genunix.c revision 3434:5142e1d7d0bc
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <mdb/mdb_param.h>
29#include <mdb/mdb_modapi.h>
30#include <mdb/mdb_ks.h>
31#include <mdb/mdb_ctf.h>
32
33#include <sys/types.h>
34#include <sys/thread.h>
35#include <sys/session.h>
36#include <sys/user.h>
37#include <sys/proc.h>
38#include <sys/var.h>
39#include <sys/t_lock.h>
40#include <sys/callo.h>
41#include <sys/priocntl.h>
42#include <sys/class.h>
43#include <sys/regset.h>
44#include <sys/stack.h>
45#include <sys/cpuvar.h>
46#include <sys/vnode.h>
47#include <sys/vfs.h>
48#include <sys/flock_impl.h>
49#include <sys/kmem_impl.h>
50#include <sys/vmem_impl.h>
51#include <sys/kstat.h>
52#include <vm/seg_vn.h>
53#include <vm/anon.h>
54#include <vm/as.h>
55#include <vm/seg_map.h>
56#include <sys/dditypes.h>
57#include <sys/ddi_impldefs.h>
58#include <sys/sysmacros.h>
59#include <sys/sysconf.h>
60#include <sys/task.h>
61#include <sys/project.h>
62#include <sys/taskq.h>
63#include <sys/taskq_impl.h>
64#include <sys/errorq_impl.h>
65#include <sys/cred_impl.h>
66#include <sys/zone.h>
67#include <sys/panic.h>
68#include <regex.h>
69#include <sys/port_impl.h>
70
71#include "avl.h"
72#include "contract.h"
73#include "cpupart_mdb.h"
74#include "devinfo.h"
75#include "leaky.h"
76#include "lgrp.h"
77#include "pg.h"
78#include "group.h"
79#include "list.h"
80#include "log.h"
81#include "kgrep.h"
82#include "kmem.h"
83#include "bio.h"
84#include "streams.h"
85#include "cyclic.h"
86#include "findstack.h"
87#include "ndievents.h"
88#include "mmd.h"
89#include "net.h"
90#include "nvpair.h"
91#include "ctxop.h"
92#include "tsd.h"
93#include "thread.h"
94#include "memory.h"
95#include "sobj.h"
96#include "sysevent.h"
97#include "rctl.h"
98#include "tsol.h"
99#include "typegraph.h"
100#include "ldi.h"
101#include "vfs.h"
102#include "zone.h"
103#include "modhash.h"
104#include "mdi.h"
105#include "fm.h"
106
107/*
108 * Surely this is defined somewhere...
109 */
110#define	NINTR		16
111
112#ifndef STACK_BIAS
113#define	STACK_BIAS	0
114#endif
115
116static char
117pstat2ch(uchar_t state)
118{
119	switch (state) {
120		case SSLEEP: return ('S');
121		case SRUN: return ('R');
122		case SZOMB: return ('Z');
123		case SIDL: return ('I');
124		case SONPROC: return ('O');
125		case SSTOP: return ('T');
126		default: return ('?');
127	}
128}
129
130#define	PS_PRTTHREADS	0x1
131#define	PS_PRTLWPS	0x2
132#define	PS_PSARGS	0x4
133#define	PS_TASKS	0x8
134#define	PS_PROJECTS	0x10
135#define	PS_ZONES	0x20
136
137static int
138ps_threadprint(uintptr_t addr, const void *data, void *private)
139{
140	const kthread_t *t = (const kthread_t *)data;
141	uint_t prt_flags = *((uint_t *)private);
142
143	static const mdb_bitmask_t t_state_bits[] = {
144		{ "TS_FREE",	UINT_MAX,	TS_FREE		},
145		{ "TS_SLEEP",	TS_SLEEP,	TS_SLEEP	},
146		{ "TS_RUN",	TS_RUN,		TS_RUN		},
147		{ "TS_ONPROC",	TS_ONPROC,	TS_ONPROC	},
148		{ "TS_ZOMB",	TS_ZOMB,	TS_ZOMB		},
149		{ "TS_STOPPED",	TS_STOPPED,	TS_STOPPED	},
150		{ NULL,		0,		0		}
151	};
152
153	if (prt_flags & PS_PRTTHREADS)
154		mdb_printf("\tT  %?a <%b>\n", addr, t->t_state, t_state_bits);
155
156	if (prt_flags & PS_PRTLWPS)
157		mdb_printf("\tL  %?a ID: %u\n", t->t_lwp, t->t_tid);
158
159	return (WALK_NEXT);
160}
161
162int
163ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
164{
165	uint_t prt_flags = 0;
166	proc_t pr;
167	struct pid pid, pgid, sid;
168	sess_t session;
169	cred_t cred;
170	task_t tk;
171	kproject_t pj;
172	zone_t zn;
173
174	if (!(flags & DCMD_ADDRSPEC)) {
175		if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
176			mdb_warn("can't walk 'proc'");
177			return (DCMD_ERR);
178		}
179		return (DCMD_OK);
180	}
181
182	if (mdb_getopts(argc, argv,
183	    'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
184	    'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
185	    'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
186	    'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
187	    'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
188	    't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
189		return (DCMD_USAGE);
190
191	if (DCMD_HDRSPEC(flags)) {
192		mdb_printf("%<u>%1s %6s %6s %6s %6s ",
193		    "S", "PID", "PPID", "PGID", "SID");
194		if (prt_flags & PS_TASKS)
195			mdb_printf("%5s ", "TASK");
196		if (prt_flags & PS_PROJECTS)
197			mdb_printf("%5s ", "PROJ");
198		if (prt_flags & PS_ZONES)
199			mdb_printf("%5s ", "ZONE");
200		mdb_printf("%6s %10s %?s %s%</u>\n",
201		    "UID", "FLAGS", "ADDR", "NAME");
202	}
203
204	mdb_vread(&pr, sizeof (pr), addr);
205	mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
206	mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
207	mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
208	mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
209	mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
210	if (prt_flags & (PS_TASKS | PS_PROJECTS))
211		mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
212	if (prt_flags & PS_PROJECTS)
213		mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
214	if (prt_flags & PS_ZONES)
215		mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
216
217	mdb_printf("%c %6d %6d %6d %6d ",
218	    pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
219	    sid.pid_id);
220	if (prt_flags & PS_TASKS)
221		mdb_printf("%5d ", tk.tk_tkid);
222	if (prt_flags & PS_PROJECTS)
223		mdb_printf("%5d ", pj.kpj_id);
224	if (prt_flags & PS_ZONES)
225		mdb_printf("%5d ", zn.zone_id);
226	mdb_printf("%6d 0x%08x %0?p %s\n",
227	    cred.cr_uid, pr.p_flag, addr,
228	    (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
229
230	if (prt_flags & ~PS_PSARGS)
231		(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
232
233	return (DCMD_OK);
234}
235
236#define	PG_NEWEST	0x0001
237#define	PG_OLDEST	0x0002
238#define	PG_PIPE_OUT	0x0004
239#define	PG_EXACT_MATCH	0x0008
240
241typedef struct pgrep_data {
242	uint_t pg_flags;
243	uint_t pg_psflags;
244	uintptr_t pg_xaddr;
245	hrtime_t pg_xstart;
246	const char *pg_pat;
247#ifndef _KMDB
248	regex_t pg_reg;
249#endif
250} pgrep_data_t;
251
252/*ARGSUSED*/
253static int
254pgrep_cb(uintptr_t addr, const void *pdata, void *data)
255{
256	const proc_t *prp = pdata;
257	pgrep_data_t *pgp = data;
258#ifndef _KMDB
259	regmatch_t pmatch;
260#endif
261
262	/*
263	 * kmdb doesn't have access to the reg* functions, so we fall back
264	 * to strstr/strcmp.
265	 */
266#ifdef _KMDB
267	if ((pgp->pg_flags & PG_EXACT_MATCH) ?
268	    (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
269	    (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
270		return (WALK_NEXT);
271#else
272	if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
273		return (WALK_NEXT);
274
275	if ((pgp->pg_flags & PG_EXACT_MATCH) &&
276	    (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
277		return (WALK_NEXT);
278#endif
279
280	if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
281		hrtime_t start;
282
283		start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
284		    prp->p_user.u_start.tv_nsec;
285
286		if (pgp->pg_flags & PG_NEWEST) {
287			if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
288				pgp->pg_xaddr = addr;
289				pgp->pg_xstart = start;
290			}
291		} else {
292			if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
293				pgp->pg_xaddr = addr;
294				pgp->pg_xstart = start;
295			}
296		}
297
298	} else if (pgp->pg_flags & PG_PIPE_OUT) {
299		mdb_printf("%p\n", addr);
300
301	} else {
302		if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
303			mdb_warn("can't invoke 'ps'");
304			return (WALK_DONE);
305		}
306		pgp->pg_psflags &= ~DCMD_LOOPFIRST;
307	}
308
309	return (WALK_NEXT);
310}
311
312/*ARGSUSED*/
313int
314pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
315{
316	pgrep_data_t pg;
317	int i;
318#ifndef _KMDB
319	int err;
320#endif
321
322	if (flags & DCMD_ADDRSPEC)
323		return (DCMD_USAGE);
324
325	pg.pg_flags = 0;
326	pg.pg_xaddr = 0;
327
328	i = mdb_getopts(argc, argv,
329	    'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
330	    'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
331	    'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
332	    NULL);
333
334	argc -= i;
335	argv += i;
336
337	if (argc != 1)
338		return (DCMD_USAGE);
339
340	/*
341	 * -n and -o are mutually exclusive.
342	 */
343	if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
344		return (DCMD_USAGE);
345
346	if (argv->a_type != MDB_TYPE_STRING)
347		return (DCMD_USAGE);
348
349	if (flags & DCMD_PIPE_OUT)
350		pg.pg_flags |= PG_PIPE_OUT;
351
352	pg.pg_pat = argv->a_un.a_str;
353	if (DCMD_HDRSPEC(flags))
354		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
355	else
356		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
357
358#ifndef _KMDB
359	if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
360		size_t nbytes;
361		char *buf;
362
363		nbytes = regerror(err, &pg.pg_reg, NULL, 0);
364		buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
365		(void) regerror(err, &pg.pg_reg, buf, nbytes);
366		mdb_warn("%s\n", buf);
367
368		return (DCMD_ERR);
369	}
370#endif
371
372	if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
373		mdb_warn("can't walk 'proc'");
374		return (DCMD_ERR);
375	}
376
377	if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
378		if (pg.pg_flags & PG_PIPE_OUT) {
379			mdb_printf("%p\n", pg.pg_xaddr);
380		} else {
381			if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
382			    0, NULL) != 0) {
383				mdb_warn("can't invoke 'ps'");
384				return (DCMD_ERR);
385			}
386		}
387	}
388
389	return (DCMD_OK);
390}
391
392int
393task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
394{
395	task_t tk;
396	kproject_t pj;
397
398	if (!(flags & DCMD_ADDRSPEC)) {
399		if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
400			mdb_warn("can't walk task_cache");
401			return (DCMD_ERR);
402		}
403		return (DCMD_OK);
404	}
405	if (DCMD_HDRSPEC(flags)) {
406		mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
407		    "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
408	}
409	if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
410		mdb_warn("can't read task_t structure at %p", addr);
411		return (DCMD_ERR);
412	}
413	if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
414		mdb_warn("can't read project_t structure at %p", addr);
415		return (DCMD_ERR);
416	}
417	mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
418	    addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
419	    tk.tk_flags);
420	return (DCMD_OK);
421}
422
423int
424project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
425{
426	kproject_t pj;
427
428	if (!(flags & DCMD_ADDRSPEC)) {
429		if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
430			mdb_warn("can't walk projects");
431			return (DCMD_ERR);
432		}
433		return (DCMD_OK);
434	}
435	if (DCMD_HDRSPEC(flags)) {
436		mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
437		    "ADDR", "PROJID", "ZONEID", "REFCNT");
438	}
439	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
440		mdb_warn("can't read kproject_t structure at %p", addr);
441		return (DCMD_ERR);
442	}
443	mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
444	    pj.kpj_count);
445	return (DCMD_OK);
446}
447
448/*ARGSUSED*/
449int
450callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
451{
452	callout_table_t	*co_ktable[CALLOUT_TABLES];
453	int co_kfanout;
454	callout_table_t co_table;
455	callout_t co_callout;
456	callout_t *co_ptr;
457	int co_id;
458	clock_t lbolt;
459	int i, j, k;
460	const char *lbolt_sym;
461
462	if ((flags & DCMD_ADDRSPEC) || argc != 0)
463		return (DCMD_USAGE);
464
465	if (mdb_prop_postmortem)
466		lbolt_sym = "panic_lbolt";
467	else
468		lbolt_sym = "lbolt";
469
470	if (mdb_readvar(&lbolt, lbolt_sym) == -1) {
471		mdb_warn("failed to read '%s'", lbolt_sym);
472		return (DCMD_ERR);
473	}
474
475	if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) {
476		mdb_warn("failed to read callout_fanout");
477		return (DCMD_ERR);
478	}
479
480	if (mdb_readvar(&co_ktable, "callout_table") == -1) {
481		mdb_warn("failed to read callout_table");
482		return (DCMD_ERR);
483	}
484
485	mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n",
486	    "FUNCTION", "ARGUMENT", "ID", "TIME");
487
488	for (i = 0; i < CALLOUT_NTYPES; i++) {
489		for (j = 0; j < co_kfanout; j++) {
490
491			co_id = CALLOUT_TABLE(i, j);
492
493			if (mdb_vread(&co_table, sizeof (co_table),
494			    (uintptr_t)co_ktable[co_id]) == -1) {
495				mdb_warn("failed to read table at %p",
496				    (uintptr_t)co_ktable[co_id]);
497				continue;
498			}
499
500			for (k = 0; k < CALLOUT_BUCKETS; k++) {
501				co_ptr = co_table.ct_idhash[k];
502
503				while (co_ptr != NULL) {
504					mdb_vread(&co_callout,
505					    sizeof (co_callout),
506					    (uintptr_t)co_ptr);
507
508					mdb_printf("%-24a %0?p %0?lx %?lx "
509					    "(T%+ld)\n", co_callout.c_func,
510					    co_callout.c_arg, co_callout.c_xid,
511					    co_callout.c_runtime,
512					    co_callout.c_runtime - lbolt);
513
514					co_ptr = co_callout.c_idnext;
515				}
516			}
517		}
518	}
519
520	return (DCMD_OK);
521}
522
523/*ARGSUSED*/
524int
525class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
526{
527	long num_classes, i;
528	sclass_t *class_tbl;
529	GElf_Sym g_sclass;
530	char class_name[PC_CLNMSZ];
531	size_t tbl_size;
532
533	if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
534		mdb_warn("failed to find symbol sclass\n");
535		return (DCMD_ERR);
536	}
537
538	tbl_size = (size_t)g_sclass.st_size;
539	num_classes = tbl_size / (sizeof (sclass_t));
540	class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
541
542	if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
543		mdb_warn("failed to read sclass");
544		return (DCMD_ERR);
545	}
546
547	mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
548	    "INIT FCN", "CLASS FCN");
549
550	for (i = 0; i < num_classes; i++) {
551		if (mdb_vread(class_name, sizeof (class_name),
552		    (uintptr_t)class_tbl[i].cl_name) == -1)
553			(void) strcpy(class_name, "???");
554
555		mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
556		    class_tbl[i].cl_init, class_tbl[i].cl_funcs);
557	}
558
559	return (DCMD_OK);
560}
561
562#define	FSNAMELEN	32	/* Max len of FS name we read from vnodeops */
563
564int
565vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
566{
567	uintptr_t rootdir;
568	vnode_t vn;
569	char buf[MAXPATHLEN];
570
571	uint_t opt_F = FALSE;
572
573	if (mdb_getopts(argc, argv,
574	    'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
575		return (DCMD_USAGE);
576
577	if (!(flags & DCMD_ADDRSPEC)) {
578		mdb_warn("expected explicit vnode_t address before ::\n");
579		return (DCMD_USAGE);
580	}
581
582	if (mdb_readvar(&rootdir, "rootdir") == -1) {
583		mdb_warn("failed to read rootdir");
584		return (DCMD_ERR);
585	}
586
587	if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
588		return (DCMD_ERR);
589
590	if (*buf == '\0') {
591		mdb_printf("??\n");
592		return (DCMD_OK);
593	}
594
595	mdb_printf("%s", buf);
596	if (opt_F && buf[strlen(buf)-1] != '/' &&
597	    mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
598		mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
599	mdb_printf("\n");
600
601	return (DCMD_OK);
602}
603
604int
605ld_walk_init(mdb_walk_state_t *wsp)
606{
607	wsp->walk_data = (void *)wsp->walk_addr;
608	return (WALK_NEXT);
609}
610
611int
612ld_walk_step(mdb_walk_state_t *wsp)
613{
614	int status;
615	lock_descriptor_t ld;
616
617	if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
618		mdb_warn("couldn't read lock_descriptor_t at %p\n",
619		    wsp->walk_addr);
620		return (WALK_ERR);
621	}
622
623	status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
624	if (status == WALK_ERR)
625		return (WALK_ERR);
626
627	wsp->walk_addr = (uintptr_t)ld.l_next;
628	if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
629		return (WALK_DONE);
630
631	return (status);
632}
633
634int
635lg_walk_init(mdb_walk_state_t *wsp)
636{
637	GElf_Sym sym;
638
639	if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
640		mdb_warn("failed to find symbol 'lock_graph'\n");
641		return (WALK_ERR);
642	}
643
644	wsp->walk_addr = (uintptr_t)sym.st_value;
645	wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
646
647	return (WALK_NEXT);
648}
649
650typedef struct lg_walk_data {
651	uintptr_t startaddr;
652	mdb_walk_cb_t callback;
653	void *data;
654} lg_walk_data_t;
655
656/*
657 * We can't use ::walk lock_descriptor directly, because the head of each graph
658 * is really a dummy lock.  Rather than trying to dynamically determine if this
659 * is a dummy node or not, we just filter out the initial element of the
660 * list.
661 */
662static int
663lg_walk_cb(uintptr_t addr, const void *data, void *priv)
664{
665	lg_walk_data_t *lw = priv;
666
667	if (addr != lw->startaddr)
668		return (lw->callback(addr, data, lw->data));
669
670	return (WALK_NEXT);
671}
672
673int
674lg_walk_step(mdb_walk_state_t *wsp)
675{
676	graph_t *graph;
677	lg_walk_data_t lw;
678
679	if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
680		return (WALK_DONE);
681
682	if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
683		mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
684		return (WALK_ERR);
685	}
686
687	wsp->walk_addr += sizeof (graph);
688
689	if (graph == NULL)
690		return (WALK_NEXT);
691
692	lw.callback = wsp->walk_callback;
693	lw.data = wsp->walk_cbdata;
694
695	lw.startaddr = (uintptr_t)&(graph->active_locks);
696	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
697		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
698		return (WALK_ERR);
699	}
700
701	lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
702	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
703		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
704		return (WALK_ERR);
705	}
706
707	return (WALK_NEXT);
708}
709
710/*
711 * The space available for the path corresponding to the locked vnode depends
712 * on whether we are printing 32- or 64-bit addresses.
713 */
714#ifdef _LP64
715#define	LM_VNPATHLEN	20
716#else
717#define	LM_VNPATHLEN	30
718#endif
719
720/*ARGSUSED*/
721static int
722lminfo_cb(uintptr_t addr, const void *data, void *priv)
723{
724	const lock_descriptor_t *ld = data;
725	char buf[LM_VNPATHLEN];
726	proc_t p;
727
728	mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
729	    addr, ld->l_type == F_RDLCK ? "RD" :
730	    ld->l_type == F_WRLCK ? "WR" : "??",
731	    ld->l_state, ld->l_flock.l_pid,
732	    ld->l_flock.l_pid == 0 ? "<kernel>" :
733	    mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
734	    "<defunct>" : p.p_user.u_comm,
735	    ld->l_vnode);
736
737	mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
738	    sizeof (buf));
739	mdb_printf("%s\n", buf);
740
741	return (WALK_NEXT);
742}
743
744/*ARGSUSED*/
745int
746lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
747{
748	if (DCMD_HDRSPEC(flags))
749		mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
750		    "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
751
752	return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
753}
754
755/*ARGSUSED*/
756int
757seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
758{
759	struct seg s;
760
761	if (argc != 0)
762		return (DCMD_USAGE);
763
764	if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
765		mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
766		    "SEG", "BASE", "SIZE", "DATA", "OPS");
767	}
768
769	if (mdb_vread(&s, sizeof (s), addr) == -1) {
770		mdb_warn("failed to read seg at %p", addr);
771		return (DCMD_ERR);
772	}
773
774	mdb_printf("%?p %?p %?lx %?p %a\n",
775	    addr, s.s_base, s.s_size, s.s_data, s.s_ops);
776
777	return (DCMD_OK);
778}
779
780/*ARGSUSED*/
781static int
782pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres)
783{
784	uintptr_t pp =
785	    mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off);
786
787	if (pp != NULL)
788		(*nres)++;
789
790	return (WALK_NEXT);
791}
792
793static int
794pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
795{
796
797	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
798
799	if (segvn == (uintptr_t)seg->s_ops) {
800		struct segvn_data svn;
801		int nres = 0;
802
803		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
804
805		if (svn.amp == NULL) {
806			mdb_printf(" %8s", "");
807			goto drive_on;
808		}
809
810		/*
811		 * We've got an amp for this segment; walk through
812		 * the amp, and determine mappings.
813		 */
814		if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon,
815		    &nres, (uintptr_t)svn.amp) == -1)
816			mdb_warn("failed to walk anon (amp=%p)", svn.amp);
817
818		mdb_printf(" %7dk", (nres * PAGESIZE) / 1024);
819drive_on:
820
821		if (svn.vp != NULL) {
822			char buf[29];
823
824			mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
825			mdb_printf(" %s", buf);
826		} else
827			mdb_printf(" [ anon ]");
828	}
829
830	mdb_printf("\n");
831	return (WALK_NEXT);
832}
833
834static int
835pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
836{
837	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
838
839	if (segvn == (uintptr_t)seg->s_ops) {
840		struct segvn_data svn;
841
842		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
843
844		if (svn.vp != NULL) {
845			mdb_printf(" %0?p", svn.vp);
846		} else {
847			mdb_printf(" [ anon ]");
848		}
849	}
850
851	mdb_printf("\n");
852	return (WALK_NEXT);
853}
854
855/*ARGSUSED*/
856int
857pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
858{
859	uintptr_t segvn;
860	proc_t proc;
861	uint_t quick = FALSE;
862	mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
863
864	GElf_Sym sym;
865
866	if (!(flags & DCMD_ADDRSPEC))
867		return (DCMD_USAGE);
868
869	if (mdb_getopts(argc, argv,
870	    'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
871		return (DCMD_USAGE);
872
873	if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
874		mdb_warn("failed to read proc at %p", addr);
875		return (DCMD_ERR);
876	}
877
878	if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
879		segvn = (uintptr_t)sym.st_value;
880	else
881		segvn = NULL;
882
883	mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
884
885	if (quick) {
886		mdb_printf("VNODE\n");
887		cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
888	} else {
889		mdb_printf("%8s %s\n", "RES", "PATH");
890	}
891
892	if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) {
893		mdb_warn("failed to walk segments of as %p", proc.p_as);
894		return (DCMD_ERR);
895	}
896
897	return (DCMD_OK);
898}
899
900typedef struct anon_walk_data {
901	uintptr_t *aw_levone;
902	uintptr_t *aw_levtwo;
903	int aw_nlevone;
904	int aw_levone_ndx;
905	int aw_levtwo_ndx;
906	struct anon_map aw_amp;
907	struct anon_hdr aw_ahp;
908} anon_walk_data_t;
909
910int
911anon_walk_init(mdb_walk_state_t *wsp)
912{
913	anon_walk_data_t *aw;
914
915	if (wsp->walk_addr == NULL) {
916		mdb_warn("anon walk doesn't support global walks\n");
917		return (WALK_ERR);
918	}
919
920	aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
921
922	if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
923		mdb_warn("failed to read anon map at %p", wsp->walk_addr);
924		mdb_free(aw, sizeof (anon_walk_data_t));
925		return (WALK_ERR);
926	}
927
928	if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
929	    (uintptr_t)(aw->aw_amp.ahp)) == -1) {
930		mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
931		mdb_free(aw, sizeof (anon_walk_data_t));
932		return (WALK_ERR);
933	}
934
935	if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
936	    (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
937		aw->aw_nlevone = aw->aw_ahp.size;
938		aw->aw_levtwo = NULL;
939	} else {
940		aw->aw_nlevone =
941		    (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
942		aw->aw_levtwo =
943		    mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
944	}
945
946	aw->aw_levone =
947	    mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
948
949	aw->aw_levone_ndx = 0;
950	aw->aw_levtwo_ndx = 0;
951
952	mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
953	    (uintptr_t)aw->aw_ahp.array_chunk);
954
955	if (aw->aw_levtwo != NULL) {
956		while (aw->aw_levone[aw->aw_levone_ndx] == NULL) {
957			aw->aw_levone_ndx++;
958			if (aw->aw_levone_ndx == aw->aw_nlevone) {
959				mdb_warn("corrupt anon; couldn't"
960				    "find ptr to lev two map");
961				goto out;
962			}
963		}
964
965		mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t),
966		    aw->aw_levone[aw->aw_levone_ndx]);
967	}
968
969out:
970	wsp->walk_data = aw;
971	return (0);
972}
973
974int
975anon_walk_step(mdb_walk_state_t *wsp)
976{
977	int status;
978	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
979	struct anon anon;
980	uintptr_t anonptr;
981
982again:
983	/*
984	 * Once we've walked through level one, we're done.
985	 */
986	if (aw->aw_levone_ndx == aw->aw_nlevone)
987		return (WALK_DONE);
988
989	if (aw->aw_levtwo == NULL) {
990		anonptr = aw->aw_levone[aw->aw_levone_ndx];
991		aw->aw_levone_ndx++;
992	} else {
993		anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
994		aw->aw_levtwo_ndx++;
995
996		if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
997			aw->aw_levtwo_ndx = 0;
998
999			do {
1000				aw->aw_levone_ndx++;
1001
1002				if (aw->aw_levone_ndx == aw->aw_nlevone)
1003					return (WALK_DONE);
1004			} while (aw->aw_levone[aw->aw_levone_ndx] == NULL);
1005
1006			mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE *
1007			    sizeof (uintptr_t),
1008			    aw->aw_levone[aw->aw_levone_ndx]);
1009		}
1010	}
1011
1012	if (anonptr != NULL) {
1013		mdb_vread(&anon, sizeof (anon), anonptr);
1014		status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata);
1015	} else
1016		goto again;
1017
1018	return (status);
1019}
1020
1021void
1022anon_walk_fini(mdb_walk_state_t *wsp)
1023{
1024	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1025
1026	if (aw->aw_levtwo != NULL)
1027		mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
1028
1029	mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
1030	mdb_free(aw, sizeof (anon_walk_data_t));
1031}
1032
1033/*ARGSUSED*/
1034int
1035whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1036{
1037	if ((uintptr_t)f->f_vnode == *target) {
1038		mdb_printf("file %p\n", addr);
1039		*target = NULL;
1040	}
1041
1042	return (WALK_NEXT);
1043}
1044
1045/*ARGSUSED*/
1046int
1047whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
1048{
1049	uintptr_t t = *target;
1050
1051	if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
1052		mdb_warn("couldn't file walk proc %p", addr);
1053		return (WALK_ERR);
1054	}
1055
1056	if (t == NULL)
1057		mdb_printf("%p\n", addr);
1058
1059	return (WALK_NEXT);
1060}
1061
1062/*ARGSUSED*/
1063int
1064whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1065{
1066	uintptr_t target = addr;
1067
1068	if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
1069		return (DCMD_USAGE);
1070
1071	if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
1072		mdb_warn("can't proc walk");
1073		return (DCMD_ERR);
1074	}
1075
1076	return (DCMD_OK);
1077}
1078
1079typedef struct datafmt {
1080	char	*hdr1;
1081	char	*hdr2;
1082	char	*dashes;
1083	char	*fmt;
1084} datafmt_t;
1085
1086static datafmt_t kmemfmt[] = {
1087	{ "cache                    ", "name                     ",
1088	"-------------------------", "%-25s "				},
1089	{ "   buf",	"  size",	"------",	"%6u "		},
1090	{ "   buf",	"in use",	"------",	"%6u "		},
1091	{ "   buf",	" total",	"------",	"%6u "		},
1092	{ "   memory",	"   in use",	"---------",	"%9u "		},
1093	{ "    alloc",	"  succeed",	"---------",	"%9u "		},
1094	{ "alloc",	" fail",	"-----",	"%5u "		},
1095	{ NULL,		NULL,		NULL,		NULL		}
1096};
1097
1098static datafmt_t vmemfmt[] = {
1099	{ "vmem                     ", "name                     ",
1100	"-------------------------", "%-*s "				},
1101	{ "   memory",	"   in use",	"---------",	"%9llu "	},
1102	{ "    memory",	"     total",	"----------",	"%10llu "	},
1103	{ "   memory",	"   import",	"---------",	"%9llu "	},
1104	{ "    alloc",	"  succeed",	"---------",	"%9llu "	},
1105	{ "alloc",	" fail",	"-----",	"%5llu "	},
1106	{ NULL,		NULL,		NULL,		NULL		}
1107};
1108
1109/*ARGSUSED*/
1110static int
1111kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
1112{
1113	if (ccp->cc_rounds > 0)
1114		*avail += ccp->cc_rounds;
1115	if (ccp->cc_prounds > 0)
1116		*avail += ccp->cc_prounds;
1117
1118	return (WALK_NEXT);
1119}
1120
1121/*ARGSUSED*/
1122static int
1123kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
1124{
1125	*alloc += ccp->cc_alloc;
1126
1127	return (WALK_NEXT);
1128}
1129
1130/*ARGSUSED*/
1131static int
1132kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
1133{
1134	*avail += sp->slab_chunks - sp->slab_refcnt;
1135
1136	return (WALK_NEXT);
1137}
1138
1139typedef struct kmastat_vmem {
1140	uintptr_t kv_addr;
1141	struct kmastat_vmem *kv_next;
1142	int kv_meminuse;
1143	int kv_alloc;
1144	int kv_fail;
1145} kmastat_vmem_t;
1146
1147typedef struct kmastat_args {
1148	kmastat_vmem_t **ka_kvpp;
1149	uint_t ka_shift;
1150} kmastat_args_t;
1151
1152static int
1153kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
1154{
1155	kmastat_vmem_t **kvp = kap->ka_kvpp;
1156	kmastat_vmem_t *kv;
1157	datafmt_t *dfp = kmemfmt;
1158	int magsize;
1159
1160	int avail, alloc, total;
1161	size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
1162	    cp->cache_slabsize;
1163
1164	mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
1165	mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
1166	mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
1167
1168	magsize = kmem_get_magsize(cp);
1169
1170	alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
1171	avail = cp->cache_full.ml_total * magsize;
1172	total = cp->cache_buftotal;
1173
1174	(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
1175	(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
1176	(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
1177
1178	for (kv = *kvp; kv != NULL; kv = kv->kv_next) {
1179		if (kv->kv_addr == (uintptr_t)cp->cache_arena)
1180			goto out;
1181	}
1182
1183	kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
1184	kv->kv_next = *kvp;
1185	kv->kv_addr = (uintptr_t)cp->cache_arena;
1186	*kvp = kv;
1187out:
1188	kv->kv_meminuse += meminuse;
1189	kv->kv_alloc += alloc;
1190	kv->kv_fail += cp->cache_alloc_fail;
1191
1192	mdb_printf((dfp++)->fmt, cp->cache_name);
1193	mdb_printf((dfp++)->fmt, cp->cache_bufsize);
1194	mdb_printf((dfp++)->fmt, total - avail);
1195	mdb_printf((dfp++)->fmt, total);
1196	mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift);
1197	mdb_printf((dfp++)->fmt, alloc);
1198	mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
1199	mdb_printf("\n");
1200
1201	return (WALK_NEXT);
1202}
1203
1204static int
1205kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
1206{
1207	kmastat_vmem_t *kv = *kap->ka_kvpp;
1208	size_t len;
1209
1210	while (kv != NULL && kv->kv_addr != addr)
1211		kv = kv->kv_next;
1212
1213	if (kv == NULL || kv->kv_alloc == 0)
1214		return (WALK_NEXT);
1215
1216	len = MIN(17, strlen(v->vm_name));
1217
1218	mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name,
1219	    17 - len, "", "", "", "",
1220	    kv->kv_meminuse >> kap->ka_shift, kv->kv_alloc, kv->kv_fail);
1221
1222	return (WALK_NEXT);
1223}
1224
1225/*ARGSUSED*/
1226static int
1227kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
1228{
1229	datafmt_t *dfp = vmemfmt;
1230	const vmem_kstat_t *vkp = &v->vm_kstat;
1231	uintptr_t paddr;
1232	vmem_t parent;
1233	int ident = 0;
1234
1235	for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
1236		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
1237			mdb_warn("couldn't trace %p's ancestry", addr);
1238			ident = 0;
1239			break;
1240		}
1241		paddr = (uintptr_t)parent.vm_source;
1242	}
1243
1244	mdb_printf("%*s", ident, "");
1245	mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
1246	mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64);
1247	mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64);
1248	mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp);
1249	mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
1250	mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
1251
1252	mdb_printf("\n");
1253
1254	return (WALK_NEXT);
1255}
1256
1257/*ARGSUSED*/
1258int
1259kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1260{
1261	kmastat_vmem_t *kv = NULL;
1262	datafmt_t *dfp;
1263	kmastat_args_t ka;
1264
1265	ka.ka_shift = 0;
1266	if (mdb_getopts(argc, argv,
1267	    'k', MDB_OPT_SETBITS, 10, &ka.ka_shift,
1268	    'm', MDB_OPT_SETBITS, 20, &ka.ka_shift,
1269	    'g', MDB_OPT_SETBITS, 30, &ka.ka_shift, NULL) != argc)
1270		return (DCMD_USAGE);
1271
1272	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1273		mdb_printf("%s ", dfp->hdr1);
1274	mdb_printf("\n");
1275
1276	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1277		mdb_printf("%s ", dfp->hdr2);
1278	mdb_printf("\n");
1279
1280	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1281		mdb_printf("%s ", dfp->dashes);
1282	mdb_printf("\n");
1283
1284	ka.ka_kvpp = &kv;
1285	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
1286		mdb_warn("can't walk 'kmem_cache'");
1287		return (DCMD_ERR);
1288	}
1289
1290	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1291		mdb_printf("%s ", dfp->dashes);
1292	mdb_printf("\n");
1293
1294	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
1295		mdb_warn("can't walk 'vmem'");
1296		return (DCMD_ERR);
1297	}
1298
1299	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1300		mdb_printf("%s ", dfp->dashes);
1301	mdb_printf("\n");
1302
1303	mdb_printf("\n");
1304
1305	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1306		mdb_printf("%s ", dfp->hdr1);
1307	mdb_printf("\n");
1308
1309	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1310		mdb_printf("%s ", dfp->hdr2);
1311	mdb_printf("\n");
1312
1313	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1314		mdb_printf("%s ", dfp->dashes);
1315	mdb_printf("\n");
1316
1317	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
1318		mdb_warn("can't walk 'vmem'");
1319		return (DCMD_ERR);
1320	}
1321
1322	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1323		mdb_printf("%s ", dfp->dashes);
1324	mdb_printf("\n");
1325	return (DCMD_OK);
1326}
1327
1328/*
1329 * Our ::kgrep callback scans the entire kernel VA space (kas).  kas is made
1330 * up of a set of 'struct seg's.  We could just scan each seg en masse, but
1331 * unfortunately, a few of the segs are both large and sparse, so we could
1332 * spend quite a bit of time scanning VAs which have no backing pages.
1333 *
1334 * So for the few very sparse segs, we skip the segment itself, and scan
1335 * the allocated vmem_segs in the vmem arena which manages that part of kas.
1336 * Currently, we do this for:
1337 *
1338 *	SEG		VMEM ARENA
1339 *	kvseg		heap_arena
1340 *	kvseg32		heap32_arena
1341 *	kvseg_core	heap_core_arena
1342 *
1343 * In addition, we skip the segkpm segment in its entirety, since it is very
1344 * sparse, and contains no new kernel data.
1345 */
1346typedef struct kgrep_walk_data {
1347	kgrep_cb_func *kg_cb;
1348	void *kg_cbdata;
1349	uintptr_t kg_kvseg;
1350	uintptr_t kg_kvseg32;
1351	uintptr_t kg_kvseg_core;
1352	uintptr_t kg_segkpm;
1353	uintptr_t kg_heap_lp_base;
1354	uintptr_t kg_heap_lp_end;
1355} kgrep_walk_data_t;
1356
1357static int
1358kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
1359{
1360	uintptr_t base = (uintptr_t)seg->s_base;
1361
1362	if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
1363	    addr == kg->kg_kvseg_core)
1364		return (WALK_NEXT);
1365
1366	if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
1367		return (WALK_NEXT);
1368
1369	return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
1370}
1371
1372/*ARGSUSED*/
1373static int
1374kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
1375{
1376	/*
1377	 * skip large page heap address range - it is scanned by walking
1378	 * allocated vmem_segs in the heap_lp_arena
1379	 */
1380	if (seg->vs_start == kg->kg_heap_lp_base &&
1381	    seg->vs_end == kg->kg_heap_lp_end)
1382		return (WALK_NEXT);
1383
1384	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
1385}
1386
1387/*ARGSUSED*/
1388static int
1389kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
1390{
1391	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
1392}
1393
1394static int
1395kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
1396{
1397	mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
1398
1399	if (strcmp(vmem->vm_name, "heap") != 0 &&
1400	    strcmp(vmem->vm_name, "heap32") != 0 &&
1401	    strcmp(vmem->vm_name, "heap_core") != 0 &&
1402	    strcmp(vmem->vm_name, "heap_lp") != 0)
1403		return (WALK_NEXT);
1404
1405	if (strcmp(vmem->vm_name, "heap_lp") == 0)
1406		walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
1407
1408	if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
1409		mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
1410		return (WALK_ERR);
1411	}
1412
1413	return (WALK_NEXT);
1414}
1415
1416int
1417kgrep_subr(kgrep_cb_func *cb, void *cbdata)
1418{
1419	GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
1420	kgrep_walk_data_t kg;
1421
1422	if (mdb_get_state() == MDB_STATE_RUNNING) {
1423		mdb_warn("kgrep can only be run on a system "
1424		    "dump or under kmdb; see dumpadm(1M)\n");
1425		return (DCMD_ERR);
1426	}
1427
1428	if (mdb_lookup_by_name("kas", &kas) == -1) {
1429		mdb_warn("failed to locate 'kas' symbol\n");
1430		return (DCMD_ERR);
1431	}
1432
1433	if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
1434		mdb_warn("failed to locate 'kvseg' symbol\n");
1435		return (DCMD_ERR);
1436	}
1437
1438	if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
1439		mdb_warn("failed to locate 'kvseg32' symbol\n");
1440		return (DCMD_ERR);
1441	}
1442
1443	if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
1444		mdb_warn("failed to locate 'kvseg_core' symbol\n");
1445		return (DCMD_ERR);
1446	}
1447
1448	if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
1449		mdb_warn("failed to locate 'segkpm_ops' symbol\n");
1450		return (DCMD_ERR);
1451	}
1452
1453	if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
1454		mdb_warn("failed to read 'heap_lp_base'\n");
1455		return (DCMD_ERR);
1456	}
1457
1458	if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
1459		mdb_warn("failed to read 'heap_lp_end'\n");
1460		return (DCMD_ERR);
1461	}
1462
1463	kg.kg_cb = cb;
1464	kg.kg_cbdata = cbdata;
1465	kg.kg_kvseg = (uintptr_t)kvseg.st_value;
1466	kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
1467	kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
1468	kg.kg_segkpm = (uintptr_t)segkpm.st_value;
1469
1470	if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
1471	    &kg, kas.st_value) == -1) {
1472		mdb_warn("failed to walk kas segments");
1473		return (DCMD_ERR);
1474	}
1475
1476	if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
1477		mdb_warn("failed to walk heap/heap32 vmem arenas");
1478		return (DCMD_ERR);
1479	}
1480
1481	return (DCMD_OK);
1482}
1483
1484size_t
1485kgrep_subr_pagesize(void)
1486{
1487	return (PAGESIZE);
1488}
1489
1490typedef struct file_walk_data {
1491	struct uf_entry *fw_flist;
1492	int fw_flistsz;
1493	int fw_ndx;
1494	int fw_nofiles;
1495} file_walk_data_t;
1496
1497int
1498file_walk_init(mdb_walk_state_t *wsp)
1499{
1500	file_walk_data_t *fw;
1501	proc_t p;
1502
1503	if (wsp->walk_addr == NULL) {
1504		mdb_warn("file walk doesn't support global walks\n");
1505		return (WALK_ERR);
1506	}
1507
1508	fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
1509
1510	if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
1511		mdb_free(fw, sizeof (file_walk_data_t));
1512		mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
1513		return (WALK_ERR);
1514	}
1515
1516	if (p.p_user.u_finfo.fi_nfiles == 0) {
1517		mdb_free(fw, sizeof (file_walk_data_t));
1518		return (WALK_DONE);
1519	}
1520
1521	fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
1522	fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
1523	fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
1524
1525	if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
1526	    (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
1527		mdb_warn("failed to read file array at %p",
1528		    p.p_user.u_finfo.fi_list);
1529		mdb_free(fw->fw_flist, fw->fw_flistsz);
1530		mdb_free(fw, sizeof (file_walk_data_t));
1531		return (WALK_ERR);
1532	}
1533
1534	fw->fw_ndx = 0;
1535	wsp->walk_data = fw;
1536
1537	return (WALK_NEXT);
1538}
1539
1540int
1541file_walk_step(mdb_walk_state_t *wsp)
1542{
1543	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1544	struct file file;
1545	uintptr_t fp;
1546
1547again:
1548	if (fw->fw_ndx == fw->fw_nofiles)
1549		return (WALK_DONE);
1550
1551	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
1552		goto again;
1553
1554	(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
1555	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
1556}
1557
1558int
1559allfile_walk_step(mdb_walk_state_t *wsp)
1560{
1561	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1562	struct file file;
1563	uintptr_t fp;
1564
1565	if (fw->fw_ndx == fw->fw_nofiles)
1566		return (WALK_DONE);
1567
1568	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
1569		(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
1570	else
1571		bzero(&file, sizeof (file));
1572
1573	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
1574}
1575
1576void
1577file_walk_fini(mdb_walk_state_t *wsp)
1578{
1579	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1580
1581	mdb_free(fw->fw_flist, fw->fw_flistsz);
1582	mdb_free(fw, sizeof (file_walk_data_t));
1583}
1584
1585int
1586port_walk_init(mdb_walk_state_t *wsp)
1587{
1588	if (wsp->walk_addr == NULL) {
1589		mdb_warn("port walk doesn't support global walks\n");
1590		return (WALK_ERR);
1591	}
1592
1593	if (mdb_layered_walk("file", wsp) == -1) {
1594		mdb_warn("couldn't walk 'file'");
1595		return (WALK_ERR);
1596	}
1597	return (WALK_NEXT);
1598}
1599
1600int
1601port_walk_step(mdb_walk_state_t *wsp)
1602{
1603	struct vnode	vn;
1604	uintptr_t	vp;
1605	uintptr_t	pp;
1606	struct port	port;
1607
1608	vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
1609	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
1610		mdb_warn("failed to read vnode_t at %p", vp);
1611		return (WALK_ERR);
1612	}
1613	if (vn.v_type != VPORT)
1614		return (WALK_NEXT);
1615
1616	pp = (uintptr_t)vn.v_data;
1617	if (mdb_vread(&port, sizeof (port), pp) == -1) {
1618		mdb_warn("failed to read port_t at %p", pp);
1619		return (WALK_ERR);
1620	}
1621	return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
1622}
1623
1624typedef struct portev_walk_data {
1625	list_node_t	*pev_node;
1626	list_node_t	*pev_last;
1627	size_t		pev_offset;
1628} portev_walk_data_t;
1629
1630int
1631portev_walk_init(mdb_walk_state_t *wsp)
1632{
1633	portev_walk_data_t *pevd;
1634	struct port	port;
1635	struct vnode	vn;
1636	struct list	*list;
1637	uintptr_t	vp;
1638
1639	if (wsp->walk_addr == NULL) {
1640		mdb_warn("portev walk doesn't support global walks\n");
1641		return (WALK_ERR);
1642	}
1643
1644	pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
1645
1646	if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
1647		mdb_free(pevd, sizeof (portev_walk_data_t));
1648		mdb_warn("failed to read port structure at %p", wsp->walk_addr);
1649		return (WALK_ERR);
1650	}
1651
1652	vp = (uintptr_t)port.port_vnode;
1653	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
1654		mdb_free(pevd, sizeof (portev_walk_data_t));
1655		mdb_warn("failed to read vnode_t at %p", vp);
1656		return (WALK_ERR);
1657	}
1658
1659	if (vn.v_type != VPORT) {
1660		mdb_free(pevd, sizeof (portev_walk_data_t));
1661		mdb_warn("input address (%p) does not point to an event port",
1662		    wsp->walk_addr);
1663		return (WALK_ERR);
1664	}
1665
1666	if (port.port_queue.portq_nent == 0) {
1667		mdb_free(pevd, sizeof (portev_walk_data_t));
1668		return (WALK_DONE);
1669	}
1670	list = &port.port_queue.portq_list;
1671	pevd->pev_offset = list->list_offset;
1672	pevd->pev_last = list->list_head.list_prev;
1673	pevd->pev_node = list->list_head.list_next;
1674	wsp->walk_data = pevd;
1675	return (WALK_NEXT);
1676}
1677
1678int
1679portev_walk_step(mdb_walk_state_t *wsp)
1680{
1681	portev_walk_data_t	*pevd;
1682	struct port_kevent	ev;
1683	uintptr_t		evp;
1684
1685	pevd = (portev_walk_data_t *)wsp->walk_data;
1686
1687	if (pevd->pev_last == NULL)
1688		return (WALK_DONE);
1689	if (pevd->pev_node == pevd->pev_last)
1690		pevd->pev_last = NULL;		/* last round */
1691
1692	evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
1693	if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
1694		mdb_warn("failed to read port_kevent at %p", evp);
1695		return (WALK_DONE);
1696	}
1697	pevd->pev_node = ev.portkev_node.list_next;
1698	return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
1699}
1700
1701void
1702portev_walk_fini(mdb_walk_state_t *wsp)
1703{
1704	portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
1705
1706	if (pevd != NULL)
1707		mdb_free(pevd, sizeof (portev_walk_data_t));
1708}
1709
1710typedef struct proc_walk_data {
1711	uintptr_t *pw_stack;
1712	int pw_depth;
1713	int pw_max;
1714} proc_walk_data_t;
1715
1716int
1717proc_walk_init(mdb_walk_state_t *wsp)
1718{
1719	GElf_Sym sym;
1720	proc_walk_data_t *pw;
1721
1722	if (wsp->walk_addr == NULL) {
1723		if (mdb_lookup_by_name("p0", &sym) == -1) {
1724			mdb_warn("failed to read 'practive'");
1725			return (WALK_ERR);
1726		}
1727		wsp->walk_addr = (uintptr_t)sym.st_value;
1728	}
1729
1730	pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
1731
1732	if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
1733		mdb_warn("failed to read 'nproc'");
1734		mdb_free(pw, sizeof (pw));
1735		return (WALK_ERR);
1736	}
1737
1738	pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
1739	wsp->walk_data = pw;
1740
1741	return (WALK_NEXT);
1742}
1743
1744int
1745proc_walk_step(mdb_walk_state_t *wsp)
1746{
1747	proc_walk_data_t *pw = wsp->walk_data;
1748	uintptr_t addr = wsp->walk_addr;
1749	uintptr_t cld, sib;
1750
1751	int status;
1752	proc_t pr;
1753
1754	if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
1755		mdb_warn("failed to read proc at %p", addr);
1756		return (WALK_DONE);
1757	}
1758
1759	cld = (uintptr_t)pr.p_child;
1760	sib = (uintptr_t)pr.p_sibling;
1761
1762	if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
1763		pw->pw_depth--;
1764		goto sib;
1765	}
1766
1767	status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
1768
1769	if (status != WALK_NEXT)
1770		return (status);
1771
1772	if ((wsp->walk_addr = cld) != NULL) {
1773		if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
1774			mdb_warn("proc %p has invalid p_child %p; skipping\n",
1775			    addr, cld);
1776			goto sib;
1777		}
1778
1779		pw->pw_stack[pw->pw_depth++] = addr;
1780
1781		if (pw->pw_depth == pw->pw_max) {
1782			mdb_warn("depth %d exceeds max depth; try again\n",
1783			    pw->pw_depth);
1784			return (WALK_DONE);
1785		}
1786		return (WALK_NEXT);
1787	}
1788
1789sib:
1790	/*
1791	 * We know that p0 has no siblings, and if another starting proc
1792	 * was given, we don't want to walk its siblings anyway.
1793	 */
1794	if (pw->pw_depth == 0)
1795		return (WALK_DONE);
1796
1797	if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
1798		mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
1799		    addr, sib);
1800		sib = NULL;
1801	}
1802
1803	if ((wsp->walk_addr = sib) == NULL) {
1804		if (pw->pw_depth > 0) {
1805			wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
1806			return (WALK_NEXT);
1807		}
1808		return (WALK_DONE);
1809	}
1810
1811	return (WALK_NEXT);
1812}
1813
1814void
1815proc_walk_fini(mdb_walk_state_t *wsp)
1816{
1817	proc_walk_data_t *pw = wsp->walk_data;
1818
1819	mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
1820	mdb_free(pw, sizeof (proc_walk_data_t));
1821}
1822
1823int
1824task_walk_init(mdb_walk_state_t *wsp)
1825{
1826	task_t task;
1827
1828	if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
1829		mdb_warn("failed to read task at %p", wsp->walk_addr);
1830		return (WALK_ERR);
1831	}
1832	wsp->walk_addr = (uintptr_t)task.tk_memb_list;
1833	wsp->walk_data = task.tk_memb_list;
1834	return (WALK_NEXT);
1835}
1836
1837int
1838task_walk_step(mdb_walk_state_t *wsp)
1839{
1840	proc_t proc;
1841	int status;
1842
1843	if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
1844		mdb_warn("failed to read proc at %p", wsp->walk_addr);
1845		return (WALK_DONE);
1846	}
1847
1848	status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
1849
1850	if (proc.p_tasknext == wsp->walk_data)
1851		return (WALK_DONE);
1852
1853	wsp->walk_addr = (uintptr_t)proc.p_tasknext;
1854	return (status);
1855}
1856
1857int
1858project_walk_init(mdb_walk_state_t *wsp)
1859{
1860	if (wsp->walk_addr == NULL) {
1861		if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
1862			mdb_warn("failed to read 'proj0p'");
1863			return (WALK_ERR);
1864		}
1865	}
1866	wsp->walk_data = (void *)wsp->walk_addr;
1867	return (WALK_NEXT);
1868}
1869
1870int
1871project_walk_step(mdb_walk_state_t *wsp)
1872{
1873	uintptr_t addr = wsp->walk_addr;
1874	kproject_t pj;
1875	int status;
1876
1877	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
1878		mdb_warn("failed to read project at %p", addr);
1879		return (WALK_DONE);
1880	}
1881	status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
1882	if (status != WALK_NEXT)
1883		return (status);
1884	wsp->walk_addr = (uintptr_t)pj.kpj_next;
1885	if ((void *)wsp->walk_addr == wsp->walk_data)
1886		return (WALK_DONE);
1887	return (WALK_NEXT);
1888}
1889
1890static int
1891generic_walk_step(mdb_walk_state_t *wsp)
1892{
1893	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
1894	    wsp->walk_cbdata));
1895}
1896
1897int
1898seg_walk_init(mdb_walk_state_t *wsp)
1899{
1900	if (wsp->walk_addr == NULL) {
1901		mdb_warn("seg walk must begin at struct as *\n");
1902		return (WALK_ERR);
1903	}
1904
1905	/*
1906	 * this is really just a wrapper to AVL tree walk
1907	 */
1908	wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
1909	return (avl_walk_init(wsp));
1910}
1911
1912static int
1913cpu_walk_cmp(const void *l, const void *r)
1914{
1915	uintptr_t lhs = *((uintptr_t *)l);
1916	uintptr_t rhs = *((uintptr_t *)r);
1917	cpu_t lcpu, rcpu;
1918
1919	(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
1920	(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
1921
1922	if (lcpu.cpu_id < rcpu.cpu_id)
1923		return (-1);
1924
1925	if (lcpu.cpu_id > rcpu.cpu_id)
1926		return (1);
1927
1928	return (0);
1929}
1930
1931typedef struct cpu_walk {
1932	uintptr_t *cw_array;
1933	int cw_ndx;
1934} cpu_walk_t;
1935
1936int
1937cpu_walk_init(mdb_walk_state_t *wsp)
1938{
1939	cpu_walk_t *cw;
1940	int max_ncpus, i = 0;
1941	uintptr_t current, first;
1942	cpu_t cpu, panic_cpu;
1943	uintptr_t panicstr, addr;
1944	GElf_Sym sym;
1945
1946	cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
1947
1948	if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
1949		mdb_warn("failed to read 'max_ncpus'");
1950		return (WALK_ERR);
1951	}
1952
1953	if (mdb_readvar(&panicstr, "panicstr") == -1) {
1954		mdb_warn("failed to read 'panicstr'");
1955		return (WALK_ERR);
1956	}
1957
1958	if (panicstr != NULL) {
1959		if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
1960			mdb_warn("failed to find 'panic_cpu'");
1961			return (WALK_ERR);
1962		}
1963
1964		addr = (uintptr_t)sym.st_value;
1965
1966		if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
1967			mdb_warn("failed to read 'panic_cpu'");
1968			return (WALK_ERR);
1969		}
1970	}
1971
1972	/*
1973	 * Unfortunately, there is no platform-independent way to walk
1974	 * CPUs in ID order.  We therefore loop through in cpu_next order,
1975	 * building an array of CPU pointers which will subsequently be
1976	 * sorted.
1977	 */
1978	cw->cw_array =
1979	    mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
1980
1981	if (mdb_readvar(&first, "cpu_list") == -1) {
1982		mdb_warn("failed to read 'cpu_list'");
1983		return (WALK_ERR);
1984	}
1985
1986	current = first;
1987	do {
1988		if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
1989			mdb_warn("failed to read cpu at %p", current);
1990			return (WALK_ERR);
1991		}
1992
1993		if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
1994			cw->cw_array[i++] = addr;
1995		} else {
1996			cw->cw_array[i++] = current;
1997		}
1998	} while ((current = (uintptr_t)cpu.cpu_next) != first);
1999
2000	qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2001	wsp->walk_data = cw;
2002
2003	return (WALK_NEXT);
2004}
2005
2006int
2007cpu_walk_step(mdb_walk_state_t *wsp)
2008{
2009	cpu_walk_t *cw = wsp->walk_data;
2010	cpu_t cpu;
2011	uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2012
2013	if (addr == NULL)
2014		return (WALK_DONE);
2015
2016	if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
2017		mdb_warn("failed to read cpu at %p", addr);
2018		return (WALK_DONE);
2019	}
2020
2021	return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
2022}
2023
2024typedef struct cpuinfo_data {
2025	intptr_t cid_cpu;
2026	uintptr_t cid_lbolt;
2027	uintptr_t **cid_ithr;
2028	char	cid_print_head;
2029	char	cid_print_thr;
2030	char	cid_print_ithr;
2031	char	cid_print_flags;
2032} cpuinfo_data_t;
2033
2034int
2035cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
2036{
2037	cpu_t c;
2038	int id;
2039	uint8_t pil;
2040
2041	if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
2042		return (WALK_NEXT);
2043
2044	if (thr->t_bound_cpu == NULL) {
2045		mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
2046		return (WALK_NEXT);
2047	}
2048
2049	(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
2050
2051	if ((id = c.cpu_id) >= NCPU) {
2052		mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
2053		    thr->t_bound_cpu, id, NCPU);
2054		return (WALK_NEXT);
2055	}
2056
2057	if ((pil = thr->t_pil) >= NINTR) {
2058		mdb_warn("thread %p has pil (%d) greater than %d\n",
2059		    addr, pil, NINTR);
2060		return (WALK_NEXT);
2061	}
2062
2063	if (cid->cid_ithr[id][pil] != NULL) {
2064		mdb_warn("CPU %d has multiple threads at pil %d (at least "
2065		    "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
2066		return (WALK_NEXT);
2067	}
2068
2069	cid->cid_ithr[id][pil] = addr;
2070
2071	return (WALK_NEXT);
2072}
2073
2074#define	CPUINFO_IDWIDTH		3
2075#define	CPUINFO_FLAGWIDTH	9
2076
2077#ifdef _LP64
2078#if defined(__amd64)
2079#define	CPUINFO_TWIDTH		16
2080#define	CPUINFO_CPUWIDTH	16
2081#else
2082#define	CPUINFO_CPUWIDTH	11
2083#define	CPUINFO_TWIDTH		11
2084#endif
2085#else
2086#define	CPUINFO_CPUWIDTH	8
2087#define	CPUINFO_TWIDTH		8
2088#endif
2089
2090#define	CPUINFO_THRDELT		(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
2091#define	CPUINFO_FLAGDELT	(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
2092#define	CPUINFO_ITHRDELT	4
2093
2094#define	CPUINFO_INDENT	mdb_printf("%*s", CPUINFO_THRDELT, \
2095    flagline < nflaglines ? flagbuf[flagline++] : "")
2096
2097int
2098cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
2099{
2100	kthread_t t;
2101	disp_t disp;
2102	proc_t p;
2103	uintptr_t pinned;
2104	char **flagbuf;
2105	int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
2106
2107	const char *flags[] = {
2108	    "RUNNING", "READY", "QUIESCED", "EXISTS",
2109	    "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
2110	    "SPARE", "FAULTED", NULL
2111	};
2112
2113	if (cid->cid_cpu != -1) {
2114		if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
2115			return (WALK_NEXT);
2116
2117		/*
2118		 * Set cid_cpu to -1 to indicate that we found a matching CPU.
2119		 */
2120		cid->cid_cpu = -1;
2121		rval = WALK_DONE;
2122	}
2123
2124	if (cid->cid_print_head) {
2125		mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
2126		    "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
2127		    "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
2128		    "PROC");
2129		cid->cid_print_head = FALSE;
2130	}
2131
2132	bspl = cpu->cpu_base_spl;
2133
2134	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
2135		mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
2136		return (WALK_ERR);
2137	}
2138
2139	mdb_printf("%3d %0*p %3x %4d %4d ",
2140	    cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
2141	    disp.disp_nrunnable, bspl);
2142
2143	if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
2144		mdb_printf("%3d ", t.t_pri);
2145	} else {
2146		mdb_printf("%3s ", "-");
2147	}
2148
2149	mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
2150	    cpu->cpu_kprunrun ? "yes" : "no");
2151
2152	if (cpu->cpu_last_swtch) {
2153		clock_t lbolt;
2154
2155		if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) {
2156			mdb_warn("failed to read lbolt at %p", cid->cid_lbolt);
2157			return (WALK_ERR);
2158		}
2159		mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch);
2160	} else {
2161		mdb_printf("%-6s ", "-");
2162	}
2163
2164	mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
2165
2166	if (cpu->cpu_thread == cpu->cpu_idle_thread)
2167		mdb_printf(" (idle)\n");
2168	else if (cpu->cpu_thread == NULL)
2169		mdb_printf(" -\n");
2170	else {
2171		if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
2172			mdb_printf(" %s\n", p.p_user.u_comm);
2173		} else {
2174			mdb_printf(" ?\n");
2175		}
2176	}
2177
2178	flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
2179
2180	if (cid->cid_print_flags) {
2181		int first = 1, i, j, k;
2182		char *s;
2183
2184		cid->cid_print_head = TRUE;
2185
2186		for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
2187			if (!(cpu->cpu_flags & i))
2188				continue;
2189
2190			if (first) {
2191				s = mdb_alloc(CPUINFO_THRDELT + 1,
2192				    UM_GC | UM_SLEEP);
2193
2194				(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
2195				    "%*s|%*s", CPUINFO_FLAGDELT, "",
2196				    CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
2197				flagbuf[nflaglines++] = s;
2198			}
2199
2200			s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
2201			(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
2202			    CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
2203			    CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
2204			    first ? "<--+" : "");
2205
2206			for (k = strlen(s); k < CPUINFO_THRDELT; k++)
2207				s[k] = ' ';
2208			s[k] = '\0';
2209
2210			flagbuf[nflaglines++] = s;
2211			first = 0;
2212		}
2213	}
2214
2215	if (cid->cid_print_ithr) {
2216		int i, found_one = FALSE;
2217		int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
2218
2219		for (i = NINTR - 1; i >= 0; i--) {
2220			uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
2221
2222			if (iaddr == NULL)
2223				continue;
2224
2225			if (!found_one) {
2226				found_one = TRUE;
2227
2228				CPUINFO_INDENT;
2229				mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
2230				    CPUINFO_ITHRDELT, "");
2231
2232				CPUINFO_INDENT;
2233				mdb_printf("%c%*s+--> %3s %s\n",
2234				    print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
2235				    "", "PIL", "THREAD");
2236			}
2237
2238			if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
2239				mdb_warn("failed to read kthread_t at %p",
2240				    iaddr);
2241				return (WALK_ERR);
2242			}
2243
2244			CPUINFO_INDENT;
2245			mdb_printf("%c%*s     %3d %0*p\n",
2246			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
2247			    t.t_pil, CPUINFO_TWIDTH, iaddr);
2248
2249			pinned = (uintptr_t)t.t_intr;
2250		}
2251
2252		if (found_one && pinned != NULL) {
2253			cid->cid_print_head = TRUE;
2254			(void) strcpy(p.p_user.u_comm, "?");
2255
2256			if (mdb_vread(&t, sizeof (t),
2257			    (uintptr_t)pinned) == -1) {
2258				mdb_warn("failed to read kthread_t at %p",
2259				    pinned);
2260				return (WALK_ERR);
2261			}
2262			if (mdb_vread(&p, sizeof (p),
2263			    (uintptr_t)t.t_procp) == -1) {
2264				mdb_warn("failed to read proc_t at %p",
2265				    t.t_procp);
2266				return (WALK_ERR);
2267			}
2268
2269			CPUINFO_INDENT;
2270			mdb_printf("%c%*s     %3s %0*p %s\n",
2271			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
2272			    CPUINFO_TWIDTH, pinned,
2273			    pinned == (uintptr_t)cpu->cpu_idle_thread ?
2274			    "(idle)" : p.p_user.u_comm);
2275		}
2276	}
2277
2278	if (disp.disp_nrunnable && cid->cid_print_thr) {
2279		dispq_t *dq;
2280
2281		int i, npri = disp.disp_npri;
2282
2283		dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
2284
2285		if (mdb_vread(dq, sizeof (dispq_t) * npri,
2286		    (uintptr_t)disp.disp_q) == -1) {
2287			mdb_warn("failed to read dispq_t at %p", disp.disp_q);
2288			return (WALK_ERR);
2289		}
2290
2291		CPUINFO_INDENT;
2292		mdb_printf("|\n");
2293
2294		CPUINFO_INDENT;
2295		mdb_printf("+-->  %3s %-*s %s\n", "PRI",
2296		    CPUINFO_TWIDTH, "THREAD", "PROC");
2297
2298		for (i = npri - 1; i >= 0; i--) {
2299			uintptr_t taddr = (uintptr_t)dq[i].dq_first;
2300
2301			while (taddr != NULL) {
2302				if (mdb_vread(&t, sizeof (t), taddr) == -1) {
2303					mdb_warn("failed to read kthread_t "
2304					    "at %p", taddr);
2305					return (WALK_ERR);
2306				}
2307				if (mdb_vread(&p, sizeof (p),
2308				    (uintptr_t)t.t_procp) == -1) {
2309					mdb_warn("failed to read proc_t at %p",
2310					    t.t_procp);
2311					return (WALK_ERR);
2312				}
2313
2314				CPUINFO_INDENT;
2315				mdb_printf("      %3d %0*p %s\n", t.t_pri,
2316				    CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
2317
2318				taddr = (uintptr_t)t.t_link;
2319			}
2320		}
2321		cid->cid_print_head = TRUE;
2322	}
2323
2324	while (flagline < nflaglines)
2325		mdb_printf("%s\n", flagbuf[flagline++]);
2326
2327	if (cid->cid_print_head)
2328		mdb_printf("\n");
2329
2330	return (rval);
2331}
2332
2333int
2334cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2335{
2336	uint_t verbose = FALSE;
2337	cpuinfo_data_t cid;
2338	GElf_Sym sym;
2339	clock_t lbolt;
2340
2341	cid.cid_print_ithr = FALSE;
2342	cid.cid_print_thr = FALSE;
2343	cid.cid_print_flags = FALSE;
2344	cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
2345	cid.cid_cpu = -1;
2346
2347	if (flags & DCMD_ADDRSPEC)
2348		cid.cid_cpu = addr;
2349
2350	if (mdb_getopts(argc, argv,
2351	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
2352		return (DCMD_USAGE);
2353
2354	if (verbose) {
2355		cid.cid_print_ithr = TRUE;
2356		cid.cid_print_thr = TRUE;
2357		cid.cid_print_flags = TRUE;
2358		cid.cid_print_head = TRUE;
2359	}
2360
2361	if (cid.cid_print_ithr) {
2362		int i;
2363
2364		cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
2365		    * NCPU, UM_SLEEP | UM_GC);
2366
2367		for (i = 0; i < NCPU; i++)
2368			cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
2369			    NINTR, UM_SLEEP | UM_GC);
2370
2371		if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
2372		    &cid) == -1) {
2373			mdb_warn("couldn't walk thread");
2374			return (DCMD_ERR);
2375		}
2376	}
2377
2378	if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) {
2379		mdb_warn("failed to find panic_lbolt");
2380		return (DCMD_ERR);
2381	}
2382
2383	cid.cid_lbolt = (uintptr_t)sym.st_value;
2384
2385	if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) {
2386		mdb_warn("failed to read panic_lbolt");
2387		return (DCMD_ERR);
2388	}
2389
2390	if (lbolt == 0) {
2391		if (mdb_lookup_by_name("lbolt", &sym) == -1) {
2392			mdb_warn("failed to find lbolt");
2393			return (DCMD_ERR);
2394		}
2395		cid.cid_lbolt = (uintptr_t)sym.st_value;
2396	}
2397
2398	if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
2399		mdb_warn("can't walk cpus");
2400		return (DCMD_ERR);
2401	}
2402
2403	if (cid.cid_cpu != -1) {
2404		/*
2405		 * We didn't find this CPU when we walked through the CPUs
2406		 * (i.e. the address specified doesn't show up in the "cpu"
2407		 * walk).  However, the specified address may still correspond
2408		 * to a valid cpu_t (for example, if the specified address is
2409		 * the actual panicking cpu_t and not the cached panic_cpu).
2410		 * Point is:  even if we didn't find it, we still want to try
2411		 * to print the specified address as a cpu_t.
2412		 */
2413		cpu_t cpu;
2414
2415		if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
2416			mdb_warn("%p is neither a valid CPU ID nor a "
2417			    "valid cpu_t address\n", cid.cid_cpu);
2418			return (DCMD_ERR);
2419		}
2420
2421		(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
2422	}
2423
2424	return (DCMD_OK);
2425}
2426
2427/*ARGSUSED*/
2428int
2429flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2430{
2431	int i;
2432
2433	if (!(flags & DCMD_ADDRSPEC))
2434		return (DCMD_USAGE);
2435
2436	for (i = 0; i < sizeof (addr) * NBBY; i++)
2437		mdb_printf("%p\n", addr ^ (1UL << i));
2438
2439	return (DCMD_OK);
2440}
2441
2442/*
2443 * Grumble, grumble.
2444 */
2445#define	SMAP_HASHFUNC(vp, off)	\
2446	((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
2447	((off) >> MAXBSHIFT)) & smd_hashmsk)
2448
2449int
2450vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2451{
2452	long smd_hashmsk;
2453	int hash;
2454	uintptr_t offset = 0;
2455	struct smap smp;
2456	uintptr_t saddr, kaddr;
2457	uintptr_t smd_hash, smd_smap;
2458	struct seg seg;
2459
2460	if (!(flags & DCMD_ADDRSPEC))
2461		return (DCMD_USAGE);
2462
2463	if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
2464		mdb_warn("failed to read smd_hashmsk");
2465		return (DCMD_ERR);
2466	}
2467
2468	if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
2469		mdb_warn("failed to read smd_hash");
2470		return (DCMD_ERR);
2471	}
2472
2473	if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
2474		mdb_warn("failed to read smd_hash");
2475		return (DCMD_ERR);
2476	}
2477
2478	if (mdb_readvar(&kaddr, "segkmap") == -1) {
2479		mdb_warn("failed to read segkmap");
2480		return (DCMD_ERR);
2481	}
2482
2483	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
2484		mdb_warn("failed to read segkmap at %p", kaddr);
2485		return (DCMD_ERR);
2486	}
2487
2488	if (argc != 0) {
2489		const mdb_arg_t *arg = &argv[0];
2490
2491		if (arg->a_type == MDB_TYPE_IMMEDIATE)
2492			offset = arg->a_un.a_val;
2493		else
2494			offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
2495	}
2496
2497	hash = SMAP_HASHFUNC(addr, offset);
2498
2499	if (mdb_vread(&saddr, sizeof (saddr),
2500	    smd_hash + hash * sizeof (uintptr_t)) == -1) {
2501		mdb_warn("couldn't read smap at %p",
2502		    smd_hash + hash * sizeof (uintptr_t));
2503		return (DCMD_ERR);
2504	}
2505
2506	do {
2507		if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
2508			mdb_warn("couldn't read smap at %p", saddr);
2509			return (DCMD_ERR);
2510		}
2511
2512		if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
2513			mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
2514			    addr, offset, saddr, ((saddr - smd_smap) /
2515			    sizeof (smp)) * MAXBSIZE + seg.s_base);
2516			return (DCMD_OK);
2517		}
2518
2519		saddr = (uintptr_t)smp.sm_hash;
2520	} while (saddr != NULL);
2521
2522	mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
2523	return (DCMD_OK);
2524}
2525
2526/*ARGSUSED*/
2527int
2528addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2529{
2530	uintptr_t kaddr;
2531	struct seg seg;
2532	struct segmap_data sd;
2533
2534	if (!(flags & DCMD_ADDRSPEC))
2535		return (DCMD_USAGE);
2536
2537	if (mdb_readvar(&kaddr, "segkmap") == -1) {
2538		mdb_warn("failed to read segkmap");
2539		return (DCMD_ERR);
2540	}
2541
2542	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
2543		mdb_warn("failed to read segkmap at %p", kaddr);
2544		return (DCMD_ERR);
2545	}
2546
2547	if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
2548		mdb_warn("failed to read segmap_data at %p", seg.s_data);
2549		return (DCMD_ERR);
2550	}
2551
2552	mdb_printf("%p is smap %p\n", addr,
2553	    ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
2554	    sizeof (struct smap) + (uintptr_t)sd.smd_sm);
2555
2556	return (DCMD_OK);
2557}
2558
2559int
2560as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
2561{
2562	if (p->p_as == *asp)
2563		mdb_printf("%p\n", addr);
2564	return (WALK_NEXT);
2565}
2566
2567/*ARGSUSED*/
2568int
2569as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2570{
2571	if (!(flags & DCMD_ADDRSPEC) || argc != 0)
2572		return (DCMD_USAGE);
2573
2574	if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
2575		mdb_warn("failed to walk proc");
2576		return (DCMD_ERR);
2577	}
2578
2579	return (DCMD_OK);
2580}
2581
2582/*ARGSUSED*/
2583int
2584ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
2585{
2586	proc_t parent;
2587	int ident = 0;
2588	uintptr_t paddr;
2589
2590	for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
2591		mdb_vread(&parent, sizeof (parent), paddr);
2592		paddr = (uintptr_t)parent.p_parent;
2593	}
2594
2595	mdb_inc_indent(ident);
2596	mdb_printf("%0?p  %s\n", addr, p->p_user.u_comm);
2597	mdb_dec_indent(ident);
2598
2599	return (WALK_NEXT);
2600}
2601
2602void
2603ptree_ancestors(uintptr_t addr, uintptr_t start)
2604{
2605	proc_t p;
2606
2607	if (mdb_vread(&p, sizeof (p), addr) == -1) {
2608		mdb_warn("couldn't read ancestor at %p", addr);
2609		return;
2610	}
2611
2612	if (p.p_parent != NULL)
2613		ptree_ancestors((uintptr_t)p.p_parent, start);
2614
2615	if (addr != start)
2616		(void) ptree_walk(addr, &p, NULL);
2617}
2618
2619/*ARGSUSED*/
2620int
2621ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2622{
2623	if (!(flags & DCMD_ADDRSPEC))
2624		addr = NULL;
2625	else
2626		ptree_ancestors(addr, addr);
2627
2628	if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
2629		mdb_warn("couldn't walk 'proc'");
2630		return (DCMD_ERR);
2631	}
2632
2633	return (DCMD_OK);
2634}
2635
2636/*ARGSUSED*/
2637static int
2638fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2639{
2640	int fdnum;
2641	const mdb_arg_t *argp = &argv[0];
2642	proc_t p;
2643	uf_entry_t uf;
2644
2645	if ((flags & DCMD_ADDRSPEC) == 0) {
2646		mdb_warn("fd doesn't give global information\n");
2647		return (DCMD_ERR);
2648	}
2649	if (argc != 1)
2650		return (DCMD_USAGE);
2651
2652	if (argp->a_type == MDB_TYPE_IMMEDIATE)
2653		fdnum = argp->a_un.a_val;
2654	else
2655		fdnum = mdb_strtoull(argp->a_un.a_str);
2656
2657	if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
2658		mdb_warn("couldn't read proc_t at %p", addr);
2659		return (DCMD_ERR);
2660	}
2661	if (fdnum > p.p_user.u_finfo.fi_nfiles) {
2662		mdb_warn("process %p only has %d files open.\n",
2663		    addr, p.p_user.u_finfo.fi_nfiles);
2664		return (DCMD_ERR);
2665	}
2666	if (mdb_vread(&uf, sizeof (uf_entry_t),
2667	    (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
2668		mdb_warn("couldn't read uf_entry_t at %p",
2669		    &p.p_user.u_finfo.fi_list[fdnum]);
2670		return (DCMD_ERR);
2671	}
2672
2673	mdb_printf("%p\n", uf.uf_file);
2674	return (DCMD_OK);
2675}
2676
2677/*ARGSUSED*/
2678static int
2679pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2680{
2681	pid_t pid = (pid_t)addr;
2682
2683	if (argc != 0)
2684		return (DCMD_USAGE);
2685
2686	if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
2687		mdb_warn("PID 0t%d not found\n", pid);
2688		return (DCMD_ERR);
2689	}
2690
2691	mdb_printf("%p\n", addr);
2692	return (DCMD_OK);
2693}
2694
2695static char *sysfile_cmd[] = {
2696	"exclude:",
2697	"include:",
2698	"forceload:",
2699	"rootdev:",
2700	"rootfs:",
2701	"swapdev:",
2702	"swapfs:",
2703	"moddir:",
2704	"set",
2705	"unknown",
2706};
2707
2708static char *sysfile_ops[] = { "", "=", "&", "|" };
2709
2710/*ARGSUSED*/
2711static int
2712sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
2713{
2714	if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
2715		*target = NULL;
2716		return (WALK_DONE);
2717	}
2718	return (WALK_NEXT);
2719}
2720
2721/*ARGSUSED*/
2722static int
2723sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2724{
2725	struct sysparam *sysp, sys;
2726	char var[256];
2727	char modname[256];
2728	char val[256];
2729	char strval[256];
2730	vmem_t *mod_sysfile_arena;
2731	void *straddr;
2732
2733	if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
2734		mdb_warn("failed to read sysparam_hd");
2735		return (DCMD_ERR);
2736	}
2737
2738	if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
2739		mdb_warn("failed to read mod_sysfile_arena");
2740		return (DCMD_ERR);
2741	}
2742
2743	while (sysp != NULL) {
2744		var[0] = '\0';
2745		val[0] = '\0';
2746		modname[0] = '\0';
2747		if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
2748			mdb_warn("couldn't read sysparam %p", sysp);
2749			return (DCMD_ERR);
2750		}
2751		if (sys.sys_modnam != NULL &&
2752		    mdb_readstr(modname, 256,
2753		    (uintptr_t)sys.sys_modnam) == -1) {
2754			mdb_warn("couldn't read modname in %p", sysp);
2755			return (DCMD_ERR);
2756		}
2757		if (sys.sys_ptr != NULL &&
2758		    mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
2759			mdb_warn("couldn't read ptr in %p", sysp);
2760			return (DCMD_ERR);
2761		}
2762		if (sys.sys_op != SETOP_NONE) {
2763			/*
2764			 * Is this an int or a string?  We determine this
2765			 * by checking whether straddr is contained in
2766			 * mod_sysfile_arena.  If so, the walker will set
2767			 * straddr to NULL.
2768			 */
2769			straddr = (void *)(uintptr_t)sys.sys_info;
2770			if (sys.sys_op == SETOP_ASSIGN &&
2771			    sys.sys_info != 0 &&
2772			    mdb_pwalk("vmem_seg",
2773			    (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
2774			    (uintptr_t)mod_sysfile_arena) == 0 &&
2775			    straddr == NULL &&
2776			    mdb_readstr(strval, 256,
2777			    (uintptr_t)sys.sys_info) != -1) {
2778				(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
2779				    strval);
2780			} else {
2781				(void) mdb_snprintf(val, sizeof (val),
2782				    "0x%llx [0t%llu]", sys.sys_info,
2783				    sys.sys_info);
2784			}
2785		}
2786		mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
2787		    modname, modname[0] == '\0' ? "" : ":",
2788		    var, sysfile_ops[sys.sys_op], val);
2789
2790		sysp = sys.sys_next;
2791	}
2792
2793	return (DCMD_OK);
2794}
2795
2796/*
2797 * Dump a taskq_ent_t given its address.
2798 */
2799/*ARGSUSED*/
2800int
2801taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2802{
2803	taskq_ent_t	taskq_ent;
2804	GElf_Sym	sym;
2805	char		buf[MDB_SYM_NAMLEN+1];
2806
2807
2808	if (!(flags & DCMD_ADDRSPEC)) {
2809		mdb_warn("expected explicit taskq_ent_t address before ::\n");
2810		return (DCMD_USAGE);
2811	}
2812
2813	if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) {
2814		mdb_warn("failed to read taskq_ent_t at %p", addr);
2815		return (DCMD_ERR);
2816	}
2817
2818	if (DCMD_HDRSPEC(flags)) {
2819		mdb_printf("%<u>%-?s    %-?s    %-s%</u>\n",
2820		"ENTRY", "ARG", "FUNCTION");
2821	}
2822
2823	if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT,
2824	    buf, sizeof (buf), &sym) == -1) {
2825		(void) strcpy(buf, "????");
2826	}
2827
2828	mdb_printf("%-?p    %-?p    %s\n", addr, taskq_ent.tqent_arg, buf);
2829
2830	return (DCMD_OK);
2831}
2832
2833/*
2834 * Given the address of the (taskq_t) task queue head, walk the queue listing
2835 * the address of every taskq_ent_t.
2836 */
2837int
2838taskq_walk_init(mdb_walk_state_t *wsp)
2839{
2840	taskq_t	tq_head;
2841
2842
2843	if (wsp->walk_addr == NULL) {
2844		mdb_warn("start address required\n");
2845		return (WALK_ERR);
2846	}
2847
2848
2849	/*
2850	 * Save the address of the list head entry.  This terminates the list.
2851	 */
2852	wsp->walk_data = (void *)
2853	    ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task));
2854
2855
2856	/*
2857	 * Read in taskq head, set walk_addr to point to first taskq_ent_t.
2858	 */
2859	if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) ==
2860	    -1) {
2861		mdb_warn("failed to read taskq list head at %p",
2862		    wsp->walk_addr);
2863	}
2864	wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next;
2865
2866
2867	/*
2868	 * Check for null list (next=head)
2869	 */
2870	if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
2871		return (WALK_DONE);
2872	}
2873
2874	return (WALK_NEXT);
2875}
2876
2877
2878int
2879taskq_walk_step(mdb_walk_state_t *wsp)
2880{
2881	taskq_ent_t	tq_ent;
2882	int		status;
2883
2884
2885	if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) ==
2886	    -1) {
2887		mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr);
2888		return (DCMD_ERR);
2889	}
2890
2891	status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent,
2892	    wsp->walk_cbdata);
2893
2894	wsp->walk_addr = (uintptr_t)tq_ent.tqent_next;
2895
2896
2897	/* Check if we're at the last element (next=head) */
2898	if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
2899		return (WALK_DONE);
2900	}
2901
2902	return (status);
2903}
2904
2905int
2906didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
2907{
2908
2909	if (*didp == thr->t_did) {
2910		mdb_printf("%p\n", addr);
2911		return (WALK_DONE);
2912	} else
2913		return (WALK_NEXT);
2914}
2915
2916/*ARGSUSED*/
2917int
2918did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2919{
2920	const mdb_arg_t *argp = &argv[0];
2921	kt_did_t	did;
2922
2923	if (argc != 1)
2924		return (DCMD_USAGE);
2925
2926	did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
2927
2928	if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
2929		mdb_warn("failed to walk thread");
2930		return (DCMD_ERR);
2931
2932	}
2933	return (DCMD_OK);
2934
2935}
2936
2937static int
2938errorq_walk_init(mdb_walk_state_t *wsp)
2939{
2940	if (wsp->walk_addr == NULL &&
2941	    mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
2942		mdb_warn("failed to read errorq_list");
2943		return (WALK_ERR);
2944	}
2945
2946	return (WALK_NEXT);
2947}
2948
2949static int
2950errorq_walk_step(mdb_walk_state_t *wsp)
2951{
2952	uintptr_t addr = wsp->walk_addr;
2953	errorq_t eq;
2954
2955	if (addr == NULL)
2956		return (WALK_DONE);
2957
2958	if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
2959		mdb_warn("failed to read errorq at %p", addr);
2960		return (WALK_ERR);
2961	}
2962
2963	wsp->walk_addr = (uintptr_t)eq.eq_next;
2964	return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
2965}
2966
2967typedef struct eqd_walk_data {
2968	uintptr_t *eqd_stack;
2969	void *eqd_buf;
2970	ulong_t eqd_qpos;
2971	ulong_t eqd_qlen;
2972	size_t eqd_size;
2973} eqd_walk_data_t;
2974
2975/*
2976 * In order to walk the list of pending error queue elements, we push the
2977 * addresses of the corresponding data buffers in to the eqd_stack array.
2978 * The error lists are in reverse chronological order when iterating using
2979 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
2980 * walker client gets addresses in order from oldest error to newest error.
2981 */
2982static void
2983eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
2984{
2985	errorq_elem_t eqe;
2986
2987	while (addr != NULL) {
2988		if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
2989			mdb_warn("failed to read errorq element at %p", addr);
2990			break;
2991		}
2992
2993		if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
2994			mdb_warn("errorq is overfull -- more than %lu "
2995			    "elems found\n", eqdp->eqd_qlen);
2996			break;
2997		}
2998
2999		eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3000		addr = (uintptr_t)eqe.eqe_prev;
3001	}
3002}
3003
3004static int
3005eqd_walk_init(mdb_walk_state_t *wsp)
3006{
3007	eqd_walk_data_t *eqdp;
3008	errorq_elem_t eqe, *addr;
3009	errorq_t eq;
3010	ulong_t i;
3011
3012	if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3013		mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3014		return (WALK_ERR);
3015	}
3016
3017	if (eq.eq_ptail != NULL &&
3018	    mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3019		mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3020		return (WALK_ERR);
3021	}
3022
3023	eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3024	wsp->walk_data = eqdp;
3025
3026	eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3027	eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3028	eqdp->eqd_qlen = eq.eq_qlen;
3029	eqdp->eqd_qpos = 0;
3030	eqdp->eqd_size = eq.eq_size;
3031
3032	/*
3033	 * The newest elements in the queue are on the pending list, so we
3034	 * push those on to our stack first.
3035	 */
3036	eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3037
3038	/*
3039	 * If eq_ptail is set, it may point to a subset of the errors on the
3040	 * pending list in the event a casptr() failed; if ptail's data is
3041	 * already in our stack, NULL out eq_ptail and ignore it.
3042	 */
3043	if (eq.eq_ptail != NULL) {
3044		for (i = 0; i < eqdp->eqd_qpos; i++) {
3045			if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3046				eq.eq_ptail = NULL;
3047				break;
3048			}
3049		}
3050	}
3051
3052	/*
3053	 * If eq_phead is set, it has the processing list in order from oldest
3054	 * to newest.  Use this to recompute eq_ptail as best we can and then
3055	 * we nicely fall into eqd_push_list() of eq_ptail below.
3056	 */
3057	for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3058	    (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3059		eq.eq_ptail = addr;
3060
3061	/*
3062	 * The oldest elements in the queue are on the processing list, subject
3063	 * to machinations in the if-clauses above.  Push any such elements.
3064	 */
3065	eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3066	return (WALK_NEXT);
3067}
3068
3069static int
3070eqd_walk_step(mdb_walk_state_t *wsp)
3071{
3072	eqd_walk_data_t *eqdp = wsp->walk_data;
3073	uintptr_t addr;
3074
3075	if (eqdp->eqd_qpos == 0)
3076		return (WALK_DONE);
3077
3078	addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3079
3080	if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3081		mdb_warn("failed to read errorq data at %p", addr);
3082		return (WALK_ERR);
3083	}
3084
3085	return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3086}
3087
3088static void
3089eqd_walk_fini(mdb_walk_state_t *wsp)
3090{
3091	eqd_walk_data_t *eqdp = wsp->walk_data;
3092
3093	mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3094	mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3095	mdb_free(eqdp, sizeof (eqd_walk_data_t));
3096}
3097
3098#define	EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3099
3100static int
3101errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3102{
3103	int i;
3104	errorq_t eq;
3105	uint_t opt_v = FALSE;
3106
3107	if (!(flags & DCMD_ADDRSPEC)) {
3108		if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3109			mdb_warn("can't walk 'errorq'");
3110			return (DCMD_ERR);
3111		}
3112		return (DCMD_OK);
3113	}
3114
3115	i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3116	argc -= i;
3117	argv += i;
3118
3119	if (argc != 0)
3120		return (DCMD_USAGE);
3121
3122	if (opt_v || DCMD_HDRSPEC(flags)) {
3123		mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3124		    "ADDR", "NAME", "S", "V", "N");
3125		if (!opt_v) {
3126			mdb_printf("%7s %7s %7s%</u>\n",
3127			    "ACCEPT", "DROP", "LOG");
3128		} else {
3129			mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3130			    "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3131		}
3132	}
3133
3134	if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3135		mdb_warn("failed to read errorq at %p", addr);
3136		return (DCMD_ERR);
3137	}
3138
3139	mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3140	    (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3141	    (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3142	    (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3143
3144	if (!opt_v) {
3145		mdb_printf("%7llu %7llu %7llu\n",
3146		    EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3147		    EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3148		    EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3149	} else {
3150		mdb_printf("%5s %6lu %6lu %3u %a\n",
3151		    "  |  ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3152		mdb_printf("%38s\n%41s"
3153		    "%12s %llu\n"
3154		    "%53s %llu\n"
3155		    "%53s %llu\n"
3156		    "%53s %llu\n"
3157		    "%53s %llu\n"
3158		    "%53s %llu\n"
3159		    "%53s %llu\n"
3160		    "%53s %llu\n\n",
3161		    "|", "+-> ",
3162		    "DISPATCHED",	EQKSVAL(eq, eqk_dispatched),
3163		    "DROPPED",		EQKSVAL(eq, eqk_dropped),
3164		    "LOGGED",		EQKSVAL(eq, eqk_logged),
3165		    "RESERVED",		EQKSVAL(eq, eqk_reserved),
3166		    "RESERVE FAIL",	EQKSVAL(eq, eqk_reserve_fail),
3167		    "COMMITTED",	EQKSVAL(eq, eqk_committed),
3168		    "COMMIT FAIL",	EQKSVAL(eq, eqk_commit_fail),
3169		    "CANCELLED",	EQKSVAL(eq, eqk_cancelled));
3170	}
3171
3172	return (DCMD_OK);
3173}
3174
3175/*ARGSUSED*/
3176static int
3177panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3178{
3179	cpu_t panic_cpu;
3180	kthread_t *panic_thread;
3181	void *panicbuf;
3182	panic_data_t *pd;
3183	int i, n;
3184
3185	if (!mdb_prop_postmortem) {
3186		mdb_warn("panicinfo can only be run on a system "
3187		    "dump; see dumpadm(1M)\n");
3188		return (DCMD_ERR);
3189	}
3190
3191	if (flags & DCMD_ADDRSPEC || argc != 0)
3192		return (DCMD_USAGE);
3193
3194	if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3195		mdb_warn("failed to read 'panic_cpu'");
3196	else
3197		mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3198
3199	if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3200		mdb_warn("failed to read 'panic_thread'");
3201	else
3202		mdb_printf("%16s %?p\n", "thread", panic_thread);
3203
3204	panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3205	pd = (panic_data_t *)panicbuf;
3206
3207	if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 ||
3208	    pd->pd_version != PANICBUFVERS) {
3209		mdb_warn("failed to read 'panicbuf'");
3210		mdb_free(panicbuf, PANICBUFSIZE);
3211		return (DCMD_ERR);
3212	}
3213
3214	mdb_printf("%16s %s\n", "message",  (char *)panicbuf + pd->pd_msgoff);
3215
3216	n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3217	    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3218
3219	for (i = 0; i < n; i++)
3220		mdb_printf("%16s %?llx\n",
3221		    pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3222
3223	mdb_free(panicbuf, PANICBUFSIZE);
3224	return (DCMD_OK);
3225}
3226
3227static const mdb_dcmd_t dcmds[] = {
3228
3229	/* from genunix.c */
3230	{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
3231	{ "as2proc", ":", "convert as to proc_t address", as2proc },
3232	{ "binding_hash_entry", ":", "print driver names hash table entry",
3233		binding_hash_entry },
3234	{ "callout", NULL, "print callout table", callout },
3235	{ "class", NULL, "print process scheduler classes", class },
3236	{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
3237	{ "did2thread", "? kt_did", "find kernel thread for this id",
3238		did2thread },
3239	{ "errorq", "?[-v]", "display kernel error queues", errorq },
3240	{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
3241	{ "flipone", ":", "the vik_rev_level 2 special", flipone },
3242	{ "lminfo", NULL, "print lock manager information", lminfo },
3243	{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
3244	{ "panicinfo", NULL, "print panic information", panicinfo },
3245	{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
3246	{ "pmap", ":[-q]", "print process memory map", pmap },
3247	{ "project", NULL, "display kernel project(s)", project },
3248	{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
3249	{ "pgrep", "[-x] [-n | -o] pattern",
3250		"pattern match against all processes", pgrep },
3251	{ "ptree", NULL, "print process tree", ptree },
3252	{ "seg", ":", "print address space segment", seg },
3253	{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
3254		sysevent},
3255	{ "sysevent_channel", "?", "print sysevent channel database",
3256		sysevent_channel},
3257	{ "sysevent_class_list", ":", "print sysevent class list",
3258		sysevent_class_list},
3259	{ "sysevent_subclass_list", ":",
3260		"print sysevent subclass list", sysevent_subclass_list},
3261	{ "system", NULL, "print contents of /etc/system file", sysfile },
3262	{ "task", NULL, "display kernel task(s)", task },
3263	{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
3264	{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
3265	{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
3266	{ "whereopen", ":", "given a vnode, dumps procs which have it open",
3267	    whereopen },
3268
3269	/* from zone.c */
3270	{ "zone", "?", "display kernel zone(s)", zoneprt },
3271	{ "zsd", ":[zsd key]", "lookup zsd value from a key", zsd },
3272
3273	/* from bio.c */
3274	{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
3275
3276	/* from contract.c */
3277	{ "contract", "?", "display a contract", cmd_contract },
3278	{ "ctevent", ":", "display a contract event", cmd_ctevent },
3279	{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
3280
3281	/* from cpupart.c */
3282	{ "cpupart", "?[-v]", "print cpu partition info", cpupart },
3283
3284	/* from cyclic.c */
3285	{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
3286	{ "cycid", "?", "dump a cyclic id", cycid },
3287	{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
3288	{ "cyclic", ":", "developer information", cyclic },
3289	{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
3290
3291	/* from devinfo.c */
3292	{ "devbindings", "?[-qs] [device-name | major-num]",
3293	    "print devinfo nodes bound to device-name or major-num",
3294	    devbindings, devinfo_help },
3295	{ "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
3296	    devinfo_help },
3297	{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
3298	    devinfo_audit },
3299	{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
3300	    devinfo_audit_log },
3301	{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
3302	    devinfo_audit_node },
3303	{ "devinfo2driver", ":", "find driver name for this devinfo node",
3304	    devinfo2driver },
3305	{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
3306	{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
3307	    dev2major },
3308	{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
3309	    dev2minor },
3310	{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
3311	    devt },
3312	{ "major2name", "?<major-num>", "convert major number to dev name",
3313	    major2name },
3314	{ "minornodes", ":", "given a devinfo node, print its minor nodes",
3315	    minornodes },
3316	{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
3317	    modctl2devinfo },
3318	{ "name2major", "<dev-name>", "convert dev name to major number",
3319	    name2major },
3320	{ "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
3321	{ "softstate", ":<instance>", "retrieve soft-state pointer",
3322	    softstate },
3323	{ "devinfo_fm", ":", "devinfo fault managment configuration",
3324	    devinfo_fm },
3325	{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
3326	    devinfo_fmce},
3327
3328	/* from fm.c */
3329	{ "ereport", "[-v]", "print ereports logged in dump",
3330	    ereport },
3331
3332	/* from findstack.c */
3333	{ "findstack", ":[-v]", "find kernel thread stack", findstack },
3334	{ "findstack_debug", NULL, "toggle findstack debugging",
3335		findstack_debug },
3336
3337	/* from kgrep.c + genunix.c */
3338	{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
3339		kgrep_help },
3340
3341	/* from kmem.c */
3342	{ "allocdby", ":", "given a thread, print its allocated buffers",
3343		allocdby },
3344	{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
3345		"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
3346	{ "freedby", ":", "given a thread, print its freed buffers", freedby },
3347	{ "kmalog", "?[ fail | slab ]",
3348	    "display kmem transaction log and stack traces", kmalog },
3349	{ "kmastat", "[-kmg]", "kernel memory allocator stats",
3350	    kmastat },
3351	{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
3352		"of the kmem allocator", kmausers, kmausers_help },
3353	{ "kmem_cache", "?", "print kernel memory caches", kmem_cache },
3354	{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
3355	{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
3356	{ "kmem_verify", "?", "check integrity of kmem-managed memory",
3357		kmem_verify },
3358	{ "vmem", "?", "print a vmem_t", vmem },
3359	{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
3360		"[-m minsize] [-M maxsize] [-t thread] [-T type]",
3361		"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
3362	{ "whatis", ":[-abiv]", "given an address, return information", whatis,
3363		whatis_help },
3364	{ "whatthread", ":[-v]", "print threads whose stack contains the "
3365		"given address", whatthread },
3366
3367	/* from ldi.c */
3368	{ "ldi_handle", "?[-i]", "display a layered driver handle",
3369	    ldi_handle, ldi_handle_help },
3370	{ "ldi_ident", NULL, "display a layered driver identifier",
3371	    ldi_ident, ldi_ident_help },
3372
3373	/* from leaky.c + leaky_subr.c */
3374	{ "findleaks", FINDLEAKS_USAGE,
3375	    "search for potential kernel memory leaks", findleaks,
3376	    findleaks_help },
3377
3378	/* from lgrp.c */
3379	{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
3380	{ "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
3381
3382	/* from log.c */
3383	{ "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
3384
3385	/* from memory.c */
3386	{ "page", "?", "display a summarized page_t", page },
3387	{ "memstat", NULL, "display memory usage summary", memstat },
3388	{ "memlist", "?[-iav]", "display a struct memlist", memlist },
3389	{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
3390
3391	/* from mmd.c */
3392	{ "multidata", ":[-sv]", "display a summarized multidata_t",
3393		multidata },
3394	{ "pattbl", ":", "display a summarized multidata attribute table",
3395		pattbl },
3396	{ "pattr2multidata", ":", "print multidata pointer from pattr_t",
3397		pattr2multidata },
3398	{ "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
3399		pdesc2slab },
3400	{ "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
3401	{ "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
3402		slab2multidata },
3403
3404	/* from modhash.c */
3405	{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
3406		"display information about one or all mod_hash structures",
3407		modhash, modhash_help },
3408	{ "modent", ":[-k | -v | -t type]",
3409		"display information about a mod_hash_entry", modent,
3410		modent_help },
3411
3412	/* from net.c */
3413	{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
3414		mi },
3415	{ "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]",
3416		"show network statistics", netstat },
3417	{ "sonode", "?[-f inet | inet6 | unix | #] "
3418		"[-t stream | dgram | raw | #] [-p #]",
3419		"filter and display sonode", sonode },
3420
3421	/* from nvpair.c */
3422	{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
3423		nvpair_print },
3424	{ NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
3425		print_nvlist },
3426
3427	/* from pg.c */
3428	{ "pg", "?[-q]", "display a pg", pg},
3429	/* from group.c */
3430	{ "group", "?[-q]", "display a group", group},
3431
3432	/* from log.c */
3433	/* from rctl.c */
3434	{ "rctl_dict", "?", "print systemwide default rctl definitions",
3435		rctl_dict },
3436	{ "rctl_list", ":[handle]", "print rctls for the given proc",
3437		rctl_list },
3438	{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
3439		rctl },
3440	{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
3441		"sequence", rctl_validate },
3442
3443	/* from sobj.c */
3444	{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
3445	{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
3446		mutex_help },
3447	{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
3448	{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
3449	{ "turnstile", "?", "display a turnstile", turnstile },
3450
3451	/* from stream.c */
3452	{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
3453		"print an mblk", mblk_prt, mblk_help },
3454	{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
3455	{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
3456		mblk2dblk },
3457	{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
3458	{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
3459	{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
3460	{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
3461	{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
3462	{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
3463		"filter and display STREAM queue", queue, queue_help },
3464	{ "stdata", ":[-q|v] [-f flag] [-F flag]",
3465		"filter and display STREAM head", stdata, stdata_help },
3466	{ "str2mate", ":", "print mate of this stream", str2mate },
3467	{ "str2wrq", ":", "print write queue of this stream", str2wrq },
3468	{ "stream", ":", "display STREAM", stream },
3469	{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
3470	{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
3471		"filter and display STREAM sync queue", syncq, syncq_help },
3472	{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
3473
3474	/* from thread.c */
3475	{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
3476		thread_help },
3477	{ "threadlist", "?[-v [count]]",
3478		"display threads and associated C stack traces", threadlist,
3479		threadlist_help },
3480
3481	/* from tsd.c */
3482	{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
3483	{ "tsdtot", ":", "find thread with this tsd", tsdtot },
3484
3485	/*
3486	 * typegraph does not work under kmdb, as it requires too much memory
3487	 * for its internal data structures.
3488	 */
3489#ifndef _KMDB
3490	/* from typegraph.c */
3491	{ "findlocks", ":", "find locks held by specified thread", findlocks },
3492	{ "findfalse", "?[-v]", "find potentially falsely shared structures",
3493		findfalse },
3494	{ "typegraph", NULL, "build type graph", typegraph },
3495	{ "istype", ":type", "manually set object type", istype },
3496	{ "notype", ":", "manually clear object type", notype },
3497	{ "whattype", ":", "determine object type", whattype },
3498#endif
3499
3500	/* from vfs.c */
3501	{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
3502	{ "pfiles", ":[-fp]", "print process file information", pfiles,
3503		pfiles_help },
3504
3505	/* from mdi.c */
3506	{ "mdipi", NULL, "given a path, dump mdi_pathinfo "
3507		"and detailed pi_prop list", mdipi },
3508	{ "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
3509		mdiprops },
3510	{ "mdiphci", NULL, "given a phci, dump mdi_phci and "
3511		"list all paths", mdiphci },
3512	{ "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
3513		"all phcis", mdivhci },
3514	{ "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
3515		"client links", mdiclient_paths },
3516	{ "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
3517		"phci links", mdiphci_paths },
3518	{ "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
3519		mdiphcis },
3520
3521	{ NULL }
3522};
3523
3524static const mdb_walker_t walkers[] = {
3525
3526	/* from genunix.c */
3527	{ "anon", "given an amp, list of anon structures",
3528		anon_walk_init, anon_walk_step, anon_walk_fini },
3529	{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
3530	{ "ereportq_dump", "walk list of ereports in dump error queue",
3531		ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
3532	{ "ereportq_pend", "walk list of ereports in pending error queue",
3533		ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
3534	{ "errorq", "walk list of system error queues",
3535		errorq_walk_init, errorq_walk_step, NULL },
3536	{ "errorq_data", "walk pending error queue data buffers",
3537		eqd_walk_init, eqd_walk_step, eqd_walk_fini },
3538	{ "allfile", "given a proc pointer, list all file pointers",
3539		file_walk_init, allfile_walk_step, file_walk_fini },
3540	{ "file", "given a proc pointer, list of open file pointers",
3541		file_walk_init, file_walk_step, file_walk_fini },
3542	{ "lock_descriptor", "walk lock_descriptor_t structures",
3543		ld_walk_init, ld_walk_step, NULL },
3544	{ "lock_graph", "walk lock graph",
3545		lg_walk_init, lg_walk_step, NULL },
3546	{ "port", "given a proc pointer, list of created event ports",
3547		port_walk_init, port_walk_step, NULL },
3548	{ "portev", "given a port pointer, list of events in the queue",
3549		portev_walk_init, portev_walk_step, portev_walk_fini },
3550	{ "proc", "list of active proc_t structures",
3551		proc_walk_init, proc_walk_step, proc_walk_fini },
3552	{ "projects", "walk a list of kernel projects",
3553		project_walk_init, project_walk_step, NULL },
3554	{ "seg", "given an as, list of segments",
3555		seg_walk_init, avl_walk_step, avl_walk_fini },
3556	{ "sysevent_pend", "walk sysevent pending queue",
3557		sysevent_pend_walk_init, sysevent_walk_step,
3558		sysevent_walk_fini},
3559	{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
3560		sysevent_walk_step, sysevent_walk_fini},
3561	{ "sysevent_channel", "walk sysevent channel subscriptions",
3562		sysevent_channel_walk_init, sysevent_channel_walk_step,
3563		sysevent_channel_walk_fini},
3564	{ "sysevent_class_list", "walk sysevent subscription's class list",
3565		sysevent_class_list_walk_init, sysevent_class_list_walk_step,
3566		sysevent_class_list_walk_fini},
3567	{ "sysevent_subclass_list",
3568		"walk sysevent subscription's subclass list",
3569		sysevent_subclass_list_walk_init,
3570		sysevent_subclass_list_walk_step,
3571		sysevent_subclass_list_walk_fini},
3572	{ "task", "given a task pointer, walk its processes",
3573		task_walk_init, task_walk_step, NULL },
3574	{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
3575		taskq_walk_init, taskq_walk_step, NULL, NULL },
3576
3577	/* from avl.c */
3578	{ AVL_WALK_NAME, AVL_WALK_DESC,
3579		avl_walk_init, avl_walk_step, avl_walk_fini },
3580
3581	/* from zone.c */
3582	{ "zone", "walk a list of kernel zones",
3583		zone_walk_init, zone_walk_step, NULL },
3584	{ "zsd", "walk list of zsd entries for a zone",
3585		zsd_walk_init, zsd_walk_step, NULL },
3586
3587	/* from bio.c */
3588	{ "buf", "walk the bio buf hash",
3589		buf_walk_init, buf_walk_step, buf_walk_fini },
3590
3591	/* from contract.c */
3592	{ "contract", "walk all contracts, or those of the specified type",
3593		ct_walk_init, generic_walk_step, NULL },
3594	{ "ct_event", "walk events on a contract event queue",
3595		ct_event_walk_init, generic_walk_step, NULL },
3596	{ "ct_listener", "walk contract event queue listeners",
3597		ct_listener_walk_init, generic_walk_step, NULL },
3598
3599	/* from cpupart.c */
3600	{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
3601		cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
3602		NULL },
3603	{ "cpupart_walk", "walk the set of cpu partitions",
3604		cpupart_walk_init, cpupart_walk_step, NULL },
3605
3606	/* from ctxop.c */
3607	{ "ctxop", "walk list of context ops on a thread",
3608		ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
3609
3610	/* from cyclic.c */
3611	{ "cyccpu", "walk per-CPU cyc_cpu structures",
3612		cyccpu_walk_init, cyccpu_walk_step, NULL },
3613	{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
3614		cycomni_walk_init, cycomni_walk_step, NULL },
3615	{ "cyctrace", "walk cyclic trace buffer",
3616		cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
3617
3618	/* from devinfo.c */
3619	{ "binding_hash", "walk all entries in binding hash table",
3620		binding_hash_walk_init, binding_hash_walk_step, NULL },
3621	{ "devinfo", "walk devinfo tree or subtree",
3622		devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
3623	{ "devinfo_audit_log", "walk devinfo audit system-wide log",
3624		devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
3625		devinfo_audit_log_walk_fini},
3626	{ "devinfo_audit_node", "walk per-devinfo audit history",
3627		devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
3628		devinfo_audit_node_walk_fini},
3629	{ "devinfo_children", "walk children of devinfo node",
3630		devinfo_children_walk_init, devinfo_children_walk_step,
3631		devinfo_children_walk_fini },
3632	{ "devinfo_parents", "walk ancestors of devinfo node",
3633		devinfo_parents_walk_init, devinfo_parents_walk_step,
3634		devinfo_parents_walk_fini },
3635	{ "devinfo_siblings", "walk siblings of devinfo node",
3636		devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
3637	{ "devi_next", "walk devinfo list",
3638		NULL, devi_next_walk_step, NULL },
3639	{ "devnames", "walk devnames array",
3640		devnames_walk_init, devnames_walk_step, devnames_walk_fini },
3641	{ "minornode", "given a devinfo node, walk minor nodes",
3642		minornode_walk_init, minornode_walk_step, NULL },
3643	{ "softstate",
3644		"given an i_ddi_soft_state*, list all in-use driver stateps",
3645		soft_state_walk_init, soft_state_walk_step,
3646		NULL, NULL },
3647	{ "softstate_all",
3648		"given an i_ddi_soft_state*, list all driver stateps",
3649		soft_state_walk_init, soft_state_all_walk_step,
3650		NULL, NULL },
3651	{ "devinfo_fmc",
3652		"walk a fault management handle cache active list",
3653		devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
3654
3655	/* from kmem.c */
3656	{ "allocdby", "given a thread, walk its allocated bufctls",
3657		allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
3658	{ "bufctl", "walk a kmem cache's bufctls",
3659		bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
3660	{ "bufctl_history", "walk the available history of a bufctl",
3661		bufctl_history_walk_init, bufctl_history_walk_step,
3662		bufctl_history_walk_fini },
3663	{ "freedby", "given a thread, walk its freed bufctls",
3664		freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
3665	{ "freectl", "walk a kmem cache's free bufctls",
3666		freectl_walk_init, kmem_walk_step, kmem_walk_fini },
3667	{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
3668		freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
3669	{ "freemem", "walk a kmem cache's free memory",
3670		freemem_walk_init, kmem_walk_step, kmem_walk_fini },
3671	{ "freemem_constructed", "walk a kmem cache's constructed free memory",
3672		freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
3673	{ "kmem", "walk a kmem cache",
3674		kmem_walk_init, kmem_walk_step, kmem_walk_fini },
3675	{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
3676		kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
3677	{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
3678		kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
3679	{ "kmem_log", "walk the kmem transaction log",
3680		kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
3681	{ "kmem_slab", "given a kmem cache, walk its slabs",
3682		kmem_slab_walk_init, kmem_slab_walk_step, NULL },
3683	{ "kmem_slab_partial",
3684	    "given a kmem cache, walk its partially allocated slabs (min 1)",
3685		kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL },
3686	{ "vmem", "walk vmem structures in pre-fix, depth-first order",
3687		vmem_walk_init, vmem_walk_step, vmem_walk_fini },
3688	{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
3689		vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3690	{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
3691		vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3692	{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
3693		vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
3694	{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
3695		vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3696	{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
3697		vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3698
3699	/* from ldi.c */
3700	{ "ldi_handle", "walk the layered driver handle hash",
3701		ldi_handle_walk_init, ldi_handle_walk_step, NULL },
3702	{ "ldi_ident", "walk the layered driver identifier hash",
3703		ldi_ident_walk_init, ldi_ident_walk_step, NULL },
3704
3705	/* from leaky.c + leaky_subr.c */
3706	{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
3707	    "stack trace",
3708		leaky_walk_init, leaky_walk_step, leaky_walk_fini },
3709	{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
3710	    "leaks w/ same stack trace",
3711		leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
3712
3713	/* from lgrp.c */
3714	{ "lgrp_cpulist", "walk CPUs in a given lgroup",
3715		lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
3716	{ "lgrptbl", "walk lgroup table",
3717		lgrp_walk_init, lgrp_walk_step, NULL },
3718	{ "lgrp_parents", "walk up lgroup lineage from given lgroup",
3719		lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
3720	{ "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
3721		lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
3722	{ "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
3723		lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
3724
3725	/* from group.c */
3726	{ "group", "walk all elements of a group",
3727		group_walk_init, group_walk_step, NULL },
3728
3729	/* from list.c */
3730	{ LIST_WALK_NAME, LIST_WALK_DESC,
3731		list_walk_init, list_walk_step, list_walk_fini },
3732
3733	/* from memory.c */
3734	{ "page", "walk all pages, or those from the specified vnode",
3735		page_walk_init, page_walk_step, page_walk_fini },
3736	{ "memlist", "walk specified memlist",
3737		NULL, memlist_walk_step, NULL },
3738	{ "swapinfo", "walk swapinfo structures",
3739		swap_walk_init, swap_walk_step, NULL },
3740
3741	/* from mmd.c */
3742	{ "pattr", "walk pattr_t structures", pattr_walk_init,
3743		mmdq_walk_step, mmdq_walk_fini },
3744	{ "pdesc", "walk pdesc_t structures",
3745		pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
3746	{ "pdesc_slab", "walk pdesc_slab_t structures",
3747		pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
3748
3749	/* from modhash.c */
3750	{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
3751		modhash_walk_step, NULL },
3752	{ "modent", "walk list of entries in a given mod_hash",
3753		modent_walk_init, modent_walk_step, modent_walk_fini },
3754	{ "modchain", "walk list of entries in a given mod_hash_entry",
3755		NULL, modchain_walk_step, NULL },
3756
3757	/* from net.c */
3758	{ "ar", "walk ar_t structures using MI",
3759		mi_payload_walk_init, mi_payload_walk_step,
3760		mi_payload_walk_fini, &mi_ar_arg },
3761	{ "icmp", "walk ICMP control structures using MI",
3762		mi_payload_walk_init, mi_payload_walk_step,
3763		mi_payload_walk_fini, &mi_icmp_arg },
3764	{ "ill", "walk ill_t structures using MI",
3765		mi_payload_walk_init, mi_payload_walk_step,
3766		mi_payload_walk_fini, &mi_ill_arg },
3767	{ "mi", "given a MI_O, walk the MI",
3768		mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
3769	{ "sonode", "given a sonode, walk its children",
3770		sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
3771
3772	/* from nvpair.c */
3773	{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
3774		nvpair_walk_init, nvpair_walk_step, NULL },
3775
3776	/* from rctl.c */
3777	{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
3778		rctl_dict_walk_init, rctl_dict_walk_step, NULL },
3779	{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
3780		rctl_set_walk_step, NULL },
3781	{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
3782		rctl_val_walk_init, rctl_val_walk_step },
3783
3784	/* from sobj.c */
3785	{ "blocked", "walk threads blocked on a given sobj",
3786		blocked_walk_init, blocked_walk_step, NULL },
3787	{ "wchan", "given a wchan, list of blocked threads",
3788		wchan_walk_init, wchan_walk_step, wchan_walk_fini },
3789
3790	/* from stream.c */
3791	{ "b_cont", "walk mblk_t list using b_cont",
3792		mblk_walk_init, b_cont_step, mblk_walk_fini },
3793	{ "b_next", "walk mblk_t list using b_next",
3794		mblk_walk_init, b_next_step, mblk_walk_fini },
3795	{ "qlink", "walk queue_t list using q_link",
3796		queue_walk_init, queue_link_step, queue_walk_fini },
3797	{ "qnext", "walk queue_t list using q_next",
3798		queue_walk_init, queue_next_step, queue_walk_fini },
3799	{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
3800		strftblk_walk_init, strftblk_step, strftblk_walk_fini },
3801	{ "readq", "walk read queue side of stdata",
3802		str_walk_init, strr_walk_step, str_walk_fini },
3803	{ "writeq", "walk write queue side of stdata",
3804		str_walk_init, strw_walk_step, str_walk_fini },
3805
3806	/* from thread.c */
3807	{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
3808		deathrow_walk_init, deathrow_walk_step, NULL },
3809	{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
3810		cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
3811	{ "cpupart_dispq",
3812		"given a cpupart_t, walk threads in dispatcher queues",
3813		cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
3814	{ "lwp_deathrow", "walk lwp_deathrow",
3815		lwp_deathrow_walk_init, deathrow_walk_step, NULL },
3816	{ "thread", "global or per-process kthread_t structures",
3817		thread_walk_init, thread_walk_step, thread_walk_fini },
3818	{ "thread_deathrow", "walk threads on thread_deathrow",
3819		thread_deathrow_walk_init, deathrow_walk_step, NULL },
3820
3821	/* from tsd.c */
3822	{ "tsd", "walk list of thread-specific data",
3823		tsd_walk_init, tsd_walk_step, tsd_walk_fini },
3824
3825	/* from tsol.c */
3826	{ "tnrh", "walk remote host cache structures",
3827	    tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
3828	{ "tnrhtp", "walk remote host template structures",
3829	    tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
3830
3831	/*
3832	 * typegraph does not work under kmdb, as it requires too much memory
3833	 * for its internal data structures.
3834	 */
3835#ifndef _KMDB
3836	/* from typegraph.c */
3837	{ "typeconflict", "walk buffers with conflicting type inferences",
3838		typegraph_walk_init, typeconflict_walk_step },
3839	{ "typeunknown", "walk buffers with unknown types",
3840		typegraph_walk_init, typeunknown_walk_step },
3841#endif
3842
3843	/* from vfs.c */
3844	{ "vfs", "walk file system list",
3845		vfs_walk_init, vfs_walk_step },
3846
3847	/* from mdi.c */
3848	{ "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
3849		mdi_pi_client_link_walk_init,
3850		mdi_pi_client_link_walk_step,
3851		mdi_pi_client_link_walk_fini },
3852
3853	{ "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
3854		mdi_pi_phci_link_walk_init,
3855		mdi_pi_phci_link_walk_step,
3856		mdi_pi_phci_link_walk_fini },
3857
3858	{ "mdiphci_list", "Walker for mdi_phci ph_next link",
3859		mdi_phci_ph_next_walk_init,
3860		mdi_phci_ph_next_walk_step,
3861		mdi_phci_ph_next_walk_fini },
3862
3863	{ NULL }
3864};
3865
3866static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
3867
3868const mdb_modinfo_t *
3869_mdb_init(void)
3870{
3871	if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) {
3872		mdb_warn("failed to read 'top_devinfo'");
3873		return (NULL);
3874	}
3875
3876	if (findstack_init() != DCMD_OK)
3877		return (NULL);
3878
3879	kmem_init();
3880
3881	return (&modinfo);
3882}
3883
3884void
3885_mdb_fini(void)
3886{
3887	/*
3888	 * Force ::findleaks to let go any cached memory
3889	 */
3890	leaky_cleanup(1);
3891}
3892