Check.java revision 2969:8dd7735cf12b
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.tools.JavaFileManager;
31
32import com.sun.tools.javac.code.*;
33import com.sun.tools.javac.code.Attribute.Compound;
34import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
35import com.sun.tools.javac.jvm.*;
36import com.sun.tools.javac.resources.CompilerProperties.Errors;
37import com.sun.tools.javac.resources.CompilerProperties.Fragments;
38import com.sun.tools.javac.tree.*;
39import com.sun.tools.javac.util.*;
40import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
41import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
42import com.sun.tools.javac.util.List;
43
44import com.sun.tools.javac.code.Lint;
45import com.sun.tools.javac.code.Lint.LintCategory;
46import com.sun.tools.javac.code.Scope.CompoundScope;
47import com.sun.tools.javac.code.Scope.NamedImportScope;
48import com.sun.tools.javac.code.Scope.WriteableScope;
49import com.sun.tools.javac.code.Type.*;
50import com.sun.tools.javac.code.Symbol.*;
51import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
52import com.sun.tools.javac.comp.Infer.InferenceContext;
53import com.sun.tools.javac.comp.Infer.FreeTypeListener;
54import com.sun.tools.javac.tree.JCTree.*;
55import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
56
57import static com.sun.tools.javac.code.Flags.*;
58import static com.sun.tools.javac.code.Flags.ANNOTATION;
59import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
60import static com.sun.tools.javac.code.Kinds.*;
61import static com.sun.tools.javac.code.Kinds.Kind.*;
62import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
63import static com.sun.tools.javac.code.TypeTag.*;
64import static com.sun.tools.javac.code.TypeTag.WILDCARD;
65
66import static com.sun.tools.javac.resources.CompilerProperties.Errors.CantTypeAnnotateScoping;
67import static com.sun.tools.javac.resources.CompilerProperties.Errors.CantTypeAnnotateScoping1;
68import static com.sun.tools.javac.tree.JCTree.Tag.*;
69
70/** Type checking helper class for the attribution phase.
71 *
72 *  <p><b>This is NOT part of any supported API.
73 *  If you write code that depends on this, you do so at your own risk.
74 *  This code and its internal interfaces are subject to change or
75 *  deletion without notice.</b>
76 */
77public class Check {
78    protected static final Context.Key<Check> checkKey = new Context.Key<>();
79
80    private final Names names;
81    private final Log log;
82    private final Resolve rs;
83    private final Symtab syms;
84    private final Enter enter;
85    private final DeferredAttr deferredAttr;
86    private final Infer infer;
87    private final Types types;
88    private final TypeAnnotations typeAnnotations;
89    private final JCDiagnostic.Factory diags;
90    private boolean warnOnSyntheticConflicts;
91    private boolean suppressAbortOnBadClassFile;
92    private boolean enableSunApiLintControl;
93    private final JavaFileManager fileManager;
94    private final Source source;
95    private final Profile profile;
96    private final boolean warnOnAccessToSensitiveMembers;
97
98    // The set of lint options currently in effect. It is initialized
99    // from the context, and then is set/reset as needed by Attr as it
100    // visits all the various parts of the trees during attribution.
101    private Lint lint;
102
103    // The method being analyzed in Attr - it is set/reset as needed by
104    // Attr as it visits new method declarations.
105    private MethodSymbol method;
106
107    public static Check instance(Context context) {
108        Check instance = context.get(checkKey);
109        if (instance == null)
110            instance = new Check(context);
111        return instance;
112    }
113
114    protected Check(Context context) {
115        context.put(checkKey, this);
116
117        names = Names.instance(context);
118        dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
119            names.FIELD, names.METHOD, names.CONSTRUCTOR,
120            names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
121        log = Log.instance(context);
122        rs = Resolve.instance(context);
123        syms = Symtab.instance(context);
124        enter = Enter.instance(context);
125        deferredAttr = DeferredAttr.instance(context);
126        infer = Infer.instance(context);
127        types = Types.instance(context);
128        typeAnnotations = TypeAnnotations.instance(context);
129        diags = JCDiagnostic.Factory.instance(context);
130        Options options = Options.instance(context);
131        lint = Lint.instance(context);
132        fileManager = context.get(JavaFileManager.class);
133
134        source = Source.instance(context);
135        allowSimplifiedVarargs = source.allowSimplifiedVarargs();
136        allowDefaultMethods = source.allowDefaultMethods();
137        allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
138        allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
139        allowDiamondWithAnonymousClassCreation = source.allowDiamondWithAnonymousClassCreation();
140        complexInference = options.isSet("complexinference");
141        warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
142        suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
143        enableSunApiLintControl = options.isSet("enableSunApiLintControl");
144        warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
145
146        Target target = Target.instance(context);
147        syntheticNameChar = target.syntheticNameChar();
148
149        profile = Profile.instance(context);
150
151        boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
152        boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
153        boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
154        boolean enforceMandatoryWarnings = true;
155
156        deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
157                enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
158        uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
159                enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
160        sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
161                enforceMandatoryWarnings, "sunapi", null);
162
163        deferredLintHandler = DeferredLintHandler.instance(context);
164    }
165
166    /** Switch: simplified varargs enabled?
167     */
168    boolean allowSimplifiedVarargs;
169
170    /** Switch: default methods enabled?
171     */
172    boolean allowDefaultMethods;
173
174    /** Switch: should unrelated return types trigger a method clash?
175     */
176    boolean allowStrictMethodClashCheck;
177
178    /** Switch: can the @SafeVarargs annotation be applied to private methods?
179     */
180    boolean allowPrivateSafeVarargs;
181
182    /** Switch: can diamond inference be used in anonymous instance creation ?
183     */
184    boolean allowDiamondWithAnonymousClassCreation;
185
186    /** Switch: -complexinference option set?
187     */
188    boolean complexInference;
189
190    /** Character for synthetic names
191     */
192    char syntheticNameChar;
193
194    /** A table mapping flat names of all compiled classes in this run to their
195     *  symbols; maintained from outside.
196     */
197    public Map<Name,ClassSymbol> compiled = new HashMap<>();
198
199    /** A handler for messages about deprecated usage.
200     */
201    private MandatoryWarningHandler deprecationHandler;
202
203    /** A handler for messages about unchecked or unsafe usage.
204     */
205    private MandatoryWarningHandler uncheckedHandler;
206
207    /** A handler for messages about using proprietary API.
208     */
209    private MandatoryWarningHandler sunApiHandler;
210
211    /** A handler for deferred lint warnings.
212     */
213    private DeferredLintHandler deferredLintHandler;
214
215/* *************************************************************************
216 * Errors and Warnings
217 **************************************************************************/
218
219    Lint setLint(Lint newLint) {
220        Lint prev = lint;
221        lint = newLint;
222        return prev;
223    }
224
225    MethodSymbol setMethod(MethodSymbol newMethod) {
226        MethodSymbol prev = method;
227        method = newMethod;
228        return prev;
229    }
230
231    /** Warn about deprecated symbol.
232     *  @param pos        Position to be used for error reporting.
233     *  @param sym        The deprecated symbol.
234     */
235    void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
236        if (!lint.isSuppressed(LintCategory.DEPRECATION))
237            deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
238    }
239
240    /** Warn about unchecked operation.
241     *  @param pos        Position to be used for error reporting.
242     *  @param msg        A string describing the problem.
243     */
244    public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
245        if (!lint.isSuppressed(LintCategory.UNCHECKED))
246            uncheckedHandler.report(pos, msg, args);
247    }
248
249    /** Warn about unsafe vararg method decl.
250     *  @param pos        Position to be used for error reporting.
251     */
252    void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
253        if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
254            log.warning(LintCategory.VARARGS, pos, key, args);
255    }
256
257    /** Warn about using proprietary API.
258     *  @param pos        Position to be used for error reporting.
259     *  @param msg        A string describing the problem.
260     */
261    public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
262        if (!lint.isSuppressed(LintCategory.SUNAPI))
263            sunApiHandler.report(pos, msg, args);
264    }
265
266    public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
267        if (lint.isEnabled(LintCategory.STATIC))
268            log.warning(LintCategory.STATIC, pos, msg, args);
269    }
270
271    /** Warn about division by integer constant zero.
272     *  @param pos        Position to be used for error reporting.
273     */
274    void warnDivZero(DiagnosticPosition pos) {
275        if (lint.isEnabled(LintCategory.DIVZERO))
276            log.warning(LintCategory.DIVZERO, pos, "div.zero");
277    }
278
279    /**
280     * Report any deferred diagnostics.
281     */
282    public void reportDeferredDiagnostics() {
283        deprecationHandler.reportDeferredDiagnostic();
284        uncheckedHandler.reportDeferredDiagnostic();
285        sunApiHandler.reportDeferredDiagnostic();
286    }
287
288
289    /** Report a failure to complete a class.
290     *  @param pos        Position to be used for error reporting.
291     *  @param ex         The failure to report.
292     */
293    public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
294        log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
295        if (ex instanceof ClassFinder.BadClassFile
296                && !suppressAbortOnBadClassFile) throw new Abort();
297        else return syms.errType;
298    }
299
300    /** Report an error that wrong type tag was found.
301     *  @param pos        Position to be used for error reporting.
302     *  @param required   An internationalized string describing the type tag
303     *                    required.
304     *  @param found      The type that was found.
305     */
306    Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
307        // this error used to be raised by the parser,
308        // but has been delayed to this point:
309        if (found instanceof Type && ((Type)found).hasTag(VOID)) {
310            log.error(pos, "illegal.start.of.type");
311            return syms.errType;
312        }
313        log.error(pos, "type.found.req", found, required);
314        return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
315    }
316
317    /** Report an error that symbol cannot be referenced before super
318     *  has been called.
319     *  @param pos        Position to be used for error reporting.
320     *  @param sym        The referenced symbol.
321     */
322    void earlyRefError(DiagnosticPosition pos, Symbol sym) {
323        log.error(pos, "cant.ref.before.ctor.called", sym);
324    }
325
326    /** Report duplicate declaration error.
327     */
328    void duplicateError(DiagnosticPosition pos, Symbol sym) {
329        if (!sym.type.isErroneous()) {
330            Symbol location = sym.location();
331            if (location.kind == MTH &&
332                    ((MethodSymbol)location).isStaticOrInstanceInit()) {
333                log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
334                        kindName(sym.location()), kindName(sym.location().enclClass()),
335                        sym.location().enclClass());
336            } else {
337                log.error(pos, "already.defined", kindName(sym), sym,
338                        kindName(sym.location()), sym.location());
339            }
340        }
341    }
342
343    /** Report array/varargs duplicate declaration
344     */
345    void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
346        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
347            log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
348        }
349    }
350
351/* ************************************************************************
352 * duplicate declaration checking
353 *************************************************************************/
354
355    /** Check that variable does not hide variable with same name in
356     *  immediately enclosing local scope.
357     *  @param pos           Position for error reporting.
358     *  @param v             The symbol.
359     *  @param s             The scope.
360     */
361    void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
362        for (Symbol sym : s.getSymbolsByName(v.name)) {
363            if (sym.owner != v.owner) break;
364            if (sym.kind == VAR &&
365                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
366                v.name != names.error) {
367                duplicateError(pos, sym);
368                return;
369            }
370        }
371    }
372
373    /** Check that a class or interface does not hide a class or
374     *  interface with same name in immediately enclosing local scope.
375     *  @param pos           Position for error reporting.
376     *  @param c             The symbol.
377     *  @param s             The scope.
378     */
379    void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
380        for (Symbol sym : s.getSymbolsByName(c.name)) {
381            if (sym.owner != c.owner) break;
382            if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
383                sym.owner.kind.matches(KindSelector.VAL_MTH) &&
384                c.name != names.error) {
385                duplicateError(pos, sym);
386                return;
387            }
388        }
389    }
390
391    /** Check that class does not have the same name as one of
392     *  its enclosing classes, or as a class defined in its enclosing scope.
393     *  return true if class is unique in its enclosing scope.
394     *  @param pos           Position for error reporting.
395     *  @param name          The class name.
396     *  @param s             The enclosing scope.
397     */
398    boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
399        for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
400            if (sym.kind == TYP && sym.name != names.error) {
401                duplicateError(pos, sym);
402                return false;
403            }
404        }
405        for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
406            if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
407                duplicateError(pos, sym);
408                return true;
409            }
410        }
411        return true;
412    }
413
414/* *************************************************************************
415 * Class name generation
416 **************************************************************************/
417
418    /** Return name of local class.
419     *  This is of the form   {@code <enclClass> $ n <classname> }
420     *  where
421     *    enclClass is the flat name of the enclosing class,
422     *    classname is the simple name of the local class
423     */
424    Name localClassName(ClassSymbol c) {
425        for (int i=1; ; i++) {
426            Name flatname = names.
427                fromString("" + c.owner.enclClass().flatname +
428                           syntheticNameChar + i +
429                           c.name);
430            if (compiled.get(flatname) == null) return flatname;
431        }
432    }
433
434    public void newRound() {
435        compiled.clear();
436    }
437
438/* *************************************************************************
439 * Type Checking
440 **************************************************************************/
441
442    /**
443     * A check context is an object that can be used to perform compatibility
444     * checks - depending on the check context, meaning of 'compatibility' might
445     * vary significantly.
446     */
447    public interface CheckContext {
448        /**
449         * Is type 'found' compatible with type 'req' in given context
450         */
451        boolean compatible(Type found, Type req, Warner warn);
452        /**
453         * Report a check error
454         */
455        void report(DiagnosticPosition pos, JCDiagnostic details);
456        /**
457         * Obtain a warner for this check context
458         */
459        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
460
461        public Infer.InferenceContext inferenceContext();
462
463        public DeferredAttr.DeferredAttrContext deferredAttrContext();
464    }
465
466    /**
467     * This class represent a check context that is nested within another check
468     * context - useful to check sub-expressions. The default behavior simply
469     * redirects all method calls to the enclosing check context leveraging
470     * the forwarding pattern.
471     */
472    static class NestedCheckContext implements CheckContext {
473        CheckContext enclosingContext;
474
475        NestedCheckContext(CheckContext enclosingContext) {
476            this.enclosingContext = enclosingContext;
477        }
478
479        public boolean compatible(Type found, Type req, Warner warn) {
480            return enclosingContext.compatible(found, req, warn);
481        }
482
483        public void report(DiagnosticPosition pos, JCDiagnostic details) {
484            enclosingContext.report(pos, details);
485        }
486
487        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
488            return enclosingContext.checkWarner(pos, found, req);
489        }
490
491        public Infer.InferenceContext inferenceContext() {
492            return enclosingContext.inferenceContext();
493        }
494
495        public DeferredAttrContext deferredAttrContext() {
496            return enclosingContext.deferredAttrContext();
497        }
498    }
499
500    /**
501     * Check context to be used when evaluating assignment/return statements
502     */
503    CheckContext basicHandler = new CheckContext() {
504        public void report(DiagnosticPosition pos, JCDiagnostic details) {
505            log.error(pos, "prob.found.req", details);
506        }
507        public boolean compatible(Type found, Type req, Warner warn) {
508            return types.isAssignable(found, req, warn);
509        }
510
511        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
512            return convertWarner(pos, found, req);
513        }
514
515        public InferenceContext inferenceContext() {
516            return infer.emptyContext;
517        }
518
519        public DeferredAttrContext deferredAttrContext() {
520            return deferredAttr.emptyDeferredAttrContext;
521        }
522
523        @Override
524        public String toString() {
525            return "CheckContext: basicHandler";
526        }
527    };
528
529    /** Check that a given type is assignable to a given proto-type.
530     *  If it is, return the type, otherwise return errType.
531     *  @param pos        Position to be used for error reporting.
532     *  @param found      The type that was found.
533     *  @param req        The type that was required.
534     */
535    public Type checkType(DiagnosticPosition pos, Type found, Type req) {
536        return checkType(pos, found, req, basicHandler);
537    }
538
539    Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
540        final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
541        if (inferenceContext.free(req) || inferenceContext.free(found)) {
542            inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
543                @Override
544                public void typesInferred(InferenceContext inferenceContext) {
545                    checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
546                }
547            });
548        }
549        if (req.hasTag(ERROR))
550            return req;
551        if (req.hasTag(NONE))
552            return found;
553        if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
554            return found;
555        } else {
556            if (found.isNumeric() && req.isNumeric()) {
557                checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
558                return types.createErrorType(found);
559            }
560            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
561            return types.createErrorType(found);
562        }
563    }
564
565    /** Check that a given type can be cast to a given target type.
566     *  Return the result of the cast.
567     *  @param pos        Position to be used for error reporting.
568     *  @param found      The type that is being cast.
569     *  @param req        The target type of the cast.
570     */
571    Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
572        return checkCastable(pos, found, req, basicHandler);
573    }
574    Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
575        if (types.isCastable(found, req, castWarner(pos, found, req))) {
576            return req;
577        } else {
578            checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
579            return types.createErrorType(found);
580        }
581    }
582
583    /** Check for redundant casts (i.e. where source type is a subtype of target type)
584     * The problem should only be reported for non-292 cast
585     */
586    public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
587        if (!tree.type.isErroneous()
588                && types.isSameType(tree.expr.type, tree.clazz.type)
589                && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
590                && !is292targetTypeCast(tree)) {
591            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
592                @Override
593                public void report() {
594                    if (lint.isEnabled(Lint.LintCategory.CAST))
595                        log.warning(Lint.LintCategory.CAST,
596                                tree.pos(), "redundant.cast", tree.clazz.type);
597                }
598            });
599        }
600    }
601    //where
602        private boolean is292targetTypeCast(JCTypeCast tree) {
603            boolean is292targetTypeCast = false;
604            JCExpression expr = TreeInfo.skipParens(tree.expr);
605            if (expr.hasTag(APPLY)) {
606                JCMethodInvocation apply = (JCMethodInvocation)expr;
607                Symbol sym = TreeInfo.symbol(apply.meth);
608                is292targetTypeCast = sym != null &&
609                    sym.kind == MTH &&
610                    (sym.flags() & HYPOTHETICAL) != 0;
611            }
612            return is292targetTypeCast;
613        }
614
615        private static final boolean ignoreAnnotatedCasts = true;
616
617    /** Check that a type is within some bounds.
618     *
619     *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
620     *  type argument.
621     *  @param a             The type that should be bounded by bs.
622     *  @param bound         The bound.
623     */
624    private boolean checkExtends(Type a, Type bound) {
625         if (a.isUnbound()) {
626             return true;
627         } else if (!a.hasTag(WILDCARD)) {
628             a = types.cvarUpperBound(a);
629             return types.isSubtype(a, bound);
630         } else if (a.isExtendsBound()) {
631             return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
632         } else if (a.isSuperBound()) {
633             return !types.notSoftSubtype(types.wildLowerBound(a), bound);
634         }
635         return true;
636     }
637
638    /** Check that type is different from 'void'.
639     *  @param pos           Position to be used for error reporting.
640     *  @param t             The type to be checked.
641     */
642    Type checkNonVoid(DiagnosticPosition pos, Type t) {
643        if (t.hasTag(VOID)) {
644            log.error(pos, "void.not.allowed.here");
645            return types.createErrorType(t);
646        } else {
647            return t;
648        }
649    }
650
651    Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
652        if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
653            return typeTagError(pos,
654                                diags.fragment("type.req.class.array"),
655                                asTypeParam(t));
656        } else {
657            return t;
658        }
659    }
660
661    /** Check that type is a class or interface type.
662     *  @param pos           Position to be used for error reporting.
663     *  @param t             The type to be checked.
664     */
665    Type checkClassType(DiagnosticPosition pos, Type t) {
666        if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
667            return typeTagError(pos,
668                                diags.fragment("type.req.class"),
669                                asTypeParam(t));
670        } else {
671            return t;
672        }
673    }
674    //where
675        private Object asTypeParam(Type t) {
676            return (t.hasTag(TYPEVAR))
677                                    ? diags.fragment("type.parameter", t)
678                                    : t;
679        }
680
681    /** Check that type is a valid qualifier for a constructor reference expression
682     */
683    Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
684        t = checkClassOrArrayType(pos, t);
685        if (t.hasTag(CLASS)) {
686            if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
687                log.error(pos, "abstract.cant.be.instantiated", t.tsym);
688                t = types.createErrorType(t);
689            } else if ((t.tsym.flags() & ENUM) != 0) {
690                log.error(pos, "enum.cant.be.instantiated");
691                t = types.createErrorType(t);
692            } else {
693                t = checkClassType(pos, t, true);
694            }
695        } else if (t.hasTag(ARRAY)) {
696            if (!types.isReifiable(((ArrayType)t).elemtype)) {
697                log.error(pos, "generic.array.creation");
698                t = types.createErrorType(t);
699            }
700        }
701        return t;
702    }
703
704    /** Check that type is a class or interface type.
705     *  @param pos           Position to be used for error reporting.
706     *  @param t             The type to be checked.
707     *  @param noBounds    True if type bounds are illegal here.
708     */
709    Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
710        t = checkClassType(pos, t);
711        if (noBounds && t.isParameterized()) {
712            List<Type> args = t.getTypeArguments();
713            while (args.nonEmpty()) {
714                if (args.head.hasTag(WILDCARD))
715                    return typeTagError(pos,
716                                        diags.fragment("type.req.exact"),
717                                        args.head);
718                args = args.tail;
719            }
720        }
721        return t;
722    }
723
724    /** Check that type is a reference type, i.e. a class, interface or array type
725     *  or a type variable.
726     *  @param pos           Position to be used for error reporting.
727     *  @param t             The type to be checked.
728     */
729    Type checkRefType(DiagnosticPosition pos, Type t) {
730        if (t.isReference())
731            return t;
732        else
733            return typeTagError(pos,
734                                diags.fragment("type.req.ref"),
735                                t);
736    }
737
738    /** Check that each type is a reference type, i.e. a class, interface or array type
739     *  or a type variable.
740     *  @param trees         Original trees, used for error reporting.
741     *  @param types         The types to be checked.
742     */
743    List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
744        List<JCExpression> tl = trees;
745        for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
746            l.head = checkRefType(tl.head.pos(), l.head);
747            tl = tl.tail;
748        }
749        return types;
750    }
751
752    /** Check that type is a null or reference type.
753     *  @param pos           Position to be used for error reporting.
754     *  @param t             The type to be checked.
755     */
756    Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
757        if (t.isReference() || t.hasTag(BOT))
758            return t;
759        else
760            return typeTagError(pos,
761                                diags.fragment("type.req.ref"),
762                                t);
763    }
764
765    /** Check that flag set does not contain elements of two conflicting sets. s
766     *  Return true if it doesn't.
767     *  @param pos           Position to be used for error reporting.
768     *  @param flags         The set of flags to be checked.
769     *  @param set1          Conflicting flags set #1.
770     *  @param set2          Conflicting flags set #2.
771     */
772    boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
773        if ((flags & set1) != 0 && (flags & set2) != 0) {
774            log.error(pos,
775                      "illegal.combination.of.modifiers",
776                      asFlagSet(TreeInfo.firstFlag(flags & set1)),
777                      asFlagSet(TreeInfo.firstFlag(flags & set2)));
778            return false;
779        } else
780            return true;
781    }
782
783    /** Check that usage of diamond operator is correct (i.e. diamond should not
784     * be used with non-generic classes or in anonymous class creation expressions)
785     */
786    Type checkDiamond(JCNewClass tree, Type t) {
787        if (!TreeInfo.isDiamond(tree) ||
788                t.isErroneous()) {
789            return checkClassType(tree.clazz.pos(), t, true);
790        } else if (tree.def != null && !allowDiamondWithAnonymousClassCreation) {
791            log.error(tree.clazz.pos(),
792                    Errors.CantApplyDiamond1(t, Fragments.DiamondAndAnonClassNotSupportedInSource(source.name)));
793            return types.createErrorType(t);
794        } else if (t.tsym.type.getTypeArguments().isEmpty()) {
795            log.error(tree.clazz.pos(),
796                "cant.apply.diamond.1",
797                t, diags.fragment("diamond.non.generic", t));
798            return types.createErrorType(t);
799        } else if (tree.typeargs != null &&
800                tree.typeargs.nonEmpty()) {
801            log.error(tree.clazz.pos(),
802                "cant.apply.diamond.1",
803                t, diags.fragment("diamond.and.explicit.params", t));
804            return types.createErrorType(t);
805        } else {
806            return t;
807        }
808    }
809
810    /** Check that the type inferred using the diamond operator does not contain
811     *  non-denotable types such as captured types or intersection types.
812     *  @param t the type inferred using the diamond operator
813     *  @return  the (possibly empty) list of non-denotable types.
814     */
815    List<Type> checkDiamondDenotable(ClassType t) {
816        ListBuffer<Type> buf = new ListBuffer<>();
817        for (Type arg : t.getTypeArguments()) {
818            if (!diamondTypeChecker.visit(arg, null)) {
819                buf.append(arg);
820            }
821        }
822        return buf.toList();
823    }
824        // where
825
826        /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
827         *  types. The visit methods return false as soon as a non-denotable type is encountered and true
828         *  otherwise.
829         */
830        private static final Types.SimpleVisitor<Boolean, Void> diamondTypeChecker = new Types.SimpleVisitor<Boolean, Void>() {
831            @Override
832            public Boolean visitType(Type t, Void s) {
833                return true;
834            }
835            @Override
836            public Boolean visitClassType(ClassType t, Void s) {
837                if (t.isCompound()) {
838                    return false;
839                }
840                for (Type targ : t.getTypeArguments()) {
841                    if (!visit(targ, s)) {
842                        return false;
843                    }
844                }
845                return true;
846            }
847
848            @Override
849            public Boolean visitTypeVar(TypeVar t, Void s) {
850                /* Any type variable mentioned in the inferred type must have been declared as a type parameter
851                  (i.e cannot have been produced by capture conversion (5.1.10) or by inference (18.4)
852                */
853                return t.tsym.owner.type.getTypeArguments().contains(t);
854            }
855
856            @Override
857            public Boolean visitCapturedType(CapturedType t, Void s) {
858                return false;
859            }
860
861            @Override
862            public Boolean visitArrayType(ArrayType t, Void s) {
863                return visit(t.elemtype, s);
864            }
865
866            @Override
867            public Boolean visitWildcardType(WildcardType t, Void s) {
868                return visit(t.type, s);
869            }
870        };
871
872    void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
873        MethodSymbol m = tree.sym;
874        if (!allowSimplifiedVarargs) return;
875        boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
876        Type varargElemType = null;
877        if (m.isVarArgs()) {
878            varargElemType = types.elemtype(tree.params.last().type);
879        }
880        if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
881            if (varargElemType != null) {
882                log.error(tree,
883                        "varargs.invalid.trustme.anno",
884                          syms.trustMeType.tsym,
885                          allowPrivateSafeVarargs ?
886                          diags.fragment("varargs.trustme.on.virtual.varargs", m) :
887                          diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
888            } else {
889                log.error(tree,
890                            "varargs.invalid.trustme.anno",
891                            syms.trustMeType.tsym,
892                            diags.fragment("varargs.trustme.on.non.varargs.meth", m));
893            }
894        } else if (hasTrustMeAnno && varargElemType != null &&
895                            types.isReifiable(varargElemType)) {
896            warnUnsafeVararg(tree,
897                            "varargs.redundant.trustme.anno",
898                            syms.trustMeType.tsym,
899                            diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
900        }
901        else if (!hasTrustMeAnno && varargElemType != null &&
902                !types.isReifiable(varargElemType)) {
903            warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
904        }
905    }
906    //where
907        private boolean isTrustMeAllowedOnMethod(Symbol s) {
908            return (s.flags() & VARARGS) != 0 &&
909                (s.isConstructor() ||
910                    (s.flags() & (STATIC | FINAL |
911                                  (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
912        }
913
914    Type checkMethod(final Type mtype,
915            final Symbol sym,
916            final Env<AttrContext> env,
917            final List<JCExpression> argtrees,
918            final List<Type> argtypes,
919            final boolean useVarargs,
920            InferenceContext inferenceContext) {
921        // System.out.println("call   : " + env.tree);
922        // System.out.println("method : " + owntype);
923        // System.out.println("actuals: " + argtypes);
924        if (inferenceContext.free(mtype)) {
925            inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
926                public void typesInferred(InferenceContext inferenceContext) {
927                    checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
928                }
929            });
930            return mtype;
931        }
932        Type owntype = mtype;
933        List<Type> formals = owntype.getParameterTypes();
934        List<Type> nonInferred = sym.type.getParameterTypes();
935        if (nonInferred.length() != formals.length()) nonInferred = formals;
936        Type last = useVarargs ? formals.last() : null;
937        if (sym.name == names.init && sym.owner == syms.enumSym) {
938            formals = formals.tail.tail;
939            nonInferred = nonInferred.tail.tail;
940        }
941        List<JCExpression> args = argtrees;
942        if (args != null) {
943            //this is null when type-checking a method reference
944            while (formals.head != last) {
945                JCTree arg = args.head;
946                Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
947                assertConvertible(arg, arg.type, formals.head, warn);
948                args = args.tail;
949                formals = formals.tail;
950                nonInferred = nonInferred.tail;
951            }
952            if (useVarargs) {
953                Type varArg = types.elemtype(last);
954                while (args.tail != null) {
955                    JCTree arg = args.head;
956                    Warner warn = convertWarner(arg.pos(), arg.type, varArg);
957                    assertConvertible(arg, arg.type, varArg, warn);
958                    args = args.tail;
959                }
960            } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
961                // non-varargs call to varargs method
962                Type varParam = owntype.getParameterTypes().last();
963                Type lastArg = argtypes.last();
964                if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
965                    !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
966                    log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
967                                types.elemtype(varParam), varParam);
968            }
969        }
970        if (useVarargs) {
971            Type argtype = owntype.getParameterTypes().last();
972            if (!types.isReifiable(argtype) &&
973                (!allowSimplifiedVarargs ||
974                 sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
975                 !isTrustMeAllowedOnMethod(sym))) {
976                warnUnchecked(env.tree.pos(),
977                                  "unchecked.generic.array.creation",
978                                  argtype);
979            }
980            if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
981                TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
982            }
983         }
984         PolyKind pkind = (sym.type.hasTag(FORALL) &&
985                 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
986                 PolyKind.POLY : PolyKind.STANDALONE;
987         TreeInfo.setPolyKind(env.tree, pkind);
988         return owntype;
989    }
990    //where
991    private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
992        if (types.isConvertible(actual, formal, warn))
993            return;
994
995        if (formal.isCompound()
996            && types.isSubtype(actual, types.supertype(formal))
997            && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
998            return;
999    }
1000
1001    /**
1002     * Check that type 't' is a valid instantiation of a generic class
1003     * (see JLS 4.5)
1004     *
1005     * @param t class type to be checked
1006     * @return true if 't' is well-formed
1007     */
1008    public boolean checkValidGenericType(Type t) {
1009        return firstIncompatibleTypeArg(t) == null;
1010    }
1011    //WHERE
1012        private Type firstIncompatibleTypeArg(Type type) {
1013            List<Type> formals = type.tsym.type.allparams();
1014            List<Type> actuals = type.allparams();
1015            List<Type> args = type.getTypeArguments();
1016            List<Type> forms = type.tsym.type.getTypeArguments();
1017            ListBuffer<Type> bounds_buf = new ListBuffer<>();
1018
1019            // For matching pairs of actual argument types `a' and
1020            // formal type parameters with declared bound `b' ...
1021            while (args.nonEmpty() && forms.nonEmpty()) {
1022                // exact type arguments needs to know their
1023                // bounds (for upper and lower bound
1024                // calculations).  So we create new bounds where
1025                // type-parameters are replaced with actuals argument types.
1026                bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1027                args = args.tail;
1028                forms = forms.tail;
1029            }
1030
1031            args = type.getTypeArguments();
1032            List<Type> tvars_cap = types.substBounds(formals,
1033                                      formals,
1034                                      types.capture(type).allparams());
1035            while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1036                // Let the actual arguments know their bound
1037                args.head.withTypeVar((TypeVar)tvars_cap.head);
1038                args = args.tail;
1039                tvars_cap = tvars_cap.tail;
1040            }
1041
1042            args = type.getTypeArguments();
1043            List<Type> bounds = bounds_buf.toList();
1044
1045            while (args.nonEmpty() && bounds.nonEmpty()) {
1046                Type actual = args.head;
1047                if (!isTypeArgErroneous(actual) &&
1048                        !bounds.head.isErroneous() &&
1049                        !checkExtends(actual, bounds.head)) {
1050                    return args.head;
1051                }
1052                args = args.tail;
1053                bounds = bounds.tail;
1054            }
1055
1056            args = type.getTypeArguments();
1057            bounds = bounds_buf.toList();
1058
1059            for (Type arg : types.capture(type).getTypeArguments()) {
1060                if (arg.hasTag(TYPEVAR) &&
1061                        arg.getUpperBound().isErroneous() &&
1062                        !bounds.head.isErroneous() &&
1063                        !isTypeArgErroneous(args.head)) {
1064                    return args.head;
1065                }
1066                bounds = bounds.tail;
1067                args = args.tail;
1068            }
1069
1070            return null;
1071        }
1072        //where
1073        boolean isTypeArgErroneous(Type t) {
1074            return isTypeArgErroneous.visit(t);
1075        }
1076
1077        Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1078            public Boolean visitType(Type t, Void s) {
1079                return t.isErroneous();
1080            }
1081            @Override
1082            public Boolean visitTypeVar(TypeVar t, Void s) {
1083                return visit(t.getUpperBound());
1084            }
1085            @Override
1086            public Boolean visitCapturedType(CapturedType t, Void s) {
1087                return visit(t.getUpperBound()) ||
1088                        visit(t.getLowerBound());
1089            }
1090            @Override
1091            public Boolean visitWildcardType(WildcardType t, Void s) {
1092                return visit(t.type);
1093            }
1094        };
1095
1096    /** Check that given modifiers are legal for given symbol and
1097     *  return modifiers together with any implicit modifiers for that symbol.
1098     *  Warning: we can't use flags() here since this method
1099     *  is called during class enter, when flags() would cause a premature
1100     *  completion.
1101     *  @param pos           Position to be used for error reporting.
1102     *  @param flags         The set of modifiers given in a definition.
1103     *  @param sym           The defined symbol.
1104     */
1105    long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1106        long mask;
1107        long implicit = 0;
1108
1109        switch (sym.kind) {
1110        case VAR:
1111            if (TreeInfo.isReceiverParam(tree))
1112                mask = ReceiverParamFlags;
1113            else if (sym.owner.kind != TYP)
1114                mask = LocalVarFlags;
1115            else if ((sym.owner.flags_field & INTERFACE) != 0)
1116                mask = implicit = InterfaceVarFlags;
1117            else
1118                mask = VarFlags;
1119            break;
1120        case MTH:
1121            if (sym.name == names.init) {
1122                if ((sym.owner.flags_field & ENUM) != 0) {
1123                    // enum constructors cannot be declared public or
1124                    // protected and must be implicitly or explicitly
1125                    // private
1126                    implicit = PRIVATE;
1127                    mask = PRIVATE;
1128                } else
1129                    mask = ConstructorFlags;
1130            }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1131                if ((sym.owner.flags_field & ANNOTATION) != 0) {
1132                    mask = AnnotationTypeElementMask;
1133                    implicit = PUBLIC | ABSTRACT;
1134                } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1135                    mask = InterfaceMethodMask;
1136                    implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1137                    if ((flags & DEFAULT) != 0) {
1138                        implicit |= ABSTRACT;
1139                    }
1140                } else {
1141                    mask = implicit = InterfaceMethodFlags;
1142                }
1143            } else {
1144                mask = MethodFlags;
1145            }
1146            // Imply STRICTFP if owner has STRICTFP set.
1147            if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1148                ((flags) & Flags.DEFAULT) != 0)
1149                implicit |= sym.owner.flags_field & STRICTFP;
1150            break;
1151        case TYP:
1152            if (sym.isLocal()) {
1153                mask = LocalClassFlags;
1154                if (sym.name.isEmpty()) { // Anonymous class
1155                    // JLS: Anonymous classes are final.
1156                    implicit |= FINAL;
1157                }
1158                if ((sym.owner.flags_field & STATIC) == 0 &&
1159                    (flags & ENUM) != 0)
1160                    log.error(pos, "enums.must.be.static");
1161            } else if (sym.owner.kind == TYP) {
1162                mask = MemberClassFlags;
1163                if (sym.owner.owner.kind == PCK ||
1164                    (sym.owner.flags_field & STATIC) != 0)
1165                    mask |= STATIC;
1166                else if ((flags & ENUM) != 0)
1167                    log.error(pos, "enums.must.be.static");
1168                // Nested interfaces and enums are always STATIC (Spec ???)
1169                if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1170            } else {
1171                mask = ClassFlags;
1172            }
1173            // Interfaces are always ABSTRACT
1174            if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1175
1176            if ((flags & ENUM) != 0) {
1177                // enums can't be declared abstract or final
1178                mask &= ~(ABSTRACT | FINAL);
1179                implicit |= implicitEnumFinalFlag(tree);
1180            }
1181            // Imply STRICTFP if owner has STRICTFP set.
1182            implicit |= sym.owner.flags_field & STRICTFP;
1183            break;
1184        default:
1185            throw new AssertionError();
1186        }
1187        long illegal = flags & ExtendedStandardFlags & ~mask;
1188        if (illegal != 0) {
1189            if ((illegal & INTERFACE) != 0) {
1190                log.error(pos, "intf.not.allowed.here");
1191                mask |= INTERFACE;
1192            }
1193            else {
1194                log.error(pos,
1195                          "mod.not.allowed.here", asFlagSet(illegal));
1196            }
1197        }
1198        else if ((sym.kind == TYP ||
1199                  // ISSUE: Disallowing abstract&private is no longer appropriate
1200                  // in the presence of inner classes. Should it be deleted here?
1201                  checkDisjoint(pos, flags,
1202                                ABSTRACT,
1203                                PRIVATE | STATIC | DEFAULT))
1204                 &&
1205                 checkDisjoint(pos, flags,
1206                                STATIC | PRIVATE,
1207                                DEFAULT)
1208                 &&
1209                 checkDisjoint(pos, flags,
1210                               ABSTRACT | INTERFACE,
1211                               FINAL | NATIVE | SYNCHRONIZED)
1212                 &&
1213                 checkDisjoint(pos, flags,
1214                               PUBLIC,
1215                               PRIVATE | PROTECTED)
1216                 &&
1217                 checkDisjoint(pos, flags,
1218                               PRIVATE,
1219                               PUBLIC | PROTECTED)
1220                 &&
1221                 checkDisjoint(pos, flags,
1222                               FINAL,
1223                               VOLATILE)
1224                 &&
1225                 (sym.kind == TYP ||
1226                  checkDisjoint(pos, flags,
1227                                ABSTRACT | NATIVE,
1228                                STRICTFP))) {
1229            // skip
1230        }
1231        return flags & (mask | ~ExtendedStandardFlags) | implicit;
1232    }
1233
1234
1235    /** Determine if this enum should be implicitly final.
1236     *
1237     *  If the enum has no specialized enum contants, it is final.
1238     *
1239     *  If the enum does have specialized enum contants, it is
1240     *  <i>not</i> final.
1241     */
1242    private long implicitEnumFinalFlag(JCTree tree) {
1243        if (!tree.hasTag(CLASSDEF)) return 0;
1244        class SpecialTreeVisitor extends JCTree.Visitor {
1245            boolean specialized;
1246            SpecialTreeVisitor() {
1247                this.specialized = false;
1248            }
1249
1250            @Override
1251            public void visitTree(JCTree tree) { /* no-op */ }
1252
1253            @Override
1254            public void visitVarDef(JCVariableDecl tree) {
1255                if ((tree.mods.flags & ENUM) != 0) {
1256                    if (tree.init instanceof JCNewClass &&
1257                        ((JCNewClass) tree.init).def != null) {
1258                        specialized = true;
1259                    }
1260                }
1261            }
1262        }
1263
1264        SpecialTreeVisitor sts = new SpecialTreeVisitor();
1265        JCClassDecl cdef = (JCClassDecl) tree;
1266        for (JCTree defs: cdef.defs) {
1267            defs.accept(sts);
1268            if (sts.specialized) return 0;
1269        }
1270        return FINAL;
1271    }
1272
1273/* *************************************************************************
1274 * Type Validation
1275 **************************************************************************/
1276
1277    /** Validate a type expression. That is,
1278     *  check that all type arguments of a parametric type are within
1279     *  their bounds. This must be done in a second phase after type attribution
1280     *  since a class might have a subclass as type parameter bound. E.g:
1281     *
1282     *  <pre>{@code
1283     *  class B<A extends C> { ... }
1284     *  class C extends B<C> { ... }
1285     *  }</pre>
1286     *
1287     *  and we can't make sure that the bound is already attributed because
1288     *  of possible cycles.
1289     *
1290     * Visitor method: Validate a type expression, if it is not null, catching
1291     *  and reporting any completion failures.
1292     */
1293    void validate(JCTree tree, Env<AttrContext> env) {
1294        validate(tree, env, true);
1295    }
1296    void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1297        new Validator(env).validateTree(tree, checkRaw, true);
1298    }
1299
1300    /** Visitor method: Validate a list of type expressions.
1301     */
1302    void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1303        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1304            validate(l.head, env);
1305    }
1306
1307    /** A visitor class for type validation.
1308     */
1309    class Validator extends JCTree.Visitor {
1310
1311        boolean checkRaw;
1312        boolean isOuter;
1313        Env<AttrContext> env;
1314
1315        Validator(Env<AttrContext> env) {
1316            this.env = env;
1317        }
1318
1319        @Override
1320        public void visitTypeArray(JCArrayTypeTree tree) {
1321            validateTree(tree.elemtype, checkRaw, isOuter);
1322        }
1323
1324        @Override
1325        public void visitTypeApply(JCTypeApply tree) {
1326            if (tree.type.hasTag(CLASS)) {
1327                List<JCExpression> args = tree.arguments;
1328                List<Type> forms = tree.type.tsym.type.getTypeArguments();
1329
1330                Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1331                if (incompatibleArg != null) {
1332                    for (JCTree arg : tree.arguments) {
1333                        if (arg.type == incompatibleArg) {
1334                            log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1335                        }
1336                        forms = forms.tail;
1337                     }
1338                 }
1339
1340                forms = tree.type.tsym.type.getTypeArguments();
1341
1342                boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1343
1344                // For matching pairs of actual argument types `a' and
1345                // formal type parameters with declared bound `b' ...
1346                while (args.nonEmpty() && forms.nonEmpty()) {
1347                    validateTree(args.head,
1348                            !(isOuter && is_java_lang_Class),
1349                            false);
1350                    args = args.tail;
1351                    forms = forms.tail;
1352                }
1353
1354                // Check that this type is either fully parameterized, or
1355                // not parameterized at all.
1356                if (tree.type.getEnclosingType().isRaw())
1357                    log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1358                if (tree.clazz.hasTag(SELECT))
1359                    visitSelectInternal((JCFieldAccess)tree.clazz);
1360            }
1361        }
1362
1363        @Override
1364        public void visitTypeParameter(JCTypeParameter tree) {
1365            validateTrees(tree.bounds, true, isOuter);
1366            checkClassBounds(tree.pos(), tree.type);
1367        }
1368
1369        @Override
1370        public void visitWildcard(JCWildcard tree) {
1371            if (tree.inner != null)
1372                validateTree(tree.inner, true, isOuter);
1373        }
1374
1375        @Override
1376        public void visitSelect(JCFieldAccess tree) {
1377            if (tree.type.hasTag(CLASS)) {
1378                visitSelectInternal(tree);
1379
1380                // Check that this type is either fully parameterized, or
1381                // not parameterized at all.
1382                if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1383                    log.error(tree.pos(), "improperly.formed.type.param.missing");
1384            }
1385        }
1386
1387        public void visitSelectInternal(JCFieldAccess tree) {
1388            if (tree.type.tsym.isStatic() &&
1389                tree.selected.type.isParameterized()) {
1390                // The enclosing type is not a class, so we are
1391                // looking at a static member type.  However, the
1392                // qualifying expression is parameterized.
1393                log.error(tree.pos(), "cant.select.static.class.from.param.type");
1394            } else {
1395                // otherwise validate the rest of the expression
1396                tree.selected.accept(this);
1397            }
1398        }
1399
1400        @Override
1401        public void visitAnnotatedType(JCAnnotatedType tree) {
1402            tree.underlyingType.accept(this);
1403        }
1404
1405        @Override
1406        public void visitTypeIdent(JCPrimitiveTypeTree that) {
1407            if (that.type.hasTag(TypeTag.VOID)) {
1408                log.error(that.pos(), "void.not.allowed.here");
1409            }
1410            super.visitTypeIdent(that);
1411        }
1412
1413        /** Default visitor method: do nothing.
1414         */
1415        @Override
1416        public void visitTree(JCTree tree) {
1417        }
1418
1419        public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1420            if (tree != null) {
1421                boolean prevCheckRaw = this.checkRaw;
1422                this.checkRaw = checkRaw;
1423                this.isOuter = isOuter;
1424
1425                try {
1426                    tree.accept(this);
1427                    if (checkRaw)
1428                        checkRaw(tree, env);
1429                } catch (CompletionFailure ex) {
1430                    completionError(tree.pos(), ex);
1431                } finally {
1432                    this.checkRaw = prevCheckRaw;
1433                }
1434            }
1435        }
1436
1437        public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1438            for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1439                validateTree(l.head, checkRaw, isOuter);
1440        }
1441    }
1442
1443    void checkRaw(JCTree tree, Env<AttrContext> env) {
1444        if (lint.isEnabled(LintCategory.RAW) &&
1445            tree.type.hasTag(CLASS) &&
1446            !TreeInfo.isDiamond(tree) &&
1447            !withinAnonConstr(env) &&
1448            tree.type.isRaw()) {
1449            log.warning(LintCategory.RAW,
1450                    tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1451        }
1452    }
1453    //where
1454        private boolean withinAnonConstr(Env<AttrContext> env) {
1455            return env.enclClass.name.isEmpty() &&
1456                    env.enclMethod != null && env.enclMethod.name == names.init;
1457        }
1458
1459/* *************************************************************************
1460 * Exception checking
1461 **************************************************************************/
1462
1463    /* The following methods treat classes as sets that contain
1464     * the class itself and all their subclasses
1465     */
1466
1467    /** Is given type a subtype of some of the types in given list?
1468     */
1469    boolean subset(Type t, List<Type> ts) {
1470        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1471            if (types.isSubtype(t, l.head)) return true;
1472        return false;
1473    }
1474
1475    /** Is given type a subtype or supertype of
1476     *  some of the types in given list?
1477     */
1478    boolean intersects(Type t, List<Type> ts) {
1479        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1480            if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1481        return false;
1482    }
1483
1484    /** Add type set to given type list, unless it is a subclass of some class
1485     *  in the list.
1486     */
1487    List<Type> incl(Type t, List<Type> ts) {
1488        return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1489    }
1490
1491    /** Remove type set from type set list.
1492     */
1493    List<Type> excl(Type t, List<Type> ts) {
1494        if (ts.isEmpty()) {
1495            return ts;
1496        } else {
1497            List<Type> ts1 = excl(t, ts.tail);
1498            if (types.isSubtype(ts.head, t)) return ts1;
1499            else if (ts1 == ts.tail) return ts;
1500            else return ts1.prepend(ts.head);
1501        }
1502    }
1503
1504    /** Form the union of two type set lists.
1505     */
1506    List<Type> union(List<Type> ts1, List<Type> ts2) {
1507        List<Type> ts = ts1;
1508        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1509            ts = incl(l.head, ts);
1510        return ts;
1511    }
1512
1513    /** Form the difference of two type lists.
1514     */
1515    List<Type> diff(List<Type> ts1, List<Type> ts2) {
1516        List<Type> ts = ts1;
1517        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1518            ts = excl(l.head, ts);
1519        return ts;
1520    }
1521
1522    /** Form the intersection of two type lists.
1523     */
1524    public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1525        List<Type> ts = List.nil();
1526        for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1527            if (subset(l.head, ts2)) ts = incl(l.head, ts);
1528        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1529            if (subset(l.head, ts1)) ts = incl(l.head, ts);
1530        return ts;
1531    }
1532
1533    /** Is exc an exception symbol that need not be declared?
1534     */
1535    boolean isUnchecked(ClassSymbol exc) {
1536        return
1537            exc.kind == ERR ||
1538            exc.isSubClass(syms.errorType.tsym, types) ||
1539            exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1540    }
1541
1542    /** Is exc an exception type that need not be declared?
1543     */
1544    boolean isUnchecked(Type exc) {
1545        return
1546            (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1547            (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1548            exc.hasTag(BOT);
1549    }
1550
1551    /** Same, but handling completion failures.
1552     */
1553    boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1554        try {
1555            return isUnchecked(exc);
1556        } catch (CompletionFailure ex) {
1557            completionError(pos, ex);
1558            return true;
1559        }
1560    }
1561
1562    /** Is exc handled by given exception list?
1563     */
1564    boolean isHandled(Type exc, List<Type> handled) {
1565        return isUnchecked(exc) || subset(exc, handled);
1566    }
1567
1568    /** Return all exceptions in thrown list that are not in handled list.
1569     *  @param thrown     The list of thrown exceptions.
1570     *  @param handled    The list of handled exceptions.
1571     */
1572    List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1573        List<Type> unhandled = List.nil();
1574        for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1575            if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1576        return unhandled;
1577    }
1578
1579/* *************************************************************************
1580 * Overriding/Implementation checking
1581 **************************************************************************/
1582
1583    /** The level of access protection given by a flag set,
1584     *  where PRIVATE is highest and PUBLIC is lowest.
1585     */
1586    static int protection(long flags) {
1587        switch ((short)(flags & AccessFlags)) {
1588        case PRIVATE: return 3;
1589        case PROTECTED: return 1;
1590        default:
1591        case PUBLIC: return 0;
1592        case 0: return 2;
1593        }
1594    }
1595
1596    /** A customized "cannot override" error message.
1597     *  @param m      The overriding method.
1598     *  @param other  The overridden method.
1599     *  @return       An internationalized string.
1600     */
1601    Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1602        String key;
1603        if ((other.owner.flags() & INTERFACE) == 0)
1604            key = "cant.override";
1605        else if ((m.owner.flags() & INTERFACE) == 0)
1606            key = "cant.implement";
1607        else
1608            key = "clashes.with";
1609        return diags.fragment(key, m, m.location(), other, other.location());
1610    }
1611
1612    /** A customized "override" warning message.
1613     *  @param m      The overriding method.
1614     *  @param other  The overridden method.
1615     *  @return       An internationalized string.
1616     */
1617    Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1618        String key;
1619        if ((other.owner.flags() & INTERFACE) == 0)
1620            key = "unchecked.override";
1621        else if ((m.owner.flags() & INTERFACE) == 0)
1622            key = "unchecked.implement";
1623        else
1624            key = "unchecked.clash.with";
1625        return diags.fragment(key, m, m.location(), other, other.location());
1626    }
1627
1628    /** A customized "override" warning message.
1629     *  @param m      The overriding method.
1630     *  @param other  The overridden method.
1631     *  @return       An internationalized string.
1632     */
1633    Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1634        String key;
1635        if ((other.owner.flags() & INTERFACE) == 0)
1636            key = "varargs.override";
1637        else  if ((m.owner.flags() & INTERFACE) == 0)
1638            key = "varargs.implement";
1639        else
1640            key = "varargs.clash.with";
1641        return diags.fragment(key, m, m.location(), other, other.location());
1642    }
1643
1644    /** Check that this method conforms with overridden method 'other'.
1645     *  where `origin' is the class where checking started.
1646     *  Complications:
1647     *  (1) Do not check overriding of synthetic methods
1648     *      (reason: they might be final).
1649     *      todo: check whether this is still necessary.
1650     *  (2) Admit the case where an interface proxy throws fewer exceptions
1651     *      than the method it implements. Augment the proxy methods with the
1652     *      undeclared exceptions in this case.
1653     *  (3) When generics are enabled, admit the case where an interface proxy
1654     *      has a result type
1655     *      extended by the result type of the method it implements.
1656     *      Change the proxies result type to the smaller type in this case.
1657     *
1658     *  @param tree         The tree from which positions
1659     *                      are extracted for errors.
1660     *  @param m            The overriding method.
1661     *  @param other        The overridden method.
1662     *  @param origin       The class of which the overriding method
1663     *                      is a member.
1664     */
1665    void checkOverride(JCTree tree,
1666                       MethodSymbol m,
1667                       MethodSymbol other,
1668                       ClassSymbol origin) {
1669        // Don't check overriding of synthetic methods or by bridge methods.
1670        if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1671            return;
1672        }
1673
1674        // Error if static method overrides instance method (JLS 8.4.6.2).
1675        if ((m.flags() & STATIC) != 0 &&
1676                   (other.flags() & STATIC) == 0) {
1677            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1678                      cannotOverride(m, other));
1679            m.flags_field |= BAD_OVERRIDE;
1680            return;
1681        }
1682
1683        // Error if instance method overrides static or final
1684        // method (JLS 8.4.6.1).
1685        if ((other.flags() & FINAL) != 0 ||
1686                 (m.flags() & STATIC) == 0 &&
1687                 (other.flags() & STATIC) != 0) {
1688            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1689                      cannotOverride(m, other),
1690                      asFlagSet(other.flags() & (FINAL | STATIC)));
1691            m.flags_field |= BAD_OVERRIDE;
1692            return;
1693        }
1694
1695        if ((m.owner.flags() & ANNOTATION) != 0) {
1696            // handled in validateAnnotationMethod
1697            return;
1698        }
1699
1700        // Error if overriding method has weaker access (JLS 8.4.6.3).
1701        if (protection(m.flags()) > protection(other.flags())) {
1702            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1703                      cannotOverride(m, other),
1704                      (other.flags() & AccessFlags) == 0 ?
1705                          "package" :
1706                          asFlagSet(other.flags() & AccessFlags));
1707            m.flags_field |= BAD_OVERRIDE;
1708            return;
1709        }
1710
1711        Type mt = types.memberType(origin.type, m);
1712        Type ot = types.memberType(origin.type, other);
1713        // Error if overriding result type is different
1714        // (or, in the case of generics mode, not a subtype) of
1715        // overridden result type. We have to rename any type parameters
1716        // before comparing types.
1717        List<Type> mtvars = mt.getTypeArguments();
1718        List<Type> otvars = ot.getTypeArguments();
1719        Type mtres = mt.getReturnType();
1720        Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1721
1722        overrideWarner.clear();
1723        boolean resultTypesOK =
1724            types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1725        if (!resultTypesOK) {
1726            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1727                      "override.incompatible.ret",
1728                      cannotOverride(m, other),
1729                      mtres, otres);
1730            m.flags_field |= BAD_OVERRIDE;
1731            return;
1732        } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1733            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1734                    "override.unchecked.ret",
1735                    uncheckedOverrides(m, other),
1736                    mtres, otres);
1737        }
1738
1739        // Error if overriding method throws an exception not reported
1740        // by overridden method.
1741        List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1742        List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1743        List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1744        if (unhandledErased.nonEmpty()) {
1745            log.error(TreeInfo.diagnosticPositionFor(m, tree),
1746                      "override.meth.doesnt.throw",
1747                      cannotOverride(m, other),
1748                      unhandledUnerased.head);
1749            m.flags_field |= BAD_OVERRIDE;
1750            return;
1751        }
1752        else if (unhandledUnerased.nonEmpty()) {
1753            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1754                          "override.unchecked.thrown",
1755                         cannotOverride(m, other),
1756                         unhandledUnerased.head);
1757            return;
1758        }
1759
1760        // Optional warning if varargs don't agree
1761        if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1762            && lint.isEnabled(LintCategory.OVERRIDES)) {
1763            log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1764                        ((m.flags() & Flags.VARARGS) != 0)
1765                        ? "override.varargs.missing"
1766                        : "override.varargs.extra",
1767                        varargsOverrides(m, other));
1768        }
1769
1770        // Warn if instance method overrides bridge method (compiler spec ??)
1771        if ((other.flags() & BRIDGE) != 0) {
1772            log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1773                        uncheckedOverrides(m, other));
1774        }
1775
1776        // Warn if a deprecated method overridden by a non-deprecated one.
1777        if (!isDeprecatedOverrideIgnorable(other, origin)) {
1778            Lint prevLint = setLint(lint.augment(m));
1779            try {
1780                checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1781            } finally {
1782                setLint(prevLint);
1783            }
1784        }
1785    }
1786    // where
1787        private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1788            // If the method, m, is defined in an interface, then ignore the issue if the method
1789            // is only inherited via a supertype and also implemented in the supertype,
1790            // because in that case, we will rediscover the issue when examining the method
1791            // in the supertype.
1792            // If the method, m, is not defined in an interface, then the only time we need to
1793            // address the issue is when the method is the supertype implemementation: any other
1794            // case, we will have dealt with when examining the supertype classes
1795            ClassSymbol mc = m.enclClass();
1796            Type st = types.supertype(origin.type);
1797            if (!st.hasTag(CLASS))
1798                return true;
1799            MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1800
1801            if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1802                List<Type> intfs = types.interfaces(origin.type);
1803                return (intfs.contains(mc.type) ? false : (stimpl != null));
1804            }
1805            else
1806                return (stimpl != m);
1807        }
1808
1809
1810    // used to check if there were any unchecked conversions
1811    Warner overrideWarner = new Warner();
1812
1813    /** Check that a class does not inherit two concrete methods
1814     *  with the same signature.
1815     *  @param pos          Position to be used for error reporting.
1816     *  @param site         The class type to be checked.
1817     */
1818    public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1819        Type sup = types.supertype(site);
1820        if (!sup.hasTag(CLASS)) return;
1821
1822        for (Type t1 = sup;
1823             t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1824             t1 = types.supertype(t1)) {
1825            for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1826                if (s1.kind != MTH ||
1827                    (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1828                    !s1.isInheritedIn(site.tsym, types) ||
1829                    ((MethodSymbol)s1).implementation(site.tsym,
1830                                                      types,
1831                                                      true) != s1)
1832                    continue;
1833                Type st1 = types.memberType(t1, s1);
1834                int s1ArgsLength = st1.getParameterTypes().length();
1835                if (st1 == s1.type) continue;
1836
1837                for (Type t2 = sup;
1838                     t2.hasTag(CLASS);
1839                     t2 = types.supertype(t2)) {
1840                    for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1841                        if (s2 == s1 ||
1842                            s2.kind != MTH ||
1843                            (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1844                            s2.type.getParameterTypes().length() != s1ArgsLength ||
1845                            !s2.isInheritedIn(site.tsym, types) ||
1846                            ((MethodSymbol)s2).implementation(site.tsym,
1847                                                              types,
1848                                                              true) != s2)
1849                            continue;
1850                        Type st2 = types.memberType(t2, s2);
1851                        if (types.overrideEquivalent(st1, st2))
1852                            log.error(pos, "concrete.inheritance.conflict",
1853                                      s1, t1, s2, t2, sup);
1854                    }
1855                }
1856            }
1857        }
1858    }
1859
1860    /** Check that classes (or interfaces) do not each define an abstract
1861     *  method with same name and arguments but incompatible return types.
1862     *  @param pos          Position to be used for error reporting.
1863     *  @param t1           The first argument type.
1864     *  @param t2           The second argument type.
1865     */
1866    public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1867                                            Type t1,
1868                                            Type t2,
1869                                            Type site) {
1870        if ((site.tsym.flags() & COMPOUND) != 0) {
1871            // special case for intersections: need to eliminate wildcards in supertypes
1872            t1 = types.capture(t1);
1873            t2 = types.capture(t2);
1874        }
1875        return firstIncompatibility(pos, t1, t2, site) == null;
1876    }
1877
1878    /** Return the first method which is defined with same args
1879     *  but different return types in two given interfaces, or null if none
1880     *  exists.
1881     *  @param t1     The first type.
1882     *  @param t2     The second type.
1883     *  @param site   The most derived type.
1884     *  @returns symbol from t2 that conflicts with one in t1.
1885     */
1886    private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1887        Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1888        closure(t1, interfaces1);
1889        Map<TypeSymbol,Type> interfaces2;
1890        if (t1 == t2)
1891            interfaces2 = interfaces1;
1892        else
1893            closure(t2, interfaces1, interfaces2 = new HashMap<>());
1894
1895        for (Type t3 : interfaces1.values()) {
1896            for (Type t4 : interfaces2.values()) {
1897                Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1898                if (s != null) return s;
1899            }
1900        }
1901        return null;
1902    }
1903
1904    /** Compute all the supertypes of t, indexed by type symbol. */
1905    private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1906        if (!t.hasTag(CLASS)) return;
1907        if (typeMap.put(t.tsym, t) == null) {
1908            closure(types.supertype(t), typeMap);
1909            for (Type i : types.interfaces(t))
1910                closure(i, typeMap);
1911        }
1912    }
1913
1914    /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1915    private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1916        if (!t.hasTag(CLASS)) return;
1917        if (typesSkip.get(t.tsym) != null) return;
1918        if (typeMap.put(t.tsym, t) == null) {
1919            closure(types.supertype(t), typesSkip, typeMap);
1920            for (Type i : types.interfaces(t))
1921                closure(i, typesSkip, typeMap);
1922        }
1923    }
1924
1925    /** Return the first method in t2 that conflicts with a method from t1. */
1926    private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1927        for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1928            Type st1 = null;
1929            if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1930                    (s1.flags() & SYNTHETIC) != 0) continue;
1931            Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1932            if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1933            for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1934                if (s1 == s2) continue;
1935                if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1936                        (s2.flags() & SYNTHETIC) != 0) continue;
1937                if (st1 == null) st1 = types.memberType(t1, s1);
1938                Type st2 = types.memberType(t2, s2);
1939                if (types.overrideEquivalent(st1, st2)) {
1940                    List<Type> tvars1 = st1.getTypeArguments();
1941                    List<Type> tvars2 = st2.getTypeArguments();
1942                    Type rt1 = st1.getReturnType();
1943                    Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1944                    boolean compat =
1945                        types.isSameType(rt1, rt2) ||
1946                        !rt1.isPrimitiveOrVoid() &&
1947                        !rt2.isPrimitiveOrVoid() &&
1948                        (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1949                         types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1950                         checkCommonOverriderIn(s1,s2,site);
1951                    if (!compat) {
1952                        log.error(pos, "types.incompatible.diff.ret",
1953                            t1, t2, s2.name +
1954                            "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1955                        return s2;
1956                    }
1957                } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1958                        !checkCommonOverriderIn(s1, s2, site)) {
1959                    log.error(pos,
1960                            "name.clash.same.erasure.no.override",
1961                            s1, s1.location(),
1962                            s2, s2.location());
1963                    return s2;
1964                }
1965            }
1966        }
1967        return null;
1968    }
1969    //WHERE
1970    boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1971        Map<TypeSymbol,Type> supertypes = new HashMap<>();
1972        Type st1 = types.memberType(site, s1);
1973        Type st2 = types.memberType(site, s2);
1974        closure(site, supertypes);
1975        for (Type t : supertypes.values()) {
1976            for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1977                if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1978                Type st3 = types.memberType(site,s3);
1979                if (types.overrideEquivalent(st3, st1) &&
1980                        types.overrideEquivalent(st3, st2) &&
1981                        types.returnTypeSubstitutable(st3, st1) &&
1982                        types.returnTypeSubstitutable(st3, st2)) {
1983                    return true;
1984                }
1985            }
1986        }
1987        return false;
1988    }
1989
1990    /** Check that a given method conforms with any method it overrides.
1991     *  @param tree         The tree from which positions are extracted
1992     *                      for errors.
1993     *  @param m            The overriding method.
1994     */
1995    void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
1996        ClassSymbol origin = (ClassSymbol)m.owner;
1997        if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1998            if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1999                log.error(tree.pos(), "enum.no.finalize");
2000                return;
2001            }
2002        for (Type t = origin.type; t.hasTag(CLASS);
2003             t = types.supertype(t)) {
2004            if (t != origin.type) {
2005                checkOverride(tree, t, origin, m);
2006            }
2007            for (Type t2 : types.interfaces(t)) {
2008                checkOverride(tree, t2, origin, m);
2009            }
2010        }
2011
2012        // Check if this method must override a super method due to being annotated with @Override
2013        // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2014        // be treated "as if as they were annotated" with @Override.
2015        boolean mustOverride = m.attribute(syms.overrideType.tsym) != null ||
2016                (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2017        if (mustOverride && !isOverrider(m)) {
2018            DiagnosticPosition pos = tree.pos();
2019            for (JCAnnotation a : tree.getModifiers().annotations) {
2020                if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2021                    pos = a.pos();
2022                    break;
2023                }
2024            }
2025            log.error(pos, "method.does.not.override.superclass");
2026        }
2027    }
2028
2029    void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2030        TypeSymbol c = site.tsym;
2031        for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2032            if (m.overrides(sym, origin, types, false)) {
2033                if ((sym.flags() & ABSTRACT) == 0) {
2034                    checkOverride(tree, m, (MethodSymbol)sym, origin);
2035                }
2036            }
2037        }
2038    }
2039
2040    private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
2041        public boolean accepts(Symbol s) {
2042            return MethodSymbol.implementation_filter.accepts(s) &&
2043                    (s.flags() & BAD_OVERRIDE) == 0;
2044
2045        }
2046    };
2047
2048    public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2049            ClassSymbol someClass) {
2050        /* At present, annotations cannot possibly have a method that is override
2051         * equivalent with Object.equals(Object) but in any case the condition is
2052         * fine for completeness.
2053         */
2054        if (someClass == (ClassSymbol)syms.objectType.tsym ||
2055            someClass.isInterface() || someClass.isEnum() ||
2056            (someClass.flags() & ANNOTATION) != 0 ||
2057            (someClass.flags() & ABSTRACT) != 0) return;
2058        //anonymous inner classes implementing interfaces need especial treatment
2059        if (someClass.isAnonymous()) {
2060            List<Type> interfaces =  types.interfaces(someClass.type);
2061            if (interfaces != null && !interfaces.isEmpty() &&
2062                interfaces.head.tsym == syms.comparatorType.tsym) return;
2063        }
2064        checkClassOverrideEqualsAndHash(pos, someClass);
2065    }
2066
2067    private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2068            ClassSymbol someClass) {
2069        if (lint.isEnabled(LintCategory.OVERRIDES)) {
2070            MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2071                    .tsym.members().findFirst(names.equals);
2072            MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2073                    .tsym.members().findFirst(names.hashCode);
2074            boolean overridesEquals = types.implementation(equalsAtObject,
2075                someClass, false, equalsHasCodeFilter).owner == someClass;
2076            boolean overridesHashCode = types.implementation(hashCodeAtObject,
2077                someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2078
2079            if (overridesEquals && !overridesHashCode) {
2080                log.warning(LintCategory.OVERRIDES, pos,
2081                        "override.equals.but.not.hashcode", someClass);
2082            }
2083        }
2084    }
2085
2086    private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2087        ClashFilter cf = new ClashFilter(origin.type);
2088        return (cf.accepts(s1) &&
2089                cf.accepts(s2) &&
2090                types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2091    }
2092
2093
2094    /** Check that all abstract members of given class have definitions.
2095     *  @param pos          Position to be used for error reporting.
2096     *  @param c            The class.
2097     */
2098    void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2099        MethodSymbol undef = types.firstUnimplementedAbstract(c);
2100        if (undef != null) {
2101            MethodSymbol undef1 =
2102                new MethodSymbol(undef.flags(), undef.name,
2103                                 types.memberType(c.type, undef), undef.owner);
2104            log.error(pos, "does.not.override.abstract",
2105                      c, undef1, undef1.location());
2106        }
2107    }
2108
2109    void checkNonCyclicDecl(JCClassDecl tree) {
2110        CycleChecker cc = new CycleChecker();
2111        cc.scan(tree);
2112        if (!cc.errorFound && !cc.partialCheck) {
2113            tree.sym.flags_field |= ACYCLIC;
2114        }
2115    }
2116
2117    class CycleChecker extends TreeScanner {
2118
2119        List<Symbol> seenClasses = List.nil();
2120        boolean errorFound = false;
2121        boolean partialCheck = false;
2122
2123        private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2124            if (sym != null && sym.kind == TYP) {
2125                Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2126                if (classEnv != null) {
2127                    DiagnosticSource prevSource = log.currentSource();
2128                    try {
2129                        log.useSource(classEnv.toplevel.sourcefile);
2130                        scan(classEnv.tree);
2131                    }
2132                    finally {
2133                        log.useSource(prevSource.getFile());
2134                    }
2135                } else if (sym.kind == TYP) {
2136                    checkClass(pos, sym, List.<JCTree>nil());
2137                }
2138            } else {
2139                //not completed yet
2140                partialCheck = true;
2141            }
2142        }
2143
2144        @Override
2145        public void visitSelect(JCFieldAccess tree) {
2146            super.visitSelect(tree);
2147            checkSymbol(tree.pos(), tree.sym);
2148        }
2149
2150        @Override
2151        public void visitIdent(JCIdent tree) {
2152            checkSymbol(tree.pos(), tree.sym);
2153        }
2154
2155        @Override
2156        public void visitTypeApply(JCTypeApply tree) {
2157            scan(tree.clazz);
2158        }
2159
2160        @Override
2161        public void visitTypeArray(JCArrayTypeTree tree) {
2162            scan(tree.elemtype);
2163        }
2164
2165        @Override
2166        public void visitClassDef(JCClassDecl tree) {
2167            List<JCTree> supertypes = List.nil();
2168            if (tree.getExtendsClause() != null) {
2169                supertypes = supertypes.prepend(tree.getExtendsClause());
2170            }
2171            if (tree.getImplementsClause() != null) {
2172                for (JCTree intf : tree.getImplementsClause()) {
2173                    supertypes = supertypes.prepend(intf);
2174                }
2175            }
2176            checkClass(tree.pos(), tree.sym, supertypes);
2177        }
2178
2179        void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2180            if ((c.flags_field & ACYCLIC) != 0)
2181                return;
2182            if (seenClasses.contains(c)) {
2183                errorFound = true;
2184                noteCyclic(pos, (ClassSymbol)c);
2185            } else if (!c.type.isErroneous()) {
2186                try {
2187                    seenClasses = seenClasses.prepend(c);
2188                    if (c.type.hasTag(CLASS)) {
2189                        if (supertypes.nonEmpty()) {
2190                            scan(supertypes);
2191                        }
2192                        else {
2193                            ClassType ct = (ClassType)c.type;
2194                            if (ct.supertype_field == null ||
2195                                    ct.interfaces_field == null) {
2196                                //not completed yet
2197                                partialCheck = true;
2198                                return;
2199                            }
2200                            checkSymbol(pos, ct.supertype_field.tsym);
2201                            for (Type intf : ct.interfaces_field) {
2202                                checkSymbol(pos, intf.tsym);
2203                            }
2204                        }
2205                        if (c.owner.kind == TYP) {
2206                            checkSymbol(pos, c.owner);
2207                        }
2208                    }
2209                } finally {
2210                    seenClasses = seenClasses.tail;
2211                }
2212            }
2213        }
2214    }
2215
2216    /** Check for cyclic references. Issue an error if the
2217     *  symbol of the type referred to has a LOCKED flag set.
2218     *
2219     *  @param pos      Position to be used for error reporting.
2220     *  @param t        The type referred to.
2221     */
2222    void checkNonCyclic(DiagnosticPosition pos, Type t) {
2223        checkNonCyclicInternal(pos, t);
2224    }
2225
2226
2227    void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2228        checkNonCyclic1(pos, t, List.<TypeVar>nil());
2229    }
2230
2231    private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2232        final TypeVar tv;
2233        if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2234            return;
2235        if (seen.contains(t)) {
2236            tv = (TypeVar)t;
2237            tv.bound = types.createErrorType(t);
2238            log.error(pos, "cyclic.inheritance", t);
2239        } else if (t.hasTag(TYPEVAR)) {
2240            tv = (TypeVar)t;
2241            seen = seen.prepend(tv);
2242            for (Type b : types.getBounds(tv))
2243                checkNonCyclic1(pos, b, seen);
2244        }
2245    }
2246
2247    /** Check for cyclic references. Issue an error if the
2248     *  symbol of the type referred to has a LOCKED flag set.
2249     *
2250     *  @param pos      Position to be used for error reporting.
2251     *  @param t        The type referred to.
2252     *  @returns        True if the check completed on all attributed classes
2253     */
2254    private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2255        boolean complete = true; // was the check complete?
2256        //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2257        Symbol c = t.tsym;
2258        if ((c.flags_field & ACYCLIC) != 0) return true;
2259
2260        if ((c.flags_field & LOCKED) != 0) {
2261            noteCyclic(pos, (ClassSymbol)c);
2262        } else if (!c.type.isErroneous()) {
2263            try {
2264                c.flags_field |= LOCKED;
2265                if (c.type.hasTag(CLASS)) {
2266                    ClassType clazz = (ClassType)c.type;
2267                    if (clazz.interfaces_field != null)
2268                        for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2269                            complete &= checkNonCyclicInternal(pos, l.head);
2270                    if (clazz.supertype_field != null) {
2271                        Type st = clazz.supertype_field;
2272                        if (st != null && st.hasTag(CLASS))
2273                            complete &= checkNonCyclicInternal(pos, st);
2274                    }
2275                    if (c.owner.kind == TYP)
2276                        complete &= checkNonCyclicInternal(pos, c.owner.type);
2277                }
2278            } finally {
2279                c.flags_field &= ~LOCKED;
2280            }
2281        }
2282        if (complete)
2283            complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2284        if (complete) c.flags_field |= ACYCLIC;
2285        return complete;
2286    }
2287
2288    /** Note that we found an inheritance cycle. */
2289    private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2290        log.error(pos, "cyclic.inheritance", c);
2291        for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2292            l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2293        Type st = types.supertype(c.type);
2294        if (st.hasTag(CLASS))
2295            ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2296        c.type = types.createErrorType(c, c.type);
2297        c.flags_field |= ACYCLIC;
2298    }
2299
2300    /** Check that all methods which implement some
2301     *  method conform to the method they implement.
2302     *  @param tree         The class definition whose members are checked.
2303     */
2304    void checkImplementations(JCClassDecl tree) {
2305        checkImplementations(tree, tree.sym, tree.sym);
2306    }
2307    //where
2308        /** Check that all methods which implement some
2309         *  method in `ic' conform to the method they implement.
2310         */
2311        void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2312            for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2313                ClassSymbol lc = (ClassSymbol)l.head.tsym;
2314                if ((lc.flags() & ABSTRACT) != 0) {
2315                    for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2316                        if (sym.kind == MTH &&
2317                            (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2318                            MethodSymbol absmeth = (MethodSymbol)sym;
2319                            MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2320                            if (implmeth != null && implmeth != absmeth &&
2321                                (implmeth.owner.flags() & INTERFACE) ==
2322                                (origin.flags() & INTERFACE)) {
2323                                // don't check if implmeth is in a class, yet
2324                                // origin is an interface. This case arises only
2325                                // if implmeth is declared in Object. The reason is
2326                                // that interfaces really don't inherit from
2327                                // Object it's just that the compiler represents
2328                                // things that way.
2329                                checkOverride(tree, implmeth, absmeth, origin);
2330                            }
2331                        }
2332                    }
2333                }
2334            }
2335        }
2336
2337    /** Check that all abstract methods implemented by a class are
2338     *  mutually compatible.
2339     *  @param pos          Position to be used for error reporting.
2340     *  @param c            The class whose interfaces are checked.
2341     */
2342    void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2343        List<Type> supertypes = types.interfaces(c);
2344        Type supertype = types.supertype(c);
2345        if (supertype.hasTag(CLASS) &&
2346            (supertype.tsym.flags() & ABSTRACT) != 0)
2347            supertypes = supertypes.prepend(supertype);
2348        for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2349            if (!l.head.getTypeArguments().isEmpty() &&
2350                !checkCompatibleAbstracts(pos, l.head, l.head, c))
2351                return;
2352            for (List<Type> m = supertypes; m != l; m = m.tail)
2353                if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2354                    return;
2355        }
2356        checkCompatibleConcretes(pos, c);
2357    }
2358
2359    void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2360        for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2361            for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
2362                // VM allows methods and variables with differing types
2363                if (sym.kind == sym2.kind &&
2364                    types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
2365                    sym != sym2 &&
2366                    (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
2367                    (sym.flags() & IPROXY) == 0 && (sym2.flags() & IPROXY) == 0 &&
2368                    (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
2369                    syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
2370                    return;
2371                }
2372            }
2373        }
2374    }
2375
2376    /** Check that all non-override equivalent methods accessible from 'site'
2377     *  are mutually compatible (JLS 8.4.8/9.4.1).
2378     *
2379     *  @param pos  Position to be used for error reporting.
2380     *  @param site The class whose methods are checked.
2381     *  @param sym  The method symbol to be checked.
2382     */
2383    void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2384         ClashFilter cf = new ClashFilter(site);
2385        //for each method m1 that is overridden (directly or indirectly)
2386        //by method 'sym' in 'site'...
2387
2388        List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2389        boolean overridesAny = false;
2390        for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2391            if (!sym.overrides(m1, site.tsym, types, false)) {
2392                if (m1 == sym) {
2393                    continue;
2394                }
2395
2396                if (!overridesAny) {
2397                    potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2398                }
2399                continue;
2400            }
2401
2402            if (m1 != sym) {
2403                overridesAny = true;
2404                potentiallyAmbiguousList = List.nil();
2405            }
2406
2407            //...check each method m2 that is a member of 'site'
2408            for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2409                if (m2 == m1) continue;
2410                //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2411                //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2412                if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2413                        types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2414                    sym.flags_field |= CLASH;
2415                    String key = m1 == sym ?
2416                            "name.clash.same.erasure.no.override" :
2417                            "name.clash.same.erasure.no.override.1";
2418                    log.error(pos,
2419                            key,
2420                            sym, sym.location(),
2421                            m2, m2.location(),
2422                            m1, m1.location());
2423                    return;
2424                }
2425            }
2426        }
2427
2428        if (!overridesAny) {
2429            for (MethodSymbol m: potentiallyAmbiguousList) {
2430                checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2431            }
2432        }
2433    }
2434
2435    /** Check that all static methods accessible from 'site' are
2436     *  mutually compatible (JLS 8.4.8).
2437     *
2438     *  @param pos  Position to be used for error reporting.
2439     *  @param site The class whose methods are checked.
2440     *  @param sym  The method symbol to be checked.
2441     */
2442    void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2443        ClashFilter cf = new ClashFilter(site);
2444        //for each method m1 that is a member of 'site'...
2445        for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2446            //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2447            //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2448            if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2449                if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2450                    log.error(pos,
2451                            "name.clash.same.erasure.no.hide",
2452                            sym, sym.location(),
2453                            s, s.location());
2454                    return;
2455                } else {
2456                    checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2457                }
2458            }
2459         }
2460     }
2461
2462     //where
2463     private class ClashFilter implements Filter<Symbol> {
2464
2465         Type site;
2466
2467         ClashFilter(Type site) {
2468             this.site = site;
2469         }
2470
2471         boolean shouldSkip(Symbol s) {
2472             return (s.flags() & CLASH) != 0 &&
2473                s.owner == site.tsym;
2474         }
2475
2476         public boolean accepts(Symbol s) {
2477             return s.kind == MTH &&
2478                     (s.flags() & SYNTHETIC) == 0 &&
2479                     !shouldSkip(s) &&
2480                     s.isInheritedIn(site.tsym, types) &&
2481                     !s.isConstructor();
2482         }
2483     }
2484
2485    void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2486        DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2487        for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2488            Assert.check(m.kind == MTH);
2489            List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2490            if (prov.size() > 1) {
2491                ListBuffer<Symbol> abstracts = new ListBuffer<>();
2492                ListBuffer<Symbol> defaults = new ListBuffer<>();
2493                for (MethodSymbol provSym : prov) {
2494                    if ((provSym.flags() & DEFAULT) != 0) {
2495                        defaults = defaults.append(provSym);
2496                    } else if ((provSym.flags() & ABSTRACT) != 0) {
2497                        abstracts = abstracts.append(provSym);
2498                    }
2499                    if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2500                        //strong semantics - issue an error if two sibling interfaces
2501                        //have two override-equivalent defaults - or if one is abstract
2502                        //and the other is default
2503                        String errKey;
2504                        Symbol s1 = defaults.first();
2505                        Symbol s2;
2506                        if (defaults.size() > 1) {
2507                            errKey = "types.incompatible.unrelated.defaults";
2508                            s2 = defaults.toList().tail.head;
2509                        } else {
2510                            errKey = "types.incompatible.abstract.default";
2511                            s2 = abstracts.first();
2512                        }
2513                        log.error(pos, errKey,
2514                                Kinds.kindName(site.tsym), site,
2515                                m.name, types.memberType(site, m).getParameterTypes(),
2516                                s1.location(), s2.location());
2517                        break;
2518                    }
2519                }
2520            }
2521        }
2522    }
2523
2524    //where
2525     private class DefaultMethodClashFilter implements Filter<Symbol> {
2526
2527         Type site;
2528
2529         DefaultMethodClashFilter(Type site) {
2530             this.site = site;
2531         }
2532
2533         public boolean accepts(Symbol s) {
2534             return s.kind == MTH &&
2535                     (s.flags() & DEFAULT) != 0 &&
2536                     s.isInheritedIn(site.tsym, types) &&
2537                     !s.isConstructor();
2538         }
2539     }
2540
2541    /**
2542      * Report warnings for potentially ambiguous method declarations. Two declarations
2543      * are potentially ambiguous if they feature two unrelated functional interface
2544      * in same argument position (in which case, a call site passing an implicit
2545      * lambda would be ambiguous).
2546      */
2547    void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2548            MethodSymbol msym1, MethodSymbol msym2) {
2549        if (msym1 != msym2 &&
2550                allowDefaultMethods &&
2551                lint.isEnabled(LintCategory.OVERLOADS) &&
2552                (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2553                (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2554            Type mt1 = types.memberType(site, msym1);
2555            Type mt2 = types.memberType(site, msym2);
2556            //if both generic methods, adjust type variables
2557            if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2558                    types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2559                mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2560            }
2561            //expand varargs methods if needed
2562            int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2563            List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2564            List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2565            //if arities don't match, exit
2566            if (args1.length() != args2.length()) return;
2567            boolean potentiallyAmbiguous = false;
2568            while (args1.nonEmpty() && args2.nonEmpty()) {
2569                Type s = args1.head;
2570                Type t = args2.head;
2571                if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2572                    if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2573                            types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2574                            types.findDescriptorType(s).getParameterTypes().length() ==
2575                            types.findDescriptorType(t).getParameterTypes().length()) {
2576                        potentiallyAmbiguous = true;
2577                    } else {
2578                        break;
2579                    }
2580                }
2581                args1 = args1.tail;
2582                args2 = args2.tail;
2583            }
2584            if (potentiallyAmbiguous) {
2585                //we found two incompatible functional interfaces with same arity
2586                //this means a call site passing an implicit lambda would be ambigiuous
2587                msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2588                msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2589                log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2590                            msym1, msym1.location(),
2591                            msym2, msym2.location());
2592                return;
2593            }
2594        }
2595    }
2596
2597    void checkElemAccessFromSerializableLambda(final JCTree tree) {
2598        if (warnOnAccessToSensitiveMembers) {
2599            Symbol sym = TreeInfo.symbol(tree);
2600            if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2601                return;
2602            }
2603
2604            if (sym.kind == VAR) {
2605                if ((sym.flags() & PARAMETER) != 0 ||
2606                    sym.isLocal() ||
2607                    sym.name == names._this ||
2608                    sym.name == names._super) {
2609                    return;
2610                }
2611            }
2612
2613            if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2614                    isEffectivelyNonPublic(sym)) {
2615                log.warning(tree.pos(),
2616                        "access.to.sensitive.member.from.serializable.element", sym);
2617            }
2618        }
2619    }
2620
2621    private boolean isEffectivelyNonPublic(Symbol sym) {
2622        if (sym.packge() == syms.rootPackage) {
2623            return false;
2624        }
2625
2626        while (sym.kind != PCK) {
2627            if ((sym.flags() & PUBLIC) == 0) {
2628                return true;
2629            }
2630            sym = sym.owner;
2631        }
2632        return false;
2633    }
2634
2635    /** Report a conflict between a user symbol and a synthetic symbol.
2636     */
2637    private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2638        if (!sym.type.isErroneous()) {
2639            if (warnOnSyntheticConflicts) {
2640                log.warning(pos, "synthetic.name.conflict", sym, sym.location());
2641            }
2642            else {
2643                log.error(pos, "synthetic.name.conflict", sym, sym.location());
2644            }
2645        }
2646    }
2647
2648    /** Check that class c does not implement directly or indirectly
2649     *  the same parameterized interface with two different argument lists.
2650     *  @param pos          Position to be used for error reporting.
2651     *  @param type         The type whose interfaces are checked.
2652     */
2653    void checkClassBounds(DiagnosticPosition pos, Type type) {
2654        checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2655    }
2656//where
2657        /** Enter all interfaces of type `type' into the hash table `seensofar'
2658         *  with their class symbol as key and their type as value. Make
2659         *  sure no class is entered with two different types.
2660         */
2661        void checkClassBounds(DiagnosticPosition pos,
2662                              Map<TypeSymbol,Type> seensofar,
2663                              Type type) {
2664            if (type.isErroneous()) return;
2665            for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2666                Type it = l.head;
2667                Type oldit = seensofar.put(it.tsym, it);
2668                if (oldit != null) {
2669                    List<Type> oldparams = oldit.allparams();
2670                    List<Type> newparams = it.allparams();
2671                    if (!types.containsTypeEquivalent(oldparams, newparams))
2672                        log.error(pos, "cant.inherit.diff.arg",
2673                                  it.tsym, Type.toString(oldparams),
2674                                  Type.toString(newparams));
2675                }
2676                checkClassBounds(pos, seensofar, it);
2677            }
2678            Type st = types.supertype(type);
2679            if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2680        }
2681
2682    /** Enter interface into into set.
2683     *  If it existed already, issue a "repeated interface" error.
2684     */
2685    void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2686        if (its.contains(it))
2687            log.error(pos, "repeated.interface");
2688        else {
2689            its.add(it);
2690        }
2691    }
2692
2693/* *************************************************************************
2694 * Check annotations
2695 **************************************************************************/
2696
2697    /** Verify that a component of a qualified type name being type annotated
2698     * can indeed be legally be annotated. For example, package names and type
2699     * names used to access static members cannot be annotated.
2700     *
2701     * @param typeComponent the component of the qualified name being annotated
2702     * @param annotations the annotations
2703     * @param pos diagnostic position
2704     * @return true if all is swell, false otherwise.
2705     */
2706    boolean checkAnnotableType(Type typeComponent, List<JCAnnotation> annotations, DiagnosticPosition pos) {
2707        if (typeComponent == null || typeComponent.hasTag(PACKAGE) || typeComponent.hasTag(NONE)) {
2708            ListBuffer<Symbol> lb = new ListBuffer<>();
2709            for (JCAnnotation annotation : annotations) {
2710                lb.append(annotation.annotationType.type.tsym);
2711            }
2712            List<Symbol> symbols = lb.toList();
2713            log.error(pos,
2714                    symbols.size() > 1 ? CantTypeAnnotateScoping(symbols)
2715                            : CantTypeAnnotateScoping1(symbols.get(0)));
2716            return false;
2717        }
2718        return true;
2719    }
2720    /**
2721     * Recursively validate annotations values
2722     */
2723    void validateAnnotationTree(JCTree tree) {
2724        class AnnotationValidator extends TreeScanner {
2725            @Override
2726            public void visitAnnotation(JCAnnotation tree) {
2727                if (!tree.type.isErroneous()) {
2728                    super.visitAnnotation(tree);
2729                    validateAnnotation(tree);
2730                }
2731            }
2732        }
2733        tree.accept(new AnnotationValidator());
2734    }
2735
2736    /**
2737     *  {@literal
2738     *  Annotation types are restricted to primitives, String, an
2739     *  enum, an annotation, Class, Class<?>, Class<? extends
2740     *  Anything>, arrays of the preceding.
2741     *  }
2742     */
2743    void validateAnnotationType(JCTree restype) {
2744        // restype may be null if an error occurred, so don't bother validating it
2745        if (restype != null) {
2746            validateAnnotationType(restype.pos(), restype.type);
2747        }
2748    }
2749
2750    void validateAnnotationType(DiagnosticPosition pos, Type type) {
2751        if (type.isPrimitive()) return;
2752        if (types.isSameType(type, syms.stringType)) return;
2753        if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2754        if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2755        if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2756        if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2757            validateAnnotationType(pos, types.elemtype(type));
2758            return;
2759        }
2760        log.error(pos, "invalid.annotation.member.type");
2761    }
2762
2763    /**
2764     * "It is also a compile-time error if any method declared in an
2765     * annotation type has a signature that is override-equivalent to
2766     * that of any public or protected method declared in class Object
2767     * or in the interface annotation.Annotation."
2768     *
2769     * @jls 9.6 Annotation Types
2770     */
2771    void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2772        for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2773            Scope s = sup.tsym.members();
2774            for (Symbol sym : s.getSymbolsByName(m.name)) {
2775                if (sym.kind == MTH &&
2776                    (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2777                    types.overrideEquivalent(m.type, sym.type))
2778                    log.error(pos, "intf.annotation.member.clash", sym, sup);
2779            }
2780        }
2781    }
2782
2783    /** Check the annotations of a symbol.
2784     */
2785    public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2786        for (JCAnnotation a : annotations)
2787            validateAnnotation(a, s);
2788    }
2789
2790    /** Check the type annotations.
2791     */
2792    public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2793        for (JCAnnotation a : annotations)
2794            validateTypeAnnotation(a, isTypeParameter);
2795    }
2796
2797    /** Check an annotation of a symbol.
2798     */
2799    private void validateAnnotation(JCAnnotation a, Symbol s) {
2800        validateAnnotationTree(a);
2801
2802        if (!annotationApplicable(a, s))
2803            log.error(a.pos(), "annotation.type.not.applicable");
2804
2805        if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2806            if (s.kind != TYP) {
2807                log.error(a.pos(), "bad.functional.intf.anno");
2808            } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2809                log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2810            }
2811        }
2812    }
2813
2814    public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2815        Assert.checkNonNull(a.type);
2816        validateAnnotationTree(a);
2817
2818        if (a.hasTag(TYPE_ANNOTATION) &&
2819                !a.annotationType.type.isErroneous() &&
2820                !isTypeAnnotation(a, isTypeParameter)) {
2821            log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
2822        }
2823    }
2824
2825    /**
2826     * Validate the proposed container 'repeatable' on the
2827     * annotation type symbol 's'. Report errors at position
2828     * 'pos'.
2829     *
2830     * @param s The (annotation)type declaration annotated with a @Repeatable
2831     * @param repeatable the @Repeatable on 's'
2832     * @param pos where to report errors
2833     */
2834    public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2835        Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2836
2837        Type t = null;
2838        List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2839        if (!l.isEmpty()) {
2840            Assert.check(l.head.fst.name == names.value);
2841            t = ((Attribute.Class)l.head.snd).getValue();
2842        }
2843
2844        if (t == null) {
2845            // errors should already have been reported during Annotate
2846            return;
2847        }
2848
2849        validateValue(t.tsym, s, pos);
2850        validateRetention(t.tsym, s, pos);
2851        validateDocumented(t.tsym, s, pos);
2852        validateInherited(t.tsym, s, pos);
2853        validateTarget(t.tsym, s, pos);
2854        validateDefault(t.tsym, pos);
2855    }
2856
2857    private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2858        Symbol sym = container.members().findFirst(names.value);
2859        if (sym != null && sym.kind == MTH) {
2860            MethodSymbol m = (MethodSymbol) sym;
2861            Type ret = m.getReturnType();
2862            if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2863                log.error(pos, "invalid.repeatable.annotation.value.return",
2864                        container, ret, types.makeArrayType(contained.type));
2865            }
2866        } else {
2867            log.error(pos, "invalid.repeatable.annotation.no.value", container);
2868        }
2869    }
2870
2871    private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2872        Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2873        Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2874
2875        boolean error = false;
2876        switch (containedRetention) {
2877        case RUNTIME:
2878            if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2879                error = true;
2880            }
2881            break;
2882        case CLASS:
2883            if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2884                error = true;
2885            }
2886        }
2887        if (error ) {
2888            log.error(pos, "invalid.repeatable.annotation.retention",
2889                      container, containerRetention,
2890                      contained, containedRetention);
2891        }
2892    }
2893
2894    private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2895        if (contained.attribute(syms.documentedType.tsym) != null) {
2896            if (container.attribute(syms.documentedType.tsym) == null) {
2897                log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2898            }
2899        }
2900    }
2901
2902    private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2903        if (contained.attribute(syms.inheritedType.tsym) != null) {
2904            if (container.attribute(syms.inheritedType.tsym) == null) {
2905                log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2906            }
2907        }
2908    }
2909
2910    private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2911        // The set of targets the container is applicable to must be a subset
2912        // (with respect to annotation target semantics) of the set of targets
2913        // the contained is applicable to. The target sets may be implicit or
2914        // explicit.
2915
2916        Set<Name> containerTargets;
2917        Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2918        if (containerTarget == null) {
2919            containerTargets = getDefaultTargetSet();
2920        } else {
2921            containerTargets = new HashSet<>();
2922            for (Attribute app : containerTarget.values) {
2923                if (!(app instanceof Attribute.Enum)) {
2924                    continue; // recovery
2925                }
2926                Attribute.Enum e = (Attribute.Enum)app;
2927                containerTargets.add(e.value.name);
2928            }
2929        }
2930
2931        Set<Name> containedTargets;
2932        Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2933        if (containedTarget == null) {
2934            containedTargets = getDefaultTargetSet();
2935        } else {
2936            containedTargets = new HashSet<>();
2937            for (Attribute app : containedTarget.values) {
2938                if (!(app instanceof Attribute.Enum)) {
2939                    continue; // recovery
2940                }
2941                Attribute.Enum e = (Attribute.Enum)app;
2942                containedTargets.add(e.value.name);
2943            }
2944        }
2945
2946        if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2947            log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2948        }
2949    }
2950
2951    /* get a set of names for the default target */
2952    private Set<Name> getDefaultTargetSet() {
2953        if (defaultTargets == null) {
2954            Set<Name> targets = new HashSet<>();
2955            targets.add(names.ANNOTATION_TYPE);
2956            targets.add(names.CONSTRUCTOR);
2957            targets.add(names.FIELD);
2958            targets.add(names.LOCAL_VARIABLE);
2959            targets.add(names.METHOD);
2960            targets.add(names.PACKAGE);
2961            targets.add(names.PARAMETER);
2962            targets.add(names.TYPE);
2963
2964            defaultTargets = java.util.Collections.unmodifiableSet(targets);
2965        }
2966
2967        return defaultTargets;
2968    }
2969    private Set<Name> defaultTargets;
2970
2971
2972    /** Checks that s is a subset of t, with respect to ElementType
2973     * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2974     * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2975     * TYPE_PARAMETER}.
2976     */
2977    private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2978        // Check that all elements in s are present in t
2979        for (Name n2 : s) {
2980            boolean currentElementOk = false;
2981            for (Name n1 : t) {
2982                if (n1 == n2) {
2983                    currentElementOk = true;
2984                    break;
2985                } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2986                    currentElementOk = true;
2987                    break;
2988                } else if (n1 == names.TYPE_USE &&
2989                        (n2 == names.TYPE ||
2990                         n2 == names.ANNOTATION_TYPE ||
2991                         n2 == names.TYPE_PARAMETER)) {
2992                    currentElementOk = true;
2993                    break;
2994                }
2995            }
2996            if (!currentElementOk)
2997                return false;
2998        }
2999        return true;
3000    }
3001
3002    private void validateDefault(Symbol container, DiagnosticPosition pos) {
3003        // validate that all other elements of containing type has defaults
3004        Scope scope = container.members();
3005        for(Symbol elm : scope.getSymbols()) {
3006            if (elm.name != names.value &&
3007                elm.kind == MTH &&
3008                ((MethodSymbol)elm).defaultValue == null) {
3009                log.error(pos,
3010                          "invalid.repeatable.annotation.elem.nondefault",
3011                          container,
3012                          elm);
3013            }
3014        }
3015    }
3016
3017    /** Is s a method symbol that overrides a method in a superclass? */
3018    boolean isOverrider(Symbol s) {
3019        if (s.kind != MTH || s.isStatic())
3020            return false;
3021        MethodSymbol m = (MethodSymbol)s;
3022        TypeSymbol owner = (TypeSymbol)m.owner;
3023        for (Type sup : types.closure(owner.type)) {
3024            if (sup == owner.type)
3025                continue; // skip "this"
3026            Scope scope = sup.tsym.members();
3027            for (Symbol sym : scope.getSymbolsByName(m.name)) {
3028                if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3029                    return true;
3030            }
3031        }
3032        return false;
3033    }
3034
3035    /** Is the annotation applicable to types? */
3036    protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3037        List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3038        return (targets == null) ?
3039                false :
3040                targets.stream()
3041                        .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3042    }
3043    //where
3044        boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3045            Attribute.Enum e = (Attribute.Enum)a;
3046            return (e.value.name == names.TYPE_USE ||
3047                    (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3048        }
3049
3050    /** Is the annotation applicable to the symbol? */
3051    boolean annotationApplicable(JCAnnotation a, Symbol s) {
3052        Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3053        Name[] targets;
3054
3055        if (arr == null) {
3056            targets = defaultTargetMetaInfo(a, s);
3057        } else {
3058            // TODO: can we optimize this?
3059            targets = new Name[arr.values.length];
3060            for (int i=0; i<arr.values.length; ++i) {
3061                Attribute app = arr.values[i];
3062                if (!(app instanceof Attribute.Enum)) {
3063                    return true; // recovery
3064                }
3065                Attribute.Enum e = (Attribute.Enum) app;
3066                targets[i] = e.value.name;
3067            }
3068        }
3069        for (Name target : targets) {
3070            if (target == names.TYPE) {
3071                if (s.kind == TYP)
3072                    return true;
3073            } else if (target == names.FIELD) {
3074                if (s.kind == VAR && s.owner.kind != MTH)
3075                    return true;
3076            } else if (target == names.METHOD) {
3077                if (s.kind == MTH && !s.isConstructor())
3078                    return true;
3079            } else if (target == names.PARAMETER) {
3080                if (s.kind == VAR && s.owner.kind == MTH &&
3081                      (s.flags() & PARAMETER) != 0) {
3082                    return true;
3083                }
3084            } else if (target == names.CONSTRUCTOR) {
3085                if (s.kind == MTH && s.isConstructor())
3086                    return true;
3087            } else if (target == names.LOCAL_VARIABLE) {
3088                if (s.kind == VAR && s.owner.kind == MTH &&
3089                      (s.flags() & PARAMETER) == 0) {
3090                    return true;
3091                }
3092            } else if (target == names.ANNOTATION_TYPE) {
3093                if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3094                    return true;
3095                }
3096            } else if (target == names.PACKAGE) {
3097                if (s.kind == PCK)
3098                    return true;
3099            } else if (target == names.TYPE_USE) {
3100                if (s.kind == TYP || s.kind == VAR ||
3101                        (s.kind == MTH && !s.isConstructor() &&
3102                                !s.type.getReturnType().hasTag(VOID)) ||
3103                        (s.kind == MTH && s.isConstructor())) {
3104                    return true;
3105                }
3106            } else if (target == names.TYPE_PARAMETER) {
3107                if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3108                    return true;
3109            } else
3110                return true; // Unknown ElementType. This should be an error at declaration site,
3111                             // assume applicable.
3112        }
3113        return false;
3114    }
3115
3116
3117    Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3118        Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3119        if (atTarget == null) return null; // ok, is applicable
3120        Attribute atValue = atTarget.member(names.value);
3121        if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3122        return (Attribute.Array) atValue;
3123    }
3124
3125    private final Name[] dfltTargetMeta;
3126    private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3127        return dfltTargetMeta;
3128    }
3129
3130    /** Check an annotation value.
3131     *
3132     * @param a The annotation tree to check
3133     * @return true if this annotation tree is valid, otherwise false
3134     */
3135    public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3136        boolean res = false;
3137        final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3138        try {
3139            res = validateAnnotation(a);
3140        } finally {
3141            log.popDiagnosticHandler(diagHandler);
3142        }
3143        return res;
3144    }
3145
3146    private boolean validateAnnotation(JCAnnotation a) {
3147        boolean isValid = true;
3148        AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3149
3150        // collect an inventory of the annotation elements
3151        Set<MethodSymbol> elements = metadata.getAnnotationElements();
3152
3153        // remove the ones that are assigned values
3154        for (JCTree arg : a.args) {
3155            if (!arg.hasTag(ASSIGN)) continue; // recovery
3156            JCAssign assign = (JCAssign)arg;
3157            Symbol m = TreeInfo.symbol(assign.lhs);
3158            if (m == null || m.type.isErroneous()) continue;
3159            if (!elements.remove(m)) {
3160                isValid = false;
3161                log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3162                        m.name, a.type);
3163            }
3164        }
3165
3166        // all the remaining ones better have default values
3167        List<Name> missingDefaults = List.nil();
3168        Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3169        for (MethodSymbol m : elements) {
3170            if (m.type.isErroneous())
3171                continue;
3172
3173            if (!membersWithDefault.contains(m))
3174                missingDefaults = missingDefaults.append(m.name);
3175        }
3176        missingDefaults = missingDefaults.reverse();
3177        if (missingDefaults.nonEmpty()) {
3178            isValid = false;
3179            String key = (missingDefaults.size() > 1)
3180                    ? "annotation.missing.default.value.1"
3181                    : "annotation.missing.default.value";
3182            log.error(a.pos(), key, a.type, missingDefaults);
3183        }
3184
3185        return isValid && validateTargetAnnotationValue(a);
3186    }
3187
3188    /* Validate the special java.lang.annotation.Target annotation */
3189    boolean validateTargetAnnotationValue(JCAnnotation a) {
3190        // special case: java.lang.annotation.Target must not have
3191        // repeated values in its value member
3192        if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3193                a.args.tail == null)
3194            return true;
3195
3196        boolean isValid = true;
3197        if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3198        JCAssign assign = (JCAssign) a.args.head;
3199        Symbol m = TreeInfo.symbol(assign.lhs);
3200        if (m.name != names.value) return false;
3201        JCTree rhs = assign.rhs;
3202        if (!rhs.hasTag(NEWARRAY)) return false;
3203        JCNewArray na = (JCNewArray) rhs;
3204        Set<Symbol> targets = new HashSet<>();
3205        for (JCTree elem : na.elems) {
3206            if (!targets.add(TreeInfo.symbol(elem))) {
3207                isValid = false;
3208                log.error(elem.pos(), "repeated.annotation.target");
3209            }
3210        }
3211        return isValid;
3212    }
3213
3214    void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3215        if (lint.isEnabled(LintCategory.DEP_ANN) &&
3216            (s.flags() & DEPRECATED) != 0 &&
3217            !syms.deprecatedType.isErroneous() &&
3218            s.attribute(syms.deprecatedType.tsym) == null) {
3219            log.warning(LintCategory.DEP_ANN,
3220                    pos, "missing.deprecated.annotation");
3221        }
3222    }
3223
3224    void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3225        if ((s.flags() & DEPRECATED) != 0 &&
3226                (other.flags() & DEPRECATED) == 0 &&
3227                s.outermostClass() != other.outermostClass()) {
3228            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3229                @Override
3230                public void report() {
3231                    warnDeprecated(pos, s);
3232                }
3233            });
3234        }
3235    }
3236
3237    void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3238        if ((s.flags() & PROPRIETARY) != 0) {
3239            deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3240                public void report() {
3241                    if (enableSunApiLintControl)
3242                      warnSunApi(pos, "sun.proprietary", s);
3243                    else
3244                      log.mandatoryWarning(pos, "sun.proprietary", s);
3245                }
3246            });
3247        }
3248    }
3249
3250    void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3251        if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3252            log.error(pos, "not.in.profile", s, profile);
3253        }
3254    }
3255
3256/* *************************************************************************
3257 * Check for recursive annotation elements.
3258 **************************************************************************/
3259
3260    /** Check for cycles in the graph of annotation elements.
3261     */
3262    void checkNonCyclicElements(JCClassDecl tree) {
3263        if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3264        Assert.check((tree.sym.flags_field & LOCKED) == 0);
3265        try {
3266            tree.sym.flags_field |= LOCKED;
3267            for (JCTree def : tree.defs) {
3268                if (!def.hasTag(METHODDEF)) continue;
3269                JCMethodDecl meth = (JCMethodDecl)def;
3270                checkAnnotationResType(meth.pos(), meth.restype.type);
3271            }
3272        } finally {
3273            tree.sym.flags_field &= ~LOCKED;
3274            tree.sym.flags_field |= ACYCLIC_ANN;
3275        }
3276    }
3277
3278    void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3279        if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3280            return;
3281        if ((tsym.flags_field & LOCKED) != 0) {
3282            log.error(pos, "cyclic.annotation.element");
3283            return;
3284        }
3285        try {
3286            tsym.flags_field |= LOCKED;
3287            for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3288                if (s.kind != MTH)
3289                    continue;
3290                checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3291            }
3292        } finally {
3293            tsym.flags_field &= ~LOCKED;
3294            tsym.flags_field |= ACYCLIC_ANN;
3295        }
3296    }
3297
3298    void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3299        switch (type.getTag()) {
3300        case CLASS:
3301            if ((type.tsym.flags() & ANNOTATION) != 0)
3302                checkNonCyclicElementsInternal(pos, type.tsym);
3303            break;
3304        case ARRAY:
3305            checkAnnotationResType(pos, types.elemtype(type));
3306            break;
3307        default:
3308            break; // int etc
3309        }
3310    }
3311
3312/* *************************************************************************
3313 * Check for cycles in the constructor call graph.
3314 **************************************************************************/
3315
3316    /** Check for cycles in the graph of constructors calling other
3317     *  constructors.
3318     */
3319    void checkCyclicConstructors(JCClassDecl tree) {
3320        Map<Symbol,Symbol> callMap = new HashMap<>();
3321
3322        // enter each constructor this-call into the map
3323        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3324            JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3325            if (app == null) continue;
3326            JCMethodDecl meth = (JCMethodDecl) l.head;
3327            if (TreeInfo.name(app.meth) == names._this) {
3328                callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3329            } else {
3330                meth.sym.flags_field |= ACYCLIC;
3331            }
3332        }
3333
3334        // Check for cycles in the map
3335        Symbol[] ctors = new Symbol[0];
3336        ctors = callMap.keySet().toArray(ctors);
3337        for (Symbol caller : ctors) {
3338            checkCyclicConstructor(tree, caller, callMap);
3339        }
3340    }
3341
3342    /** Look in the map to see if the given constructor is part of a
3343     *  call cycle.
3344     */
3345    private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3346                                        Map<Symbol,Symbol> callMap) {
3347        if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3348            if ((ctor.flags_field & LOCKED) != 0) {
3349                log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3350                          "recursive.ctor.invocation");
3351            } else {
3352                ctor.flags_field |= LOCKED;
3353                checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3354                ctor.flags_field &= ~LOCKED;
3355            }
3356            ctor.flags_field |= ACYCLIC;
3357        }
3358    }
3359
3360/* *************************************************************************
3361 * Miscellaneous
3362 **************************************************************************/
3363
3364    /**
3365     *  Check for division by integer constant zero
3366     *  @param pos           Position for error reporting.
3367     *  @param operator      The operator for the expression
3368     *  @param operand       The right hand operand for the expression
3369     */
3370    void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3371        if (operand.constValue() != null
3372            && operand.getTag().isSubRangeOf(LONG)
3373            && ((Number) (operand.constValue())).longValue() == 0) {
3374            int opc = ((OperatorSymbol)operator).opcode;
3375            if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3376                || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3377                deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3378                    @Override
3379                    public void report() {
3380                        warnDivZero(pos);
3381                    }
3382                });
3383            }
3384        }
3385    }
3386
3387    /**
3388     * Check for empty statements after if
3389     */
3390    void checkEmptyIf(JCIf tree) {
3391        if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3392                lint.isEnabled(LintCategory.EMPTY))
3393            log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3394    }
3395
3396    /** Check that symbol is unique in given scope.
3397     *  @param pos           Position for error reporting.
3398     *  @param sym           The symbol.
3399     *  @param s             The scope.
3400     */
3401    boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3402        if (sym.type.isErroneous())
3403            return true;
3404        if (sym.owner.name == names.any) return false;
3405        for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3406            if (sym != byName &&
3407                    (byName.flags() & CLASH) == 0 &&
3408                    sym.kind == byName.kind &&
3409                    sym.name != names.error &&
3410                    (sym.kind != MTH ||
3411                     types.hasSameArgs(sym.type, byName.type) ||
3412                     types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3413                if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3414                    varargsDuplicateError(pos, sym, byName);
3415                    return true;
3416                } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3417                    duplicateErasureError(pos, sym, byName);
3418                    sym.flags_field |= CLASH;
3419                    return true;
3420                } else {
3421                    duplicateError(pos, byName);
3422                    return false;
3423                }
3424            }
3425        }
3426        return true;
3427    }
3428
3429    /** Report duplicate declaration error.
3430     */
3431    void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3432        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3433            log.error(pos, "name.clash.same.erasure", sym1, sym2);
3434        }
3435    }
3436
3437    /**Check that types imported through the ordinary imports don't clash with types imported
3438     * by other (static or ordinary) imports. Note that two static imports may import two clashing
3439     * types without an error on the imports.
3440     * @param toplevel       The toplevel tree for which the test should be performed.
3441     */
3442    void checkImportsUnique(JCCompilationUnit toplevel) {
3443        WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3444        WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3445        WriteableScope topLevelScope = toplevel.toplevelScope;
3446
3447        for (JCTree def : toplevel.defs) {
3448            if (!def.hasTag(IMPORT))
3449                continue;
3450
3451            JCImport imp = (JCImport) def;
3452
3453            if (imp.importScope == null)
3454                continue;
3455
3456            for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3457                if (imp.isStatic()) {
3458                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3459                    staticallyImportedSoFar.enter(sym);
3460                } else {
3461                    checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3462                    ordinallyImportedSoFar.enter(sym);
3463                }
3464            }
3465
3466            imp.importScope = null;
3467        }
3468    }
3469
3470    /** Check that single-type import is not already imported or top-level defined,
3471     *  but make an exception for two single-type imports which denote the same type.
3472     *  @param pos                     Position for error reporting.
3473     *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3474     *                                 ordinary imports.
3475     *  @param staticallyImportedSoFar A Scope containing types imported so far through
3476     *                                 static imports.
3477     *  @param topLevelScope           The current file's top-level Scope
3478     *  @param sym                     The symbol.
3479     *  @param staticImport            Whether or not this was a static import
3480     */
3481    private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3482                                      Scope staticallyImportedSoFar, Scope topLevelScope,
3483                                      Symbol sym, boolean staticImport) {
3484        Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3485        Symbol clashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3486        if (clashing == null && !staticImport) {
3487            clashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3488        }
3489        if (clashing != null) {
3490            if (staticImport)
3491                log.error(pos, "already.defined.static.single.import", clashing);
3492            else
3493                log.error(pos, "already.defined.single.import", clashing);
3494            return false;
3495        }
3496        clashing = topLevelScope.findFirst(sym.name, duplicates);
3497        if (clashing != null) {
3498            log.error(pos, "already.defined.this.unit", clashing);
3499            return false;
3500        }
3501        return true;
3502    }
3503
3504    /** Check that a qualified name is in canonical form (for import decls).
3505     */
3506    public void checkCanonical(JCTree tree) {
3507        if (!isCanonical(tree))
3508            log.error(tree.pos(), "import.requires.canonical",
3509                      TreeInfo.symbol(tree));
3510    }
3511        // where
3512        private boolean isCanonical(JCTree tree) {
3513            while (tree.hasTag(SELECT)) {
3514                JCFieldAccess s = (JCFieldAccess) tree;
3515                if (s.sym.owner != TreeInfo.symbol(s.selected))
3516                    return false;
3517                tree = s.selected;
3518            }
3519            return true;
3520        }
3521
3522    /** Check that an auxiliary class is not accessed from any other file than its own.
3523     */
3524    void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3525        if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3526            (c.flags() & AUXILIARY) != 0 &&
3527            rs.isAccessible(env, c) &&
3528            !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3529        {
3530            log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3531                        c, c.sourcefile);
3532        }
3533    }
3534
3535    private class ConversionWarner extends Warner {
3536        final String uncheckedKey;
3537        final Type found;
3538        final Type expected;
3539        public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3540            super(pos);
3541            this.uncheckedKey = uncheckedKey;
3542            this.found = found;
3543            this.expected = expected;
3544        }
3545
3546        @Override
3547        public void warn(LintCategory lint) {
3548            boolean warned = this.warned;
3549            super.warn(lint);
3550            if (warned) return; // suppress redundant diagnostics
3551            switch (lint) {
3552                case UNCHECKED:
3553                    Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3554                    break;
3555                case VARARGS:
3556                    if (method != null &&
3557                            method.attribute(syms.trustMeType.tsym) != null &&
3558                            isTrustMeAllowedOnMethod(method) &&
3559                            !types.isReifiable(method.type.getParameterTypes().last())) {
3560                        Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3561                    }
3562                    break;
3563                default:
3564                    throw new AssertionError("Unexpected lint: " + lint);
3565            }
3566        }
3567    }
3568
3569    public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3570        return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3571    }
3572
3573    public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3574        return new ConversionWarner(pos, "unchecked.assign", found, expected);
3575    }
3576
3577    public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3578        Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3579
3580        if (functionalType != null) {
3581            try {
3582                types.findDescriptorSymbol((TypeSymbol)cs);
3583            } catch (Types.FunctionDescriptorLookupError ex) {
3584                DiagnosticPosition pos = tree.pos();
3585                for (JCAnnotation a : tree.getModifiers().annotations) {
3586                    if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3587                        pos = a.pos();
3588                        break;
3589                    }
3590                }
3591                log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3592            }
3593        }
3594    }
3595
3596    public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3597        for (final JCImport imp : toplevel.getImports()) {
3598            if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3599                continue;
3600            final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3601            final Symbol origin;
3602            if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3603                continue;
3604
3605            TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3606            if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3607                log.error(imp.pos(), "cant.resolve.location",
3608                          KindName.STATIC,
3609                          select.name, List.<Type>nil(), List.<Type>nil(),
3610                          Kinds.typeKindName(TreeInfo.symbol(select.selected).type),
3611                          TreeInfo.symbol(select.selected).type);
3612            }
3613        }
3614    }
3615
3616    // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
3617    public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
3618        for (JCImport imp : toplevel.getImports()) {
3619            if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
3620                TypeSymbol tsym = ((JCFieldAccess)imp.qualid).selected.type.tsym;
3621                if (tsym.kind == PCK && tsym.members().isEmpty() && !tsym.exists()) {
3622                    log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, "doesnt.exist", tsym);
3623                }
3624            }
3625        }
3626    }
3627
3628    private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3629        if (tsym == null || !processed.add(tsym))
3630            return false;
3631
3632            // also search through inherited names
3633        if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3634            return true;
3635
3636        for (Type t : types.interfaces(tsym.type))
3637            if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3638                return true;
3639
3640        for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3641            if (sym.isStatic() &&
3642                importAccessible(sym, packge) &&
3643                sym.isMemberOf(origin, types)) {
3644                return true;
3645            }
3646        }
3647
3648        return false;
3649    }
3650
3651    // is the sym accessible everywhere in packge?
3652    public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3653        try {
3654            int flags = (int)(sym.flags() & AccessFlags);
3655            switch (flags) {
3656            default:
3657            case PUBLIC:
3658                return true;
3659            case PRIVATE:
3660                return false;
3661            case 0:
3662            case PROTECTED:
3663                return sym.packge() == packge;
3664            }
3665        } catch (ClassFinder.BadClassFile err) {
3666            throw err;
3667        } catch (CompletionFailure ex) {
3668            return false;
3669        }
3670    }
3671
3672}
3673