	Cache		*cache;		/* Cache of all section headers */
83	Word		shnum;		/* # of sections in cache */
84	Cache		*seccache;	/* Cache of symbol table section hdr */
85	Word		secndx;		/* Index of symbol table section hdr */
86	const char	*secname;	/* Name of section */
87	uint_t		flags;		/* Command line option flags */
88	struct {			/* Extended section index data */
89		int	checked;	/* TRUE if already checked for shxndx */
90		Word	*data;		/* NULL, or extended section index */
91					/*	used for symbol table entries */
92		uint_t	n;		/* # items in shxndx.data */
93	} shxndx;
94	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
95	Sym 		*sym;		/* Array of symbols */
96	Word		symn;		/* # of symbols */
97} SYMTBL_STATE;
98
99
100
101/*
102 * Focal point for verifying symbol names.
103 */
104static const char *
105string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
106{
107	/*
108	 * If an error in this routine is due to a property of the string
109	 * section, as opposed to a bad offset into the section (a property of
110	 * the referencing section), then we will detect the same error on
111	 * every call involving those sections. We use these static variables
112	 * to retain the information needed to only issue each such error once.
113	 */
114	static Cache	*last_refsec;	/* Last referencing section seen */
115	static int	strsec_err;	/* True if error issued */
116
117	const char	*strs;
118	Word		strn;
119
120	if (strsec->c_data == NULL)
121		return (NULL);
122
123	strs = (char *)strsec->c_data->d_buf;
124	strn = strsec->c_data->d_size;
125
126	/*
127	 * We only print a diagnostic regarding a bad string table once per
128	 * input section being processed. If the refsec has changed, reset
129	 * our retained error state.
130	 */
131	if (last_refsec != refsec) {
132		last_refsec = refsec;
133		strsec_err = 0;
134	}
135
136	/* Verify that strsec really is a string table */
137	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
138		if (!strsec_err) {
139			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
140			    file, strsec->c_ndx, refsec->c_ndx);
141			strsec_err = 1;
142		}
143		return (MSG_INTL(MSG_STR_UNKNOWN));
144	}
145
146	/*
147	 * Is the string table offset within range of the available strings?
148	 */
149	if (name >= strn) {
150		/*
151		 * Do we have a empty string table?
152		 */
153		if (strs == 0) {
154			if (!strsec_err) {
155				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
156				    file, strsec->c_name);
157				strsec_err = 1;
158			}
159		} else {
160			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
161			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
162			    EC_WORD(name), EC_WORD(strn - 1));
163		}
164
165		/*
166		 * Return the empty string so that the calling function can
167		 * continue it's output diagnostics.
168		 */
169		return (MSG_INTL(MSG_STR_UNKNOWN));
170	}
171	return (strs + name);
172}
173
174/*
175 * Relocations can reference section symbols and standard symbols.  If the
176 * former, establish the section name.
177 */
178static const char *
179relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
180    Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file,
181    uint_t flags)
182{
183	Sym	*sym;
184
185	if (symndx >= symnum) {
186		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
187		    file, EC_WORD(symndx), EC_WORD(relndx));
188		return (MSG_INTL(MSG_STR_UNKNOWN));
189	}
190
191	sym = (Sym *)(syms + symndx);
192
193	/*
194	 * If the symbol represents a section offset construct an appropriate
195	 * string.
196	 */
197	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) && (sym->st_name == 0)) {
198		if (flags & FLG_LONGNAME)
199			(void) snprintf(secstr, secsz,
200			    MSG_INTL(MSG_STR_L_SECTION),
201			    cache[sym->st_shndx].c_name);
202		else
203			(void) snprintf(secstr, secsz,
204			    MSG_INTL(MSG_STR_SECTION),
205			    cache[sym->st_shndx].c_name);
206		return ((const char *)secstr);
207	}
208
209	return (string(csec, symndx, strsec, file, sym->st_name));
210}
211
212/*
213 * Focal point for establishing a string table section.  Data such as the
214 * dynamic information simply points to a string table.  Data such as
215 * relocations, reference a symbol table, which in turn is associated with a
216 * string table.
217 */
218static int
219stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
220    Word *symnum, Cache **symsec, Cache **strsec)
221{
222	Shdr	*shdr = cache[ndx].c_shdr;
223
224	if (symtab) {
225		/*
226		 * Validate the symbol table section.
227		 */
228		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
229			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
230			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
231			return (0);
232		}
233		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
234			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
235			    file, cache[ndx].c_name);
236			return (0);
237		}
238
239		/*
240		 * Obtain, and verify the symbol table data.
241		 */
242		if ((cache[ndx].c_data == NULL) ||
243		    (cache[ndx].c_data->d_buf == NULL)) {
244			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
245			    file, cache[ndx].c_name);
246			return (0);
247		}
248
249		/*
250		 * Establish the string table index.
251		 */
252		ndx = shdr->sh_link;
253		shdr = cache[ndx].c_shdr;
254
255		/*
256		 * Return symbol table information.
257		 */
258		if (symnum)
259			*symnum = (shdr->sh_size / shdr->sh_entsize);
260		if (symsec)
261			*symsec = &cache[ndx];
262	}
263
264	/*
265	 * Validate the associated string table section.
266	 */
267	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
268		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
269		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
270		return (0);
271	}
272
273	if (strsec)
274		*strsec = &cache[shdr->sh_link];
275
276	return (1);
277}
278
279/*
280 * Lookup a symbol and set Sym accordingly.
281 */
282static int
283symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
284    Cache *symtab, const char *file)
285{
286	Shdr	*shdr;
287	Word	symn, cnt;
288	Sym	*syms;
289
290	if (symtab == 0)
291		return (0);
292
293	shdr = symtab->c_shdr;
294
295	/*
296	 * Determine the symbol data and number.
297	 */
298	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
299		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
300		    file, symtab->c_name);
301		return (0);
302	}
303	if (symtab->c_data == NULL)
304		return (0);
305
306	/* LINTED */
307	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
308	syms = (Sym *)symtab->c_data->d_buf;
309
310	/*
311	 * Get the associated string table section.
312	 */
313	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
314		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
315		    file, symtab->c_name, EC_WORD(shdr->sh_link));
316		return (0);
317	}
318
319	/*
320	 * Loop through the symbol table to find a match.
321	 */
322	for (cnt = 0; cnt < symn; syms++, cnt++) {
323		const char	*symname;
324
325		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
326		    syms->st_name);
327
328		if (symname && (strcmp(name, symname) == 0)) {
329			*sym = syms;
330			return (1);
331		}
332	}
333	return (0);
334}
335
336/*
337 * Print section headers.
338 */
339static void
340sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr)
341{
342	size_t	seccnt;
343
344	for (seccnt = 1; seccnt < shnum; seccnt++) {
345		Cache		*_cache = &cache[seccnt];
346		Shdr		*shdr = _cache->c_shdr;
347		const char	*secname = _cache->c_name;
348
349		/*
350		 * Although numerous section header entries can be zero, it's
351		 * usually a sign of trouble if the type is zero.
352		 */
353		if (shdr->sh_type == 0) {
354			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
355			    file, secname, EC_WORD(shdr->sh_type));
356		}
357
358		if (!match(0, secname, seccnt))
359			continue;
360
361		/*
362		 * Identify any sections that are suspicious.  A .got section
363		 * shouldn't exist in a relocatable object.
364		 */
365		if (ehdr->e_type == ET_REL) {
366			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
367			    MSG_ELF_GOT_SIZE) == 0) {
368				(void) fprintf(stderr,
369				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
370				    secname);
371			}
372		}
373
374		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
375		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
376		Elf_shdr(0, ehdr->e_machine, shdr);
377	}
378}
379
380/*
381 * A couple of instances of unwind data are printed as tables of 8 data items
382 * expressed as 0x?? integers.
383 */
384#define	UNWINDTBLSZ	10 + (8 * 5) + 1
385
386static void
387unwindtbl(uint64_t *ndx, uint_t len, uchar_t *data, uint64_t doff,
388    const char *msg, const char *pre, size_t plen)
389{
390	char	buffer[UNWINDTBLSZ];
391	uint_t	boff = plen, cnt = 0;
392
393	dbg_print(0, msg);
394	(void) strncpy(buffer, pre, UNWINDTBLSZ);
395
396	while (*ndx < (len + 4)) {
397		if (cnt == 8) {
398			dbg_print(0, buffer);
399			boff = plen;
400			cnt = 0;
401		}
402		(void) snprintf(&buffer[boff], UNWINDTBLSZ - boff,
403		    MSG_ORIG(MSG_UNW_TBLENTRY), data[doff + (*ndx)++]);
404		boff += 5;
405		cnt++;
406	}
407	if (cnt)
408		dbg_print(0, buffer);
409}
410
411/*
412 * Obtain a specified Phdr entry.
413 */
414static Phdr *
415getphdr(Word phnum, Word type, const char *file, Elf *elf)
416{
417	Word	cnt;
418	Phdr	*phdr;
419
420	if ((phdr = elf_getphdr(elf)) == NULL) {
421		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
422		return (0);
423	}
424
425	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
426		if (phdr->p_type == type)
427			return (phdr);
428	}
429	return (0);
430}
431
432static void
433unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, const char *file,
434    Elf *elf)
435{
436	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
437	Word	cnt;
438	Phdr	*uphdr = 0;
439
440	/*
441	 * For the moment - UNWIND is only relevant for a AMD64 object.
442	 */
443	if (ehdr->e_machine != EM_AMD64)
444		return;
445
446	if (phnum)
447		uphdr = getphdr(phnum, PT_SUNW_UNWIND, file, elf);
448
449	for (cnt = 1; cnt < shnum; cnt++) {
450		Cache		*_cache = &cache[cnt];
451		Shdr		*shdr = _cache->c_shdr;
452		uchar_t		*data;
453		size_t		datasize;
454		uint64_t	off, ndx, frame_ptr, fde_cnt, tabndx;
455		uint_t		vers, frame_ptr_enc, fde_cnt_enc, table_enc;
456
457		/*
458		 * AMD64 - this is a strmcp() just to find the gcc produced
459		 * sections.  Soon gcc should be setting the section type - and
460		 * we'll not need this strcmp().
461		 */
462		if ((shdr->sh_type != SHT_AMD64_UNWIND) &&
463		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
464		    MSG_SCN_FRM_SIZE) != 0) &&
465		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
466		    MSG_SCN_FRMHDR_SIZE) != 0))
467			continue;
468
469		if (!match(0, _cache->c_name, cnt))
470			continue;
471
472		if (_cache->c_data == NULL)
473			continue;
474
475		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
476		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
477
478		data = (uchar_t *)(_cache->c_data->d_buf);
479		datasize = _cache->c_data->d_size;
480		off = 0;
481
482		/*
483		 * Is this a .eh_frame_hdr
484		 */
485		if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
486		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
487		    MSG_SCN_FRMHDR_SIZE) == 0)) {
488			dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
489			ndx = 0;
490
491			vers = data[ndx++];
492			frame_ptr_enc = data[ndx++];
493			fde_cnt_enc = data[ndx++];
494			table_enc = data[ndx++];
495
496			dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
497
498			frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
499			    ehdr->e_ident, shdr->sh_addr + ndx);
500
501			dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
502			    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
503			    EC_XWORD(frame_ptr));
504
505			fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
506			    ehdr->e_ident, shdr->sh_addr + ndx);
507
508			dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
509			    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
510			    EC_XWORD(fde_cnt));
511			dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
512			    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
513			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
514			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
515
516			for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
517				dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
518				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
519				    table_enc, ehdr->e_ident, shdr->sh_addr)),
520				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
521				    table_enc, ehdr->e_ident, shdr->sh_addr)));
522			}
523			continue;
524		}
525
526		/*
527		 * Walk the Eh_frame's
528		 */
529		while (off < datasize) {
530			uint_t		cieid, cielength, cieversion;
531			uint_t		cieretaddr;
532			int		cieRflag, cieLflag, ciePflag, cieZflag;
533			uint_t		cieaugndx, length, id;
534			uint64_t	ciecalign, ciedalign;
535			char		*cieaugstr;
536
537			ndx = 0;
538			/*
539			 * extract length in lsb format
540			 */
541			length = LSB32EXTRACT(data + off + ndx);
542			ndx += 4;
543
544			/*
545			 * extract CIE id in lsb format
546			 */
547			id = LSB32EXTRACT(data + off + ndx);
548			ndx += 4;
549
550			/*
551			 * A CIE record has a id of '0', otherwise this is a
552			 * FDE entry and the 'id' is the CIE pointer.
553			 */
554			if (id == 0) {
555				uint64_t    persVal;
556
557				cielength = length;
558				cieid = id;
559				cieLflag = ciePflag = cieRflag = cieZflag = 0;
560
561				dbg_print(0, MSG_ORIG(MSG_UNW_CIE),
562				    EC_XWORD(shdr->sh_addr + off));
563				dbg_print(0, MSG_ORIG(MSG_UNW_CIELNGTH),
564				    cielength, cieid);
565
566				cieversion = data[off + ndx];
567				ndx += 1;
568				cieaugstr = (char *)(&data[off + ndx]);
569				ndx += strlen(cieaugstr) + 1;
570
571				dbg_print(0, MSG_ORIG(MSG_UNW_CIEVERS),
572				    cieversion, cieaugstr);
573
574				ciecalign = uleb_extract(&data[off], &ndx);
575				ciedalign = sleb_extract(&data[off], &ndx);
576				cieretaddr = data[off + ndx];
577				ndx += 1;
578
579				dbg_print(0, MSG_ORIG(MSG_UNW_CIECALGN),
580				    EC_XWORD(ciecalign), EC_XWORD(ciedalign),
581				    cieretaddr);
582
583				if (cieaugstr[0])
584					dbg_print(0,
585					    MSG_ORIG(MSG_UNW_CIEAXVAL));
586
587				for (cieaugndx = 0; cieaugstr[cieaugndx];
588				    cieaugndx++) {
589					uint_t	val;
590
591					switch (cieaugstr[cieaugndx]) {
592					case 'z':
593						val = uleb_extract(&data[off],
594						    &ndx);
595						dbg_print(0,
596						    MSG_ORIG(MSG_UNW_CIEAXSIZ),
597						    val);
598						cieZflag = 1;
599						break;
600					case 'P':
601						ciePflag = data[off + ndx];
602						ndx += 1;
603
604						persVal = dwarf_ehe_extract(
605						    &data[off], &ndx, ciePflag,
606						    ehdr->e_ident,
607						    shdr->sh_addr + off + ndx);
608						dbg_print(0,
609						    MSG_ORIG(MSG_UNW_CIEAXPERS),
610						    ciePflag,
611						    conv_dwarf_ehe(ciePflag,
612						    &dwarf_ehe_buf),
613						    EC_XWORD(persVal));
614						break;
615					case 'R':
616						val = data[off + ndx];
617						ndx += 1;
618						dbg_print(0,
619						    MSG_ORIG(MSG_UNW_CIEAXCENC),
620						    val, conv_dwarf_ehe(val,
621						    &dwarf_ehe_buf));
622						cieRflag = val;
623						break;
624					case 'L':
625						val = data[off + ndx];
626						ndx += 1;
627						dbg_print(0,
628						    MSG_ORIG(MSG_UNW_CIEAXLSDA),
629						    val, conv_dwarf_ehe(val,
630						    &dwarf_ehe_buf));
631						cieLflag = val;
632						break;
633					default:
634						dbg_print(0,
635						    MSG_ORIG(MSG_UNW_CIEAXUNEC),
636						    cieaugstr[cieaugndx]);
637						break;
638					}
639				}
640				if ((cielength + 4) > ndx)
641					unwindtbl(&ndx, cielength, data, off,
642					    MSG_ORIG(MSG_UNW_CIECFI),
643					    MSG_ORIG(MSG_UNW_CIEPRE),
644					    MSG_UNW_CIEPRE_SIZE);
645				off += cielength + 4;
646
647			} else {
648				uint_t	    fdelength = length;
649				int	    fdecieptr = id;
650				uint64_t    fdeinitloc, fdeaddrrange;
651
652				dbg_print(0, MSG_ORIG(MSG_UNW_FDE),
653				    EC_XWORD(shdr->sh_addr + off));
654				dbg_print(0, MSG_ORIG(MSG_UNW_FDELNGTH),
655				    fdelength, fdecieptr);
656
657				fdeinitloc = dwarf_ehe_extract(&data[off],
658				    &ndx, cieRflag, ehdr->e_ident,
659				    shdr->sh_addr + off + ndx);
660				fdeaddrrange = dwarf_ehe_extract(&data[off],
661				    &ndx, (cieRflag & ~DW_EH_PE_pcrel),
662				    ehdr->e_ident,
663				    shdr->sh_addr + off + ndx);
664
665				dbg_print(0, MSG_ORIG(MSG_UNW_FDEINITLOC),
666				    EC_XWORD(fdeinitloc),
667				    EC_XWORD(fdeaddrrange));
668
669				if (cieaugstr[0])
670					dbg_print(0,
671					    MSG_ORIG(MSG_UNW_FDEAXVAL));
672				if (cieZflag) {
673					uint64_t    val;
674					val = uleb_extract(&data[off], &ndx);
675					dbg_print(0,
676					    MSG_ORIG(MSG_UNW_FDEAXSIZE),
677					    EC_XWORD(val));
678					if (val & cieLflag) {
679						fdeinitloc = dwarf_ehe_extract(
680						    &data[off], &ndx, cieLflag,
681						    ehdr->e_ident,
682						    shdr->sh_addr + off + ndx);
683						dbg_print(0,
684						    MSG_ORIG(MSG_UNW_FDEAXLSDA),
685						    EC_XWORD(val));
686					}
687				}
688				if ((fdelength + 4) > ndx)
689					unwindtbl(&ndx, fdelength, data, off,
690					    MSG_ORIG(MSG_UNW_FDECFI),
691					    MSG_ORIG(MSG_UNW_FDEPRE),
692					    MSG_UNW_FDEPRE_SIZE);
693				off += fdelength + 4;
694			}
695		}
696	}
697}
698
699/*
700 * Print the hardware/software capabilities.  For executables and shared objects
701 * this should be accompanied with a program header.
702 */
703static void
704cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
705    Elf *elf)
706{
707	Word		cnt;
708	Shdr		*cshdr = 0;
709	Cache		*ccache;
710	Off		cphdr_off = 0;
711	Xword		cphdr_sz;
712
713	/*
714	 * Determine if a hardware/software capabilities header exists.
715	 */
716	if (phnum) {
717		Phdr	*phdr;
718
719		if ((phdr = elf_getphdr(elf)) == NULL) {
720			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
721			return;
722		}
723
724		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
725			if (phdr->p_type == PT_SUNWCAP) {
726				cphdr_off = phdr->p_offset;
727				cphdr_sz = phdr->p_filesz;
728				break;
729			}
730		}
731	}
732
733	/*
734	 * Determine if a hardware/software capabilities section exists.
735	 */
736	for (cnt = 1; cnt < shnum; cnt++) {
737		Cache	*_cache = &cache[cnt];
738		Shdr	*shdr = _cache->c_shdr;
739
740		if (shdr->sh_type != SHT_SUNW_cap)
741			continue;
742
743		if (cphdr_off && ((cphdr_off < shdr->sh_offset) ||
744		    (cphdr_off + cphdr_sz) > (shdr->sh_offset + shdr->sh_size)))
745			continue;
746
747		if (_cache->c_data == NULL)
748			continue;
749
750		ccache = _cache;
751		cshdr = shdr;
752		break;
753	}
754
755	if ((cshdr == 0) && (cphdr_off == 0))
756		return;
757
758	/*
759	 * Print the hardware/software capabilities section.
760	 */
761	if (cshdr) {
762		Word	ndx, capn;
763		Cap	*cap = (Cap *)ccache->c_data->d_buf;
764
765		if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
766			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
767			    file, ccache->c_name);
768			return;
769		}
770
771		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
772		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
773
774		Elf_cap_title(0);
775
776		capn = (Word)(cshdr->sh_size / cshdr->sh_entsize);
777
778		for (ndx = 0; ndx < capn; cap++, ndx++) {
779			if (cap->c_tag != CA_SUNW_NULL)
780				Elf_cap_entry(0, cap, ndx, ehdr->e_machine);
781		}
782	} else
783		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
784
785	/*
786	 * If this object is an executable or shared object, then the
787	 * hardware/software capabilities section should have an accompanying
788	 * program header.
789	 */
790	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
791		if (cphdr_off == 0)
792			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
793			    file, ccache->c_name);
794		else if ((cphdr_off != cshdr->sh_offset) ||
795		    (cphdr_sz != cshdr->sh_size))
796			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
797			    file, ccache->c_name);
798	}
799}
800
801/*
802 * Print the interpretor.
803 */
804static void
805interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
806{
807	Word	cnt;
808	Shdr	*ishdr = 0;
809	Cache	*icache;
810	Off	iphdr_off = 0;
811	Xword	iphdr_fsz;
812
813	/*
814	 * Determine if an interp header exists.
815	 */
816	if (phnum) {
817		Phdr	*phdr;
818
819		if ((phdr = getphdr(phnum, PT_INTERP, file, elf)) != 0) {
820			iphdr_off = phdr->p_offset;
821			iphdr_fsz = phdr->p_filesz;
822		}
823	}
824
825	if (iphdr_off == 0)
826		return;
827
828	/*
829	 * Determine if an interp section exists.
830	 */
831	for (cnt = 1; cnt < shnum; cnt++) {
832		Cache	*_cache = &cache[cnt];
833		Shdr	*shdr = _cache->c_shdr;
834
835		/*
836		 * Scan sections to find a section which contains the PT_INTERP
837		 * string.  The target section can't be in a NOBITS section.
838		 */
839		if ((shdr->sh_type == SHT_NOBITS) ||
840		    (iphdr_off < shdr->sh_offset) ||
841		    (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
842			continue;
843
844		icache = _cache;
845		ishdr = shdr;
846		break;
847	}
848
849	/*
850	 * Print the interpreter string based on the offset defined in the
851	 * program header, as this is the offset used by the kernel.
852	 */
853	if (ishdr && icache->c_data) {
854		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
855		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
856		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
857		    (char *)icache->c_data->d_buf +
858		    (iphdr_off - ishdr->sh_offset));
859	} else
860		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
861
862	/*
863	 * If there are any inconsistences between the program header and
864	 * section information, flag them.
865	 */
866	if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
867	    (iphdr_fsz != ishdr->sh_size))) {
868		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
869		    icache->c_name);
870	}
871}
872
873/*
874 * Print the syminfo section.
875 */
876static void
877syminfo(Cache *cache, Word shnum, const char *file)
878{
879	Shdr		*infoshdr;
880	Syminfo		*info;
881	Sym		*syms;
882	Dyn		*dyns;
883	Word		infonum, cnt, ndx, symnum;
884	Cache		*infocache = 0, *symsec, *strsec;
885
886	for (cnt = 1; cnt < shnum; cnt++) {
887		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
888			infocache = &cache[cnt];
889			break;
890		}
891	}
892	if (infocache == 0)
893		return;
894
895	infoshdr = infocache->c_shdr;
896	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
897		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
898		    file, infocache->c_name);
899		return;
900	}
901	if (infocache->c_data == NULL)
902		return;
903
904	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
905	info = (Syminfo *)infocache->c_data->d_buf;
906
907	/*
908	 * Get the data buffer of the associated dynamic section.
909	 */
910	if ((infoshdr->sh_info == 0) || (infoshdr->sh_info >= shnum)) {
911		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
912		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
913		return;
914	}
915	if (cache[infoshdr->sh_info].c_data == NULL)
916		return;
917
918	dyns = cache[infoshdr->sh_info].c_data->d_buf;
919	if (dyns == 0) {
920		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
921		    file, cache[infoshdr->sh_info].c_name);
922		return;
923	}
924
925	/*
926	 * Get the data buffer for the associated symbol table and string table.
927	 */
928	if (stringtbl(cache, 1, cnt, shnum, file,
929	    &symnum, &symsec, &strsec) == 0)
930		return;
931
932	syms = symsec->c_data->d_buf;
933
934	/*
935	 * Loop through the syminfo entries.
936	 */
937	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
938	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
939	Elf_syminfo_title(0);
940
941	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
942		Sym 		*sym;
943		const char	*needed = 0, *name;
944
945		if ((info->si_flags == 0) && (info->si_boundto == 0))
946			continue;
947
948		sym = &syms[ndx];
949		name = string(infocache, ndx, strsec, file, sym->st_name);
950
951		if (info->si_boundto < SYMINFO_BT_LOWRESERVE) {
952			Dyn	*dyn = &dyns[info->si_boundto];
953
954			needed = string(infocache, info->si_boundto,
955			    strsec, file, dyn->d_un.d_val);
956		}
957		Elf_syminfo_entry(0, ndx, info, name, needed);
958	}
959}
960
961/*
962 * Print version definition section entries.
963 */
964static void
965version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
966    const char *file)
967{
968	Word	cnt;
969	char	index[MAXNDXSIZE];
970
971	Elf_ver_def_title(0);
972
973	for (cnt = 1; cnt <= vdf_num; cnt++,
974	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
975		const char	*name, *dep;
976		Half		vcnt = vdf->vd_cnt - 1;
977		Half		ndx = vdf->vd_ndx;
978		Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
979
980		/*
981		 * Obtain the name and first dependency (if any).
982		 */
983		name = string(vcache, cnt, scache, file, vdap->vda_name);
984		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
985		if (vcnt)
986			dep = string(vcache, cnt, scache, file, vdap->vda_name);
987		else
988			dep = MSG_ORIG(MSG_STR_EMPTY);
989
990		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
991		    EC_XWORD(ndx));
992		Elf_ver_line_1(0, index, name, dep,
993		    conv_ver_flags(vdf->vd_flags));
994
995		/*
996		 * Print any additional dependencies.
997		 */
998		if (vcnt) {
999			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1000			for (vcnt--; vcnt; vcnt--,
1001			    vdap = (Verdaux *)((uintptr_t)vdap +
1002			    vdap->vda_next)) {
1003				dep = string(vcache, cnt, scache, file,
1004				    vdap->vda_name);
1005				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
1006			}
1007		}
1008	}
1009}
1010
1011/*
1012 * Print version needed section entries.
1013 *
1014 * entry:
1015 *	vnd - Address of verneed data
1016 *	vnd_num - # of Verneed entries
1017 *	vcache - Cache of verneed section being processed
1018 *	scache - Cache of associated string table section
1019 *	file - Name of object being processed.
1020 *	versym - Information about versym section
1021 *
1022 * exit:
1023 *	The versions have been printed. If GNU style versioning
1024 *	is in effect, versym->max_verndx has been updated to
1025 *	contain the largest version index seen.
1026 */
1027static void
1028version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
1029    const char *file, VERSYM_STATE *versym)
1030{
1031	Word		cnt;
1032	char		index[MAXNDXSIZE];
1033	const char	*index_str;
1034
1035	Elf_ver_need_title(0, versym->gnu);
1036
1037	/*
1038	 * The versym section in an object that follows Solaris versioning
1039	 * rules contains indexes into the verdef section. Symbols defined
1040	 * in other objects (UNDEF) are given a version of 0, indicating that
1041	 * they are not defined by this file, and the Verneed entries do not
1042	 * have associated version indexes. For these reasons, we do not
1043	 * display a version index for Solaris Verneed sections.
1044	 *
1045	 * The GNU versioning rules are different: Symbols defined in other
1046	 * objects receive a version index in the range above those defined
1047	 * by the Verdef section, and the vna_other field of the Vernaux
1048	 * structs inside the Verneed section contain the version index for
1049	 * that item. We therefore  display the index when showing the
1050	 * contents of a GNU Verneed section. You should not expect these
1051	 * indexes to appear in sorted order --- it seems that the GNU ld
1052	 * assigns the versions as symbols are encountered during linking,
1053	 * and then the results are assembled into the Verneed section
1054	 * afterwards.
1055	 */
1056	if (versym->gnu) {
1057		index_str = index;
1058	} else {
1059		/* For Solaris versioning, display a NULL string */
1060		index_str = MSG_ORIG(MSG_STR_EMPTY);
1061	}
1062
1063	for (cnt = 1; cnt <= vnd_num; cnt++,
1064	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1065		const char	*name, *dep;
1066		Half		vcnt = vnd->vn_cnt;
1067		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1068
1069		/*
1070		 * Obtain the name of the needed file and the version name
1071		 * within it that we're dependent on.  Note that the count
1072		 * should be at least one, otherwise this is a pretty bogus
1073		 * entry.
1074		 */
1075		name = string(vcache, cnt, scache, file, vnd->vn_file);
1076		if (vcnt)
1077			dep = string(vcache, cnt, scache, file, vnap->vna_name);
1078		else
1079			dep = MSG_INTL(MSG_STR_NULL);
1080
1081		if (versym->gnu) {
1082			/* Format the version index value */
1083			(void) snprintf(index, MAXNDXSIZE,
1084			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
1085			if (vnap->vna_other > versym->max_verndx)
1086				versym->max_verndx = vnap->vna_other;
1087		}
1088		Elf_ver_line_1(0, index_str, name, dep,
1089		    conv_ver_flags(vnap->vna_flags));
1090
1091		/*
1092		 * Print any additional version dependencies.
1093		 */
1094		if (vcnt) {
1095			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1096			for (vcnt--; vcnt; vcnt--,
1097			    vnap = (Vernaux *)((uintptr_t)vnap +
1098			    vnap->vna_next)) {
1099				dep = string(vcache, cnt, scache, file,
1100				    vnap->vna_name);
1101				if (versym->gnu) {
1102					/* Format the next index value */
1103					(void) snprintf(index, MAXNDXSIZE,
1104					    MSG_ORIG(MSG_FMT_INDEX),
1105					    EC_XWORD(vnap->vna_other));
1106					Elf_ver_line_1(0, index_str,
1107					    MSG_ORIG(MSG_STR_EMPTY), dep,
1108					    conv_ver_flags(vnap->vna_flags));
1109					if (vnap->vna_other >
1110					    versym->max_verndx)
1111						versym->max_verndx =
1112						    vnap->vna_other;
1113				} else {
1114					Elf_ver_line_3(0,
1115					    MSG_ORIG(MSG_STR_EMPTY), dep,
1116					    conv_ver_flags(vnap->vna_flags));
1117				}
1118			}
1119		}
1120	}
1121}
1122
1123/*
1124 * Compute the max_verndx value for a GNU style object with
1125 * a Verneed section. This is only needed if version_need() is not
1126 * called.
1127 *
1128 * entry:
1129 *	vnd - Address of verneed data
1130 *	vnd_num - # of Verneed entries
1131 *	versym - Information about versym section
1132 *
1133 * exit:
1134 *	versym->max_verndx has been updated to contain the largest
1135 *	version index seen.
1136 */
1137static void
1138update_gnu_max_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
1139{
1140	Word		cnt;
1141
1142	for (cnt = 1; cnt <= vnd_num; cnt++,
1143	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1144		Half	vcnt = vnd->vn_cnt;
1145		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1146
1147		if (vnap->vna_other > versym->max_verndx)
1148			versym->max_verndx = vnap->vna_other;
1149
1150		/*
1151		 * Check any additional version dependencies.
1152		 */
1153		if (vcnt) {
1154			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1155			for (vcnt--; vcnt; vcnt--,
1156			    vnap = (Vernaux *)((uintptr_t)vnap +
1157			    vnap->vna_next)) {
1158				if (vnap->vna_other > versym->max_verndx)
1159					versym->max_verndx = vnap->vna_other;
1160			}
1161		}
1162	}
1163}
1164
1165/*
1166 * Display version section information if the flags require it.
1167 * Return version information needed by other output.
1168 *
1169 * entry:
1170 *	cache - Cache of all section headers
1171 *	shnum - # of sections in cache
1172 *	file - Name of file
1173 *	flags - Command line option flags
1174 *	versym - VERSYM_STATE block to be filled in.
1175 */
1176static void
1177versions(Cache *cache, Word shnum, const char *file, uint_t flags,
1178    VERSYM_STATE *versym)
1179{
1180	GElf_Word	cnt;
1181	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
1182
1183
1184	/* Gather information about the version sections */
1185	bzero(versym, sizeof (*versym));
1186	versym->max_verndx = 1;
1187	for (cnt = 1; cnt < shnum; cnt++) {
1188		Cache		*_cache = &cache[cnt];
1189		Shdr		*shdr = _cache->c_shdr;
1190		Dyn		*dyn;
1191		ulong_t		numdyn;
1192
1193		switch (shdr->sh_type) {
1194		case SHT_DYNAMIC:
1195			/*
1196			 * The GNU ld puts a DT_VERSYM entry in the dynamic
1197			 * section so that the runtime linker can use it to
1198			 * implement their versioning rules. They allow multiple
1199			 * incompatible functions with the same name to exist
1200			 * in different versions. The Solaris ld does not
1201			 * support this mechanism, and as such, does not
1202			 * produce DT_VERSYM. We use this fact to determine
1203			 * which ld produced this object, and how to interpret
1204			 * the version values.
1205			 */
1206			if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
1207			    (_cache->c_data == NULL))
1208				continue;
1209			numdyn = shdr->sh_size / shdr->sh_entsize;
1210			dyn = (Dyn *)_cache->c_data->d_buf;
1211			for (; numdyn-- > 0; dyn++)
1212				if (dyn->d_tag == DT_VERSYM) {
1213					versym->gnu = 1;
1214					break;
1215				}
1216			break;
1217
1218		case SHT_SUNW_versym:
1219			/* Record data address for later symbol processing */
1220			if (_cache->c_data != NULL) {
1221				versym->cache = _cache;
1222				versym->data = _cache->c_data->d_buf;
1223				continue;
1224			}
1225			break;
1226
1227		case SHT_SUNW_verdef:
1228		case SHT_SUNW_verneed:
1229			/*
1230			 * Ensure the data is non-NULL and the number
1231			 * of items is non-zero. Otherwise, we don't
1232			 * understand the section, and will not use it.
1233			 */
1234			if ((_cache->c_data == NULL) ||
1235			    (_cache->c_data->d_buf == NULL)) {
1236				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1237				    file, _cache->c_name);
1238				continue;
1239			}
1240			if (shdr->sh_info == 0) {
1241				(void) fprintf(stderr,
1242				    MSG_INTL(MSG_ERR_BADSHINFO),
1243				    file, _cache->c_name,
1244				    EC_WORD(shdr->sh_info));
1245				continue;
1246			}
1247
1248			/* Make sure the string table index is in range */
1249			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1250				(void) fprintf(stderr,
1251				    MSG_INTL(MSG_ERR_BADSHLINK), file,
1252				    _cache->c_name, EC_WORD(shdr->sh_link));
1253				continue;
1254			}
1255
1256			/*
1257			 * The section is usable. Save the cache entry.
1258			 */
1259			if (shdr->sh_type == SHT_SUNW_verdef) {
1260				verdef_cache = _cache;
1261				/*
1262				 * Under Solaris rules, if there is a verdef
1263				 * section, the max versym index is number
1264				 * of version definitions it supplies.
1265				 */
1266				versym->max_verndx = shdr->sh_info;
1267			} else {
1268				verneed_cache = _cache;
1269			}
1270			break;
1271		}
1272	}
1273
1274	if ((flags & FLG_VERSIONS) == 0) {
1275		/*
1276		 * If GNU versioning applies to this object, and there
1277		 * is a Verneed section, then examine it to determine
1278		 * the maximum Versym version index for this file.
1279		 */
1280		if ((versym->gnu) && (verneed_cache != NULL))
1281			update_gnu_max_verndx(
1282			    (Verneed *)verneed_cache->c_data->d_buf,
1283			    verneed_cache->c_shdr->sh_info, versym);
1284		return;
1285	}
1286
1287	/*
1288	 * Now that all the information is available, display the
1289	 * Verdef and Verneed section contents.
1290	 */
1291	if (verdef_cache != NULL) {
1292		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1293		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
1294		    verdef_cache->c_name);
1295		version_def((Verdef *)verdef_cache->c_data->d_buf,
1296		    verdef_cache->c_shdr->sh_info, verdef_cache,
1297		    &cache[verdef_cache->c_shdr->sh_link], file);
1298	}
1299	if (verneed_cache != NULL) {
1300		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1301		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
1302		    verneed_cache->c_name);
1303		/*
1304		 * If GNU versioning applies to this object, version_need()
1305		 * will update versym->max_verndx, and it is not
1306		 * necessary to call update_gnu_max_verndx().
1307		 */
1308		version_need((Verneed *)verneed_cache->c_data->d_buf,
1309		    verneed_cache->c_shdr->sh_info, verneed_cache,
1310		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
1311	}
1312}
1313
1314/*
1315 * Initialize a symbol table state structure
1316 *
1317 * entry:
1318 *	state - State structure to be initialized
1319 *	cache - Cache of all section headers
1320 *	shnum - # of sections in cache
1321 *	secndx - Index of symbol table section
1322 *	ehdr - ELF header for file
1323 *	versym - Information about versym section
1324 *	file - Name of file
1325 *	flags - Command line option flags
1326 */
1327static int
1328init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
1329    Ehdr *ehdr, VERSYM_STATE *versym, const char *file, uint_t flags)
1330{
1331	Shdr *shdr;
1332
1333	state->file = file;
1334	state->ehdr = ehdr;
1335	state->cache = cache;
1336	state->shnum = shnum;
1337	state->seccache = &cache[secndx];
1338	state->secndx = secndx;
1339	state->secname = state->seccache->c_name;
1340	state->flags = flags;
1341	state->shxndx.checked = 0;
1342	state->shxndx.data = NULL;
1343	state->shxndx.n = 0;
1344
1345	shdr = state->seccache->c_shdr;
1346
1347	/*
1348	 * Check the symbol data and per-item size.
1349	 */
1350	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1351		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1352		    file, state->secname);
1353		return (0);
1354	}
1355	if (state->seccache->c_data == NULL)
1356		return (0);
1357
1358	/* LINTED */
1359	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1360	state->sym = (Sym *)state->seccache->c_data->d_buf;
1361
1362	/*
1363	 * Check associated string table section.
1364	 */
1365	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1366		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1367		    file, state->secname, EC_WORD(shdr->sh_link));
1368		return (0);
1369	}
1370
1371	/*
1372	 * Determine if there is a associated Versym section
1373	 * with this Symbol Table.
1374	 */
1375	if (versym->cache &&
1376	    (versym->cache->c_shdr->sh_link == state->secndx))
1377		state->versym = versym;
1378	else
1379		state->versym = NULL;
1380
1381
1382	return (1);
1383}
1384
1385/*
1386 * Determine the extended section index used for symbol tables entries.
1387 */
1388static void
1389symbols_getxindex(SYMTBL_STATE * state)
1390{
1391	uint_t	symn;
1392	Word	symcnt;
1393
1394	state->shxndx.checked = 1;   /* Note that we've been called */
1395	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1396		Cache	*_cache = &state->cache[symcnt];
1397		Shdr	*shdr = _cache->c_shdr;
1398
1399		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1400		    (shdr->sh_link != state->secndx))
1401			continue;
1402
1403		if ((shdr->sh_entsize) &&
1404		    /* LINTED */
1405		    ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1406			continue;
1407
1408		if (_cache->c_data == NULL)
1409			continue;
1410
1411		state->shxndx.data = _cache->c_data->d_buf;
1412		state->shxndx.n = symn;
1413		return;
1414	}
1415}
1416
1417/*
1418 * Produce a line of output for the given symbol
1419 *
1420 * entry:
1421 *	state - Symbol table state
1422 *	symndx - Index of symbol within the table
1423 *	symndx_disp - Index to display. This may not be the same
1424 *		as symndx if the display is relative to the logical
1425 *		combination of the SUNW_ldynsym/dynsym tables.
1426 *	sym - Symbol to display
1427 */
1428static void
1429output_symbol(SYMTBL_STATE *state, Word symndx, Word disp_symndx, Sym *sym)
1430{
1431	/*
1432	 * Symbol types for which we check that the specified
1433	 * address/size land inside the target section.
1434	 */
1435	static const int addr_symtype[STT_NUM] = {
1436		0,			/* STT_NOTYPE */
1437		1,			/* STT_OBJECT */
1438		1,			/* STT_FUNC */
1439		0,			/* STT_SECTION */
1440		0,			/* STT_FILE */
1441		1,			/* STT_COMMON */
1442		0,			/* STT_TLS */
1443	};
1444#if STT_NUM != (STT_TLS + 1)
1445#error "STT_NUM has grown. Update addr_symtype[]"
1446#endif
1447
1448	char		index[MAXNDXSIZE];
1449	const char	*symname, *sec;
1450	Versym		verndx;
1451	int		gnuver;
1452	uchar_t		type;
1453	Shdr		*tshdr;
1454	Word		shndx;
1455	Conv_inv_buf_t	inv_buf;
1456
1457	/* Ensure symbol index is in range */
1458	if (symndx >= state->symn) {
1459		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORTNDX),
1460		    state->file, state->secname, EC_WORD(symndx));
1461		return;
1462	}
1463
1464	/*
1465	 * If we are using extended symbol indexes, find the
1466	 * corresponding SHN_SYMTAB_SHNDX table.
1467	 */
1468	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1469		symbols_getxindex(state);
1470
1471	/* LINTED */
1472	symname = string(state->seccache, symndx,
1473	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1474	    sym->st_name);
1475
1476	tshdr = 0;
1477	sec = NULL;
1478
1479	if (state->ehdr->e_type == ET_CORE) {
1480		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1481	} else if (state->flags & FLG_FAKESHDR) {
1482		/*
1483		 * If we are using fake section headers derived from
1484		 * the program headers, then the section indexes
1485		 * in the symbols do not correspond to these headers.
1486		 * The section names are not available, so all we can
1487		 * do is to display them in numeric form.
1488		 */
1489		sec = conv_sym_shndx(sym->st_shndx, &inv_buf);
1490	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1491	    (sym->st_shndx < state->shnum)) {
1492		shndx = sym->st_shndx;
1493		tshdr = state->cache[shndx].c_shdr;
1494		sec = state->cache[shndx].c_name;
1495	} else if (sym->st_shndx == SHN_XINDEX) {
1496		if (state->shxndx.data) {
1497			Word	_shxndx;
1498
1499			if (symndx > state->shxndx.n) {
1500				(void) fprintf(stderr,
1501				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1502				    state->file, state->secname,
1503				    EC_WORD(symndx));
1504			} else if ((_shxndx =
1505			    state->shxndx.data[symndx]) > state->shnum) {
1506				(void) fprintf(stderr,
1507				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1508				    state->file, state->secname,
1509				    EC_WORD(symndx), EC_WORD(_shxndx));
1510			} else {
1511				shndx = _shxndx;
1512				tshdr = state->cache[shndx].c_shdr;
1513				sec = state->cache[shndx].c_name;
1514			}
1515		} else {
1516			(void) fprintf(stderr,
1517			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1518			    state->file, state->secname, EC_WORD(symndx));
1519		}
1520	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1521	    (sym->st_shndx >= state->shnum)) {
1522		(void) fprintf(stderr,
1523		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1524		    state->secname, demangle(symname, state->flags),
1525		    sym->st_shndx);
1526	}
1527
1528	/*
1529	 * If versioning is available display the
1530	 * version index. If not, then use 0.
1531	 */
1532	if (state->versym) {
1533		Versym test_verndx;
1534
1535		verndx = test_verndx = state->versym->data[symndx];
1536		gnuver = state->versym->gnu;
1537
1538		/*
1539		 * Check to see if this is a defined symbol with a
1540		 * version index that is outside the valid range for
1541		 * the file. The interpretation of this depends on
1542		 * the style of versioning used by the object.
1543		 *
1544		 * Versions >= VER_NDX_LORESERVE have special meanings,
1545		 * and are exempt from this checking.
1546		 *
1547		 * GNU style version indexes use the top bit of the
1548		 * 16-bit index value (0x8000) as the "hidden bit".
1549		 * We must mask off this bit in order to compare
1550		 * the version against the maximum value.
1551		 */
1552		if (gnuver)
1553			test_verndx &= ~0x8000;
1554
1555		if ((test_verndx > state->versym->max_verndx) &&
1556		    (verndx < VER_NDX_LORESERVE))
1557			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1558			    state->file, state->secname, EC_WORD(symndx),
1559			    EC_HALF(test_verndx), state->versym->max_verndx);
1560	} else {
1561		verndx = 0;
1562		gnuver = 0;
1563	}
1564
1565	/*
1566	 * Error checking for TLS.
1567	 */
1568	type = ELF_ST_TYPE(sym->st_info);
1569	if (type == STT_TLS) {
1570		if (tshdr &&
1571		    (sym->st_shndx != SHN_UNDEF) &&
1572		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1573			(void) fprintf(stderr,
1574			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1575			    state->secname, demangle(symname, state->flags));
1576		}
1577	} else if ((type != STT_SECTION) && sym->st_size &&
1578	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1579		(void) fprintf(stderr,
1580		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1581		    state->secname, demangle(symname, state->flags));
1582	}
1583
1584	/*
1585	 * If a symbol with non-zero size has a type that
1586	 * specifies an address, then make sure the location
1587	 * it references is actually contained within the
1588	 * section.  UNDEF symbols don't count in this case,
1589	 * so we ignore them.
1590	 *
1591	 * The meaning of the st_value field in a symbol
1592	 * depends on the type of object. For a relocatable
1593	 * object, it is the offset within the section.
1594	 * For sharable objects, it is the offset relative to
1595	 * the base of the object, and for other types, it is
1596	 * the virtual address. To get an offset within the
1597	 * section for non-ET_REL files, we subtract the
1598	 * base address of the section.
1599	 */
1600	if (addr_symtype[type] && (sym->st_size > 0) &&
1601	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1602	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1603		Word v = sym->st_value;
1604			if (state->ehdr->e_type != ET_REL)
1605			v -= tshdr->sh_addr;
1606		if (((v + sym->st_size) > tshdr->sh_size)) {
1607			(void) fprintf(stderr,
1608			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1609			    state->secname, demangle(symname, state->flags),
1610			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1611			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1612		}
1613	}
1614
1615	(void) snprintf(index, MAXNDXSIZE,
1616	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1617	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index,
1618	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1619}
1620
1621/*
1622 * Search for and process any symbol tables.
1623 */
1624void
1625symbols(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1626    const char *file, uint_t flags)
1627{
1628	SYMTBL_STATE state;
1629	Cache *_cache;
1630	Word secndx;
1631
1632	for (secndx = 1; secndx < shnum; secndx++) {
1633		Word		symcnt;
1634		Shdr		*shdr;
1635
1636		_cache = &cache[secndx];
1637		shdr = _cache->c_shdr;
1638
1639		if ((shdr->sh_type != SHT_SYMTAB) &&
1640		    (shdr->sh_type != SHT_DYNSYM) &&
1641		    (shdr->sh_type != SHT_SUNW_LDYNSYM))
1642			continue;
1643		if (!match(0, _cache->c_name, secndx))
1644			continue;
1645
1646		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
1647		    versym, file, flags))
1648			continue;
1649		/*
1650		 * Loop through the symbol tables entries.
1651		 */
1652		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1653		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
1654		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1655
1656		for (symcnt = 0; symcnt < state.symn; symcnt++)
1657			output_symbol(&state, symcnt, symcnt,
1658			    state.sym + symcnt);
1659	}
1660}
1661
1662/*
1663 * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
1664 * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
1665 */
1666static void
1667sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1668    const char *file, uint_t flags)
1669{
1670	SYMTBL_STATE	ldynsym_state,	dynsym_state;
1671	Cache		*sortcache,	*symcache;
1672	Shdr		*sortshdr,	*symshdr;
1673	Word		sortsecndx,	symsecndx;
1674	Word		ldynsym_cnt;
1675	Word		*ndx;
1676	Word		ndxn;
1677	int		output_cnt = 0;
1678	Conv_inv_buf_t	inv_buf;
1679
1680	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
1681
1682		sortcache = &cache[sortsecndx];
1683		sortshdr = sortcache->c_shdr;
1684
1685		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
1686		    (sortshdr->sh_type != SHT_SUNW_tlssort))
1687			continue;
1688		if (!match(0, sortcache->c_name, sortsecndx))
1689			continue;
1690
1691		/*
1692		 * If the section references a SUNW_ldynsym, then we
1693		 * expect to see the associated .dynsym immediately
1694		 * following. If it references a .dynsym, there is no
1695		 * SUNW_ldynsym. If it is any other type, then we don't
1696		 * know what to do with it.
1697		 */
1698		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
1699			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1700			    file, sortcache->c_name,
1701			    EC_WORD(sortshdr->sh_link));
1702			continue;
1703		}
1704		symcache = &cache[sortshdr->sh_link];
1705		symshdr = symcache->c_shdr;
1706		symsecndx = sortshdr->sh_link;
1707		ldynsym_cnt = 0;
1708		switch (symshdr->sh_type) {
1709		case SHT_SUNW_LDYNSYM:
1710			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
1711			    symsecndx, ehdr, versym, file, flags))
1712				continue;
1713			ldynsym_cnt = ldynsym_state.symn;
1714			/*
1715			 * We know that the dynsym follows immediately
1716			 * after the SUNW_ldynsym, and so, should be at
1717			 * (sortshdr->sh_link + 1). However, elfdump is a
1718			 * diagnostic tool, so we do the full paranoid
1719			 * search instead.
1720			 */
1721			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
1722				symcache = &cache[symsecndx];
1723				symshdr = symcache->c_shdr;
1724				if (symshdr->sh_type == SHT_DYNSYM)
1725					break;
1726			}
1727			if (symsecndx >= shnum) {	/* Dynsym not found! */
1728				(void) fprintf(stderr,
1729				    MSG_INTL(MSG_ERR_NODYNSYM),
1730				    file, sortcache->c_name);
1731				continue;
1732			}
1733			/* Fallthrough to process associated dynsym */
1734			/*FALLTHROUGH*/
1735		case SHT_DYNSYM:
1736			if (!init_symtbl_state(&dynsym_state, cache, shnum,
1737			    symsecndx, ehdr, versym, file, flags))
1738				continue;
1739			break;
1740		default:
1741			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
1742			    file, sortcache->c_name, conv_sec_type(
1743			    ehdr->e_machine, symshdr->sh_type, 0, &inv_buf));
1744			continue;
1745		}
1746
1747		/*
1748		 * Output header
1749		 */
1750		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1751		if (ldynsym_cnt > 0) {
1752			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
1753			    sortcache->c_name, ldynsym_state.secname,
1754			    dynsym_state.secname);
1755			/*
1756			 * The data for .SUNW_ldynsym and dynsym sections
1757			 * is supposed to be adjacent with SUNW_ldynsym coming
1758			 * first. Check, and issue a warning if it isn't so.
1759			 */
1760			if (((ldynsym_state.sym + ldynsym_state.symn)
1761			    != dynsym_state.sym) &&
1762			    ((flags & FLG_FAKESHDR) == 0))
1763				(void) fprintf(stderr,
1764				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
1765				    ldynsym_state.secname,
1766				    dynsym_state.secname);
1767		} else {
1768			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
1769			    sortcache->c_name, dynsym_state.secname);
1770		}
1771		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1772
1773		/* If not first one, insert a line of whitespace */
1774		if (output_cnt++ > 0)
1775			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1776
1777		/*
1778		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
1779		 * symbol indices. Iterate over the array entries,
1780		 * dispaying the referenced symbols.
1781		 */
1782		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
1783		ndx = (Word *)sortcache->c_data->d_buf;
1784		for (; ndxn-- > 0; ndx++) {
1785			if (*ndx >= ldynsym_cnt) {
1786				Word sec_ndx = *ndx - ldynsym_cnt;
1787
1788				output_symbol(&dynsym_state, sec_ndx,
1789				    *ndx, dynsym_state.sym + sec_ndx);
1790			} else {
1791				output_symbol(&ldynsym_state, *ndx,
1792				    *ndx, ldynsym_state.sym + *ndx);
1793			}
1794		}
1795	}
1796}
1797
1798/*
1799 * Search for and process any relocation sections.
1800 */
1801static void
1802reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file,
1803    uint_t flags)
1804{
1805	Word	cnt;
1806
1807	for (cnt = 1; cnt < shnum; cnt++) {
1808		Word		type, symnum;
1809		Xword		relndx, relnum, relsize;
1810		void		*rels;
1811		Sym		*syms;
1812		Cache		*symsec, *strsec;
1813		Cache		*_cache = &cache[cnt];
1814		Shdr		*shdr = _cache->c_shdr;
1815		char		*relname = _cache->c_name;
1816		Conv_inv_buf_t	inv_buf;
1817
1818		if (((type = shdr->sh_type) != SHT_RELA) &&
1819		    (type != SHT_REL))
1820			continue;
1821		if (!match(0, relname, cnt))
1822			continue;
1823
1824		/*
1825		 * Decide entry size.
1826		 */
1827		if (((relsize = shdr->sh_entsize) == 0) ||
1828		    (relsize > shdr->sh_size)) {
1829			if (type == SHT_RELA)
1830				relsize = sizeof (Rela);
1831			else
1832				relsize = sizeof (Rel);
1833		}
1834
1835		/*
1836		 * Determine the number of relocations available.
1837		 */
1838		if (shdr->sh_size == 0) {
1839			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1840			    file, relname);
1841			continue;
1842		}
1843		if (_cache->c_data == NULL)
1844			continue;
1845
1846		rels = _cache->c_data->d_buf;
1847		relnum = shdr->sh_size / relsize;
1848
1849		/*
1850		 * Get the data buffer for the associated symbol table and
1851		 * string table.
1852		 */
1853		if (stringtbl(cache, 1, cnt, shnum, file,
1854		    &symnum, &symsec, &strsec) == 0)
1855			continue;
1856
1857		syms = symsec->c_data->d_buf;
1858
1859		/*
1860		 * Loop through the relocation entries.
1861		 */
1862		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1863		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
1864		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
1865
1866		for (relndx = 0; relndx < relnum; relndx++,
1867		    rels = (void *)((char *)rels + relsize)) {
1868			char		section[BUFSIZ];
1869			const char	*symname;
1870			Word		symndx, reltype;
1871			Rela		*rela;
1872			Rel		*rel;
1873
1874			/*
1875			 * Unravel the relocation and determine the symbol with
1876			 * which this relocation is associated.
1877			 */
1878			if (type == SHT_RELA) {
1879				rela = (Rela *)rels;
1880				symndx = ELF_R_SYM(rela->r_info);
1881				reltype = ELF_R_TYPE(rela->r_info);
1882			} else {
1883				rel = (Rel *)rels;
1884				symndx = ELF_R_SYM(rel->r_info);
1885				reltype = ELF_R_TYPE(rel->r_info);
1886			}
1887
1888			symname = relsymname(cache, _cache, strsec, symndx,
1889			    symnum, relndx, syms, section, BUFSIZ, file,
1890			    flags);
1891
1892			/*
1893			 * A zero symbol index is only valid for a few
1894			 * relocations.
1895			 */
1896			if (symndx == 0) {
1897				Half	mach = ehdr->e_machine;
1898				int	badrel = 0;
1899
1900				if ((mach == EM_SPARC) ||
1901				    (mach == EM_SPARC32PLUS) ||
1902				    (mach == EM_SPARCV9)) {
1903					if ((reltype != R_SPARC_NONE) &&
1904					    (reltype != R_SPARC_REGISTER) &&
1905					    (reltype != R_SPARC_RELATIVE))
1906						badrel++;
1907				} else if (mach == EM_386) {
1908					if ((reltype != R_386_NONE) &&
1909					    (reltype != R_386_RELATIVE))
1910						badrel++;
1911				} else if (mach == EM_AMD64) {
1912					if ((reltype != R_AMD64_NONE) &&
1913					    (reltype != R_AMD64_RELATIVE))
1914						badrel++;
1915				}
1916
1917				if (badrel) {
1918					(void) fprintf(stderr,
1919					    MSG_INTL(MSG_ERR_BADREL1), file,
1920					    conv_reloc_type(mach, reltype,
1921					    0, &inv_buf));
1922				}
1923			}
1924
1925			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
1926			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
1927			    rels, relname, symname, 0);
1928		}
1929	}
1930}
1931
1932/*
1933 * Search for and process a .dynamic section.
1934 */
1935static void
1936dynamic(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
1937{
1938	Word	cnt;
1939
1940	for (cnt = 1; cnt < shnum; cnt++) {
1941		Dyn	*dyn;
1942		ulong_t	numdyn;
1943		int	ndx, end_ndx;
1944		Cache	*_cache = &cache[cnt], *strsec;
1945		Shdr	*shdr = _cache->c_shdr;
1946
1947		if (shdr->sh_type != SHT_DYNAMIC)
1948			continue;
1949
1950		/*
1951		 * Verify the associated string table section.
1952		 */
1953		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
1954			continue;
1955
1956		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1957			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1958			    file, _cache->c_name);
1959			continue;
1960		}
1961		if (_cache->c_data == NULL)
1962			continue;
1963
1964		numdyn = shdr->sh_size / shdr->sh_entsize;
1965		dyn = (Dyn *)_cache->c_data->d_buf;
1966
1967		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1968		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
1969
1970		Elf_dyn_title(0);
1971
1972		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
1973			union {
1974				Conv_dyn_flag_buf_t	flag;
1975				Conv_dyn_flag1_buf_t	flag1;
1976				Conv_dyn_posflag1_buf_t	posflag1;
1977				Conv_dyn_feature1_buf_t	feature1;
1978			} c_buf;
1979			const char	*name;
1980
1981			/*
1982			 * Print the information numerically, and if possible
1983			 * as a string.
1984			 */
1985			switch (dyn->d_tag) {
1986			case DT_NULL:
1987				/*
1988				 * Special case: DT_NULLs can come in groups
1989				 * that we prefer to reduce to a single line.
1990				 */
1991				end_ndx = ndx;
1992				while ((end_ndx < (numdyn - 1)) &&
1993				    ((dyn + 1)->d_tag == DT_NULL)) {
1994					dyn++;
1995					end_ndx++;
1996				}
1997				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
1998				ndx = end_ndx;
1999				continue;
2000
2001			/*
2002			 * Print the information numerically, and if possible
2003			 * as a string.
2004			 */
2005			case DT_NEEDED:
2006			case DT_SONAME:
2007			case DT_FILTER:
2008			case DT_AUXILIARY:
2009			case DT_CONFIG:
2010			case DT_RPATH:
2011			case DT_RUNPATH:
2012			case DT_USED:
2013			case DT_DEPAUDIT:
2014			case DT_AUDIT:
2015			case DT_SUNW_AUXILIARY:
2016			case DT_SUNW_FILTER:
2017				name = string(_cache, ndx, strsec,
2018				    file, dyn->d_un.d_ptr);
2019				break;
2020
2021			case DT_FLAGS:
2022				name = conv_dyn_flag(dyn->d_un.d_val,
2023				    0, &c_buf.flag);
2024				break;
2025			case DT_FLAGS_1:
2026				name = conv_dyn_flag1(dyn->d_un.d_val,
2027				    &c_buf.flag1);
2028				break;
2029			case DT_POSFLAG_1:
2030				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
2031				    &c_buf.posflag1);
2032				break;
2033			case DT_FEATURE_1:
2034				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
2035				    &c_buf.feature1);
2036				break;
2037			case DT_DEPRECATED_SPARC_REGISTER:
2038				name = MSG_INTL(MSG_STR_DEPRECATED);
2039				break;
2040			default:
2041				name = MSG_ORIG(MSG_STR_EMPTY);
2042				break;
2043			}
2044
2045			Elf_dyn_entry(0, dyn, ndx, name, ehdr->e_machine);
2046		}
2047	}
2048}
2049
2050/*
2051 * Search for and process a MOVE section.
2052 */
2053static void
2054move(Cache *cache, Word shnum, const char *file, uint_t flags)
2055{
2056	Word		cnt;
2057	const char	*fmt = 0;
2058
2059	for (cnt = 1; cnt < shnum; cnt++) {
2060		Word	movenum, symnum, ndx;
2061		Sym	*syms;
2062		Cache	*_cache = &cache[cnt];
2063		Shdr	*shdr = _cache->c_shdr;
2064		Cache	*symsec, *strsec;
2065		Move	*move;
2066
2067		if (shdr->sh_type != SHT_SUNW_move)
2068			continue;
2069		if (!match(0, _cache->c_name, cnt))
2070			continue;
2071
2072		/*
2073		 * Determine the move data and number.
2074		 */
2075		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2076			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2077			    file, _cache->c_name);
2078			continue;
2079		}
2080		if (_cache->c_data == NULL)
2081			continue;
2082
2083		move = (Move *)_cache->c_data->d_buf;
2084		movenum = shdr->sh_size / shdr->sh_entsize;
2085
2086		/*
2087		 * Get the data buffer for the associated symbol table and
2088		 * string table.
2089		 */
2090		if (stringtbl(cache, 1, cnt, shnum, file,
2091		    &symnum, &symsec, &strsec) == 0)
2092			return;
2093
2094		syms = (Sym *)symsec->c_data->d_buf;
2095
2096		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2097		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
2098		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
2099
2100		if (fmt == 0)
2101			fmt = MSG_INTL(MSG_MOVE_ENTRY);
2102
2103		for (ndx = 0; ndx < movenum; move++, ndx++) {
2104			const char	*symname;
2105			char		index[MAXNDXSIZE], section[BUFSIZ];
2106			Word		symndx, shndx;
2107			Sym		*sym;
2108
2109			/*
2110			 * Check for null entries
2111			 */
2112			if ((move->m_info == 0) && (move->m_value == 0) &&
2113			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
2114			    (move->m_stride == 0)) {
2115				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
2116				    EC_XWORD(move->m_poffset), 0, 0, 0,
2117				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
2118				continue;
2119			}
2120			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
2121			    (symndx >= symnum)) {
2122				(void) fprintf(stderr,
2123				    MSG_INTL(MSG_ERR_BADMINFO), file,
2124				    _cache->c_name, EC_XWORD(move->m_info));
2125
2126				(void) snprintf(index, MAXNDXSIZE,
2127				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2128				dbg_print(0, fmt, index,
2129				    EC_XWORD(move->m_poffset),
2130				    ELF_M_SIZE(move->m_info), move->m_repeat,
2131				    move->m_stride, move->m_value,
2132				    MSG_INTL(MSG_STR_UNKNOWN));
2133				continue;
2134			}
2135
2136			symname = relsymname(cache, _cache, strsec,
2137			    symndx, symnum, ndx, syms, section, BUFSIZ, file,
2138			    flags);
2139			sym = (Sym *)(syms + symndx);
2140
2141			/*
2142			 * Additional sanity check.
2143			 */
2144			shndx = sym->st_shndx;
2145			if (!((shndx == SHN_COMMON) ||
2146			    (((shndx >= 1) && (shndx <= shnum)) &&
2147			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
2148				(void) fprintf(stderr,
2149				    MSG_INTL(MSG_ERR_BADSYM2), file,
2150				    _cache->c_name, demangle(symname, flags));
2151			}
2152
2153			(void) snprintf(index, MAXNDXSIZE,
2154			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2155			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
2156			    ELF_M_SIZE(move->m_info), move->m_repeat,
2157			    move->m_stride, move->m_value,
2158			    demangle(symname, flags));
2159		}
2160	}
2161}
2162
2163/*
2164 * Traverse a note section analyzing each note information block.
2165 * The data buffers size is used to validate references before they are made,
2166 * and is decremented as each element is processed.
2167 */
2168void
2169note_entry(Cache *cache, Word *data, size_t size, const char *file)
2170{
2171	size_t	bsize = size;
2172
2173	/*
2174	 * Print out a single `note' information block.
2175	 */
2176	while (size > 0) {
2177		size_t	namesz, descsz, type, pad, noteoff;
2178
2179		noteoff = bsize - size;
2180		/*
2181		 * Make sure we can at least reference the 3 initial entries
2182		 * (4-byte words) of the note information block.
2183		 */
2184		if (size >= (sizeof (Word) * 3))
2185			size -= (sizeof (Word) * 3);
2186		else {
2187			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
2188			    file, cache->c_name, EC_WORD(noteoff));
2189			return;
2190		}
2191
2192		/*
2193		 * Make sure any specified name string can be referenced.
2194		 */
2195		if ((namesz = *data++) != 0) {
2196			if (size >= namesz)
2197				size -= namesz;
2198			else {
2199				(void) fprintf(stderr,
2200				    MSG_INTL(MSG_NOTE_BADNMSZ), file,
2201				    cache->c_name, EC_WORD(noteoff),
2202				    EC_WORD(namesz));
2203				return;
2204			}
2205		}
2206
2207		/*
2208		 * Make sure any specified descriptor can be referenced.
2209		 */
2210		if ((descsz = *data++) != 0) {
2211			/*
2212			 * If namesz isn't a 4-byte multiple, account for any
2213			 * padding that must exist before the descriptor.
2214			 */
2215			if ((pad = (namesz & (sizeof (Word) - 1))) != 0) {
2216				pad = sizeof (Word) - pad;
2217				size -= pad;
2218			}
2219			if (size >= descsz)
2220				size -= descsz;
2221			else {
2222				(void) fprintf(stderr,
2223				    MSG_INTL(MSG_NOTE_BADDESZ), file,
2224				    cache->c_name, EC_WORD(noteoff),
2225				    EC_WORD(namesz));
2226				return;
2227			}
2228		}
2229
2230		type = *data++;
2231
2232		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2233		dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), EC_WORD(type));
2234
2235		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), EC_WORD(namesz));
2236		if (namesz) {
2237			char	*name = (char *)data;
2238
2239			/*
2240			 * Since the name string may have 'null' bytes
2241			 * in it (ia32 .string) - we just write the
2242			 * whole stream in a single fwrite.
2243			 */
2244			(void) fwrite(name, namesz, 1, stdout);
2245			name = name + ((namesz + (sizeof (Word) - 1)) &
2246			    ~(sizeof (Word) - 1));
2247			/* LINTED */
2248			data = (Word *)name;
2249			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2250		}
2251
2252		/*
2253		 * If multiple information blocks exist within a .note section
2254		 * account for any padding that must exist before the next
2255		 * information block.
2256		 */
2257		if ((pad = (descsz & (sizeof (Word) - 1))) != 0) {
2258			pad = sizeof (Word) - pad;
2259			if (size > pad)
2260				size -= pad;
2261		}
2262
2263		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), EC_WORD(descsz));
2264		if (descsz) {
2265			int		ndx, byte, word;
2266			char		string[58], *str = string;
2267			uchar_t		*desc = (uchar_t *)data;
2268
2269			/*
2270			 * Dump descriptor bytes.
2271			 */
2272			for (ndx = byte = word = 0; descsz; descsz--, desc++) {
2273				int	tok = *desc;
2274
2275				(void) snprintf(str, 58, MSG_ORIG(MSG_NOTE_TOK),
2276				    tok);
2277				str += 3;
2278
2279				if (++byte == 4) {
2280					*str++ = ' ', *str++ = ' ';
2281					word++;
2282					byte = 0;
2283				}
2284				if (word == 4) {
2285					*str = '\0';
2286					dbg_print(0, MSG_ORIG(MSG_NOTE_DESC),
2287					    ndx, string);
2288					word = 0;
2289					ndx += 16;
2290					str = string;
2291				}
2292			}
2293			if (byte || word) {
2294				*str = '\0';
2295				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC),
2296				    ndx, string);
2297			}
2298
2299			desc += pad;
2300			/* LINTED */
2301			data = (Word *)desc;
2302		}
2303	}
2304}
2305
2306/*
2307 * Search for and process a .note section.
2308 */
2309static void
2310note(Cache *cache, Word shnum, const char *file)
2311{
2312	Word	cnt;
2313
2314	/*
2315	 * Otherwise look for any .note sections.
2316	 */
2317	for (cnt = 1; cnt < shnum; cnt++) {
2318		Cache	*_cache = &cache[cnt];
2319		Shdr	*shdr = _cache->c_shdr;
2320
2321		if (shdr->sh_type != SHT_NOTE)
2322			continue;
2323		if (!match(0, _cache->c_name, cnt))
2324			continue;
2325
2326		/*
2327		 * As these sections are often hand rolled, make sure they're
2328		 * properly aligned before proceeding.
2329		 */
2330		if (shdr->sh_offset & (sizeof (Word) - 1)) {
2331			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
2332			    file, _cache->c_name);
2333			continue;
2334		}
2335		if (_cache->c_data == NULL)
2336			continue;
2337
2338		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2339		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
2340		note_entry(_cache, (Word *)_cache->c_data->d_buf,
2341		/* LINTED */
2342		    (Word)_cache->c_data->d_size, file);
2343	}
2344}
2345
2346/*
2347 * Determine an individual hash entry.  This may be the initial hash entry,
2348 * or an associated chain entry.
2349 */
2350static void
2351hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
2352    Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
2353    uint_t flags, int chain)
2354{
2355	Sym		*sym;
2356	const char	*symname, *str;
2357	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
2358	ulong_t		nbkt, nhash;
2359
2360	if (symndx > symn) {
2361		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
2362		    EC_WORD(symndx), EC_WORD(hashndx));
2363		symname = MSG_INTL(MSG_STR_UNKNOWN);
2364	} else {
2365		sym = (Sym *)(syms + symndx);
2366		symname = string(refsec, symndx, strsec, file, sym->st_name);
2367	}
2368
2369	if (chain == 0) {
2370		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
2371		    hashndx);
2372		str = (const char *)_bucket;
2373	} else
2374		str = MSG_ORIG(MSG_STR_EMPTY);
2375
2376	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
2377	    EC_WORD(symndx));
2378	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
2379	    demangle(symname, flags));
2380
2381	/*
2382	 * Determine if this string is in the correct bucket.
2383	 */
2384	nhash = elf_hash(symname);
2385	nbkt = nhash % bkts;
2386
2387	if (nbkt != hashndx) {
2388		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
2389		    hsecname, symname, EC_WORD(hashndx), nbkt);
2390	}
2391}
2392
2393#define	MAXCOUNT	500
2394
2395static void
2396hash(Cache *cache, Word shnum, const char *file, uint_t flags)
2397{
2398	static int	count[MAXCOUNT];
2399	Word		cnt;
2400	ulong_t		ndx, bkts;
2401	char		number[MAXNDXSIZE];
2402
2403	for (cnt = 1; cnt < shnum; cnt++) {
2404		uint_t		*hash, *chain;
2405		Cache		*_cache = &cache[cnt];
2406		Shdr		*sshdr, *hshdr = _cache->c_shdr;
2407		char		*ssecname, *hsecname = _cache->c_name;
2408		Sym		*syms;
2409		Word		symn;
2410
2411		if (hshdr->sh_type != SHT_HASH)
2412			continue;
2413
2414		/*
2415		 * Determine the hash table data and size.
2416		 */
2417		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
2418			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2419			    file, hsecname);
2420			continue;
2421		}
2422		if (_cache->c_data == NULL)
2423			continue;
2424
2425		hash = (uint_t *)_cache->c_data->d_buf;
2426		bkts = *hash;
2427		chain = hash + 2 + bkts;
2428		hash += 2;
2429
2430		/*
2431		 * Get the data buffer for the associated symbol table.
2432		 */
2433		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
2434			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2435			    file, hsecname, EC_WORD(hshdr->sh_link));
2436			continue;
2437		}
2438
2439		_cache = &cache[hshdr->sh_link];
2440		ssecname = _cache->c_name;
2441
2442		if (_cache->c_data == NULL)
2443			continue;
2444
2445		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
2446			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2447			    file, ssecname);
2448			continue;
2449		}
2450
2451		sshdr = _cache->c_shdr;
2452		/* LINTED */
2453		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
2454
2455		/*
2456		 * Get the associated string table section.
2457		 */
2458		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
2459			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2460			    file, ssecname, EC_WORD(sshdr->sh_link));
2461			continue;
2462		}
2463
2464		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2465		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
2466		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
2467
2468		/*
2469		 * Loop through the hash buckets, printing the appropriate
2470		 * symbols.
2471		 */
2472		for (ndx = 0; ndx < bkts; ndx++, hash++) {
2473			Word	_ndx, _cnt;
2474
2475			if (*hash == 0) {
2476				count[0]++;
2477				continue;
2478			}
2479
2480			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
2481			    ndx, *hash, symn, syms, file, bkts, flags, 0);
2482
2483			/*
2484			 * Determine if any other symbols are chained to this
2485			 * bucket.
2486			 */
2487			_ndx = chain[*hash];
2488			_cnt = 1;
2489			while (_ndx) {
2490				hash_entry(_cache, &cache[sshdr->sh_link],
2491				    hsecname, ndx, _ndx, symn, syms, file,
2492				    bkts, flags, 1);
2493				_ndx = chain[_ndx];
2494				_cnt++;
2495			}
2496
2497			if (_cnt >= MAXCOUNT) {
2498				(void) fprintf(stderr,
2499				    MSG_INTL(MSG_HASH_OVERFLW), file,
2500				    _cache->c_name, EC_WORD(ndx),
2501				    EC_WORD(_cnt));
2502			} else
2503				count[_cnt]++;
2504		}
2505		break;
2506	}
2507
2508	/*
2509	 * Print out the count information.
2510	 */
2511	bkts = cnt = 0;
2512	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2513
2514	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
2515		Word	_cnt;
2516
2517		if ((_cnt = count[ndx]) == 0)
2518			continue;
2519
2520		(void) snprintf(number, MAXNDXSIZE,
2521		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
2522		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
2523		    EC_WORD(ndx));
2524		bkts += _cnt;
2525		cnt += (Word)(ndx * _cnt);
2526	}
2527	if (cnt) {
2528		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
2529		    bkts);
2530		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
2531		    EC_WORD(cnt));
2532	}
2533}
2534
2535static void
2536group(Cache *cache, Word shnum, const char *file, uint_t flags)
2537{
2538	Word	scnt;
2539
2540	for (scnt = 1; scnt < shnum; scnt++) {
2541		Cache	*_cache = &cache[scnt];
2542		Shdr	*shdr = _cache->c_shdr;
2543		Word	*grpdata, gcnt, grpcnt, symnum, unknown;
2544		Cache	*symsec, *strsec;
2545		Sym	*syms, *sym;
2546		char	flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
2547
2548		if (shdr->sh_type != SHT_GROUP)
2549			continue;
2550		if (!match(0, _cache->c_name, scnt))
2551			continue;
2552		if ((_cache->c_data == NULL) ||
2553		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
2554			continue;
2555		grpcnt = shdr->sh_size / sizeof (Word);
2556
2557		/*
2558		 * Get the data buffer for the associated symbol table and
2559		 * string table.
2560		 */
2561		if (stringtbl(cache, 1, scnt, shnum, file,
2562		    &symnum, &symsec, &strsec) == 0)
2563			return;
2564
2565		syms = symsec->c_data->d_buf;
2566
2567		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2568		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
2569		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
2570
2571		/*
2572		 * The first element of the group defines the group.  The
2573		 * associated symbol is defined by the sh_link field.
2574		 */
2575		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
2576			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
2577			    file, _cache->c_name, EC_WORD(shdr->sh_info));
2578			return;
2579		}
2580
2581		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
2582		if (grpdata[0] & GRP_COMDAT) {
2583			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
2584		}
2585		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
2586			size_t	len = strlen(flgstrbuf);
2587
2588			(void) snprintf(&flgstrbuf[len],
2589			    (MSG_GRP_COMDAT_SIZE + 10 - len),
2590			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
2591		}
2592		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
2593		sym = (Sym *)(syms + shdr->sh_info);
2594
2595		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
2596		    demangle(string(_cache, 0, strsec, file, sym->st_name),
2597		    flags));
2598
2599		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
2600			char		index[MAXNDXSIZE];
2601			const char	*name;
2602
2603			(void) snprintf(index, MAXNDXSIZE,
2604			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
2605
2606			if (grpdata[gcnt] >= shnum)
2607				name = MSG_INTL(MSG_GRP_INVALSCN);
2608			else
2609				name = cache[grpdata[gcnt]].c_name;
2610
2611			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
2612			    EC_XWORD(grpdata[gcnt]));
2613		}
2614	}
2615}
2616
2617static void
2618got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file, uint_t flags)
2619{
2620	Cache		*gotcache = 0, *symtab = 0, *_cache;
2621	Addr		gotbgn, gotend;
2622	Shdr		*gotshdr;
2623	Word		cnt, gotents, gotndx;
2624	size_t		gentsize;
2625	Got_info	*gottable;
2626	char		*gotdata;
2627	Sym		*gotsym;
2628	Xword		gotsymaddr;
2629
2630	/*
2631	 * First, find the got.
2632	 */
2633	for (cnt = 1; cnt < shnum; cnt++) {
2634		_cache = &cache[cnt];
2635		if (strncmp(_cache->c_name, MSG_ORIG(MSG_ELF_GOT),
2636		    MSG_ELF_GOT_SIZE) == 0) {
2637			gotcache = _cache;
2638			break;
2639		}
2640	}
2641	if (gotcache == 0)
2642		return;
2643
2644	/*
2645	 * A got section within a relocatable object is suspicious.
2646	 */
2647	if (ehdr->e_type == ET_REL) {
2648		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
2649		    _cache->c_name);
2650	}
2651
2652	gotshdr = gotcache->c_shdr;
2653	if (gotshdr->sh_size == 0) {
2654		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2655		    file, gotcache->c_name);
2656		return;
2657	}
2658
2659	gotbgn = gotshdr->sh_addr;
2660	gotend = gotbgn + gotshdr->sh_size;
2661
2662	/*
2663	 * Some architectures don't properly set the sh_entsize for the GOT
2664	 * table.  If it's not set, default to a size of a pointer.
2665	 */
2666	if ((gentsize = gotshdr->sh_entsize) == 0)
2667		gentsize = sizeof (Xword);
2668
2669	if (gotcache->c_data == NULL)
2670		return;
2671
2672	/* LINTED */
2673	gotents = (Word)(gotshdr->sh_size / gentsize);
2674	gotdata = gotcache->c_data->d_buf;
2675
2676	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
2677		int err = errno;
2678		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
2679		    strerror(err));
2680		return;
2681	}
2682
2683	/*
2684	 * Now we scan through all the sections looking for any relocations
2685	 * that may be against the GOT.  Since these may not be isolated to a
2686	 * .rel[a].got section we check them all.
2687	 * While scanning sections save the symbol table entry (a symtab
2688	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
2689	 */
2690	for (cnt = 1; cnt < shnum; cnt++) {
2691		Word		type, symnum;
2692		Xword		relndx, relnum, relsize;
2693		void		*rels;
2694		Sym		*syms;
2695		Cache		*symsec, *strsec;
2696		Cache		*_cache = &cache[cnt];
2697		Shdr		*shdr;
2698
2699		shdr = _cache->c_shdr;
2700		type = shdr->sh_type;
2701
2702		if ((symtab == 0) && (type == SHT_DYNSYM)) {
2703			symtab = _cache;
2704			continue;
2705		}
2706		if (type == SHT_SYMTAB) {
2707			symtab = _cache;
2708			continue;
2709		}
2710		if ((type != SHT_RELA) && (type != SHT_REL))
2711			continue;
2712
2713		/*
2714		 * Decide entry size.
2715		 */
2716		if (((relsize = shdr->sh_entsize) == 0) ||
2717		    (relsize > shdr->sh_size)) {
2718			if (type == SHT_RELA)
2719				relsize = sizeof (Rela);
2720			else
2721				relsize = sizeof (Rel);
2722		}
2723
2724		/*
2725		 * Determine the number of relocations available.
2726		 */
2727		if (shdr->sh_size == 0) {
2728			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2729			    file, _cache->c_name);
2730			continue;
2731		}
2732		if (_cache->c_data == NULL)
2733			continue;
2734
2735		rels = _cache->c_data->d_buf;
2736		relnum = shdr->sh_size / relsize;
2737
2738		/*
2739		 * Get the data buffer for the associated symbol table and
2740		 * string table.
2741		 */
2742		if (stringtbl(cache, 1, cnt, shnum, file,
2743		    &symnum, &symsec, &strsec) == 0)
2744			continue;
2745
2746		syms = symsec->c_data->d_buf;
2747
2748		/*
2749		 * Loop through the relocation entries.
2750		 */
2751		for (relndx = 0; relndx < relnum; relndx++,
2752		    rels = (void *)((char *)rels + relsize)) {
2753			char		section[BUFSIZ];
2754			Addr		offset;
2755			Got_info	*gip;
2756			Word		symndx, reltype;
2757			Rela		*rela;
2758			Rel		*rel;
2759
2760			/*
2761			 * Unravel the relocation.
2762			 */
2763			if (type == SHT_RELA) {
2764				rela = (Rela *)rels;
2765				symndx = ELF_R_SYM(rela->r_info);
2766				reltype = ELF_R_TYPE(rela->r_info);
2767				offset = rela->r_offset;
2768			} else {
2769				rel = (Rel *)rels;
2770				symndx = ELF_R_SYM(rel->r_info);
2771				reltype = ELF_R_TYPE(rel->r_info);
2772				offset = rel->r_offset;
2773			}
2774
2775			/*
2776			 * Only pay attention to relocations against the GOT.
2777			 */
2778			if ((offset < gotbgn) || (offset >= gotend))
2779				continue;
2780
2781			/* LINTED */
2782			gotndx = (Word)((offset - gotbgn) /
2783			    gotshdr->sh_entsize);
2784			gip = &gottable[gotndx];
2785
2786			if (gip->g_reltype != 0) {
2787				(void) fprintf(stderr,
2788				    MSG_INTL(MSG_GOT_MULTIPLE), file,
2789				    EC_WORD(gotndx), EC_ADDR(offset));
2790				continue;
2791			}
2792
2793			if (symndx)
2794				gip->g_symname = relsymname(cache, _cache,
2795				    strsec, symndx, symnum, relndx, syms,
2796				    section, BUFSIZ, file, flags);
2797			gip->g_reltype = reltype;
2798			gip->g_rel = rels;
2799		}
2800	}
2801
2802	if (symlookup(MSG_ORIG(MSG_GOT_SYM), cache, shnum, &gotsym, symtab,
2803	    file))
2804		gotsymaddr = gotsym->st_value;
2805	else
2806		gotsymaddr = gotbgn;
2807
2808	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2809	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
2810	Elf_got_title(0);
2811
2812	for (gotndx = 0; gotndx < gotents; gotndx++) {
2813		Got_info	*gip;
2814		Sword		gindex;
2815		Addr		gaddr;
2816		Xword		gotentry;
2817
2818		gip = &gottable[gotndx];
2819
2820		gaddr = gotbgn + (gotndx * gentsize);
2821		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
2822
2823		if (gentsize == sizeof (Word))
2824			/* LINTED */
2825			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
2826		else
2827			/* LINTED */
2828			gotentry = *((Xword *)(gotdata) + gotndx);
2829
2830		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
2831		    gip->g_reltype, gip->g_rel, gip->g_symname);
2832	}
2833	free(gottable);
2834}
2835
2836void
2837checksum(Elf *elf)
2838{
2839	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2840	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
2841}
2842
2843/*
2844 * This variable is used by regular() to communicate the address of
2845 * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
2846 * the qsort() interface does not include a userdata argument by which
2847 * such arbitrary data can be passed, so we are stuck using global data.
2848 */
2849static Cache *sort_shdr_ndx_arr_cache;
2850
2851
2852/*
2853 * Used with qsort() to sort the section indices so that they can be
2854 * used to access the section headers in order of increasing data offset.
2855 *
2856 * entry:
2857 *	sort_shdr_ndx_arr_cache - Contains address of
2858 *		section header cache.
2859 *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
2860 *
2861 * exit:
2862 *	Returns -1 (less than), 0 (equal) or 1 (greater than).
2863 */
2864static int
2865sort_shdr_ndx_arr(const void *v1, const void *v2)
2866{
2867	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
2868	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
2869
2870	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
2871		return (-1);
2872
2873	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
2874		return (1);
2875
2876	return (0);
2877}
2878
2879
2880static int
2881shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
2882    size_t shnum, Cache **cache_ret)
2883{
2884	Elf_Scn		*scn;
2885	Elf_Data	*data;
2886	size_t		ndx;
2887	Shdr		*nameshdr;
2888	char		*names = 0;
2889	Cache		*cache, *_cache;
2890	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
2891
2892
2893	/*
2894	 * Obtain the .shstrtab data buffer to provide the required section
2895	 * name strings.
2896	 */
2897	if (shstrndx == SHN_UNDEF) {
2898		/*
2899		 * It is rare, but legal, for an object to lack a
2900		 * header string table section.
2901		 */
2902		names = NULL;
2903		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
2904	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
2905		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
2906		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
2907		    EC_XWORD(shstrndx));
2908
2909	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
2910		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
2911		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
2912		    EC_XWORD(shstrndx));
2913
2914	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
2915		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
2916		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
2917		    EC_WORD(elf_ndxscn(scn)));
2918
2919	} else if ((names = data->d_buf) == 0)
2920		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
2921
2922	/*
2923	 * Allocate a cache to maintain a descriptor for each section.
2924	 */
2925	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
2926		int err = errno;
2927		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
2928		    file, strerror(err));
2929		return (0);
2930	}
2931
2932	*cache = cache_init;
2933	_cache = cache;
2934	_cache++;
2935
2936	/*
2937	 * Allocate an array that will hold the section index for
2938	 * each section that has data in the ELF file:
2939	 *
2940	 *	- Is not a NOBITS section
2941	 *	- Data has non-zero length
2942	 *
2943	 * Note that shnum is an upper bound on the size required. It
2944	 * is likely that we won't use a few of these array elements.
2945	 * Allocating a modest amount of extra memory in this case means
2946	 * that we can avoid an extra loop to count the number of needed
2947	 * items, and can fill this array immediately in the first loop
2948	 * below.
2949	 */
2950	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
2951		int err = errno;
2952		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
2953		    file, strerror(err));
2954		return (0);
2955	}
2956	shdr_ndx_arr_cnt = 0;
2957
2958	/*
2959	 * Traverse the sections of the file.  This gathering of data is
2960	 * carried out in two passes.  First, the section headers are captured
2961	 * and the section header names are evaluated.  A verification pass is
2962	 * then carried out over the section information.  Files have been
2963	 * known to exhibit overlapping (and hence erroneous) section header
2964	 * information.
2965	 *
2966	 * Finally, the data for each section is obtained.  This processing is
2967	 * carried out after section verification because should any section
2968	 * header overlap occur, and a file needs translating (ie. xlate'ing
2969	 * information from a non-native architecture file), then the process
2970	 * of translation can corrupt the section header information.  Of
2971	 * course, if there is any section overlap, the data related to the
2972	 * sections is going to be compromised.  However, it is the translation
2973	 * of this data that has caused problems with elfdump()'s ability to
2974	 * extract the data.
2975	 */
2976	for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
2977	    ndx++, _cache++) {
2978		char	scnndxnm[100];
2979
2980		_cache->c_ndx = ndx;
2981		_cache->c_scn = scn;
2982
2983		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
2984			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
2985			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
2986			    EC_WORD(elf_ndxscn(scn)));
2987		}
2988
2989		/*
2990		 * If this section has data in the file, include it in
2991		 * the array of sections to check for address overlap.
2992		 */
2993		if ((_cache->c_shdr->sh_size != 0) &&
2994		    (_cache->c_shdr->sh_type != SHT_NOBITS))
2995			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
2996
2997		/*
2998		 * If a shstrtab exists, assign the section name.
2999		 */
3000		if (names && _cache->c_shdr) {
3001			if (_cache->c_shdr->sh_name &&
3002			    /* LINTED */
3003			    (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
3004				_cache->c_name =
3005				    names + _cache->c_shdr->sh_name;
3006				continue;
3007			}
3008
3009			/*
3010			 * Generate an error if the section name index is zero
3011			 * or exceeds the shstrtab data.  Fall through to
3012			 * fabricate a section name.
3013			 */
3014			if ((_cache->c_shdr->sh_name == 0) ||
3015			    /* LINTED */
3016			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
3017				(void) fprintf(stderr,
3018				    MSG_INTL(MSG_ERR_BADSHNAME), file,
3019				    EC_WORD(ndx),
3020				    EC_XWORD(_cache->c_shdr->sh_name));
3021			}
3022		}
3023
3024		/*
3025		 * If there exists no shstrtab data, or a section header has no
3026		 * name (an invalid index of 0), then compose a name for the
3027		 * section.
3028		 */
3029		(void) snprintf(scnndxnm, sizeof (scnndxnm),
3030		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
3031
3032		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
3033			int err = errno;
3034			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3035			    file, strerror(err));
3036			return (0);
3037		}
3038		(void) strcpy(_cache->c_name, scnndxnm);
3039	}
3040
3041	/*
3042	 * Having collected all the sections, validate their address range.
3043	 * Cases have existed where the section information has been invalid.
3044	 * This can lead to all sorts of other, hard to diagnose errors, as
3045	 * each section is processed individually (ie. with elf_getdata()).
3046	 * Here, we carry out some address comparisons to catch a family of
3047	 * overlapping memory issues we have observed (likely, there are others
3048	 * that we have yet to discover).
3049	 *
3050	 * Note, should any memory overlap occur, obtaining any additional
3051	 * data from the file is questionable.  However, it might still be
3052	 * possible to inspect the ELF header, Programs headers, or individual
3053	 * sections, so rather than bailing on an error condition, continue
3054	 * processing to see if any data can be salvaged.
3055	 */
3056	if (shdr_ndx_arr_cnt > 1) {
3057		sort_shdr_ndx_arr_cache = cache;
3058		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
3059		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
3060	}
3061	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
3062		Cache	*_cache = cache + shdr_ndx_arr[ndx];
3063		Shdr	*shdr = _cache->c_shdr;
3064		Off	bgn1, bgn = shdr->sh_offset;
3065		Off	end1, end = shdr->sh_offset + shdr->sh_size;
3066		size_t	ndx1;
3067
3068		/*
3069		 * Check the section against all following ones, reporting
3070		 * any overlaps. Since we've sorted the sections by offset,
3071		 * we can stop after the first comparison that fails. There
3072		 * are no overlaps in a properly formed ELF file, in which
3073		 * case this algorithm runs in O(n) time. This will degenerate
3074		 * to O(n^2) for a completely broken file. Such a file is
3075		 * (1) highly unlikely, and (2) unusable, so it is reasonable
3076		 * for the analysis to take longer.
3077		 */
3078		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
3079			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
3080			Shdr	*shdr1 = _cache1->c_shdr;
3081
3082			bgn1 = shdr1->sh_offset;
3083			end1 = shdr1->sh_offset + shdr1->sh_size;
3084
3085			if (((bgn1 <= bgn) && (end1 > bgn)) ||
3086			    ((bgn1 < end) && (end1 >= end))) {
3087				(void) fprintf(stderr,
3088				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
3089				    EC_WORD(elf_ndxscn(_cache->c_scn)),
3090				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
3091				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
3092				    _cache1->c_name, EC_OFF(bgn1),
3093				    EC_OFF(end1));
3094			} else {	/* No overlap, so can stop */
3095				break;
3096			}
3097		}
3098
3099		/*
3100		 * In addition to checking for sections overlapping
3101		 * each other (done above), we should also make sure
3102		 * the section doesn't overlap the section header array.
3103		 */
3104		bgn1 = ehdr->e_shoff;
3105		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
3106
3107		if (((bgn1 <= bgn) && (end1 > bgn)) ||
3108		    ((bgn1 < end) && (end1 >= end))) {
3109			(void) fprintf(stderr,
3110			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
3111			    EC_OFF(end1),
3112			    EC_WORD(elf_ndxscn(_cache->c_scn)),
3113			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
3114		}
3115	}
3116
3117	/*
3118	 * Obtain the data for each section.
3119	 */
3120	for (ndx = 1; ndx < shnum; ndx++) {
3121		Cache	*_cache = &cache[ndx];
3122		Elf_Scn	*scn = _cache->c_scn;
3123
3124		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
3125			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3126			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
3127			    EC_WORD(elf_ndxscn(scn)));
3128		}
3129	}
3130
3131	return (1);
3132}
3133
3134
3135
3136void
3137regular(const char *file, int fd, Elf *elf, uint_t flags, int wfd)
3138{
3139	Elf_Scn		*scn;
3140	Ehdr		*ehdr;
3141	size_t		ndx, shstrndx, shnum, phnum;
3142	Shdr		*shdr;
3143	Cache		*cache;
3144	VERSYM_STATE	versym;
3145
3146	if ((ehdr = elf_getehdr(elf)) == NULL) {
3147		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
3148		return;
3149	}
3150
3151	if (elf_getshnum(elf, &shnum) == 0) {
3152		failure(file, MSG_ORIG(MSG_ELF_GETSHNUM));
3153		return;
3154	}
3155
3156	if (elf_getshstrndx(elf, &shstrndx) == 0) {
3157		failure(file, MSG_ORIG(MSG_ELF_GETSHSTRNDX));
3158		return;
3159	}
3160
3161	if (elf_getphnum(elf, &phnum) == 0) {
3162		failure(file, MSG_ORIG(MSG_ELF_GETPHNUM));
3163		return;
3164	}
3165	/*
3166	 * If the user requested section headers derived from the
3167	 * program headers (-P option) and this file doesn't have
3168	 * any program headers (i.e. ET_REL), then we can't do it.
3169	 */
3170	if ((phnum == 0) && (flags & FLG_FAKESHDR)) {
3171		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
3172		return;
3173	}
3174
3175
3176	if ((scn = elf_getscn(elf, 0)) != NULL) {
3177		if ((shdr = elf_getshdr(scn)) == NULL) {
3178			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3179			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
3180			return;
3181		}
3182	} else
3183		shdr = 0;
3184
3185	/*
3186	 * Print the elf header.
3187	 */
3188	if (flags & FLG_EHDR)
3189		Elf_ehdr(0, ehdr, shdr);
3190
3191	/*
3192	 * If the section headers or program headers have inadequate
3193	 * alignment for the class of object, print a warning. libelf
3194	 * can handle such files, but programs that use them can crash
3195	 * when they dereference unaligned items.
3196	 */
3197	if (ehdr->e_phoff & (sizeof (Addr) - 1))
3198		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
3199	if (ehdr->e_shoff & (sizeof (Addr) - 1))
3200		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
3201
3202	/*
3203	 * Print the program headers.
3204	 */
3205	if ((flags & FLG_PHDR) && (phnum != 0)) {
3206		Conv_inv_buf_t	inv_buf;
3207		Phdr		*phdr;
3208
3209		if ((phdr = elf_getphdr(elf)) == NULL) {
3210			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
3211			return;
3212		}
3213
3214		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
3215			if (!match(0, conv_phdr_type(ehdr->e_machine,
3216			    phdr->p_type, CONV_FMT_ALTFILE, &inv_buf), ndx))
3217				continue;
3218
3219			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3220			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
3221			Elf_phdr(0, ehdr->e_machine, phdr);
3222		}
3223	}
3224
3225	/*
3226	 * Decide how to proceed if there are no sections, if there's just
3227	 * one section (the first section can act as an extension of the
3228	 * ELF header), or if only program header information was requested.
3229	 */
3230	if ((shnum <= 1) || (flags && (flags & ~(FLG_EHDR | FLG_PHDR)) == 0)) {
3231		/* If a core file, display the note and return */
3232		if ((ehdr->e_type == ET_CORE) && (flags & FLG_NOTE)) {
3233			note(0, shnum, file);
3234			return;
3235		}
3236
3237		/* If only program header info was requested, we're done */
3238		if (flags && (flags & ~(FLG_EHDR | FLG_PHDR)) == 0)
3239			return;
3240
3241		/*
3242		 * Section headers are missing. Resort to synthesizing
3243		 * section headers from the program headers.
3244		 */
3245		if ((flags & FLG_FAKESHDR) == 0) {
3246			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
3247			flags |= FLG_FAKESHDR;
3248		}
3249	}
3250
3251	/*
3252	 * Generate a cache of section headers and related information
3253	 * for use by the rest of elfdump. If requested (or the file
3254	 * contains no section headers), we generate a fake set of
3255	 * headers from the information accessible from the program headers.
3256	 * Otherwise, we use the real section headers contained in the file.
3257	 */
3258
3259	if (flags & FLG_FAKESHDR) {
3260		if (fake_shdr_cache(file, fd, elf, ehdr, &cache, &shnum) == 0)
3261			return;
3262	} else {
3263		if (shdr_cache(file, elf, ehdr, shstrndx, shnum, &cache) == 0)
3264			return;
3265	}
3266
3267	/*
3268	 * If -w was specified, find and write out the section(s) data.
3269	 */
3270	if (wfd) {
3271		for (ndx = 1; ndx < shnum; ndx++) {
3272			Cache	*_cache = &cache[ndx];
3273
3274			if (match(1, _cache->c_name, ndx) && _cache->c_data) {
3275				(void) write(wfd, _cache->c_data->d_buf,
3276				    _cache->c_data->d_size);
3277			}
3278		}
3279	}
3280
3281	if (flags & FLG_SHDR)
3282		sections(file, cache, shnum, ehdr);
3283
3284	if (flags & FLG_INTERP)
3285		interp(file, cache, shnum, phnum, elf);
3286
3287	versions(cache, shnum, file, flags, &versym);
3288
3289	if (flags & FLG_SYMBOLS)
3290		symbols(cache, shnum, ehdr, &versym, file, flags);
3291
3292	if (flags & FLG_SORT)
3293		sunw_sort(cache, shnum, ehdr, &versym, file, flags);
3294
3295	if (flags & FLG_HASH)
3296		hash(cache, shnum, file, flags);
3297
3298	if (flags & FLG_GOT)
3299		got(cache, shnum, ehdr, file, flags);
3300
3301	if (flags & FLG_GROUP)
3302		group(cache, shnum, file, flags);
3303
3304	if (flags & FLG_SYMINFO)
3305		syminfo(cache, shnum, file);
3306
3307	if (flags & FLG_RELOC)
3308		reloc(cache, shnum, ehdr, file, flags);
3309
3310	if (flags & FLG_DYNAMIC)
3311		dynamic(cache, shnum, ehdr, file);
3312
3313	if (flags & FLG_NOTE)
3314		note(cache, shnum, file);
3315
3316	if (flags & FLG_MOVE)
3317		move(cache, shnum, file, flags);
3318
3319	if (flags & FLG_CHECKSUM)
3320		checksum(elf);
3321
3322	if (flags & FLG_CAP)
3323		cap(file, cache, shnum, phnum, ehdr, elf);
3324
3325	if (flags & FLG_UNWIND)
3326		unwind(cache, shnum, phnum, ehdr, file, elf);
3327
3328
3329	/* Release the memory used to cache section headers */
3330	if (flags & FLG_FAKESHDR)
3331		fake_shdr_cache_free(cache, shnum);
3332	else
3333		free(cache);
3334}
3335