genunix.c revision 6712:79afecec3f3c
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <mdb/mdb_param.h>
29#include <mdb/mdb_modapi.h>
30#include <mdb/mdb_ks.h>
31#include <mdb/mdb_ctf.h>
32
33#include <sys/types.h>
34#include <sys/thread.h>
35#include <sys/session.h>
36#include <sys/user.h>
37#include <sys/proc.h>
38#include <sys/var.h>
39#include <sys/t_lock.h>
40#include <sys/callo.h>
41#include <sys/priocntl.h>
42#include <sys/class.h>
43#include <sys/regset.h>
44#include <sys/stack.h>
45#include <sys/cpuvar.h>
46#include <sys/vnode.h>
47#include <sys/vfs.h>
48#include <sys/flock_impl.h>
49#include <sys/kmem_impl.h>
50#include <sys/vmem_impl.h>
51#include <sys/kstat.h>
52#include <vm/seg_vn.h>
53#include <vm/anon.h>
54#include <vm/as.h>
55#include <vm/seg_map.h>
56#include <sys/dditypes.h>
57#include <sys/ddi_impldefs.h>
58#include <sys/sysmacros.h>
59#include <sys/sysconf.h>
60#include <sys/task.h>
61#include <sys/project.h>
62#include <sys/taskq.h>
63#include <sys/taskq_impl.h>
64#include <sys/errorq_impl.h>
65#include <sys/cred_impl.h>
66#include <sys/zone.h>
67#include <sys/panic.h>
68#include <regex.h>
69#include <sys/port_impl.h>
70
71#include "avl.h"
72#include "combined.h"
73#include "contract.h"
74#include "cpupart_mdb.h"
75#include "devinfo.h"
76#include "leaky.h"
77#include "lgrp.h"
78#include "pg.h"
79#include "group.h"
80#include "list.h"
81#include "log.h"
82#include "kgrep.h"
83#include "kmem.h"
84#include "bio.h"
85#include "streams.h"
86#include "cyclic.h"
87#include "findstack.h"
88#include "ndievents.h"
89#include "mmd.h"
90#include "net.h"
91#include "netstack.h"
92#include "nvpair.h"
93#include "ctxop.h"
94#include "tsd.h"
95#include "thread.h"
96#include "memory.h"
97#include "sobj.h"
98#include "sysevent.h"
99#include "rctl.h"
100#include "tsol.h"
101#include "typegraph.h"
102#include "ldi.h"
103#include "vfs.h"
104#include "zone.h"
105#include "modhash.h"
106#include "mdi.h"
107#include "fm.h"
108
109/*
110 * Surely this is defined somewhere...
111 */
112#define	NINTR		16
113
114#define	KILOS		10
115#define	MEGS		20
116#define	GIGS		30
117
118#ifndef STACK_BIAS
119#define	STACK_BIAS	0
120#endif
121
122static char
123pstat2ch(uchar_t state)
124{
125	switch (state) {
126		case SSLEEP: return ('S');
127		case SRUN: return ('R');
128		case SZOMB: return ('Z');
129		case SIDL: return ('I');
130		case SONPROC: return ('O');
131		case SSTOP: return ('T');
132		case SWAIT: return ('W');
133		default: return ('?');
134	}
135}
136
137#define	PS_PRTTHREADS	0x1
138#define	PS_PRTLWPS	0x2
139#define	PS_PSARGS	0x4
140#define	PS_TASKS	0x8
141#define	PS_PROJECTS	0x10
142#define	PS_ZONES	0x20
143
144static int
145ps_threadprint(uintptr_t addr, const void *data, void *private)
146{
147	const kthread_t *t = (const kthread_t *)data;
148	uint_t prt_flags = *((uint_t *)private);
149
150	static const mdb_bitmask_t t_state_bits[] = {
151		{ "TS_FREE",	UINT_MAX,	TS_FREE		},
152		{ "TS_SLEEP",	TS_SLEEP,	TS_SLEEP	},
153		{ "TS_RUN",	TS_RUN,		TS_RUN		},
154		{ "TS_ONPROC",	TS_ONPROC,	TS_ONPROC	},
155		{ "TS_ZOMB",	TS_ZOMB,	TS_ZOMB		},
156		{ "TS_STOPPED",	TS_STOPPED,	TS_STOPPED	},
157		{ "TS_WAIT",	TS_WAIT,	TS_WAIT		},
158		{ NULL,		0,		0		}
159	};
160
161	if (prt_flags & PS_PRTTHREADS)
162		mdb_printf("\tT  %?a <%b>\n", addr, t->t_state, t_state_bits);
163
164	if (prt_flags & PS_PRTLWPS)
165		mdb_printf("\tL  %?a ID: %u\n", t->t_lwp, t->t_tid);
166
167	return (WALK_NEXT);
168}
169
170int
171ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
172{
173	uint_t prt_flags = 0;
174	proc_t pr;
175	struct pid pid, pgid, sid;
176	sess_t session;
177	cred_t cred;
178	task_t tk;
179	kproject_t pj;
180	zone_t zn;
181
182	if (!(flags & DCMD_ADDRSPEC)) {
183		if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
184			mdb_warn("can't walk 'proc'");
185			return (DCMD_ERR);
186		}
187		return (DCMD_OK);
188	}
189
190	if (mdb_getopts(argc, argv,
191	    'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
192	    'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
193	    'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
194	    'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
195	    'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
196	    't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
197		return (DCMD_USAGE);
198
199	if (DCMD_HDRSPEC(flags)) {
200		mdb_printf("%<u>%1s %6s %6s %6s %6s ",
201		    "S", "PID", "PPID", "PGID", "SID");
202		if (prt_flags & PS_TASKS)
203			mdb_printf("%5s ", "TASK");
204		if (prt_flags & PS_PROJECTS)
205			mdb_printf("%5s ", "PROJ");
206		if (prt_flags & PS_ZONES)
207			mdb_printf("%5s ", "ZONE");
208		mdb_printf("%6s %10s %?s %s%</u>\n",
209		    "UID", "FLAGS", "ADDR", "NAME");
210	}
211
212	mdb_vread(&pr, sizeof (pr), addr);
213	mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
214	mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
215	mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
216	mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
217	mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
218	if (prt_flags & (PS_TASKS | PS_PROJECTS))
219		mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
220	if (prt_flags & PS_PROJECTS)
221		mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
222	if (prt_flags & PS_ZONES)
223		mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
224
225	mdb_printf("%c %6d %6d %6d %6d ",
226	    pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
227	    sid.pid_id);
228	if (prt_flags & PS_TASKS)
229		mdb_printf("%5d ", tk.tk_tkid);
230	if (prt_flags & PS_PROJECTS)
231		mdb_printf("%5d ", pj.kpj_id);
232	if (prt_flags & PS_ZONES)
233		mdb_printf("%5d ", zn.zone_id);
234	mdb_printf("%6d 0x%08x %0?p %s\n",
235	    cred.cr_uid, pr.p_flag, addr,
236	    (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
237
238	if (prt_flags & ~PS_PSARGS)
239		(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
240
241	return (DCMD_OK);
242}
243
244#define	PG_NEWEST	0x0001
245#define	PG_OLDEST	0x0002
246#define	PG_PIPE_OUT	0x0004
247#define	PG_EXACT_MATCH	0x0008
248
249typedef struct pgrep_data {
250	uint_t pg_flags;
251	uint_t pg_psflags;
252	uintptr_t pg_xaddr;
253	hrtime_t pg_xstart;
254	const char *pg_pat;
255#ifndef _KMDB
256	regex_t pg_reg;
257#endif
258} pgrep_data_t;
259
260/*ARGSUSED*/
261static int
262pgrep_cb(uintptr_t addr, const void *pdata, void *data)
263{
264	const proc_t *prp = pdata;
265	pgrep_data_t *pgp = data;
266#ifndef _KMDB
267	regmatch_t pmatch;
268#endif
269
270	/*
271	 * kmdb doesn't have access to the reg* functions, so we fall back
272	 * to strstr/strcmp.
273	 */
274#ifdef _KMDB
275	if ((pgp->pg_flags & PG_EXACT_MATCH) ?
276	    (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
277	    (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
278		return (WALK_NEXT);
279#else
280	if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
281		return (WALK_NEXT);
282
283	if ((pgp->pg_flags & PG_EXACT_MATCH) &&
284	    (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
285		return (WALK_NEXT);
286#endif
287
288	if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
289		hrtime_t start;
290
291		start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
292		    prp->p_user.u_start.tv_nsec;
293
294		if (pgp->pg_flags & PG_NEWEST) {
295			if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
296				pgp->pg_xaddr = addr;
297				pgp->pg_xstart = start;
298			}
299		} else {
300			if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
301				pgp->pg_xaddr = addr;
302				pgp->pg_xstart = start;
303			}
304		}
305
306	} else if (pgp->pg_flags & PG_PIPE_OUT) {
307		mdb_printf("%p\n", addr);
308
309	} else {
310		if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
311			mdb_warn("can't invoke 'ps'");
312			return (WALK_DONE);
313		}
314		pgp->pg_psflags &= ~DCMD_LOOPFIRST;
315	}
316
317	return (WALK_NEXT);
318}
319
320/*ARGSUSED*/
321int
322pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
323{
324	pgrep_data_t pg;
325	int i;
326#ifndef _KMDB
327	int err;
328#endif
329
330	if (flags & DCMD_ADDRSPEC)
331		return (DCMD_USAGE);
332
333	pg.pg_flags = 0;
334	pg.pg_xaddr = 0;
335
336	i = mdb_getopts(argc, argv,
337	    'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
338	    'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
339	    'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
340	    NULL);
341
342	argc -= i;
343	argv += i;
344
345	if (argc != 1)
346		return (DCMD_USAGE);
347
348	/*
349	 * -n and -o are mutually exclusive.
350	 */
351	if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
352		return (DCMD_USAGE);
353
354	if (argv->a_type != MDB_TYPE_STRING)
355		return (DCMD_USAGE);
356
357	if (flags & DCMD_PIPE_OUT)
358		pg.pg_flags |= PG_PIPE_OUT;
359
360	pg.pg_pat = argv->a_un.a_str;
361	if (DCMD_HDRSPEC(flags))
362		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
363	else
364		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
365
366#ifndef _KMDB
367	if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
368		size_t nbytes;
369		char *buf;
370
371		nbytes = regerror(err, &pg.pg_reg, NULL, 0);
372		buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
373		(void) regerror(err, &pg.pg_reg, buf, nbytes);
374		mdb_warn("%s\n", buf);
375
376		return (DCMD_ERR);
377	}
378#endif
379
380	if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
381		mdb_warn("can't walk 'proc'");
382		return (DCMD_ERR);
383	}
384
385	if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
386		if (pg.pg_flags & PG_PIPE_OUT) {
387			mdb_printf("%p\n", pg.pg_xaddr);
388		} else {
389			if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
390			    0, NULL) != 0) {
391				mdb_warn("can't invoke 'ps'");
392				return (DCMD_ERR);
393			}
394		}
395	}
396
397	return (DCMD_OK);
398}
399
400int
401task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
402{
403	task_t tk;
404	kproject_t pj;
405
406	if (!(flags & DCMD_ADDRSPEC)) {
407		if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
408			mdb_warn("can't walk task_cache");
409			return (DCMD_ERR);
410		}
411		return (DCMD_OK);
412	}
413	if (DCMD_HDRSPEC(flags)) {
414		mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
415		    "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
416	}
417	if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
418		mdb_warn("can't read task_t structure at %p", addr);
419		return (DCMD_ERR);
420	}
421	if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
422		mdb_warn("can't read project_t structure at %p", addr);
423		return (DCMD_ERR);
424	}
425	mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
426	    addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
427	    tk.tk_flags);
428	return (DCMD_OK);
429}
430
431int
432project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
433{
434	kproject_t pj;
435
436	if (!(flags & DCMD_ADDRSPEC)) {
437		if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
438			mdb_warn("can't walk projects");
439			return (DCMD_ERR);
440		}
441		return (DCMD_OK);
442	}
443	if (DCMD_HDRSPEC(flags)) {
444		mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
445		    "ADDR", "PROJID", "ZONEID", "REFCNT");
446	}
447	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
448		mdb_warn("can't read kproject_t structure at %p", addr);
449		return (DCMD_ERR);
450	}
451	mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
452	    pj.kpj_count);
453	return (DCMD_OK);
454}
455
456/*ARGSUSED*/
457int
458callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
459{
460	callout_table_t	*co_ktable[CALLOUT_TABLES];
461	int co_kfanout;
462	callout_table_t co_table;
463	callout_t co_callout;
464	callout_t *co_ptr;
465	int co_id;
466	clock_t lbolt;
467	int i, j, k;
468	const char *lbolt_sym;
469	uintptr_t panicstr;
470
471	if ((flags & DCMD_ADDRSPEC) || argc != 0)
472		return (DCMD_USAGE);
473
474	if (mdb_readvar(&panicstr, "panicstr") == -1 ||
475	    panicstr == NULL) {
476		lbolt_sym = "lbolt";
477	} else {
478		lbolt_sym = "panic_lbolt";
479	}
480
481	if (mdb_readvar(&lbolt, lbolt_sym) == -1) {
482		mdb_warn("failed to read '%s'", lbolt_sym);
483		return (DCMD_ERR);
484	}
485
486	if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) {
487		mdb_warn("failed to read callout_fanout");
488		return (DCMD_ERR);
489	}
490
491	if (mdb_readvar(&co_ktable, "callout_table") == -1) {
492		mdb_warn("failed to read callout_table");
493		return (DCMD_ERR);
494	}
495
496	mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n",
497	    "FUNCTION", "ARGUMENT", "ID", "TIME");
498
499	for (i = 0; i < CALLOUT_NTYPES; i++) {
500		for (j = 0; j < co_kfanout; j++) {
501
502			co_id = CALLOUT_TABLE(i, j);
503
504			if (mdb_vread(&co_table, sizeof (co_table),
505			    (uintptr_t)co_ktable[co_id]) == -1) {
506				mdb_warn("failed to read table at %p",
507				    (uintptr_t)co_ktable[co_id]);
508				continue;
509			}
510
511			for (k = 0; k < CALLOUT_BUCKETS; k++) {
512				co_ptr = co_table.ct_idhash[k];
513
514				while (co_ptr != NULL) {
515					mdb_vread(&co_callout,
516					    sizeof (co_callout),
517					    (uintptr_t)co_ptr);
518
519					mdb_printf("%-24a %0?p %0?lx %?lx "
520					    "(T%+ld)\n", co_callout.c_func,
521					    co_callout.c_arg, co_callout.c_xid,
522					    co_callout.c_runtime,
523					    co_callout.c_runtime - lbolt);
524
525					co_ptr = co_callout.c_idnext;
526				}
527			}
528		}
529	}
530
531	return (DCMD_OK);
532}
533
534/*ARGSUSED*/
535int
536class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
537{
538	long num_classes, i;
539	sclass_t *class_tbl;
540	GElf_Sym g_sclass;
541	char class_name[PC_CLNMSZ];
542	size_t tbl_size;
543
544	if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
545		mdb_warn("failed to find symbol sclass\n");
546		return (DCMD_ERR);
547	}
548
549	tbl_size = (size_t)g_sclass.st_size;
550	num_classes = tbl_size / (sizeof (sclass_t));
551	class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
552
553	if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
554		mdb_warn("failed to read sclass");
555		return (DCMD_ERR);
556	}
557
558	mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
559	    "INIT FCN", "CLASS FCN");
560
561	for (i = 0; i < num_classes; i++) {
562		if (mdb_vread(class_name, sizeof (class_name),
563		    (uintptr_t)class_tbl[i].cl_name) == -1)
564			(void) strcpy(class_name, "???");
565
566		mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
567		    class_tbl[i].cl_init, class_tbl[i].cl_funcs);
568	}
569
570	return (DCMD_OK);
571}
572
573#define	FSNAMELEN	32	/* Max len of FS name we read from vnodeops */
574
575int
576vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
577{
578	uintptr_t rootdir;
579	vnode_t vn;
580	char buf[MAXPATHLEN];
581
582	uint_t opt_F = FALSE;
583
584	if (mdb_getopts(argc, argv,
585	    'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
586		return (DCMD_USAGE);
587
588	if (!(flags & DCMD_ADDRSPEC)) {
589		mdb_warn("expected explicit vnode_t address before ::\n");
590		return (DCMD_USAGE);
591	}
592
593	if (mdb_readvar(&rootdir, "rootdir") == -1) {
594		mdb_warn("failed to read rootdir");
595		return (DCMD_ERR);
596	}
597
598	if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
599		return (DCMD_ERR);
600
601	if (*buf == '\0') {
602		mdb_printf("??\n");
603		return (DCMD_OK);
604	}
605
606	mdb_printf("%s", buf);
607	if (opt_F && buf[strlen(buf)-1] != '/' &&
608	    mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
609		mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
610	mdb_printf("\n");
611
612	return (DCMD_OK);
613}
614
615int
616ld_walk_init(mdb_walk_state_t *wsp)
617{
618	wsp->walk_data = (void *)wsp->walk_addr;
619	return (WALK_NEXT);
620}
621
622int
623ld_walk_step(mdb_walk_state_t *wsp)
624{
625	int status;
626	lock_descriptor_t ld;
627
628	if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
629		mdb_warn("couldn't read lock_descriptor_t at %p\n",
630		    wsp->walk_addr);
631		return (WALK_ERR);
632	}
633
634	status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
635	if (status == WALK_ERR)
636		return (WALK_ERR);
637
638	wsp->walk_addr = (uintptr_t)ld.l_next;
639	if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
640		return (WALK_DONE);
641
642	return (status);
643}
644
645int
646lg_walk_init(mdb_walk_state_t *wsp)
647{
648	GElf_Sym sym;
649
650	if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
651		mdb_warn("failed to find symbol 'lock_graph'\n");
652		return (WALK_ERR);
653	}
654
655	wsp->walk_addr = (uintptr_t)sym.st_value;
656	wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
657
658	return (WALK_NEXT);
659}
660
661typedef struct lg_walk_data {
662	uintptr_t startaddr;
663	mdb_walk_cb_t callback;
664	void *data;
665} lg_walk_data_t;
666
667/*
668 * We can't use ::walk lock_descriptor directly, because the head of each graph
669 * is really a dummy lock.  Rather than trying to dynamically determine if this
670 * is a dummy node or not, we just filter out the initial element of the
671 * list.
672 */
673static int
674lg_walk_cb(uintptr_t addr, const void *data, void *priv)
675{
676	lg_walk_data_t *lw = priv;
677
678	if (addr != lw->startaddr)
679		return (lw->callback(addr, data, lw->data));
680
681	return (WALK_NEXT);
682}
683
684int
685lg_walk_step(mdb_walk_state_t *wsp)
686{
687	graph_t *graph;
688	lg_walk_data_t lw;
689
690	if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
691		return (WALK_DONE);
692
693	if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
694		mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
695		return (WALK_ERR);
696	}
697
698	wsp->walk_addr += sizeof (graph);
699
700	if (graph == NULL)
701		return (WALK_NEXT);
702
703	lw.callback = wsp->walk_callback;
704	lw.data = wsp->walk_cbdata;
705
706	lw.startaddr = (uintptr_t)&(graph->active_locks);
707	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
708		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
709		return (WALK_ERR);
710	}
711
712	lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
713	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
714		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
715		return (WALK_ERR);
716	}
717
718	return (WALK_NEXT);
719}
720
721/*
722 * The space available for the path corresponding to the locked vnode depends
723 * on whether we are printing 32- or 64-bit addresses.
724 */
725#ifdef _LP64
726#define	LM_VNPATHLEN	20
727#else
728#define	LM_VNPATHLEN	30
729#endif
730
731/*ARGSUSED*/
732static int
733lminfo_cb(uintptr_t addr, const void *data, void *priv)
734{
735	const lock_descriptor_t *ld = data;
736	char buf[LM_VNPATHLEN];
737	proc_t p;
738
739	mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
740	    addr, ld->l_type == F_RDLCK ? "RD" :
741	    ld->l_type == F_WRLCK ? "WR" : "??",
742	    ld->l_state, ld->l_flock.l_pid,
743	    ld->l_flock.l_pid == 0 ? "<kernel>" :
744	    mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
745	    "<defunct>" : p.p_user.u_comm,
746	    ld->l_vnode);
747
748	mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
749	    sizeof (buf));
750	mdb_printf("%s\n", buf);
751
752	return (WALK_NEXT);
753}
754
755/*ARGSUSED*/
756int
757lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
758{
759	if (DCMD_HDRSPEC(flags))
760		mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
761		    "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
762
763	return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
764}
765
766/*ARGSUSED*/
767int
768seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
769{
770	struct seg s;
771
772	if (argc != 0)
773		return (DCMD_USAGE);
774
775	if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
776		mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
777		    "SEG", "BASE", "SIZE", "DATA", "OPS");
778	}
779
780	if (mdb_vread(&s, sizeof (s), addr) == -1) {
781		mdb_warn("failed to read seg at %p", addr);
782		return (DCMD_ERR);
783	}
784
785	mdb_printf("%?p %?p %?lx %?p %a\n",
786	    addr, s.s_base, s.s_size, s.s_data, s.s_ops);
787
788	return (DCMD_OK);
789}
790
791/*ARGSUSED*/
792static int
793pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres)
794{
795	uintptr_t pp =
796	    mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off);
797
798	if (pp != NULL)
799		(*nres)++;
800
801	return (WALK_NEXT);
802}
803
804static int
805pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
806{
807
808	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
809
810	if (segvn == (uintptr_t)seg->s_ops) {
811		struct segvn_data svn;
812		int nres = 0;
813
814		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
815
816		if (svn.amp == NULL) {
817			mdb_printf(" %8s", "");
818			goto drive_on;
819		}
820
821		/*
822		 * We've got an amp for this segment; walk through
823		 * the amp, and determine mappings.
824		 */
825		if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon,
826		    &nres, (uintptr_t)svn.amp) == -1)
827			mdb_warn("failed to walk anon (amp=%p)", svn.amp);
828
829		mdb_printf(" %7dk", (nres * PAGESIZE) / 1024);
830drive_on:
831
832		if (svn.vp != NULL) {
833			char buf[29];
834
835			mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
836			mdb_printf(" %s", buf);
837		} else
838			mdb_printf(" [ anon ]");
839	}
840
841	mdb_printf("\n");
842	return (WALK_NEXT);
843}
844
845static int
846pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
847{
848	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
849
850	if (segvn == (uintptr_t)seg->s_ops) {
851		struct segvn_data svn;
852
853		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
854
855		if (svn.vp != NULL) {
856			mdb_printf(" %0?p", svn.vp);
857		} else {
858			mdb_printf(" [ anon ]");
859		}
860	}
861
862	mdb_printf("\n");
863	return (WALK_NEXT);
864}
865
866/*ARGSUSED*/
867int
868pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
869{
870	uintptr_t segvn;
871	proc_t proc;
872	uint_t quick = FALSE;
873	mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
874
875	GElf_Sym sym;
876
877	if (!(flags & DCMD_ADDRSPEC))
878		return (DCMD_USAGE);
879
880	if (mdb_getopts(argc, argv,
881	    'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
882		return (DCMD_USAGE);
883
884	if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
885		mdb_warn("failed to read proc at %p", addr);
886		return (DCMD_ERR);
887	}
888
889	if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
890		segvn = (uintptr_t)sym.st_value;
891	else
892		segvn = NULL;
893
894	mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
895
896	if (quick) {
897		mdb_printf("VNODE\n");
898		cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
899	} else {
900		mdb_printf("%8s %s\n", "RES", "PATH");
901	}
902
903	if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) {
904		mdb_warn("failed to walk segments of as %p", proc.p_as);
905		return (DCMD_ERR);
906	}
907
908	return (DCMD_OK);
909}
910
911typedef struct anon_walk_data {
912	uintptr_t *aw_levone;
913	uintptr_t *aw_levtwo;
914	int aw_nlevone;
915	int aw_levone_ndx;
916	int aw_levtwo_ndx;
917	struct anon_map aw_amp;
918	struct anon_hdr aw_ahp;
919} anon_walk_data_t;
920
921int
922anon_walk_init(mdb_walk_state_t *wsp)
923{
924	anon_walk_data_t *aw;
925
926	if (wsp->walk_addr == NULL) {
927		mdb_warn("anon walk doesn't support global walks\n");
928		return (WALK_ERR);
929	}
930
931	aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
932
933	if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
934		mdb_warn("failed to read anon map at %p", wsp->walk_addr);
935		mdb_free(aw, sizeof (anon_walk_data_t));
936		return (WALK_ERR);
937	}
938
939	if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
940	    (uintptr_t)(aw->aw_amp.ahp)) == -1) {
941		mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
942		mdb_free(aw, sizeof (anon_walk_data_t));
943		return (WALK_ERR);
944	}
945
946	if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
947	    (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
948		aw->aw_nlevone = aw->aw_ahp.size;
949		aw->aw_levtwo = NULL;
950	} else {
951		aw->aw_nlevone =
952		    (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
953		aw->aw_levtwo =
954		    mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
955	}
956
957	aw->aw_levone =
958	    mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
959
960	aw->aw_levone_ndx = 0;
961	aw->aw_levtwo_ndx = 0;
962
963	mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
964	    (uintptr_t)aw->aw_ahp.array_chunk);
965
966	if (aw->aw_levtwo != NULL) {
967		while (aw->aw_levone[aw->aw_levone_ndx] == NULL) {
968			aw->aw_levone_ndx++;
969			if (aw->aw_levone_ndx == aw->aw_nlevone) {
970				mdb_warn("corrupt anon; couldn't"
971				    "find ptr to lev two map");
972				goto out;
973			}
974		}
975
976		mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t),
977		    aw->aw_levone[aw->aw_levone_ndx]);
978	}
979
980out:
981	wsp->walk_data = aw;
982	return (0);
983}
984
985int
986anon_walk_step(mdb_walk_state_t *wsp)
987{
988	int status;
989	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
990	struct anon anon;
991	uintptr_t anonptr;
992
993again:
994	/*
995	 * Once we've walked through level one, we're done.
996	 */
997	if (aw->aw_levone_ndx == aw->aw_nlevone)
998		return (WALK_DONE);
999
1000	if (aw->aw_levtwo == NULL) {
1001		anonptr = aw->aw_levone[aw->aw_levone_ndx];
1002		aw->aw_levone_ndx++;
1003	} else {
1004		anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
1005		aw->aw_levtwo_ndx++;
1006
1007		if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
1008			aw->aw_levtwo_ndx = 0;
1009
1010			do {
1011				aw->aw_levone_ndx++;
1012
1013				if (aw->aw_levone_ndx == aw->aw_nlevone)
1014					return (WALK_DONE);
1015			} while (aw->aw_levone[aw->aw_levone_ndx] == NULL);
1016
1017			mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE *
1018			    sizeof (uintptr_t),
1019			    aw->aw_levone[aw->aw_levone_ndx]);
1020		}
1021	}
1022
1023	if (anonptr != NULL) {
1024		mdb_vread(&anon, sizeof (anon), anonptr);
1025		status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata);
1026	} else
1027		goto again;
1028
1029	return (status);
1030}
1031
1032void
1033anon_walk_fini(mdb_walk_state_t *wsp)
1034{
1035	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1036
1037	if (aw->aw_levtwo != NULL)
1038		mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
1039
1040	mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
1041	mdb_free(aw, sizeof (anon_walk_data_t));
1042}
1043
1044/*ARGSUSED*/
1045int
1046whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1047{
1048	if ((uintptr_t)f->f_vnode == *target) {
1049		mdb_printf("file %p\n", addr);
1050		*target = NULL;
1051	}
1052
1053	return (WALK_NEXT);
1054}
1055
1056/*ARGSUSED*/
1057int
1058whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
1059{
1060	uintptr_t t = *target;
1061
1062	if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
1063		mdb_warn("couldn't file walk proc %p", addr);
1064		return (WALK_ERR);
1065	}
1066
1067	if (t == NULL)
1068		mdb_printf("%p\n", addr);
1069
1070	return (WALK_NEXT);
1071}
1072
1073/*ARGSUSED*/
1074int
1075whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1076{
1077	uintptr_t target = addr;
1078
1079	if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
1080		return (DCMD_USAGE);
1081
1082	if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
1083		mdb_warn("can't proc walk");
1084		return (DCMD_ERR);
1085	}
1086
1087	return (DCMD_OK);
1088}
1089
1090typedef struct datafmt {
1091	char	*hdr1;
1092	char	*hdr2;
1093	char	*dashes;
1094	char	*fmt;
1095} datafmt_t;
1096
1097static datafmt_t kmemfmt[] = {
1098	{ "cache                    ", "name                     ",
1099	"-------------------------", "%-25s "				},
1100	{ "   buf",	"  size",	"------",	"%6u "		},
1101	{ "   buf",	"in use",	"------",	"%6u "		},
1102	{ "   buf",	" total",	"------",	"%6u "		},
1103	{ "   memory",	"   in use",	"----------",	"%9u%c "	},
1104	{ "    alloc",	"  succeed",	"---------",	"%9u "		},
1105	{ "alloc",	" fail",	"-----",	"%5u "		},
1106	{ NULL,		NULL,		NULL,		NULL		}
1107};
1108
1109static datafmt_t vmemfmt[] = {
1110	{ "vmem                     ", "name                     ",
1111	"-------------------------", "%-*s "				},
1112	{ "   memory",	"   in use",	"----------",	"%9llu%c "	},
1113	{ "    memory",	"     total",	"-----------",	"%10llu%c "	},
1114	{ "   memory",	"   import",	"----------",	"%9llu%c "	},
1115	{ "    alloc",	"  succeed",	"---------",	"%9llu "	},
1116	{ "alloc",	" fail",	"-----",	"%5llu "	},
1117	{ NULL,		NULL,		NULL,		NULL		}
1118};
1119
1120/*ARGSUSED*/
1121static int
1122kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
1123{
1124	if (ccp->cc_rounds > 0)
1125		*avail += ccp->cc_rounds;
1126	if (ccp->cc_prounds > 0)
1127		*avail += ccp->cc_prounds;
1128
1129	return (WALK_NEXT);
1130}
1131
1132/*ARGSUSED*/
1133static int
1134kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
1135{
1136	*alloc += ccp->cc_alloc;
1137
1138	return (WALK_NEXT);
1139}
1140
1141/*ARGSUSED*/
1142static int
1143kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
1144{
1145	*avail += sp->slab_chunks - sp->slab_refcnt;
1146
1147	return (WALK_NEXT);
1148}
1149
1150typedef struct kmastat_vmem {
1151	uintptr_t kv_addr;
1152	struct kmastat_vmem *kv_next;
1153	int kv_meminuse;
1154	int kv_alloc;
1155	int kv_fail;
1156} kmastat_vmem_t;
1157
1158typedef struct kmastat_args {
1159	kmastat_vmem_t **ka_kvpp;
1160	uint_t ka_shift;
1161} kmastat_args_t;
1162
1163static int
1164kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
1165{
1166	kmastat_vmem_t **kvp = kap->ka_kvpp;
1167	kmastat_vmem_t *kv;
1168	datafmt_t *dfp = kmemfmt;
1169	int magsize;
1170
1171	int avail, alloc, total;
1172	size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
1173	    cp->cache_slabsize;
1174
1175	mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
1176	mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
1177	mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
1178
1179	magsize = kmem_get_magsize(cp);
1180
1181	alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
1182	avail = cp->cache_full.ml_total * magsize;
1183	total = cp->cache_buftotal;
1184
1185	(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
1186	(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
1187	(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
1188
1189	for (kv = *kvp; kv != NULL; kv = kv->kv_next) {
1190		if (kv->kv_addr == (uintptr_t)cp->cache_arena)
1191			goto out;
1192	}
1193
1194	kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
1195	kv->kv_next = *kvp;
1196	kv->kv_addr = (uintptr_t)cp->cache_arena;
1197	*kvp = kv;
1198out:
1199	kv->kv_meminuse += meminuse;
1200	kv->kv_alloc += alloc;
1201	kv->kv_fail += cp->cache_alloc_fail;
1202
1203	mdb_printf((dfp++)->fmt, cp->cache_name);
1204	mdb_printf((dfp++)->fmt, cp->cache_bufsize);
1205	mdb_printf((dfp++)->fmt, total - avail);
1206	mdb_printf((dfp++)->fmt, total);
1207	mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
1208	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
1209	    kap->ka_shift == KILOS ? 'K' : 'B');
1210	mdb_printf((dfp++)->fmt, alloc);
1211	mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
1212	mdb_printf("\n");
1213
1214	return (WALK_NEXT);
1215}
1216
1217static int
1218kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
1219{
1220	kmastat_vmem_t *kv = *kap->ka_kvpp;
1221	size_t len;
1222
1223	while (kv != NULL && kv->kv_addr != addr)
1224		kv = kv->kv_next;
1225
1226	if (kv == NULL || kv->kv_alloc == 0)
1227		return (WALK_NEXT);
1228
1229	len = MIN(17, strlen(v->vm_name));
1230
1231	mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name,
1232	    17 - len, "", "", "", "",
1233	    kv->kv_meminuse >> kap->ka_shift,
1234	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
1235	    kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
1236
1237	return (WALK_NEXT);
1238}
1239
1240/*ARGSUSED*/
1241static int
1242kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
1243{
1244	datafmt_t *dfp = vmemfmt;
1245	const vmem_kstat_t *vkp = &v->vm_kstat;
1246	uintptr_t paddr;
1247	vmem_t parent;
1248	int ident = 0;
1249
1250	for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
1251		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
1252			mdb_warn("couldn't trace %p's ancestry", addr);
1253			ident = 0;
1254			break;
1255		}
1256		paddr = (uintptr_t)parent.vm_source;
1257	}
1258
1259	mdb_printf("%*s", ident, "");
1260	mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
1261	mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
1262	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
1263	    *shiftp == KILOS ? 'K' : 'B');
1264	mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
1265	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
1266	    *shiftp == KILOS ? 'K' : 'B');
1267	mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
1268	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
1269	    *shiftp == KILOS ? 'K' : 'B');
1270	mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
1271	mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
1272
1273	mdb_printf("\n");
1274
1275	return (WALK_NEXT);
1276}
1277
1278/*ARGSUSED*/
1279int
1280kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1281{
1282	kmastat_vmem_t *kv = NULL;
1283	datafmt_t *dfp;
1284	kmastat_args_t ka;
1285
1286	ka.ka_shift = 0;
1287	if (mdb_getopts(argc, argv,
1288	    'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
1289	    'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
1290	    'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
1291		return (DCMD_USAGE);
1292
1293	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1294		mdb_printf("%s ", dfp->hdr1);
1295	mdb_printf("\n");
1296
1297	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1298		mdb_printf("%s ", dfp->hdr2);
1299	mdb_printf("\n");
1300
1301	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1302		mdb_printf("%s ", dfp->dashes);
1303	mdb_printf("\n");
1304
1305	ka.ka_kvpp = &kv;
1306	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
1307		mdb_warn("can't walk 'kmem_cache'");
1308		return (DCMD_ERR);
1309	}
1310
1311	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1312		mdb_printf("%s ", dfp->dashes);
1313	mdb_printf("\n");
1314
1315	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
1316		mdb_warn("can't walk 'vmem'");
1317		return (DCMD_ERR);
1318	}
1319
1320	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1321		mdb_printf("%s ", dfp->dashes);
1322	mdb_printf("\n");
1323
1324	mdb_printf("\n");
1325
1326	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1327		mdb_printf("%s ", dfp->hdr1);
1328	mdb_printf("\n");
1329
1330	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1331		mdb_printf("%s ", dfp->hdr2);
1332	mdb_printf("\n");
1333
1334	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1335		mdb_printf("%s ", dfp->dashes);
1336	mdb_printf("\n");
1337
1338	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
1339		mdb_warn("can't walk 'vmem'");
1340		return (DCMD_ERR);
1341	}
1342
1343	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1344		mdb_printf("%s ", dfp->dashes);
1345	mdb_printf("\n");
1346	return (DCMD_OK);
1347}
1348
1349/*
1350 * Our ::kgrep callback scans the entire kernel VA space (kas).  kas is made
1351 * up of a set of 'struct seg's.  We could just scan each seg en masse, but
1352 * unfortunately, a few of the segs are both large and sparse, so we could
1353 * spend quite a bit of time scanning VAs which have no backing pages.
1354 *
1355 * So for the few very sparse segs, we skip the segment itself, and scan
1356 * the allocated vmem_segs in the vmem arena which manages that part of kas.
1357 * Currently, we do this for:
1358 *
1359 *	SEG		VMEM ARENA
1360 *	kvseg		heap_arena
1361 *	kvseg32		heap32_arena
1362 *	kvseg_core	heap_core_arena
1363 *
1364 * In addition, we skip the segkpm segment in its entirety, since it is very
1365 * sparse, and contains no new kernel data.
1366 */
1367typedef struct kgrep_walk_data {
1368	kgrep_cb_func *kg_cb;
1369	void *kg_cbdata;
1370	uintptr_t kg_kvseg;
1371	uintptr_t kg_kvseg32;
1372	uintptr_t kg_kvseg_core;
1373	uintptr_t kg_segkpm;
1374	uintptr_t kg_heap_lp_base;
1375	uintptr_t kg_heap_lp_end;
1376} kgrep_walk_data_t;
1377
1378static int
1379kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
1380{
1381	uintptr_t base = (uintptr_t)seg->s_base;
1382
1383	if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
1384	    addr == kg->kg_kvseg_core)
1385		return (WALK_NEXT);
1386
1387	if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
1388		return (WALK_NEXT);
1389
1390	return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
1391}
1392
1393/*ARGSUSED*/
1394static int
1395kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
1396{
1397	/*
1398	 * skip large page heap address range - it is scanned by walking
1399	 * allocated vmem_segs in the heap_lp_arena
1400	 */
1401	if (seg->vs_start == kg->kg_heap_lp_base &&
1402	    seg->vs_end == kg->kg_heap_lp_end)
1403		return (WALK_NEXT);
1404
1405	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
1406}
1407
1408/*ARGSUSED*/
1409static int
1410kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
1411{
1412	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
1413}
1414
1415static int
1416kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
1417{
1418	mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
1419
1420	if (strcmp(vmem->vm_name, "heap") != 0 &&
1421	    strcmp(vmem->vm_name, "heap32") != 0 &&
1422	    strcmp(vmem->vm_name, "heap_core") != 0 &&
1423	    strcmp(vmem->vm_name, "heap_lp") != 0)
1424		return (WALK_NEXT);
1425
1426	if (strcmp(vmem->vm_name, "heap_lp") == 0)
1427		walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
1428
1429	if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
1430		mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
1431		return (WALK_ERR);
1432	}
1433
1434	return (WALK_NEXT);
1435}
1436
1437int
1438kgrep_subr(kgrep_cb_func *cb, void *cbdata)
1439{
1440	GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
1441	kgrep_walk_data_t kg;
1442
1443	if (mdb_get_state() == MDB_STATE_RUNNING) {
1444		mdb_warn("kgrep can only be run on a system "
1445		    "dump or under kmdb; see dumpadm(1M)\n");
1446		return (DCMD_ERR);
1447	}
1448
1449	if (mdb_lookup_by_name("kas", &kas) == -1) {
1450		mdb_warn("failed to locate 'kas' symbol\n");
1451		return (DCMD_ERR);
1452	}
1453
1454	if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
1455		mdb_warn("failed to locate 'kvseg' symbol\n");
1456		return (DCMD_ERR);
1457	}
1458
1459	if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
1460		mdb_warn("failed to locate 'kvseg32' symbol\n");
1461		return (DCMD_ERR);
1462	}
1463
1464	if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
1465		mdb_warn("failed to locate 'kvseg_core' symbol\n");
1466		return (DCMD_ERR);
1467	}
1468
1469	if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
1470		mdb_warn("failed to locate 'segkpm_ops' symbol\n");
1471		return (DCMD_ERR);
1472	}
1473
1474	if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
1475		mdb_warn("failed to read 'heap_lp_base'\n");
1476		return (DCMD_ERR);
1477	}
1478
1479	if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
1480		mdb_warn("failed to read 'heap_lp_end'\n");
1481		return (DCMD_ERR);
1482	}
1483
1484	kg.kg_cb = cb;
1485	kg.kg_cbdata = cbdata;
1486	kg.kg_kvseg = (uintptr_t)kvseg.st_value;
1487	kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
1488	kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
1489	kg.kg_segkpm = (uintptr_t)segkpm.st_value;
1490
1491	if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
1492	    &kg, kas.st_value) == -1) {
1493		mdb_warn("failed to walk kas segments");
1494		return (DCMD_ERR);
1495	}
1496
1497	if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
1498		mdb_warn("failed to walk heap/heap32 vmem arenas");
1499		return (DCMD_ERR);
1500	}
1501
1502	return (DCMD_OK);
1503}
1504
1505size_t
1506kgrep_subr_pagesize(void)
1507{
1508	return (PAGESIZE);
1509}
1510
1511typedef struct file_walk_data {
1512	struct uf_entry *fw_flist;
1513	int fw_flistsz;
1514	int fw_ndx;
1515	int fw_nofiles;
1516} file_walk_data_t;
1517
1518int
1519file_walk_init(mdb_walk_state_t *wsp)
1520{
1521	file_walk_data_t *fw;
1522	proc_t p;
1523
1524	if (wsp->walk_addr == NULL) {
1525		mdb_warn("file walk doesn't support global walks\n");
1526		return (WALK_ERR);
1527	}
1528
1529	fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
1530
1531	if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
1532		mdb_free(fw, sizeof (file_walk_data_t));
1533		mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
1534		return (WALK_ERR);
1535	}
1536
1537	if (p.p_user.u_finfo.fi_nfiles == 0) {
1538		mdb_free(fw, sizeof (file_walk_data_t));
1539		return (WALK_DONE);
1540	}
1541
1542	fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
1543	fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
1544	fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
1545
1546	if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
1547	    (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
1548		mdb_warn("failed to read file array at %p",
1549		    p.p_user.u_finfo.fi_list);
1550		mdb_free(fw->fw_flist, fw->fw_flistsz);
1551		mdb_free(fw, sizeof (file_walk_data_t));
1552		return (WALK_ERR);
1553	}
1554
1555	fw->fw_ndx = 0;
1556	wsp->walk_data = fw;
1557
1558	return (WALK_NEXT);
1559}
1560
1561int
1562file_walk_step(mdb_walk_state_t *wsp)
1563{
1564	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1565	struct file file;
1566	uintptr_t fp;
1567
1568again:
1569	if (fw->fw_ndx == fw->fw_nofiles)
1570		return (WALK_DONE);
1571
1572	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
1573		goto again;
1574
1575	(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
1576	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
1577}
1578
1579int
1580allfile_walk_step(mdb_walk_state_t *wsp)
1581{
1582	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1583	struct file file;
1584	uintptr_t fp;
1585
1586	if (fw->fw_ndx == fw->fw_nofiles)
1587		return (WALK_DONE);
1588
1589	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
1590		(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
1591	else
1592		bzero(&file, sizeof (file));
1593
1594	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
1595}
1596
1597void
1598file_walk_fini(mdb_walk_state_t *wsp)
1599{
1600	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1601
1602	mdb_free(fw->fw_flist, fw->fw_flistsz);
1603	mdb_free(fw, sizeof (file_walk_data_t));
1604}
1605
1606int
1607port_walk_init(mdb_walk_state_t *wsp)
1608{
1609	if (wsp->walk_addr == NULL) {
1610		mdb_warn("port walk doesn't support global walks\n");
1611		return (WALK_ERR);
1612	}
1613
1614	if (mdb_layered_walk("file", wsp) == -1) {
1615		mdb_warn("couldn't walk 'file'");
1616		return (WALK_ERR);
1617	}
1618	return (WALK_NEXT);
1619}
1620
1621int
1622port_walk_step(mdb_walk_state_t *wsp)
1623{
1624	struct vnode	vn;
1625	uintptr_t	vp;
1626	uintptr_t	pp;
1627	struct port	port;
1628
1629	vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
1630	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
1631		mdb_warn("failed to read vnode_t at %p", vp);
1632		return (WALK_ERR);
1633	}
1634	if (vn.v_type != VPORT)
1635		return (WALK_NEXT);
1636
1637	pp = (uintptr_t)vn.v_data;
1638	if (mdb_vread(&port, sizeof (port), pp) == -1) {
1639		mdb_warn("failed to read port_t at %p", pp);
1640		return (WALK_ERR);
1641	}
1642	return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
1643}
1644
1645typedef struct portev_walk_data {
1646	list_node_t	*pev_node;
1647	list_node_t	*pev_last;
1648	size_t		pev_offset;
1649} portev_walk_data_t;
1650
1651int
1652portev_walk_init(mdb_walk_state_t *wsp)
1653{
1654	portev_walk_data_t *pevd;
1655	struct port	port;
1656	struct vnode	vn;
1657	struct list	*list;
1658	uintptr_t	vp;
1659
1660	if (wsp->walk_addr == NULL) {
1661		mdb_warn("portev walk doesn't support global walks\n");
1662		return (WALK_ERR);
1663	}
1664
1665	pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
1666
1667	if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
1668		mdb_free(pevd, sizeof (portev_walk_data_t));
1669		mdb_warn("failed to read port structure at %p", wsp->walk_addr);
1670		return (WALK_ERR);
1671	}
1672
1673	vp = (uintptr_t)port.port_vnode;
1674	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
1675		mdb_free(pevd, sizeof (portev_walk_data_t));
1676		mdb_warn("failed to read vnode_t at %p", vp);
1677		return (WALK_ERR);
1678	}
1679
1680	if (vn.v_type != VPORT) {
1681		mdb_free(pevd, sizeof (portev_walk_data_t));
1682		mdb_warn("input address (%p) does not point to an event port",
1683		    wsp->walk_addr);
1684		return (WALK_ERR);
1685	}
1686
1687	if (port.port_queue.portq_nent == 0) {
1688		mdb_free(pevd, sizeof (portev_walk_data_t));
1689		return (WALK_DONE);
1690	}
1691	list = &port.port_queue.portq_list;
1692	pevd->pev_offset = list->list_offset;
1693	pevd->pev_last = list->list_head.list_prev;
1694	pevd->pev_node = list->list_head.list_next;
1695	wsp->walk_data = pevd;
1696	return (WALK_NEXT);
1697}
1698
1699int
1700portev_walk_step(mdb_walk_state_t *wsp)
1701{
1702	portev_walk_data_t	*pevd;
1703	struct port_kevent	ev;
1704	uintptr_t		evp;
1705
1706	pevd = (portev_walk_data_t *)wsp->walk_data;
1707
1708	if (pevd->pev_last == NULL)
1709		return (WALK_DONE);
1710	if (pevd->pev_node == pevd->pev_last)
1711		pevd->pev_last = NULL;		/* last round */
1712
1713	evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
1714	if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
1715		mdb_warn("failed to read port_kevent at %p", evp);
1716		return (WALK_DONE);
1717	}
1718	pevd->pev_node = ev.portkev_node.list_next;
1719	return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
1720}
1721
1722void
1723portev_walk_fini(mdb_walk_state_t *wsp)
1724{
1725	portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
1726
1727	if (pevd != NULL)
1728		mdb_free(pevd, sizeof (portev_walk_data_t));
1729}
1730
1731typedef struct proc_walk_data {
1732	uintptr_t *pw_stack;
1733	int pw_depth;
1734	int pw_max;
1735} proc_walk_data_t;
1736
1737int
1738proc_walk_init(mdb_walk_state_t *wsp)
1739{
1740	GElf_Sym sym;
1741	proc_walk_data_t *pw;
1742
1743	if (wsp->walk_addr == NULL) {
1744		if (mdb_lookup_by_name("p0", &sym) == -1) {
1745			mdb_warn("failed to read 'practive'");
1746			return (WALK_ERR);
1747		}
1748		wsp->walk_addr = (uintptr_t)sym.st_value;
1749	}
1750
1751	pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
1752
1753	if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
1754		mdb_warn("failed to read 'nproc'");
1755		mdb_free(pw, sizeof (pw));
1756		return (WALK_ERR);
1757	}
1758
1759	pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
1760	wsp->walk_data = pw;
1761
1762	return (WALK_NEXT);
1763}
1764
1765int
1766proc_walk_step(mdb_walk_state_t *wsp)
1767{
1768	proc_walk_data_t *pw = wsp->walk_data;
1769	uintptr_t addr = wsp->walk_addr;
1770	uintptr_t cld, sib;
1771
1772	int status;
1773	proc_t pr;
1774
1775	if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
1776		mdb_warn("failed to read proc at %p", addr);
1777		return (WALK_DONE);
1778	}
1779
1780	cld = (uintptr_t)pr.p_child;
1781	sib = (uintptr_t)pr.p_sibling;
1782
1783	if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
1784		pw->pw_depth--;
1785		goto sib;
1786	}
1787
1788	status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
1789
1790	if (status != WALK_NEXT)
1791		return (status);
1792
1793	if ((wsp->walk_addr = cld) != NULL) {
1794		if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
1795			mdb_warn("proc %p has invalid p_child %p; skipping\n",
1796			    addr, cld);
1797			goto sib;
1798		}
1799
1800		pw->pw_stack[pw->pw_depth++] = addr;
1801
1802		if (pw->pw_depth == pw->pw_max) {
1803			mdb_warn("depth %d exceeds max depth; try again\n",
1804			    pw->pw_depth);
1805			return (WALK_DONE);
1806		}
1807		return (WALK_NEXT);
1808	}
1809
1810sib:
1811	/*
1812	 * We know that p0 has no siblings, and if another starting proc
1813	 * was given, we don't want to walk its siblings anyway.
1814	 */
1815	if (pw->pw_depth == 0)
1816		return (WALK_DONE);
1817
1818	if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
1819		mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
1820		    addr, sib);
1821		sib = NULL;
1822	}
1823
1824	if ((wsp->walk_addr = sib) == NULL) {
1825		if (pw->pw_depth > 0) {
1826			wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
1827			return (WALK_NEXT);
1828		}
1829		return (WALK_DONE);
1830	}
1831
1832	return (WALK_NEXT);
1833}
1834
1835void
1836proc_walk_fini(mdb_walk_state_t *wsp)
1837{
1838	proc_walk_data_t *pw = wsp->walk_data;
1839
1840	mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
1841	mdb_free(pw, sizeof (proc_walk_data_t));
1842}
1843
1844int
1845task_walk_init(mdb_walk_state_t *wsp)
1846{
1847	task_t task;
1848
1849	if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
1850		mdb_warn("failed to read task at %p", wsp->walk_addr);
1851		return (WALK_ERR);
1852	}
1853	wsp->walk_addr = (uintptr_t)task.tk_memb_list;
1854	wsp->walk_data = task.tk_memb_list;
1855	return (WALK_NEXT);
1856}
1857
1858int
1859task_walk_step(mdb_walk_state_t *wsp)
1860{
1861	proc_t proc;
1862	int status;
1863
1864	if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
1865		mdb_warn("failed to read proc at %p", wsp->walk_addr);
1866		return (WALK_DONE);
1867	}
1868
1869	status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
1870
1871	if (proc.p_tasknext == wsp->walk_data)
1872		return (WALK_DONE);
1873
1874	wsp->walk_addr = (uintptr_t)proc.p_tasknext;
1875	return (status);
1876}
1877
1878int
1879project_walk_init(mdb_walk_state_t *wsp)
1880{
1881	if (wsp->walk_addr == NULL) {
1882		if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
1883			mdb_warn("failed to read 'proj0p'");
1884			return (WALK_ERR);
1885		}
1886	}
1887	wsp->walk_data = (void *)wsp->walk_addr;
1888	return (WALK_NEXT);
1889}
1890
1891int
1892project_walk_step(mdb_walk_state_t *wsp)
1893{
1894	uintptr_t addr = wsp->walk_addr;
1895	kproject_t pj;
1896	int status;
1897
1898	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
1899		mdb_warn("failed to read project at %p", addr);
1900		return (WALK_DONE);
1901	}
1902	status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
1903	if (status != WALK_NEXT)
1904		return (status);
1905	wsp->walk_addr = (uintptr_t)pj.kpj_next;
1906	if ((void *)wsp->walk_addr == wsp->walk_data)
1907		return (WALK_DONE);
1908	return (WALK_NEXT);
1909}
1910
1911static int
1912generic_walk_step(mdb_walk_state_t *wsp)
1913{
1914	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
1915	    wsp->walk_cbdata));
1916}
1917
1918int
1919seg_walk_init(mdb_walk_state_t *wsp)
1920{
1921	if (wsp->walk_addr == NULL) {
1922		mdb_warn("seg walk must begin at struct as *\n");
1923		return (WALK_ERR);
1924	}
1925
1926	/*
1927	 * this is really just a wrapper to AVL tree walk
1928	 */
1929	wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
1930	return (avl_walk_init(wsp));
1931}
1932
1933static int
1934cpu_walk_cmp(const void *l, const void *r)
1935{
1936	uintptr_t lhs = *((uintptr_t *)l);
1937	uintptr_t rhs = *((uintptr_t *)r);
1938	cpu_t lcpu, rcpu;
1939
1940	(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
1941	(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
1942
1943	if (lcpu.cpu_id < rcpu.cpu_id)
1944		return (-1);
1945
1946	if (lcpu.cpu_id > rcpu.cpu_id)
1947		return (1);
1948
1949	return (0);
1950}
1951
1952typedef struct cpu_walk {
1953	uintptr_t *cw_array;
1954	int cw_ndx;
1955} cpu_walk_t;
1956
1957int
1958cpu_walk_init(mdb_walk_state_t *wsp)
1959{
1960	cpu_walk_t *cw;
1961	int max_ncpus, i = 0;
1962	uintptr_t current, first;
1963	cpu_t cpu, panic_cpu;
1964	uintptr_t panicstr, addr;
1965	GElf_Sym sym;
1966
1967	cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
1968
1969	if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
1970		mdb_warn("failed to read 'max_ncpus'");
1971		return (WALK_ERR);
1972	}
1973
1974	if (mdb_readvar(&panicstr, "panicstr") == -1) {
1975		mdb_warn("failed to read 'panicstr'");
1976		return (WALK_ERR);
1977	}
1978
1979	if (panicstr != NULL) {
1980		if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
1981			mdb_warn("failed to find 'panic_cpu'");
1982			return (WALK_ERR);
1983		}
1984
1985		addr = (uintptr_t)sym.st_value;
1986
1987		if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
1988			mdb_warn("failed to read 'panic_cpu'");
1989			return (WALK_ERR);
1990		}
1991	}
1992
1993	/*
1994	 * Unfortunately, there is no platform-independent way to walk
1995	 * CPUs in ID order.  We therefore loop through in cpu_next order,
1996	 * building an array of CPU pointers which will subsequently be
1997	 * sorted.
1998	 */
1999	cw->cw_array =
2000	    mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2001
2002	if (mdb_readvar(&first, "cpu_list") == -1) {
2003		mdb_warn("failed to read 'cpu_list'");
2004		return (WALK_ERR);
2005	}
2006
2007	current = first;
2008	do {
2009		if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2010			mdb_warn("failed to read cpu at %p", current);
2011			return (WALK_ERR);
2012		}
2013
2014		if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
2015			cw->cw_array[i++] = addr;
2016		} else {
2017			cw->cw_array[i++] = current;
2018		}
2019	} while ((current = (uintptr_t)cpu.cpu_next) != first);
2020
2021	qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2022	wsp->walk_data = cw;
2023
2024	return (WALK_NEXT);
2025}
2026
2027int
2028cpu_walk_step(mdb_walk_state_t *wsp)
2029{
2030	cpu_walk_t *cw = wsp->walk_data;
2031	cpu_t cpu;
2032	uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2033
2034	if (addr == NULL)
2035		return (WALK_DONE);
2036
2037	if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
2038		mdb_warn("failed to read cpu at %p", addr);
2039		return (WALK_DONE);
2040	}
2041
2042	return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
2043}
2044
2045typedef struct cpuinfo_data {
2046	intptr_t cid_cpu;
2047	uintptr_t cid_lbolt;
2048	uintptr_t **cid_ithr;
2049	char	cid_print_head;
2050	char	cid_print_thr;
2051	char	cid_print_ithr;
2052	char	cid_print_flags;
2053} cpuinfo_data_t;
2054
2055int
2056cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
2057{
2058	cpu_t c;
2059	int id;
2060	uint8_t pil;
2061
2062	if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
2063		return (WALK_NEXT);
2064
2065	if (thr->t_bound_cpu == NULL) {
2066		mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
2067		return (WALK_NEXT);
2068	}
2069
2070	(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
2071
2072	if ((id = c.cpu_id) >= NCPU) {
2073		mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
2074		    thr->t_bound_cpu, id, NCPU);
2075		return (WALK_NEXT);
2076	}
2077
2078	if ((pil = thr->t_pil) >= NINTR) {
2079		mdb_warn("thread %p has pil (%d) greater than %d\n",
2080		    addr, pil, NINTR);
2081		return (WALK_NEXT);
2082	}
2083
2084	if (cid->cid_ithr[id][pil] != NULL) {
2085		mdb_warn("CPU %d has multiple threads at pil %d (at least "
2086		    "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
2087		return (WALK_NEXT);
2088	}
2089
2090	cid->cid_ithr[id][pil] = addr;
2091
2092	return (WALK_NEXT);
2093}
2094
2095#define	CPUINFO_IDWIDTH		3
2096#define	CPUINFO_FLAGWIDTH	9
2097
2098#ifdef _LP64
2099#if defined(__amd64)
2100#define	CPUINFO_TWIDTH		16
2101#define	CPUINFO_CPUWIDTH	16
2102#else
2103#define	CPUINFO_CPUWIDTH	11
2104#define	CPUINFO_TWIDTH		11
2105#endif
2106#else
2107#define	CPUINFO_CPUWIDTH	8
2108#define	CPUINFO_TWIDTH		8
2109#endif
2110
2111#define	CPUINFO_THRDELT		(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
2112#define	CPUINFO_FLAGDELT	(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
2113#define	CPUINFO_ITHRDELT	4
2114
2115#define	CPUINFO_INDENT	mdb_printf("%*s", CPUINFO_THRDELT, \
2116    flagline < nflaglines ? flagbuf[flagline++] : "")
2117
2118int
2119cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
2120{
2121	kthread_t t;
2122	disp_t disp;
2123	proc_t p;
2124	uintptr_t pinned;
2125	char **flagbuf;
2126	int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
2127
2128	const char *flags[] = {
2129	    "RUNNING", "READY", "QUIESCED", "EXISTS",
2130	    "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
2131	    "SPARE", "FAULTED", NULL
2132	};
2133
2134	if (cid->cid_cpu != -1) {
2135		if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
2136			return (WALK_NEXT);
2137
2138		/*
2139		 * Set cid_cpu to -1 to indicate that we found a matching CPU.
2140		 */
2141		cid->cid_cpu = -1;
2142		rval = WALK_DONE;
2143	}
2144
2145	if (cid->cid_print_head) {
2146		mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
2147		    "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
2148		    "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
2149		    "PROC");
2150		cid->cid_print_head = FALSE;
2151	}
2152
2153	bspl = cpu->cpu_base_spl;
2154
2155	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
2156		mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
2157		return (WALK_ERR);
2158	}
2159
2160	mdb_printf("%3d %0*p %3x %4d %4d ",
2161	    cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
2162	    disp.disp_nrunnable, bspl);
2163
2164	if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
2165		mdb_printf("%3d ", t.t_pri);
2166	} else {
2167		mdb_printf("%3s ", "-");
2168	}
2169
2170	mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
2171	    cpu->cpu_kprunrun ? "yes" : "no");
2172
2173	if (cpu->cpu_last_swtch) {
2174		clock_t lbolt;
2175
2176		if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) {
2177			mdb_warn("failed to read lbolt at %p", cid->cid_lbolt);
2178			return (WALK_ERR);
2179		}
2180		mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch);
2181	} else {
2182		mdb_printf("%-6s ", "-");
2183	}
2184
2185	mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
2186
2187	if (cpu->cpu_thread == cpu->cpu_idle_thread)
2188		mdb_printf(" (idle)\n");
2189	else if (cpu->cpu_thread == NULL)
2190		mdb_printf(" -\n");
2191	else {
2192		if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
2193			mdb_printf(" %s\n", p.p_user.u_comm);
2194		} else {
2195			mdb_printf(" ?\n");
2196		}
2197	}
2198
2199	flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
2200
2201	if (cid->cid_print_flags) {
2202		int first = 1, i, j, k;
2203		char *s;
2204
2205		cid->cid_print_head = TRUE;
2206
2207		for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
2208			if (!(cpu->cpu_flags & i))
2209				continue;
2210
2211			if (first) {
2212				s = mdb_alloc(CPUINFO_THRDELT + 1,
2213				    UM_GC | UM_SLEEP);
2214
2215				(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
2216				    "%*s|%*s", CPUINFO_FLAGDELT, "",
2217				    CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
2218				flagbuf[nflaglines++] = s;
2219			}
2220
2221			s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
2222			(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
2223			    CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
2224			    CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
2225			    first ? "<--+" : "");
2226
2227			for (k = strlen(s); k < CPUINFO_THRDELT; k++)
2228				s[k] = ' ';
2229			s[k] = '\0';
2230
2231			flagbuf[nflaglines++] = s;
2232			first = 0;
2233		}
2234	}
2235
2236	if (cid->cid_print_ithr) {
2237		int i, found_one = FALSE;
2238		int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
2239
2240		for (i = NINTR - 1; i >= 0; i--) {
2241			uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
2242
2243			if (iaddr == NULL)
2244				continue;
2245
2246			if (!found_one) {
2247				found_one = TRUE;
2248
2249				CPUINFO_INDENT;
2250				mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
2251				    CPUINFO_ITHRDELT, "");
2252
2253				CPUINFO_INDENT;
2254				mdb_printf("%c%*s+--> %3s %s\n",
2255				    print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
2256				    "", "PIL", "THREAD");
2257			}
2258
2259			if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
2260				mdb_warn("failed to read kthread_t at %p",
2261				    iaddr);
2262				return (WALK_ERR);
2263			}
2264
2265			CPUINFO_INDENT;
2266			mdb_printf("%c%*s     %3d %0*p\n",
2267			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
2268			    t.t_pil, CPUINFO_TWIDTH, iaddr);
2269
2270			pinned = (uintptr_t)t.t_intr;
2271		}
2272
2273		if (found_one && pinned != NULL) {
2274			cid->cid_print_head = TRUE;
2275			(void) strcpy(p.p_user.u_comm, "?");
2276
2277			if (mdb_vread(&t, sizeof (t),
2278			    (uintptr_t)pinned) == -1) {
2279				mdb_warn("failed to read kthread_t at %p",
2280				    pinned);
2281				return (WALK_ERR);
2282			}
2283			if (mdb_vread(&p, sizeof (p),
2284			    (uintptr_t)t.t_procp) == -1) {
2285				mdb_warn("failed to read proc_t at %p",
2286				    t.t_procp);
2287				return (WALK_ERR);
2288			}
2289
2290			CPUINFO_INDENT;
2291			mdb_printf("%c%*s     %3s %0*p %s\n",
2292			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
2293			    CPUINFO_TWIDTH, pinned,
2294			    pinned == (uintptr_t)cpu->cpu_idle_thread ?
2295			    "(idle)" : p.p_user.u_comm);
2296		}
2297	}
2298
2299	if (disp.disp_nrunnable && cid->cid_print_thr) {
2300		dispq_t *dq;
2301
2302		int i, npri = disp.disp_npri;
2303
2304		dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
2305
2306		if (mdb_vread(dq, sizeof (dispq_t) * npri,
2307		    (uintptr_t)disp.disp_q) == -1) {
2308			mdb_warn("failed to read dispq_t at %p", disp.disp_q);
2309			return (WALK_ERR);
2310		}
2311
2312		CPUINFO_INDENT;
2313		mdb_printf("|\n");
2314
2315		CPUINFO_INDENT;
2316		mdb_printf("+-->  %3s %-*s %s\n", "PRI",
2317		    CPUINFO_TWIDTH, "THREAD", "PROC");
2318
2319		for (i = npri - 1; i >= 0; i--) {
2320			uintptr_t taddr = (uintptr_t)dq[i].dq_first;
2321
2322			while (taddr != NULL) {
2323				if (mdb_vread(&t, sizeof (t), taddr) == -1) {
2324					mdb_warn("failed to read kthread_t "
2325					    "at %p", taddr);
2326					return (WALK_ERR);
2327				}
2328				if (mdb_vread(&p, sizeof (p),
2329				    (uintptr_t)t.t_procp) == -1) {
2330					mdb_warn("failed to read proc_t at %p",
2331					    t.t_procp);
2332					return (WALK_ERR);
2333				}
2334
2335				CPUINFO_INDENT;
2336				mdb_printf("      %3d %0*p %s\n", t.t_pri,
2337				    CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
2338
2339				taddr = (uintptr_t)t.t_link;
2340			}
2341		}
2342		cid->cid_print_head = TRUE;
2343	}
2344
2345	while (flagline < nflaglines)
2346		mdb_printf("%s\n", flagbuf[flagline++]);
2347
2348	if (cid->cid_print_head)
2349		mdb_printf("\n");
2350
2351	return (rval);
2352}
2353
2354int
2355cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2356{
2357	uint_t verbose = FALSE;
2358	cpuinfo_data_t cid;
2359	GElf_Sym sym;
2360	clock_t lbolt;
2361
2362	cid.cid_print_ithr = FALSE;
2363	cid.cid_print_thr = FALSE;
2364	cid.cid_print_flags = FALSE;
2365	cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
2366	cid.cid_cpu = -1;
2367
2368	if (flags & DCMD_ADDRSPEC)
2369		cid.cid_cpu = addr;
2370
2371	if (mdb_getopts(argc, argv,
2372	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
2373		return (DCMD_USAGE);
2374
2375	if (verbose) {
2376		cid.cid_print_ithr = TRUE;
2377		cid.cid_print_thr = TRUE;
2378		cid.cid_print_flags = TRUE;
2379		cid.cid_print_head = TRUE;
2380	}
2381
2382	if (cid.cid_print_ithr) {
2383		int i;
2384
2385		cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
2386		    * NCPU, UM_SLEEP | UM_GC);
2387
2388		for (i = 0; i < NCPU; i++)
2389			cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
2390			    NINTR, UM_SLEEP | UM_GC);
2391
2392		if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
2393		    &cid) == -1) {
2394			mdb_warn("couldn't walk thread");
2395			return (DCMD_ERR);
2396		}
2397	}
2398
2399	if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) {
2400		mdb_warn("failed to find panic_lbolt");
2401		return (DCMD_ERR);
2402	}
2403
2404	cid.cid_lbolt = (uintptr_t)sym.st_value;
2405
2406	if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) {
2407		mdb_warn("failed to read panic_lbolt");
2408		return (DCMD_ERR);
2409	}
2410
2411	if (lbolt == 0) {
2412		if (mdb_lookup_by_name("lbolt", &sym) == -1) {
2413			mdb_warn("failed to find lbolt");
2414			return (DCMD_ERR);
2415		}
2416		cid.cid_lbolt = (uintptr_t)sym.st_value;
2417	}
2418
2419	if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
2420		mdb_warn("can't walk cpus");
2421		return (DCMD_ERR);
2422	}
2423
2424	if (cid.cid_cpu != -1) {
2425		/*
2426		 * We didn't find this CPU when we walked through the CPUs
2427		 * (i.e. the address specified doesn't show up in the "cpu"
2428		 * walk).  However, the specified address may still correspond
2429		 * to a valid cpu_t (for example, if the specified address is
2430		 * the actual panicking cpu_t and not the cached panic_cpu).
2431		 * Point is:  even if we didn't find it, we still want to try
2432		 * to print the specified address as a cpu_t.
2433		 */
2434		cpu_t cpu;
2435
2436		if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
2437			mdb_warn("%p is neither a valid CPU ID nor a "
2438			    "valid cpu_t address\n", cid.cid_cpu);
2439			return (DCMD_ERR);
2440		}
2441
2442		(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
2443	}
2444
2445	return (DCMD_OK);
2446}
2447
2448/*ARGSUSED*/
2449int
2450flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2451{
2452	int i;
2453
2454	if (!(flags & DCMD_ADDRSPEC))
2455		return (DCMD_USAGE);
2456
2457	for (i = 0; i < sizeof (addr) * NBBY; i++)
2458		mdb_printf("%p\n", addr ^ (1UL << i));
2459
2460	return (DCMD_OK);
2461}
2462
2463/*
2464 * Grumble, grumble.
2465 */
2466#define	SMAP_HASHFUNC(vp, off)	\
2467	((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
2468	((off) >> MAXBSHIFT)) & smd_hashmsk)
2469
2470int
2471vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2472{
2473	long smd_hashmsk;
2474	int hash;
2475	uintptr_t offset = 0;
2476	struct smap smp;
2477	uintptr_t saddr, kaddr;
2478	uintptr_t smd_hash, smd_smap;
2479	struct seg seg;
2480
2481	if (!(flags & DCMD_ADDRSPEC))
2482		return (DCMD_USAGE);
2483
2484	if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
2485		mdb_warn("failed to read smd_hashmsk");
2486		return (DCMD_ERR);
2487	}
2488
2489	if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
2490		mdb_warn("failed to read smd_hash");
2491		return (DCMD_ERR);
2492	}
2493
2494	if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
2495		mdb_warn("failed to read smd_hash");
2496		return (DCMD_ERR);
2497	}
2498
2499	if (mdb_readvar(&kaddr, "segkmap") == -1) {
2500		mdb_warn("failed to read segkmap");
2501		return (DCMD_ERR);
2502	}
2503
2504	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
2505		mdb_warn("failed to read segkmap at %p", kaddr);
2506		return (DCMD_ERR);
2507	}
2508
2509	if (argc != 0) {
2510		const mdb_arg_t *arg = &argv[0];
2511
2512		if (arg->a_type == MDB_TYPE_IMMEDIATE)
2513			offset = arg->a_un.a_val;
2514		else
2515			offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
2516	}
2517
2518	hash = SMAP_HASHFUNC(addr, offset);
2519
2520	if (mdb_vread(&saddr, sizeof (saddr),
2521	    smd_hash + hash * sizeof (uintptr_t)) == -1) {
2522		mdb_warn("couldn't read smap at %p",
2523		    smd_hash + hash * sizeof (uintptr_t));
2524		return (DCMD_ERR);
2525	}
2526
2527	do {
2528		if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
2529			mdb_warn("couldn't read smap at %p", saddr);
2530			return (DCMD_ERR);
2531		}
2532
2533		if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
2534			mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
2535			    addr, offset, saddr, ((saddr - smd_smap) /
2536			    sizeof (smp)) * MAXBSIZE + seg.s_base);
2537			return (DCMD_OK);
2538		}
2539
2540		saddr = (uintptr_t)smp.sm_hash;
2541	} while (saddr != NULL);
2542
2543	mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
2544	return (DCMD_OK);
2545}
2546
2547/*ARGSUSED*/
2548int
2549addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2550{
2551	uintptr_t kaddr;
2552	struct seg seg;
2553	struct segmap_data sd;
2554
2555	if (!(flags & DCMD_ADDRSPEC))
2556		return (DCMD_USAGE);
2557
2558	if (mdb_readvar(&kaddr, "segkmap") == -1) {
2559		mdb_warn("failed to read segkmap");
2560		return (DCMD_ERR);
2561	}
2562
2563	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
2564		mdb_warn("failed to read segkmap at %p", kaddr);
2565		return (DCMD_ERR);
2566	}
2567
2568	if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
2569		mdb_warn("failed to read segmap_data at %p", seg.s_data);
2570		return (DCMD_ERR);
2571	}
2572
2573	mdb_printf("%p is smap %p\n", addr,
2574	    ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
2575	    sizeof (struct smap) + (uintptr_t)sd.smd_sm);
2576
2577	return (DCMD_OK);
2578}
2579
2580int
2581as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
2582{
2583	if (p->p_as == *asp)
2584		mdb_printf("%p\n", addr);
2585	return (WALK_NEXT);
2586}
2587
2588/*ARGSUSED*/
2589int
2590as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2591{
2592	if (!(flags & DCMD_ADDRSPEC) || argc != 0)
2593		return (DCMD_USAGE);
2594
2595	if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
2596		mdb_warn("failed to walk proc");
2597		return (DCMD_ERR);
2598	}
2599
2600	return (DCMD_OK);
2601}
2602
2603/*ARGSUSED*/
2604int
2605ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
2606{
2607	proc_t parent;
2608	int ident = 0;
2609	uintptr_t paddr;
2610
2611	for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
2612		mdb_vread(&parent, sizeof (parent), paddr);
2613		paddr = (uintptr_t)parent.p_parent;
2614	}
2615
2616	mdb_inc_indent(ident);
2617	mdb_printf("%0?p  %s\n", addr, p->p_user.u_comm);
2618	mdb_dec_indent(ident);
2619
2620	return (WALK_NEXT);
2621}
2622
2623void
2624ptree_ancestors(uintptr_t addr, uintptr_t start)
2625{
2626	proc_t p;
2627
2628	if (mdb_vread(&p, sizeof (p), addr) == -1) {
2629		mdb_warn("couldn't read ancestor at %p", addr);
2630		return;
2631	}
2632
2633	if (p.p_parent != NULL)
2634		ptree_ancestors((uintptr_t)p.p_parent, start);
2635
2636	if (addr != start)
2637		(void) ptree_walk(addr, &p, NULL);
2638}
2639
2640/*ARGSUSED*/
2641int
2642ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2643{
2644	if (!(flags & DCMD_ADDRSPEC))
2645		addr = NULL;
2646	else
2647		ptree_ancestors(addr, addr);
2648
2649	if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
2650		mdb_warn("couldn't walk 'proc'");
2651		return (DCMD_ERR);
2652	}
2653
2654	return (DCMD_OK);
2655}
2656
2657/*ARGSUSED*/
2658static int
2659fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2660{
2661	int fdnum;
2662	const mdb_arg_t *argp = &argv[0];
2663	proc_t p;
2664	uf_entry_t uf;
2665
2666	if ((flags & DCMD_ADDRSPEC) == 0) {
2667		mdb_warn("fd doesn't give global information\n");
2668		return (DCMD_ERR);
2669	}
2670	if (argc != 1)
2671		return (DCMD_USAGE);
2672
2673	if (argp->a_type == MDB_TYPE_IMMEDIATE)
2674		fdnum = argp->a_un.a_val;
2675	else
2676		fdnum = mdb_strtoull(argp->a_un.a_str);
2677
2678	if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
2679		mdb_warn("couldn't read proc_t at %p", addr);
2680		return (DCMD_ERR);
2681	}
2682	if (fdnum > p.p_user.u_finfo.fi_nfiles) {
2683		mdb_warn("process %p only has %d files open.\n",
2684		    addr, p.p_user.u_finfo.fi_nfiles);
2685		return (DCMD_ERR);
2686	}
2687	if (mdb_vread(&uf, sizeof (uf_entry_t),
2688	    (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
2689		mdb_warn("couldn't read uf_entry_t at %p",
2690		    &p.p_user.u_finfo.fi_list[fdnum]);
2691		return (DCMD_ERR);
2692	}
2693
2694	mdb_printf("%p\n", uf.uf_file);
2695	return (DCMD_OK);
2696}
2697
2698/*ARGSUSED*/
2699static int
2700pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2701{
2702	pid_t pid = (pid_t)addr;
2703
2704	if (argc != 0)
2705		return (DCMD_USAGE);
2706
2707	if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
2708		mdb_warn("PID 0t%d not found\n", pid);
2709		return (DCMD_ERR);
2710	}
2711
2712	mdb_printf("%p\n", addr);
2713	return (DCMD_OK);
2714}
2715
2716static char *sysfile_cmd[] = {
2717	"exclude:",
2718	"include:",
2719	"forceload:",
2720	"rootdev:",
2721	"rootfs:",
2722	"swapdev:",
2723	"swapfs:",
2724	"moddir:",
2725	"set",
2726	"unknown",
2727};
2728
2729static char *sysfile_ops[] = { "", "=", "&", "|" };
2730
2731/*ARGSUSED*/
2732static int
2733sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
2734{
2735	if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
2736		*target = NULL;
2737		return (WALK_DONE);
2738	}
2739	return (WALK_NEXT);
2740}
2741
2742/*ARGSUSED*/
2743static int
2744sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2745{
2746	struct sysparam *sysp, sys;
2747	char var[256];
2748	char modname[256];
2749	char val[256];
2750	char strval[256];
2751	vmem_t *mod_sysfile_arena;
2752	void *straddr;
2753
2754	if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
2755		mdb_warn("failed to read sysparam_hd");
2756		return (DCMD_ERR);
2757	}
2758
2759	if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
2760		mdb_warn("failed to read mod_sysfile_arena");
2761		return (DCMD_ERR);
2762	}
2763
2764	while (sysp != NULL) {
2765		var[0] = '\0';
2766		val[0] = '\0';
2767		modname[0] = '\0';
2768		if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
2769			mdb_warn("couldn't read sysparam %p", sysp);
2770			return (DCMD_ERR);
2771		}
2772		if (sys.sys_modnam != NULL &&
2773		    mdb_readstr(modname, 256,
2774		    (uintptr_t)sys.sys_modnam) == -1) {
2775			mdb_warn("couldn't read modname in %p", sysp);
2776			return (DCMD_ERR);
2777		}
2778		if (sys.sys_ptr != NULL &&
2779		    mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
2780			mdb_warn("couldn't read ptr in %p", sysp);
2781			return (DCMD_ERR);
2782		}
2783		if (sys.sys_op != SETOP_NONE) {
2784			/*
2785			 * Is this an int or a string?  We determine this
2786			 * by checking whether straddr is contained in
2787			 * mod_sysfile_arena.  If so, the walker will set
2788			 * straddr to NULL.
2789			 */
2790			straddr = (void *)(uintptr_t)sys.sys_info;
2791			if (sys.sys_op == SETOP_ASSIGN &&
2792			    sys.sys_info != 0 &&
2793			    mdb_pwalk("vmem_seg",
2794			    (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
2795			    (uintptr_t)mod_sysfile_arena) == 0 &&
2796			    straddr == NULL &&
2797			    mdb_readstr(strval, 256,
2798			    (uintptr_t)sys.sys_info) != -1) {
2799				(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
2800				    strval);
2801			} else {
2802				(void) mdb_snprintf(val, sizeof (val),
2803				    "0x%llx [0t%llu]", sys.sys_info,
2804				    sys.sys_info);
2805			}
2806		}
2807		mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
2808		    modname, modname[0] == '\0' ? "" : ":",
2809		    var, sysfile_ops[sys.sys_op], val);
2810
2811		sysp = sys.sys_next;
2812	}
2813
2814	return (DCMD_OK);
2815}
2816
2817/*
2818 * Dump a taskq_ent_t given its address.
2819 */
2820/*ARGSUSED*/
2821int
2822taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2823{
2824	taskq_ent_t	taskq_ent;
2825	GElf_Sym	sym;
2826	char		buf[MDB_SYM_NAMLEN+1];
2827
2828
2829	if (!(flags & DCMD_ADDRSPEC)) {
2830		mdb_warn("expected explicit taskq_ent_t address before ::\n");
2831		return (DCMD_USAGE);
2832	}
2833
2834	if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) {
2835		mdb_warn("failed to read taskq_ent_t at %p", addr);
2836		return (DCMD_ERR);
2837	}
2838
2839	if (DCMD_HDRSPEC(flags)) {
2840		mdb_printf("%<u>%-?s    %-?s    %-s%</u>\n",
2841		"ENTRY", "ARG", "FUNCTION");
2842	}
2843
2844	if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT,
2845	    buf, sizeof (buf), &sym) == -1) {
2846		(void) strcpy(buf, "????");
2847	}
2848
2849	mdb_printf("%-?p    %-?p    %s\n", addr, taskq_ent.tqent_arg, buf);
2850
2851	return (DCMD_OK);
2852}
2853
2854/*
2855 * Given the address of the (taskq_t) task queue head, walk the queue listing
2856 * the address of every taskq_ent_t.
2857 */
2858int
2859taskq_walk_init(mdb_walk_state_t *wsp)
2860{
2861	taskq_t	tq_head;
2862
2863
2864	if (wsp->walk_addr == NULL) {
2865		mdb_warn("start address required\n");
2866		return (WALK_ERR);
2867	}
2868
2869
2870	/*
2871	 * Save the address of the list head entry.  This terminates the list.
2872	 */
2873	wsp->walk_data = (void *)
2874	    ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task));
2875
2876
2877	/*
2878	 * Read in taskq head, set walk_addr to point to first taskq_ent_t.
2879	 */
2880	if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) ==
2881	    -1) {
2882		mdb_warn("failed to read taskq list head at %p",
2883		    wsp->walk_addr);
2884	}
2885	wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next;
2886
2887
2888	/*
2889	 * Check for null list (next=head)
2890	 */
2891	if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
2892		return (WALK_DONE);
2893	}
2894
2895	return (WALK_NEXT);
2896}
2897
2898
2899int
2900taskq_walk_step(mdb_walk_state_t *wsp)
2901{
2902	taskq_ent_t	tq_ent;
2903	int		status;
2904
2905
2906	if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) ==
2907	    -1) {
2908		mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr);
2909		return (DCMD_ERR);
2910	}
2911
2912	status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent,
2913	    wsp->walk_cbdata);
2914
2915	wsp->walk_addr = (uintptr_t)tq_ent.tqent_next;
2916
2917
2918	/* Check if we're at the last element (next=head) */
2919	if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
2920		return (WALK_DONE);
2921	}
2922
2923	return (status);
2924}
2925
2926int
2927didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
2928{
2929
2930	if (*didp == thr->t_did) {
2931		mdb_printf("%p\n", addr);
2932		return (WALK_DONE);
2933	} else
2934		return (WALK_NEXT);
2935}
2936
2937/*ARGSUSED*/
2938int
2939did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2940{
2941	const mdb_arg_t *argp = &argv[0];
2942	kt_did_t	did;
2943
2944	if (argc != 1)
2945		return (DCMD_USAGE);
2946
2947	did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
2948
2949	if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
2950		mdb_warn("failed to walk thread");
2951		return (DCMD_ERR);
2952
2953	}
2954	return (DCMD_OK);
2955
2956}
2957
2958static int
2959errorq_walk_init(mdb_walk_state_t *wsp)
2960{
2961	if (wsp->walk_addr == NULL &&
2962	    mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
2963		mdb_warn("failed to read errorq_list");
2964		return (WALK_ERR);
2965	}
2966
2967	return (WALK_NEXT);
2968}
2969
2970static int
2971errorq_walk_step(mdb_walk_state_t *wsp)
2972{
2973	uintptr_t addr = wsp->walk_addr;
2974	errorq_t eq;
2975
2976	if (addr == NULL)
2977		return (WALK_DONE);
2978
2979	if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
2980		mdb_warn("failed to read errorq at %p", addr);
2981		return (WALK_ERR);
2982	}
2983
2984	wsp->walk_addr = (uintptr_t)eq.eq_next;
2985	return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
2986}
2987
2988typedef struct eqd_walk_data {
2989	uintptr_t *eqd_stack;
2990	void *eqd_buf;
2991	ulong_t eqd_qpos;
2992	ulong_t eqd_qlen;
2993	size_t eqd_size;
2994} eqd_walk_data_t;
2995
2996/*
2997 * In order to walk the list of pending error queue elements, we push the
2998 * addresses of the corresponding data buffers in to the eqd_stack array.
2999 * The error lists are in reverse chronological order when iterating using
3000 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3001 * walker client gets addresses in order from oldest error to newest error.
3002 */
3003static void
3004eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3005{
3006	errorq_elem_t eqe;
3007
3008	while (addr != NULL) {
3009		if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3010			mdb_warn("failed to read errorq element at %p", addr);
3011			break;
3012		}
3013
3014		if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3015			mdb_warn("errorq is overfull -- more than %lu "
3016			    "elems found\n", eqdp->eqd_qlen);
3017			break;
3018		}
3019
3020		eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3021		addr = (uintptr_t)eqe.eqe_prev;
3022	}
3023}
3024
3025static int
3026eqd_walk_init(mdb_walk_state_t *wsp)
3027{
3028	eqd_walk_data_t *eqdp;
3029	errorq_elem_t eqe, *addr;
3030	errorq_t eq;
3031	ulong_t i;
3032
3033	if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3034		mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3035		return (WALK_ERR);
3036	}
3037
3038	if (eq.eq_ptail != NULL &&
3039	    mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3040		mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3041		return (WALK_ERR);
3042	}
3043
3044	eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3045	wsp->walk_data = eqdp;
3046
3047	eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3048	eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3049	eqdp->eqd_qlen = eq.eq_qlen;
3050	eqdp->eqd_qpos = 0;
3051	eqdp->eqd_size = eq.eq_size;
3052
3053	/*
3054	 * The newest elements in the queue are on the pending list, so we
3055	 * push those on to our stack first.
3056	 */
3057	eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3058
3059	/*
3060	 * If eq_ptail is set, it may point to a subset of the errors on the
3061	 * pending list in the event a casptr() failed; if ptail's data is
3062	 * already in our stack, NULL out eq_ptail and ignore it.
3063	 */
3064	if (eq.eq_ptail != NULL) {
3065		for (i = 0; i < eqdp->eqd_qpos; i++) {
3066			if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3067				eq.eq_ptail = NULL;
3068				break;
3069			}
3070		}
3071	}
3072
3073	/*
3074	 * If eq_phead is set, it has the processing list in order from oldest
3075	 * to newest.  Use this to recompute eq_ptail as best we can and then
3076	 * we nicely fall into eqd_push_list() of eq_ptail below.
3077	 */
3078	for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3079	    (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3080		eq.eq_ptail = addr;
3081
3082	/*
3083	 * The oldest elements in the queue are on the processing list, subject
3084	 * to machinations in the if-clauses above.  Push any such elements.
3085	 */
3086	eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3087	return (WALK_NEXT);
3088}
3089
3090static int
3091eqd_walk_step(mdb_walk_state_t *wsp)
3092{
3093	eqd_walk_data_t *eqdp = wsp->walk_data;
3094	uintptr_t addr;
3095
3096	if (eqdp->eqd_qpos == 0)
3097		return (WALK_DONE);
3098
3099	addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3100
3101	if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3102		mdb_warn("failed to read errorq data at %p", addr);
3103		return (WALK_ERR);
3104	}
3105
3106	return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3107}
3108
3109static void
3110eqd_walk_fini(mdb_walk_state_t *wsp)
3111{
3112	eqd_walk_data_t *eqdp = wsp->walk_data;
3113
3114	mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3115	mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3116	mdb_free(eqdp, sizeof (eqd_walk_data_t));
3117}
3118
3119#define	EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3120
3121static int
3122errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3123{
3124	int i;
3125	errorq_t eq;
3126	uint_t opt_v = FALSE;
3127
3128	if (!(flags & DCMD_ADDRSPEC)) {
3129		if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3130			mdb_warn("can't walk 'errorq'");
3131			return (DCMD_ERR);
3132		}
3133		return (DCMD_OK);
3134	}
3135
3136	i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3137	argc -= i;
3138	argv += i;
3139
3140	if (argc != 0)
3141		return (DCMD_USAGE);
3142
3143	if (opt_v || DCMD_HDRSPEC(flags)) {
3144		mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3145		    "ADDR", "NAME", "S", "V", "N");
3146		if (!opt_v) {
3147			mdb_printf("%7s %7s %7s%</u>\n",
3148			    "ACCEPT", "DROP", "LOG");
3149		} else {
3150			mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3151			    "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3152		}
3153	}
3154
3155	if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3156		mdb_warn("failed to read errorq at %p", addr);
3157		return (DCMD_ERR);
3158	}
3159
3160	mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3161	    (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3162	    (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3163	    (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3164
3165	if (!opt_v) {
3166		mdb_printf("%7llu %7llu %7llu\n",
3167		    EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3168		    EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3169		    EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3170	} else {
3171		mdb_printf("%5s %6lu %6lu %3u %a\n",
3172		    "  |  ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3173		mdb_printf("%38s\n%41s"
3174		    "%12s %llu\n"
3175		    "%53s %llu\n"
3176		    "%53s %llu\n"
3177		    "%53s %llu\n"
3178		    "%53s %llu\n"
3179		    "%53s %llu\n"
3180		    "%53s %llu\n"
3181		    "%53s %llu\n\n",
3182		    "|", "+-> ",
3183		    "DISPATCHED",	EQKSVAL(eq, eqk_dispatched),
3184		    "DROPPED",		EQKSVAL(eq, eqk_dropped),
3185		    "LOGGED",		EQKSVAL(eq, eqk_logged),
3186		    "RESERVED",		EQKSVAL(eq, eqk_reserved),
3187		    "RESERVE FAIL",	EQKSVAL(eq, eqk_reserve_fail),
3188		    "COMMITTED",	EQKSVAL(eq, eqk_committed),
3189		    "COMMIT FAIL",	EQKSVAL(eq, eqk_commit_fail),
3190		    "CANCELLED",	EQKSVAL(eq, eqk_cancelled));
3191	}
3192
3193	return (DCMD_OK);
3194}
3195
3196/*ARGSUSED*/
3197static int
3198panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3199{
3200	cpu_t panic_cpu;
3201	kthread_t *panic_thread;
3202	void *buf;
3203	panic_data_t *pd;
3204	int i, n;
3205
3206	if (!mdb_prop_postmortem) {
3207		mdb_warn("panicinfo can only be run on a system "
3208		    "dump; see dumpadm(1M)\n");
3209		return (DCMD_ERR);
3210	}
3211
3212	if (flags & DCMD_ADDRSPEC || argc != 0)
3213		return (DCMD_USAGE);
3214
3215	if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3216		mdb_warn("failed to read 'panic_cpu'");
3217	else
3218		mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3219
3220	if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3221		mdb_warn("failed to read 'panic_thread'");
3222	else
3223		mdb_printf("%16s %?p\n", "thread", panic_thread);
3224
3225	buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3226	pd = (panic_data_t *)buf;
3227
3228	if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3229	    pd->pd_version != PANICBUFVERS) {
3230		mdb_warn("failed to read 'panicbuf'");
3231		mdb_free(buf, PANICBUFSIZE);
3232		return (DCMD_ERR);
3233	}
3234
3235	mdb_printf("%16s %s\n", "message",  (char *)buf + pd->pd_msgoff);
3236
3237	n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3238	    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3239
3240	for (i = 0; i < n; i++)
3241		mdb_printf("%16s %?llx\n",
3242		    pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3243
3244	mdb_free(buf, PANICBUFSIZE);
3245	return (DCMD_OK);
3246}
3247
3248static const mdb_dcmd_t dcmds[] = {
3249
3250	/* from genunix.c */
3251	{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
3252	{ "as2proc", ":", "convert as to proc_t address", as2proc },
3253	{ "binding_hash_entry", ":", "print driver names hash table entry",
3254		binding_hash_entry },
3255	{ "callout", NULL, "print callout table", callout },
3256	{ "class", NULL, "print process scheduler classes", class },
3257	{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
3258	{ "did2thread", "? kt_did", "find kernel thread for this id",
3259		did2thread },
3260	{ "errorq", "?[-v]", "display kernel error queues", errorq },
3261	{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
3262	{ "flipone", ":", "the vik_rev_level 2 special", flipone },
3263	{ "lminfo", NULL, "print lock manager information", lminfo },
3264	{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
3265	{ "panicinfo", NULL, "print panic information", panicinfo },
3266	{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
3267	{ "pmap", ":[-q]", "print process memory map", pmap },
3268	{ "project", NULL, "display kernel project(s)", project },
3269	{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
3270	{ "pgrep", "[-x] [-n | -o] pattern",
3271		"pattern match against all processes", pgrep },
3272	{ "ptree", NULL, "print process tree", ptree },
3273	{ "seg", ":", "print address space segment", seg },
3274	{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
3275		sysevent},
3276	{ "sysevent_channel", "?", "print sysevent channel database",
3277		sysevent_channel},
3278	{ "sysevent_class_list", ":", "print sysevent class list",
3279		sysevent_class_list},
3280	{ "sysevent_subclass_list", ":",
3281		"print sysevent subclass list", sysevent_subclass_list},
3282	{ "system", NULL, "print contents of /etc/system file", sysfile },
3283	{ "task", NULL, "display kernel task(s)", task },
3284	{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
3285	{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
3286	{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
3287	{ "whereopen", ":", "given a vnode, dumps procs which have it open",
3288	    whereopen },
3289
3290	/* from zone.c */
3291	{ "zone", "?", "display kernel zone(s)", zoneprt },
3292	{ "zsd", ":[zsd key]", "lookup zsd value from a key", zsd },
3293
3294	/* from bio.c */
3295	{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
3296
3297	/* from contract.c */
3298	{ "contract", "?", "display a contract", cmd_contract },
3299	{ "ctevent", ":", "display a contract event", cmd_ctevent },
3300	{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
3301
3302	/* from cpupart.c */
3303	{ "cpupart", "?[-v]", "print cpu partition info", cpupart },
3304
3305	/* from cyclic.c */
3306	{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
3307	{ "cycid", "?", "dump a cyclic id", cycid },
3308	{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
3309	{ "cyclic", ":", "developer information", cyclic },
3310	{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
3311
3312	/* from devinfo.c */
3313	{ "devbindings", "?[-qs] [device-name | major-num]",
3314	    "print devinfo nodes bound to device-name or major-num",
3315	    devbindings, devinfo_help },
3316	{ "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
3317	    devinfo_help },
3318	{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
3319	    devinfo_audit },
3320	{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
3321	    devinfo_audit_log },
3322	{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
3323	    devinfo_audit_node },
3324	{ "devinfo2driver", ":", "find driver name for this devinfo node",
3325	    devinfo2driver },
3326	{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
3327	{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
3328	    dev2major },
3329	{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
3330	    dev2minor },
3331	{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
3332	    devt },
3333	{ "major2name", "?<major-num>", "convert major number to dev name",
3334	    major2name },
3335	{ "minornodes", ":", "given a devinfo node, print its minor nodes",
3336	    minornodes },
3337	{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
3338	    modctl2devinfo },
3339	{ "name2major", "<dev-name>", "convert dev name to major number",
3340	    name2major },
3341	{ "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
3342	{ "softstate", ":<instance>", "retrieve soft-state pointer",
3343	    softstate },
3344	{ "devinfo_fm", ":", "devinfo fault managment configuration",
3345	    devinfo_fm },
3346	{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
3347	    devinfo_fmce},
3348
3349	/* from fm.c */
3350	{ "ereport", "[-v]", "print ereports logged in dump",
3351	    ereport },
3352
3353	/* from findstack.c */
3354	{ "findstack", ":[-v]", "find kernel thread stack", findstack },
3355	{ "findstack_debug", NULL, "toggle findstack debugging",
3356		findstack_debug },
3357
3358	/* from kgrep.c + genunix.c */
3359	{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
3360		kgrep_help },
3361
3362	/* from kmem.c */
3363	{ "allocdby", ":", "given a thread, print its allocated buffers",
3364		allocdby },
3365	{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
3366		"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
3367	{ "freedby", ":", "given a thread, print its freed buffers", freedby },
3368	{ "kmalog", "?[ fail | slab ]",
3369	    "display kmem transaction log and stack traces", kmalog },
3370	{ "kmastat", "[-kmg]", "kernel memory allocator stats",
3371	    kmastat },
3372	{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
3373		"of the kmem allocator", kmausers, kmausers_help },
3374	{ "kmem_cache", "?[-n name]",
3375		"print kernel memory caches", kmem_cache, kmem_cache_help},
3376	{ "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
3377		"[-B minbinsize]", "display slab usage per kmem cache",
3378		kmem_slabs, kmem_slabs_help },
3379	{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
3380	{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
3381	{ "kmem_verify", "?", "check integrity of kmem-managed memory",
3382		kmem_verify },
3383	{ "vmem", "?", "print a vmem_t", vmem },
3384	{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
3385		"[-m minsize] [-M maxsize] [-t thread] [-T type]",
3386		"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
3387	{ "whatis", ":[-abiv]", "given an address, return information", whatis,
3388		whatis_help },
3389	{ "whatthread", ":[-v]", "print threads whose stack contains the "
3390		"given address", whatthread },
3391
3392	/* from ldi.c */
3393	{ "ldi_handle", "?[-i]", "display a layered driver handle",
3394	    ldi_handle, ldi_handle_help },
3395	{ "ldi_ident", NULL, "display a layered driver identifier",
3396	    ldi_ident, ldi_ident_help },
3397
3398	/* from leaky.c + leaky_subr.c */
3399	{ "findleaks", FINDLEAKS_USAGE,
3400	    "search for potential kernel memory leaks", findleaks,
3401	    findleaks_help },
3402
3403	/* from lgrp.c */
3404	{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
3405	{ "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
3406
3407	/* from log.c */
3408	{ "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
3409
3410	/* from memory.c */
3411	{ "page", "?", "display a summarized page_t", page },
3412	{ "memstat", NULL, "display memory usage summary", memstat },
3413	{ "memlist", "?[-iav]", "display a struct memlist", memlist },
3414	{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
3415
3416	/* from mmd.c */
3417	{ "multidata", ":[-sv]", "display a summarized multidata_t",
3418		multidata },
3419	{ "pattbl", ":", "display a summarized multidata attribute table",
3420		pattbl },
3421	{ "pattr2multidata", ":", "print multidata pointer from pattr_t",
3422		pattr2multidata },
3423	{ "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
3424		pdesc2slab },
3425	{ "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
3426	{ "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
3427		slab2multidata },
3428
3429	/* from modhash.c */
3430	{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
3431		"display information about one or all mod_hash structures",
3432		modhash, modhash_help },
3433	{ "modent", ":[-k | -v | -t type]",
3434		"display information about a mod_hash_entry", modent,
3435		modent_help },
3436
3437	/* from net.c */
3438	{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
3439		mi },
3440	{ "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]",
3441		"show network statistics", netstat },
3442	{ "sonode", "?[-f inet | inet6 | unix | #] "
3443		"[-t stream | dgram | raw | #] [-p #]",
3444		"filter and display sonode", sonode },
3445
3446	/* from netstack.c */
3447	{ "netstack", "", "show stack instances", netstack },
3448
3449	/* from nvpair.c */
3450	{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
3451		nvpair_print },
3452	{ NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
3453		print_nvlist },
3454
3455	/* from pg.c */
3456	{ "pg", "?[-q]", "display a pg", pg},
3457	/* from group.c */
3458	{ "group", "?[-q]", "display a group", group},
3459
3460	/* from log.c */
3461	/* from rctl.c */
3462	{ "rctl_dict", "?", "print systemwide default rctl definitions",
3463		rctl_dict },
3464	{ "rctl_list", ":[handle]", "print rctls for the given proc",
3465		rctl_list },
3466	{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
3467		rctl },
3468	{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
3469		"sequence", rctl_validate },
3470
3471	/* from sobj.c */
3472	{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
3473	{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
3474		mutex_help },
3475	{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
3476	{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
3477	{ "turnstile", "?", "display a turnstile", turnstile },
3478
3479	/* from stream.c */
3480	{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
3481		"print an mblk", mblk_prt, mblk_help },
3482	{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
3483	{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
3484		mblk2dblk },
3485	{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
3486	{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
3487	{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
3488	{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
3489	{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
3490	{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
3491		"filter and display STREAM queue", queue, queue_help },
3492	{ "stdata", ":[-q|v] [-f flag] [-F flag]",
3493		"filter and display STREAM head", stdata, stdata_help },
3494	{ "str2mate", ":", "print mate of this stream", str2mate },
3495	{ "str2wrq", ":", "print write queue of this stream", str2wrq },
3496	{ "stream", ":", "display STREAM", stream },
3497	{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
3498	{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
3499		"filter and display STREAM sync queue", syncq, syncq_help },
3500	{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
3501
3502	/* from thread.c */
3503	{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
3504		thread_help },
3505	{ "threadlist", "?[-t] [-v [count]]",
3506		"display threads and associated C stack traces", threadlist,
3507		threadlist_help },
3508
3509	/* from tsd.c */
3510	{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
3511	{ "tsdtot", ":", "find thread with this tsd", tsdtot },
3512
3513	/*
3514	 * typegraph does not work under kmdb, as it requires too much memory
3515	 * for its internal data structures.
3516	 */
3517#ifndef _KMDB
3518	/* from typegraph.c */
3519	{ "findlocks", ":", "find locks held by specified thread", findlocks },
3520	{ "findfalse", "?[-v]", "find potentially falsely shared structures",
3521		findfalse },
3522	{ "typegraph", NULL, "build type graph", typegraph },
3523	{ "istype", ":type", "manually set object type", istype },
3524	{ "notype", ":", "manually clear object type", notype },
3525	{ "whattype", ":", "determine object type", whattype },
3526#endif
3527
3528	/* from vfs.c */
3529	{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
3530	{ "pfiles", ":[-fp]", "print process file information", pfiles,
3531		pfiles_help },
3532
3533	/* from mdi.c */
3534	{ "mdipi", NULL, "given a path, dump mdi_pathinfo "
3535		"and detailed pi_prop list", mdipi },
3536	{ "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
3537		mdiprops },
3538	{ "mdiphci", NULL, "given a phci, dump mdi_phci and "
3539		"list all paths", mdiphci },
3540	{ "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
3541		"all phcis", mdivhci },
3542	{ "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
3543		"client links", mdiclient_paths },
3544	{ "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
3545		"phci links", mdiphci_paths },
3546	{ "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
3547		mdiphcis },
3548
3549	{ NULL }
3550};
3551
3552static const mdb_walker_t walkers[] = {
3553
3554	/* from genunix.c */
3555	{ "anon", "given an amp, list of anon structures",
3556		anon_walk_init, anon_walk_step, anon_walk_fini },
3557	{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
3558	{ "ereportq_dump", "walk list of ereports in dump error queue",
3559		ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
3560	{ "ereportq_pend", "walk list of ereports in pending error queue",
3561		ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
3562	{ "errorq", "walk list of system error queues",
3563		errorq_walk_init, errorq_walk_step, NULL },
3564	{ "errorq_data", "walk pending error queue data buffers",
3565		eqd_walk_init, eqd_walk_step, eqd_walk_fini },
3566	{ "allfile", "given a proc pointer, list all file pointers",
3567		file_walk_init, allfile_walk_step, file_walk_fini },
3568	{ "file", "given a proc pointer, list of open file pointers",
3569		file_walk_init, file_walk_step, file_walk_fini },
3570	{ "lock_descriptor", "walk lock_descriptor_t structures",
3571		ld_walk_init, ld_walk_step, NULL },
3572	{ "lock_graph", "walk lock graph",
3573		lg_walk_init, lg_walk_step, NULL },
3574	{ "port", "given a proc pointer, list of created event ports",
3575		port_walk_init, port_walk_step, NULL },
3576	{ "portev", "given a port pointer, list of events in the queue",
3577		portev_walk_init, portev_walk_step, portev_walk_fini },
3578	{ "proc", "list of active proc_t structures",
3579		proc_walk_init, proc_walk_step, proc_walk_fini },
3580	{ "projects", "walk a list of kernel projects",
3581		project_walk_init, project_walk_step, NULL },
3582	{ "seg", "given an as, list of segments",
3583		seg_walk_init, avl_walk_step, avl_walk_fini },
3584	{ "sysevent_pend", "walk sysevent pending queue",
3585		sysevent_pend_walk_init, sysevent_walk_step,
3586		sysevent_walk_fini},
3587	{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
3588		sysevent_walk_step, sysevent_walk_fini},
3589	{ "sysevent_channel", "walk sysevent channel subscriptions",
3590		sysevent_channel_walk_init, sysevent_channel_walk_step,
3591		sysevent_channel_walk_fini},
3592	{ "sysevent_class_list", "walk sysevent subscription's class list",
3593		sysevent_class_list_walk_init, sysevent_class_list_walk_step,
3594		sysevent_class_list_walk_fini},
3595	{ "sysevent_subclass_list",
3596		"walk sysevent subscription's subclass list",
3597		sysevent_subclass_list_walk_init,
3598		sysevent_subclass_list_walk_step,
3599		sysevent_subclass_list_walk_fini},
3600	{ "task", "given a task pointer, walk its processes",
3601		task_walk_init, task_walk_step, NULL },
3602	{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
3603		taskq_walk_init, taskq_walk_step, NULL, NULL },
3604
3605	/* from avl.c */
3606	{ AVL_WALK_NAME, AVL_WALK_DESC,
3607		avl_walk_init, avl_walk_step, avl_walk_fini },
3608
3609	/* from zone.c */
3610	{ "zone", "walk a list of kernel zones",
3611		zone_walk_init, zone_walk_step, NULL },
3612	{ "zsd", "walk list of zsd entries for a zone",
3613		zsd_walk_init, zsd_walk_step, NULL },
3614
3615	/* from bio.c */
3616	{ "buf", "walk the bio buf hash",
3617		buf_walk_init, buf_walk_step, buf_walk_fini },
3618
3619	/* from contract.c */
3620	{ "contract", "walk all contracts, or those of the specified type",
3621		ct_walk_init, generic_walk_step, NULL },
3622	{ "ct_event", "walk events on a contract event queue",
3623		ct_event_walk_init, generic_walk_step, NULL },
3624	{ "ct_listener", "walk contract event queue listeners",
3625		ct_listener_walk_init, generic_walk_step, NULL },
3626
3627	/* from cpupart.c */
3628	{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
3629		cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
3630		NULL },
3631	{ "cpupart_walk", "walk the set of cpu partitions",
3632		cpupart_walk_init, cpupart_walk_step, NULL },
3633
3634	/* from ctxop.c */
3635	{ "ctxop", "walk list of context ops on a thread",
3636		ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
3637
3638	/* from cyclic.c */
3639	{ "cyccpu", "walk per-CPU cyc_cpu structures",
3640		cyccpu_walk_init, cyccpu_walk_step, NULL },
3641	{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
3642		cycomni_walk_init, cycomni_walk_step, NULL },
3643	{ "cyctrace", "walk cyclic trace buffer",
3644		cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
3645
3646	/* from devinfo.c */
3647	{ "binding_hash", "walk all entries in binding hash table",
3648		binding_hash_walk_init, binding_hash_walk_step, NULL },
3649	{ "devinfo", "walk devinfo tree or subtree",
3650		devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
3651	{ "devinfo_audit_log", "walk devinfo audit system-wide log",
3652		devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
3653		devinfo_audit_log_walk_fini},
3654	{ "devinfo_audit_node", "walk per-devinfo audit history",
3655		devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
3656		devinfo_audit_node_walk_fini},
3657	{ "devinfo_children", "walk children of devinfo node",
3658		devinfo_children_walk_init, devinfo_children_walk_step,
3659		devinfo_children_walk_fini },
3660	{ "devinfo_parents", "walk ancestors of devinfo node",
3661		devinfo_parents_walk_init, devinfo_parents_walk_step,
3662		devinfo_parents_walk_fini },
3663	{ "devinfo_siblings", "walk siblings of devinfo node",
3664		devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
3665	{ "devi_next", "walk devinfo list",
3666		NULL, devi_next_walk_step, NULL },
3667	{ "devnames", "walk devnames array",
3668		devnames_walk_init, devnames_walk_step, devnames_walk_fini },
3669	{ "minornode", "given a devinfo node, walk minor nodes",
3670		minornode_walk_init, minornode_walk_step, NULL },
3671	{ "softstate",
3672		"given an i_ddi_soft_state*, list all in-use driver stateps",
3673		soft_state_walk_init, soft_state_walk_step,
3674		NULL, NULL },
3675	{ "softstate_all",
3676		"given an i_ddi_soft_state*, list all driver stateps",
3677		soft_state_walk_init, soft_state_all_walk_step,
3678		NULL, NULL },
3679	{ "devinfo_fmc",
3680		"walk a fault management handle cache active list",
3681		devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
3682
3683	/* from kmem.c */
3684	{ "allocdby", "given a thread, walk its allocated bufctls",
3685		allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
3686	{ "bufctl", "walk a kmem cache's bufctls",
3687		bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
3688	{ "bufctl_history", "walk the available history of a bufctl",
3689		bufctl_history_walk_init, bufctl_history_walk_step,
3690		bufctl_history_walk_fini },
3691	{ "freedby", "given a thread, walk its freed bufctls",
3692		freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
3693	{ "freectl", "walk a kmem cache's free bufctls",
3694		freectl_walk_init, kmem_walk_step, kmem_walk_fini },
3695	{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
3696		freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
3697	{ "freemem", "walk a kmem cache's free memory",
3698		freemem_walk_init, kmem_walk_step, kmem_walk_fini },
3699	{ "freemem_constructed", "walk a kmem cache's constructed free memory",
3700		freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
3701	{ "kmem", "walk a kmem cache",
3702		kmem_walk_init, kmem_walk_step, kmem_walk_fini },
3703	{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
3704		kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
3705	{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
3706		kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
3707	{ "kmem_log", "walk the kmem transaction log",
3708		kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
3709	{ "kmem_slab", "given a kmem cache, walk its slabs",
3710		kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
3711	{ "kmem_slab_partial",
3712	    "given a kmem cache, walk its partially allocated slabs (min 1)",
3713		kmem_slab_walk_partial_init, combined_walk_step,
3714		combined_walk_fini },
3715	{ "vmem", "walk vmem structures in pre-fix, depth-first order",
3716		vmem_walk_init, vmem_walk_step, vmem_walk_fini },
3717	{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
3718		vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3719	{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
3720		vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3721	{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
3722		vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
3723	{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
3724		vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3725	{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
3726		vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3727
3728	/* from ldi.c */
3729	{ "ldi_handle", "walk the layered driver handle hash",
3730		ldi_handle_walk_init, ldi_handle_walk_step, NULL },
3731	{ "ldi_ident", "walk the layered driver identifier hash",
3732		ldi_ident_walk_init, ldi_ident_walk_step, NULL },
3733
3734	/* from leaky.c + leaky_subr.c */
3735	{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
3736	    "stack trace",
3737		leaky_walk_init, leaky_walk_step, leaky_walk_fini },
3738	{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
3739	    "leaks w/ same stack trace",
3740		leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
3741
3742	/* from lgrp.c */
3743	{ "lgrp_cpulist", "walk CPUs in a given lgroup",
3744		lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
3745	{ "lgrptbl", "walk lgroup table",
3746		lgrp_walk_init, lgrp_walk_step, NULL },
3747	{ "lgrp_parents", "walk up lgroup lineage from given lgroup",
3748		lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
3749	{ "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
3750		lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
3751	{ "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
3752		lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
3753
3754	/* from group.c */
3755	{ "group", "walk all elements of a group",
3756		group_walk_init, group_walk_step, NULL },
3757
3758	/* from list.c */
3759	{ LIST_WALK_NAME, LIST_WALK_DESC,
3760		list_walk_init, list_walk_step, list_walk_fini },
3761
3762	/* from memory.c */
3763	{ "page", "walk all pages, or those from the specified vnode",
3764		page_walk_init, page_walk_step, page_walk_fini },
3765	{ "memlist", "walk specified memlist",
3766		NULL, memlist_walk_step, NULL },
3767	{ "swapinfo", "walk swapinfo structures",
3768		swap_walk_init, swap_walk_step, NULL },
3769
3770	/* from mmd.c */
3771	{ "pattr", "walk pattr_t structures", pattr_walk_init,
3772		mmdq_walk_step, mmdq_walk_fini },
3773	{ "pdesc", "walk pdesc_t structures",
3774		pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
3775	{ "pdesc_slab", "walk pdesc_slab_t structures",
3776		pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
3777
3778	/* from modhash.c */
3779	{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
3780		modhash_walk_step, NULL },
3781	{ "modent", "walk list of entries in a given mod_hash",
3782		modent_walk_init, modent_walk_step, modent_walk_fini },
3783	{ "modchain", "walk list of entries in a given mod_hash_entry",
3784		NULL, modchain_walk_step, NULL },
3785
3786	/* from net.c */
3787	{ "ar", "walk ar_t structures using MI for all stacks",
3788		mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg },
3789	{ "icmp", "walk ICMP control structures using MI for all stacks",
3790		mi_payload_walk_init, mi_payload_walk_step, NULL,
3791		&mi_icmp_arg },
3792	{ "ill", "walk ill_t structures using MI for all stacks",
3793		mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ill_arg },
3794
3795	{ "mi", "given a MI_O, walk the MI",
3796		mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
3797	{ "sonode", "given a sonode, walk its children",
3798		sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
3799
3800	{ "ar_stacks", "walk all the ar_stack_t",
3801		ar_stacks_walk_init, ar_stacks_walk_step, NULL },
3802	{ "icmp_stacks", "walk all the icmp_stack_t",
3803		icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
3804	{ "tcp_stacks", "walk all the tcp_stack_t",
3805		tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
3806	{ "udp_stacks", "walk all the udp_stack_t",
3807		udp_stacks_walk_init, udp_stacks_walk_step, NULL },
3808
3809	/* from nvpair.c */
3810	{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
3811		nvpair_walk_init, nvpair_walk_step, NULL },
3812
3813	/* from rctl.c */
3814	{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
3815		rctl_dict_walk_init, rctl_dict_walk_step, NULL },
3816	{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
3817		rctl_set_walk_step, NULL },
3818	{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
3819		rctl_val_walk_init, rctl_val_walk_step },
3820
3821	/* from sobj.c */
3822	{ "blocked", "walk threads blocked on a given sobj",
3823		blocked_walk_init, blocked_walk_step, NULL },
3824	{ "wchan", "given a wchan, list of blocked threads",
3825		wchan_walk_init, wchan_walk_step, wchan_walk_fini },
3826
3827	/* from stream.c */
3828	{ "b_cont", "walk mblk_t list using b_cont",
3829		mblk_walk_init, b_cont_step, mblk_walk_fini },
3830	{ "b_next", "walk mblk_t list using b_next",
3831		mblk_walk_init, b_next_step, mblk_walk_fini },
3832	{ "qlink", "walk queue_t list using q_link",
3833		queue_walk_init, queue_link_step, queue_walk_fini },
3834	{ "qnext", "walk queue_t list using q_next",
3835		queue_walk_init, queue_next_step, queue_walk_fini },
3836	{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
3837		strftblk_walk_init, strftblk_step, strftblk_walk_fini },
3838	{ "readq", "walk read queue side of stdata",
3839		str_walk_init, strr_walk_step, str_walk_fini },
3840	{ "writeq", "walk write queue side of stdata",
3841		str_walk_init, strw_walk_step, str_walk_fini },
3842
3843	/* from thread.c */
3844	{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
3845		deathrow_walk_init, deathrow_walk_step, NULL },
3846	{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
3847		cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
3848	{ "cpupart_dispq",
3849		"given a cpupart_t, walk threads in dispatcher queues",
3850		cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
3851	{ "lwp_deathrow", "walk lwp_deathrow",
3852		lwp_deathrow_walk_init, deathrow_walk_step, NULL },
3853	{ "thread", "global or per-process kthread_t structures",
3854		thread_walk_init, thread_walk_step, thread_walk_fini },
3855	{ "thread_deathrow", "walk threads on thread_deathrow",
3856		thread_deathrow_walk_init, deathrow_walk_step, NULL },
3857
3858	/* from tsd.c */
3859	{ "tsd", "walk list of thread-specific data",
3860		tsd_walk_init, tsd_walk_step, tsd_walk_fini },
3861
3862	/* from tsol.c */
3863	{ "tnrh", "walk remote host cache structures",
3864	    tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
3865	{ "tnrhtp", "walk remote host template structures",
3866	    tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
3867
3868	/*
3869	 * typegraph does not work under kmdb, as it requires too much memory
3870	 * for its internal data structures.
3871	 */
3872#ifndef _KMDB
3873	/* from typegraph.c */
3874	{ "typeconflict", "walk buffers with conflicting type inferences",
3875		typegraph_walk_init, typeconflict_walk_step },
3876	{ "typeunknown", "walk buffers with unknown types",
3877		typegraph_walk_init, typeunknown_walk_step },
3878#endif
3879
3880	/* from vfs.c */
3881	{ "vfs", "walk file system list",
3882		vfs_walk_init, vfs_walk_step },
3883
3884	/* from mdi.c */
3885	{ "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
3886		mdi_pi_client_link_walk_init,
3887		mdi_pi_client_link_walk_step,
3888		mdi_pi_client_link_walk_fini },
3889
3890	{ "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
3891		mdi_pi_phci_link_walk_init,
3892		mdi_pi_phci_link_walk_step,
3893		mdi_pi_phci_link_walk_fini },
3894
3895	{ "mdiphci_list", "Walker for mdi_phci ph_next link",
3896		mdi_phci_ph_next_walk_init,
3897		mdi_phci_ph_next_walk_step,
3898		mdi_phci_ph_next_walk_fini },
3899
3900	/* from netstack.c */
3901	{ "netstack", "walk a list of kernel netstacks",
3902		netstack_walk_init, netstack_walk_step, NULL },
3903
3904	{ NULL }
3905};
3906
3907static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
3908
3909const mdb_modinfo_t *
3910_mdb_init(void)
3911{
3912	if (findstack_init() != DCMD_OK)
3913		return (NULL);
3914
3915	kmem_init();
3916
3917	return (&modinfo);
3918}
3919
3920void
3921_mdb_fini(void)
3922{
3923	/*
3924	 * Force ::findleaks to let go any cached memory
3925	 */
3926	leaky_cleanup(1);
3927}
3928