Renderer.java revision 15005:58698a49751c
1/*
2 * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package sun.java2d.marlin;
27
28import java.util.Arrays;
29import sun.awt.geom.PathConsumer2D;
30import static sun.java2d.marlin.OffHeapArray.SIZE_INT;
31import jdk.internal.misc.Unsafe;
32
33final class Renderer implements PathConsumer2D, MarlinConst {
34
35    static final boolean DISABLE_RENDER = false;
36
37    static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags();
38    static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics();
39
40    private static final int ALL_BUT_LSB = 0xfffffffe;
41    private static final int ERR_STEP_MAX = 0x7fffffff; // = 2^31 - 1
42
43    private static final double POWER_2_TO_32 = 0x1.0p32;
44
45    // use float to make tosubpix methods faster (no int to float conversion)
46    public static final float f_SUBPIXEL_POSITIONS_X
47        = (float) SUBPIXEL_POSITIONS_X;
48    public static final float f_SUBPIXEL_POSITIONS_Y
49        = (float) SUBPIXEL_POSITIONS_Y;
50    public static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
51    public static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
52
53    // number of subpixels corresponding to a tile line
54    private static final int SUBPIXEL_TILE
55        = TILE_SIZE << SUBPIXEL_LG_POSITIONS_Y;
56
57    // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K
58    static final int INITIAL_BUCKET_ARRAY
59        = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y;
60
61    public static final int WIND_EVEN_ODD = 0;
62    public static final int WIND_NON_ZERO = 1;
63
64    // common to all types of input path segments.
65    // OFFSET as bytes
66    // only integer values:
67    public static final long OFF_CURX_OR  = 0;
68    public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
69    public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
70    public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
71    public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
72    public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
73
74    // size of one edge in bytes
75    public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
76
77    // curve break into lines
78    // cubic error in subpixels to decrement step
79    private static final float CUB_DEC_ERR_SUBPIX
80        = 2.5f * (NORM_SUBPIXELS / 8f); // 2.5 subpixel for typical 8x8 subpixels
81    // cubic error in subpixels to increment step
82    private static final float CUB_INC_ERR_SUBPIX
83        = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels
84
85    // cubic bind length to decrement step = 8 * error in subpixels
86    // pisces: 20 / 8
87    // openjfx pisces: 8 / 3.2
88    // multiply by 8 = error scale factor:
89    public static final float CUB_DEC_BND
90        = 8f * CUB_DEC_ERR_SUBPIX; // 20f means 2.5 subpixel error
91    // cubic bind length to increment step = 8 * error in subpixels
92    public static final float CUB_INC_BND
93        = 8f * CUB_INC_ERR_SUBPIX; // 8f means 1 subpixel error
94
95    // cubic countlg
96    public static final int CUB_COUNT_LG = 2;
97    // cubic count = 2^countlg
98    private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
99    // cubic count^2 = 4^countlg
100    private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
101    // cubic count^3 = 8^countlg
102    private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
103    // cubic dt = 1 / count
104    private static final float CUB_INV_COUNT = 1f / CUB_COUNT;
105    // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
106    private static final float CUB_INV_COUNT_2 = 1f / CUB_COUNT_2;
107    // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
108    private static final float CUB_INV_COUNT_3 = 1f / CUB_COUNT_3;
109
110    // quad break into lines
111    // quadratic error in subpixels
112    private static final float QUAD_DEC_ERR_SUBPIX
113        = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels
114
115    // quadratic bind length to decrement step = 8 * error in subpixels
116    // pisces and openjfx pisces: 32
117    public static final float QUAD_DEC_BND
118        = 8f * QUAD_DEC_ERR_SUBPIX; // 8f means 1 subpixel error
119
120//////////////////////////////////////////////////////////////////////////////
121//  SCAN LINE
122//////////////////////////////////////////////////////////////////////////////
123    // crossings ie subpixel edge x coordinates
124    private int[] crossings;
125    // auxiliary storage for crossings (merge sort)
126    private int[] aux_crossings;
127
128    // indices into the segment pointer lists. They indicate the "active"
129    // sublist in the segment lists (the portion of the list that contains
130    // all the segments that cross the next scan line).
131    private int edgeCount;
132    private int[] edgePtrs;
133    // auxiliary storage for edge pointers (merge sort)
134    private int[] aux_edgePtrs;
135
136    // max used for both edgePtrs and crossings (stats only)
137    private int activeEdgeMaxUsed;
138
139    // per-thread initial arrays (large enough to satisfy most usages) (1024)
140    private final int[] crossings_initial = new int[INITIAL_SMALL_ARRAY]; // 4K
141    // +1 to avoid recycling in Helpers.widenArray()
142    private final int[] edgePtrs_initial  = new int[INITIAL_SMALL_ARRAY + 1]; // 4K
143    // merge sort initial arrays (large enough to satisfy most usages) (1024)
144    private final int[] aux_crossings_initial = new int[INITIAL_SMALL_ARRAY]; // 4K
145    // +1 to avoid recycling in Helpers.widenArray()
146    private final int[] aux_edgePtrs_initial  = new int[INITIAL_SMALL_ARRAY + 1]; // 4K
147
148//////////////////////////////////////////////////////////////////////////////
149//  EDGE LIST
150//////////////////////////////////////////////////////////////////////////////
151    private int edgeMinY = Integer.MAX_VALUE;
152    private int edgeMaxY = Integer.MIN_VALUE;
153    private float edgeMinX = Float.POSITIVE_INFINITY;
154    private float edgeMaxX = Float.NEGATIVE_INFINITY;
155
156    // edges [floats|ints] stored in off-heap memory
157    private final OffHeapArray edges;
158
159    private int[] edgeBuckets;
160    private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
161    // used range for edgeBuckets / edgeBucketCounts
162    private int buckets_minY;
163    private int buckets_maxY;
164    // sum of each edge delta Y (subpixels)
165    private int edgeSumDeltaY;
166
167    // +1 to avoid recycling in Helpers.widenArray()
168    private final int[] edgeBuckets_initial
169        = new int[INITIAL_BUCKET_ARRAY + 1]; // 64K
170    private final int[] edgeBucketCounts_initial
171        = new int[INITIAL_BUCKET_ARRAY + 1]; // 64K
172
173    // Flattens using adaptive forward differencing. This only carries out
174    // one iteration of the AFD loop. All it does is update AFD variables (i.e.
175    // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
176    private void quadBreakIntoLinesAndAdd(float x0, float y0,
177                                          final Curve c,
178                                          final float x2, final float y2)
179    {
180        int count = 1; // dt = 1 / count
181
182        // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
183        float maxDD = FloatMath.max(Math.abs(c.dbx), Math.abs(c.dby));
184
185        final float _DEC_BND = QUAD_DEC_BND;
186
187        while (maxDD >= _DEC_BND) {
188            // divide step by half:
189            maxDD /= 4f; // error divided by 2^2 = 4
190
191            count <<= 1;
192            if (DO_STATS) {
193                rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
194            }
195        }
196
197        int nL = 0; // line count
198        if (count > 1) {
199            final float icount = 1f / count; // dt
200            final float icount2 = icount * icount; // dt^2
201
202            final float ddx = c.dbx * icount2;
203            final float ddy = c.dby * icount2;
204            float dx = c.bx * icount2 + c.cx * icount;
205            float dy = c.by * icount2 + c.cy * icount;
206
207            float x1, y1;
208
209            while (--count > 0) {
210                x1 = x0 + dx;
211                dx += ddx;
212                y1 = y0 + dy;
213                dy += ddy;
214
215                addLine(x0, y0, x1, y1);
216
217                if (DO_STATS) { nL++; }
218                x0 = x1;
219                y0 = y1;
220            }
221        }
222        addLine(x0, y0, x2, y2);
223
224        if (DO_STATS) {
225            rdrCtx.stats.stat_rdr_quadBreak.add(nL + 1);
226        }
227    }
228
229    // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
230    // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
231    // numerical errors, and our callers already have the exact values.
232    // Another alternative would be to pass all the control points, and call
233    // c.set here, but then too many numbers are passed around.
234    private void curveBreakIntoLinesAndAdd(float x0, float y0,
235                                           final Curve c,
236                                           final float x3, final float y3)
237    {
238        int count           = CUB_COUNT;
239        final float icount  = CUB_INV_COUNT;   // dt
240        final float icount2 = CUB_INV_COUNT_2; // dt^2
241        final float icount3 = CUB_INV_COUNT_3; // dt^3
242
243        // the dx and dy refer to forward differencing variables, not the last
244        // coefficients of the "points" polynomial
245        float dddx, dddy, ddx, ddy, dx, dy;
246        dddx = 2f * c.dax * icount3;
247        dddy = 2f * c.day * icount3;
248        ddx = dddx + c.dbx * icount2;
249        ddy = dddy + c.dby * icount2;
250        dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
251        dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
252
253        // we use x0, y0 to walk the line
254        float x1 = x0, y1 = y0;
255        int nL = 0; // line count
256
257        final float _DEC_BND = CUB_DEC_BND;
258        final float _INC_BND = CUB_INC_BND;
259
260        while (count > 0) {
261            // divide step by half:
262            while (Math.abs(ddx) >= _DEC_BND || Math.abs(ddy) >= _DEC_BND) {
263                dddx /= 8f;
264                dddy /= 8f;
265                ddx = ddx/4f - dddx;
266                ddy = ddy/4f - dddy;
267                dx = (dx - ddx) / 2f;
268                dy = (dy - ddy) / 2f;
269
270                count <<= 1;
271                if (DO_STATS) {
272                    rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
273                }
274            }
275
276            // double step:
277            // TODO: why use first derivative dX|Y instead of second ddX|Y ?
278            // both scale changes should use speed or acceleration to have the same metric.
279
280            // can only do this on even "count" values, because we must divide count by 2
281            while (count % 2 == 0
282                   && Math.abs(dx) <= _INC_BND && Math.abs(dy) <= _INC_BND)
283            {
284                dx = 2f * dx + ddx;
285                dy = 2f * dy + ddy;
286                ddx = 4f * (ddx + dddx);
287                ddy = 4f * (ddy + dddy);
288                dddx *= 8f;
289                dddy *= 8f;
290
291                count >>= 1;
292                if (DO_STATS) {
293                    rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
294                }
295            }
296            if (--count > 0) {
297                x1 += dx;
298                dx += ddx;
299                ddx += dddx;
300                y1 += dy;
301                dy += ddy;
302                ddy += dddy;
303            } else {
304                x1 = x3;
305                y1 = y3;
306            }
307
308            addLine(x0, y0, x1, y1);
309
310            if (DO_STATS) { nL++; }
311            x0 = x1;
312            y0 = y1;
313        }
314        if (DO_STATS) {
315            rdrCtx.stats.stat_rdr_curveBreak.add(nL);
316        }
317    }
318
319    private void addLine(float x1, float y1, float x2, float y2) {
320        if (DO_MONITORS) {
321            rdrCtx.stats.mon_rdr_addLine.start();
322        }
323        if (DO_STATS) {
324            rdrCtx.stats.stat_rdr_addLine.add(1);
325        }
326        int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
327        if (y2 < y1) {
328            or = 0;
329            float tmp = y2;
330            y2 = y1;
331            y1 = tmp;
332            tmp = x2;
333            x2 = x1;
334            x1 = tmp;
335        }
336
337        // convert subpixel coordinates (float) into pixel positions (int)
338
339        // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
340        // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
341        // ceil(y1) or ceil(y2)
342        // upper integer (inclusive)
343        final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
344
345        // note: use boundsMaxY (last Y exclusive) to compute correct coverage
346        // upper integer (exclusive)
347        final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
348
349        /* skip horizontal lines in pixel space and clip edges
350           out of y range [boundsMinY; boundsMaxY] */
351        if (firstCrossing >= lastCrossing) {
352            if (DO_MONITORS) {
353                rdrCtx.stats.mon_rdr_addLine.stop();
354            }
355            if (DO_STATS) {
356                rdrCtx.stats.stat_rdr_addLine_skip.add(1);
357            }
358            return;
359        }
360
361        // edge min/max X/Y are in subpixel space (inclusive) within bounds:
362        // note: Use integer crossings to ensure consistent range within
363        // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
364        if (firstCrossing < edgeMinY) {
365            edgeMinY = firstCrossing;
366        }
367        if (lastCrossing > edgeMaxY) {
368            edgeMaxY = lastCrossing;
369        }
370
371        // Use double-precision for improved accuracy:
372        final double x1d   = x1;
373        final double y1d   = y1;
374        final double slope = (x1d - x2) / (y1d - y2);
375
376        if (slope >= 0.0) { // <==> x1 < x2
377            if (x1 < edgeMinX) {
378                edgeMinX = x1;
379            }
380            if (x2 > edgeMaxX) {
381                edgeMaxX = x2;
382            }
383        } else {
384            if (x2 < edgeMinX) {
385                edgeMinX = x2;
386            }
387            if (x1 > edgeMaxX) {
388                edgeMaxX = x1;
389            }
390        }
391
392        // local variables for performance:
393        final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
394
395        final OffHeapArray _edges = edges;
396
397        // get free pointer (ie length in bytes)
398        final int edgePtr = _edges.used;
399
400        // use substraction to avoid integer overflow:
401        if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
402            // suppose _edges.length > _SIZEOF_EDGE_BYTES
403            // so doubling size is enough to add needed bytes
404            // note: throw IOOB if neededSize > 2Gb:
405            final long edgeNewSize = ArrayCache.getNewLargeSize(_edges.length,
406                                        edgePtr + _SIZEOF_EDGE_BYTES);
407
408            if (DO_STATS) {
409                rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize);
410            }
411            _edges.resize(edgeNewSize);
412        }
413
414
415        final Unsafe _unsafe = OffHeapArray.UNSAFE;
416        final long SIZE_INT = 4L;
417        long addr   = _edges.address + edgePtr;
418
419        // The x value must be bumped up to its position at the next HPC we will evaluate.
420        // "firstcrossing" is the (sub)pixel number where the next crossing occurs
421        // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
422        // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
423        // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
424        // y1 = trueY - 0.5
425        // trueY = y1 + 0.5
426        // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
427        //                             = firstcrossing - y1
428        // The x coordinate at that HPC is then:
429        // x1_intercept = x1 + (firstcrossing - y1) * slope
430        // The next VPC is then given by:
431        // VPC index = ceil(x1_intercept - 0.5), or alternately
432        // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
433        // epsilon is hard to pin down in floating point, but easy in fixed point, so if
434        // we convert to fixed point then these operations get easier:
435        // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
436        // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
437        //                 = fixed_floor(x1_fixed + 2^31 - 1)
438        //                 = fixed_floor(x1_fixed + 0x7fffffff)
439        // and error       = fixed_fract(x1_fixed + 0x7fffffff)
440        final double x1_intercept = x1d + (firstCrossing - y1d) * slope;
441
442        // inlined scalb(x1_intercept, 32):
443        final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
444                                     + 0x7fffffffL;
445        // curx:
446        // last bit corresponds to the orientation
447        _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
448        addr += SIZE_INT;
449        _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
450        addr += SIZE_INT;
451
452        // inlined scalb(slope, 32):
453        final long slope_fixed = (long) (POWER_2_TO_32 * slope);
454
455        // last bit set to 0 to keep orientation:
456        _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
457        addr += SIZE_INT;
458        _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
459        addr += SIZE_INT;
460
461        final int[] _edgeBuckets      = edgeBuckets;
462        final int[] _edgeBucketCounts = edgeBucketCounts;
463
464        final int _boundsMinY = boundsMinY;
465
466        // each bucket is a linked list. this method adds ptr to the
467        // start of the "bucket"th linked list.
468        final int bucketIdx = firstCrossing - _boundsMinY;
469
470        // pointer from bucket
471        _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
472        addr += SIZE_INT;
473        // y max (inclusive)
474        _unsafe.putInt(addr,  lastCrossing);
475
476        // Update buckets:
477        // directly the edge struct "pointer"
478        _edgeBuckets[bucketIdx]       = edgePtr;
479        _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
480        // last bit means edge end
481        _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
482
483        // update sum of delta Y (subpixels):
484        edgeSumDeltaY += (lastCrossing - firstCrossing);
485
486        // update free pointer (ie length in bytes)
487        _edges.used += _SIZEOF_EDGE_BYTES;
488
489        if (DO_MONITORS) {
490            rdrCtx.stats.mon_rdr_addLine.stop();
491        }
492    }
493
494// END EDGE LIST
495//////////////////////////////////////////////////////////////////////////////
496
497    // Cache to store RLE-encoded coverage mask of the current primitive
498    final MarlinCache cache;
499
500    // Bounds of the drawing region, at subpixel precision.
501    private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
502
503    // Current winding rule
504    private int windingRule;
505
506    // Current drawing position, i.e., final point of last segment
507    private float x0, y0;
508
509    // Position of most recent 'moveTo' command
510    private float sx0, sy0;
511
512    // per-thread renderer context
513    final RendererContext rdrCtx;
514    // dirty curve
515    private final Curve curve;
516
517    Renderer(final RendererContext rdrCtx) {
518        this.rdrCtx = rdrCtx;
519
520        this.edges = new OffHeapArray(rdrCtx.cleanerObj, INITIAL_EDGES_CAPACITY); // 96K
521
522        this.curve = rdrCtx.curve;
523
524        edgeBuckets = edgeBuckets_initial;
525        edgeBucketCounts = edgeBucketCounts_initial;
526
527        alphaLine  = alphaLine_initial;
528
529        this.cache = rdrCtx.cache;
530
531        // ScanLine:
532        crossings     = crossings_initial;
533        aux_crossings = aux_crossings_initial;
534        edgePtrs      = edgePtrs_initial;
535        aux_edgePtrs  = aux_edgePtrs_initial;
536
537        edgeCount = 0;
538        activeEdgeMaxUsed = 0;
539    }
540
541    Renderer init(final int pix_boundsX, final int pix_boundsY,
542                  final int pix_boundsWidth, final int pix_boundsHeight,
543                  final int windingRule) {
544
545        this.windingRule = windingRule;
546
547        // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
548        this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
549        this.boundsMaxX =
550            (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
551        this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
552        this.boundsMaxY =
553            (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
554
555        if (DO_LOG_BOUNDS) {
556            MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
557                                + boundsMaxX + "[ [" + boundsMinY + " ... "
558                                + boundsMaxY + "[");
559        }
560
561        // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
562        // +1 for edgeBucketCounts
563        final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
564
565        if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
566            if (DO_STATS) {
567                rdrCtx.stats.stat_array_renderer_edgeBuckets
568                    .add(edgeBucketsLength);
569                rdrCtx.stats.stat_array_renderer_edgeBucketCounts
570                    .add(edgeBucketsLength);
571            }
572            edgeBuckets = rdrCtx.getIntArray(edgeBucketsLength);
573            edgeBucketCounts = rdrCtx.getIntArray(edgeBucketsLength);
574        }
575
576        edgeMinY = Integer.MAX_VALUE;
577        edgeMaxY = Integer.MIN_VALUE;
578        edgeMinX = Float.POSITIVE_INFINITY;
579        edgeMaxX = Float.NEGATIVE_INFINITY;
580
581        // reset used mark:
582        edgeCount = 0;
583        activeEdgeMaxUsed = 0;
584        edges.used = 0;
585
586        edgeSumDeltaY = 0;
587
588        return this; // fluent API
589    }
590
591    /**
592     * Disposes this renderer and recycle it clean up before reusing this instance
593     */
594    void dispose() {
595        if (DO_STATS) {
596            rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
597            rdrCtx.stats.stat_rdr_edges.add(edges.used);
598            rdrCtx.stats.stat_rdr_edges_count
599                .add(edges.used / SIZEOF_EDGE_BYTES);
600        }
601        if (DO_CLEAN_DIRTY) {
602            // Force zero-fill dirty arrays:
603            Arrays.fill(crossings,     0);
604            Arrays.fill(aux_crossings, 0);
605            Arrays.fill(edgePtrs,      0);
606            Arrays.fill(aux_edgePtrs,  0);
607        }
608        // Return arrays:
609        if (crossings != crossings_initial) {
610            rdrCtx.putDirtyIntArray(crossings);
611            crossings = crossings_initial;
612            if (aux_crossings != aux_crossings_initial) {
613                rdrCtx.putDirtyIntArray(aux_crossings);
614                aux_crossings = aux_crossings_initial;
615            }
616        }
617        if (edgePtrs != edgePtrs_initial) {
618            rdrCtx.putDirtyIntArray(edgePtrs);
619            edgePtrs = edgePtrs_initial;
620            if (aux_edgePtrs != aux_edgePtrs_initial) {
621                rdrCtx.putDirtyIntArray(aux_edgePtrs);
622                aux_edgePtrs = aux_edgePtrs_initial;
623            }
624        }
625        if (alphaLine != alphaLine_initial) {
626            rdrCtx.putIntArray(alphaLine, 0, 0); // already zero filled
627            alphaLine = alphaLine_initial;
628        }
629        if (blkFlags != blkFlags_initial) {
630            rdrCtx.putIntArray(blkFlags, 0, 0); // already zero filled
631            blkFlags = blkFlags_initial;
632        }
633
634        if (edgeMinY != Integer.MAX_VALUE) {
635            // if context is maked as DIRTY:
636            if (rdrCtx.dirty) {
637                // may happen if an exception if thrown in the pipeline processing:
638                // clear completely buckets arrays:
639                buckets_minY = 0;
640                buckets_maxY = boundsMaxY - boundsMinY;
641            }
642            // clear used part
643            if (edgeBuckets == edgeBuckets_initial) {
644                // fill only used part
645                IntArrayCache.fill(edgeBuckets,      buckets_minY,
646                                                     buckets_maxY,     0);
647                IntArrayCache.fill(edgeBucketCounts, buckets_minY,
648                                                     buckets_maxY + 1, 0);
649            } else {
650                 // clear only used part
651                rdrCtx.putIntArray(edgeBuckets,      buckets_minY,
652                                                     buckets_maxY);
653                edgeBuckets = edgeBuckets_initial;
654
655                rdrCtx.putIntArray(edgeBucketCounts, buckets_minY,
656                                                     buckets_maxY + 1);
657                edgeBucketCounts = edgeBucketCounts_initial;
658            }
659        } else if (edgeBuckets != edgeBuckets_initial) {
660            // unused arrays
661            rdrCtx.putIntArray(edgeBuckets, 0, 0);
662            edgeBuckets = edgeBuckets_initial;
663
664            rdrCtx.putIntArray(edgeBucketCounts, 0, 0);
665            edgeBucketCounts = edgeBucketCounts_initial;
666        }
667
668        // At last: resize back off-heap edges to initial size
669        if (edges.length != INITIAL_EDGES_CAPACITY) {
670            // note: may throw OOME:
671            edges.resize(INITIAL_EDGES_CAPACITY);
672        }
673        if (DO_CLEAN_DIRTY) {
674            // Force zero-fill dirty arrays:
675            edges.fill(BYTE_0);
676        }
677        if (DO_MONITORS) {
678            rdrCtx.stats.mon_rdr_endRendering.stop();
679        }
680    }
681
682    private static float tosubpixx(final float pix_x) {
683        return f_SUBPIXEL_POSITIONS_X * pix_x;
684    }
685
686    private static float tosubpixy(final float pix_y) {
687        // shift y by -0.5 for fast ceil(y - 0.5):
688        return f_SUBPIXEL_POSITIONS_Y * pix_y - 0.5f;
689    }
690
691    @Override
692    public void moveTo(float pix_x0, float pix_y0) {
693        closePath();
694        final float sx = tosubpixx(pix_x0);
695        final float sy = tosubpixy(pix_y0);
696        this.sx0 = sx;
697        this.sy0 = sy;
698        this.x0 = sx;
699        this.y0 = sy;
700    }
701
702    @Override
703    public void lineTo(float pix_x1, float pix_y1) {
704        final float x1 = tosubpixx(pix_x1);
705        final float y1 = tosubpixy(pix_y1);
706        addLine(x0, y0, x1, y1);
707        x0 = x1;
708        y0 = y1;
709    }
710
711    @Override
712    public void curveTo(float x1, float y1,
713            float x2, float y2,
714            float x3, float y3)
715    {
716        final float xe = tosubpixx(x3);
717        final float ye = tosubpixy(y3);
718        curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1),
719                          tosubpixx(x2), tosubpixy(y2), xe, ye);
720        curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
721        x0 = xe;
722        y0 = ye;
723    }
724
725    @Override
726    public void quadTo(float x1, float y1, float x2, float y2) {
727        final float xe = tosubpixx(x2);
728        final float ye = tosubpixy(y2);
729        curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
730        quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
731        x0 = xe;
732        y0 = ye;
733    }
734
735    @Override
736    public void closePath() {
737        addLine(x0, y0, sx0, sy0);
738        x0 = sx0;
739        y0 = sy0;
740    }
741
742    @Override
743    public void pathDone() {
744        closePath();
745    }
746
747    @Override
748    public long getNativeConsumer() {
749        throw new InternalError("Renderer does not use a native consumer.");
750    }
751
752    // clean alpha array (zero filled)
753    private int[] alphaLine;
754    // 2048 (pixelsize) pixel large
755    private final int[] alphaLine_initial = new int[INITIAL_AA_ARRAY]; // 8K
756
757    private void _endRendering(final int ymin, final int ymax) {
758        if (DISABLE_RENDER) {
759            return;
760        }
761
762        // Get X bounds as true pixel boundaries to compute correct pixel coverage:
763        final int bboxx0 = bbox_spminX;
764        final int bboxx1 = bbox_spmaxX;
765
766        final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
767
768        // Useful when processing tile line by tile line
769        final int[] _alpha = alphaLine;
770
771        // local vars (performance):
772        final MarlinCache _cache = cache;
773        final OffHeapArray _edges = edges;
774        final int[] _edgeBuckets = edgeBuckets;
775        final int[] _edgeBucketCounts = edgeBucketCounts;
776
777        int[] _crossings = this.crossings;
778        int[] _edgePtrs  = this.edgePtrs;
779
780        // merge sort auxiliary storage:
781        int[] _aux_crossings = this.aux_crossings;
782        int[] _aux_edgePtrs  = this.aux_edgePtrs;
783
784        // copy constants:
785        final long _OFF_ERROR    = OFF_ERROR;
786        final long _OFF_BUMP_X   = OFF_BUMP_X;
787        final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
788
789        final long _OFF_NEXT     = OFF_NEXT;
790        final long _OFF_YMAX     = OFF_YMAX;
791
792        final int _ALL_BUT_LSB   = ALL_BUT_LSB;
793        final int _ERR_STEP_MAX  = ERR_STEP_MAX;
794
795        // unsafe I/O:
796        final Unsafe _unsafe = OffHeapArray.UNSAFE;
797        final long    addr0  = _edges.address;
798        long addr;
799        final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
800        final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
801        final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
802        final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
803        final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
804
805        final int _MIN_VALUE = Integer.MIN_VALUE;
806        final int _MAX_VALUE = Integer.MAX_VALUE;
807
808        // Now we iterate through the scanlines. We must tell emitRow the coord
809        // of the first non-transparent pixel, so we must keep accumulators for
810        // the first and last pixels of the section of the current pixel row
811        // that we will emit.
812        // We also need to accumulate pix_bbox, but the iterator does it
813        // for us. We will just get the values from it once this loop is done
814        int minX = _MAX_VALUE;
815        int maxX = _MIN_VALUE;
816
817        int y = ymin;
818        int bucket = y - boundsMinY;
819
820        int numCrossings = this.edgeCount;
821        int edgePtrsLen = _edgePtrs.length;
822        int crossingsLen = _crossings.length;
823        int _arrayMaxUsed = activeEdgeMaxUsed;
824        int ptrLen = 0, newCount, ptrEnd;
825
826        int bucketcount, i, j, ecur;
827        int cross, lastCross;
828        int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
829        int pix_x, pix_xmaxm1, pix_xmax;
830
831        int low, high, mid, prevNumCrossings;
832        boolean useBinarySearch;
833
834        final int[] _blkFlags = blkFlags;
835        final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
836        final int _BLK_SIZE = BLOCK_SIZE;
837
838        final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
839
840        // Use block flags if large pixel span and few crossings:
841        // ie mean(distance between crossings) is high
842        boolean useBlkFlags = this.prevUseBlkFlags;
843
844        final int stroking = rdrCtx.stroking;
845
846        int lastY = -1; // last emited row
847
848
849        // Iteration on scanlines
850        for (; y < ymax; y++, bucket++) {
851            // --- from former ScanLineIterator.next()
852            bucketcount = _edgeBucketCounts[bucket];
853
854            // marker on previously sorted edges:
855            prevNumCrossings = numCrossings;
856
857            // bucketCount indicates new edge / edge end:
858            if (bucketcount != 0) {
859                if (DO_STATS) {
860                    rdrCtx.stats.stat_rdr_activeEdges_updates
861                        .add(numCrossings);
862                }
863
864                // last bit set to 1 means that edges ends
865                if ((bucketcount & 0x1) != 0) {
866                    // eviction in active edge list
867                    // cache edges[] address + offset
868                    addr = addr0 + _OFF_YMAX;
869
870                    for (i = 0, newCount = 0; i < numCrossings; i++) {
871                        // get the pointer to the edge
872                        ecur = _edgePtrs[i];
873                        // random access so use unsafe:
874                        if (_unsafe.getInt(addr + ecur) > y) {
875                            _edgePtrs[newCount++] = ecur;
876                        }
877                    }
878                    // update marker on sorted edges minus removed edges:
879                    prevNumCrossings = numCrossings = newCount;
880                }
881
882                ptrLen = bucketcount >> 1; // number of new edge
883
884                if (ptrLen != 0) {
885                    if (DO_STATS) {
886                        rdrCtx.stats.stat_rdr_activeEdges_adds
887                            .add(ptrLen);
888                        if (ptrLen > 10) {
889                            rdrCtx.stats.stat_rdr_activeEdges_adds_high
890                                .add(ptrLen);
891                        }
892                    }
893                    ptrEnd = numCrossings + ptrLen;
894
895                    if (edgePtrsLen < ptrEnd) {
896                        if (DO_STATS) {
897                            rdrCtx.stats.stat_array_renderer_edgePtrs
898                                .add(ptrEnd);
899                        }
900                        this.edgePtrs = _edgePtrs
901                            = rdrCtx.widenDirtyIntArray(_edgePtrs, numCrossings,
902                                                        ptrEnd);
903
904                        edgePtrsLen = _edgePtrs.length;
905                        // Get larger auxiliary storage:
906                        if (_aux_edgePtrs != aux_edgePtrs_initial) {
907                            rdrCtx.putDirtyIntArray(_aux_edgePtrs);
908                        }
909                        // use ArrayCache.getNewSize() to use the same growing
910                        // factor than widenDirtyIntArray():
911                        if (DO_STATS) {
912                            rdrCtx.stats.stat_array_renderer_aux_edgePtrs
913                                .add(ptrEnd);
914                        }
915                        this.aux_edgePtrs = _aux_edgePtrs
916                            = rdrCtx.getDirtyIntArray(
917                                ArrayCache.getNewSize(numCrossings, ptrEnd)
918                            );
919                    }
920
921                    // cache edges[] address + offset
922                    addr = addr0 + _OFF_NEXT;
923
924                    // add new edges to active edge list:
925                    for (ecur = _edgeBuckets[bucket];
926                         numCrossings < ptrEnd; numCrossings++)
927                    {
928                        // store the pointer to the edge
929                        _edgePtrs[numCrossings] = ecur;
930                        // random access so use unsafe:
931                        ecur = _unsafe.getInt(addr + ecur);
932                    }
933
934                    if (crossingsLen < numCrossings) {
935                        // Get larger array:
936                        if (_crossings != crossings_initial) {
937                            rdrCtx.putDirtyIntArray(_crossings);
938                        }
939                        if (DO_STATS) {
940                            rdrCtx.stats.stat_array_renderer_crossings
941                                .add(numCrossings);
942                        }
943                        this.crossings = _crossings
944                            = rdrCtx.getDirtyIntArray(numCrossings);
945
946                        // Get larger auxiliary storage:
947                        if (_aux_crossings != aux_crossings_initial) {
948                            rdrCtx.putDirtyIntArray(_aux_crossings);
949                        }
950                        if (DO_STATS) {
951                            rdrCtx.stats.stat_array_renderer_aux_crossings
952                                .add(numCrossings);
953                        }
954                        this.aux_crossings = _aux_crossings
955                            = rdrCtx.getDirtyIntArray(numCrossings);
956
957                        crossingsLen = _crossings.length;
958                    }
959                    if (DO_STATS) {
960                        // update max used mark
961                        if (numCrossings > _arrayMaxUsed) {
962                            _arrayMaxUsed = numCrossings;
963                        }
964                    }
965                } // ptrLen != 0
966            } // bucketCount != 0
967
968
969            if (numCrossings != 0) {
970                /*
971                 * thresholds to switch to optimized merge sort
972                 * for newly added edges + final merge pass.
973                 */
974                if ((ptrLen < 10) || (numCrossings < 40)) {
975                    if (DO_STATS) {
976                        rdrCtx.stats.hist_rdr_crossings
977                            .add(numCrossings);
978                        rdrCtx.stats.hist_rdr_crossings_adds
979                            .add(ptrLen);
980                    }
981
982                    /*
983                     * threshold to use binary insertion sort instead of
984                     * straight insertion sort (to reduce minimize comparisons).
985                     */
986                    useBinarySearch = (numCrossings >= 20);
987
988                    // if small enough:
989                    lastCross = _MIN_VALUE;
990
991                    for (i = 0; i < numCrossings; i++) {
992                        // get the pointer to the edge
993                        ecur = _edgePtrs[i];
994
995                        /* convert subpixel coordinates (float) into pixel
996                            positions (int) for coming scanline */
997                        /* note: it is faster to always update edges even
998                           if it is removed from AEL for coming or last scanline */
999
1000                        // random access so use unsafe:
1001                        addr = addr0 + ecur; // ecur + OFF_F_CURX
1002
1003                        // get current crossing:
1004                        curx = _unsafe.getInt(addr);
1005
1006                        // update crossing with orientation at last bit:
1007                        cross = curx;
1008
1009                        // Increment x using DDA (fixed point):
1010                        curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1011
1012                        // Increment error:
1013                        err  =  _unsafe.getInt(addr + _OFF_ERROR)
1014                              + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1015
1016                        // Manual carry handling:
1017                        // keep sign and carry bit only and ignore last bit (preserve orientation):
1018                        _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
1019                        _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
1020
1021                        if (DO_STATS) {
1022                            rdrCtx.stats.stat_rdr_crossings_updates
1023                                .add(numCrossings);
1024                        }
1025
1026                        // insertion sort of crossings:
1027                        if (cross < lastCross) {
1028                            if (DO_STATS) {
1029                                rdrCtx.stats.stat_rdr_crossings_sorts
1030                                    .add(i);
1031                            }
1032
1033                            /* use binary search for newly added edges
1034                               in crossings if arrays are large enough */
1035                            if (useBinarySearch && (i >= prevNumCrossings)) {
1036                                if (DO_STATS) {
1037                                    rdrCtx.stats.
1038                                        stat_rdr_crossings_bsearch.add(i);
1039                                }
1040                                low = 0;
1041                                high = i - 1;
1042
1043                                do {
1044                                    // note: use signed shift (not >>>) for performance
1045                                    // as indices are small enough to exceed Integer.MAX_VALUE
1046                                    mid = (low + high) >> 1;
1047
1048                                    if (_crossings[mid] < cross) {
1049                                        low = mid + 1;
1050                                    } else {
1051                                        high = mid - 1;
1052                                    }
1053                                } while (low <= high);
1054
1055                                for (j = i - 1; j >= low; j--) {
1056                                    _crossings[j + 1] = _crossings[j];
1057                                    _edgePtrs [j + 1] = _edgePtrs[j];
1058                                }
1059                                _crossings[low] = cross;
1060                                _edgePtrs [low] = ecur;
1061
1062                            } else {
1063                                j = i - 1;
1064                                _crossings[i] = _crossings[j];
1065                                _edgePtrs[i] = _edgePtrs[j];
1066
1067                                while ((--j >= 0) && (_crossings[j] > cross)) {
1068                                    _crossings[j + 1] = _crossings[j];
1069                                    _edgePtrs [j + 1] = _edgePtrs[j];
1070                                }
1071                                _crossings[j + 1] = cross;
1072                                _edgePtrs [j + 1] = ecur;
1073                            }
1074
1075                        } else {
1076                            _crossings[i] = lastCross = cross;
1077                        }
1078                    }
1079                } else {
1080                    if (DO_STATS) {
1081                        rdrCtx.stats.stat_rdr_crossings_msorts
1082                            .add(numCrossings);
1083                        rdrCtx.stats.hist_rdr_crossings_ratio
1084                            .add((1000 * ptrLen) / numCrossings);
1085                        rdrCtx.stats.hist_rdr_crossings_msorts
1086                            .add(numCrossings);
1087                        rdrCtx.stats.hist_rdr_crossings_msorts_adds
1088                            .add(ptrLen);
1089                    }
1090
1091                    // Copy sorted data in auxiliary arrays
1092                    // and perform insertion sort on almost sorted data
1093                    // (ie i < prevNumCrossings):
1094
1095                    lastCross = _MIN_VALUE;
1096
1097                    for (i = 0; i < numCrossings; i++) {
1098                        // get the pointer to the edge
1099                        ecur = _edgePtrs[i];
1100
1101                        /* convert subpixel coordinates (float) into pixel
1102                            positions (int) for coming scanline */
1103                        /* note: it is faster to always update edges even
1104                           if it is removed from AEL for coming or last scanline */
1105
1106                        // random access so use unsafe:
1107                        addr = addr0 + ecur; // ecur + OFF_F_CURX
1108
1109                        // get current crossing:
1110                        curx = _unsafe.getInt(addr);
1111
1112                        // update crossing with orientation at last bit:
1113                        cross = curx;
1114
1115                        // Increment x using DDA (fixed point):
1116                        curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1117
1118                        // Increment error:
1119                        err  =  _unsafe.getInt(addr + _OFF_ERROR)
1120                              + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1121
1122                        // Manual carry handling:
1123                        // keep sign and carry bit only and ignore last bit (preserve orientation):
1124                        _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
1125                        _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
1126
1127                        if (DO_STATS) {
1128                            rdrCtx.stats.stat_rdr_crossings_updates
1129                                .add(numCrossings);
1130                        }
1131
1132                        if (i >= prevNumCrossings) {
1133                            // simply store crossing as edgePtrs is in-place:
1134                            // will be copied and sorted efficiently by mergesort later:
1135                            _crossings[i]     = cross;
1136
1137                        } else if (cross < lastCross) {
1138                            if (DO_STATS) {
1139                                rdrCtx.stats.stat_rdr_crossings_sorts
1140                                    .add(i);
1141                            }
1142
1143                            // (straight) insertion sort of crossings:
1144                            j = i - 1;
1145                            _aux_crossings[i] = _aux_crossings[j];
1146                            _aux_edgePtrs[i] = _aux_edgePtrs[j];
1147
1148                            while ((--j >= 0) && (_aux_crossings[j] > cross)) {
1149                                _aux_crossings[j + 1] = _aux_crossings[j];
1150                                _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
1151                            }
1152                            _aux_crossings[j + 1] = cross;
1153                            _aux_edgePtrs [j + 1] = ecur;
1154
1155                        } else {
1156                            // auxiliary storage:
1157                            _aux_crossings[i] = lastCross = cross;
1158                            _aux_edgePtrs [i] = ecur;
1159                        }
1160                    }
1161
1162                    // use Mergesort using auxiliary arrays (sort only right part)
1163                    MergeSort.mergeSortNoCopy(_crossings,     _edgePtrs,
1164                                              _aux_crossings, _aux_edgePtrs,
1165                                              numCrossings,   prevNumCrossings);
1166                }
1167
1168                // reset ptrLen
1169                ptrLen = 0;
1170                // --- from former ScanLineIterator.next()
1171
1172
1173                /* note: bboxx0 and bboxx1 must be pixel boundaries
1174                   to have correct coverage computation */
1175
1176                // right shift on crossings to get the x-coordinate:
1177                curxo = _crossings[0];
1178                x0    = curxo >> 1;
1179                if (x0 < minX) {
1180                    minX = x0; // subpixel coordinate
1181                }
1182
1183                x1 = _crossings[numCrossings - 1] >> 1;
1184                if (x1 > maxX) {
1185                    maxX = x1; // subpixel coordinate
1186                }
1187
1188
1189                // compute pixel coverages
1190                prev = curx = x0;
1191                // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1192                // last bit contains orientation (0 or 1)
1193                crorientation = ((curxo & 0x1) << 1) - 1;
1194
1195                if (windingRuleEvenOdd) {
1196                    sum = crorientation;
1197
1198                    // Even Odd winding rule: take care of mask ie sum(orientations)
1199                    for (i = 1; i < numCrossings; i++) {
1200                        curxo = _crossings[i];
1201                        curx  =  curxo >> 1;
1202                        // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1203                        // last bit contains orientation (0 or 1)
1204                        crorientation = ((curxo & 0x1) << 1) - 1;
1205
1206                        if ((sum & 0x1) != 0) {
1207                            // TODO: perform line clipping on left-right sides
1208                            // to avoid such bound checks:
1209                            x0 = (prev > bboxx0) ? prev : bboxx0;
1210                            x1 = (curx < bboxx1) ? curx : bboxx1;
1211
1212                            if (x0 < x1) {
1213                                x0 -= bboxx0; // turn x0, x1 from coords to indices
1214                                x1 -= bboxx0; // in the alpha array.
1215
1216                                pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1217                                pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1218
1219                                if (pix_x == pix_xmaxm1) {
1220                                    // Start and end in same pixel
1221                                    tmp = (x1 - x0); // number of subpixels
1222                                    _alpha[pix_x    ] += tmp;
1223                                    _alpha[pix_x + 1] -= tmp;
1224
1225                                    if (useBlkFlags) {
1226                                        // flag used blocks:
1227                                        _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
1228                                    }
1229                                } else {
1230                                    tmp = (x0 & _SUBPIXEL_MASK_X);
1231                                    _alpha[pix_x    ]
1232                                        += (_SUBPIXEL_POSITIONS_X - tmp);
1233                                    _alpha[pix_x + 1]
1234                                        += tmp;
1235
1236                                    pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1237
1238                                    tmp = (x1 & _SUBPIXEL_MASK_X);
1239                                    _alpha[pix_xmax    ]
1240                                        -= (_SUBPIXEL_POSITIONS_X - tmp);
1241                                    _alpha[pix_xmax + 1]
1242                                        -= tmp;
1243
1244                                    if (useBlkFlags) {
1245                                        // flag used blocks:
1246                                        _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1247                                        _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1248                                    }
1249                                }
1250                            }
1251                        }
1252
1253                        sum += crorientation;
1254                        prev = curx;
1255                    }
1256                } else {
1257                    // Non-zero winding rule: optimize that case (default)
1258                    // and avoid processing intermediate crossings
1259                    for (i = 1, sum = 0;; i++) {
1260                        sum += crorientation;
1261
1262                        if (sum != 0) {
1263                            // prev = min(curx)
1264                            if (prev > curx) {
1265                                prev = curx;
1266                            }
1267                        } else {
1268                            // TODO: perform line clipping on left-right sides
1269                            // to avoid such bound checks:
1270                            x0 = (prev > bboxx0) ? prev : bboxx0;
1271                            x1 = (curx < bboxx1) ? curx : bboxx1;
1272
1273                            if (x0 < x1) {
1274                                x0 -= bboxx0; // turn x0, x1 from coords to indices
1275                                x1 -= bboxx0; // in the alpha array.
1276
1277                                pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1278                                pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1279
1280                                if (pix_x == pix_xmaxm1) {
1281                                    // Start and end in same pixel
1282                                    tmp = (x1 - x0); // number of subpixels
1283                                    _alpha[pix_x    ] += tmp;
1284                                    _alpha[pix_x + 1] -= tmp;
1285
1286                                    if (useBlkFlags) {
1287                                        // flag used blocks:
1288                                        _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
1289                                    }
1290                                } else {
1291                                    tmp = (x0 & _SUBPIXEL_MASK_X);
1292                                    _alpha[pix_x    ]
1293                                        += (_SUBPIXEL_POSITIONS_X - tmp);
1294                                    _alpha[pix_x + 1]
1295                                        += tmp;
1296
1297                                    pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1298
1299                                    tmp = (x1 & _SUBPIXEL_MASK_X);
1300                                    _alpha[pix_xmax    ]
1301                                        -= (_SUBPIXEL_POSITIONS_X - tmp);
1302                                    _alpha[pix_xmax + 1]
1303                                        -= tmp;
1304
1305                                    if (useBlkFlags) {
1306                                        // flag used blocks:
1307                                        _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1308                                        _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1309                                    }
1310                                }
1311                            }
1312                            prev = _MAX_VALUE;
1313                        }
1314
1315                        if (i == numCrossings) {
1316                            break;
1317                        }
1318
1319                        curxo = _crossings[i];
1320                        curx  =  curxo >> 1;
1321                        // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1322                        // last bit contains orientation (0 or 1)
1323                        crorientation = ((curxo & 0x1) << 1) - 1;
1324                    }
1325                }
1326            } // numCrossings > 0
1327
1328            // even if this last row had no crossings, alpha will be zeroed
1329            // from the last emitRow call. But this doesn't matter because
1330            // maxX < minX, so no row will be emitted to the MarlinCache.
1331            if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
1332                lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
1333
1334                // convert subpixel to pixel coordinate within boundaries:
1335                minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1336                maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1337
1338                if (maxX >= minX) {
1339                    // note: alpha array will be zeroed by copyAARow()
1340                    // +2 because alpha [pix_minX; pix_maxX+1]
1341                    // fix range [x0; x1[
1342                    copyAARow(_alpha, lastY, minX, maxX + 2, useBlkFlags);
1343
1344                    // speculative for next pixel row (scanline coherence):
1345                    if (_enableBlkFlagsHeuristics) {
1346                        // Use block flags if large pixel span and few crossings:
1347                        // ie mean(distance between crossings) is larger than
1348                        // 1 block size;
1349
1350                        // fast check width:
1351                        maxX -= minX;
1352
1353                        // if stroking: numCrossings /= 2
1354                        // => shift numCrossings by 1
1355                        // condition = (width / (numCrossings - 1)) > blockSize
1356                        useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
1357                            (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
1358
1359                        if (DO_STATS) {
1360                            tmp = FloatMath.max(1,
1361                                    ((numCrossings >> stroking) - 1));
1362                            rdrCtx.stats.hist_tile_generator_encoding_dist
1363                                .add(maxX / tmp);
1364                        }
1365                    }
1366                } else {
1367                    _cache.clearAARow(lastY);
1368                }
1369                minX = _MAX_VALUE;
1370                maxX = _MIN_VALUE;
1371            }
1372        } // scan line iterator
1373
1374        // Emit final row
1375        y--;
1376        y >>= _SUBPIXEL_LG_POSITIONS_Y;
1377
1378        // convert subpixel to pixel coordinate within boundaries:
1379        minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1380        maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1381
1382        if (maxX >= minX) {
1383            // note: alpha array will be zeroed by copyAARow()
1384            // +2 because alpha [pix_minX; pix_maxX+1]
1385            // fix range [x0; x1[
1386            copyAARow(_alpha, y, minX, maxX + 2, useBlkFlags);
1387        } else if (y != lastY) {
1388            _cache.clearAARow(y);
1389        }
1390
1391        // update member:
1392        edgeCount = numCrossings;
1393        prevUseBlkFlags = useBlkFlags;
1394
1395        if (DO_STATS) {
1396            // update max used mark
1397            activeEdgeMaxUsed = _arrayMaxUsed;
1398        }
1399    }
1400
1401    boolean endRendering() {
1402        if (DO_MONITORS) {
1403            rdrCtx.stats.mon_rdr_endRendering.start();
1404        }
1405        if (edgeMinY == Integer.MAX_VALUE) {
1406            return false; // undefined edges bounds
1407        }
1408
1409        final int _boundsMinY = boundsMinY;
1410        final int _boundsMaxY = boundsMaxY;
1411
1412        // bounds as inclusive intervals
1413        final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX);
1414        final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX - 1);
1415
1416        // edge Min/Max Y are already rounded to subpixels within bounds:
1417        final int spminY = edgeMinY;
1418        final int spmaxY;
1419        int maxY = edgeMaxY;
1420
1421        if (maxY <= _boundsMaxY - 1) {
1422            spmaxY = maxY;
1423        } else {
1424            spmaxY = _boundsMaxY - 1;
1425            maxY   = _boundsMaxY;
1426        }
1427        buckets_minY = spminY - _boundsMinY;
1428        buckets_maxY = maxY   - _boundsMinY;
1429
1430        if (DO_LOG_BOUNDS) {
1431            MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
1432                                + "][" + edgeMinY + " ... " + edgeMaxY + "]");
1433            MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
1434                                + "][" + spminY + " ... " + spmaxY + "]");
1435        }
1436
1437        // test clipping for shapes out of bounds
1438        if ((spminX > spmaxX) || (spminY > spmaxY)) {
1439            return false;
1440        }
1441
1442        // half open intervals
1443        // inclusive:
1444        final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
1445        // exclusive:
1446        final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
1447        // inclusive:
1448        final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
1449        // exclusive:
1450        final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
1451
1452        // store BBox to answer ptg.getBBox():
1453        this.cache.init(pminX, pminY, pmaxX, pmaxY, edgeSumDeltaY);
1454
1455        // Heuristics for using block flags:
1456        if (ENABLE_BLOCK_FLAGS) {
1457            enableBlkFlags = this.cache.useRLE;
1458            prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
1459
1460            if (enableBlkFlags) {
1461                // ensure blockFlags array is large enough:
1462                // note: +2 to ensure enough space left at end
1463                final int nxTiles = ((pmaxX - pminX) >> TILE_SIZE_LG) + 2;
1464                if (nxTiles > INITIAL_ARRAY) {
1465                    blkFlags = rdrCtx.getIntArray(nxTiles);
1466                }
1467            }
1468        }
1469
1470        // memorize the rendering bounding box:
1471        /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
1472           to have correct coverage computation */
1473        // inclusive:
1474        bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
1475        // exclusive:
1476        bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
1477        // inclusive:
1478        bbox_spminY = spminY;
1479        // exclusive:
1480        bbox_spmaxY = FloatMath.min(spmaxY + 1, pmaxY << SUBPIXEL_LG_POSITIONS_Y);
1481
1482        if (DO_LOG_BOUNDS) {
1483            MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
1484                                + "[ [" + pminY + " ... " + pmaxY + "[");
1485            MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
1486                                + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
1487                                + bbox_spmaxY + "[");
1488        }
1489
1490        // Prepare alpha line:
1491        // add 2 to better deal with the last pixel in a pixel row.
1492        final int width = (pmaxX - pminX) + 2;
1493
1494        // Useful when processing tile line by tile line
1495        if (width > INITIAL_AA_ARRAY) {
1496            if (DO_STATS) {
1497                rdrCtx.stats.stat_array_renderer_alphaline
1498                    .add(width);
1499            }
1500            alphaLine = rdrCtx.getIntArray(width);
1501        }
1502
1503        // process first tile line:
1504        endRendering(pminY);
1505
1506        return true;
1507    }
1508
1509    private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
1510
1511    void endRendering(final int pminY) {
1512        if (DO_MONITORS) {
1513            rdrCtx.stats.mon_rdr_endRendering_Y.start();
1514        }
1515
1516        final int spminY       = pminY << SUBPIXEL_LG_POSITIONS_Y;
1517        final int fixed_spminY = FloatMath.max(bbox_spminY, spminY);
1518
1519        // avoid rendering for last call to nextTile()
1520        if (fixed_spminY < bbox_spmaxY) {
1521            // process a complete tile line ie scanlines for 32 rows
1522            final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE);
1523
1524            // process tile line [0 - 32]
1525            cache.resetTileLine(pminY);
1526
1527            // Process only one tile line:
1528            _endRendering(fixed_spminY, spmaxY);
1529        }
1530        if (DO_MONITORS) {
1531            rdrCtx.stats.mon_rdr_endRendering_Y.stop();
1532        }
1533    }
1534
1535    private boolean enableBlkFlags = false;
1536    private boolean prevUseBlkFlags = false;
1537
1538    private final int[] blkFlags_initial = new int[INITIAL_ARRAY]; // 1 tile line
1539    /* block flags (0|1) */
1540    private int[] blkFlags = blkFlags_initial;
1541
1542    void copyAARow(final int[] alphaRow,
1543                   final int pix_y, final int pix_from, final int pix_to,
1544                   final boolean useBlockFlags)
1545    {
1546        if (useBlockFlags) {
1547            if (DO_STATS) {
1548                rdrCtx.stats.hist_tile_generator_encoding.add(1);
1549            }
1550            cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to);
1551        } else {
1552            if (DO_STATS) {
1553                rdrCtx.stats.hist_tile_generator_encoding.add(0);
1554            }
1555            cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to);
1556        }
1557    }
1558}
1559