Check.java revision 3294:9adfb22ff08f
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.tools.JavaFileManager;
31
32import com.sun.tools.javac.code.*;
33import com.sun.tools.javac.code.Attribute.Compound;
34import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
35import com.sun.tools.javac.jvm.*;
36import com.sun.tools.javac.resources.CompilerProperties.Errors;
37import com.sun.tools.javac.resources.CompilerProperties.Fragments;
38import com.sun.tools.javac.tree.*;
39import com.sun.tools.javac.util.*;
40import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
41import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
42import com.sun.tools.javac.util.List;
43
44import com.sun.tools.javac.code.Lint;
45import com.sun.tools.javac.code.Lint.LintCategory;
46import com.sun.tools.javac.code.Scope.WriteableScope;
47import com.sun.tools.javac.code.Type.*;
48import com.sun.tools.javac.code.Symbol.*;
49import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
50import com.sun.tools.javac.comp.Infer.FreeTypeListener;
51import com.sun.tools.javac.tree.JCTree.*;
52
53import static com.sun.tools.javac.code.Flags.*;
54import static com.sun.tools.javac.code.Flags.ANNOTATION;
55import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
56import static com.sun.tools.javac.code.Kinds.*;
57import static com.sun.tools.javac.code.Kinds.Kind.*;
58import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
59import static com.sun.tools.javac.code.TypeTag.*;
60import static com.sun.tools.javac.code.TypeTag.WILDCARD;
61
62import static com.sun.tools.javac.tree.JCTree.Tag.*;
63
64/** Type checking helper class for the attribution phase.
65 *
66 *  <p><b>This is NOT part of any supported API.
67 *  If you write code that depends on this, you do so at your own risk.
68 *  This code and its internal interfaces are subject to change or
69 *  deletion without notice.</b>
70 */
71public class Check {
72    protected static final Context.Key<Check> checkKey = new Context.Key<>();
73
74    private final Names names;
75    private final Log log;
76    private final Resolve rs;
77    private final Symtab syms;
78    private final Enter enter;
79    private final DeferredAttr deferredAttr;
80    private final Infer infer;
81    private final Types types;
82    private final TypeAnnotations typeAnnotations;
83    private final JCDiagnostic.Factory diags;
84    private final JavaFileManager fileManager;
85    private final Source source;
86    private final Profile profile;
87    private final boolean warnOnAccessToSensitiveMembers;
88
89    // The set of lint options currently in effect. It is initialized
90    // from the context, and then is set/reset as needed by Attr as it
91    // visits all the various parts of the trees during attribution.
92    private Lint lint;
93
94    // The method being analyzed in Attr - it is set/reset as needed by
95    // Attr as it visits new method declarations.
96    private MethodSymbol method;
97
98    public static Check instance(Context context) {
99        Check instance = context.get(checkKey);
100        if (instance == null)
101            instance = new Check(context);
102        return instance;
103    }
104
105    protected Check(Context context) {
106        context.put(checkKey, this);
107
108        names = Names.instance(context);
109        dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
110            names.FIELD, names.METHOD, names.CONSTRUCTOR,
111            names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
112        log = Log.instance(context);
113        rs = Resolve.instance(context);
114        syms = Symtab.instance(context);
115        enter = Enter.instance(context);
116        deferredAttr = DeferredAttr.instance(context);
117        infer = Infer.instance(context);
118        types = Types.instance(context);
119        typeAnnotations = TypeAnnotations.instance(context);
120        diags = JCDiagnostic.Factory.instance(context);
121        Options options = Options.instance(context);
122        lint = Lint.instance(context);
123        fileManager = context.get(JavaFileManager.class);
124
125        source = Source.instance(context);
126        allowSimplifiedVarargs = source.allowSimplifiedVarargs();
127        allowDefaultMethods = source.allowDefaultMethods();
128        allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
129        allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
130        allowDiamondWithAnonymousClassCreation = source.allowDiamondWithAnonymousClassCreation();
131        warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
132
133        Target target = Target.instance(context);
134        syntheticNameChar = target.syntheticNameChar();
135
136        profile = Profile.instance(context);
137
138        boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
139        boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
140        boolean enforceMandatoryWarnings = true;
141
142        deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
143                enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
144        uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
145                enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
146        sunApiHandler = new MandatoryWarningHandler(log, false,
147                enforceMandatoryWarnings, "sunapi", null);
148
149        deferredLintHandler = DeferredLintHandler.instance(context);
150    }
151
152    /** Switch: simplified varargs enabled?
153     */
154    boolean allowSimplifiedVarargs;
155
156    /** Switch: default methods enabled?
157     */
158    boolean allowDefaultMethods;
159
160    /** Switch: should unrelated return types trigger a method clash?
161     */
162    boolean allowStrictMethodClashCheck;
163
164    /** Switch: can the @SafeVarargs annotation be applied to private methods?
165     */
166    boolean allowPrivateSafeVarargs;
167
168    /** Switch: can diamond inference be used in anonymous instance creation ?
169     */
170    boolean allowDiamondWithAnonymousClassCreation;
171
172    /** Character for synthetic names
173     */
174    char syntheticNameChar;
175
176    /** A table mapping flat names of all compiled classes for each module in this run
177     *  to their symbols; maintained from outside.
178     */
179    private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
180
181    /** A handler for messages about deprecated usage.
182     */
183    private MandatoryWarningHandler deprecationHandler;
184
185    /** A handler for messages about unchecked or unsafe usage.
186     */
187    private MandatoryWarningHandler uncheckedHandler;
188
189    /** A handler for messages about using proprietary API.
190     */
191    private MandatoryWarningHandler sunApiHandler;
192
193    /** A handler for deferred lint warnings.
194     */
195    private DeferredLintHandler deferredLintHandler;
196
197/* *************************************************************************
198 * Errors and Warnings
199 **************************************************************************/
200
201    Lint setLint(Lint newLint) {
202        Lint prev = lint;
203        lint = newLint;
204        return prev;
205    }
206
207    MethodSymbol setMethod(MethodSymbol newMethod) {
208        MethodSymbol prev = method;
209        method = newMethod;
210        return prev;
211    }
212
213    /** Warn about deprecated symbol.
214     *  @param pos        Position to be used for error reporting.
215     *  @param sym        The deprecated symbol.
216     */
217    void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
218        if (!lint.isSuppressed(LintCategory.DEPRECATION))
219            deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
220    }
221
222    /** Warn about unchecked operation.
223     *  @param pos        Position to be used for error reporting.
224     *  @param msg        A string describing the problem.
225     */
226    public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
227        if (!lint.isSuppressed(LintCategory.UNCHECKED))
228            uncheckedHandler.report(pos, msg, args);
229    }
230
231    /** Warn about unsafe vararg method decl.
232     *  @param pos        Position to be used for error reporting.
233     */
234    void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
235        if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
236            log.warning(LintCategory.VARARGS, pos, key, args);
237    }
238
239    public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
240        if (lint.isEnabled(LintCategory.STATIC))
241            log.warning(LintCategory.STATIC, pos, msg, args);
242    }
243
244    /** Warn about division by integer constant zero.
245     *  @param pos        Position to be used for error reporting.
246     */
247    void warnDivZero(DiagnosticPosition pos) {
248        if (lint.isEnabled(LintCategory.DIVZERO))
249            log.warning(LintCategory.DIVZERO, pos, "div.zero");
250    }
251
252    /**
253     * Report any deferred diagnostics.
254     */
255    public void reportDeferredDiagnostics() {
256        deprecationHandler.reportDeferredDiagnostic();
257        uncheckedHandler.reportDeferredDiagnostic();
258        sunApiHandler.reportDeferredDiagnostic();
259    }
260
261
262    /** Report a failure to complete a class.
263     *  @param pos        Position to be used for error reporting.
264     *  @param ex         The failure to report.
265     */
266    public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
267        log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
268        if (ex instanceof ClassFinder.BadClassFile) throw new Abort();
269        else return syms.errType;
270    }
271
272    /** Report an error that wrong type tag was found.
273     *  @param pos        Position to be used for error reporting.
274     *  @param required   An internationalized string describing the type tag
275     *                    required.
276     *  @param found      The type that was found.
277     */
278    Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
279        // this error used to be raised by the parser,
280        // but has been delayed to this point:
281        if (found instanceof Type && ((Type)found).hasTag(VOID)) {
282            log.error(pos, "illegal.start.of.type");
283            return syms.errType;
284        }
285        log.error(pos, "type.found.req", found, required);
286        return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
287    }
288
289    /** Report an error that symbol cannot be referenced before super
290     *  has been called.
291     *  @param pos        Position to be used for error reporting.
292     *  @param sym        The referenced symbol.
293     */
294    void earlyRefError(DiagnosticPosition pos, Symbol sym) {
295        log.error(pos, "cant.ref.before.ctor.called", sym);
296    }
297
298    /** Report duplicate declaration error.
299     */
300    void duplicateError(DiagnosticPosition pos, Symbol sym) {
301        if (!sym.type.isErroneous()) {
302            Symbol location = sym.location();
303            if (location.kind == MTH &&
304                    ((MethodSymbol)location).isStaticOrInstanceInit()) {
305                log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
306                        kindName(sym.location()), kindName(sym.location().enclClass()),
307                        sym.location().enclClass());
308            } else {
309                log.error(pos, "already.defined", kindName(sym), sym,
310                        kindName(sym.location()), sym.location());
311            }
312        }
313    }
314
315    /** Report array/varargs duplicate declaration
316     */
317    void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
318        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
319            log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
320        }
321    }
322
323/* ************************************************************************
324 * duplicate declaration checking
325 *************************************************************************/
326
327    /** Check that variable does not hide variable with same name in
328     *  immediately enclosing local scope.
329     *  @param pos           Position for error reporting.
330     *  @param v             The symbol.
331     *  @param s             The scope.
332     */
333    void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
334        for (Symbol sym : s.getSymbolsByName(v.name)) {
335            if (sym.owner != v.owner) break;
336            if (sym.kind == VAR &&
337                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
338                v.name != names.error) {
339                duplicateError(pos, sym);
340                return;
341            }
342        }
343    }
344
345    /** Check that a class or interface does not hide a class or
346     *  interface with same name in immediately enclosing local scope.
347     *  @param pos           Position for error reporting.
348     *  @param c             The symbol.
349     *  @param s             The scope.
350     */
351    void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
352        for (Symbol sym : s.getSymbolsByName(c.name)) {
353            if (sym.owner != c.owner) break;
354            if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
355                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
356                c.name != names.error) {
357                duplicateError(pos, sym);
358                return;
359            }
360        }
361    }
362
363    /** Check that class does not have the same name as one of
364     *  its enclosing classes, or as a class defined in its enclosing scope.
365     *  return true if class is unique in its enclosing scope.
366     *  @param pos           Position for error reporting.
367     *  @param name          The class name.
368     *  @param s             The enclosing scope.
369     */
370    boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
371        for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
372            if (sym.kind == TYP && sym.name != names.error) {
373                duplicateError(pos, sym);
374                return false;
375            }
376        }
377        for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
378            if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
379                duplicateError(pos, sym);
380                return true;
381            }
382        }
383        return true;
384    }
385
386/* *************************************************************************
387 * Class name generation
388 **************************************************************************/
389
390
391    private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
392
393    /** Return name of local class.
394     *  This is of the form   {@code <enclClass> $ n <classname> }
395     *  where
396     *    enclClass is the flat name of the enclosing class,
397     *    classname is the simple name of the local class
398     */
399    Name localClassName(ClassSymbol c) {
400        Name enclFlatname = c.owner.enclClass().flatname;
401        String enclFlatnameStr = enclFlatname.toString();
402        Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
403        Integer index = localClassNameIndexes.get(key);
404        for (int i = (index == null) ? 1 : index; ; i++) {
405            Name flatname = names.fromString(enclFlatnameStr
406                    + syntheticNameChar + i + c.name);
407            if (getCompiled(c.packge().modle, flatname) == null) {
408                localClassNameIndexes.put(key, i + 1);
409                return flatname;
410            }
411        }
412    }
413
414    void clearLocalClassNameIndexes(ClassSymbol c) {
415        localClassNameIndexes.remove(new Pair<>(
416                c.owner.enclClass().flatname, c.name));
417    }
418
419    public void newRound() {
420        compiled.clear();
421        localClassNameIndexes.clear();
422    }
423
424    public void putCompiled(ClassSymbol csym) {
425        compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
426    }
427
428    public ClassSymbol getCompiled(ClassSymbol csym) {
429        return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
430    }
431
432    public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
433        return compiled.get(Pair.of(msym, flatname));
434    }
435
436    public void removeCompiled(ClassSymbol csym) {
437        compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
438    }
439
440/* *************************************************************************
441 * Type Checking
442 **************************************************************************/
443
444    /**
445     * A check context is an object that can be used to perform compatibility
446     * checks - depending on the check context, meaning of 'compatibility' might
447     * vary significantly.
448     */
449    public interface CheckContext {
450        /**
451         * Is type 'found' compatible with type 'req' in given context
452         */
453        boolean compatible(Type found, Type req, Warner warn);
454        /**
455         * Report a check error
456         */
457        void report(DiagnosticPosition pos, JCDiagnostic details);
458        /**
459         * Obtain a warner for this check context
460         */
461        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
462
463        public InferenceContext inferenceContext();
464
465        public DeferredAttr.DeferredAttrContext deferredAttrContext();
466    }
467
468    /**
469     * This class represent a check context that is nested within another check
470     * context - useful to check sub-expressions. The default behavior simply
471     * redirects all method calls to the enclosing check context leveraging
472     * the forwarding pattern.
473     */
474    static class NestedCheckContext implements CheckContext {
475        CheckContext enclosingContext;
476
477        NestedCheckContext(CheckContext enclosingContext) {
478            this.enclosingContext = enclosingContext;
479        }
480
481        public boolean compatible(Type found, Type req, Warner warn) {
482            return enclosingContext.compatible(found, req, warn);
483        }
484
485        public void report(DiagnosticPosition pos, JCDiagnostic details) {
486            enclosingContext.report(pos, details);
487        }
488
489        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
490            return enclosingContext.checkWarner(pos, found, req);
491        }
492
493        public InferenceContext inferenceContext() {
494            return enclosingContext.inferenceContext();
495        }
496
497        public DeferredAttrContext deferredAttrContext() {
498            return enclosingContext.deferredAttrContext();
499        }
500    }
501
502    /**
503     * Check context to be used when evaluating assignment/return statements
504     */
505    CheckContext basicHandler = new CheckContext() {
506        public void report(DiagnosticPosition pos, JCDiagnostic details) {
507            log.error(pos, "prob.found.req", details);
508        }
509        public boolean compatible(Type found, Type req, Warner warn) {
510            return types.isAssignable(found, req, warn);
511        }
512
513        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
514            return convertWarner(pos, found, req);
515        }
516
517        public InferenceContext inferenceContext() {
518            return infer.emptyContext;
519        }
520
521        public DeferredAttrContext deferredAttrContext() {
522            return deferredAttr.emptyDeferredAttrContext;
523        }
524
525        @Override
526        public String toString() {
527            return "CheckContext: basicHandler";
528        }
529    };
530
531    /** Check that a given type is assignable to a given proto-type.
532     *  If it is, return the type, otherwise return errType.
533     *  @param pos        Position to be used for error reporting.
534     *  @param found      The type that was found.
535     *  @param req        The type that was required.
536     */
537    public Type checkType(DiagnosticPosition pos, Type found, Type req) {
538        return checkType(pos, found, req, basicHandler);
539    }
540
541    Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
542        final InferenceContext inferenceContext = checkContext.inferenceContext();
543        if (inferenceContext.free(req) || inferenceContext.free(found)) {
544            inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
545                @Override
546                public void typesInferred(InferenceContext inferenceContext) {
547                    checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
548                }
549            });
550        }
551        if (req.hasTag(ERROR))
552            return req;
553        if (req.hasTag(NONE))
554            return found;
555        if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
556            return found;
557        } else {
558            if (found.isNumeric() && req.isNumeric()) {
559                checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
560                return types.createErrorType(found);
561            }
562            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
563            return types.createErrorType(found);
564        }
565    }
566
567    /** Check that a given type can be cast to a given target type.
568     *  Return the result of the cast.
569     *  @param pos        Position to be used for error reporting.
570     *  @param found      The type that is being cast.
571     *  @param req        The target type of the cast.
572     */
573    Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
574        return checkCastable(pos, found, req, basicHandler);
575    }
576    Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
577        if (types.isCastable(found, req, castWarner(pos, found, req))) {
578            return req;
579        } else {
580            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
581            return types.createErrorType(found);
582        }
583    }
584
585    /** Check for redundant casts (i.e. where source type is a subtype of target type)
586     * The problem should only be reported for non-292 cast
587     */
588    public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
589        if (!tree.type.isErroneous()
590                && types.isSameType(tree.expr.type, tree.clazz.type)
591                && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
592                && !is292targetTypeCast(tree)) {
593            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
594                @Override
595                public void report() {
596                    if (lint.isEnabled(Lint.LintCategory.CAST))
597                        log.warning(Lint.LintCategory.CAST,
598                                tree.pos(), "redundant.cast", tree.clazz.type);
599                }
600            });
601        }
602    }
603    //where
604        private boolean is292targetTypeCast(JCTypeCast tree) {
605            boolean is292targetTypeCast = false;
606            JCExpression expr = TreeInfo.skipParens(tree.expr);
607            if (expr.hasTag(APPLY)) {
608                JCMethodInvocation apply = (JCMethodInvocation)expr;
609                Symbol sym = TreeInfo.symbol(apply.meth);
610                is292targetTypeCast = sym != null &&
611                    sym.kind == MTH &&
612                    (sym.flags() & HYPOTHETICAL) != 0;
613            }
614            return is292targetTypeCast;
615        }
616
617        private static final boolean ignoreAnnotatedCasts = true;
618
619    /** Check that a type is within some bounds.
620     *
621     *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
622     *  type argument.
623     *  @param a             The type that should be bounded by bs.
624     *  @param bound         The bound.
625     */
626    private boolean checkExtends(Type a, Type bound) {
627         if (a.isUnbound()) {
628             return true;
629         } else if (!a.hasTag(WILDCARD)) {
630             a = types.cvarUpperBound(a);
631             return types.isSubtype(a, bound);
632         } else if (a.isExtendsBound()) {
633             return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
634         } else if (a.isSuperBound()) {
635             return !types.notSoftSubtype(types.wildLowerBound(a), bound);
636         }
637         return true;
638     }
639
640    /** Check that type is different from 'void'.
641     *  @param pos           Position to be used for error reporting.
642     *  @param t             The type to be checked.
643     */
644    Type checkNonVoid(DiagnosticPosition pos, Type t) {
645        if (t.hasTag(VOID)) {
646            log.error(pos, "void.not.allowed.here");
647            return types.createErrorType(t);
648        } else {
649            return t;
650        }
651    }
652
653    Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
654        if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
655            return typeTagError(pos,
656                                diags.fragment("type.req.class.array"),
657                                asTypeParam(t));
658        } else {
659            return t;
660        }
661    }
662
663    /** Check that type is a class or interface type.
664     *  @param pos           Position to be used for error reporting.
665     *  @param t             The type to be checked.
666     */
667    Type checkClassType(DiagnosticPosition pos, Type t) {
668        if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
669            return typeTagError(pos,
670                                diags.fragment("type.req.class"),
671                                asTypeParam(t));
672        } else {
673            return t;
674        }
675    }
676    //where
677        private Object asTypeParam(Type t) {
678            return (t.hasTag(TYPEVAR))
679                                    ? diags.fragment("type.parameter", t)
680                                    : t;
681        }
682
683    /** Check that type is a valid qualifier for a constructor reference expression
684     */
685    Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
686        t = checkClassOrArrayType(pos, t);
687        if (t.hasTag(CLASS)) {
688            if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
689                log.error(pos, "abstract.cant.be.instantiated", t.tsym);
690                t = types.createErrorType(t);
691            } else if ((t.tsym.flags() & ENUM) != 0) {
692                log.error(pos, "enum.cant.be.instantiated");
693                t = types.createErrorType(t);
694            } else {
695                t = checkClassType(pos, t, true);
696            }
697        } else if (t.hasTag(ARRAY)) {
698            if (!types.isReifiable(((ArrayType)t).elemtype)) {
699                log.error(pos, "generic.array.creation");
700                t = types.createErrorType(t);
701            }
702        }
703        return t;
704    }
705
706    /** Check that type is a class or interface type.
707     *  @param pos           Position to be used for error reporting.
708     *  @param t             The type to be checked.
709     *  @param noBounds    True if type bounds are illegal here.
710     */
711    Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
712        t = checkClassType(pos, t);
713        if (noBounds && t.isParameterized()) {
714            List<Type> args = t.getTypeArguments();
715            while (args.nonEmpty()) {
716                if (args.head.hasTag(WILDCARD))
717                    return typeTagError(pos,
718                                        diags.fragment("type.req.exact"),
719                                        args.head);
720                args = args.tail;
721            }
722        }
723        return t;
724    }
725
726    /** Check that type is a reference type, i.e. a class, interface or array type
727     *  or a type variable.
728     *  @param pos           Position to be used for error reporting.
729     *  @param t             The type to be checked.
730     */
731    Type checkRefType(DiagnosticPosition pos, Type t) {
732        if (t.isReference())
733            return t;
734        else
735            return typeTagError(pos,
736                                diags.fragment("type.req.ref"),
737                                t);
738    }
739
740    /** Check that each type is a reference type, i.e. a class, interface or array type
741     *  or a type variable.
742     *  @param trees         Original trees, used for error reporting.
743     *  @param types         The types to be checked.
744     */
745    List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
746        List<JCExpression> tl = trees;
747        for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
748            l.head = checkRefType(tl.head.pos(), l.head);
749            tl = tl.tail;
750        }
751        return types;
752    }
753
754    /** Check that type is a null or reference type.
755     *  @param pos           Position to be used for error reporting.
756     *  @param t             The type to be checked.
757     */
758    Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
759        if (t.isReference() || t.hasTag(BOT))
760            return t;
761        else
762            return typeTagError(pos,
763                                diags.fragment("type.req.ref"),
764                                t);
765    }
766
767    /** Check that flag set does not contain elements of two conflicting sets. s
768     *  Return true if it doesn't.
769     *  @param pos           Position to be used for error reporting.
770     *  @param flags         The set of flags to be checked.
771     *  @param set1          Conflicting flags set #1.
772     *  @param set2          Conflicting flags set #2.
773     */
774    boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
775        if ((flags & set1) != 0 && (flags & set2) != 0) {
776            log.error(pos,
777                      "illegal.combination.of.modifiers",
778                      asFlagSet(TreeInfo.firstFlag(flags & set1)),
779                      asFlagSet(TreeInfo.firstFlag(flags & set2)));
780            return false;
781        } else
782            return true;
783    }
784
785    /** Check that usage of diamond operator is correct (i.e. diamond should not
786     * be used with non-generic classes or in anonymous class creation expressions)
787     */
788    Type checkDiamond(JCNewClass tree, Type t) {
789        if (!TreeInfo.isDiamond(tree) ||
790                t.isErroneous()) {
791            return checkClassType(tree.clazz.pos(), t, true);
792        } else if (tree.def != null && !allowDiamondWithAnonymousClassCreation) {
793            log.error(tree.clazz.pos(),
794                    Errors.CantApplyDiamond1(t, Fragments.DiamondAndAnonClassNotSupportedInSource(source.name)));
795            return types.createErrorType(t);
796        } else if (t.tsym.type.getTypeArguments().isEmpty()) {
797            log.error(tree.clazz.pos(),
798                "cant.apply.diamond.1",
799                t, diags.fragment("diamond.non.generic", t));
800            return types.createErrorType(t);
801        } else if (tree.typeargs != null &&
802                tree.typeargs.nonEmpty()) {
803            log.error(tree.clazz.pos(),
804                "cant.apply.diamond.1",
805                t, diags.fragment("diamond.and.explicit.params", t));
806            return types.createErrorType(t);
807        } else {
808            return t;
809        }
810    }
811
812    /** Check that the type inferred using the diamond operator does not contain
813     *  non-denotable types such as captured types or intersection types.
814     *  @param t the type inferred using the diamond operator
815     *  @return  the (possibly empty) list of non-denotable types.
816     */
817    List<Type> checkDiamondDenotable(ClassType t) {
818        ListBuffer<Type> buf = new ListBuffer<>();
819        for (Type arg : t.allparams()) {
820            if (!diamondTypeChecker.visit(arg, null)) {
821                buf.append(arg);
822            }
823        }
824        return buf.toList();
825    }
826        // where
827
828        /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
829         *  types. The visit methods return false as soon as a non-denotable type is encountered and true
830         *  otherwise.
831         */
832        private static final Types.SimpleVisitor<Boolean, Void> diamondTypeChecker = new Types.SimpleVisitor<Boolean, Void>() {
833            @Override
834            public Boolean visitType(Type t, Void s) {
835                return true;
836            }
837            @Override
838            public Boolean visitClassType(ClassType t, Void s) {
839                if (t.isCompound()) {
840                    return false;
841                }
842                for (Type targ : t.allparams()) {
843                    if (!visit(targ, s)) {
844                        return false;
845                    }
846                }
847                return true;
848            }
849
850            @Override
851            public Boolean visitTypeVar(TypeVar t, Void s) {
852                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
853                  (i.e cannot have been produced by inference (18.4))
854                */
855                return t.tsym.owner.type.getTypeArguments().contains(t);
856            }
857
858            @Override
859            public Boolean visitCapturedType(CapturedType t, Void s) {
860                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
861                  (i.e cannot have been produced by capture conversion (5.1.10))
862                */
863                return false;
864            }
865
866            @Override
867            public Boolean visitArrayType(ArrayType t, Void s) {
868                return visit(t.elemtype, s);
869            }
870
871            @Override
872            public Boolean visitWildcardType(WildcardType t, Void s) {
873                return visit(t.type, s);
874            }
875        };
876
877    void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
878        MethodSymbol m = tree.sym;
879        if (!allowSimplifiedVarargs) return;
880        boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
881        Type varargElemType = null;
882        if (m.isVarArgs()) {
883            varargElemType = types.elemtype(tree.params.last().type);
884        }
885        if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
886            if (varargElemType != null) {
887                log.error(tree,
888                        "varargs.invalid.trustme.anno",
889                          syms.trustMeType.tsym,
890                          allowPrivateSafeVarargs ?
891                          diags.fragment("varargs.trustme.on.virtual.varargs", m) :
892                          diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
893            } else {
894                log.error(tree,
895                            "varargs.invalid.trustme.anno",
896                            syms.trustMeType.tsym,
897                            diags.fragment("varargs.trustme.on.non.varargs.meth", m));
898            }
899        } else if (hasTrustMeAnno && varargElemType != null &&
900                            types.isReifiable(varargElemType)) {
901            warnUnsafeVararg(tree,
902                            "varargs.redundant.trustme.anno",
903                            syms.trustMeType.tsym,
904                            diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
905        }
906        else if (!hasTrustMeAnno && varargElemType != null &&
907                !types.isReifiable(varargElemType)) {
908            warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
909        }
910    }
911    //where
912        private boolean isTrustMeAllowedOnMethod(Symbol s) {
913            return (s.flags() & VARARGS) != 0 &&
914                (s.isConstructor() ||
915                    (s.flags() & (STATIC | FINAL |
916                                  (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
917        }
918
919    Type checkMethod(final Type mtype,
920            final Symbol sym,
921            final Env<AttrContext> env,
922            final List<JCExpression> argtrees,
923            final List<Type> argtypes,
924            final boolean useVarargs,
925            InferenceContext inferenceContext) {
926        // System.out.println("call   : " + env.tree);
927        // System.out.println("method : " + owntype);
928        // System.out.println("actuals: " + argtypes);
929        if (inferenceContext.free(mtype)) {
930            inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
931                public void typesInferred(InferenceContext inferenceContext) {
932                    checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
933                }
934            });
935            return mtype;
936        }
937        Type owntype = mtype;
938        List<Type> formals = owntype.getParameterTypes();
939        List<Type> nonInferred = sym.type.getParameterTypes();
940        if (nonInferred.length() != formals.length()) nonInferred = formals;
941        Type last = useVarargs ? formals.last() : null;
942        if (sym.name == names.init && sym.owner == syms.enumSym) {
943            formals = formals.tail.tail;
944            nonInferred = nonInferred.tail.tail;
945        }
946        List<JCExpression> args = argtrees;
947        if (args != null) {
948            //this is null when type-checking a method reference
949            while (formals.head != last) {
950                JCTree arg = args.head;
951                Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
952                assertConvertible(arg, arg.type, formals.head, warn);
953                args = args.tail;
954                formals = formals.tail;
955                nonInferred = nonInferred.tail;
956            }
957            if (useVarargs) {
958                Type varArg = types.elemtype(last);
959                while (args.tail != null) {
960                    JCTree arg = args.head;
961                    Warner warn = convertWarner(arg.pos(), arg.type, varArg);
962                    assertConvertible(arg, arg.type, varArg, warn);
963                    args = args.tail;
964                }
965            } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
966                // non-varargs call to varargs method
967                Type varParam = owntype.getParameterTypes().last();
968                Type lastArg = argtypes.last();
969                if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
970                    !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
971                    log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
972                                types.elemtype(varParam), varParam);
973            }
974        }
975        if (useVarargs) {
976            Type argtype = owntype.getParameterTypes().last();
977            if (!types.isReifiable(argtype) &&
978                (!allowSimplifiedVarargs ||
979                 sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
980                 !isTrustMeAllowedOnMethod(sym))) {
981                warnUnchecked(env.tree.pos(),
982                                  "unchecked.generic.array.creation",
983                                  argtype);
984            }
985            if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
986                TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
987            }
988         }
989         return owntype;
990    }
991    //where
992    private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
993        if (types.isConvertible(actual, formal, warn))
994            return;
995
996        if (formal.isCompound()
997            && types.isSubtype(actual, types.supertype(formal))
998            && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
999            return;
1000    }
1001
1002    /**
1003     * Check that type 't' is a valid instantiation of a generic class
1004     * (see JLS 4.5)
1005     *
1006     * @param t class type to be checked
1007     * @return true if 't' is well-formed
1008     */
1009    public boolean checkValidGenericType(Type t) {
1010        return firstIncompatibleTypeArg(t) == null;
1011    }
1012    //WHERE
1013        private Type firstIncompatibleTypeArg(Type type) {
1014            List<Type> formals = type.tsym.type.allparams();
1015            List<Type> actuals = type.allparams();
1016            List<Type> args = type.getTypeArguments();
1017            List<Type> forms = type.tsym.type.getTypeArguments();
1018            ListBuffer<Type> bounds_buf = new ListBuffer<>();
1019
1020            // For matching pairs of actual argument types `a' and
1021            // formal type parameters with declared bound `b' ...
1022            while (args.nonEmpty() && forms.nonEmpty()) {
1023                // exact type arguments needs to know their
1024                // bounds (for upper and lower bound
1025                // calculations).  So we create new bounds where
1026                // type-parameters are replaced with actuals argument types.
1027                bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1028                args = args.tail;
1029                forms = forms.tail;
1030            }
1031
1032            args = type.getTypeArguments();
1033            List<Type> tvars_cap = types.substBounds(formals,
1034                                      formals,
1035                                      types.capture(type).allparams());
1036            while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1037                // Let the actual arguments know their bound
1038                args.head.withTypeVar((TypeVar)tvars_cap.head);
1039                args = args.tail;
1040                tvars_cap = tvars_cap.tail;
1041            }
1042
1043            args = type.getTypeArguments();
1044            List<Type> bounds = bounds_buf.toList();
1045
1046            while (args.nonEmpty() && bounds.nonEmpty()) {
1047                Type actual = args.head;
1048                if (!isTypeArgErroneous(actual) &&
1049                        !bounds.head.isErroneous() &&
1050                        !checkExtends(actual, bounds.head)) {
1051                    return args.head;
1052                }
1053                args = args.tail;
1054                bounds = bounds.tail;
1055            }
1056
1057            args = type.getTypeArguments();
1058            bounds = bounds_buf.toList();
1059
1060            for (Type arg : types.capture(type).getTypeArguments()) {
1061                if (arg.hasTag(TYPEVAR) &&
1062                        arg.getUpperBound().isErroneous() &&
1063                        !bounds.head.isErroneous() &&
1064                        !isTypeArgErroneous(args.head)) {
1065                    return args.head;
1066                }
1067                bounds = bounds.tail;
1068                args = args.tail;
1069            }
1070
1071            return null;
1072        }
1073        //where
1074        boolean isTypeArgErroneous(Type t) {
1075            return isTypeArgErroneous.visit(t);
1076        }
1077
1078        Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1079            public Boolean visitType(Type t, Void s) {
1080                return t.isErroneous();
1081            }
1082            @Override
1083            public Boolean visitTypeVar(TypeVar t, Void s) {
1084                return visit(t.getUpperBound());
1085            }
1086            @Override
1087            public Boolean visitCapturedType(CapturedType t, Void s) {
1088                return visit(t.getUpperBound()) ||
1089                        visit(t.getLowerBound());
1090            }
1091            @Override
1092            public Boolean visitWildcardType(WildcardType t, Void s) {
1093                return visit(t.type);
1094            }
1095        };
1096
1097    /** Check that given modifiers are legal for given symbol and
1098     *  return modifiers together with any implicit modifiers for that symbol.
1099     *  Warning: we can't use flags() here since this method
1100     *  is called during class enter, when flags() would cause a premature
1101     *  completion.
1102     *  @param pos           Position to be used for error reporting.
1103     *  @param flags         The set of modifiers given in a definition.
1104     *  @param sym           The defined symbol.
1105     */
1106    long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1107        long mask;
1108        long implicit = 0;
1109
1110        switch (sym.kind) {
1111        case VAR:
1112            if (TreeInfo.isReceiverParam(tree))
1113                mask = ReceiverParamFlags;
1114            else if (sym.owner.kind != TYP)
1115                mask = LocalVarFlags;
1116            else if ((sym.owner.flags_field & INTERFACE) != 0)
1117                mask = implicit = InterfaceVarFlags;
1118            else
1119                mask = VarFlags;
1120            break;
1121        case MTH:
1122            if (sym.name == names.init) {
1123                if ((sym.owner.flags_field & ENUM) != 0) {
1124                    // enum constructors cannot be declared public or
1125                    // protected and must be implicitly or explicitly
1126                    // private
1127                    implicit = PRIVATE;
1128                    mask = PRIVATE;
1129                } else
1130                    mask = ConstructorFlags;
1131            }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1132                if ((sym.owner.flags_field & ANNOTATION) != 0) {
1133                    mask = AnnotationTypeElementMask;
1134                    implicit = PUBLIC | ABSTRACT;
1135                } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1136                    mask = InterfaceMethodMask;
1137                    implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1138                    if ((flags & DEFAULT) != 0) {
1139                        implicit |= ABSTRACT;
1140                    }
1141                } else {
1142                    mask = implicit = InterfaceMethodFlags;
1143                }
1144            } else {
1145                mask = MethodFlags;
1146            }
1147            // Imply STRICTFP if owner has STRICTFP set.
1148            if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1149                ((flags) & Flags.DEFAULT) != 0)
1150                implicit |= sym.owner.flags_field & STRICTFP;
1151            break;
1152        case TYP:
1153            if (sym.isLocal()) {
1154                mask = LocalClassFlags;
1155                if (sym.name.isEmpty()) { // Anonymous class
1156                    // JLS: Anonymous classes are final.
1157                    implicit |= FINAL;
1158                }
1159                if ((sym.owner.flags_field & STATIC) == 0 &&
1160                    (flags & ENUM) != 0)
1161                    log.error(pos, "enums.must.be.static");
1162            } else if (sym.owner.kind == TYP) {
1163                mask = MemberClassFlags;
1164                if (sym.owner.owner.kind == PCK ||
1165                    (sym.owner.flags_field & STATIC) != 0)
1166                    mask |= STATIC;
1167                else if ((flags & ENUM) != 0)
1168                    log.error(pos, "enums.must.be.static");
1169                // Nested interfaces and enums are always STATIC (Spec ???)
1170                if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1171            } else {
1172                mask = ClassFlags;
1173            }
1174            // Interfaces are always ABSTRACT
1175            if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1176
1177            if ((flags & ENUM) != 0) {
1178                // enums can't be declared abstract or final
1179                mask &= ~(ABSTRACT | FINAL);
1180                implicit |= implicitEnumFinalFlag(tree);
1181            }
1182            // Imply STRICTFP if owner has STRICTFP set.
1183            implicit |= sym.owner.flags_field & STRICTFP;
1184            break;
1185        default:
1186            throw new AssertionError();
1187        }
1188        long illegal = flags & ExtendedStandardFlags & ~mask;
1189        if (illegal != 0) {
1190            if ((illegal & INTERFACE) != 0) {
1191                log.error(pos, "intf.not.allowed.here");
1192                mask |= INTERFACE;
1193            }
1194            else {
1195                log.error(pos,
1196                          "mod.not.allowed.here", asFlagSet(illegal));
1197            }
1198        }
1199        else if ((sym.kind == TYP ||
1200                  // ISSUE: Disallowing abstract&private is no longer appropriate
1201                  // in the presence of inner classes. Should it be deleted here?
1202                  checkDisjoint(pos, flags,
1203                                ABSTRACT,
1204                                PRIVATE | STATIC | DEFAULT))
1205                 &&
1206                 checkDisjoint(pos, flags,
1207                                STATIC | PRIVATE,
1208                                DEFAULT)
1209                 &&
1210                 checkDisjoint(pos, flags,
1211                               ABSTRACT | INTERFACE,
1212                               FINAL | NATIVE | SYNCHRONIZED)
1213                 &&
1214                 checkDisjoint(pos, flags,
1215                               PUBLIC,
1216                               PRIVATE | PROTECTED)
1217                 &&
1218                 checkDisjoint(pos, flags,
1219                               PRIVATE,
1220                               PUBLIC | PROTECTED)
1221                 &&
1222                 checkDisjoint(pos, flags,
1223                               FINAL,
1224                               VOLATILE)
1225                 &&
1226                 (sym.kind == TYP ||
1227                  checkDisjoint(pos, flags,
1228                                ABSTRACT | NATIVE,
1229                                STRICTFP))) {
1230            // skip
1231        }
1232        return flags & (mask | ~ExtendedStandardFlags) | implicit;
1233    }
1234
1235
1236    /** Determine if this enum should be implicitly final.
1237     *
1238     *  If the enum has no specialized enum contants, it is final.
1239     *
1240     *  If the enum does have specialized enum contants, it is
1241     *  <i>not</i> final.
1242     */
1243    private long implicitEnumFinalFlag(JCTree tree) {
1244        if (!tree.hasTag(CLASSDEF)) return 0;
1245        class SpecialTreeVisitor extends JCTree.Visitor {
1246            boolean specialized;
1247            SpecialTreeVisitor() {
1248                this.specialized = false;
1249            }
1250
1251            @Override
1252            public void visitTree(JCTree tree) { /* no-op */ }
1253
1254            @Override
1255            public void visitVarDef(JCVariableDecl tree) {
1256                if ((tree.mods.flags & ENUM) != 0) {
1257                    if (tree.init instanceof JCNewClass &&
1258                        ((JCNewClass) tree.init).def != null) {
1259                        specialized = true;
1260                    }
1261                }
1262            }
1263        }
1264
1265        SpecialTreeVisitor sts = new SpecialTreeVisitor();
1266        JCClassDecl cdef = (JCClassDecl) tree;
1267        for (JCTree defs: cdef.defs) {
1268            defs.accept(sts);
1269            if (sts.specialized) return 0;
1270        }
1271        return FINAL;
1272    }
1273
1274/* *************************************************************************
1275 * Type Validation
1276 **************************************************************************/
1277
1278    /** Validate a type expression. That is,
1279     *  check that all type arguments of a parametric type are within
1280     *  their bounds. This must be done in a second phase after type attribution
1281     *  since a class might have a subclass as type parameter bound. E.g:
1282     *
1283     *  <pre>{@code
1284     *  class B<A extends C> { ... }
1285     *  class C extends B<C> { ... }
1286     *  }</pre>
1287     *
1288     *  and we can't make sure that the bound is already attributed because
1289     *  of possible cycles.
1290     *
1291     * Visitor method: Validate a type expression, if it is not null, catching
1292     *  and reporting any completion failures.
1293     */
1294    void validate(JCTree tree, Env<AttrContext> env) {
1295        validate(tree, env, true);
1296    }
1297    void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1298        new Validator(env).validateTree(tree, checkRaw, true);
1299    }
1300
1301    /** Visitor method: Validate a list of type expressions.
1302     */
1303    void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1304        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1305            validate(l.head, env);
1306    }
1307
1308    /** A visitor class for type validation.
1309     */
1310    class Validator extends JCTree.Visitor {
1311
1312        boolean checkRaw;
1313        boolean isOuter;
1314        Env<AttrContext> env;
1315
1316        Validator(Env<AttrContext> env) {
1317            this.env = env;
1318        }
1319
1320        @Override
1321        public void visitTypeArray(JCArrayTypeTree tree) {
1322            validateTree(tree.elemtype, checkRaw, isOuter);
1323        }
1324
1325        @Override
1326        public void visitTypeApply(JCTypeApply tree) {
1327            if (tree.type.hasTag(CLASS)) {
1328                List<JCExpression> args = tree.arguments;
1329                List<Type> forms = tree.type.tsym.type.getTypeArguments();
1330
1331                Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1332                if (incompatibleArg != null) {
1333                    for (JCTree arg : tree.arguments) {
1334                        if (arg.type == incompatibleArg) {
1335                            log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1336                        }
1337                        forms = forms.tail;
1338                     }
1339                 }
1340
1341                forms = tree.type.tsym.type.getTypeArguments();
1342
1343                boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1344
1345                // For matching pairs of actual argument types `a' and
1346                // formal type parameters with declared bound `b' ...
1347                while (args.nonEmpty() && forms.nonEmpty()) {
1348                    validateTree(args.head,
1349                            !(isOuter && is_java_lang_Class),
1350                            false);
1351                    args = args.tail;
1352                    forms = forms.tail;
1353                }
1354
1355                // Check that this type is either fully parameterized, or
1356                // not parameterized at all.
1357                if (tree.type.getEnclosingType().isRaw())
1358                    log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1359                if (tree.clazz.hasTag(SELECT))
1360                    visitSelectInternal((JCFieldAccess)tree.clazz);
1361            }
1362        }
1363
1364        @Override
1365        public void visitTypeParameter(JCTypeParameter tree) {
1366            validateTrees(tree.bounds, true, isOuter);
1367            checkClassBounds(tree.pos(), tree.type);
1368        }
1369
1370        @Override
1371        public void visitWildcard(JCWildcard tree) {
1372            if (tree.inner != null)
1373                validateTree(tree.inner, true, isOuter);
1374        }
1375
1376        @Override
1377        public void visitSelect(JCFieldAccess tree) {
1378            if (tree.type.hasTag(CLASS)) {
1379                visitSelectInternal(tree);
1380
1381                // Check that this type is either fully parameterized, or
1382                // not parameterized at all.
1383                if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1384                    log.error(tree.pos(), "improperly.formed.type.param.missing");
1385            }
1386        }
1387
1388        public void visitSelectInternal(JCFieldAccess tree) {
1389            if (tree.type.tsym.isStatic() &&
1390                tree.selected.type.isParameterized()) {
1391                // The enclosing type is not a class, so we are
1392                // looking at a static member type.  However, the
1393                // qualifying expression is parameterized.
1394                log.error(tree.pos(), "cant.select.static.class.from.param.type");
1395            } else {
1396                // otherwise validate the rest of the expression
1397                tree.selected.accept(this);
1398            }
1399        }
1400
1401        @Override
1402        public void visitAnnotatedType(JCAnnotatedType tree) {
1403            tree.underlyingType.accept(this);
1404        }
1405
1406        @Override
1407        public void visitTypeIdent(JCPrimitiveTypeTree that) {
1408            if (that.type.hasTag(TypeTag.VOID)) {
1409                log.error(that.pos(), "void.not.allowed.here");
1410            }
1411            super.visitTypeIdent(that);
1412        }
1413
1414        /** Default visitor method: do nothing.
1415         */
1416        @Override
1417        public void visitTree(JCTree tree) {
1418        }
1419
1420        public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1421            if (tree != null) {
1422                boolean prevCheckRaw = this.checkRaw;
1423                this.checkRaw = checkRaw;
1424                this.isOuter = isOuter;
1425
1426                try {
1427                    tree.accept(this);
1428                    if (checkRaw)
1429                        checkRaw(tree, env);
1430                } catch (CompletionFailure ex) {
1431                    completionError(tree.pos(), ex);
1432                } finally {
1433                    this.checkRaw = prevCheckRaw;
1434                }
1435            }
1436        }
1437
1438        public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1439            for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1440                validateTree(l.head, checkRaw, isOuter);
1441        }
1442    }
1443
1444    void checkRaw(JCTree tree, Env<AttrContext> env) {
1445        if (lint.isEnabled(LintCategory.RAW) &&
1446            tree.type.hasTag(CLASS) &&
1447            !TreeInfo.isDiamond(tree) &&
1448            !withinAnonConstr(env) &&
1449            tree.type.isRaw()) {
1450            log.warning(LintCategory.RAW,
1451                    tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1452        }
1453    }
1454    //where
1455        private boolean withinAnonConstr(Env<AttrContext> env) {
1456            return env.enclClass.name.isEmpty() &&
1457                    env.enclMethod != null && env.enclMethod.name == names.init;
1458        }
1459
1460/* *************************************************************************
1461 * Exception checking
1462 **************************************************************************/
1463
1464    /* The following methods treat classes as sets that contain
1465     * the class itself and all their subclasses
1466     */
1467
1468    /** Is given type a subtype of some of the types in given list?
1469     */
1470    boolean subset(Type t, List<Type> ts) {
1471        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1472            if (types.isSubtype(t, l.head)) return true;
1473        return false;
1474    }
1475
1476    /** Is given type a subtype or supertype of
1477     *  some of the types in given list?
1478     */
1479    boolean intersects(Type t, List<Type> ts) {
1480        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1481            if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1482        return false;
1483    }
1484
1485    /** Add type set to given type list, unless it is a subclass of some class
1486     *  in the list.
1487     */
1488    List<Type> incl(Type t, List<Type> ts) {
1489        return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1490    }
1491
1492    /** Remove type set from type set list.
1493     */
1494    List<Type> excl(Type t, List<Type> ts) {
1495        if (ts.isEmpty()) {
1496            return ts;
1497        } else {
1498            List<Type> ts1 = excl(t, ts.tail);
1499            if (types.isSubtype(ts.head, t)) return ts1;
1500            else if (ts1 == ts.tail) return ts;
1501            else return ts1.prepend(ts.head);
1502        }
1503    }
1504
1505    /** Form the union of two type set lists.
1506     */
1507    List<Type> union(List<Type> ts1, List<Type> ts2) {
1508        List<Type> ts = ts1;
1509        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1510            ts = incl(l.head, ts);
1511        return ts;
1512    }
1513
1514    /** Form the difference of two type lists.
1515     */
1516    List<Type> diff(List<Type> ts1, List<Type> ts2) {
1517        List<Type> ts = ts1;
1518        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1519            ts = excl(l.head, ts);
1520        return ts;
1521    }
1522
1523    /** Form the intersection of two type lists.
1524     */
1525    public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1526        List<Type> ts = List.nil();
1527        for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1528            if (subset(l.head, ts2)) ts = incl(l.head, ts);
1529        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1530            if (subset(l.head, ts1)) ts = incl(l.head, ts);
1531        return ts;
1532    }
1533
1534    /** Is exc an exception symbol that need not be declared?
1535     */
1536    boolean isUnchecked(ClassSymbol exc) {
1537        return
1538            exc.kind == ERR ||
1539            exc.isSubClass(syms.errorType.tsym, types) ||
1540            exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1541    }
1542
1543    /** Is exc an exception type that need not be declared?
1544     */
1545    boolean isUnchecked(Type exc) {
1546        return
1547            (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1548            (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1549            exc.hasTag(BOT);
1550    }
1551
1552    /** Same, but handling completion failures.
1553     */
1554    boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1555        try {
1556            return isUnchecked(exc);
1557        } catch (CompletionFailure ex) {
1558            completionError(pos, ex);
1559            return true;
1560        }
1561    }
1562
1563    /** Is exc handled by given exception list?
1564     */
1565    boolean isHandled(Type exc, List<Type> handled) {
1566        return isUnchecked(exc) || subset(exc, handled);
1567    }
1568
1569    /** Return all exceptions in thrown list that are not in handled list.
1570     *  @param thrown     The list of thrown exceptions.
1571     *  @param handled    The list of handled exceptions.
1572     */
1573    List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1574        List<Type> unhandled = List.nil();
1575        for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1576            if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1577        return unhandled;
1578    }
1579
1580/* *************************************************************************
1581 * Overriding/Implementation checking
1582 **************************************************************************/
1583
1584    /** The level of access protection given by a flag set,
1585     *  where PRIVATE is highest and PUBLIC is lowest.
1586     */
1587    static int protection(long flags) {
1588        switch ((short)(flags & AccessFlags)) {
1589        case PRIVATE: return 3;
1590        case PROTECTED: return 1;
1591        default:
1592        case PUBLIC: return 0;
1593        case 0: return 2;
1594        }
1595    }
1596
1597    /** A customized "cannot override" error message.
1598     *  @param m      The overriding method.
1599     *  @param other  The overridden method.
1600     *  @return       An internationalized string.
1601     */
1602    Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1603        String key;
1604        if ((other.owner.flags() & INTERFACE) == 0)
1605            key = "cant.override";
1606        else if ((m.owner.flags() & INTERFACE) == 0)
1607            key = "cant.implement";
1608        else
1609            key = "clashes.with";
1610        return diags.fragment(key, m, m.location(), other, other.location());
1611    }
1612
1613    /** A customized "override" warning message.
1614     *  @param m      The overriding method.
1615     *  @param other  The overridden method.
1616     *  @return       An internationalized string.
1617     */
1618    Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1619        String key;
1620        if ((other.owner.flags() & INTERFACE) == 0)
1621            key = "unchecked.override";
1622        else if ((m.owner.flags() & INTERFACE) == 0)
1623            key = "unchecked.implement";
1624        else
1625            key = "unchecked.clash.with";
1626        return diags.fragment(key, m, m.location(), other, other.location());
1627    }
1628
1629    /** A customized "override" warning message.
1630     *  @param m      The overriding method.
1631     *  @param other  The overridden method.
1632     *  @return       An internationalized string.
1633     */
1634    Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1635        String key;
1636        if ((other.owner.flags() & INTERFACE) == 0)
1637            key = "varargs.override";
1638        else  if ((m.owner.flags() & INTERFACE) == 0)
1639            key = "varargs.implement";
1640        else
1641            key = "varargs.clash.with";
1642        return diags.fragment(key, m, m.location(), other, other.location());
1643    }
1644
1645    /** Check that this method conforms with overridden method 'other'.
1646     *  where `origin' is the class where checking started.
1647     *  Complications:
1648     *  (1) Do not check overriding of synthetic methods
1649     *      (reason: they might be final).
1650     *      todo: check whether this is still necessary.
1651     *  (2) Admit the case where an interface proxy throws fewer exceptions
1652     *      than the method it implements. Augment the proxy methods with the
1653     *      undeclared exceptions in this case.
1654     *  (3) When generics are enabled, admit the case where an interface proxy
1655     *      has a result type
1656     *      extended by the result type of the method it implements.
1657     *      Change the proxies result type to the smaller type in this case.
1658     *
1659     *  @param tree         The tree from which positions
1660     *                      are extracted for errors.
1661     *  @param m            The overriding method.
1662     *  @param other        The overridden method.
1663     *  @param origin       The class of which the overriding method
1664     *                      is a member.
1665     */
1666    void checkOverride(JCTree tree,
1667                       MethodSymbol m,
1668                       MethodSymbol other,
1669                       ClassSymbol origin) {
1670        // Don't check overriding of synthetic methods or by bridge methods.
1671        if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1672            return;
1673        }
1674
1675        // Error if static method overrides instance method (JLS 8.4.6.2).
1676        if ((m.flags() & STATIC) != 0 &&
1677                   (other.flags() & STATIC) == 0) {
1678            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1679                      cannotOverride(m, other));
1680            m.flags_field |= BAD_OVERRIDE;
1681            return;
1682        }
1683
1684        // Error if instance method overrides static or final
1685        // method (JLS 8.4.6.1).
1686        if ((other.flags() & FINAL) != 0 ||
1687                 (m.flags() & STATIC) == 0 &&
1688                 (other.flags() & STATIC) != 0) {
1689            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1690                      cannotOverride(m, other),
1691                      asFlagSet(other.flags() & (FINAL | STATIC)));
1692            m.flags_field |= BAD_OVERRIDE;
1693            return;
1694        }
1695
1696        if ((m.owner.flags() & ANNOTATION) != 0) {
1697            // handled in validateAnnotationMethod
1698            return;
1699        }
1700
1701        // Error if overriding method has weaker access (JLS 8.4.6.3).
1702        if (protection(m.flags()) > protection(other.flags())) {
1703            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1704                      cannotOverride(m, other),
1705                      (other.flags() & AccessFlags) == 0 ?
1706                          "package" :
1707                          asFlagSet(other.flags() & AccessFlags));
1708            m.flags_field |= BAD_OVERRIDE;
1709            return;
1710        }
1711
1712        Type mt = types.memberType(origin.type, m);
1713        Type ot = types.memberType(origin.type, other);
1714        // Error if overriding result type is different
1715        // (or, in the case of generics mode, not a subtype) of
1716        // overridden result type. We have to rename any type parameters
1717        // before comparing types.
1718        List<Type> mtvars = mt.getTypeArguments();
1719        List<Type> otvars = ot.getTypeArguments();
1720        Type mtres = mt.getReturnType();
1721        Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1722
1723        overrideWarner.clear();
1724        boolean resultTypesOK =
1725            types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1726        if (!resultTypesOK) {
1727            if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1728                log.error(TreeInfo.diagnosticPositionFor(m, tree),
1729                        Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1730                                        other.location()), mtres, otres));
1731                m.flags_field |= BAD_OVERRIDE;
1732            } else {
1733                log.error(TreeInfo.diagnosticPositionFor(m, tree),
1734                        "override.incompatible.ret",
1735                        cannotOverride(m, other),
1736                        mtres, otres);
1737                m.flags_field |= BAD_OVERRIDE;
1738            }
1739            return;
1740        } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1741            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1742                    "override.unchecked.ret",
1743                    uncheckedOverrides(m, other),
1744                    mtres, otres);
1745        }
1746
1747        // Error if overriding method throws an exception not reported
1748        // by overridden method.
1749        List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1750        List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1751        List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1752        if (unhandledErased.nonEmpty()) {
1753            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1754                      "override.meth.doesnt.throw",
1755                      cannotOverride(m, other),
1756                      unhandledUnerased.head);
1757            m.flags_field |= BAD_OVERRIDE;
1758            return;
1759        }
1760        else if (unhandledUnerased.nonEmpty()) {
1761            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1762                          "override.unchecked.thrown",
1763                         cannotOverride(m, other),
1764                         unhandledUnerased.head);
1765            return;
1766        }
1767
1768        // Optional warning if varargs don't agree
1769        if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1770            && lint.isEnabled(LintCategory.OVERRIDES)) {
1771            log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1772                        ((m.flags() & Flags.VARARGS) != 0)
1773                        ? "override.varargs.missing"
1774                        : "override.varargs.extra",
1775                        varargsOverrides(m, other));
1776        }
1777
1778        // Warn if instance method overrides bridge method (compiler spec ??)
1779        if ((other.flags() & BRIDGE) != 0) {
1780            log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1781                        uncheckedOverrides(m, other));
1782        }
1783
1784        // Warn if a deprecated method overridden by a non-deprecated one.
1785        if (!isDeprecatedOverrideIgnorable(other, origin)) {
1786            Lint prevLint = setLint(lint.augment(m));
1787            try {
1788                checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1789            } finally {
1790                setLint(prevLint);
1791            }
1792        }
1793    }
1794    // where
1795        private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1796            // If the method, m, is defined in an interface, then ignore the issue if the method
1797            // is only inherited via a supertype and also implemented in the supertype,
1798            // because in that case, we will rediscover the issue when examining the method
1799            // in the supertype.
1800            // If the method, m, is not defined in an interface, then the only time we need to
1801            // address the issue is when the method is the supertype implemementation: any other
1802            // case, we will have dealt with when examining the supertype classes
1803            ClassSymbol mc = m.enclClass();
1804            Type st = types.supertype(origin.type);
1805            if (!st.hasTag(CLASS))
1806                return true;
1807            MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1808
1809            if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1810                List<Type> intfs = types.interfaces(origin.type);
1811                return (intfs.contains(mc.type) ? false : (stimpl != null));
1812            }
1813            else
1814                return (stimpl != m);
1815        }
1816
1817
1818    // used to check if there were any unchecked conversions
1819    Warner overrideWarner = new Warner();
1820
1821    /** Check that a class does not inherit two concrete methods
1822     *  with the same signature.
1823     *  @param pos          Position to be used for error reporting.
1824     *  @param site         The class type to be checked.
1825     */
1826    public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1827        Type sup = types.supertype(site);
1828        if (!sup.hasTag(CLASS)) return;
1829
1830        for (Type t1 = sup;
1831             t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1832             t1 = types.supertype(t1)) {
1833            for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1834                if (s1.kind != MTH ||
1835                    (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1836                    !s1.isInheritedIn(site.tsym, types) ||
1837                    ((MethodSymbol)s1).implementation(site.tsym,
1838                                                      types,
1839                                                      true) != s1)
1840                    continue;
1841                Type st1 = types.memberType(t1, s1);
1842                int s1ArgsLength = st1.getParameterTypes().length();
1843                if (st1 == s1.type) continue;
1844
1845                for (Type t2 = sup;
1846                     t2.hasTag(CLASS);
1847                     t2 = types.supertype(t2)) {
1848                    for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1849                        if (s2 == s1 ||
1850                            s2.kind != MTH ||
1851                            (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1852                            s2.type.getParameterTypes().length() != s1ArgsLength ||
1853                            !s2.isInheritedIn(site.tsym, types) ||
1854                            ((MethodSymbol)s2).implementation(site.tsym,
1855                                                              types,
1856                                                              true) != s2)
1857                            continue;
1858                        Type st2 = types.memberType(t2, s2);
1859                        if (types.overrideEquivalent(st1, st2))
1860                            log.error(pos, "concrete.inheritance.conflict",
1861                                      s1, t1, s2, t2, sup);
1862                    }
1863                }
1864            }
1865        }
1866    }
1867
1868    /** Check that classes (or interfaces) do not each define an abstract
1869     *  method with same name and arguments but incompatible return types.
1870     *  @param pos          Position to be used for error reporting.
1871     *  @param t1           The first argument type.
1872     *  @param t2           The second argument type.
1873     */
1874    public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1875                                            Type t1,
1876                                            Type t2,
1877                                            Type site) {
1878        if ((site.tsym.flags() & COMPOUND) != 0) {
1879            // special case for intersections: need to eliminate wildcards in supertypes
1880            t1 = types.capture(t1);
1881            t2 = types.capture(t2);
1882        }
1883        return firstIncompatibility(pos, t1, t2, site) == null;
1884    }
1885
1886    /** Return the first method which is defined with same args
1887     *  but different return types in two given interfaces, or null if none
1888     *  exists.
1889     *  @param t1     The first type.
1890     *  @param t2     The second type.
1891     *  @param site   The most derived type.
1892     *  @returns symbol from t2 that conflicts with one in t1.
1893     */
1894    private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1895        Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1896        closure(t1, interfaces1);
1897        Map<TypeSymbol,Type> interfaces2;
1898        if (t1 == t2)
1899            interfaces2 = interfaces1;
1900        else
1901            closure(t2, interfaces1, interfaces2 = new HashMap<>());
1902
1903        for (Type t3 : interfaces1.values()) {
1904            for (Type t4 : interfaces2.values()) {
1905                Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1906                if (s != null) return s;
1907            }
1908        }
1909        return null;
1910    }
1911
1912    /** Compute all the supertypes of t, indexed by type symbol. */
1913    private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1914        if (!t.hasTag(CLASS)) return;
1915        if (typeMap.put(t.tsym, t) == null) {
1916            closure(types.supertype(t), typeMap);
1917            for (Type i : types.interfaces(t))
1918                closure(i, typeMap);
1919        }
1920    }
1921
1922    /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1923    private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1924        if (!t.hasTag(CLASS)) return;
1925        if (typesSkip.get(t.tsym) != null) return;
1926        if (typeMap.put(t.tsym, t) == null) {
1927            closure(types.supertype(t), typesSkip, typeMap);
1928            for (Type i : types.interfaces(t))
1929                closure(i, typesSkip, typeMap);
1930        }
1931    }
1932
1933    /** Return the first method in t2 that conflicts with a method from t1. */
1934    private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1935        for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1936            Type st1 = null;
1937            if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1938                    (s1.flags() & SYNTHETIC) != 0) continue;
1939            Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1940            if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1941            for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1942                if (s1 == s2) continue;
1943                if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1944                        (s2.flags() & SYNTHETIC) != 0) continue;
1945                if (st1 == null) st1 = types.memberType(t1, s1);
1946                Type st2 = types.memberType(t2, s2);
1947                if (types.overrideEquivalent(st1, st2)) {
1948                    List<Type> tvars1 = st1.getTypeArguments();
1949                    List<Type> tvars2 = st2.getTypeArguments();
1950                    Type rt1 = st1.getReturnType();
1951                    Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1952                    boolean compat =
1953                        types.isSameType(rt1, rt2) ||
1954                        !rt1.isPrimitiveOrVoid() &&
1955                        !rt2.isPrimitiveOrVoid() &&
1956                        (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1957                         types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1958                         checkCommonOverriderIn(s1,s2,site);
1959                    if (!compat) {
1960                        log.error(pos, "types.incompatible.diff.ret",
1961                            t1, t2, s2.name +
1962                            "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1963                        return s2;
1964                    }
1965                } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1966                        !checkCommonOverriderIn(s1, s2, site)) {
1967                    log.error(pos,
1968                            "name.clash.same.erasure.no.override",
1969                            s1, s1.location(),
1970                            s2, s2.location());
1971                    return s2;
1972                }
1973            }
1974        }
1975        return null;
1976    }
1977    //WHERE
1978    boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1979        Map<TypeSymbol,Type> supertypes = new HashMap<>();
1980        Type st1 = types.memberType(site, s1);
1981        Type st2 = types.memberType(site, s2);
1982        closure(site, supertypes);
1983        for (Type t : supertypes.values()) {
1984            for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1985                if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1986                Type st3 = types.memberType(site,s3);
1987                if (types.overrideEquivalent(st3, st1) &&
1988                        types.overrideEquivalent(st3, st2) &&
1989                        types.returnTypeSubstitutable(st3, st1) &&
1990                        types.returnTypeSubstitutable(st3, st2)) {
1991                    return true;
1992                }
1993            }
1994        }
1995        return false;
1996    }
1997
1998    /** Check that a given method conforms with any method it overrides.
1999     *  @param tree         The tree from which positions are extracted
2000     *                      for errors.
2001     *  @param m            The overriding method.
2002     */
2003    void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2004        ClassSymbol origin = (ClassSymbol)m.owner;
2005        if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
2006            if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2007                log.error(tree.pos(), "enum.no.finalize");
2008                return;
2009            }
2010        for (Type t = origin.type; t.hasTag(CLASS);
2011             t = types.supertype(t)) {
2012            if (t != origin.type) {
2013                checkOverride(tree, t, origin, m);
2014            }
2015            for (Type t2 : types.interfaces(t)) {
2016                checkOverride(tree, t2, origin, m);
2017            }
2018        }
2019
2020        final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2021        // Check if this method must override a super method due to being annotated with @Override
2022        // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2023        // be treated "as if as they were annotated" with @Override.
2024        boolean mustOverride = explicitOverride ||
2025                (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2026        if (mustOverride && !isOverrider(m)) {
2027            DiagnosticPosition pos = tree.pos();
2028            for (JCAnnotation a : tree.getModifiers().annotations) {
2029                if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2030                    pos = a.pos();
2031                    break;
2032                }
2033            }
2034            log.error(pos,
2035                      explicitOverride ? Errors.MethodDoesNotOverrideSuperclass :
2036                                Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2037        }
2038    }
2039
2040    void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2041        TypeSymbol c = site.tsym;
2042        for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2043            if (m.overrides(sym, origin, types, false)) {
2044                if ((sym.flags() & ABSTRACT) == 0) {
2045                    checkOverride(tree, m, (MethodSymbol)sym, origin);
2046                }
2047            }
2048        }
2049    }
2050
2051    private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
2052        public boolean accepts(Symbol s) {
2053            return MethodSymbol.implementation_filter.accepts(s) &&
2054                    (s.flags() & BAD_OVERRIDE) == 0;
2055
2056        }
2057    };
2058
2059    public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2060            ClassSymbol someClass) {
2061        /* At present, annotations cannot possibly have a method that is override
2062         * equivalent with Object.equals(Object) but in any case the condition is
2063         * fine for completeness.
2064         */
2065        if (someClass == (ClassSymbol)syms.objectType.tsym ||
2066            someClass.isInterface() || someClass.isEnum() ||
2067            (someClass.flags() & ANNOTATION) != 0 ||
2068            (someClass.flags() & ABSTRACT) != 0) return;
2069        //anonymous inner classes implementing interfaces need especial treatment
2070        if (someClass.isAnonymous()) {
2071            List<Type> interfaces =  types.interfaces(someClass.type);
2072            if (interfaces != null && !interfaces.isEmpty() &&
2073                interfaces.head.tsym == syms.comparatorType.tsym) return;
2074        }
2075        checkClassOverrideEqualsAndHash(pos, someClass);
2076    }
2077
2078    private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2079            ClassSymbol someClass) {
2080        if (lint.isEnabled(LintCategory.OVERRIDES)) {
2081            MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2082                    .tsym.members().findFirst(names.equals);
2083            MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2084                    .tsym.members().findFirst(names.hashCode);
2085            boolean overridesEquals = types.implementation(equalsAtObject,
2086                someClass, false, equalsHasCodeFilter).owner == someClass;
2087            boolean overridesHashCode = types.implementation(hashCodeAtObject,
2088                someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2089
2090            if (overridesEquals && !overridesHashCode) {
2091                log.warning(LintCategory.OVERRIDES, pos,
2092                        "override.equals.but.not.hashcode", someClass);
2093            }
2094        }
2095    }
2096
2097    private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2098        ClashFilter cf = new ClashFilter(origin.type);
2099        return (cf.accepts(s1) &&
2100                cf.accepts(s2) &&
2101                types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2102    }
2103
2104
2105    /** Check that all abstract members of given class have definitions.
2106     *  @param pos          Position to be used for error reporting.
2107     *  @param c            The class.
2108     */
2109    void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2110        MethodSymbol undef = types.firstUnimplementedAbstract(c);
2111        if (undef != null) {
2112            MethodSymbol undef1 =
2113                new MethodSymbol(undef.flags(), undef.name,
2114                                 types.memberType(c.type, undef), undef.owner);
2115            log.error(pos, "does.not.override.abstract",
2116                      c, undef1, undef1.location());
2117        }
2118    }
2119
2120    void checkNonCyclicDecl(JCClassDecl tree) {
2121        CycleChecker cc = new CycleChecker();
2122        cc.scan(tree);
2123        if (!cc.errorFound && !cc.partialCheck) {
2124            tree.sym.flags_field |= ACYCLIC;
2125        }
2126    }
2127
2128    class CycleChecker extends TreeScanner {
2129
2130        List<Symbol> seenClasses = List.nil();
2131        boolean errorFound = false;
2132        boolean partialCheck = false;
2133
2134        private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2135            if (sym != null && sym.kind == TYP) {
2136                Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2137                if (classEnv != null) {
2138                    DiagnosticSource prevSource = log.currentSource();
2139                    try {
2140                        log.useSource(classEnv.toplevel.sourcefile);
2141                        scan(classEnv.tree);
2142                    }
2143                    finally {
2144                        log.useSource(prevSource.getFile());
2145                    }
2146                } else if (sym.kind == TYP) {
2147                    checkClass(pos, sym, List.<JCTree>nil());
2148                }
2149            } else {
2150                //not completed yet
2151                partialCheck = true;
2152            }
2153        }
2154
2155        @Override
2156        public void visitSelect(JCFieldAccess tree) {
2157            super.visitSelect(tree);
2158            checkSymbol(tree.pos(), tree.sym);
2159        }
2160
2161        @Override
2162        public void visitIdent(JCIdent tree) {
2163            checkSymbol(tree.pos(), tree.sym);
2164        }
2165
2166        @Override
2167        public void visitTypeApply(JCTypeApply tree) {
2168            scan(tree.clazz);
2169        }
2170
2171        @Override
2172        public void visitTypeArray(JCArrayTypeTree tree) {
2173            scan(tree.elemtype);
2174        }
2175
2176        @Override
2177        public void visitClassDef(JCClassDecl tree) {
2178            List<JCTree> supertypes = List.nil();
2179            if (tree.getExtendsClause() != null) {
2180                supertypes = supertypes.prepend(tree.getExtendsClause());
2181            }
2182            if (tree.getImplementsClause() != null) {
2183                for (JCTree intf : tree.getImplementsClause()) {
2184                    supertypes = supertypes.prepend(intf);
2185                }
2186            }
2187            checkClass(tree.pos(), tree.sym, supertypes);
2188        }
2189
2190        void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2191            if ((c.flags_field & ACYCLIC) != 0)
2192                return;
2193            if (seenClasses.contains(c)) {
2194                errorFound = true;
2195                noteCyclic(pos, (ClassSymbol)c);
2196            } else if (!c.type.isErroneous()) {
2197                try {
2198                    seenClasses = seenClasses.prepend(c);
2199                    if (c.type.hasTag(CLASS)) {
2200                        if (supertypes.nonEmpty()) {
2201                            scan(supertypes);
2202                        }
2203                        else {
2204                            ClassType ct = (ClassType)c.type;
2205                            if (ct.supertype_field == null ||
2206                                    ct.interfaces_field == null) {
2207                                //not completed yet
2208                                partialCheck = true;
2209                                return;
2210                            }
2211                            checkSymbol(pos, ct.supertype_field.tsym);
2212                            for (Type intf : ct.interfaces_field) {
2213                                checkSymbol(pos, intf.tsym);
2214                            }
2215                        }
2216                        if (c.owner.kind == TYP) {
2217                            checkSymbol(pos, c.owner);
2218                        }
2219                    }
2220                } finally {
2221                    seenClasses = seenClasses.tail;
2222                }
2223            }
2224        }
2225    }
2226
2227    /** Check for cyclic references. Issue an error if the
2228     *  symbol of the type referred to has a LOCKED flag set.
2229     *
2230     *  @param pos      Position to be used for error reporting.
2231     *  @param t        The type referred to.
2232     */
2233    void checkNonCyclic(DiagnosticPosition pos, Type t) {
2234        checkNonCyclicInternal(pos, t);
2235    }
2236
2237
2238    void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2239        checkNonCyclic1(pos, t, List.<TypeVar>nil());
2240    }
2241
2242    private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2243        final TypeVar tv;
2244        if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2245            return;
2246        if (seen.contains(t)) {
2247            tv = (TypeVar)t;
2248            tv.bound = types.createErrorType(t);
2249            log.error(pos, "cyclic.inheritance", t);
2250        } else if (t.hasTag(TYPEVAR)) {
2251            tv = (TypeVar)t;
2252            seen = seen.prepend(tv);
2253            for (Type b : types.getBounds(tv))
2254                checkNonCyclic1(pos, b, seen);
2255        }
2256    }
2257
2258    /** Check for cyclic references. Issue an error if the
2259     *  symbol of the type referred to has a LOCKED flag set.
2260     *
2261     *  @param pos      Position to be used for error reporting.
2262     *  @param t        The type referred to.
2263     *  @returns        True if the check completed on all attributed classes
2264     */
2265    private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2266        boolean complete = true; // was the check complete?
2267        //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2268        Symbol c = t.tsym;
2269        if ((c.flags_field & ACYCLIC) != 0) return true;
2270
2271        if ((c.flags_field & LOCKED) != 0) {
2272            noteCyclic(pos, (ClassSymbol)c);
2273        } else if (!c.type.isErroneous()) {
2274            try {
2275                c.flags_field |= LOCKED;
2276                if (c.type.hasTag(CLASS)) {
2277                    ClassType clazz = (ClassType)c.type;
2278                    if (clazz.interfaces_field != null)
2279                        for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2280                            complete &= checkNonCyclicInternal(pos, l.head);
2281                    if (clazz.supertype_field != null) {
2282                        Type st = clazz.supertype_field;
2283                        if (st != null && st.hasTag(CLASS))
2284                            complete &= checkNonCyclicInternal(pos, st);
2285                    }
2286                    if (c.owner.kind == TYP)
2287                        complete &= checkNonCyclicInternal(pos, c.owner.type);
2288                }
2289            } finally {
2290                c.flags_field &= ~LOCKED;
2291            }
2292        }
2293        if (complete)
2294            complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2295        if (complete) c.flags_field |= ACYCLIC;
2296        return complete;
2297    }
2298
2299    /** Note that we found an inheritance cycle. */
2300    private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2301        log.error(pos, "cyclic.inheritance", c);
2302        for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2303            l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2304        Type st = types.supertype(c.type);
2305        if (st.hasTag(CLASS))
2306            ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2307        c.type = types.createErrorType(c, c.type);
2308        c.flags_field |= ACYCLIC;
2309    }
2310
2311    /** Check that all methods which implement some
2312     *  method conform to the method they implement.
2313     *  @param tree         The class definition whose members are checked.
2314     */
2315    void checkImplementations(JCClassDecl tree) {
2316        checkImplementations(tree, tree.sym, tree.sym);
2317    }
2318    //where
2319        /** Check that all methods which implement some
2320         *  method in `ic' conform to the method they implement.
2321         */
2322        void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2323            for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2324                ClassSymbol lc = (ClassSymbol)l.head.tsym;
2325                if ((lc.flags() & ABSTRACT) != 0) {
2326                    for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2327                        if (sym.kind == MTH &&
2328                            (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2329                            MethodSymbol absmeth = (MethodSymbol)sym;
2330                            MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2331                            if (implmeth != null && implmeth != absmeth &&
2332                                (implmeth.owner.flags() & INTERFACE) ==
2333                                (origin.flags() & INTERFACE)) {
2334                                // don't check if implmeth is in a class, yet
2335                                // origin is an interface. This case arises only
2336                                // if implmeth is declared in Object. The reason is
2337                                // that interfaces really don't inherit from
2338                                // Object it's just that the compiler represents
2339                                // things that way.
2340                                checkOverride(tree, implmeth, absmeth, origin);
2341                            }
2342                        }
2343                    }
2344                }
2345            }
2346        }
2347
2348    /** Check that all abstract methods implemented by a class are
2349     *  mutually compatible.
2350     *  @param pos          Position to be used for error reporting.
2351     *  @param c            The class whose interfaces are checked.
2352     */
2353    void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2354        List<Type> supertypes = types.interfaces(c);
2355        Type supertype = types.supertype(c);
2356        if (supertype.hasTag(CLASS) &&
2357            (supertype.tsym.flags() & ABSTRACT) != 0)
2358            supertypes = supertypes.prepend(supertype);
2359        for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2360            if (!l.head.getTypeArguments().isEmpty() &&
2361                !checkCompatibleAbstracts(pos, l.head, l.head, c))
2362                return;
2363            for (List<Type> m = supertypes; m != l; m = m.tail)
2364                if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2365                    return;
2366        }
2367        checkCompatibleConcretes(pos, c);
2368    }
2369
2370    void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2371        for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2372            for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
2373                // VM allows methods and variables with differing types
2374                if (sym.kind == sym2.kind &&
2375                    types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
2376                    sym != sym2 &&
2377                    (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
2378                    (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
2379                    syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
2380                    return;
2381                }
2382            }
2383        }
2384    }
2385
2386    /** Check that all non-override equivalent methods accessible from 'site'
2387     *  are mutually compatible (JLS 8.4.8/9.4.1).
2388     *
2389     *  @param pos  Position to be used for error reporting.
2390     *  @param site The class whose methods are checked.
2391     *  @param sym  The method symbol to be checked.
2392     */
2393    void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2394         ClashFilter cf = new ClashFilter(site);
2395        //for each method m1 that is overridden (directly or indirectly)
2396        //by method 'sym' in 'site'...
2397
2398        List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2399        boolean overridesAny = false;
2400        for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2401            if (!sym.overrides(m1, site.tsym, types, false)) {
2402                if (m1 == sym) {
2403                    continue;
2404                }
2405
2406                if (!overridesAny) {
2407                    potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2408                }
2409                continue;
2410            }
2411
2412            if (m1 != sym) {
2413                overridesAny = true;
2414                potentiallyAmbiguousList = List.nil();
2415            }
2416
2417            //...check each method m2 that is a member of 'site'
2418            for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2419                if (m2 == m1) continue;
2420                //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2421                //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2422                if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2423                        types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2424                    sym.flags_field |= CLASH;
2425                    String key = m1 == sym ?
2426                            "name.clash.same.erasure.no.override" :
2427                            "name.clash.same.erasure.no.override.1";
2428                    log.error(pos,
2429                            key,
2430                            sym, sym.location(),
2431                            m2, m2.location(),
2432                            m1, m1.location());
2433                    return;
2434                }
2435            }
2436        }
2437
2438        if (!overridesAny) {
2439            for (MethodSymbol m: potentiallyAmbiguousList) {
2440                checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2441            }
2442        }
2443    }
2444
2445    /** Check that all static methods accessible from 'site' are
2446     *  mutually compatible (JLS 8.4.8).
2447     *
2448     *  @param pos  Position to be used for error reporting.
2449     *  @param site The class whose methods are checked.
2450     *  @param sym  The method symbol to be checked.
2451     */
2452    void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2453        ClashFilter cf = new ClashFilter(site);
2454        //for each method m1 that is a member of 'site'...
2455        for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2456            //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2457            //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2458            if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2459                if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2460                    log.error(pos,
2461                            "name.clash.same.erasure.no.hide",
2462                            sym, sym.location(),
2463                            s, s.location());
2464                    return;
2465                } else {
2466                    checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2467                }
2468            }
2469         }
2470     }
2471
2472     //where
2473     private class ClashFilter implements Filter<Symbol> {
2474
2475         Type site;
2476
2477         ClashFilter(Type site) {
2478             this.site = site;
2479         }
2480
2481         boolean shouldSkip(Symbol s) {
2482             return (s.flags() & CLASH) != 0 &&
2483                s.owner == site.tsym;
2484         }
2485
2486         public boolean accepts(Symbol s) {
2487             return s.kind == MTH &&
2488                     (s.flags() & SYNTHETIC) == 0 &&
2489                     !shouldSkip(s) &&
2490                     s.isInheritedIn(site.tsym, types) &&
2491                     !s.isConstructor();
2492         }
2493     }
2494
2495    void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2496        DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2497        for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2498            Assert.check(m.kind == MTH);
2499            List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2500            if (prov.size() > 1) {
2501                ListBuffer<Symbol> abstracts = new ListBuffer<>();
2502                ListBuffer<Symbol> defaults = new ListBuffer<>();
2503                for (MethodSymbol provSym : prov) {
2504                    if ((provSym.flags() & DEFAULT) != 0) {
2505                        defaults = defaults.append(provSym);
2506                    } else if ((provSym.flags() & ABSTRACT) != 0) {
2507                        abstracts = abstracts.append(provSym);
2508                    }
2509                    if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2510                        //strong semantics - issue an error if two sibling interfaces
2511                        //have two override-equivalent defaults - or if one is abstract
2512                        //and the other is default
2513                        String errKey;
2514                        Symbol s1 = defaults.first();
2515                        Symbol s2;
2516                        if (defaults.size() > 1) {
2517                            errKey = "types.incompatible.unrelated.defaults";
2518                            s2 = defaults.toList().tail.head;
2519                        } else {
2520                            errKey = "types.incompatible.abstract.default";
2521                            s2 = abstracts.first();
2522                        }
2523                        log.error(pos, errKey,
2524                                Kinds.kindName(site.tsym), site,
2525                                m.name, types.memberType(site, m).getParameterTypes(),
2526                                s1.location(), s2.location());
2527                        break;
2528                    }
2529                }
2530            }
2531        }
2532    }
2533
2534    //where
2535     private class DefaultMethodClashFilter implements Filter<Symbol> {
2536
2537         Type site;
2538
2539         DefaultMethodClashFilter(Type site) {
2540             this.site = site;
2541         }
2542
2543         public boolean accepts(Symbol s) {
2544             return s.kind == MTH &&
2545                     (s.flags() & DEFAULT) != 0 &&
2546                     s.isInheritedIn(site.tsym, types) &&
2547                     !s.isConstructor();
2548         }
2549     }
2550
2551    /**
2552      * Report warnings for potentially ambiguous method declarations. Two declarations
2553      * are potentially ambiguous if they feature two unrelated functional interface
2554      * in same argument position (in which case, a call site passing an implicit
2555      * lambda would be ambiguous).
2556      */
2557    void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2558            MethodSymbol msym1, MethodSymbol msym2) {
2559        if (msym1 != msym2 &&
2560                allowDefaultMethods &&
2561                lint.isEnabled(LintCategory.OVERLOADS) &&
2562                (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2563                (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2564            Type mt1 = types.memberType(site, msym1);
2565            Type mt2 = types.memberType(site, msym2);
2566            //if both generic methods, adjust type variables
2567            if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2568                    types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2569                mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2570            }
2571            //expand varargs methods if needed
2572            int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2573            List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2574            List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2575            //if arities don't match, exit
2576            if (args1.length() != args2.length()) return;
2577            boolean potentiallyAmbiguous = false;
2578            while (args1.nonEmpty() && args2.nonEmpty()) {
2579                Type s = args1.head;
2580                Type t = args2.head;
2581                if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2582                    if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2583                            types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2584                            types.findDescriptorType(s).getParameterTypes().length() ==
2585                            types.findDescriptorType(t).getParameterTypes().length()) {
2586                        potentiallyAmbiguous = true;
2587                    } else {
2588                        break;
2589                    }
2590                }
2591                args1 = args1.tail;
2592                args2 = args2.tail;
2593            }
2594            if (potentiallyAmbiguous) {
2595                //we found two incompatible functional interfaces with same arity
2596                //this means a call site passing an implicit lambda would be ambigiuous
2597                msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2598                msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2599                log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2600                            msym1, msym1.location(),
2601                            msym2, msym2.location());
2602                return;
2603            }
2604        }
2605    }
2606
2607    void checkElemAccessFromSerializableLambda(final JCTree tree) {
2608        if (warnOnAccessToSensitiveMembers) {
2609            Symbol sym = TreeInfo.symbol(tree);
2610            if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2611                return;
2612            }
2613
2614            if (sym.kind == VAR) {
2615                if ((sym.flags() & PARAMETER) != 0 ||
2616                    sym.isLocal() ||
2617                    sym.name == names._this ||
2618                    sym.name == names._super) {
2619                    return;
2620                }
2621            }
2622
2623            if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2624                    isEffectivelyNonPublic(sym)) {
2625                log.warning(tree.pos(),
2626                        "access.to.sensitive.member.from.serializable.element", sym);
2627            }
2628        }
2629    }
2630
2631    private boolean isEffectivelyNonPublic(Symbol sym) {
2632        if (sym.packge() == syms.rootPackage) {
2633            return false;
2634        }
2635
2636        while (sym.kind != PCK) {
2637            if ((sym.flags() & PUBLIC) == 0) {
2638                return true;
2639            }
2640            sym = sym.owner;
2641        }
2642        return false;
2643    }
2644
2645    /** Report a conflict between a user symbol and a synthetic symbol.
2646     */
2647    private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2648        if (!sym.type.isErroneous()) {
2649            log.error(pos, "synthetic.name.conflict", sym, sym.location());
2650        }
2651    }
2652
2653    /** Check that class c does not implement directly or indirectly
2654     *  the same parameterized interface with two different argument lists.
2655     *  @param pos          Position to be used for error reporting.
2656     *  @param type         The type whose interfaces are checked.
2657     */
2658    void checkClassBounds(DiagnosticPosition pos, Type type) {
2659        checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2660    }
2661//where
2662        /** Enter all interfaces of type `type' into the hash table `seensofar'
2663         *  with their class symbol as key and their type as value. Make
2664         *  sure no class is entered with two different types.
2665         */
2666        void checkClassBounds(DiagnosticPosition pos,
2667                              Map<TypeSymbol,Type> seensofar,
2668                              Type type) {
2669            if (type.isErroneous()) return;
2670            for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2671                Type it = l.head;
2672                Type oldit = seensofar.put(it.tsym, it);
2673                if (oldit != null) {
2674                    List<Type> oldparams = oldit.allparams();
2675                    List<Type> newparams = it.allparams();
2676                    if (!types.containsTypeEquivalent(oldparams, newparams))
2677                        log.error(pos, "cant.inherit.diff.arg",
2678                                  it.tsym, Type.toString(oldparams),
2679                                  Type.toString(newparams));
2680                }
2681                checkClassBounds(pos, seensofar, it);
2682            }
2683            Type st = types.supertype(type);
2684            if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2685        }
2686
2687    /** Enter interface into into set.
2688     *  If it existed already, issue a "repeated interface" error.
2689     */
2690    void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2691        if (its.contains(it))
2692            log.error(pos, "repeated.interface");
2693        else {
2694            its.add(it);
2695        }
2696    }
2697
2698/* *************************************************************************
2699 * Check annotations
2700 **************************************************************************/
2701
2702    /**
2703     * Recursively validate annotations values
2704     */
2705    void validateAnnotationTree(JCTree tree) {
2706        class AnnotationValidator extends TreeScanner {
2707            @Override
2708            public void visitAnnotation(JCAnnotation tree) {
2709                if (!tree.type.isErroneous()) {
2710                    super.visitAnnotation(tree);
2711                    validateAnnotation(tree);
2712                }
2713            }
2714        }
2715        tree.accept(new AnnotationValidator());
2716    }
2717
2718    /**
2719     *  {@literal
2720     *  Annotation types are restricted to primitives, String, an
2721     *  enum, an annotation, Class, Class<?>, Class<? extends
2722     *  Anything>, arrays of the preceding.
2723     *  }
2724     */
2725    void validateAnnotationType(JCTree restype) {
2726        // restype may be null if an error occurred, so don't bother validating it
2727        if (restype != null) {
2728            validateAnnotationType(restype.pos(), restype.type);
2729        }
2730    }
2731
2732    void validateAnnotationType(DiagnosticPosition pos, Type type) {
2733        if (type.isPrimitive()) return;
2734        if (types.isSameType(type, syms.stringType)) return;
2735        if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2736        if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2737        if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2738        if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2739            validateAnnotationType(pos, types.elemtype(type));
2740            return;
2741        }
2742        log.error(pos, "invalid.annotation.member.type");
2743    }
2744
2745    /**
2746     * "It is also a compile-time error if any method declared in an
2747     * annotation type has a signature that is override-equivalent to
2748     * that of any public or protected method declared in class Object
2749     * or in the interface annotation.Annotation."
2750     *
2751     * @jls 9.6 Annotation Types
2752     */
2753    void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2754        for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2755            Scope s = sup.tsym.members();
2756            for (Symbol sym : s.getSymbolsByName(m.name)) {
2757                if (sym.kind == MTH &&
2758                    (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2759                    types.overrideEquivalent(m.type, sym.type))
2760                    log.error(pos, "intf.annotation.member.clash", sym, sup);
2761            }
2762        }
2763    }
2764
2765    /** Check the annotations of a symbol.
2766     */
2767    public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2768        for (JCAnnotation a : annotations)
2769            validateAnnotation(a, s);
2770    }
2771
2772    /** Check the type annotations.
2773     */
2774    public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2775        for (JCAnnotation a : annotations)
2776            validateTypeAnnotation(a, isTypeParameter);
2777    }
2778
2779    /** Check an annotation of a symbol.
2780     */
2781    private void validateAnnotation(JCAnnotation a, Symbol s) {
2782        validateAnnotationTree(a);
2783
2784        if (!annotationApplicable(a, s))
2785            log.error(a.pos(), "annotation.type.not.applicable");
2786
2787        if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2788            if (s.kind != TYP) {
2789                log.error(a.pos(), "bad.functional.intf.anno");
2790            } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2791                log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2792            }
2793        }
2794    }
2795
2796    public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2797        Assert.checkNonNull(a.type);
2798        validateAnnotationTree(a);
2799
2800        if (a.hasTag(TYPE_ANNOTATION) &&
2801                !a.annotationType.type.isErroneous() &&
2802                !isTypeAnnotation(a, isTypeParameter)) {
2803            log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
2804        }
2805    }
2806
2807    /**
2808     * Validate the proposed container 'repeatable' on the
2809     * annotation type symbol 's'. Report errors at position
2810     * 'pos'.
2811     *
2812     * @param s The (annotation)type declaration annotated with a @Repeatable
2813     * @param repeatable the @Repeatable on 's'
2814     * @param pos where to report errors
2815     */
2816    public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2817        Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2818
2819        Type t = null;
2820        List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2821        if (!l.isEmpty()) {
2822            Assert.check(l.head.fst.name == names.value);
2823            t = ((Attribute.Class)l.head.snd).getValue();
2824        }
2825
2826        if (t == null) {
2827            // errors should already have been reported during Annotate
2828            return;
2829        }
2830
2831        validateValue(t.tsym, s, pos);
2832        validateRetention(t.tsym, s, pos);
2833        validateDocumented(t.tsym, s, pos);
2834        validateInherited(t.tsym, s, pos);
2835        validateTarget(t.tsym, s, pos);
2836        validateDefault(t.tsym, pos);
2837    }
2838
2839    private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2840        Symbol sym = container.members().findFirst(names.value);
2841        if (sym != null && sym.kind == MTH) {
2842            MethodSymbol m = (MethodSymbol) sym;
2843            Type ret = m.getReturnType();
2844            if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2845                log.error(pos, "invalid.repeatable.annotation.value.return",
2846                        container, ret, types.makeArrayType(contained.type));
2847            }
2848        } else {
2849            log.error(pos, "invalid.repeatable.annotation.no.value", container);
2850        }
2851    }
2852
2853    private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2854        Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2855        Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2856
2857        boolean error = false;
2858        switch (containedRetention) {
2859        case RUNTIME:
2860            if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2861                error = true;
2862            }
2863            break;
2864        case CLASS:
2865            if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2866                error = true;
2867            }
2868        }
2869        if (error ) {
2870            log.error(pos, "invalid.repeatable.annotation.retention",
2871                      container, containerRetention,
2872                      contained, containedRetention);
2873        }
2874    }
2875
2876    private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2877        if (contained.attribute(syms.documentedType.tsym) != null) {
2878            if (container.attribute(syms.documentedType.tsym) == null) {
2879                log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2880            }
2881        }
2882    }
2883
2884    private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2885        if (contained.attribute(syms.inheritedType.tsym) != null) {
2886            if (container.attribute(syms.inheritedType.tsym) == null) {
2887                log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2888            }
2889        }
2890    }
2891
2892    private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2893        // The set of targets the container is applicable to must be a subset
2894        // (with respect to annotation target semantics) of the set of targets
2895        // the contained is applicable to. The target sets may be implicit or
2896        // explicit.
2897
2898        Set<Name> containerTargets;
2899        Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2900        if (containerTarget == null) {
2901            containerTargets = getDefaultTargetSet();
2902        } else {
2903            containerTargets = new HashSet<>();
2904            for (Attribute app : containerTarget.values) {
2905                if (!(app instanceof Attribute.Enum)) {
2906                    continue; // recovery
2907                }
2908                Attribute.Enum e = (Attribute.Enum)app;
2909                containerTargets.add(e.value.name);
2910            }
2911        }
2912
2913        Set<Name> containedTargets;
2914        Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2915        if (containedTarget == null) {
2916            containedTargets = getDefaultTargetSet();
2917        } else {
2918            containedTargets = new HashSet<>();
2919            for (Attribute app : containedTarget.values) {
2920                if (!(app instanceof Attribute.Enum)) {
2921                    continue; // recovery
2922                }
2923                Attribute.Enum e = (Attribute.Enum)app;
2924                containedTargets.add(e.value.name);
2925            }
2926        }
2927
2928        if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2929            log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2930        }
2931    }
2932
2933    /* get a set of names for the default target */
2934    private Set<Name> getDefaultTargetSet() {
2935        if (defaultTargets == null) {
2936            Set<Name> targets = new HashSet<>();
2937            targets.add(names.ANNOTATION_TYPE);
2938            targets.add(names.CONSTRUCTOR);
2939            targets.add(names.FIELD);
2940            targets.add(names.LOCAL_VARIABLE);
2941            targets.add(names.METHOD);
2942            targets.add(names.PACKAGE);
2943            targets.add(names.PARAMETER);
2944            targets.add(names.TYPE);
2945
2946            defaultTargets = java.util.Collections.unmodifiableSet(targets);
2947        }
2948
2949        return defaultTargets;
2950    }
2951    private Set<Name> defaultTargets;
2952
2953
2954    /** Checks that s is a subset of t, with respect to ElementType
2955     * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2956     * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2957     * TYPE_PARAMETER}.
2958     */
2959    private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2960        // Check that all elements in s are present in t
2961        for (Name n2 : s) {
2962            boolean currentElementOk = false;
2963            for (Name n1 : t) {
2964                if (n1 == n2) {
2965                    currentElementOk = true;
2966                    break;
2967                } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2968                    currentElementOk = true;
2969                    break;
2970                } else if (n1 == names.TYPE_USE &&
2971                        (n2 == names.TYPE ||
2972                         n2 == names.ANNOTATION_TYPE ||
2973                         n2 == names.TYPE_PARAMETER)) {
2974                    currentElementOk = true;
2975                    break;
2976                }
2977            }
2978            if (!currentElementOk)
2979                return false;
2980        }
2981        return true;
2982    }
2983
2984    private void validateDefault(Symbol container, DiagnosticPosition pos) {
2985        // validate that all other elements of containing type has defaults
2986        Scope scope = container.members();
2987        for(Symbol elm : scope.getSymbols()) {
2988            if (elm.name != names.value &&
2989                elm.kind == MTH &&
2990                ((MethodSymbol)elm).defaultValue == null) {
2991                log.error(pos,
2992                          "invalid.repeatable.annotation.elem.nondefault",
2993                          container,
2994                          elm);
2995            }
2996        }
2997    }
2998
2999    /** Is s a method symbol that overrides a method in a superclass? */
3000    boolean isOverrider(Symbol s) {
3001        if (s.kind != MTH || s.isStatic())
3002            return false;
3003        MethodSymbol m = (MethodSymbol)s;
3004        TypeSymbol owner = (TypeSymbol)m.owner;
3005        for (Type sup : types.closure(owner.type)) {
3006            if (sup == owner.type)
3007                continue; // skip "this"
3008            Scope scope = sup.tsym.members();
3009            for (Symbol sym : scope.getSymbolsByName(m.name)) {
3010                if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3011                    return true;
3012            }
3013        }
3014        return false;
3015    }
3016
3017    /** Is the annotation applicable to types? */
3018    protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3019        List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3020        return (targets == null) ?
3021                false :
3022                targets.stream()
3023                        .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3024    }
3025    //where
3026        boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3027            Attribute.Enum e = (Attribute.Enum)a;
3028            return (e.value.name == names.TYPE_USE ||
3029                    (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3030        }
3031
3032    /** Is the annotation applicable to the symbol? */
3033    boolean annotationApplicable(JCAnnotation a, Symbol s) {
3034        Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3035        Name[] targets;
3036
3037        if (arr == null) {
3038            targets = defaultTargetMetaInfo(a, s);
3039        } else {
3040            // TODO: can we optimize this?
3041            targets = new Name[arr.values.length];
3042            for (int i=0; i<arr.values.length; ++i) {
3043                Attribute app = arr.values[i];
3044                if (!(app instanceof Attribute.Enum)) {
3045                    return true; // recovery
3046                }
3047                Attribute.Enum e = (Attribute.Enum) app;
3048                targets[i] = e.value.name;
3049            }
3050        }
3051        for (Name target : targets) {
3052            if (target == names.TYPE) {
3053                if (s.kind == TYP)
3054                    return true;
3055            } else if (target == names.FIELD) {
3056                if (s.kind == VAR && s.owner.kind != MTH)
3057                    return true;
3058            } else if (target == names.METHOD) {
3059                if (s.kind == MTH && !s.isConstructor())
3060                    return true;
3061            } else if (target == names.PARAMETER) {
3062                if (s.kind == VAR && s.owner.kind == MTH &&
3063                      (s.flags() & PARAMETER) != 0) {
3064                    return true;
3065                }
3066            } else if (target == names.CONSTRUCTOR) {
3067                if (s.kind == MTH && s.isConstructor())
3068                    return true;
3069            } else if (target == names.LOCAL_VARIABLE) {
3070                if (s.kind == VAR && s.owner.kind == MTH &&
3071                      (s.flags() & PARAMETER) == 0) {
3072                    return true;
3073                }
3074            } else if (target == names.ANNOTATION_TYPE) {
3075                if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3076                    return true;
3077                }
3078            } else if (target == names.PACKAGE) {
3079                if (s.kind == PCK)
3080                    return true;
3081            } else if (target == names.TYPE_USE) {
3082                if (s.kind == TYP || s.kind == VAR ||
3083                        (s.kind == MTH && !s.isConstructor() &&
3084                                !s.type.getReturnType().hasTag(VOID)) ||
3085                        (s.kind == MTH && s.isConstructor())) {
3086                    return true;
3087                }
3088            } else if (target == names.TYPE_PARAMETER) {
3089                if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3090                    return true;
3091            } else
3092                return true; // Unknown ElementType. This should be an error at declaration site,
3093                             // assume applicable.
3094        }
3095        return false;
3096    }
3097
3098
3099    Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3100        Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3101        if (atTarget == null) return null; // ok, is applicable
3102        Attribute atValue = atTarget.member(names.value);
3103        if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3104        return (Attribute.Array) atValue;
3105    }
3106
3107    private final Name[] dfltTargetMeta;
3108    private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3109        return dfltTargetMeta;
3110    }
3111
3112    /** Check an annotation value.
3113     *
3114     * @param a The annotation tree to check
3115     * @return true if this annotation tree is valid, otherwise false
3116     */
3117    public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3118        boolean res = false;
3119        final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3120        try {
3121            res = validateAnnotation(a);
3122        } finally {
3123            log.popDiagnosticHandler(diagHandler);
3124        }
3125        return res;
3126    }
3127
3128    private boolean validateAnnotation(JCAnnotation a) {
3129        boolean isValid = true;
3130        AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3131
3132        // collect an inventory of the annotation elements
3133        Set<MethodSymbol> elements = metadata.getAnnotationElements();
3134
3135        // remove the ones that are assigned values
3136        for (JCTree arg : a.args) {
3137            if (!arg.hasTag(ASSIGN)) continue; // recovery
3138            JCAssign assign = (JCAssign)arg;
3139            Symbol m = TreeInfo.symbol(assign.lhs);
3140            if (m == null || m.type.isErroneous()) continue;
3141            if (!elements.remove(m)) {
3142                isValid = false;
3143                log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3144                        m.name, a.type);
3145            }
3146        }
3147
3148        // all the remaining ones better have default values
3149        List<Name> missingDefaults = List.nil();
3150        Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3151        for (MethodSymbol m : elements) {
3152            if (m.type.isErroneous())
3153                continue;
3154
3155            if (!membersWithDefault.contains(m))
3156                missingDefaults = missingDefaults.append(m.name);
3157        }
3158        missingDefaults = missingDefaults.reverse();
3159        if (missingDefaults.nonEmpty()) {
3160            isValid = false;
3161            String key = (missingDefaults.size() > 1)
3162                    ? "annotation.missing.default.value.1"
3163                    : "annotation.missing.default.value";
3164            log.error(a.pos(), key, a.type, missingDefaults);
3165        }
3166
3167        return isValid && validateTargetAnnotationValue(a);
3168    }
3169
3170    /* Validate the special java.lang.annotation.Target annotation */
3171    boolean validateTargetAnnotationValue(JCAnnotation a) {
3172        // special case: java.lang.annotation.Target must not have
3173        // repeated values in its value member
3174        if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3175                a.args.tail == null)
3176            return true;
3177
3178        boolean isValid = true;
3179        if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3180        JCAssign assign = (JCAssign) a.args.head;
3181        Symbol m = TreeInfo.symbol(assign.lhs);
3182        if (m.name != names.value) return false;
3183        JCTree rhs = assign.rhs;
3184        if (!rhs.hasTag(NEWARRAY)) return false;
3185        JCNewArray na = (JCNewArray) rhs;
3186        Set<Symbol> targets = new HashSet<>();
3187        for (JCTree elem : na.elems) {
3188            if (!targets.add(TreeInfo.symbol(elem))) {
3189                isValid = false;
3190                log.error(elem.pos(), "repeated.annotation.target");
3191            }
3192        }
3193        return isValid;
3194    }
3195
3196    void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3197        if (lint.isEnabled(LintCategory.DEP_ANN) &&
3198            (s.flags() & DEPRECATED) != 0 &&
3199            !syms.deprecatedType.isErroneous() &&
3200            s.attribute(syms.deprecatedType.tsym) == null) {
3201            log.warning(LintCategory.DEP_ANN,
3202                    pos, "missing.deprecated.annotation");
3203        }
3204    }
3205
3206    void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3207        if ((s.flags() & DEPRECATED) != 0 &&
3208                (other.flags() & DEPRECATED) == 0 &&
3209                s.outermostClass() != other.outermostClass()) {
3210            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3211                @Override
3212                public void report() {
3213                    warnDeprecated(pos, s);
3214                }
3215            });
3216        }
3217    }
3218
3219    void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3220        if ((s.flags() & PROPRIETARY) != 0) {
3221            deferredLintHandler.report(() -> {
3222                log.mandatoryWarning(pos, "sun.proprietary", s);
3223            });
3224        }
3225    }
3226
3227    void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3228        if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3229            log.error(pos, "not.in.profile", s, profile);
3230        }
3231    }
3232
3233/* *************************************************************************
3234 * Check for recursive annotation elements.
3235 **************************************************************************/
3236
3237    /** Check for cycles in the graph of annotation elements.
3238     */
3239    void checkNonCyclicElements(JCClassDecl tree) {
3240        if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3241        Assert.check((tree.sym.flags_field & LOCKED) == 0);
3242        try {
3243            tree.sym.flags_field |= LOCKED;
3244            for (JCTree def : tree.defs) {
3245                if (!def.hasTag(METHODDEF)) continue;
3246                JCMethodDecl meth = (JCMethodDecl)def;
3247                checkAnnotationResType(meth.pos(), meth.restype.type);
3248            }
3249        } finally {
3250            tree.sym.flags_field &= ~LOCKED;
3251            tree.sym.flags_field |= ACYCLIC_ANN;
3252        }
3253    }
3254
3255    void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3256        if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3257            return;
3258        if ((tsym.flags_field & LOCKED) != 0) {
3259            log.error(pos, "cyclic.annotation.element");
3260            return;
3261        }
3262        try {
3263            tsym.flags_field |= LOCKED;
3264            for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3265                if (s.kind != MTH)
3266                    continue;
3267                checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3268            }
3269        } finally {
3270            tsym.flags_field &= ~LOCKED;
3271            tsym.flags_field |= ACYCLIC_ANN;
3272        }
3273    }
3274
3275    void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3276        switch (type.getTag()) {
3277        case CLASS:
3278            if ((type.tsym.flags() & ANNOTATION) != 0)
3279                checkNonCyclicElementsInternal(pos, type.tsym);
3280            break;
3281        case ARRAY:
3282            checkAnnotationResType(pos, types.elemtype(type));
3283            break;
3284        default:
3285            break; // int etc
3286        }
3287    }
3288
3289/* *************************************************************************
3290 * Check for cycles in the constructor call graph.
3291 **************************************************************************/
3292
3293    /** Check for cycles in the graph of constructors calling other
3294     *  constructors.
3295     */
3296    void checkCyclicConstructors(JCClassDecl tree) {
3297        Map<Symbol,Symbol> callMap = new HashMap<>();
3298
3299        // enter each constructor this-call into the map
3300        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3301            JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3302            if (app == null) continue;
3303            JCMethodDecl meth = (JCMethodDecl) l.head;
3304            if (TreeInfo.name(app.meth) == names._this) {
3305                callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3306            } else {
3307                meth.sym.flags_field |= ACYCLIC;
3308            }
3309        }
3310
3311        // Check for cycles in the map
3312        Symbol[] ctors = new Symbol[0];
3313        ctors = callMap.keySet().toArray(ctors);
3314        for (Symbol caller : ctors) {
3315            checkCyclicConstructor(tree, caller, callMap);
3316        }
3317    }
3318
3319    /** Look in the map to see if the given constructor is part of a
3320     *  call cycle.
3321     */
3322    private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3323                                        Map<Symbol,Symbol> callMap) {
3324        if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3325            if ((ctor.flags_field & LOCKED) != 0) {
3326                log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3327                          "recursive.ctor.invocation");
3328            } else {
3329                ctor.flags_field |= LOCKED;
3330                checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3331                ctor.flags_field &= ~LOCKED;
3332            }
3333            ctor.flags_field |= ACYCLIC;
3334        }
3335    }
3336
3337/* *************************************************************************
3338 * Miscellaneous
3339 **************************************************************************/
3340
3341    /**
3342     *  Check for division by integer constant zero
3343     *  @param pos           Position for error reporting.
3344     *  @param operator      The operator for the expression
3345     *  @param operand       The right hand operand for the expression
3346     */
3347    void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3348        if (operand.constValue() != null
3349            && operand.getTag().isSubRangeOf(LONG)
3350            && ((Number) (operand.constValue())).longValue() == 0) {
3351            int opc = ((OperatorSymbol)operator).opcode;
3352            if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3353                || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3354                deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3355                    @Override
3356                    public void report() {
3357                        warnDivZero(pos);
3358                    }
3359                });
3360            }
3361        }
3362    }
3363
3364    /**
3365     * Check for empty statements after if
3366     */
3367    void checkEmptyIf(JCIf tree) {
3368        if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3369                lint.isEnabled(LintCategory.EMPTY))
3370            log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3371    }
3372
3373    /** Check that symbol is unique in given scope.
3374     *  @param pos           Position for error reporting.
3375     *  @param sym           The symbol.
3376     *  @param s             The scope.
3377     */
3378    boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3379        if (sym.type.isErroneous())
3380            return true;
3381        if (sym.owner.name == names.any) return false;
3382        for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3383            if (sym != byName &&
3384                    (byName.flags() & CLASH) == 0 &&
3385                    sym.kind == byName.kind &&
3386                    sym.name != names.error &&
3387                    (sym.kind != MTH ||
3388                     types.hasSameArgs(sym.type, byName.type) ||
3389                     types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3390                if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3391                    varargsDuplicateError(pos, sym, byName);
3392                    return true;
3393                } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3394                    duplicateErasureError(pos, sym, byName);
3395                    sym.flags_field |= CLASH;
3396                    return true;
3397                } else {
3398                    duplicateError(pos, byName);
3399                    return false;
3400                }
3401            }
3402        }
3403        return true;
3404    }
3405
3406    /** Report duplicate declaration error.
3407     */
3408    void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3409        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3410            log.error(pos, "name.clash.same.erasure", sym1, sym2);
3411        }
3412    }
3413
3414    /**Check that types imported through the ordinary imports don't clash with types imported
3415     * by other (static or ordinary) imports. Note that two static imports may import two clashing
3416     * types without an error on the imports.
3417     * @param toplevel       The toplevel tree for which the test should be performed.
3418     */
3419    void checkImportsUnique(JCCompilationUnit toplevel) {
3420        WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3421        WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3422        WriteableScope topLevelScope = toplevel.toplevelScope;
3423
3424        for (JCTree def : toplevel.defs) {
3425            if (!def.hasTag(IMPORT))
3426                continue;
3427
3428            JCImport imp = (JCImport) def;
3429
3430            if (imp.importScope == null)
3431                continue;
3432
3433            for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3434                if (imp.isStatic()) {
3435                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3436                    staticallyImportedSoFar.enter(sym);
3437                } else {
3438                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3439                    ordinallyImportedSoFar.enter(sym);
3440                }
3441            }
3442
3443            imp.importScope = null;
3444        }
3445    }
3446
3447    /** Check that single-type import is not already imported or top-level defined,
3448     *  but make an exception for two single-type imports which denote the same type.
3449     *  @param pos                     Position for error reporting.
3450     *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3451     *                                 ordinary imports.
3452     *  @param staticallyImportedSoFar A Scope containing types imported so far through
3453     *                                 static imports.
3454     *  @param topLevelScope           The current file's top-level Scope
3455     *  @param sym                     The symbol.
3456     *  @param staticImport            Whether or not this was a static import
3457     */
3458    private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3459                                      Scope staticallyImportedSoFar, Scope topLevelScope,
3460                                      Symbol sym, boolean staticImport) {
3461        Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3462        Symbol clashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3463        if (clashing == null && !staticImport) {
3464            clashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3465        }
3466        if (clashing != null) {
3467            if (staticImport)
3468                log.error(pos, "already.defined.static.single.import", clashing);
3469            else
3470                log.error(pos, "already.defined.single.import", clashing);
3471            return false;
3472        }
3473        clashing = topLevelScope.findFirst(sym.name, duplicates);
3474        if (clashing != null) {
3475            log.error(pos, "already.defined.this.unit", clashing);
3476            return false;
3477        }
3478        return true;
3479    }
3480
3481    /** Check that a qualified name is in canonical form (for import decls).
3482     */
3483    public void checkCanonical(JCTree tree) {
3484        if (!isCanonical(tree))
3485            log.error(tree.pos(), "import.requires.canonical",
3486                      TreeInfo.symbol(tree));
3487    }
3488        // where
3489        private boolean isCanonical(JCTree tree) {
3490            while (tree.hasTag(SELECT)) {
3491                JCFieldAccess s = (JCFieldAccess) tree;
3492                if (s.sym.owner.name != TreeInfo.symbol(s.selected).name)
3493                    return false;
3494                tree = s.selected;
3495            }
3496            return true;
3497        }
3498
3499    /** Check that an auxiliary class is not accessed from any other file than its own.
3500     */
3501    void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3502        if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3503            (c.flags() & AUXILIARY) != 0 &&
3504            rs.isAccessible(env, c) &&
3505            !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3506        {
3507            log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3508                        c, c.sourcefile);
3509        }
3510    }
3511
3512    private class ConversionWarner extends Warner {
3513        final String uncheckedKey;
3514        final Type found;
3515        final Type expected;
3516        public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3517            super(pos);
3518            this.uncheckedKey = uncheckedKey;
3519            this.found = found;
3520            this.expected = expected;
3521        }
3522
3523        @Override
3524        public void warn(LintCategory lint) {
3525            boolean warned = this.warned;
3526            super.warn(lint);
3527            if (warned) return; // suppress redundant diagnostics
3528            switch (lint) {
3529                case UNCHECKED:
3530                    Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3531                    break;
3532                case VARARGS:
3533                    if (method != null &&
3534                            method.attribute(syms.trustMeType.tsym) != null &&
3535                            isTrustMeAllowedOnMethod(method) &&
3536                            !types.isReifiable(method.type.getParameterTypes().last())) {
3537                        Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3538                    }
3539                    break;
3540                default:
3541                    throw new AssertionError("Unexpected lint: " + lint);
3542            }
3543        }
3544    }
3545
3546    public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3547        return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3548    }
3549
3550    public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3551        return new ConversionWarner(pos, "unchecked.assign", found, expected);
3552    }
3553
3554    public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3555        Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3556
3557        if (functionalType != null) {
3558            try {
3559                types.findDescriptorSymbol((TypeSymbol)cs);
3560            } catch (Types.FunctionDescriptorLookupError ex) {
3561                DiagnosticPosition pos = tree.pos();
3562                for (JCAnnotation a : tree.getModifiers().annotations) {
3563                    if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3564                        pos = a.pos();
3565                        break;
3566                    }
3567                }
3568                log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3569            }
3570        }
3571    }
3572
3573    public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3574        for (final JCImport imp : toplevel.getImports()) {
3575            if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3576                continue;
3577            final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3578            final Symbol origin;
3579            if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3580                continue;
3581
3582            TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3583            if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3584                log.error(imp.pos(), "cant.resolve.location",
3585                          KindName.STATIC,
3586                          select.name, List.<Type>nil(), List.<Type>nil(),
3587                          Kinds.typeKindName(TreeInfo.symbol(select.selected).type),
3588                          TreeInfo.symbol(select.selected).type);
3589            }
3590        }
3591    }
3592
3593    // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
3594    public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
3595        OUTER: for (JCImport imp : toplevel.getImports()) {
3596            if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
3597                TypeSymbol tsym = ((JCFieldAccess)imp.qualid).selected.type.tsym;
3598                if (toplevel.modle.visiblePackages != null) {
3599                    //TODO - unclear: selects like javax.* will get resolved from the current module
3600                    //(as javax is not an exported package from any module). And as javax in the current
3601                    //module typically does not contain any classes or subpackages, we need to go through
3602                    //the visible packages to find a sub-package:
3603                    for (PackageSymbol known : toplevel.modle.visiblePackages.values()) {
3604                        if (Convert.packagePart(known.fullname) == tsym.flatName())
3605                            continue OUTER;
3606                    }
3607                }
3608                if (tsym.kind == PCK && tsym.members().isEmpty() && !tsym.exists()) {
3609                    log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, "doesnt.exist", tsym);
3610                }
3611            }
3612        }
3613    }
3614
3615    private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3616        if (tsym == null || !processed.add(tsym))
3617            return false;
3618
3619            // also search through inherited names
3620        if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3621            return true;
3622
3623        for (Type t : types.interfaces(tsym.type))
3624            if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3625                return true;
3626
3627        for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3628            if (sym.isStatic() &&
3629                importAccessible(sym, packge) &&
3630                sym.isMemberOf(origin, types)) {
3631                return true;
3632            }
3633        }
3634
3635        return false;
3636    }
3637
3638    // is the sym accessible everywhere in packge?
3639    public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3640        try {
3641            int flags = (int)(sym.flags() & AccessFlags);
3642            switch (flags) {
3643            default:
3644            case PUBLIC:
3645                return true;
3646            case PRIVATE:
3647                return false;
3648            case 0:
3649            case PROTECTED:
3650                return sym.packge() == packge;
3651            }
3652        } catch (ClassFinder.BadClassFile err) {
3653            throw err;
3654        } catch (CompletionFailure ex) {
3655            return false;
3656        }
3657    }
3658
3659}
3660