genunix.c revision 11042:2d6e217af1b4
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <mdb/mdb_param.h>
27#include <mdb/mdb_modapi.h>
28#include <mdb/mdb_ks.h>
29#include <mdb/mdb_ctf.h>
30
31#include <sys/types.h>
32#include <sys/thread.h>
33#include <sys/session.h>
34#include <sys/user.h>
35#include <sys/proc.h>
36#include <sys/var.h>
37#include <sys/t_lock.h>
38#include <sys/systm.h>
39#include <sys/callo.h>
40#include <sys/priocntl.h>
41#include <sys/class.h>
42#include <sys/regset.h>
43#include <sys/stack.h>
44#include <sys/cpuvar.h>
45#include <sys/vnode.h>
46#include <sys/vfs.h>
47#include <sys/flock_impl.h>
48#include <sys/kmem_impl.h>
49#include <sys/vmem_impl.h>
50#include <sys/kstat.h>
51#include <vm/seg_vn.h>
52#include <vm/anon.h>
53#include <vm/as.h>
54#include <vm/seg_map.h>
55#include <sys/dditypes.h>
56#include <sys/ddi_impldefs.h>
57#include <sys/sysmacros.h>
58#include <sys/sysconf.h>
59#include <sys/task.h>
60#include <sys/project.h>
61#include <sys/errorq_impl.h>
62#include <sys/cred_impl.h>
63#include <sys/zone.h>
64#include <sys/panic.h>
65#include <regex.h>
66#include <sys/port_impl.h>
67
68#include "avl.h"
69#include "bio.h"
70#include "bitset.h"
71#include "combined.h"
72#include "contract.h"
73#include "cpupart_mdb.h"
74#include "ctxop.h"
75#include "cyclic.h"
76#include "damap.h"
77#include "devinfo.h"
78#include "findstack.h"
79#include "fm.h"
80#include "group.h"
81#include "irm.h"
82#include "kgrep.h"
83#include "kmem.h"
84#include "ldi.h"
85#include "leaky.h"
86#include "lgrp.h"
87#include "list.h"
88#include "log.h"
89#include "mdi.h"
90#include "memory.h"
91#include "mmd.h"
92#include "modhash.h"
93#include "ndievents.h"
94#include "net.h"
95#include "netstack.h"
96#include "nvpair.h"
97#include "pg.h"
98#include "rctl.h"
99#include "sobj.h"
100#include "streams.h"
101#include "sysevent.h"
102#include "taskq.h"
103#include "thread.h"
104#include "tsd.h"
105#include "tsol.h"
106#include "typegraph.h"
107#include "vfs.h"
108#include "zone.h"
109#include "hotplug.h"
110
111/*
112 * Surely this is defined somewhere...
113 */
114#define	NINTR		16
115
116#define	KILOS		10
117#define	MEGS		20
118#define	GIGS		30
119
120#ifndef STACK_BIAS
121#define	STACK_BIAS	0
122#endif
123
124static char
125pstat2ch(uchar_t state)
126{
127	switch (state) {
128		case SSLEEP: return ('S');
129		case SRUN: return ('R');
130		case SZOMB: return ('Z');
131		case SIDL: return ('I');
132		case SONPROC: return ('O');
133		case SSTOP: return ('T');
134		case SWAIT: return ('W');
135		default: return ('?');
136	}
137}
138
139#define	PS_PRTTHREADS	0x1
140#define	PS_PRTLWPS	0x2
141#define	PS_PSARGS	0x4
142#define	PS_TASKS	0x8
143#define	PS_PROJECTS	0x10
144#define	PS_ZONES	0x20
145
146static int
147ps_threadprint(uintptr_t addr, const void *data, void *private)
148{
149	const kthread_t *t = (const kthread_t *)data;
150	uint_t prt_flags = *((uint_t *)private);
151
152	static const mdb_bitmask_t t_state_bits[] = {
153		{ "TS_FREE",	UINT_MAX,	TS_FREE		},
154		{ "TS_SLEEP",	TS_SLEEP,	TS_SLEEP	},
155		{ "TS_RUN",	TS_RUN,		TS_RUN		},
156		{ "TS_ONPROC",	TS_ONPROC,	TS_ONPROC	},
157		{ "TS_ZOMB",	TS_ZOMB,	TS_ZOMB		},
158		{ "TS_STOPPED",	TS_STOPPED,	TS_STOPPED	},
159		{ "TS_WAIT",	TS_WAIT,	TS_WAIT		},
160		{ NULL,		0,		0		}
161	};
162
163	if (prt_flags & PS_PRTTHREADS)
164		mdb_printf("\tT  %?a <%b>\n", addr, t->t_state, t_state_bits);
165
166	if (prt_flags & PS_PRTLWPS)
167		mdb_printf("\tL  %?a ID: %u\n", t->t_lwp, t->t_tid);
168
169	return (WALK_NEXT);
170}
171
172int
173ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
174{
175	uint_t prt_flags = 0;
176	proc_t pr;
177	struct pid pid, pgid, sid;
178	sess_t session;
179	cred_t cred;
180	task_t tk;
181	kproject_t pj;
182	zone_t zn;
183
184	if (!(flags & DCMD_ADDRSPEC)) {
185		if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
186			mdb_warn("can't walk 'proc'");
187			return (DCMD_ERR);
188		}
189		return (DCMD_OK);
190	}
191
192	if (mdb_getopts(argc, argv,
193	    'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
194	    'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
195	    'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
196	    'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
197	    'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
198	    't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
199		return (DCMD_USAGE);
200
201	if (DCMD_HDRSPEC(flags)) {
202		mdb_printf("%<u>%1s %6s %6s %6s %6s ",
203		    "S", "PID", "PPID", "PGID", "SID");
204		if (prt_flags & PS_TASKS)
205			mdb_printf("%5s ", "TASK");
206		if (prt_flags & PS_PROJECTS)
207			mdb_printf("%5s ", "PROJ");
208		if (prt_flags & PS_ZONES)
209			mdb_printf("%5s ", "ZONE");
210		mdb_printf("%6s %10s %?s %s%</u>\n",
211		    "UID", "FLAGS", "ADDR", "NAME");
212	}
213
214	mdb_vread(&pr, sizeof (pr), addr);
215	mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
216	mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
217	mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
218	mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
219	mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
220	if (prt_flags & (PS_TASKS | PS_PROJECTS))
221		mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
222	if (prt_flags & PS_PROJECTS)
223		mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
224	if (prt_flags & PS_ZONES)
225		mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
226
227	mdb_printf("%c %6d %6d %6d %6d ",
228	    pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
229	    sid.pid_id);
230	if (prt_flags & PS_TASKS)
231		mdb_printf("%5d ", tk.tk_tkid);
232	if (prt_flags & PS_PROJECTS)
233		mdb_printf("%5d ", pj.kpj_id);
234	if (prt_flags & PS_ZONES)
235		mdb_printf("%5d ", zn.zone_id);
236	mdb_printf("%6d 0x%08x %0?p %s\n",
237	    cred.cr_uid, pr.p_flag, addr,
238	    (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
239
240	if (prt_flags & ~PS_PSARGS)
241		(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
242
243	return (DCMD_OK);
244}
245
246#define	PG_NEWEST	0x0001
247#define	PG_OLDEST	0x0002
248#define	PG_PIPE_OUT	0x0004
249#define	PG_EXACT_MATCH	0x0008
250
251typedef struct pgrep_data {
252	uint_t pg_flags;
253	uint_t pg_psflags;
254	uintptr_t pg_xaddr;
255	hrtime_t pg_xstart;
256	const char *pg_pat;
257#ifndef _KMDB
258	regex_t pg_reg;
259#endif
260} pgrep_data_t;
261
262/*ARGSUSED*/
263static int
264pgrep_cb(uintptr_t addr, const void *pdata, void *data)
265{
266	const proc_t *prp = pdata;
267	pgrep_data_t *pgp = data;
268#ifndef _KMDB
269	regmatch_t pmatch;
270#endif
271
272	/*
273	 * kmdb doesn't have access to the reg* functions, so we fall back
274	 * to strstr/strcmp.
275	 */
276#ifdef _KMDB
277	if ((pgp->pg_flags & PG_EXACT_MATCH) ?
278	    (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
279	    (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
280		return (WALK_NEXT);
281#else
282	if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
283		return (WALK_NEXT);
284
285	if ((pgp->pg_flags & PG_EXACT_MATCH) &&
286	    (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
287		return (WALK_NEXT);
288#endif
289
290	if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
291		hrtime_t start;
292
293		start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
294		    prp->p_user.u_start.tv_nsec;
295
296		if (pgp->pg_flags & PG_NEWEST) {
297			if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
298				pgp->pg_xaddr = addr;
299				pgp->pg_xstart = start;
300			}
301		} else {
302			if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
303				pgp->pg_xaddr = addr;
304				pgp->pg_xstart = start;
305			}
306		}
307
308	} else if (pgp->pg_flags & PG_PIPE_OUT) {
309		mdb_printf("%p\n", addr);
310
311	} else {
312		if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
313			mdb_warn("can't invoke 'ps'");
314			return (WALK_DONE);
315		}
316		pgp->pg_psflags &= ~DCMD_LOOPFIRST;
317	}
318
319	return (WALK_NEXT);
320}
321
322/*ARGSUSED*/
323int
324pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
325{
326	pgrep_data_t pg;
327	int i;
328#ifndef _KMDB
329	int err;
330#endif
331
332	if (flags & DCMD_ADDRSPEC)
333		return (DCMD_USAGE);
334
335	pg.pg_flags = 0;
336	pg.pg_xaddr = 0;
337
338	i = mdb_getopts(argc, argv,
339	    'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
340	    'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
341	    'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
342	    NULL);
343
344	argc -= i;
345	argv += i;
346
347	if (argc != 1)
348		return (DCMD_USAGE);
349
350	/*
351	 * -n and -o are mutually exclusive.
352	 */
353	if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
354		return (DCMD_USAGE);
355
356	if (argv->a_type != MDB_TYPE_STRING)
357		return (DCMD_USAGE);
358
359	if (flags & DCMD_PIPE_OUT)
360		pg.pg_flags |= PG_PIPE_OUT;
361
362	pg.pg_pat = argv->a_un.a_str;
363	if (DCMD_HDRSPEC(flags))
364		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
365	else
366		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
367
368#ifndef _KMDB
369	if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
370		size_t nbytes;
371		char *buf;
372
373		nbytes = regerror(err, &pg.pg_reg, NULL, 0);
374		buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
375		(void) regerror(err, &pg.pg_reg, buf, nbytes);
376		mdb_warn("%s\n", buf);
377
378		return (DCMD_ERR);
379	}
380#endif
381
382	if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
383		mdb_warn("can't walk 'proc'");
384		return (DCMD_ERR);
385	}
386
387	if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
388		if (pg.pg_flags & PG_PIPE_OUT) {
389			mdb_printf("%p\n", pg.pg_xaddr);
390		} else {
391			if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
392			    0, NULL) != 0) {
393				mdb_warn("can't invoke 'ps'");
394				return (DCMD_ERR);
395			}
396		}
397	}
398
399	return (DCMD_OK);
400}
401
402int
403task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
404{
405	task_t tk;
406	kproject_t pj;
407
408	if (!(flags & DCMD_ADDRSPEC)) {
409		if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
410			mdb_warn("can't walk task_cache");
411			return (DCMD_ERR);
412		}
413		return (DCMD_OK);
414	}
415	if (DCMD_HDRSPEC(flags)) {
416		mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
417		    "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
418	}
419	if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
420		mdb_warn("can't read task_t structure at %p", addr);
421		return (DCMD_ERR);
422	}
423	if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
424		mdb_warn("can't read project_t structure at %p", addr);
425		return (DCMD_ERR);
426	}
427	mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
428	    addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
429	    tk.tk_flags);
430	return (DCMD_OK);
431}
432
433int
434project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
435{
436	kproject_t pj;
437
438	if (!(flags & DCMD_ADDRSPEC)) {
439		if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
440			mdb_warn("can't walk projects");
441			return (DCMD_ERR);
442		}
443		return (DCMD_OK);
444	}
445	if (DCMD_HDRSPEC(flags)) {
446		mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
447		    "ADDR", "PROJID", "ZONEID", "REFCNT");
448	}
449	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
450		mdb_warn("can't read kproject_t structure at %p", addr);
451		return (DCMD_ERR);
452	}
453	mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
454	    pj.kpj_count);
455	return (DCMD_OK);
456}
457
458/* walk callouts themselves, either by list or id hash. */
459int
460callout_walk_init(mdb_walk_state_t *wsp)
461{
462	if (wsp->walk_addr == NULL) {
463		mdb_warn("callout doesn't support global walk");
464		return (WALK_ERR);
465	}
466	wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
467	return (WALK_NEXT);
468}
469
470#define	CALLOUT_WALK_BYLIST	0
471#define	CALLOUT_WALK_BYID	1
472
473/* the walker arg switches between walking by list (0) and walking by id (1). */
474int
475callout_walk_step(mdb_walk_state_t *wsp)
476{
477	int retval;
478
479	if (wsp->walk_addr == NULL) {
480		return (WALK_DONE);
481	}
482	if (mdb_vread(wsp->walk_data, sizeof (callout_t),
483	    wsp->walk_addr) == -1) {
484		mdb_warn("failed to read callout at %p", wsp->walk_addr);
485		return (WALK_DONE);
486	}
487	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
488	    wsp->walk_cbdata);
489
490	if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
491		wsp->walk_addr =
492		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
493	} else {
494		wsp->walk_addr =
495		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
496	}
497
498	return (retval);
499}
500
501void
502callout_walk_fini(mdb_walk_state_t *wsp)
503{
504	mdb_free(wsp->walk_data, sizeof (callout_t));
505}
506
507/*
508 * walker for callout lists. This is different from hashes and callouts.
509 * Thankfully, it's also simpler.
510 */
511int
512callout_list_walk_init(mdb_walk_state_t *wsp)
513{
514	if (wsp->walk_addr == NULL) {
515		mdb_warn("callout list doesn't support global walk");
516		return (WALK_ERR);
517	}
518	wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
519	return (WALK_NEXT);
520}
521
522int
523callout_list_walk_step(mdb_walk_state_t *wsp)
524{
525	int retval;
526
527	if (wsp->walk_addr == NULL) {
528		return (WALK_DONE);
529	}
530	if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
531	    wsp->walk_addr) != sizeof (callout_list_t)) {
532		mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
533		return (WALK_ERR);
534	}
535	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
536	    wsp->walk_cbdata);
537
538	wsp->walk_addr = (uintptr_t)
539	    (((callout_list_t *)wsp->walk_data)->cl_next);
540
541	return (retval);
542}
543
544void
545callout_list_walk_fini(mdb_walk_state_t *wsp)
546{
547	mdb_free(wsp->walk_data, sizeof (callout_list_t));
548}
549
550/* routines/structs to walk callout table(s) */
551typedef struct cot_data {
552	callout_table_t *ct0;
553	callout_table_t ct;
554	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
555	callout_hash_t cot_clhash[CALLOUT_BUCKETS];
556	kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
557	int cotndx;
558	int cotsize;
559} cot_data_t;
560
561int
562callout_table_walk_init(mdb_walk_state_t *wsp)
563{
564	int max_ncpus;
565	cot_data_t *cot_walk_data;
566
567	cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
568
569	if (wsp->walk_addr == NULL) {
570		if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
571			mdb_warn("failed to read 'callout_table'");
572			return (WALK_ERR);
573		}
574		if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
575			mdb_warn("failed to get callout_table array size");
576			return (WALK_ERR);
577		}
578		cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
579		wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
580	} else {
581		/* not a global walk */
582		cot_walk_data->cotsize = 1;
583	}
584
585	cot_walk_data->cotndx = 0;
586	wsp->walk_data = cot_walk_data;
587
588	return (WALK_NEXT);
589}
590
591int
592callout_table_walk_step(mdb_walk_state_t *wsp)
593{
594	int retval;
595	cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
596	size_t size;
597
598	if (cotwd->cotndx >= cotwd->cotsize) {
599		return (WALK_DONE);
600	}
601	if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
602	    wsp->walk_addr) != sizeof (callout_table_t)) {
603		mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
604		return (WALK_ERR);
605	}
606
607	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
608	if (cotwd->ct.ct_idhash != NULL) {
609		if (mdb_vread(cotwd->cot_idhash, size,
610		    (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
611			mdb_warn("failed to read id_hash at %p",
612			    cotwd->ct.ct_idhash);
613			return (WALK_ERR);
614		}
615	}
616	if (cotwd->ct.ct_clhash != NULL) {
617		if (mdb_vread(&(cotwd->cot_clhash), size,
618		    (uintptr_t)cotwd->ct.ct_clhash) == -1) {
619			mdb_warn("failed to read cl_hash at %p",
620			    cotwd->ct.ct_clhash);
621			return (WALK_ERR);
622		}
623	}
624	size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
625	if (cotwd->ct.ct_kstat_data != NULL) {
626		if (mdb_vread(&(cotwd->ct_kstat_data), size,
627		    (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
628			mdb_warn("failed to read kstats at %p",
629			    cotwd->ct.ct_kstat_data);
630			return (WALK_ERR);
631		}
632	}
633	retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
634	    wsp->walk_cbdata);
635
636	cotwd->cotndx++;
637	if (cotwd->cotndx >= cotwd->cotsize) {
638		return (WALK_DONE);
639	}
640	wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
641	    sizeof (callout_table_t));
642
643	return (retval);
644}
645
646void
647callout_table_walk_fini(mdb_walk_state_t *wsp)
648{
649	mdb_free(wsp->walk_data, sizeof (cot_data_t));
650}
651
652static const char *co_typenames[] = { "R", "N" };
653
654#define	CO_PLAIN_ID(xid)	((xid) & CALLOUT_ID_MASK)
655
656#define	TABLE_TO_SEQID(x)	((x) >> CALLOUT_TYPE_BITS)
657
658/* callout flags, in no particular order */
659#define	COF_REAL	0x0000001
660#define	COF_NORM	0x0000002
661#define	COF_LONG	0x0000004
662#define	COF_SHORT	0x0000008
663#define	COF_EMPTY	0x0000010
664#define	COF_TIME	0x0000020
665#define	COF_BEFORE	0x0000040
666#define	COF_AFTER	0x0000080
667#define	COF_SEQID	0x0000100
668#define	COF_FUNC	0x0000200
669#define	COF_ADDR	0x0000400
670#define	COF_EXEC	0x0000800
671#define	COF_HIRES	0x0001000
672#define	COF_ABS		0x0002000
673#define	COF_TABLE	0x0004000
674#define	COF_BYIDH	0x0008000
675#define	COF_FREE	0x0010000
676#define	COF_LIST	0x0020000
677#define	COF_EXPREL	0x0040000
678#define	COF_HDR		0x0080000
679#define	COF_VERBOSE	0x0100000
680#define	COF_LONGLIST	0x0200000
681#define	COF_THDR	0x0400000
682#define	COF_LHDR	0x0800000
683#define	COF_CHDR	0x1000000
684#define	COF_PARAM	0x2000000
685#define	COF_DECODE	0x4000000
686
687/* show real and normal, short and long, expired and unexpired. */
688#define	COF_DEFAULT	(COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
689
690#define	COF_LIST_FLAGS	\
691	(CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
692
693/* private callout data for callback functions */
694typedef struct callout_data {
695	uint_t flags;		/* COF_* */
696	cpu_t *cpu;		/* cpu pointer if given */
697	int seqid;		/* cpu seqid, or -1 */
698	hrtime_t time;		/* expiration time value */
699	hrtime_t atime;		/* expiration before value */
700	hrtime_t btime;		/* expiration after value */
701	uintptr_t funcaddr;	/* function address or NULL */
702	uintptr_t param;	/* parameter to function or NULL */
703	hrtime_t now;		/* current system time */
704	int nsec_per_tick;	/* for conversions */
705	ulong_t ctbits;		/* for decoding xid */
706	callout_table_t *co_table;	/* top of callout table array */
707	int ndx;		/* table index. */
708	int bucket;		/* which list/id bucket are we in */
709	hrtime_t exp;		/* expire time */
710	int list_flags;		/* copy of cl_flags */
711} callout_data_t;
712
713/* this callback does the actual callback itself (finally). */
714/*ARGSUSED*/
715static int
716callouts_cb(uintptr_t addr, const void *data, void *priv)
717{
718	callout_data_t *coargs = (callout_data_t *)priv;
719	callout_t *co = (callout_t *)data;
720	int tableid, list_flags;
721	callout_id_t coid;
722
723	if ((coargs == NULL) || (co == NULL)) {
724		return (WALK_ERR);
725	}
726
727	if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_FREE)) {
728		/*
729		 * The callout must have been reallocated. No point in
730		 * walking any more.
731		 */
732		return (WALK_DONE);
733	}
734	if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_FREE)) {
735		/*
736		 * The callout must have been freed. No point in
737		 * walking any more.
738		 */
739		return (WALK_DONE);
740	}
741	if ((coargs->flags & COF_FUNC) &&
742	    (coargs->funcaddr != (uintptr_t)co->c_func)) {
743		return (WALK_NEXT);
744	}
745	if ((coargs->flags & COF_PARAM) &&
746	    (coargs->param != (uintptr_t)co->c_arg)) {
747		return (WALK_NEXT);
748	}
749	if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
750		return (WALK_NEXT);
751	}
752	if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
753		return (WALK_NEXT);
754	}
755	if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
756		return (WALK_NEXT);
757	}
758	/* it is possible we don't have the exp time or flags */
759	if (coargs->flags & COF_BYIDH) {
760		if (!(coargs->flags & COF_FREE)) {
761			/* we have to fetch the expire time ourselves. */
762			if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
763			    (uintptr_t)co->c_list + offsetof(callout_list_t,
764			    cl_expiration)) == -1) {
765				mdb_warn("failed to read expiration "
766				    "time from %p", co->c_list);
767				coargs->exp = 0;
768			}
769			/* and flags. */
770			if (mdb_vread(&coargs->list_flags, sizeof (int),
771			    (uintptr_t)co->c_list + offsetof(callout_list_t,
772			    cl_flags)) == -1) {
773				mdb_warn("failed to read list flags"
774				    "from %p", co->c_list);
775				coargs->list_flags = 0;
776			}
777		} else {
778			/* free callouts can't use list pointer. */
779			coargs->exp = 0;
780			coargs->list_flags = 0;
781		}
782		if (coargs->exp != 0) {
783			if ((coargs->flags & COF_TIME) &&
784			    (coargs->exp != coargs->time)) {
785				return (WALK_NEXT);
786			}
787			if ((coargs->flags & COF_BEFORE) &&
788			    (coargs->exp > coargs->btime)) {
789				return (WALK_NEXT);
790			}
791			if ((coargs->flags & COF_AFTER) &&
792			    (coargs->exp < coargs->atime)) {
793				return (WALK_NEXT);
794			}
795		}
796		/* tricky part, since both HIRES and ABS can be set */
797		list_flags = coargs->list_flags;
798		if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
799			/* both flags are set, only skip "regular" ones */
800			if (! (list_flags & COF_LIST_FLAGS)) {
801				return (WALK_NEXT);
802			}
803		} else {
804			/* individual flags, or no flags */
805			if ((coargs->flags & COF_HIRES) &&
806			    !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
807				return (WALK_NEXT);
808			}
809			if ((coargs->flags & COF_ABS) &&
810			    !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
811				return (WALK_NEXT);
812			}
813		}
814	}
815
816#define	callout_table_mask	((1 << coargs->ctbits) - 1)
817	tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
818#undef	callout_table_mask
819	coid = CO_PLAIN_ID(co->c_xid);
820
821	if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
822		/*
823		 * We need to print the headers. If walking by id, then
824		 * the list header isn't printed, so we must include
825		 * that info here.
826		 */
827		if (!(coargs->flags & COF_VERBOSE)) {
828			mdb_printf("%<u>%3s %-1s %-14s %</u>",
829			    "SEQ", "T", "EXP");
830		} else if (coargs->flags & COF_BYIDH) {
831			mdb_printf("%<u>%-14s %</u>", "EXP");
832		}
833		mdb_printf("%<u>%-4s %-?s %-20s%</u>",
834		    "XHAL", "XID", "FUNC(ARG)");
835		if (coargs->flags & COF_LONGLIST) {
836			mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
837			    "PREVID", "NEXTID", "PREVL", "NEXTL");
838			mdb_printf("%<u> %-?s %-4s %-?s%</u>",
839			    "DONE", "UTOS", "THREAD");
840		}
841		mdb_printf("\n");
842		coargs->flags &= ~COF_CHDR;
843		coargs->flags |= (COF_THDR | COF_LHDR);
844	}
845
846	if (!(coargs->flags & COF_ADDR)) {
847		if (!(coargs->flags & COF_VERBOSE)) {
848			mdb_printf("%-3d %1s %-14llx ",
849			    TABLE_TO_SEQID(tableid),
850			    co_typenames[tableid & CALLOUT_TYPE_MASK],
851			    (coargs->flags & COF_EXPREL) ?
852			    coargs->exp - coargs->now : coargs->exp);
853		} else if (coargs->flags & COF_BYIDH) {
854			mdb_printf("%-14x ",
855			    (coargs->flags & COF_EXPREL) ?
856			    coargs->exp - coargs->now : coargs->exp);
857		}
858		list_flags = coargs->list_flags;
859		mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
860		    (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
861		    (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
862		    (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
863		    (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
864		    (long long)coid, co->c_func, co->c_arg);
865		if (coargs->flags & COF_LONGLIST) {
866			mdb_printf(" %-?p %-?p %-?p %-?p",
867			    co->c_idprev, co->c_idnext, co->c_clprev,
868			    co->c_clnext);
869			mdb_printf(" %-?p %-4d %-0?p",
870			    co->c_done, co->c_waiting, co->c_executor);
871		}
872	} else {
873		/* address only */
874		mdb_printf("%-0p", addr);
875	}
876	mdb_printf("\n");
877	return (WALK_NEXT);
878}
879
880/* this callback is for callout list handling. idhash is done by callout_t_cb */
881/*ARGSUSED*/
882static int
883callout_list_cb(uintptr_t addr, const void *data, void *priv)
884{
885	callout_data_t *coargs = (callout_data_t *)priv;
886	callout_list_t *cl = (callout_list_t *)data;
887	callout_t *coptr;
888	int list_flags;
889
890	if ((coargs == NULL) || (cl == NULL)) {
891		return (WALK_ERR);
892	}
893
894	coargs->exp = cl->cl_expiration;
895	coargs->list_flags = cl->cl_flags;
896	if ((coargs->flags & COF_FREE) &&
897	    !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
898		/*
899		 * The callout list must have been reallocated. No point in
900		 * walking any more.
901		 */
902		return (WALK_DONE);
903	}
904	if (!(coargs->flags & COF_FREE) &&
905	    (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
906		/*
907		 * The callout list must have been freed. No point in
908		 * walking any more.
909		 */
910		return (WALK_DONE);
911	}
912	if ((coargs->flags & COF_TIME) &&
913	    (cl->cl_expiration != coargs->time)) {
914		return (WALK_NEXT);
915	}
916	if ((coargs->flags & COF_BEFORE) &&
917	    (cl->cl_expiration > coargs->btime)) {
918		return (WALK_NEXT);
919	}
920	if ((coargs->flags & COF_AFTER) &&
921	    (cl->cl_expiration < coargs->atime)) {
922		return (WALK_NEXT);
923	}
924	if (!(coargs->flags & COF_EMPTY) &&
925	    (cl->cl_callouts.ch_head == NULL)) {
926		return (WALK_NEXT);
927	}
928	/* FOUR cases, each different, !A!B, !AB, A!B, AB */
929	if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
930		/* both flags are set, only skip "regular" ones */
931		if (! (cl->cl_flags & COF_LIST_FLAGS)) {
932			return (WALK_NEXT);
933		}
934	} else {
935		if ((coargs->flags & COF_HIRES) &&
936		    !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
937			return (WALK_NEXT);
938		}
939		if ((coargs->flags & COF_ABS) &&
940		    !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
941			return (WALK_NEXT);
942		}
943	}
944
945	if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
946	    (coargs->flags & (COF_LIST | COF_VERBOSE))) {
947		if (!(coargs->flags & COF_VERBOSE)) {
948			/* don't be redundant again */
949			mdb_printf("%<u>SEQ T %</u>");
950		}
951		mdb_printf("%<u>EXP            HA BUCKET "
952		    "CALLOUTS         %</u>");
953
954		if (coargs->flags & COF_LONGLIST) {
955			mdb_printf("%<u> %-?s %-?s%</u>",
956			    "PREV", "NEXT");
957		}
958		mdb_printf("\n");
959		coargs->flags &= ~COF_LHDR;
960		coargs->flags |= (COF_THDR | COF_CHDR);
961	}
962	if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
963		if (!(coargs->flags & COF_ADDR)) {
964			if (!(coargs->flags & COF_VERBOSE)) {
965				mdb_printf("%3d %1s ",
966				    TABLE_TO_SEQID(coargs->ndx),
967				    co_typenames[coargs->ndx &
968				    CALLOUT_TYPE_MASK]);
969			}
970
971			list_flags = coargs->list_flags;
972			mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
973			    (coargs->flags & COF_EXPREL) ?
974			    coargs->exp - coargs->now : coargs->exp,
975			    (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
976			    "H" : " ",
977			    (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
978			    "A" : " ",
979			    coargs->bucket, cl->cl_callouts.ch_head);
980
981			if (coargs->flags & COF_LONGLIST) {
982				mdb_printf(" %-?p %-?p",
983				    cl->cl_prev, cl->cl_next);
984			}
985		} else {
986			/* address only */
987			mdb_printf("%-0p", addr);
988		}
989		mdb_printf("\n");
990		if (coargs->flags & COF_LIST) {
991			return (WALK_NEXT);
992		}
993	}
994	/* yet another layer as we walk the actual callouts via list. */
995	if (cl->cl_callouts.ch_head == NULL) {
996		return (WALK_NEXT);
997	}
998	/* free list structures do not have valid callouts off of them. */
999	if (coargs->flags & COF_FREE) {
1000		return (WALK_NEXT);
1001	}
1002	coptr = (callout_t *)cl->cl_callouts.ch_head;
1003
1004	if (coargs->flags & COF_VERBOSE) {
1005		mdb_inc_indent(4);
1006	}
1007	/*
1008	 * walk callouts using yet another callback routine.
1009	 * we use callouts_bytime because id hash is handled via
1010	 * the callout_t_cb callback.
1011	 */
1012	if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1013	    (uintptr_t)coptr) == -1) {
1014		mdb_warn("cannot walk callouts at %p", coptr);
1015		return (WALK_ERR);
1016	}
1017	if (coargs->flags & COF_VERBOSE) {
1018		mdb_dec_indent(4);
1019	}
1020
1021	return (WALK_NEXT);
1022}
1023
1024/* this callback handles the details of callout table walking. */
1025static int
1026callout_t_cb(uintptr_t addr, const void *data, void *priv)
1027{
1028	callout_data_t *coargs = (callout_data_t *)priv;
1029	cot_data_t *cotwd = (cot_data_t *)data;
1030	callout_table_t *ct = &(cotwd->ct);
1031	int index, seqid, cotype;
1032	int i;
1033	callout_list_t *clptr;
1034	callout_t *coptr;
1035
1036	if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1037		return (WALK_ERR);
1038	}
1039
1040	index =  ((char *)addr - (char *)coargs->co_table) /
1041	    sizeof (callout_table_t);
1042	cotype = index & CALLOUT_TYPE_MASK;
1043	seqid = TABLE_TO_SEQID(index);
1044
1045	if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1046		return (WALK_NEXT);
1047	}
1048
1049	if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1050		return (WALK_NEXT);
1051	}
1052
1053	if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1054		return (WALK_NEXT);
1055	}
1056
1057	if (!(coargs->flags & COF_EMPTY) && (
1058	    (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) {
1059		return (WALK_NEXT);
1060	}
1061
1062	if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1063	    (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1064		/* print table hdr */
1065		mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1066		    "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1067		coargs->flags &= ~COF_THDR;
1068		coargs->flags |= (COF_LHDR | COF_CHDR);
1069		if (coargs->flags & COF_LONGLIST) {
1070			/* more info! */
1071			mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s"
1072			    " %-?s %-?s %-?s%</u>",
1073			    "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ",
1074			    "PEND", "FREE", "LOCK");
1075		}
1076		mdb_printf("\n");
1077	}
1078	if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1079		if (!(coargs->flags & COF_ADDR)) {
1080			mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1081			    seqid, co_typenames[cotype],
1082			    ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1083			    ct->ct_heap);
1084			if (coargs->flags & COF_LONGLIST)  {
1085				/* more info! */
1086				mdb_printf(" %-7d %-7d %-?p %-?p"
1087				    " %-?lld %-?lld %-?p",
1088				    ct->ct_heap_num,  ct->ct_heap_max,
1089				    ct->ct_taskq, ct->ct_expired.ch_head,
1090				    cotwd->ct_timeouts_pending,
1091				    cotwd->ct_allocations -
1092				    cotwd->ct_timeouts_pending,
1093				    ct->ct_mutex);
1094			}
1095		} else {
1096			/* address only */
1097			mdb_printf("%-0?p", addr);
1098		}
1099		mdb_printf("\n");
1100		if (coargs->flags & COF_TABLE) {
1101			return (WALK_NEXT);
1102		}
1103	}
1104
1105	coargs->ndx = index;
1106	if (coargs->flags & COF_VERBOSE) {
1107		mdb_inc_indent(4);
1108	}
1109	/* keep digging. */
1110	if (!(coargs->flags & COF_BYIDH)) {
1111		/* walk the list hash table */
1112		if (coargs->flags & COF_FREE) {
1113			clptr = ct->ct_lfree;
1114			coargs->bucket = 0;
1115			if (clptr == NULL) {
1116				return (WALK_NEXT);
1117			}
1118			if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1119			    (uintptr_t)clptr) == -1) {
1120				mdb_warn("cannot walk callout free list at %p",
1121				    clptr);
1122				return (WALK_ERR);
1123			}
1124		} else {
1125			/* first print the expired list. */
1126			clptr = (callout_list_t *)ct->ct_expired.ch_head;
1127			if (clptr != NULL) {
1128				coargs->bucket = -1;
1129				if (mdb_pwalk("callout_list", callout_list_cb,
1130				    coargs, (uintptr_t)clptr) == -1) {
1131					mdb_warn("cannot walk callout_list"
1132					    " at %p", clptr);
1133					return (WALK_ERR);
1134				}
1135			}
1136			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1137				if (ct->ct_clhash == NULL) {
1138					/* nothing to do */
1139					break;
1140				}
1141				if (cotwd->cot_clhash[i].ch_head == NULL) {
1142					continue;
1143				}
1144				clptr = (callout_list_t *)
1145				    cotwd->cot_clhash[i].ch_head;
1146				coargs->bucket = i;
1147				/* walk list with callback routine. */
1148				if (mdb_pwalk("callout_list", callout_list_cb,
1149				    coargs, (uintptr_t)clptr) == -1) {
1150					mdb_warn("cannot walk callout_list"
1151					    " at %p", clptr);
1152					return (WALK_ERR);
1153				}
1154			}
1155		}
1156	} else {
1157		/* walk the id hash table. */
1158		if (coargs->flags & COF_FREE) {
1159			coptr = ct->ct_free;
1160			coargs->bucket = 0;
1161			if (coptr == NULL) {
1162				return (WALK_NEXT);
1163			}
1164			if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1165			    (uintptr_t)coptr) == -1) {
1166				mdb_warn("cannot walk callout id free list"
1167				    " at %p", coptr);
1168				return (WALK_ERR);
1169			}
1170		} else {
1171			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1172				if (ct->ct_idhash == NULL) {
1173					break;
1174				}
1175				coptr = (callout_t *)
1176				    cotwd->cot_idhash[i].ch_head;
1177				if (coptr == NULL) {
1178					continue;
1179				}
1180				coargs->bucket = i;
1181
1182				/*
1183				 * walk callouts directly by id. For id
1184				 * chain, the callout list is just a header,
1185				 * so there's no need to walk it.
1186				 */
1187				if (mdb_pwalk("callouts_byid", callouts_cb,
1188				    coargs, (uintptr_t)coptr) == -1) {
1189					mdb_warn("cannot walk callouts at %p",
1190					    coptr);
1191					return (WALK_ERR);
1192				}
1193			}
1194		}
1195	}
1196	if (coargs->flags & COF_VERBOSE) {
1197		mdb_dec_indent(4);
1198	}
1199	return (WALK_NEXT);
1200}
1201
1202/*
1203 * initialize some common info for both callout dcmds.
1204 */
1205int
1206callout_common_init(callout_data_t *coargs)
1207{
1208	/* we need a couple of things */
1209	if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1210		mdb_warn("failed to read 'callout_table'");
1211		return (DCMD_ERR);
1212	}
1213	/* need to get now in nsecs. Approximate with hrtime vars */
1214	if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1215	    sizeof (hrtime_t)) {
1216		if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1217		    "hrtime_base") != sizeof (hrtime_t)) {
1218			mdb_warn("Could not determine current system time");
1219			return (DCMD_ERR);
1220		}
1221	}
1222
1223	if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1224		mdb_warn("failed to read 'callout_table_bits'");
1225		return (DCMD_ERR);
1226	}
1227	if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1228		mdb_warn("failed to read 'nsec_per_tick'");
1229		return (DCMD_ERR);
1230	}
1231	return (DCMD_OK);
1232}
1233
1234/*
1235 * dcmd to print callouts.  Optional addr limits to specific table.
1236 * Parses lots of options that get passed to callbacks for walkers.
1237 * Has it's own help function.
1238 */
1239/*ARGSUSED*/
1240int
1241callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1242{
1243	callout_data_t coargs;
1244	/* getopts doesn't help much with stuff like this */
1245	boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1246	char *funcname = NULL;
1247	char *paramstr = NULL;
1248	uintptr_t Stmp, Ctmp;	/* for getopt. */
1249	int retval;
1250
1251	coargs.flags = COF_DEFAULT;
1252	Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1253	coargs.seqid = -1;
1254
1255	if (mdb_getopts(argc, argv,
1256	    'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1257	    'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1258	    'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1259	    's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1260	    'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1261	    'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1262	    'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1263	    'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1264	    'd', MDB_OPT_SETBITS, 1, &dflag,
1265	    'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1266	    'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1267	    't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1268	    'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1269	    'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1270	    'k', MDB_OPT_SETBITS, 1, &kflag,
1271	    'f', MDB_OPT_STR, &funcname,
1272	    'p', MDB_OPT_STR, &paramstr,
1273	    'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1274	    'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1275	    'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1276	    'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1277	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1278	    'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1279	    'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1280	    'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1281	    NULL) != argc) {
1282		return (DCMD_USAGE);
1283	}
1284
1285	/* initialize from kernel variables */
1286	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1287		return (retval);
1288	}
1289
1290	/* do some option post-processing */
1291	if (kflag) {
1292		coargs.time *= coargs.nsec_per_tick;
1293		coargs.atime *= coargs.nsec_per_tick;
1294		coargs.btime *= coargs.nsec_per_tick;
1295	}
1296
1297	if (dflag) {
1298		coargs.time += coargs.now;
1299		coargs.atime += coargs.now;
1300		coargs.btime += coargs.now;
1301	}
1302	if (Sflag) {
1303		if (flags & DCMD_ADDRSPEC) {
1304			mdb_printf("-S option conflicts with explicit"
1305			    " address\n");
1306			return (DCMD_USAGE);
1307		}
1308		coargs.flags |= COF_SEQID;
1309		coargs.seqid = (int)Stmp;
1310	}
1311	if (Cflag) {
1312		if (flags & DCMD_ADDRSPEC) {
1313			mdb_printf("-C option conflicts with explicit"
1314			    " address\n");
1315			return (DCMD_USAGE);
1316		}
1317		if (coargs.flags & COF_SEQID) {
1318			mdb_printf("-C and -S are mutually exclusive\n");
1319			return (DCMD_USAGE);
1320		}
1321		coargs.cpu = (cpu_t *)Ctmp;
1322		if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1323		    (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1324			mdb_warn("failed to read cpu_t at %p", Ctmp);
1325			return (DCMD_ERR);
1326		}
1327		coargs.flags |= COF_SEQID;
1328	}
1329	/* avoid null outputs. */
1330	if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1331		coargs.flags |= COF_REAL | COF_NORM;
1332	}
1333	if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1334		coargs.flags |= COF_LONG | COF_SHORT;
1335	}
1336	if (tflag) {
1337		if (aflag || bflag) {
1338			mdb_printf("-t and -a|b are mutually exclusive\n");
1339			return (DCMD_USAGE);
1340		}
1341		coargs.flags |= COF_TIME;
1342	}
1343	if (aflag) {
1344		coargs.flags |= COF_AFTER;
1345	}
1346	if (bflag) {
1347		coargs.flags |= COF_BEFORE;
1348	}
1349	if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1350		mdb_printf("value for -a must be earlier than the value"
1351		    " for -b.\n");
1352		return (DCMD_USAGE);
1353	}
1354
1355	if (funcname != NULL) {
1356		GElf_Sym sym;
1357
1358		if (mdb_lookup_by_name(funcname, &sym) != 0) {
1359			coargs.funcaddr = mdb_strtoull(funcname);
1360		} else {
1361			coargs.funcaddr = sym.st_value;
1362		}
1363		coargs.flags |= COF_FUNC;
1364	}
1365
1366	if (paramstr != NULL) {
1367		GElf_Sym sym;
1368
1369		if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1370			coargs.param = mdb_strtoull(paramstr);
1371		} else {
1372			coargs.param = sym.st_value;
1373		}
1374		coargs.flags |= COF_PARAM;
1375	}
1376
1377	if (!(flags & DCMD_ADDRSPEC)) {
1378		/* don't pass "dot" if no addr. */
1379		addr = NULL;
1380	}
1381	if (addr != NULL) {
1382		/*
1383		 * a callout table was specified. Ignore -r|n option
1384		 * to avoid null output.
1385		 */
1386		coargs.flags |= (COF_REAL | COF_NORM);
1387	}
1388
1389	if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1390		coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1391	}
1392	if (coargs.flags & COF_FREE) {
1393		coargs.flags |= COF_EMPTY;
1394		/* -F = free callouts, -FL = free lists */
1395		if (!(coargs.flags & COF_LIST)) {
1396			coargs.flags |= COF_BYIDH;
1397		}
1398	}
1399
1400	/* walk table, using specialized callback routine. */
1401	if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1402		mdb_warn("cannot walk callout_table");
1403		return (DCMD_ERR);
1404	}
1405	return (DCMD_OK);
1406}
1407
1408
1409/*
1410 * Given an extended callout id, dump its information.
1411 */
1412/*ARGSUSED*/
1413int
1414calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1415{
1416	callout_data_t coargs;
1417	callout_table_t *ctptr;
1418	callout_table_t ct;
1419	callout_id_t coid;
1420	callout_t *coptr;
1421	int tableid;
1422	callout_id_t xid;
1423	ulong_t idhash;
1424	int i, retval;
1425	const mdb_arg_t *arg;
1426	size_t size;
1427	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1428
1429	coargs.flags = COF_DEFAULT | COF_BYIDH;
1430	i = mdb_getopts(argc, argv,
1431	    'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1432	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1433	    NULL);
1434	argc -= i;
1435	argv += i;
1436
1437	if (argc != 1) {
1438		return (DCMD_USAGE);
1439	}
1440	arg = &argv[0];
1441
1442	if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1443		xid = arg->a_un.a_val;
1444	} else {
1445		xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1446	}
1447
1448	if (DCMD_HDRSPEC(flags)) {
1449		coargs.flags |= COF_CHDR;
1450	}
1451
1452
1453	/* initialize from kernel variables */
1454	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1455		return (retval);
1456	}
1457
1458	/* we must massage the environment so that the macros will play nice */
1459#define	callout_table_mask	((1 << coargs.ctbits) - 1)
1460#define	callout_table_bits	coargs.ctbits
1461#define	nsec_per_tick		coargs.nsec_per_tick
1462	tableid = CALLOUT_ID_TO_TABLE(xid);
1463	idhash = CALLOUT_IDHASH(xid);
1464#undef	callouts_table_bits
1465#undef	callout_table_mask
1466#undef	nsec_per_tick
1467	coid = CO_PLAIN_ID(xid);
1468
1469	if (flags & DCMD_ADDRSPEC) {
1470		mdb_printf("calloutid does not accept explicit address.\n");
1471		return (DCMD_USAGE);
1472	}
1473
1474	if (coargs.flags & COF_DECODE) {
1475		if (DCMD_HDRSPEC(flags)) {
1476			mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1477			    "SEQ", "T", "XL", "XID", "IDHASH");
1478		}
1479		mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1480		    TABLE_TO_SEQID(tableid),
1481		    co_typenames[tableid & CALLOUT_TYPE_MASK],
1482		    (xid & CALLOUT_EXECUTING) ? "X" : " ",
1483		    (xid & CALLOUT_LONGTERM) ? "L" : " ",
1484		    (long long)coid, idhash);
1485		return (DCMD_OK);
1486	}
1487
1488	/* get our table. Note this relies on the types being correct */
1489	ctptr = coargs.co_table + tableid;
1490	if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1491		mdb_warn("failed to read callout_table at %p", ctptr);
1492		return (DCMD_ERR);
1493	}
1494	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1495	if (ct.ct_idhash != NULL) {
1496		if (mdb_vread(&(cot_idhash), size,
1497		    (uintptr_t)ct.ct_idhash) == -1) {
1498			mdb_warn("failed to read id_hash at %p",
1499			    ct.ct_idhash);
1500			return (WALK_ERR);
1501		}
1502	}
1503
1504	/* callout at beginning of hash chain */
1505	if (ct.ct_idhash == NULL) {
1506		mdb_printf("id hash chain for this xid is empty\n");
1507		return (DCMD_ERR);
1508	}
1509	coptr = (callout_t *)cot_idhash[idhash].ch_head;
1510	if (coptr == NULL) {
1511		mdb_printf("id hash chain for this xid is empty\n");
1512		return (DCMD_ERR);
1513	}
1514
1515	coargs.ndx = tableid;
1516	coargs.bucket = idhash;
1517
1518	/* use the walker, luke */
1519	if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1520	    (uintptr_t)coptr) == -1) {
1521		mdb_warn("cannot walk callouts at %p", coptr);
1522		return (WALK_ERR);
1523	}
1524
1525	return (DCMD_OK);
1526}
1527
1528void
1529callout_help(void)
1530{
1531	mdb_printf("callout: display callouts.\n"
1532	    "Given a callout table address, display callouts from table.\n"
1533	    "Without an address, display callouts from all tables.\n"
1534	    "options:\n"
1535	    " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1536	    " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1537	    " -x : limit display to callouts which are executing\n"
1538	    " -h : limit display to callouts based on hrestime\n"
1539	    " -B : limit display to callouts based on absolute time\n"
1540	    " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1541	    " (a)fter time,\n     or (b)efore time. Use -a and -b together "
1542	    " to specify a range.\n     For \"now\", use -d[t|a|b] 0.\n"
1543	    " -d : interpret time option to -t|a|b as delta from current time\n"
1544	    " -k : use ticks instead of nanoseconds as arguments to"
1545	    " -t|a|b. Note that\n     ticks are less accurate and may not"
1546	    " match other tick times (ie: lbolt).\n"
1547	    " -D : display exiration time as delta from current time\n"
1548	    " -S seqid : limit display to callouts for this cpu sequence id\n"
1549	    " -C addr :  limit display to callouts for this cpu pointer\n"
1550	    " -f name|addr : limit display to callouts with this function\n"
1551	    " -p name|addr : limit display to callouts functions with this"
1552	    " parameter\n"
1553	    " -T : display the callout table itself, instead of callouts\n"
1554	    " -L : display callout lists instead of callouts\n"
1555	    " -E : with -T or L, display empty data structures.\n"
1556	    " -i : traverse callouts by id hash instead of list hash\n"
1557	    " -F : walk free callout list (free list with -i) instead\n"
1558	    " -v : display more info for each item\n"
1559	    " -V : show details of each level of info as it is traversed\n"
1560	    " -A : show only addresses. Useful for pipelines.\n");
1561}
1562
1563void
1564calloutid_help(void)
1565{
1566	mdb_printf("calloutid: display callout by id.\n"
1567	    "Given an extended callout id, display the callout infomation.\n"
1568	    "options:\n"
1569	    " -d : do not dereference callout, just decode the id.\n"
1570	    " -v : verbose display more info about the callout\n");
1571}
1572
1573/*ARGSUSED*/
1574int
1575class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1576{
1577	long num_classes, i;
1578	sclass_t *class_tbl;
1579	GElf_Sym g_sclass;
1580	char class_name[PC_CLNMSZ];
1581	size_t tbl_size;
1582
1583	if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1584		mdb_warn("failed to find symbol sclass\n");
1585		return (DCMD_ERR);
1586	}
1587
1588	tbl_size = (size_t)g_sclass.st_size;
1589	num_classes = tbl_size / (sizeof (sclass_t));
1590	class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1591
1592	if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1593		mdb_warn("failed to read sclass");
1594		return (DCMD_ERR);
1595	}
1596
1597	mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1598	    "INIT FCN", "CLASS FCN");
1599
1600	for (i = 0; i < num_classes; i++) {
1601		if (mdb_vread(class_name, sizeof (class_name),
1602		    (uintptr_t)class_tbl[i].cl_name) == -1)
1603			(void) strcpy(class_name, "???");
1604
1605		mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1606		    class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1607	}
1608
1609	return (DCMD_OK);
1610}
1611
1612#define	FSNAMELEN	32	/* Max len of FS name we read from vnodeops */
1613
1614int
1615vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1616{
1617	uintptr_t rootdir;
1618	vnode_t vn;
1619	char buf[MAXPATHLEN];
1620
1621	uint_t opt_F = FALSE;
1622
1623	if (mdb_getopts(argc, argv,
1624	    'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1625		return (DCMD_USAGE);
1626
1627	if (!(flags & DCMD_ADDRSPEC)) {
1628		mdb_warn("expected explicit vnode_t address before ::\n");
1629		return (DCMD_USAGE);
1630	}
1631
1632	if (mdb_readvar(&rootdir, "rootdir") == -1) {
1633		mdb_warn("failed to read rootdir");
1634		return (DCMD_ERR);
1635	}
1636
1637	if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1638		return (DCMD_ERR);
1639
1640	if (*buf == '\0') {
1641		mdb_printf("??\n");
1642		return (DCMD_OK);
1643	}
1644
1645	mdb_printf("%s", buf);
1646	if (opt_F && buf[strlen(buf)-1] != '/' &&
1647	    mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1648		mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1649	mdb_printf("\n");
1650
1651	return (DCMD_OK);
1652}
1653
1654int
1655ld_walk_init(mdb_walk_state_t *wsp)
1656{
1657	wsp->walk_data = (void *)wsp->walk_addr;
1658	return (WALK_NEXT);
1659}
1660
1661int
1662ld_walk_step(mdb_walk_state_t *wsp)
1663{
1664	int status;
1665	lock_descriptor_t ld;
1666
1667	if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1668		mdb_warn("couldn't read lock_descriptor_t at %p\n",
1669		    wsp->walk_addr);
1670		return (WALK_ERR);
1671	}
1672
1673	status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1674	if (status == WALK_ERR)
1675		return (WALK_ERR);
1676
1677	wsp->walk_addr = (uintptr_t)ld.l_next;
1678	if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1679		return (WALK_DONE);
1680
1681	return (status);
1682}
1683
1684int
1685lg_walk_init(mdb_walk_state_t *wsp)
1686{
1687	GElf_Sym sym;
1688
1689	if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1690		mdb_warn("failed to find symbol 'lock_graph'\n");
1691		return (WALK_ERR);
1692	}
1693
1694	wsp->walk_addr = (uintptr_t)sym.st_value;
1695	wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1696
1697	return (WALK_NEXT);
1698}
1699
1700typedef struct lg_walk_data {
1701	uintptr_t startaddr;
1702	mdb_walk_cb_t callback;
1703	void *data;
1704} lg_walk_data_t;
1705
1706/*
1707 * We can't use ::walk lock_descriptor directly, because the head of each graph
1708 * is really a dummy lock.  Rather than trying to dynamically determine if this
1709 * is a dummy node or not, we just filter out the initial element of the
1710 * list.
1711 */
1712static int
1713lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1714{
1715	lg_walk_data_t *lw = priv;
1716
1717	if (addr != lw->startaddr)
1718		return (lw->callback(addr, data, lw->data));
1719
1720	return (WALK_NEXT);
1721}
1722
1723int
1724lg_walk_step(mdb_walk_state_t *wsp)
1725{
1726	graph_t *graph;
1727	lg_walk_data_t lw;
1728
1729	if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1730		return (WALK_DONE);
1731
1732	if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1733		mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1734		return (WALK_ERR);
1735	}
1736
1737	wsp->walk_addr += sizeof (graph);
1738
1739	if (graph == NULL)
1740		return (WALK_NEXT);
1741
1742	lw.callback = wsp->walk_callback;
1743	lw.data = wsp->walk_cbdata;
1744
1745	lw.startaddr = (uintptr_t)&(graph->active_locks);
1746	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1747		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1748		return (WALK_ERR);
1749	}
1750
1751	lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1752	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1753		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1754		return (WALK_ERR);
1755	}
1756
1757	return (WALK_NEXT);
1758}
1759
1760/*
1761 * The space available for the path corresponding to the locked vnode depends
1762 * on whether we are printing 32- or 64-bit addresses.
1763 */
1764#ifdef _LP64
1765#define	LM_VNPATHLEN	20
1766#else
1767#define	LM_VNPATHLEN	30
1768#endif
1769
1770/*ARGSUSED*/
1771static int
1772lminfo_cb(uintptr_t addr, const void *data, void *priv)
1773{
1774	const lock_descriptor_t *ld = data;
1775	char buf[LM_VNPATHLEN];
1776	proc_t p;
1777
1778	mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
1779	    addr, ld->l_type == F_RDLCK ? "RD" :
1780	    ld->l_type == F_WRLCK ? "WR" : "??",
1781	    ld->l_state, ld->l_flock.l_pid,
1782	    ld->l_flock.l_pid == 0 ? "<kernel>" :
1783	    mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
1784	    "<defunct>" : p.p_user.u_comm,
1785	    ld->l_vnode);
1786
1787	mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
1788	    sizeof (buf));
1789	mdb_printf("%s\n", buf);
1790
1791	return (WALK_NEXT);
1792}
1793
1794/*ARGSUSED*/
1795int
1796lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1797{
1798	if (DCMD_HDRSPEC(flags))
1799		mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
1800		    "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
1801
1802	return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
1803}
1804
1805/*ARGSUSED*/
1806int
1807seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1808{
1809	struct seg s;
1810
1811	if (argc != 0)
1812		return (DCMD_USAGE);
1813
1814	if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
1815		mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
1816		    "SEG", "BASE", "SIZE", "DATA", "OPS");
1817	}
1818
1819	if (mdb_vread(&s, sizeof (s), addr) == -1) {
1820		mdb_warn("failed to read seg at %p", addr);
1821		return (DCMD_ERR);
1822	}
1823
1824	mdb_printf("%?p %?p %?lx %?p %a\n",
1825	    addr, s.s_base, s.s_size, s.s_data, s.s_ops);
1826
1827	return (DCMD_OK);
1828}
1829
1830/*ARGSUSED*/
1831static int
1832pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres)
1833{
1834	uintptr_t pp =
1835	    mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off);
1836
1837	if (pp != NULL)
1838		(*nres)++;
1839
1840	return (WALK_NEXT);
1841}
1842
1843static int
1844pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
1845{
1846
1847	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
1848
1849	if (segvn == (uintptr_t)seg->s_ops) {
1850		struct segvn_data svn;
1851		int nres = 0;
1852
1853		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
1854
1855		if (svn.amp == NULL) {
1856			mdb_printf(" %8s", "");
1857			goto drive_on;
1858		}
1859
1860		/*
1861		 * We've got an amp for this segment; walk through
1862		 * the amp, and determine mappings.
1863		 */
1864		if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon,
1865		    &nres, (uintptr_t)svn.amp) == -1)
1866			mdb_warn("failed to walk anon (amp=%p)", svn.amp);
1867
1868		mdb_printf(" %7dk", (nres * PAGESIZE) / 1024);
1869drive_on:
1870
1871		if (svn.vp != NULL) {
1872			char buf[29];
1873
1874			mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
1875			mdb_printf(" %s", buf);
1876		} else
1877			mdb_printf(" [ anon ]");
1878	}
1879
1880	mdb_printf("\n");
1881	return (WALK_NEXT);
1882}
1883
1884static int
1885pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
1886{
1887	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
1888
1889	if (segvn == (uintptr_t)seg->s_ops) {
1890		struct segvn_data svn;
1891
1892		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
1893
1894		if (svn.vp != NULL) {
1895			mdb_printf(" %0?p", svn.vp);
1896		} else {
1897			mdb_printf(" [ anon ]");
1898		}
1899	}
1900
1901	mdb_printf("\n");
1902	return (WALK_NEXT);
1903}
1904
1905/*ARGSUSED*/
1906int
1907pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1908{
1909	uintptr_t segvn;
1910	proc_t proc;
1911	uint_t quick = FALSE;
1912	mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
1913
1914	GElf_Sym sym;
1915
1916	if (!(flags & DCMD_ADDRSPEC))
1917		return (DCMD_USAGE);
1918
1919	if (mdb_getopts(argc, argv,
1920	    'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
1921		return (DCMD_USAGE);
1922
1923	if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
1924		mdb_warn("failed to read proc at %p", addr);
1925		return (DCMD_ERR);
1926	}
1927
1928	if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
1929		segvn = (uintptr_t)sym.st_value;
1930	else
1931		segvn = NULL;
1932
1933	mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
1934
1935	if (quick) {
1936		mdb_printf("VNODE\n");
1937		cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
1938	} else {
1939		mdb_printf("%8s %s\n", "RES", "PATH");
1940	}
1941
1942	if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) {
1943		mdb_warn("failed to walk segments of as %p", proc.p_as);
1944		return (DCMD_ERR);
1945	}
1946
1947	return (DCMD_OK);
1948}
1949
1950typedef struct anon_walk_data {
1951	uintptr_t *aw_levone;
1952	uintptr_t *aw_levtwo;
1953	int aw_nlevone;
1954	int aw_levone_ndx;
1955	int aw_levtwo_ndx;
1956	struct anon_map aw_amp;
1957	struct anon_hdr aw_ahp;
1958} anon_walk_data_t;
1959
1960int
1961anon_walk_init(mdb_walk_state_t *wsp)
1962{
1963	anon_walk_data_t *aw;
1964
1965	if (wsp->walk_addr == NULL) {
1966		mdb_warn("anon walk doesn't support global walks\n");
1967		return (WALK_ERR);
1968	}
1969
1970	aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
1971
1972	if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
1973		mdb_warn("failed to read anon map at %p", wsp->walk_addr);
1974		mdb_free(aw, sizeof (anon_walk_data_t));
1975		return (WALK_ERR);
1976	}
1977
1978	if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
1979	    (uintptr_t)(aw->aw_amp.ahp)) == -1) {
1980		mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
1981		mdb_free(aw, sizeof (anon_walk_data_t));
1982		return (WALK_ERR);
1983	}
1984
1985	if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
1986	    (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
1987		aw->aw_nlevone = aw->aw_ahp.size;
1988		aw->aw_levtwo = NULL;
1989	} else {
1990		aw->aw_nlevone =
1991		    (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
1992		aw->aw_levtwo =
1993		    mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
1994	}
1995
1996	aw->aw_levone =
1997	    mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
1998
1999	aw->aw_levone_ndx = 0;
2000	aw->aw_levtwo_ndx = 0;
2001
2002	mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
2003	    (uintptr_t)aw->aw_ahp.array_chunk);
2004
2005	if (aw->aw_levtwo != NULL) {
2006		while (aw->aw_levone[aw->aw_levone_ndx] == NULL) {
2007			aw->aw_levone_ndx++;
2008			if (aw->aw_levone_ndx == aw->aw_nlevone) {
2009				mdb_warn("corrupt anon; couldn't"
2010				    "find ptr to lev two map");
2011				goto out;
2012			}
2013		}
2014
2015		mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t),
2016		    aw->aw_levone[aw->aw_levone_ndx]);
2017	}
2018
2019out:
2020	wsp->walk_data = aw;
2021	return (0);
2022}
2023
2024int
2025anon_walk_step(mdb_walk_state_t *wsp)
2026{
2027	int status;
2028	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
2029	struct anon anon;
2030	uintptr_t anonptr;
2031
2032again:
2033	/*
2034	 * Once we've walked through level one, we're done.
2035	 */
2036	if (aw->aw_levone_ndx == aw->aw_nlevone)
2037		return (WALK_DONE);
2038
2039	if (aw->aw_levtwo == NULL) {
2040		anonptr = aw->aw_levone[aw->aw_levone_ndx];
2041		aw->aw_levone_ndx++;
2042	} else {
2043		anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
2044		aw->aw_levtwo_ndx++;
2045
2046		if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
2047			aw->aw_levtwo_ndx = 0;
2048
2049			do {
2050				aw->aw_levone_ndx++;
2051
2052				if (aw->aw_levone_ndx == aw->aw_nlevone)
2053					return (WALK_DONE);
2054			} while (aw->aw_levone[aw->aw_levone_ndx] == NULL);
2055
2056			mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE *
2057			    sizeof (uintptr_t),
2058			    aw->aw_levone[aw->aw_levone_ndx]);
2059		}
2060	}
2061
2062	if (anonptr != NULL) {
2063		mdb_vread(&anon, sizeof (anon), anonptr);
2064		status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata);
2065	} else
2066		goto again;
2067
2068	return (status);
2069}
2070
2071void
2072anon_walk_fini(mdb_walk_state_t *wsp)
2073{
2074	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
2075
2076	if (aw->aw_levtwo != NULL)
2077		mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
2078
2079	mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
2080	mdb_free(aw, sizeof (anon_walk_data_t));
2081}
2082
2083/*ARGSUSED*/
2084int
2085whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
2086{
2087	if ((uintptr_t)f->f_vnode == *target) {
2088		mdb_printf("file %p\n", addr);
2089		*target = NULL;
2090	}
2091
2092	return (WALK_NEXT);
2093}
2094
2095/*ARGSUSED*/
2096int
2097whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
2098{
2099	uintptr_t t = *target;
2100
2101	if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
2102		mdb_warn("couldn't file walk proc %p", addr);
2103		return (WALK_ERR);
2104	}
2105
2106	if (t == NULL)
2107		mdb_printf("%p\n", addr);
2108
2109	return (WALK_NEXT);
2110}
2111
2112/*ARGSUSED*/
2113int
2114whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2115{
2116	uintptr_t target = addr;
2117
2118	if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
2119		return (DCMD_USAGE);
2120
2121	if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
2122		mdb_warn("can't proc walk");
2123		return (DCMD_ERR);
2124	}
2125
2126	return (DCMD_OK);
2127}
2128
2129typedef struct datafmt {
2130	char	*hdr1;
2131	char	*hdr2;
2132	char	*dashes;
2133	char	*fmt;
2134} datafmt_t;
2135
2136static datafmt_t kmemfmt[] = {
2137	{ "cache                    ", "name                     ",
2138	"-------------------------", "%-25s "				},
2139	{ "   buf",	"  size",	"------",	"%6u "		},
2140	{ "   buf",	"in use",	"------",	"%6u "		},
2141	{ "   buf",	" total",	"------",	"%6u "		},
2142	{ "   memory",	"   in use",	"----------",	"%9u%c "	},
2143	{ "    alloc",	"  succeed",	"---------",	"%9u "		},
2144	{ "alloc",	" fail",	"-----",	"%5u "		},
2145	{ NULL,		NULL,		NULL,		NULL		}
2146};
2147
2148static datafmt_t vmemfmt[] = {
2149	{ "vmem                     ", "name                     ",
2150	"-------------------------", "%-*s "				},
2151	{ "   memory",	"   in use",	"----------",	"%9llu%c "	},
2152	{ "    memory",	"     total",	"-----------",	"%10llu%c "	},
2153	{ "   memory",	"   import",	"----------",	"%9llu%c "	},
2154	{ "    alloc",	"  succeed",	"---------",	"%9llu "	},
2155	{ "alloc",	" fail",	"-----",	"%5llu "	},
2156	{ NULL,		NULL,		NULL,		NULL		}
2157};
2158
2159/*ARGSUSED*/
2160static int
2161kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2162{
2163	if (ccp->cc_rounds > 0)
2164		*avail += ccp->cc_rounds;
2165	if (ccp->cc_prounds > 0)
2166		*avail += ccp->cc_prounds;
2167
2168	return (WALK_NEXT);
2169}
2170
2171/*ARGSUSED*/
2172static int
2173kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2174{
2175	*alloc += ccp->cc_alloc;
2176
2177	return (WALK_NEXT);
2178}
2179
2180/*ARGSUSED*/
2181static int
2182kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2183{
2184	*avail += sp->slab_chunks - sp->slab_refcnt;
2185
2186	return (WALK_NEXT);
2187}
2188
2189typedef struct kmastat_vmem {
2190	uintptr_t kv_addr;
2191	struct kmastat_vmem *kv_next;
2192	int kv_meminuse;
2193	int kv_alloc;
2194	int kv_fail;
2195} kmastat_vmem_t;
2196
2197typedef struct kmastat_args {
2198	kmastat_vmem_t **ka_kvpp;
2199	uint_t ka_shift;
2200} kmastat_args_t;
2201
2202static int
2203kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2204{
2205	kmastat_vmem_t **kvp = kap->ka_kvpp;
2206	kmastat_vmem_t *kv;
2207	datafmt_t *dfp = kmemfmt;
2208	int magsize;
2209
2210	int avail, alloc, total;
2211	size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2212	    cp->cache_slabsize;
2213
2214	mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2215	mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2216	mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2217
2218	magsize = kmem_get_magsize(cp);
2219
2220	alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2221	avail = cp->cache_full.ml_total * magsize;
2222	total = cp->cache_buftotal;
2223
2224	(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2225	(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2226	(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2227
2228	for (kv = *kvp; kv != NULL; kv = kv->kv_next) {
2229		if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2230			goto out;
2231	}
2232
2233	kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2234	kv->kv_next = *kvp;
2235	kv->kv_addr = (uintptr_t)cp->cache_arena;
2236	*kvp = kv;
2237out:
2238	kv->kv_meminuse += meminuse;
2239	kv->kv_alloc += alloc;
2240	kv->kv_fail += cp->cache_alloc_fail;
2241
2242	mdb_printf((dfp++)->fmt, cp->cache_name);
2243	mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2244	mdb_printf((dfp++)->fmt, total - avail);
2245	mdb_printf((dfp++)->fmt, total);
2246	mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2247	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2248	    kap->ka_shift == KILOS ? 'K' : 'B');
2249	mdb_printf((dfp++)->fmt, alloc);
2250	mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2251	mdb_printf("\n");
2252
2253	return (WALK_NEXT);
2254}
2255
2256static int
2257kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2258{
2259	kmastat_vmem_t *kv = *kap->ka_kvpp;
2260	size_t len;
2261
2262	while (kv != NULL && kv->kv_addr != addr)
2263		kv = kv->kv_next;
2264
2265	if (kv == NULL || kv->kv_alloc == 0)
2266		return (WALK_NEXT);
2267
2268	len = MIN(17, strlen(v->vm_name));
2269
2270	mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name,
2271	    17 - len, "", "", "", "",
2272	    kv->kv_meminuse >> kap->ka_shift,
2273	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2274	    kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2275
2276	return (WALK_NEXT);
2277}
2278
2279/*ARGSUSED*/
2280static int
2281kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2282{
2283	datafmt_t *dfp = vmemfmt;
2284	const vmem_kstat_t *vkp = &v->vm_kstat;
2285	uintptr_t paddr;
2286	vmem_t parent;
2287	int ident = 0;
2288
2289	for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
2290		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2291			mdb_warn("couldn't trace %p's ancestry", addr);
2292			ident = 0;
2293			break;
2294		}
2295		paddr = (uintptr_t)parent.vm_source;
2296	}
2297
2298	mdb_printf("%*s", ident, "");
2299	mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2300	mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2301	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2302	    *shiftp == KILOS ? 'K' : 'B');
2303	mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2304	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2305	    *shiftp == KILOS ? 'K' : 'B');
2306	mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2307	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2308	    *shiftp == KILOS ? 'K' : 'B');
2309	mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2310	mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2311
2312	mdb_printf("\n");
2313
2314	return (WALK_NEXT);
2315}
2316
2317/*ARGSUSED*/
2318int
2319kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2320{
2321	kmastat_vmem_t *kv = NULL;
2322	datafmt_t *dfp;
2323	kmastat_args_t ka;
2324
2325	ka.ka_shift = 0;
2326	if (mdb_getopts(argc, argv,
2327	    'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2328	    'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2329	    'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2330		return (DCMD_USAGE);
2331
2332	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2333		mdb_printf("%s ", dfp->hdr1);
2334	mdb_printf("\n");
2335
2336	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2337		mdb_printf("%s ", dfp->hdr2);
2338	mdb_printf("\n");
2339
2340	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2341		mdb_printf("%s ", dfp->dashes);
2342	mdb_printf("\n");
2343
2344	ka.ka_kvpp = &kv;
2345	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2346		mdb_warn("can't walk 'kmem_cache'");
2347		return (DCMD_ERR);
2348	}
2349
2350	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2351		mdb_printf("%s ", dfp->dashes);
2352	mdb_printf("\n");
2353
2354	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2355		mdb_warn("can't walk 'vmem'");
2356		return (DCMD_ERR);
2357	}
2358
2359	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2360		mdb_printf("%s ", dfp->dashes);
2361	mdb_printf("\n");
2362
2363	mdb_printf("\n");
2364
2365	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2366		mdb_printf("%s ", dfp->hdr1);
2367	mdb_printf("\n");
2368
2369	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2370		mdb_printf("%s ", dfp->hdr2);
2371	mdb_printf("\n");
2372
2373	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2374		mdb_printf("%s ", dfp->dashes);
2375	mdb_printf("\n");
2376
2377	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2378		mdb_warn("can't walk 'vmem'");
2379		return (DCMD_ERR);
2380	}
2381
2382	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2383		mdb_printf("%s ", dfp->dashes);
2384	mdb_printf("\n");
2385	return (DCMD_OK);
2386}
2387
2388/*
2389 * Our ::kgrep callback scans the entire kernel VA space (kas).  kas is made
2390 * up of a set of 'struct seg's.  We could just scan each seg en masse, but
2391 * unfortunately, a few of the segs are both large and sparse, so we could
2392 * spend quite a bit of time scanning VAs which have no backing pages.
2393 *
2394 * So for the few very sparse segs, we skip the segment itself, and scan
2395 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2396 * Currently, we do this for:
2397 *
2398 *	SEG		VMEM ARENA
2399 *	kvseg		heap_arena
2400 *	kvseg32		heap32_arena
2401 *	kvseg_core	heap_core_arena
2402 *
2403 * In addition, we skip the segkpm segment in its entirety, since it is very
2404 * sparse, and contains no new kernel data.
2405 */
2406typedef struct kgrep_walk_data {
2407	kgrep_cb_func *kg_cb;
2408	void *kg_cbdata;
2409	uintptr_t kg_kvseg;
2410	uintptr_t kg_kvseg32;
2411	uintptr_t kg_kvseg_core;
2412	uintptr_t kg_segkpm;
2413	uintptr_t kg_heap_lp_base;
2414	uintptr_t kg_heap_lp_end;
2415} kgrep_walk_data_t;
2416
2417static int
2418kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2419{
2420	uintptr_t base = (uintptr_t)seg->s_base;
2421
2422	if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2423	    addr == kg->kg_kvseg_core)
2424		return (WALK_NEXT);
2425
2426	if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2427		return (WALK_NEXT);
2428
2429	return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2430}
2431
2432/*ARGSUSED*/
2433static int
2434kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2435{
2436	/*
2437	 * skip large page heap address range - it is scanned by walking
2438	 * allocated vmem_segs in the heap_lp_arena
2439	 */
2440	if (seg->vs_start == kg->kg_heap_lp_base &&
2441	    seg->vs_end == kg->kg_heap_lp_end)
2442		return (WALK_NEXT);
2443
2444	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2445}
2446
2447/*ARGSUSED*/
2448static int
2449kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2450{
2451	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2452}
2453
2454static int
2455kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2456{
2457	mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2458
2459	if (strcmp(vmem->vm_name, "heap") != 0 &&
2460	    strcmp(vmem->vm_name, "heap32") != 0 &&
2461	    strcmp(vmem->vm_name, "heap_core") != 0 &&
2462	    strcmp(vmem->vm_name, "heap_lp") != 0)
2463		return (WALK_NEXT);
2464
2465	if (strcmp(vmem->vm_name, "heap_lp") == 0)
2466		walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2467
2468	if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2469		mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2470		return (WALK_ERR);
2471	}
2472
2473	return (WALK_NEXT);
2474}
2475
2476int
2477kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2478{
2479	GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2480	kgrep_walk_data_t kg;
2481
2482	if (mdb_get_state() == MDB_STATE_RUNNING) {
2483		mdb_warn("kgrep can only be run on a system "
2484		    "dump or under kmdb; see dumpadm(1M)\n");
2485		return (DCMD_ERR);
2486	}
2487
2488	if (mdb_lookup_by_name("kas", &kas) == -1) {
2489		mdb_warn("failed to locate 'kas' symbol\n");
2490		return (DCMD_ERR);
2491	}
2492
2493	if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2494		mdb_warn("failed to locate 'kvseg' symbol\n");
2495		return (DCMD_ERR);
2496	}
2497
2498	if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2499		mdb_warn("failed to locate 'kvseg32' symbol\n");
2500		return (DCMD_ERR);
2501	}
2502
2503	if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2504		mdb_warn("failed to locate 'kvseg_core' symbol\n");
2505		return (DCMD_ERR);
2506	}
2507
2508	if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2509		mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2510		return (DCMD_ERR);
2511	}
2512
2513	if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2514		mdb_warn("failed to read 'heap_lp_base'\n");
2515		return (DCMD_ERR);
2516	}
2517
2518	if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2519		mdb_warn("failed to read 'heap_lp_end'\n");
2520		return (DCMD_ERR);
2521	}
2522
2523	kg.kg_cb = cb;
2524	kg.kg_cbdata = cbdata;
2525	kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2526	kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2527	kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2528	kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2529
2530	if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2531	    &kg, kas.st_value) == -1) {
2532		mdb_warn("failed to walk kas segments");
2533		return (DCMD_ERR);
2534	}
2535
2536	if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2537		mdb_warn("failed to walk heap/heap32 vmem arenas");
2538		return (DCMD_ERR);
2539	}
2540
2541	return (DCMD_OK);
2542}
2543
2544size_t
2545kgrep_subr_pagesize(void)
2546{
2547	return (PAGESIZE);
2548}
2549
2550typedef struct file_walk_data {
2551	struct uf_entry *fw_flist;
2552	int fw_flistsz;
2553	int fw_ndx;
2554	int fw_nofiles;
2555} file_walk_data_t;
2556
2557int
2558file_walk_init(mdb_walk_state_t *wsp)
2559{
2560	file_walk_data_t *fw;
2561	proc_t p;
2562
2563	if (wsp->walk_addr == NULL) {
2564		mdb_warn("file walk doesn't support global walks\n");
2565		return (WALK_ERR);
2566	}
2567
2568	fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2569
2570	if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
2571		mdb_free(fw, sizeof (file_walk_data_t));
2572		mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2573		return (WALK_ERR);
2574	}
2575
2576	if (p.p_user.u_finfo.fi_nfiles == 0) {
2577		mdb_free(fw, sizeof (file_walk_data_t));
2578		return (WALK_DONE);
2579	}
2580
2581	fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2582	fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2583	fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2584
2585	if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2586	    (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2587		mdb_warn("failed to read file array at %p",
2588		    p.p_user.u_finfo.fi_list);
2589		mdb_free(fw->fw_flist, fw->fw_flistsz);
2590		mdb_free(fw, sizeof (file_walk_data_t));
2591		return (WALK_ERR);
2592	}
2593
2594	fw->fw_ndx = 0;
2595	wsp->walk_data = fw;
2596
2597	return (WALK_NEXT);
2598}
2599
2600int
2601file_walk_step(mdb_walk_state_t *wsp)
2602{
2603	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2604	struct file file;
2605	uintptr_t fp;
2606
2607again:
2608	if (fw->fw_ndx == fw->fw_nofiles)
2609		return (WALK_DONE);
2610
2611	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
2612		goto again;
2613
2614	(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2615	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2616}
2617
2618int
2619allfile_walk_step(mdb_walk_state_t *wsp)
2620{
2621	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2622	struct file file;
2623	uintptr_t fp;
2624
2625	if (fw->fw_ndx == fw->fw_nofiles)
2626		return (WALK_DONE);
2627
2628	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
2629		(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2630	else
2631		bzero(&file, sizeof (file));
2632
2633	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2634}
2635
2636void
2637file_walk_fini(mdb_walk_state_t *wsp)
2638{
2639	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2640
2641	mdb_free(fw->fw_flist, fw->fw_flistsz);
2642	mdb_free(fw, sizeof (file_walk_data_t));
2643}
2644
2645int
2646port_walk_init(mdb_walk_state_t *wsp)
2647{
2648	if (wsp->walk_addr == NULL) {
2649		mdb_warn("port walk doesn't support global walks\n");
2650		return (WALK_ERR);
2651	}
2652
2653	if (mdb_layered_walk("file", wsp) == -1) {
2654		mdb_warn("couldn't walk 'file'");
2655		return (WALK_ERR);
2656	}
2657	return (WALK_NEXT);
2658}
2659
2660int
2661port_walk_step(mdb_walk_state_t *wsp)
2662{
2663	struct vnode	vn;
2664	uintptr_t	vp;
2665	uintptr_t	pp;
2666	struct port	port;
2667
2668	vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2669	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2670		mdb_warn("failed to read vnode_t at %p", vp);
2671		return (WALK_ERR);
2672	}
2673	if (vn.v_type != VPORT)
2674		return (WALK_NEXT);
2675
2676	pp = (uintptr_t)vn.v_data;
2677	if (mdb_vread(&port, sizeof (port), pp) == -1) {
2678		mdb_warn("failed to read port_t at %p", pp);
2679		return (WALK_ERR);
2680	}
2681	return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2682}
2683
2684typedef struct portev_walk_data {
2685	list_node_t	*pev_node;
2686	list_node_t	*pev_last;
2687	size_t		pev_offset;
2688} portev_walk_data_t;
2689
2690int
2691portev_walk_init(mdb_walk_state_t *wsp)
2692{
2693	portev_walk_data_t *pevd;
2694	struct port	port;
2695	struct vnode	vn;
2696	struct list	*list;
2697	uintptr_t	vp;
2698
2699	if (wsp->walk_addr == NULL) {
2700		mdb_warn("portev walk doesn't support global walks\n");
2701		return (WALK_ERR);
2702	}
2703
2704	pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2705
2706	if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2707		mdb_free(pevd, sizeof (portev_walk_data_t));
2708		mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2709		return (WALK_ERR);
2710	}
2711
2712	vp = (uintptr_t)port.port_vnode;
2713	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2714		mdb_free(pevd, sizeof (portev_walk_data_t));
2715		mdb_warn("failed to read vnode_t at %p", vp);
2716		return (WALK_ERR);
2717	}
2718
2719	if (vn.v_type != VPORT) {
2720		mdb_free(pevd, sizeof (portev_walk_data_t));
2721		mdb_warn("input address (%p) does not point to an event port",
2722		    wsp->walk_addr);
2723		return (WALK_ERR);
2724	}
2725
2726	if (port.port_queue.portq_nent == 0) {
2727		mdb_free(pevd, sizeof (portev_walk_data_t));
2728		return (WALK_DONE);
2729	}
2730	list = &port.port_queue.portq_list;
2731	pevd->pev_offset = list->list_offset;
2732	pevd->pev_last = list->list_head.list_prev;
2733	pevd->pev_node = list->list_head.list_next;
2734	wsp->walk_data = pevd;
2735	return (WALK_NEXT);
2736}
2737
2738int
2739portev_walk_step(mdb_walk_state_t *wsp)
2740{
2741	portev_walk_data_t	*pevd;
2742	struct port_kevent	ev;
2743	uintptr_t		evp;
2744
2745	pevd = (portev_walk_data_t *)wsp->walk_data;
2746
2747	if (pevd->pev_last == NULL)
2748		return (WALK_DONE);
2749	if (pevd->pev_node == pevd->pev_last)
2750		pevd->pev_last = NULL;		/* last round */
2751
2752	evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2753	if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2754		mdb_warn("failed to read port_kevent at %p", evp);
2755		return (WALK_DONE);
2756	}
2757	pevd->pev_node = ev.portkev_node.list_next;
2758	return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2759}
2760
2761void
2762portev_walk_fini(mdb_walk_state_t *wsp)
2763{
2764	portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2765
2766	if (pevd != NULL)
2767		mdb_free(pevd, sizeof (portev_walk_data_t));
2768}
2769
2770typedef struct proc_walk_data {
2771	uintptr_t *pw_stack;
2772	int pw_depth;
2773	int pw_max;
2774} proc_walk_data_t;
2775
2776int
2777proc_walk_init(mdb_walk_state_t *wsp)
2778{
2779	GElf_Sym sym;
2780	proc_walk_data_t *pw;
2781
2782	if (wsp->walk_addr == NULL) {
2783		if (mdb_lookup_by_name("p0", &sym) == -1) {
2784			mdb_warn("failed to read 'practive'");
2785			return (WALK_ERR);
2786		}
2787		wsp->walk_addr = (uintptr_t)sym.st_value;
2788	}
2789
2790	pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2791
2792	if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2793		mdb_warn("failed to read 'nproc'");
2794		mdb_free(pw, sizeof (pw));
2795		return (WALK_ERR);
2796	}
2797
2798	pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2799	wsp->walk_data = pw;
2800
2801	return (WALK_NEXT);
2802}
2803
2804int
2805proc_walk_step(mdb_walk_state_t *wsp)
2806{
2807	proc_walk_data_t *pw = wsp->walk_data;
2808	uintptr_t addr = wsp->walk_addr;
2809	uintptr_t cld, sib;
2810
2811	int status;
2812	proc_t pr;
2813
2814	if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
2815		mdb_warn("failed to read proc at %p", addr);
2816		return (WALK_DONE);
2817	}
2818
2819	cld = (uintptr_t)pr.p_child;
2820	sib = (uintptr_t)pr.p_sibling;
2821
2822	if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2823		pw->pw_depth--;
2824		goto sib;
2825	}
2826
2827	status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
2828
2829	if (status != WALK_NEXT)
2830		return (status);
2831
2832	if ((wsp->walk_addr = cld) != NULL) {
2833		if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
2834			mdb_warn("proc %p has invalid p_child %p; skipping\n",
2835			    addr, cld);
2836			goto sib;
2837		}
2838
2839		pw->pw_stack[pw->pw_depth++] = addr;
2840
2841		if (pw->pw_depth == pw->pw_max) {
2842			mdb_warn("depth %d exceeds max depth; try again\n",
2843			    pw->pw_depth);
2844			return (WALK_DONE);
2845		}
2846		return (WALK_NEXT);
2847	}
2848
2849sib:
2850	/*
2851	 * We know that p0 has no siblings, and if another starting proc
2852	 * was given, we don't want to walk its siblings anyway.
2853	 */
2854	if (pw->pw_depth == 0)
2855		return (WALK_DONE);
2856
2857	if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
2858		mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2859		    addr, sib);
2860		sib = NULL;
2861	}
2862
2863	if ((wsp->walk_addr = sib) == NULL) {
2864		if (pw->pw_depth > 0) {
2865			wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2866			return (WALK_NEXT);
2867		}
2868		return (WALK_DONE);
2869	}
2870
2871	return (WALK_NEXT);
2872}
2873
2874void
2875proc_walk_fini(mdb_walk_state_t *wsp)
2876{
2877	proc_walk_data_t *pw = wsp->walk_data;
2878
2879	mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2880	mdb_free(pw, sizeof (proc_walk_data_t));
2881}
2882
2883int
2884task_walk_init(mdb_walk_state_t *wsp)
2885{
2886	task_t task;
2887
2888	if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2889		mdb_warn("failed to read task at %p", wsp->walk_addr);
2890		return (WALK_ERR);
2891	}
2892	wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2893	wsp->walk_data = task.tk_memb_list;
2894	return (WALK_NEXT);
2895}
2896
2897int
2898task_walk_step(mdb_walk_state_t *wsp)
2899{
2900	proc_t proc;
2901	int status;
2902
2903	if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
2904		mdb_warn("failed to read proc at %p", wsp->walk_addr);
2905		return (WALK_DONE);
2906	}
2907
2908	status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2909
2910	if (proc.p_tasknext == wsp->walk_data)
2911		return (WALK_DONE);
2912
2913	wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2914	return (status);
2915}
2916
2917int
2918project_walk_init(mdb_walk_state_t *wsp)
2919{
2920	if (wsp->walk_addr == NULL) {
2921		if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2922			mdb_warn("failed to read 'proj0p'");
2923			return (WALK_ERR);
2924		}
2925	}
2926	wsp->walk_data = (void *)wsp->walk_addr;
2927	return (WALK_NEXT);
2928}
2929
2930int
2931project_walk_step(mdb_walk_state_t *wsp)
2932{
2933	uintptr_t addr = wsp->walk_addr;
2934	kproject_t pj;
2935	int status;
2936
2937	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2938		mdb_warn("failed to read project at %p", addr);
2939		return (WALK_DONE);
2940	}
2941	status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2942	if (status != WALK_NEXT)
2943		return (status);
2944	wsp->walk_addr = (uintptr_t)pj.kpj_next;
2945	if ((void *)wsp->walk_addr == wsp->walk_data)
2946		return (WALK_DONE);
2947	return (WALK_NEXT);
2948}
2949
2950static int
2951generic_walk_step(mdb_walk_state_t *wsp)
2952{
2953	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2954	    wsp->walk_cbdata));
2955}
2956
2957int
2958seg_walk_init(mdb_walk_state_t *wsp)
2959{
2960	if (wsp->walk_addr == NULL) {
2961		mdb_warn("seg walk must begin at struct as *\n");
2962		return (WALK_ERR);
2963	}
2964
2965	/*
2966	 * this is really just a wrapper to AVL tree walk
2967	 */
2968	wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
2969	return (avl_walk_init(wsp));
2970}
2971
2972static int
2973cpu_walk_cmp(const void *l, const void *r)
2974{
2975	uintptr_t lhs = *((uintptr_t *)l);
2976	uintptr_t rhs = *((uintptr_t *)r);
2977	cpu_t lcpu, rcpu;
2978
2979	(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2980	(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2981
2982	if (lcpu.cpu_id < rcpu.cpu_id)
2983		return (-1);
2984
2985	if (lcpu.cpu_id > rcpu.cpu_id)
2986		return (1);
2987
2988	return (0);
2989}
2990
2991typedef struct cpu_walk {
2992	uintptr_t *cw_array;
2993	int cw_ndx;
2994} cpu_walk_t;
2995
2996int
2997cpu_walk_init(mdb_walk_state_t *wsp)
2998{
2999	cpu_walk_t *cw;
3000	int max_ncpus, i = 0;
3001	uintptr_t current, first;
3002	cpu_t cpu, panic_cpu;
3003	uintptr_t panicstr, addr;
3004	GElf_Sym sym;
3005
3006	cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
3007
3008	if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
3009		mdb_warn("failed to read 'max_ncpus'");
3010		return (WALK_ERR);
3011	}
3012
3013	if (mdb_readvar(&panicstr, "panicstr") == -1) {
3014		mdb_warn("failed to read 'panicstr'");
3015		return (WALK_ERR);
3016	}
3017
3018	if (panicstr != NULL) {
3019		if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
3020			mdb_warn("failed to find 'panic_cpu'");
3021			return (WALK_ERR);
3022		}
3023
3024		addr = (uintptr_t)sym.st_value;
3025
3026		if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
3027			mdb_warn("failed to read 'panic_cpu'");
3028			return (WALK_ERR);
3029		}
3030	}
3031
3032	/*
3033	 * Unfortunately, there is no platform-independent way to walk
3034	 * CPUs in ID order.  We therefore loop through in cpu_next order,
3035	 * building an array of CPU pointers which will subsequently be
3036	 * sorted.
3037	 */
3038	cw->cw_array =
3039	    mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
3040
3041	if (mdb_readvar(&first, "cpu_list") == -1) {
3042		mdb_warn("failed to read 'cpu_list'");
3043		return (WALK_ERR);
3044	}
3045
3046	current = first;
3047	do {
3048		if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
3049			mdb_warn("failed to read cpu at %p", current);
3050			return (WALK_ERR);
3051		}
3052
3053		if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
3054			cw->cw_array[i++] = addr;
3055		} else {
3056			cw->cw_array[i++] = current;
3057		}
3058	} while ((current = (uintptr_t)cpu.cpu_next) != first);
3059
3060	qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
3061	wsp->walk_data = cw;
3062
3063	return (WALK_NEXT);
3064}
3065
3066int
3067cpu_walk_step(mdb_walk_state_t *wsp)
3068{
3069	cpu_walk_t *cw = wsp->walk_data;
3070	cpu_t cpu;
3071	uintptr_t addr = cw->cw_array[cw->cw_ndx++];
3072
3073	if (addr == NULL)
3074		return (WALK_DONE);
3075
3076	if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
3077		mdb_warn("failed to read cpu at %p", addr);
3078		return (WALK_DONE);
3079	}
3080
3081	return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3082}
3083
3084typedef struct cpuinfo_data {
3085	intptr_t cid_cpu;
3086	uintptr_t cid_lbolt;
3087	uintptr_t **cid_ithr;
3088	char	cid_print_head;
3089	char	cid_print_thr;
3090	char	cid_print_ithr;
3091	char	cid_print_flags;
3092} cpuinfo_data_t;
3093
3094int
3095cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3096{
3097	cpu_t c;
3098	int id;
3099	uint8_t pil;
3100
3101	if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3102		return (WALK_NEXT);
3103
3104	if (thr->t_bound_cpu == NULL) {
3105		mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3106		return (WALK_NEXT);
3107	}
3108
3109	(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3110
3111	if ((id = c.cpu_id) >= NCPU) {
3112		mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3113		    thr->t_bound_cpu, id, NCPU);
3114		return (WALK_NEXT);
3115	}
3116
3117	if ((pil = thr->t_pil) >= NINTR) {
3118		mdb_warn("thread %p has pil (%d) greater than %d\n",
3119		    addr, pil, NINTR);
3120		return (WALK_NEXT);
3121	}
3122
3123	if (cid->cid_ithr[id][pil] != NULL) {
3124		mdb_warn("CPU %d has multiple threads at pil %d (at least "
3125		    "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3126		return (WALK_NEXT);
3127	}
3128
3129	cid->cid_ithr[id][pil] = addr;
3130
3131	return (WALK_NEXT);
3132}
3133
3134#define	CPUINFO_IDWIDTH		3
3135#define	CPUINFO_FLAGWIDTH	9
3136
3137#ifdef _LP64
3138#if defined(__amd64)
3139#define	CPUINFO_TWIDTH		16
3140#define	CPUINFO_CPUWIDTH	16
3141#else
3142#define	CPUINFO_CPUWIDTH	11
3143#define	CPUINFO_TWIDTH		11
3144#endif
3145#else
3146#define	CPUINFO_CPUWIDTH	8
3147#define	CPUINFO_TWIDTH		8
3148#endif
3149
3150#define	CPUINFO_THRDELT		(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3151#define	CPUINFO_FLAGDELT	(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3152#define	CPUINFO_ITHRDELT	4
3153
3154#define	CPUINFO_INDENT	mdb_printf("%*s", CPUINFO_THRDELT, \
3155    flagline < nflaglines ? flagbuf[flagline++] : "")
3156
3157int
3158cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3159{
3160	kthread_t t;
3161	disp_t disp;
3162	proc_t p;
3163	uintptr_t pinned;
3164	char **flagbuf;
3165	int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3166
3167	const char *flags[] = {
3168	    "RUNNING", "READY", "QUIESCED", "EXISTS",
3169	    "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3170	    "SPARE", "FAULTED", NULL
3171	};
3172
3173	if (cid->cid_cpu != -1) {
3174		if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3175			return (WALK_NEXT);
3176
3177		/*
3178		 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3179		 */
3180		cid->cid_cpu = -1;
3181		rval = WALK_DONE;
3182	}
3183
3184	if (cid->cid_print_head) {
3185		mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3186		    "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3187		    "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3188		    "PROC");
3189		cid->cid_print_head = FALSE;
3190	}
3191
3192	bspl = cpu->cpu_base_spl;
3193
3194	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3195		mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3196		return (WALK_ERR);
3197	}
3198
3199	mdb_printf("%3d %0*p %3x %4d %4d ",
3200	    cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3201	    disp.disp_nrunnable, bspl);
3202
3203	if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3204		mdb_printf("%3d ", t.t_pri);
3205	} else {
3206		mdb_printf("%3s ", "-");
3207	}
3208
3209	mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3210	    cpu->cpu_kprunrun ? "yes" : "no");
3211
3212	if (cpu->cpu_last_swtch) {
3213		clock_t lbolt;
3214
3215		if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) {
3216			mdb_warn("failed to read lbolt at %p", cid->cid_lbolt);
3217			return (WALK_ERR);
3218		}
3219		mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch);
3220	} else {
3221		mdb_printf("%-6s ", "-");
3222	}
3223
3224	mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3225
3226	if (cpu->cpu_thread == cpu->cpu_idle_thread)
3227		mdb_printf(" (idle)\n");
3228	else if (cpu->cpu_thread == NULL)
3229		mdb_printf(" -\n");
3230	else {
3231		if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
3232			mdb_printf(" %s\n", p.p_user.u_comm);
3233		} else {
3234			mdb_printf(" ?\n");
3235		}
3236	}
3237
3238	flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3239
3240	if (cid->cid_print_flags) {
3241		int first = 1, i, j, k;
3242		char *s;
3243
3244		cid->cid_print_head = TRUE;
3245
3246		for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3247			if (!(cpu->cpu_flags & i))
3248				continue;
3249
3250			if (first) {
3251				s = mdb_alloc(CPUINFO_THRDELT + 1,
3252				    UM_GC | UM_SLEEP);
3253
3254				(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3255				    "%*s|%*s", CPUINFO_FLAGDELT, "",
3256				    CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3257				flagbuf[nflaglines++] = s;
3258			}
3259
3260			s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3261			(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3262			    CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3263			    CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3264			    first ? "<--+" : "");
3265
3266			for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3267				s[k] = ' ';
3268			s[k] = '\0';
3269
3270			flagbuf[nflaglines++] = s;
3271			first = 0;
3272		}
3273	}
3274
3275	if (cid->cid_print_ithr) {
3276		int i, found_one = FALSE;
3277		int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3278
3279		for (i = NINTR - 1; i >= 0; i--) {
3280			uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3281
3282			if (iaddr == NULL)
3283				continue;
3284
3285			if (!found_one) {
3286				found_one = TRUE;
3287
3288				CPUINFO_INDENT;
3289				mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3290				    CPUINFO_ITHRDELT, "");
3291
3292				CPUINFO_INDENT;
3293				mdb_printf("%c%*s+--> %3s %s\n",
3294				    print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3295				    "", "PIL", "THREAD");
3296			}
3297
3298			if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3299				mdb_warn("failed to read kthread_t at %p",
3300				    iaddr);
3301				return (WALK_ERR);
3302			}
3303
3304			CPUINFO_INDENT;
3305			mdb_printf("%c%*s     %3d %0*p\n",
3306			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3307			    t.t_pil, CPUINFO_TWIDTH, iaddr);
3308
3309			pinned = (uintptr_t)t.t_intr;
3310		}
3311
3312		if (found_one && pinned != NULL) {
3313			cid->cid_print_head = TRUE;
3314			(void) strcpy(p.p_user.u_comm, "?");
3315
3316			if (mdb_vread(&t, sizeof (t),
3317			    (uintptr_t)pinned) == -1) {
3318				mdb_warn("failed to read kthread_t at %p",
3319				    pinned);
3320				return (WALK_ERR);
3321			}
3322			if (mdb_vread(&p, sizeof (p),
3323			    (uintptr_t)t.t_procp) == -1) {
3324				mdb_warn("failed to read proc_t at %p",
3325				    t.t_procp);
3326				return (WALK_ERR);
3327			}
3328
3329			CPUINFO_INDENT;
3330			mdb_printf("%c%*s     %3s %0*p %s\n",
3331			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3332			    CPUINFO_TWIDTH, pinned,
3333			    pinned == (uintptr_t)cpu->cpu_idle_thread ?
3334			    "(idle)" : p.p_user.u_comm);
3335		}
3336	}
3337
3338	if (disp.disp_nrunnable && cid->cid_print_thr) {
3339		dispq_t *dq;
3340
3341		int i, npri = disp.disp_npri;
3342
3343		dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3344
3345		if (mdb_vread(dq, sizeof (dispq_t) * npri,
3346		    (uintptr_t)disp.disp_q) == -1) {
3347			mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3348			return (WALK_ERR);
3349		}
3350
3351		CPUINFO_INDENT;
3352		mdb_printf("|\n");
3353
3354		CPUINFO_INDENT;
3355		mdb_printf("+-->  %3s %-*s %s\n", "PRI",
3356		    CPUINFO_TWIDTH, "THREAD", "PROC");
3357
3358		for (i = npri - 1; i >= 0; i--) {
3359			uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3360
3361			while (taddr != NULL) {
3362				if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3363					mdb_warn("failed to read kthread_t "
3364					    "at %p", taddr);
3365					return (WALK_ERR);
3366				}
3367				if (mdb_vread(&p, sizeof (p),
3368				    (uintptr_t)t.t_procp) == -1) {
3369					mdb_warn("failed to read proc_t at %p",
3370					    t.t_procp);
3371					return (WALK_ERR);
3372				}
3373
3374				CPUINFO_INDENT;
3375				mdb_printf("      %3d %0*p %s\n", t.t_pri,
3376				    CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3377
3378				taddr = (uintptr_t)t.t_link;
3379			}
3380		}
3381		cid->cid_print_head = TRUE;
3382	}
3383
3384	while (flagline < nflaglines)
3385		mdb_printf("%s\n", flagbuf[flagline++]);
3386
3387	if (cid->cid_print_head)
3388		mdb_printf("\n");
3389
3390	return (rval);
3391}
3392
3393int
3394cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3395{
3396	uint_t verbose = FALSE;
3397	cpuinfo_data_t cid;
3398	GElf_Sym sym;
3399	clock_t lbolt;
3400
3401	cid.cid_print_ithr = FALSE;
3402	cid.cid_print_thr = FALSE;
3403	cid.cid_print_flags = FALSE;
3404	cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3405	cid.cid_cpu = -1;
3406
3407	if (flags & DCMD_ADDRSPEC)
3408		cid.cid_cpu = addr;
3409
3410	if (mdb_getopts(argc, argv,
3411	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3412		return (DCMD_USAGE);
3413
3414	if (verbose) {
3415		cid.cid_print_ithr = TRUE;
3416		cid.cid_print_thr = TRUE;
3417		cid.cid_print_flags = TRUE;
3418		cid.cid_print_head = TRUE;
3419	}
3420
3421	if (cid.cid_print_ithr) {
3422		int i;
3423
3424		cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3425		    * NCPU, UM_SLEEP | UM_GC);
3426
3427		for (i = 0; i < NCPU; i++)
3428			cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3429			    NINTR, UM_SLEEP | UM_GC);
3430
3431		if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3432		    &cid) == -1) {
3433			mdb_warn("couldn't walk thread");
3434			return (DCMD_ERR);
3435		}
3436	}
3437
3438	if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) {
3439		mdb_warn("failed to find panic_lbolt");
3440		return (DCMD_ERR);
3441	}
3442
3443	cid.cid_lbolt = (uintptr_t)sym.st_value;
3444
3445	if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) {
3446		mdb_warn("failed to read panic_lbolt");
3447		return (DCMD_ERR);
3448	}
3449
3450	if (lbolt == 0) {
3451		if (mdb_lookup_by_name("lbolt", &sym) == -1) {
3452			mdb_warn("failed to find lbolt");
3453			return (DCMD_ERR);
3454		}
3455		cid.cid_lbolt = (uintptr_t)sym.st_value;
3456	}
3457
3458	if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3459		mdb_warn("can't walk cpus");
3460		return (DCMD_ERR);
3461	}
3462
3463	if (cid.cid_cpu != -1) {
3464		/*
3465		 * We didn't find this CPU when we walked through the CPUs
3466		 * (i.e. the address specified doesn't show up in the "cpu"
3467		 * walk).  However, the specified address may still correspond
3468		 * to a valid cpu_t (for example, if the specified address is
3469		 * the actual panicking cpu_t and not the cached panic_cpu).
3470		 * Point is:  even if we didn't find it, we still want to try
3471		 * to print the specified address as a cpu_t.
3472		 */
3473		cpu_t cpu;
3474
3475		if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3476			mdb_warn("%p is neither a valid CPU ID nor a "
3477			    "valid cpu_t address\n", cid.cid_cpu);
3478			return (DCMD_ERR);
3479		}
3480
3481		(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3482	}
3483
3484	return (DCMD_OK);
3485}
3486
3487/*ARGSUSED*/
3488int
3489flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3490{
3491	int i;
3492
3493	if (!(flags & DCMD_ADDRSPEC))
3494		return (DCMD_USAGE);
3495
3496	for (i = 0; i < sizeof (addr) * NBBY; i++)
3497		mdb_printf("%p\n", addr ^ (1UL << i));
3498
3499	return (DCMD_OK);
3500}
3501
3502/*
3503 * Grumble, grumble.
3504 */
3505#define	SMAP_HASHFUNC(vp, off)	\
3506	((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
3507	((off) >> MAXBSHIFT)) & smd_hashmsk)
3508
3509int
3510vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3511{
3512	long smd_hashmsk;
3513	int hash;
3514	uintptr_t offset = 0;
3515	struct smap smp;
3516	uintptr_t saddr, kaddr;
3517	uintptr_t smd_hash, smd_smap;
3518	struct seg seg;
3519
3520	if (!(flags & DCMD_ADDRSPEC))
3521		return (DCMD_USAGE);
3522
3523	if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
3524		mdb_warn("failed to read smd_hashmsk");
3525		return (DCMD_ERR);
3526	}
3527
3528	if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
3529		mdb_warn("failed to read smd_hash");
3530		return (DCMD_ERR);
3531	}
3532
3533	if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
3534		mdb_warn("failed to read smd_hash");
3535		return (DCMD_ERR);
3536	}
3537
3538	if (mdb_readvar(&kaddr, "segkmap") == -1) {
3539		mdb_warn("failed to read segkmap");
3540		return (DCMD_ERR);
3541	}
3542
3543	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
3544		mdb_warn("failed to read segkmap at %p", kaddr);
3545		return (DCMD_ERR);
3546	}
3547
3548	if (argc != 0) {
3549		const mdb_arg_t *arg = &argv[0];
3550
3551		if (arg->a_type == MDB_TYPE_IMMEDIATE)
3552			offset = arg->a_un.a_val;
3553		else
3554			offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
3555	}
3556
3557	hash = SMAP_HASHFUNC(addr, offset);
3558
3559	if (mdb_vread(&saddr, sizeof (saddr),
3560	    smd_hash + hash * sizeof (uintptr_t)) == -1) {
3561		mdb_warn("couldn't read smap at %p",
3562		    smd_hash + hash * sizeof (uintptr_t));
3563		return (DCMD_ERR);
3564	}
3565
3566	do {
3567		if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
3568			mdb_warn("couldn't read smap at %p", saddr);
3569			return (DCMD_ERR);
3570		}
3571
3572		if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
3573			mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
3574			    addr, offset, saddr, ((saddr - smd_smap) /
3575			    sizeof (smp)) * MAXBSIZE + seg.s_base);
3576			return (DCMD_OK);
3577		}
3578
3579		saddr = (uintptr_t)smp.sm_hash;
3580	} while (saddr != NULL);
3581
3582	mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
3583	return (DCMD_OK);
3584}
3585
3586/*ARGSUSED*/
3587int
3588addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3589{
3590	uintptr_t kaddr;
3591	struct seg seg;
3592	struct segmap_data sd;
3593
3594	if (!(flags & DCMD_ADDRSPEC))
3595		return (DCMD_USAGE);
3596
3597	if (mdb_readvar(&kaddr, "segkmap") == -1) {
3598		mdb_warn("failed to read segkmap");
3599		return (DCMD_ERR);
3600	}
3601
3602	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
3603		mdb_warn("failed to read segkmap at %p", kaddr);
3604		return (DCMD_ERR);
3605	}
3606
3607	if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
3608		mdb_warn("failed to read segmap_data at %p", seg.s_data);
3609		return (DCMD_ERR);
3610	}
3611
3612	mdb_printf("%p is smap %p\n", addr,
3613	    ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
3614	    sizeof (struct smap) + (uintptr_t)sd.smd_sm);
3615
3616	return (DCMD_OK);
3617}
3618
3619int
3620as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
3621{
3622	if (p->p_as == *asp)
3623		mdb_printf("%p\n", addr);
3624	return (WALK_NEXT);
3625}
3626
3627/*ARGSUSED*/
3628int
3629as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3630{
3631	if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3632		return (DCMD_USAGE);
3633
3634	if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3635		mdb_warn("failed to walk proc");
3636		return (DCMD_ERR);
3637	}
3638
3639	return (DCMD_OK);
3640}
3641
3642/*ARGSUSED*/
3643int
3644ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
3645{
3646	proc_t parent;
3647	int ident = 0;
3648	uintptr_t paddr;
3649
3650	for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
3651		mdb_vread(&parent, sizeof (parent), paddr);
3652		paddr = (uintptr_t)parent.p_parent;
3653	}
3654
3655	mdb_inc_indent(ident);
3656	mdb_printf("%0?p  %s\n", addr, p->p_user.u_comm);
3657	mdb_dec_indent(ident);
3658
3659	return (WALK_NEXT);
3660}
3661
3662void
3663ptree_ancestors(uintptr_t addr, uintptr_t start)
3664{
3665	proc_t p;
3666
3667	if (mdb_vread(&p, sizeof (p), addr) == -1) {
3668		mdb_warn("couldn't read ancestor at %p", addr);
3669		return;
3670	}
3671
3672	if (p.p_parent != NULL)
3673		ptree_ancestors((uintptr_t)p.p_parent, start);
3674
3675	if (addr != start)
3676		(void) ptree_walk(addr, &p, NULL);
3677}
3678
3679/*ARGSUSED*/
3680int
3681ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3682{
3683	if (!(flags & DCMD_ADDRSPEC))
3684		addr = NULL;
3685	else
3686		ptree_ancestors(addr, addr);
3687
3688	if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3689		mdb_warn("couldn't walk 'proc'");
3690		return (DCMD_ERR);
3691	}
3692
3693	return (DCMD_OK);
3694}
3695
3696/*ARGSUSED*/
3697static int
3698fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3699{
3700	int fdnum;
3701	const mdb_arg_t *argp = &argv[0];
3702	proc_t p;
3703	uf_entry_t uf;
3704
3705	if ((flags & DCMD_ADDRSPEC) == 0) {
3706		mdb_warn("fd doesn't give global information\n");
3707		return (DCMD_ERR);
3708	}
3709	if (argc != 1)
3710		return (DCMD_USAGE);
3711
3712	if (argp->a_type == MDB_TYPE_IMMEDIATE)
3713		fdnum = argp->a_un.a_val;
3714	else
3715		fdnum = mdb_strtoull(argp->a_un.a_str);
3716
3717	if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
3718		mdb_warn("couldn't read proc_t at %p", addr);
3719		return (DCMD_ERR);
3720	}
3721	if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3722		mdb_warn("process %p only has %d files open.\n",
3723		    addr, p.p_user.u_finfo.fi_nfiles);
3724		return (DCMD_ERR);
3725	}
3726	if (mdb_vread(&uf, sizeof (uf_entry_t),
3727	    (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3728		mdb_warn("couldn't read uf_entry_t at %p",
3729		    &p.p_user.u_finfo.fi_list[fdnum]);
3730		return (DCMD_ERR);
3731	}
3732
3733	mdb_printf("%p\n", uf.uf_file);
3734	return (DCMD_OK);
3735}
3736
3737/*ARGSUSED*/
3738static int
3739pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3740{
3741	pid_t pid = (pid_t)addr;
3742
3743	if (argc != 0)
3744		return (DCMD_USAGE);
3745
3746	if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
3747		mdb_warn("PID 0t%d not found\n", pid);
3748		return (DCMD_ERR);
3749	}
3750
3751	mdb_printf("%p\n", addr);
3752	return (DCMD_OK);
3753}
3754
3755static char *sysfile_cmd[] = {
3756	"exclude:",
3757	"include:",
3758	"forceload:",
3759	"rootdev:",
3760	"rootfs:",
3761	"swapdev:",
3762	"swapfs:",
3763	"moddir:",
3764	"set",
3765	"unknown",
3766};
3767
3768static char *sysfile_ops[] = { "", "=", "&", "|" };
3769
3770/*ARGSUSED*/
3771static int
3772sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3773{
3774	if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3775		*target = NULL;
3776		return (WALK_DONE);
3777	}
3778	return (WALK_NEXT);
3779}
3780
3781/*ARGSUSED*/
3782static int
3783sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3784{
3785	struct sysparam *sysp, sys;
3786	char var[256];
3787	char modname[256];
3788	char val[256];
3789	char strval[256];
3790	vmem_t *mod_sysfile_arena;
3791	void *straddr;
3792
3793	if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3794		mdb_warn("failed to read sysparam_hd");
3795		return (DCMD_ERR);
3796	}
3797
3798	if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3799		mdb_warn("failed to read mod_sysfile_arena");
3800		return (DCMD_ERR);
3801	}
3802
3803	while (sysp != NULL) {
3804		var[0] = '\0';
3805		val[0] = '\0';
3806		modname[0] = '\0';
3807		if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3808			mdb_warn("couldn't read sysparam %p", sysp);
3809			return (DCMD_ERR);
3810		}
3811		if (sys.sys_modnam != NULL &&
3812		    mdb_readstr(modname, 256,
3813		    (uintptr_t)sys.sys_modnam) == -1) {
3814			mdb_warn("couldn't read modname in %p", sysp);
3815			return (DCMD_ERR);
3816		}
3817		if (sys.sys_ptr != NULL &&
3818		    mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3819			mdb_warn("couldn't read ptr in %p", sysp);
3820			return (DCMD_ERR);
3821		}
3822		if (sys.sys_op != SETOP_NONE) {
3823			/*
3824			 * Is this an int or a string?  We determine this
3825			 * by checking whether straddr is contained in
3826			 * mod_sysfile_arena.  If so, the walker will set
3827			 * straddr to NULL.
3828			 */
3829			straddr = (void *)(uintptr_t)sys.sys_info;
3830			if (sys.sys_op == SETOP_ASSIGN &&
3831			    sys.sys_info != 0 &&
3832			    mdb_pwalk("vmem_seg",
3833			    (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3834			    (uintptr_t)mod_sysfile_arena) == 0 &&
3835			    straddr == NULL &&
3836			    mdb_readstr(strval, 256,
3837			    (uintptr_t)sys.sys_info) != -1) {
3838				(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3839				    strval);
3840			} else {
3841				(void) mdb_snprintf(val, sizeof (val),
3842				    "0x%llx [0t%llu]", sys.sys_info,
3843				    sys.sys_info);
3844			}
3845		}
3846		mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3847		    modname, modname[0] == '\0' ? "" : ":",
3848		    var, sysfile_ops[sys.sys_op], val);
3849
3850		sysp = sys.sys_next;
3851	}
3852
3853	return (DCMD_OK);
3854}
3855
3856int
3857didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3858{
3859
3860	if (*didp == thr->t_did) {
3861		mdb_printf("%p\n", addr);
3862		return (WALK_DONE);
3863	} else
3864		return (WALK_NEXT);
3865}
3866
3867/*ARGSUSED*/
3868int
3869did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3870{
3871	const mdb_arg_t *argp = &argv[0];
3872	kt_did_t	did;
3873
3874	if (argc != 1)
3875		return (DCMD_USAGE);
3876
3877	did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3878
3879	if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3880		mdb_warn("failed to walk thread");
3881		return (DCMD_ERR);
3882
3883	}
3884	return (DCMD_OK);
3885
3886}
3887
3888static int
3889errorq_walk_init(mdb_walk_state_t *wsp)
3890{
3891	if (wsp->walk_addr == NULL &&
3892	    mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3893		mdb_warn("failed to read errorq_list");
3894		return (WALK_ERR);
3895	}
3896
3897	return (WALK_NEXT);
3898}
3899
3900static int
3901errorq_walk_step(mdb_walk_state_t *wsp)
3902{
3903	uintptr_t addr = wsp->walk_addr;
3904	errorq_t eq;
3905
3906	if (addr == NULL)
3907		return (WALK_DONE);
3908
3909	if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3910		mdb_warn("failed to read errorq at %p", addr);
3911		return (WALK_ERR);
3912	}
3913
3914	wsp->walk_addr = (uintptr_t)eq.eq_next;
3915	return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3916}
3917
3918typedef struct eqd_walk_data {
3919	uintptr_t *eqd_stack;
3920	void *eqd_buf;
3921	ulong_t eqd_qpos;
3922	ulong_t eqd_qlen;
3923	size_t eqd_size;
3924} eqd_walk_data_t;
3925
3926/*
3927 * In order to walk the list of pending error queue elements, we push the
3928 * addresses of the corresponding data buffers in to the eqd_stack array.
3929 * The error lists are in reverse chronological order when iterating using
3930 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3931 * walker client gets addresses in order from oldest error to newest error.
3932 */
3933static void
3934eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3935{
3936	errorq_elem_t eqe;
3937
3938	while (addr != NULL) {
3939		if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3940			mdb_warn("failed to read errorq element at %p", addr);
3941			break;
3942		}
3943
3944		if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3945			mdb_warn("errorq is overfull -- more than %lu "
3946			    "elems found\n", eqdp->eqd_qlen);
3947			break;
3948		}
3949
3950		eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3951		addr = (uintptr_t)eqe.eqe_prev;
3952	}
3953}
3954
3955static int
3956eqd_walk_init(mdb_walk_state_t *wsp)
3957{
3958	eqd_walk_data_t *eqdp;
3959	errorq_elem_t eqe, *addr;
3960	errorq_t eq;
3961	ulong_t i;
3962
3963	if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3964		mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3965		return (WALK_ERR);
3966	}
3967
3968	if (eq.eq_ptail != NULL &&
3969	    mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3970		mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3971		return (WALK_ERR);
3972	}
3973
3974	eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3975	wsp->walk_data = eqdp;
3976
3977	eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3978	eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3979	eqdp->eqd_qlen = eq.eq_qlen;
3980	eqdp->eqd_qpos = 0;
3981	eqdp->eqd_size = eq.eq_size;
3982
3983	/*
3984	 * The newest elements in the queue are on the pending list, so we
3985	 * push those on to our stack first.
3986	 */
3987	eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3988
3989	/*
3990	 * If eq_ptail is set, it may point to a subset of the errors on the
3991	 * pending list in the event a casptr() failed; if ptail's data is
3992	 * already in our stack, NULL out eq_ptail and ignore it.
3993	 */
3994	if (eq.eq_ptail != NULL) {
3995		for (i = 0; i < eqdp->eqd_qpos; i++) {
3996			if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3997				eq.eq_ptail = NULL;
3998				break;
3999			}
4000		}
4001	}
4002
4003	/*
4004	 * If eq_phead is set, it has the processing list in order from oldest
4005	 * to newest.  Use this to recompute eq_ptail as best we can and then
4006	 * we nicely fall into eqd_push_list() of eq_ptail below.
4007	 */
4008	for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
4009	    (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
4010		eq.eq_ptail = addr;
4011
4012	/*
4013	 * The oldest elements in the queue are on the processing list, subject
4014	 * to machinations in the if-clauses above.  Push any such elements.
4015	 */
4016	eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
4017	return (WALK_NEXT);
4018}
4019
4020static int
4021eqd_walk_step(mdb_walk_state_t *wsp)
4022{
4023	eqd_walk_data_t *eqdp = wsp->walk_data;
4024	uintptr_t addr;
4025
4026	if (eqdp->eqd_qpos == 0)
4027		return (WALK_DONE);
4028
4029	addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
4030
4031	if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
4032		mdb_warn("failed to read errorq data at %p", addr);
4033		return (WALK_ERR);
4034	}
4035
4036	return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
4037}
4038
4039static void
4040eqd_walk_fini(mdb_walk_state_t *wsp)
4041{
4042	eqd_walk_data_t *eqdp = wsp->walk_data;
4043
4044	mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
4045	mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
4046	mdb_free(eqdp, sizeof (eqd_walk_data_t));
4047}
4048
4049#define	EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
4050
4051static int
4052errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4053{
4054	int i;
4055	errorq_t eq;
4056	uint_t opt_v = FALSE;
4057
4058	if (!(flags & DCMD_ADDRSPEC)) {
4059		if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
4060			mdb_warn("can't walk 'errorq'");
4061			return (DCMD_ERR);
4062		}
4063		return (DCMD_OK);
4064	}
4065
4066	i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
4067	argc -= i;
4068	argv += i;
4069
4070	if (argc != 0)
4071		return (DCMD_USAGE);
4072
4073	if (opt_v || DCMD_HDRSPEC(flags)) {
4074		mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
4075		    "ADDR", "NAME", "S", "V", "N");
4076		if (!opt_v) {
4077			mdb_printf("%7s %7s %7s%</u>\n",
4078			    "ACCEPT", "DROP", "LOG");
4079		} else {
4080			mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
4081			    "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
4082		}
4083	}
4084
4085	if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
4086		mdb_warn("failed to read errorq at %p", addr);
4087		return (DCMD_ERR);
4088	}
4089
4090	mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
4091	    (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
4092	    (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
4093	    (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
4094
4095	if (!opt_v) {
4096		mdb_printf("%7llu %7llu %7llu\n",
4097		    EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
4098		    EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
4099		    EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
4100	} else {
4101		mdb_printf("%5s %6lu %6lu %3u %a\n",
4102		    "  |  ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
4103		mdb_printf("%38s\n%41s"
4104		    "%12s %llu\n"
4105		    "%53s %llu\n"
4106		    "%53s %llu\n"
4107		    "%53s %llu\n"
4108		    "%53s %llu\n"
4109		    "%53s %llu\n"
4110		    "%53s %llu\n"
4111		    "%53s %llu\n\n",
4112		    "|", "+-> ",
4113		    "DISPATCHED",	EQKSVAL(eq, eqk_dispatched),
4114		    "DROPPED",		EQKSVAL(eq, eqk_dropped),
4115		    "LOGGED",		EQKSVAL(eq, eqk_logged),
4116		    "RESERVED",		EQKSVAL(eq, eqk_reserved),
4117		    "RESERVE FAIL",	EQKSVAL(eq, eqk_reserve_fail),
4118		    "COMMITTED",	EQKSVAL(eq, eqk_committed),
4119		    "COMMIT FAIL",	EQKSVAL(eq, eqk_commit_fail),
4120		    "CANCELLED",	EQKSVAL(eq, eqk_cancelled));
4121	}
4122
4123	return (DCMD_OK);
4124}
4125
4126/*ARGSUSED*/
4127static int
4128panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4129{
4130	cpu_t panic_cpu;
4131	kthread_t *panic_thread;
4132	void *buf;
4133	panic_data_t *pd;
4134	int i, n;
4135
4136	if (!mdb_prop_postmortem) {
4137		mdb_warn("panicinfo can only be run on a system "
4138		    "dump; see dumpadm(1M)\n");
4139		return (DCMD_ERR);
4140	}
4141
4142	if (flags & DCMD_ADDRSPEC || argc != 0)
4143		return (DCMD_USAGE);
4144
4145	if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
4146		mdb_warn("failed to read 'panic_cpu'");
4147	else
4148		mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
4149
4150	if (mdb_readvar(&panic_thread, "panic_thread") == -1)
4151		mdb_warn("failed to read 'panic_thread'");
4152	else
4153		mdb_printf("%16s %?p\n", "thread", panic_thread);
4154
4155	buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
4156	pd = (panic_data_t *)buf;
4157
4158	if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
4159	    pd->pd_version != PANICBUFVERS) {
4160		mdb_warn("failed to read 'panicbuf'");
4161		mdb_free(buf, PANICBUFSIZE);
4162		return (DCMD_ERR);
4163	}
4164
4165	mdb_printf("%16s %s\n", "message",  (char *)buf + pd->pd_msgoff);
4166
4167	n = (pd->pd_msgoff - (sizeof (panic_data_t) -
4168	    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
4169
4170	for (i = 0; i < n; i++)
4171		mdb_printf("%16s %?llx\n",
4172		    pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
4173
4174	mdb_free(buf, PANICBUFSIZE);
4175	return (DCMD_OK);
4176}
4177
4178static const mdb_dcmd_t dcmds[] = {
4179
4180	/* from genunix.c */
4181	{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4182	{ "as2proc", ":", "convert as to proc_t address", as2proc },
4183	{ "binding_hash_entry", ":", "print driver names hash table entry",
4184		binding_hash_entry },
4185	{ "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4186	    " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4187	    " [-FivVA]",
4188	    "display callouts", callout, callout_help },
4189	{ "calloutid", "[-d|v] xid", "print callout by extended id",
4190	    calloutid, calloutid_help },
4191	{ "class", NULL, "print process scheduler classes", class },
4192	{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4193	{ "did2thread", "? kt_did", "find kernel thread for this id",
4194		did2thread },
4195	{ "errorq", "?[-v]", "display kernel error queues", errorq },
4196	{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
4197	{ "flipone", ":", "the vik_rev_level 2 special", flipone },
4198	{ "lminfo", NULL, "print lock manager information", lminfo },
4199	{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4200	{ "panicinfo", NULL, "print panic information", panicinfo },
4201	{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4202	{ "pmap", ":[-q]", "print process memory map", pmap },
4203	{ "project", NULL, "display kernel project(s)", project },
4204	{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
4205	{ "pgrep", "[-x] [-n | -o] pattern",
4206		"pattern match against all processes", pgrep },
4207	{ "ptree", NULL, "print process tree", ptree },
4208	{ "seg", ":", "print address space segment", seg },
4209	{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4210		sysevent},
4211	{ "sysevent_channel", "?", "print sysevent channel database",
4212		sysevent_channel},
4213	{ "sysevent_class_list", ":", "print sysevent class list",
4214		sysevent_class_list},
4215	{ "sysevent_subclass_list", ":",
4216		"print sysevent subclass list", sysevent_subclass_list},
4217	{ "system", NULL, "print contents of /etc/system file", sysfile },
4218	{ "task", NULL, "display kernel task(s)", task },
4219	{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4220	{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4221	{ "whereopen", ":", "given a vnode, dumps procs which have it open",
4222	    whereopen },
4223
4224	/* from bio.c */
4225	{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4226
4227	/* from bitset.c */
4228	{ "bitset", ":", "display a bitset", bitset, bitset_help },
4229
4230	/* from contract.c */
4231	{ "contract", "?", "display a contract", cmd_contract },
4232	{ "ctevent", ":", "display a contract event", cmd_ctevent },
4233	{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4234
4235	/* from cpupart.c */
4236	{ "cpupart", "?[-v]", "print cpu partition info", cpupart },
4237
4238	/* from cyclic.c */
4239	{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
4240	{ "cycid", "?", "dump a cyclic id", cycid },
4241	{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4242	{ "cyclic", ":", "developer information", cyclic },
4243	{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4244
4245	/* from damap.c */
4246	{ "damap", ":", "display a damap_t", damap, damap_help },
4247
4248	/* from devinfo.c */
4249	{ "devbindings", "?[-qs] [device-name | major-num]",
4250	    "print devinfo nodes bound to device-name or major-num",
4251	    devbindings, devinfo_help },
4252	{ "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
4253	    devinfo_help },
4254	{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4255	    devinfo_audit },
4256	{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4257	    devinfo_audit_log },
4258	{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4259	    devinfo_audit_node },
4260	{ "devinfo2driver", ":", "find driver name for this devinfo node",
4261	    devinfo2driver },
4262	{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
4263	{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
4264	    dev2major },
4265	{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4266	    dev2minor },
4267	{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4268	    devt },
4269	{ "major2name", "?<major-num>", "convert major number to dev name",
4270	    major2name },
4271	{ "minornodes", ":", "given a devinfo node, print its minor nodes",
4272	    minornodes },
4273	{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
4274	    modctl2devinfo },
4275	{ "name2major", "<dev-name>", "convert dev name to major number",
4276	    name2major },
4277	{ "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
4278	{ "softstate", ":<instance>", "retrieve soft-state pointer",
4279	    softstate },
4280	{ "devinfo_fm", ":", "devinfo fault managment configuration",
4281	    devinfo_fm },
4282	{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
4283	    devinfo_fmce},
4284
4285	/* from fm.c */
4286	{ "ereport", "[-v]", "print ereports logged in dump",
4287	    ereport },
4288
4289	/* from findstack.c */
4290	{ "findstack", ":[-v]", "find kernel thread stack", findstack },
4291	{ "findstack_debug", NULL, "toggle findstack debugging",
4292		findstack_debug },
4293	{ "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4294		"[-s sobj | -S sobj] [-t tstate | -T tstate]",
4295		"print unique kernel thread stacks",
4296		stacks, stacks_help },
4297
4298	/* from group.c */
4299	{ "group", "?[-q]", "display a group", group},
4300
4301	/* from irm.c */
4302	{ "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4303	{ "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4304	    irmreqs_dcmd },
4305	{ "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4306
4307	/* from kgrep.c + genunix.c */
4308	{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4309		kgrep_help },
4310
4311	/* from kmem.c */
4312	{ "allocdby", ":", "given a thread, print its allocated buffers",
4313		allocdby },
4314	{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4315		"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4316	{ "freedby", ":", "given a thread, print its freed buffers", freedby },
4317	{ "kmalog", "?[ fail | slab ]",
4318	    "display kmem transaction log and stack traces", kmalog },
4319	{ "kmastat", "[-kmg]", "kernel memory allocator stats",
4320	    kmastat },
4321	{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4322		"of the kmem allocator", kmausers, kmausers_help },
4323	{ "kmem_cache", "?[-n name]",
4324		"print kernel memory caches", kmem_cache, kmem_cache_help},
4325	{ "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4326		"[-B minbinsize]", "display slab usage per kmem cache",
4327		kmem_slabs, kmem_slabs_help },
4328	{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4329	{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4330	{ "kmem_verify", "?", "check integrity of kmem-managed memory",
4331		kmem_verify },
4332	{ "vmem", "?", "print a vmem_t", vmem },
4333	{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4334		"[-m minsize] [-M maxsize] [-t thread] [-T type]",
4335		"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4336	{ "whatthread", ":[-v]", "print threads whose stack contains the "
4337		"given address", whatthread },
4338
4339	/* from ldi.c */
4340	{ "ldi_handle", "?[-i]", "display a layered driver handle",
4341	    ldi_handle, ldi_handle_help },
4342	{ "ldi_ident", NULL, "display a layered driver identifier",
4343	    ldi_ident, ldi_ident_help },
4344
4345	/* from leaky.c + leaky_subr.c */
4346	{ "findleaks", FINDLEAKS_USAGE,
4347	    "search for potential kernel memory leaks", findleaks,
4348	    findleaks_help },
4349
4350	/* from lgrp.c */
4351	{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4352	{ "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4353
4354	/* from log.c */
4355	{ "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4356
4357	/* from mdi.c */
4358	{ "mdipi", NULL, "given a path, dump mdi_pathinfo "
4359		"and detailed pi_prop list", mdipi },
4360	{ "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4361		mdiprops },
4362	{ "mdiphci", NULL, "given a phci, dump mdi_phci and "
4363		"list all paths", mdiphci },
4364	{ "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4365		"all phcis", mdivhci },
4366	{ "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4367		"client links", mdiclient_paths },
4368	{ "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4369		"phci links", mdiphci_paths },
4370	{ "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4371		mdiphcis },
4372
4373	/* from memory.c */
4374	{ "page", "?", "display a summarized page_t", page },
4375	{ "memstat", NULL, "display memory usage summary", memstat },
4376	{ "memlist", "?[-iav]", "display a struct memlist", memlist },
4377	{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
4378
4379	/* from mmd.c */
4380	{ "multidata", ":[-sv]", "display a summarized multidata_t",
4381		multidata },
4382	{ "pattbl", ":", "display a summarized multidata attribute table",
4383		pattbl },
4384	{ "pattr2multidata", ":", "print multidata pointer from pattr_t",
4385		pattr2multidata },
4386	{ "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4387		pdesc2slab },
4388	{ "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4389	{ "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4390		slab2multidata },
4391
4392	/* from modhash.c */
4393	{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4394		"display information about one or all mod_hash structures",
4395		modhash, modhash_help },
4396	{ "modent", ":[-k | -v | -t type]",
4397		"display information about a mod_hash_entry", modent,
4398		modent_help },
4399
4400	/* from net.c */
4401	{ "dladm", "?<sub-command> [flags]", "show data link information",
4402		dladm, dladm_help },
4403	{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4404		mi },
4405	{ "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4406		"show network statistics", netstat },
4407	{ "sonode", "?[-f inet | inet6 | unix | #] "
4408		"[-t stream | dgram | raw | #] [-p #]",
4409		"filter and display sonode", sonode },
4410
4411	/* from netstack.c */
4412	{ "netstack", "", "show stack instances", netstack },
4413
4414	/* from nvpair.c */
4415	{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4416		nvpair_print },
4417	{ NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4418		print_nvlist },
4419
4420	/* from pg.c */
4421	{ "pg", "?[-q]", "display a pg", pg},
4422
4423	/* from rctl.c */
4424	{ "rctl_dict", "?", "print systemwide default rctl definitions",
4425		rctl_dict },
4426	{ "rctl_list", ":[handle]", "print rctls for the given proc",
4427		rctl_list },
4428	{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4429		rctl },
4430	{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
4431		"sequence", rctl_validate },
4432
4433	/* from sobj.c */
4434	{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
4435	{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4436		mutex_help },
4437	{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4438	{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4439	{ "turnstile", "?", "display a turnstile", turnstile },
4440
4441	/* from stream.c */
4442	{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4443		"print an mblk", mblk_prt, mblk_help },
4444	{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4445	{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4446		mblk2dblk },
4447	{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4448	{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
4449	{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
4450	{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
4451	{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
4452	{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4453		"filter and display STREAM queue", queue, queue_help },
4454	{ "stdata", ":[-q|v] [-f flag] [-F flag]",
4455		"filter and display STREAM head", stdata, stdata_help },
4456	{ "str2mate", ":", "print mate of this stream", str2mate },
4457	{ "str2wrq", ":", "print write queue of this stream", str2wrq },
4458	{ "stream", ":", "display STREAM", stream },
4459	{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
4460	{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4461		"filter and display STREAM sync queue", syncq, syncq_help },
4462	{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
4463
4464	/* from taskq.c */
4465	{ "taskq", ":[-atT] [-m min_maxq] [-n name]",
4466	    "display a taskq", taskq, taskq_help },
4467	{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4468
4469	/* from thread.c */
4470	{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4471		thread_help },
4472	{ "threadlist", "?[-t] [-v [count]]",
4473		"display threads and associated C stack traces", threadlist,
4474		threadlist_help },
4475	{ "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4476		stackinfo_help },
4477
4478	/* from tsd.c */
4479	{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4480	{ "tsdtot", ":", "find thread with this tsd", tsdtot },
4481
4482	/*
4483	 * typegraph does not work under kmdb, as it requires too much memory
4484	 * for its internal data structures.
4485	 */
4486#ifndef _KMDB
4487	/* from typegraph.c */
4488	{ "findlocks", ":", "find locks held by specified thread", findlocks },
4489	{ "findfalse", "?[-v]", "find potentially falsely shared structures",
4490		findfalse },
4491	{ "typegraph", NULL, "build type graph", typegraph },
4492	{ "istype", ":type", "manually set object type", istype },
4493	{ "notype", ":", "manually clear object type", notype },
4494	{ "whattype", ":", "determine object type", whattype },
4495#endif
4496
4497	/* from vfs.c */
4498	{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4499	{ "pfiles", ":[-fp]", "print process file information", pfiles,
4500		pfiles_help },
4501
4502	/* from zone.c */
4503	{ "zone", "?", "display kernel zone(s)", zoneprt },
4504	{ "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4505	    "selected zones", zsd },
4506
4507	/* from hotplug.c */
4508	{ "hotplug", "?[-p]", "display a registered hotplug attachment",
4509	    hotplug, hotplug_help },
4510
4511	{ NULL }
4512};
4513
4514static const mdb_walker_t walkers[] = {
4515
4516	/* from genunix.c */
4517	{ "anon", "given an amp, list of anon structures",
4518		anon_walk_init, anon_walk_step, anon_walk_fini },
4519	{ "callouts_bytime", "walk callouts by list chain (expiration time)",
4520		callout_walk_init, callout_walk_step, callout_walk_fini,
4521		(void *)CALLOUT_WALK_BYLIST },
4522	{ "callouts_byid", "walk callouts by id hash chain",
4523		callout_walk_init, callout_walk_step, callout_walk_fini,
4524		(void *)CALLOUT_WALK_BYID },
4525	{ "callout_list", "walk a callout list", callout_list_walk_init,
4526		callout_list_walk_step, callout_list_walk_fini },
4527	{ "callout_table", "walk callout table array", callout_table_walk_init,
4528		callout_table_walk_step, callout_table_walk_fini },
4529	{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4530	{ "ereportq_dump", "walk list of ereports in dump error queue",
4531		ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4532	{ "ereportq_pend", "walk list of ereports in pending error queue",
4533		ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4534	{ "errorq", "walk list of system error queues",
4535		errorq_walk_init, errorq_walk_step, NULL },
4536	{ "errorq_data", "walk pending error queue data buffers",
4537		eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4538	{ "allfile", "given a proc pointer, list all file pointers",
4539		file_walk_init, allfile_walk_step, file_walk_fini },
4540	{ "file", "given a proc pointer, list of open file pointers",
4541		file_walk_init, file_walk_step, file_walk_fini },
4542	{ "lock_descriptor", "walk lock_descriptor_t structures",
4543		ld_walk_init, ld_walk_step, NULL },
4544	{ "lock_graph", "walk lock graph",
4545		lg_walk_init, lg_walk_step, NULL },
4546	{ "port", "given a proc pointer, list of created event ports",
4547		port_walk_init, port_walk_step, NULL },
4548	{ "portev", "given a port pointer, list of events in the queue",
4549		portev_walk_init, portev_walk_step, portev_walk_fini },
4550	{ "proc", "list of active proc_t structures",
4551		proc_walk_init, proc_walk_step, proc_walk_fini },
4552	{ "projects", "walk a list of kernel projects",
4553		project_walk_init, project_walk_step, NULL },
4554	{ "seg", "given an as, list of segments",
4555		seg_walk_init, avl_walk_step, avl_walk_fini },
4556	{ "sysevent_pend", "walk sysevent pending queue",
4557		sysevent_pend_walk_init, sysevent_walk_step,
4558		sysevent_walk_fini},
4559	{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4560		sysevent_walk_step, sysevent_walk_fini},
4561	{ "sysevent_channel", "walk sysevent channel subscriptions",
4562		sysevent_channel_walk_init, sysevent_channel_walk_step,
4563		sysevent_channel_walk_fini},
4564	{ "sysevent_class_list", "walk sysevent subscription's class list",
4565		sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4566		sysevent_class_list_walk_fini},
4567	{ "sysevent_subclass_list",
4568		"walk sysevent subscription's subclass list",
4569		sysevent_subclass_list_walk_init,
4570		sysevent_subclass_list_walk_step,
4571		sysevent_subclass_list_walk_fini},
4572	{ "task", "given a task pointer, walk its processes",
4573		task_walk_init, task_walk_step, NULL },
4574
4575	/* from avl.c */
4576	{ AVL_WALK_NAME, AVL_WALK_DESC,
4577		avl_walk_init, avl_walk_step, avl_walk_fini },
4578
4579	/* from bio.c */
4580	{ "buf", "walk the bio buf hash",
4581		buf_walk_init, buf_walk_step, buf_walk_fini },
4582
4583	/* from contract.c */
4584	{ "contract", "walk all contracts, or those of the specified type",
4585		ct_walk_init, generic_walk_step, NULL },
4586	{ "ct_event", "walk events on a contract event queue",
4587		ct_event_walk_init, generic_walk_step, NULL },
4588	{ "ct_listener", "walk contract event queue listeners",
4589		ct_listener_walk_init, generic_walk_step, NULL },
4590
4591	/* from cpupart.c */
4592	{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4593		cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4594		NULL },
4595	{ "cpupart_walk", "walk the set of cpu partitions",
4596		cpupart_walk_init, cpupart_walk_step, NULL },
4597
4598	/* from ctxop.c */
4599	{ "ctxop", "walk list of context ops on a thread",
4600		ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4601
4602	/* from cyclic.c */
4603	{ "cyccpu", "walk per-CPU cyc_cpu structures",
4604		cyccpu_walk_init, cyccpu_walk_step, NULL },
4605	{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4606		cycomni_walk_init, cycomni_walk_step, NULL },
4607	{ "cyctrace", "walk cyclic trace buffer",
4608		cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4609
4610	/* from devinfo.c */
4611	{ "binding_hash", "walk all entries in binding hash table",
4612		binding_hash_walk_init, binding_hash_walk_step, NULL },
4613	{ "devinfo", "walk devinfo tree or subtree",
4614		devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4615	{ "devinfo_audit_log", "walk devinfo audit system-wide log",
4616		devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4617		devinfo_audit_log_walk_fini},
4618	{ "devinfo_audit_node", "walk per-devinfo audit history",
4619		devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4620		devinfo_audit_node_walk_fini},
4621	{ "devinfo_children", "walk children of devinfo node",
4622		devinfo_children_walk_init, devinfo_children_walk_step,
4623		devinfo_children_walk_fini },
4624	{ "devinfo_parents", "walk ancestors of devinfo node",
4625		devinfo_parents_walk_init, devinfo_parents_walk_step,
4626		devinfo_parents_walk_fini },
4627	{ "devinfo_siblings", "walk siblings of devinfo node",
4628		devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4629	{ "devi_next", "walk devinfo list",
4630		NULL, devi_next_walk_step, NULL },
4631	{ "devnames", "walk devnames array",
4632		devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4633	{ "minornode", "given a devinfo node, walk minor nodes",
4634		minornode_walk_init, minornode_walk_step, NULL },
4635	{ "softstate",
4636		"given an i_ddi_soft_state*, list all in-use driver stateps",
4637		soft_state_walk_init, soft_state_walk_step,
4638		NULL, NULL },
4639	{ "softstate_all",
4640		"given an i_ddi_soft_state*, list all driver stateps",
4641		soft_state_walk_init, soft_state_all_walk_step,
4642		NULL, NULL },
4643	{ "devinfo_fmc",
4644		"walk a fault management handle cache active list",
4645		devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4646
4647	/* from group.c */
4648	{ "group", "walk all elements of a group",
4649		group_walk_init, group_walk_step, NULL },
4650
4651	/* from irm.c */
4652	{ "irmpools", "walk global list of interrupt pools",
4653	    irmpools_walk_init, list_walk_step, list_walk_fini },
4654	{ "irmreqs", "walk list of interrupt requests in an interrupt pool",
4655	    irmreqs_walk_init, list_walk_step, list_walk_fini },
4656
4657	/* from kmem.c */
4658	{ "allocdby", "given a thread, walk its allocated bufctls",
4659		allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4660	{ "bufctl", "walk a kmem cache's bufctls",
4661		bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4662	{ "bufctl_history", "walk the available history of a bufctl",
4663		bufctl_history_walk_init, bufctl_history_walk_step,
4664		bufctl_history_walk_fini },
4665	{ "freedby", "given a thread, walk its freed bufctls",
4666		freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4667	{ "freectl", "walk a kmem cache's free bufctls",
4668		freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4669	{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4670		freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4671	{ "freemem", "walk a kmem cache's free memory",
4672		freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4673	{ "freemem_constructed", "walk a kmem cache's constructed free memory",
4674		freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4675	{ "kmem", "walk a kmem cache",
4676		kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4677	{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4678		kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4679	{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
4680		kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4681	{ "kmem_log", "walk the kmem transaction log",
4682		kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4683	{ "kmem_slab", "given a kmem cache, walk its slabs",
4684		kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4685	{ "kmem_slab_partial",
4686	    "given a kmem cache, walk its partially allocated slabs (min 1)",
4687		kmem_slab_walk_partial_init, combined_walk_step,
4688		combined_walk_fini },
4689	{ "vmem", "walk vmem structures in pre-fix, depth-first order",
4690		vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4691	{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4692		vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4693	{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
4694		vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4695	{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4696		vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4697	{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4698		vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4699	{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4700		vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4701
4702	/* from ldi.c */
4703	{ "ldi_handle", "walk the layered driver handle hash",
4704		ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4705	{ "ldi_ident", "walk the layered driver identifier hash",
4706		ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4707
4708	/* from leaky.c + leaky_subr.c */
4709	{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4710	    "stack trace",
4711		leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4712	{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4713	    "leaks w/ same stack trace",
4714		leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4715
4716	/* from lgrp.c */
4717	{ "lgrp_cpulist", "walk CPUs in a given lgroup",
4718		lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4719	{ "lgrptbl", "walk lgroup table",
4720		lgrp_walk_init, lgrp_walk_step, NULL },
4721	{ "lgrp_parents", "walk up lgroup lineage from given lgroup",
4722		lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4723	{ "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4724		lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4725	{ "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4726		lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4727
4728	/* from list.c */
4729	{ LIST_WALK_NAME, LIST_WALK_DESC,
4730		list_walk_init, list_walk_step, list_walk_fini },
4731
4732	/* from mdi.c */
4733	{ "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4734		mdi_pi_client_link_walk_init,
4735		mdi_pi_client_link_walk_step,
4736		mdi_pi_client_link_walk_fini },
4737	{ "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4738		mdi_pi_phci_link_walk_init,
4739		mdi_pi_phci_link_walk_step,
4740		mdi_pi_phci_link_walk_fini },
4741	{ "mdiphci_list", "Walker for mdi_phci ph_next link",
4742		mdi_phci_ph_next_walk_init,
4743		mdi_phci_ph_next_walk_step,
4744		mdi_phci_ph_next_walk_fini },
4745
4746	/* from memory.c */
4747	{ "page", "walk all pages, or those from the specified vnode",
4748		page_walk_init, page_walk_step, page_walk_fini },
4749	{ "allpages", "walk all pages, including free pages",
4750		allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4751	{ "memlist", "walk specified memlist",
4752		NULL, memlist_walk_step, NULL },
4753	{ "swapinfo", "walk swapinfo structures",
4754		swap_walk_init, swap_walk_step, NULL },
4755
4756	/* from mmd.c */
4757	{ "pattr", "walk pattr_t structures", pattr_walk_init,
4758		mmdq_walk_step, mmdq_walk_fini },
4759	{ "pdesc", "walk pdesc_t structures",
4760		pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4761	{ "pdesc_slab", "walk pdesc_slab_t structures",
4762		pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4763
4764	/* from modhash.c */
4765	{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
4766		modhash_walk_step, NULL },
4767	{ "modent", "walk list of entries in a given mod_hash",
4768		modent_walk_init, modent_walk_step, modent_walk_fini },
4769	{ "modchain", "walk list of entries in a given mod_hash_entry",
4770		NULL, modchain_walk_step, NULL },
4771
4772	/* from net.c */
4773	{ "icmp", "walk ICMP control structures using MI for all stacks",
4774		mi_payload_walk_init, mi_payload_walk_step, NULL,
4775		&mi_icmp_arg },
4776	{ "mi", "given a MI_O, walk the MI",
4777		mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4778	{ "sonode", "given a sonode, walk its children",
4779		sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4780	{ "icmp_stacks", "walk all the icmp_stack_t",
4781		icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4782	{ "tcp_stacks", "walk all the tcp_stack_t",
4783		tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4784	{ "udp_stacks", "walk all the udp_stack_t",
4785		udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4786
4787	/* from netstack.c */
4788	{ "netstack", "walk a list of kernel netstacks",
4789		netstack_walk_init, netstack_walk_step, NULL },
4790
4791	/* from nvpair.c */
4792	{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4793		nvpair_walk_init, nvpair_walk_step, NULL },
4794
4795	/* from rctl.c */
4796	{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4797		rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4798	{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4799		rctl_set_walk_step, NULL },
4800	{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4801		rctl_val_walk_init, rctl_val_walk_step },
4802
4803	/* from sobj.c */
4804	{ "blocked", "walk threads blocked on a given sobj",
4805		blocked_walk_init, blocked_walk_step, NULL },
4806	{ "wchan", "given a wchan, list of blocked threads",
4807		wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4808
4809	/* from stream.c */
4810	{ "b_cont", "walk mblk_t list using b_cont",
4811		mblk_walk_init, b_cont_step, mblk_walk_fini },
4812	{ "b_next", "walk mblk_t list using b_next",
4813		mblk_walk_init, b_next_step, mblk_walk_fini },
4814	{ "qlink", "walk queue_t list using q_link",
4815		queue_walk_init, queue_link_step, queue_walk_fini },
4816	{ "qnext", "walk queue_t list using q_next",
4817		queue_walk_init, queue_next_step, queue_walk_fini },
4818	{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4819		strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4820	{ "readq", "walk read queue side of stdata",
4821		str_walk_init, strr_walk_step, str_walk_fini },
4822	{ "writeq", "walk write queue side of stdata",
4823		str_walk_init, strw_walk_step, str_walk_fini },
4824
4825	/* from taskq.c */
4826	{ "taskq_thread", "given a taskq_t, list all of its threads",
4827		taskq_thread_walk_init,
4828		taskq_thread_walk_step,
4829		taskq_thread_walk_fini },
4830	{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4831		taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4832
4833	/* from thread.c */
4834	{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
4835		deathrow_walk_init, deathrow_walk_step, NULL },
4836	{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4837		cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4838	{ "cpupart_dispq",
4839		"given a cpupart_t, walk threads in dispatcher queues",
4840		cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4841	{ "lwp_deathrow", "walk lwp_deathrow",
4842		lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4843	{ "thread", "global or per-process kthread_t structures",
4844		thread_walk_init, thread_walk_step, thread_walk_fini },
4845	{ "thread_deathrow", "walk threads on thread_deathrow",
4846		thread_deathrow_walk_init, deathrow_walk_step, NULL },
4847
4848	/* from tsd.c */
4849	{ "tsd", "walk list of thread-specific data",
4850		tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4851
4852	/* from tsol.c */
4853	{ "tnrh", "walk remote host cache structures",
4854	    tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4855	{ "tnrhtp", "walk remote host template structures",
4856	    tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4857
4858	/*
4859	 * typegraph does not work under kmdb, as it requires too much memory
4860	 * for its internal data structures.
4861	 */
4862#ifndef _KMDB
4863	/* from typegraph.c */
4864	{ "typeconflict", "walk buffers with conflicting type inferences",
4865		typegraph_walk_init, typeconflict_walk_step },
4866	{ "typeunknown", "walk buffers with unknown types",
4867		typegraph_walk_init, typeunknown_walk_step },
4868#endif
4869
4870	/* from vfs.c */
4871	{ "vfs", "walk file system list",
4872		vfs_walk_init, vfs_walk_step },
4873
4874	/* from zone.c */
4875	{ "zone", "walk a list of kernel zones",
4876		zone_walk_init, zone_walk_step, NULL },
4877	{ "zsd", "walk list of zsd entries for a zone",
4878		zsd_walk_init, zsd_walk_step, NULL },
4879
4880	{ NULL }
4881};
4882
4883static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4884
4885/*ARGSUSED*/
4886static void
4887genunix_statechange_cb(void *ignored)
4888{
4889	/*
4890	 * Force ::findleaks and ::stacks to let go any cached state.
4891	 */
4892	leaky_cleanup(1);
4893	stacks_cleanup(1);
4894
4895	kmem_statechange();	/* notify kmem */
4896}
4897
4898const mdb_modinfo_t *
4899_mdb_init(void)
4900{
4901	kmem_init();
4902
4903	(void) mdb_callback_add(MDB_CALLBACK_STCHG,
4904	    genunix_statechange_cb, NULL);
4905
4906	return (&modinfo);
4907}
4908
4909void
4910_mdb_fini(void)
4911{
4912	leaky_cleanup(1);
4913	stacks_cleanup(1);
4914}
4915