URI.java revision 12745:f068a4ffddd2
1/*
2 * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.net;
27
28import java.io.IOException;
29import java.io.InvalidObjectException;
30import java.io.ObjectInputStream;
31import java.io.ObjectOutputStream;
32import java.io.Serializable;
33import java.nio.ByteBuffer;
34import java.nio.CharBuffer;
35import java.nio.charset.CharsetDecoder;
36import java.nio.charset.CharsetEncoder;
37import java.nio.charset.CoderResult;
38import java.nio.charset.CodingErrorAction;
39import java.nio.charset.CharacterCodingException;
40import java.text.Normalizer;
41import sun.nio.cs.ThreadLocalCoders;
42
43import java.lang.Character;             // for javadoc
44import java.lang.NullPointerException;  // for javadoc
45
46
47/**
48 * Represents a Uniform Resource Identifier (URI) reference.
49 *
50 * <p> Aside from some minor deviations noted below, an instance of this
51 * class represents a URI reference as defined by
52 * <a href="http://www.ietf.org/rfc/rfc2396.txt"><i>RFC&nbsp;2396: Uniform
53 * Resource Identifiers (URI): Generic Syntax</i></a>, amended by <a
54 * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
55 * Literal IPv6 Addresses in URLs</i></a>. The Literal IPv6 address format
56 * also supports scope_ids. The syntax and usage of scope_ids is described
57 * <a href="Inet6Address.html#scoped">here</a>.
58 * This class provides constructors for creating URI instances from
59 * their components or by parsing their string forms, methods for accessing the
60 * various components of an instance, and methods for normalizing, resolving,
61 * and relativizing URI instances.  Instances of this class are immutable.
62 *
63 *
64 * <h3> URI syntax and components </h3>
65 *
66 * At the highest level a URI reference (hereinafter simply "URI") in string
67 * form has the syntax
68 *
69 * <blockquote>
70 * [<i>scheme</i><b>{@code :}</b>]<i>scheme-specific-part</i>[<b>{@code #}</b><i>fragment</i>]
71 * </blockquote>
72 *
73 * where square brackets [...] delineate optional components and the characters
74 * <b>{@code :}</b> and <b>{@code #}</b> stand for themselves.
75 *
76 * <p> An <i>absolute</i> URI specifies a scheme; a URI that is not absolute is
77 * said to be <i>relative</i>.  URIs are also classified according to whether
78 * they are <i>opaque</i> or <i>hierarchical</i>.
79 *
80 * <p> An <i>opaque</i> URI is an absolute URI whose scheme-specific part does
81 * not begin with a slash character ({@code '/'}).  Opaque URIs are not
82 * subject to further parsing.  Some examples of opaque URIs are:
83 *
84 * <blockquote><table cellpadding=0 cellspacing=0 summary="layout">
85 * <tr><td>{@code mailto:java-net@java.sun.com}<td></tr>
86 * <tr><td>{@code news:comp.lang.java}<td></tr>
87 * <tr><td>{@code urn:isbn:096139210x}</td></tr>
88 * </table></blockquote>
89 *
90 * <p> A <i>hierarchical</i> URI is either an absolute URI whose
91 * scheme-specific part begins with a slash character, or a relative URI, that
92 * is, a URI that does not specify a scheme.  Some examples of hierarchical
93 * URIs are:
94 *
95 * <blockquote>
96 * {@code http://java.sun.com/j2se/1.3/}<br>
97 * {@code docs/guide/collections/designfaq.html#28}<br>
98 * {@code ../../../demo/jfc/SwingSet2/src/SwingSet2.java}<br>
99 * {@code file:///~/calendar}
100 * </blockquote>
101 *
102 * <p> A hierarchical URI is subject to further parsing according to the syntax
103 *
104 * <blockquote>
105 * [<i>scheme</i><b>{@code :}</b>][<b>{@code //}</b><i>authority</i>][<i>path</i>][<b>{@code ?}</b><i>query</i>][<b>{@code #}</b><i>fragment</i>]
106 * </blockquote>
107 *
108 * where the characters <b>{@code :}</b>, <b>{@code /}</b>,
109 * <b>{@code ?}</b>, and <b>{@code #}</b> stand for themselves.  The
110 * scheme-specific part of a hierarchical URI consists of the characters
111 * between the scheme and fragment components.
112 *
113 * <p> The authority component of a hierarchical URI is, if specified, either
114 * <i>server-based</i> or <i>registry-based</i>.  A server-based authority
115 * parses according to the familiar syntax
116 *
117 * <blockquote>
118 * [<i>user-info</i><b>{@code @}</b>]<i>host</i>[<b>{@code :}</b><i>port</i>]
119 * </blockquote>
120 *
121 * where the characters <b>{@code @}</b> and <b>{@code :}</b> stand for
122 * themselves.  Nearly all URI schemes currently in use are server-based.  An
123 * authority component that does not parse in this way is considered to be
124 * registry-based.
125 *
126 * <p> The path component of a hierarchical URI is itself said to be absolute
127 * if it begins with a slash character ({@code '/'}); otherwise it is
128 * relative.  The path of a hierarchical URI that is either absolute or
129 * specifies an authority is always absolute.
130 *
131 * <p> All told, then, a URI instance has the following nine components:
132 *
133 * <blockquote><table summary="Describes the components of a URI:scheme,scheme-specific-part,authority,user-info,host,port,path,query,fragment">
134 * <tr><th><i>Component</i></th><th><i>Type</i></th></tr>
135 * <tr><td>scheme</td><td>{@code String}</td></tr>
136 * <tr><td>scheme-specific-part&nbsp;&nbsp;&nbsp;&nbsp;</td><td>{@code String}</td></tr>
137 * <tr><td>authority</td><td>{@code String}</td></tr>
138 * <tr><td>user-info</td><td>{@code String}</td></tr>
139 * <tr><td>host</td><td>{@code String}</td></tr>
140 * <tr><td>port</td><td>{@code int}</td></tr>
141 * <tr><td>path</td><td>{@code String}</td></tr>
142 * <tr><td>query</td><td>{@code String}</td></tr>
143 * <tr><td>fragment</td><td>{@code String}</td></tr>
144 * </table></blockquote>
145 *
146 * In a given instance any particular component is either <i>undefined</i> or
147 * <i>defined</i> with a distinct value.  Undefined string components are
148 * represented by {@code null}, while undefined integer components are
149 * represented by {@code -1}.  A string component may be defined to have the
150 * empty string as its value; this is not equivalent to that component being
151 * undefined.
152 *
153 * <p> Whether a particular component is or is not defined in an instance
154 * depends upon the type of the URI being represented.  An absolute URI has a
155 * scheme component.  An opaque URI has a scheme, a scheme-specific part, and
156 * possibly a fragment, but has no other components.  A hierarchical URI always
157 * has a path (though it may be empty) and a scheme-specific-part (which at
158 * least contains the path), and may have any of the other components.  If the
159 * authority component is present and is server-based then the host component
160 * will be defined and the user-information and port components may be defined.
161 *
162 *
163 * <h4> Operations on URI instances </h4>
164 *
165 * The key operations supported by this class are those of
166 * <i>normalization</i>, <i>resolution</i>, and <i>relativization</i>.
167 *
168 * <p> <i>Normalization</i> is the process of removing unnecessary {@code "."}
169 * and {@code ".."} segments from the path component of a hierarchical URI.
170 * Each {@code "."} segment is simply removed.  A {@code ".."} segment is
171 * removed only if it is preceded by a non-{@code ".."} segment.
172 * Normalization has no effect upon opaque URIs.
173 *
174 * <p> <i>Resolution</i> is the process of resolving one URI against another,
175 * <i>base</i> URI.  The resulting URI is constructed from components of both
176 * URIs in the manner specified by RFC&nbsp;2396, taking components from the
177 * base URI for those not specified in the original.  For hierarchical URIs,
178 * the path of the original is resolved against the path of the base and then
179 * normalized.  The result, for example, of resolving
180 *
181 * <blockquote>
182 * {@code docs/guide/collections/designfaq.html#28}
183 * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
184 * &nbsp;&nbsp;&nbsp;&nbsp;(1)
185 * </blockquote>
186 *
187 * against the base URI {@code http://java.sun.com/j2se/1.3/} is the result
188 * URI
189 *
190 * <blockquote>
191 * {@code http://docs.oracle.com/javase/1.3/docs/guide/collections/designfaq.html#28}
192 * </blockquote>
193 *
194 * Resolving the relative URI
195 *
196 * <blockquote>
197 * {@code ../../../demo/jfc/SwingSet2/src/SwingSet2.java}&nbsp;&nbsp;&nbsp;&nbsp;(2)
198 * </blockquote>
199 *
200 * against this result yields, in turn,
201 *
202 * <blockquote>
203 * {@code http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java}
204 * </blockquote>
205 *
206 * Resolution of both absolute and relative URIs, and of both absolute and
207 * relative paths in the case of hierarchical URIs, is supported.  Resolving
208 * the URI {@code file:///~calendar} against any other URI simply yields the
209 * original URI, since it is absolute.  Resolving the relative URI (2) above
210 * against the relative base URI (1) yields the normalized, but still relative,
211 * URI
212 *
213 * <blockquote>
214 * {@code demo/jfc/SwingSet2/src/SwingSet2.java}
215 * </blockquote>
216 *
217 * <p> <i>Relativization</i>, finally, is the inverse of resolution: For any
218 * two normalized URIs <i>u</i> and&nbsp;<i>v</i>,
219 *
220 * <blockquote>
221 *   <i>u</i>{@code .relativize(}<i>u</i>{@code .resolve(}<i>v</i>{@code )).equals(}<i>v</i>{@code )}&nbsp;&nbsp;and<br>
222 *   <i>u</i>{@code .resolve(}<i>u</i>{@code .relativize(}<i>v</i>{@code )).equals(}<i>v</i>{@code )}&nbsp;&nbsp;.<br>
223 * </blockquote>
224 *
225 * This operation is often useful when constructing a document containing URIs
226 * that must be made relative to the base URI of the document wherever
227 * possible.  For example, relativizing the URI
228 *
229 * <blockquote>
230 * {@code http://docs.oracle.com/javase/1.3/docs/guide/index.html}
231 * </blockquote>
232 *
233 * against the base URI
234 *
235 * <blockquote>
236 * {@code http://java.sun.com/j2se/1.3}
237 * </blockquote>
238 *
239 * yields the relative URI {@code docs/guide/index.html}.
240 *
241 *
242 * <h4> Character categories </h4>
243 *
244 * RFC&nbsp;2396 specifies precisely which characters are permitted in the
245 * various components of a URI reference.  The following categories, most of
246 * which are taken from that specification, are used below to describe these
247 * constraints:
248 *
249 * <blockquote><table cellspacing=2 summary="Describes categories alpha,digit,alphanum,unreserved,punct,reserved,escaped,and other">
250 *   <tr><th valign=top><i>alpha</i></th>
251 *       <td>The US-ASCII alphabetic characters,
252 *        {@code 'A'}&nbsp;through&nbsp;{@code 'Z'}
253 *        and {@code 'a'}&nbsp;through&nbsp;{@code 'z'}</td></tr>
254 *   <tr><th valign=top><i>digit</i></th>
255 *       <td>The US-ASCII decimal digit characters,
256 *       {@code '0'}&nbsp;through&nbsp;{@code '9'}</td></tr>
257 *   <tr><th valign=top><i>alphanum</i></th>
258 *       <td>All <i>alpha</i> and <i>digit</i> characters</td></tr>
259 *   <tr><th valign=top><i>unreserved</i>&nbsp;&nbsp;&nbsp;&nbsp;</th>
260 *       <td>All <i>alphanum</i> characters together with those in the string
261 *        {@code "_-!.~'()*"}</td></tr>
262 *   <tr><th valign=top><i>punct</i></th>
263 *       <td>The characters in the string {@code ",;:$&+="}</td></tr>
264 *   <tr><th valign=top><i>reserved</i></th>
265 *       <td>All <i>punct</i> characters together with those in the string
266 *        {@code "?/[]@"}</td></tr>
267 *   <tr><th valign=top><i>escaped</i></th>
268 *       <td>Escaped octets, that is, triplets consisting of the percent
269 *           character ({@code '%'}) followed by two hexadecimal digits
270 *           ({@code '0'}-{@code '9'}, {@code 'A'}-{@code 'F'}, and
271 *           {@code 'a'}-{@code 'f'})</td></tr>
272 *   <tr><th valign=top><i>other</i></th>
273 *       <td>The Unicode characters that are not in the US-ASCII character set,
274 *           are not control characters (according to the {@link
275 *           java.lang.Character#isISOControl(char) Character.isISOControl}
276 *           method), and are not space characters (according to the {@link
277 *           java.lang.Character#isSpaceChar(char) Character.isSpaceChar}
278 *           method)&nbsp;&nbsp;<i>(<b>Deviation from RFC 2396</b>, which is
279 *           limited to US-ASCII)</i></td></tr>
280 * </table></blockquote>
281 *
282 * <p><a name="legal-chars"></a> The set of all legal URI characters consists of
283 * the <i>unreserved</i>, <i>reserved</i>, <i>escaped</i>, and <i>other</i>
284 * characters.
285 *
286 *
287 * <h4> Escaped octets, quotation, encoding, and decoding </h4>
288 *
289 * RFC 2396 allows escaped octets to appear in the user-info, path, query, and
290 * fragment components.  Escaping serves two purposes in URIs:
291 *
292 * <ul>
293 *
294 *   <li><p> To <i>encode</i> non-US-ASCII characters when a URI is required to
295 *   conform strictly to RFC&nbsp;2396 by not containing any <i>other</i>
296 *   characters.  </p></li>
297 *
298 *   <li><p> To <i>quote</i> characters that are otherwise illegal in a
299 *   component.  The user-info, path, query, and fragment components differ
300 *   slightly in terms of which characters are considered legal and illegal.
301 *   </p></li>
302 *
303 * </ul>
304 *
305 * These purposes are served in this class by three related operations:
306 *
307 * <ul>
308 *
309 *   <li><p><a name="encode"></a> A character is <i>encoded</i> by replacing it
310 *   with the sequence of escaped octets that represent that character in the
311 *   UTF-8 character set.  The Euro currency symbol ({@code '\u005Cu20AC'}),
312 *   for example, is encoded as {@code "%E2%82%AC"}.  <i>(<b>Deviation from
313 *   RFC&nbsp;2396</b>, which does not specify any particular character
314 *   set.)</i> </p></li>
315 *
316 *   <li><p><a name="quote"></a> An illegal character is <i>quoted</i> simply by
317 *   encoding it.  The space character, for example, is quoted by replacing it
318 *   with {@code "%20"}.  UTF-8 contains US-ASCII, hence for US-ASCII
319 *   characters this transformation has exactly the effect required by
320 *   RFC&nbsp;2396. </p></li>
321 *
322 *   <li><p><a name="decode"></a>
323 *   A sequence of escaped octets is <i>decoded</i> by
324 *   replacing it with the sequence of characters that it represents in the
325 *   UTF-8 character set.  UTF-8 contains US-ASCII, hence decoding has the
326 *   effect of de-quoting any quoted US-ASCII characters as well as that of
327 *   decoding any encoded non-US-ASCII characters.  If a <a
328 *   href="../nio/charset/CharsetDecoder.html#ce">decoding error</a> occurs
329 *   when decoding the escaped octets then the erroneous octets are replaced by
330 *   {@code '\u005CuFFFD'}, the Unicode replacement character.  </p></li>
331 *
332 * </ul>
333 *
334 * These operations are exposed in the constructors and methods of this class
335 * as follows:
336 *
337 * <ul>
338 *
339 *   <li><p> The {@linkplain #URI(java.lang.String) single-argument
340 *   constructor} requires any illegal characters in its argument to be
341 *   quoted and preserves any escaped octets and <i>other</i> characters that
342 *   are present.  </p></li>
343 *
344 *   <li><p> The {@linkplain
345 *   #URI(java.lang.String,java.lang.String,java.lang.String,int,java.lang.String,java.lang.String,java.lang.String)
346 *   multi-argument constructors} quote illegal characters as
347 *   required by the components in which they appear.  The percent character
348 *   ({@code '%'}) is always quoted by these constructors.  Any <i>other</i>
349 *   characters are preserved.  </p></li>
350 *
351 *   <li><p> The {@link #getRawUserInfo() getRawUserInfo}, {@link #getRawPath()
352 *   getRawPath}, {@link #getRawQuery() getRawQuery}, {@link #getRawFragment()
353 *   getRawFragment}, {@link #getRawAuthority() getRawAuthority}, and {@link
354 *   #getRawSchemeSpecificPart() getRawSchemeSpecificPart} methods return the
355 *   values of their corresponding components in raw form, without interpreting
356 *   any escaped octets.  The strings returned by these methods may contain
357 *   both escaped octets and <i>other</i> characters, and will not contain any
358 *   illegal characters.  </p></li>
359 *
360 *   <li><p> The {@link #getUserInfo() getUserInfo}, {@link #getPath()
361 *   getPath}, {@link #getQuery() getQuery}, {@link #getFragment()
362 *   getFragment}, {@link #getAuthority() getAuthority}, and {@link
363 *   #getSchemeSpecificPart() getSchemeSpecificPart} methods decode any escaped
364 *   octets in their corresponding components.  The strings returned by these
365 *   methods may contain both <i>other</i> characters and illegal characters,
366 *   and will not contain any escaped octets.  </p></li>
367 *
368 *   <li><p> The {@link #toString() toString} method returns a URI string with
369 *   all necessary quotation but which may contain <i>other</i> characters.
370 *   </p></li>
371 *
372 *   <li><p> The {@link #toASCIIString() toASCIIString} method returns a fully
373 *   quoted and encoded URI string that does not contain any <i>other</i>
374 *   characters.  </p></li>
375 *
376 * </ul>
377 *
378 *
379 * <h4> Identities </h4>
380 *
381 * For any URI <i>u</i>, it is always the case that
382 *
383 * <blockquote>
384 * {@code new URI(}<i>u</i>{@code .toString()).equals(}<i>u</i>{@code )}&nbsp;.
385 * </blockquote>
386 *
387 * For any URI <i>u</i> that does not contain redundant syntax such as two
388 * slashes before an empty authority (as in {@code file:///tmp/}&nbsp;) or a
389 * colon following a host name but no port (as in
390 * {@code http://java.sun.com:}&nbsp;), and that does not encode characters
391 * except those that must be quoted, the following identities also hold:
392 * <pre>
393 *     new URI(<i>u</i>.getScheme(),
394 *             <i>u</i>.getSchemeSpecificPart(),
395 *             <i>u</i>.getFragment())
396 *     .equals(<i>u</i>)</pre>
397 * in all cases,
398 * <pre>
399 *     new URI(<i>u</i>.getScheme(),
400 *             <i>u</i>.getAuthority(),
401 *             <i>u</i>.getPath(), <i>u</i>.getQuery(),
402 *             <i>u</i>.getFragment())
403 *     .equals(<i>u</i>)</pre>
404 * if <i>u</i> is hierarchical, and
405 * <pre>
406 *     new URI(<i>u</i>.getScheme(),
407 *             <i>u</i>.getUserInfo(), <i>u</i>.getHost(), <i>u</i>.getPort(),
408 *             <i>u</i>.getPath(), <i>u</i>.getQuery(),
409 *             <i>u</i>.getFragment())
410 *     .equals(<i>u</i>)</pre>
411 * if <i>u</i> is hierarchical and has either no authority or a server-based
412 * authority.
413 *
414 *
415 * <h4> URIs, URLs, and URNs </h4>
416 *
417 * A URI is a uniform resource <i>identifier</i> while a URL is a uniform
418 * resource <i>locator</i>.  Hence every URL is a URI, abstractly speaking, but
419 * not every URI is a URL.  This is because there is another subcategory of
420 * URIs, uniform resource <i>names</i> (URNs), which name resources but do not
421 * specify how to locate them.  The {@code mailto}, {@code news}, and
422 * {@code isbn} URIs shown above are examples of URNs.
423 *
424 * <p> The conceptual distinction between URIs and URLs is reflected in the
425 * differences between this class and the {@link URL} class.
426 *
427 * <p> An instance of this class represents a URI reference in the syntactic
428 * sense defined by RFC&nbsp;2396.  A URI may be either absolute or relative.
429 * A URI string is parsed according to the generic syntax without regard to the
430 * scheme, if any, that it specifies.  No lookup of the host, if any, is
431 * performed, and no scheme-dependent stream handler is constructed.  Equality,
432 * hashing, and comparison are defined strictly in terms of the character
433 * content of the instance.  In other words, a URI instance is little more than
434 * a structured string that supports the syntactic, scheme-independent
435 * operations of comparison, normalization, resolution, and relativization.
436 *
437 * <p> An instance of the {@link URL} class, by contrast, represents the
438 * syntactic components of a URL together with some of the information required
439 * to access the resource that it describes.  A URL must be absolute, that is,
440 * it must always specify a scheme.  A URL string is parsed according to its
441 * scheme.  A stream handler is always established for a URL, and in fact it is
442 * impossible to create a URL instance for a scheme for which no handler is
443 * available.  Equality and hashing depend upon both the scheme and the
444 * Internet address of the host, if any; comparison is not defined.  In other
445 * words, a URL is a structured string that supports the syntactic operation of
446 * resolution as well as the network I/O operations of looking up the host and
447 * opening a connection to the specified resource.
448 *
449 *
450 * @author Mark Reinhold
451 * @since 1.4
452 *
453 * @see <a href="http://www.ietf.org/rfc/rfc2279.txt"><i>RFC&nbsp;2279: UTF-8, a
454 * transformation format of ISO 10646</i></a>, <br><a
455 * href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6 Addressing
456 * Architecture</i></a>, <br><a
457 * href="http://www.ietf.org/rfc/rfc2396.txt"><i>RFC&nbsp;2396: Uniform
458 * Resource Identifiers (URI): Generic Syntax</i></a>, <br><a
459 * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
460 * Literal IPv6 Addresses in URLs</i></a>, <br><a
461 * href="URISyntaxException.html">URISyntaxException</a>
462 */
463
464public final class URI
465    implements Comparable<URI>, Serializable
466{
467
468    // Note: Comments containing the word "ASSERT" indicate places where a
469    // throw of an InternalError should be replaced by an appropriate assertion
470    // statement once asserts are enabled in the build.
471
472    static final long serialVersionUID = -6052424284110960213L;
473
474
475    // -- Properties and components of this instance --
476
477    // Components of all URIs: [<scheme>:]<scheme-specific-part>[#<fragment>]
478    private transient String scheme;            // null ==> relative URI
479    private transient String fragment;
480
481    // Hierarchical URI components: [//<authority>]<path>[?<query>]
482    private transient String authority;         // Registry or server
483
484    // Server-based authority: [<userInfo>@]<host>[:<port>]
485    private transient String userInfo;
486    private transient String host;              // null ==> registry-based
487    private transient int port = -1;            // -1 ==> undefined
488
489    // Remaining components of hierarchical URIs
490    private transient String path;              // null ==> opaque
491    private transient String query;
492
493    // The remaining fields may be computed on demand
494
495    private transient volatile String schemeSpecificPart;
496    private transient volatile int hash;        // Zero ==> undefined
497
498    private transient volatile String decodedUserInfo = null;
499    private transient volatile String decodedAuthority = null;
500    private transient volatile String decodedPath = null;
501    private transient volatile String decodedQuery = null;
502    private transient volatile String decodedFragment = null;
503    private transient volatile String decodedSchemeSpecificPart = null;
504
505    /**
506     * The string form of this URI.
507     *
508     * @serial
509     */
510    private volatile String string;             // The only serializable field
511
512
513
514    // -- Constructors and factories --
515
516    private URI() { }                           // Used internally
517
518    /**
519     * Constructs a URI by parsing the given string.
520     *
521     * <p> This constructor parses the given string exactly as specified by the
522     * grammar in <a
523     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
524     * Appendix&nbsp;A, <b><i>except for the following deviations:</i></b> </p>
525     *
526     * <ul>
527     *
528     *   <li><p> An empty authority component is permitted as long as it is
529     *   followed by a non-empty path, a query component, or a fragment
530     *   component.  This allows the parsing of URIs such as
531     *   {@code "file:///foo/bar"}, which seems to be the intent of
532     *   RFC&nbsp;2396 although the grammar does not permit it.  If the
533     *   authority component is empty then the user-information, host, and port
534     *   components are undefined. </p></li>
535     *
536     *   <li><p> Empty relative paths are permitted; this seems to be the
537     *   intent of RFC&nbsp;2396 although the grammar does not permit it.  The
538     *   primary consequence of this deviation is that a standalone fragment
539     *   such as {@code "#foo"} parses as a relative URI with an empty path
540     *   and the given fragment, and can be usefully <a
541     *   href="#resolve-frag">resolved</a> against a base URI.
542     *
543     *   <li><p> IPv4 addresses in host components are parsed rigorously, as
544     *   specified by <a
545     *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>: Each
546     *   element of a dotted-quad address must contain no more than three
547     *   decimal digits.  Each element is further constrained to have a value
548     *   no greater than 255. </p></li>
549     *
550     *   <li> <p> Hostnames in host components that comprise only a single
551     *   domain label are permitted to start with an <i>alphanum</i>
552     *   character. This seems to be the intent of <a
553     *   href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
554     *   section&nbsp;3.2.2 although the grammar does not permit it. The
555     *   consequence of this deviation is that the authority component of a
556     *   hierarchical URI such as {@code s://123}, will parse as a server-based
557     *   authority. </p></li>
558     *
559     *   <li><p> IPv6 addresses are permitted for the host component.  An IPv6
560     *   address must be enclosed in square brackets ({@code '['} and
561     *   {@code ']'}) as specified by <a
562     *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>.  The
563     *   IPv6 address itself must parse according to <a
564     *   href="http://www.ietf.org/rfc/rfc2373.txt">RFC&nbsp;2373</a>.  IPv6
565     *   addresses are further constrained to describe no more than sixteen
566     *   bytes of address information, a constraint implicit in RFC&nbsp;2373
567     *   but not expressible in the grammar. </p></li>
568     *
569     *   <li><p> Characters in the <i>other</i> category are permitted wherever
570     *   RFC&nbsp;2396 permits <i>escaped</i> octets, that is, in the
571     *   user-information, path, query, and fragment components, as well as in
572     *   the authority component if the authority is registry-based.  This
573     *   allows URIs to contain Unicode characters beyond those in the US-ASCII
574     *   character set. </p></li>
575     *
576     * </ul>
577     *
578     * @param  str   The string to be parsed into a URI
579     *
580     * @throws  NullPointerException
581     *          If {@code str} is {@code null}
582     *
583     * @throws  URISyntaxException
584     *          If the given string violates RFC&nbsp;2396, as augmented
585     *          by the above deviations
586     */
587    public URI(String str) throws URISyntaxException {
588        new Parser(str).parse(false);
589    }
590
591    /**
592     * Constructs a hierarchical URI from the given components.
593     *
594     * <p> If a scheme is given then the path, if also given, must either be
595     * empty or begin with a slash character ({@code '/'}).  Otherwise a
596     * component of the new URI may be left undefined by passing {@code null}
597     * for the corresponding parameter or, in the case of the {@code port}
598     * parameter, by passing {@code -1}.
599     *
600     * <p> This constructor first builds a URI string from the given components
601     * according to the rules specified in <a
602     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
603     * section&nbsp;5.2, step&nbsp;7: </p>
604     *
605     * <ol>
606     *
607     *   <li><p> Initially, the result string is empty. </p></li>
608     *
609     *   <li><p> If a scheme is given then it is appended to the result,
610     *   followed by a colon character ({@code ':'}).  </p></li>
611     *
612     *   <li><p> If user information, a host, or a port are given then the
613     *   string {@code "//"} is appended.  </p></li>
614     *
615     *   <li><p> If user information is given then it is appended, followed by
616     *   a commercial-at character ({@code '@'}).  Any character not in the
617     *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
618     *   categories is <a href="#quote">quoted</a>.  </p></li>
619     *
620     *   <li><p> If a host is given then it is appended.  If the host is a
621     *   literal IPv6 address but is not enclosed in square brackets
622     *   ({@code '['} and {@code ']'}) then the square brackets are added.
623     *   </p></li>
624     *
625     *   <li><p> If a port number is given then a colon character
626     *   ({@code ':'}) is appended, followed by the port number in decimal.
627     *   </p></li>
628     *
629     *   <li><p> If a path is given then it is appended.  Any character not in
630     *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
631     *   categories, and not equal to the slash character ({@code '/'}) or the
632     *   commercial-at character ({@code '@'}), is quoted.  </p></li>
633     *
634     *   <li><p> If a query is given then a question-mark character
635     *   ({@code '?'}) is appended, followed by the query.  Any character that
636     *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
637     *   </p></li>
638     *
639     *   <li><p> Finally, if a fragment is given then a hash character
640     *   ({@code '#'}) is appended, followed by the fragment.  Any character
641     *   that is not a legal URI character is quoted.  </p></li>
642     *
643     * </ol>
644     *
645     * <p> The resulting URI string is then parsed as if by invoking the {@link
646     * #URI(String)} constructor and then invoking the {@link
647     * #parseServerAuthority()} method upon the result; this may cause a {@link
648     * URISyntaxException} to be thrown.  </p>
649     *
650     * @param   scheme    Scheme name
651     * @param   userInfo  User name and authorization information
652     * @param   host      Host name
653     * @param   port      Port number
654     * @param   path      Path
655     * @param   query     Query
656     * @param   fragment  Fragment
657     *
658     * @throws URISyntaxException
659     *         If both a scheme and a path are given but the path is relative,
660     *         if the URI string constructed from the given components violates
661     *         RFC&nbsp;2396, or if the authority component of the string is
662     *         present but cannot be parsed as a server-based authority
663     */
664    public URI(String scheme,
665               String userInfo, String host, int port,
666               String path, String query, String fragment)
667        throws URISyntaxException
668    {
669        String s = toString(scheme, null,
670                            null, userInfo, host, port,
671                            path, query, fragment);
672        checkPath(s, scheme, path);
673        new Parser(s).parse(true);
674    }
675
676    /**
677     * Constructs a hierarchical URI from the given components.
678     *
679     * <p> If a scheme is given then the path, if also given, must either be
680     * empty or begin with a slash character ({@code '/'}).  Otherwise a
681     * component of the new URI may be left undefined by passing {@code null}
682     * for the corresponding parameter.
683     *
684     * <p> This constructor first builds a URI string from the given components
685     * according to the rules specified in <a
686     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
687     * section&nbsp;5.2, step&nbsp;7: </p>
688     *
689     * <ol>
690     *
691     *   <li><p> Initially, the result string is empty.  </p></li>
692     *
693     *   <li><p> If a scheme is given then it is appended to the result,
694     *   followed by a colon character ({@code ':'}).  </p></li>
695     *
696     *   <li><p> If an authority is given then the string {@code "//"} is
697     *   appended, followed by the authority.  If the authority contains a
698     *   literal IPv6 address then the address must be enclosed in square
699     *   brackets ({@code '['} and {@code ']'}).  Any character not in the
700     *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
701     *   categories, and not equal to the commercial-at character
702     *   ({@code '@'}), is <a href="#quote">quoted</a>.  </p></li>
703     *
704     *   <li><p> If a path is given then it is appended.  Any character not in
705     *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
706     *   categories, and not equal to the slash character ({@code '/'}) or the
707     *   commercial-at character ({@code '@'}), is quoted.  </p></li>
708     *
709     *   <li><p> If a query is given then a question-mark character
710     *   ({@code '?'}) is appended, followed by the query.  Any character that
711     *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
712     *   </p></li>
713     *
714     *   <li><p> Finally, if a fragment is given then a hash character
715     *   ({@code '#'}) is appended, followed by the fragment.  Any character
716     *   that is not a legal URI character is quoted.  </p></li>
717     *
718     * </ol>
719     *
720     * <p> The resulting URI string is then parsed as if by invoking the {@link
721     * #URI(String)} constructor and then invoking the {@link
722     * #parseServerAuthority()} method upon the result; this may cause a {@link
723     * URISyntaxException} to be thrown.  </p>
724     *
725     * @param   scheme     Scheme name
726     * @param   authority  Authority
727     * @param   path       Path
728     * @param   query      Query
729     * @param   fragment   Fragment
730     *
731     * @throws URISyntaxException
732     *         If both a scheme and a path are given but the path is relative,
733     *         if the URI string constructed from the given components violates
734     *         RFC&nbsp;2396, or if the authority component of the string is
735     *         present but cannot be parsed as a server-based authority
736     */
737    public URI(String scheme,
738               String authority,
739               String path, String query, String fragment)
740        throws URISyntaxException
741    {
742        String s = toString(scheme, null,
743                            authority, null, null, -1,
744                            path, query, fragment);
745        checkPath(s, scheme, path);
746        new Parser(s).parse(false);
747    }
748
749    /**
750     * Constructs a hierarchical URI from the given components.
751     *
752     * <p> A component may be left undefined by passing {@code null}.
753     *
754     * <p> This convenience constructor works as if by invoking the
755     * seven-argument constructor as follows:
756     *
757     * <blockquote>
758     * {@code new} {@link #URI(String, String, String, int, String, String, String)
759     * URI}{@code (scheme, null, host, -1, path, null, fragment);}
760     * </blockquote>
761     *
762     * @param   scheme    Scheme name
763     * @param   host      Host name
764     * @param   path      Path
765     * @param   fragment  Fragment
766     *
767     * @throws  URISyntaxException
768     *          If the URI string constructed from the given components
769     *          violates RFC&nbsp;2396
770     */
771    public URI(String scheme, String host, String path, String fragment)
772        throws URISyntaxException
773    {
774        this(scheme, null, host, -1, path, null, fragment);
775    }
776
777    /**
778     * Constructs a URI from the given components.
779     *
780     * <p> A component may be left undefined by passing {@code null}.
781     *
782     * <p> This constructor first builds a URI in string form using the given
783     * components as follows:  </p>
784     *
785     * <ol>
786     *
787     *   <li><p> Initially, the result string is empty.  </p></li>
788     *
789     *   <li><p> If a scheme is given then it is appended to the result,
790     *   followed by a colon character ({@code ':'}).  </p></li>
791     *
792     *   <li><p> If a scheme-specific part is given then it is appended.  Any
793     *   character that is not a <a href="#legal-chars">legal URI character</a>
794     *   is <a href="#quote">quoted</a>.  </p></li>
795     *
796     *   <li><p> Finally, if a fragment is given then a hash character
797     *   ({@code '#'}) is appended to the string, followed by the fragment.
798     *   Any character that is not a legal URI character is quoted.  </p></li>
799     *
800     * </ol>
801     *
802     * <p> The resulting URI string is then parsed in order to create the new
803     * URI instance as if by invoking the {@link #URI(String)} constructor;
804     * this may cause a {@link URISyntaxException} to be thrown.  </p>
805     *
806     * @param   scheme    Scheme name
807     * @param   ssp       Scheme-specific part
808     * @param   fragment  Fragment
809     *
810     * @throws  URISyntaxException
811     *          If the URI string constructed from the given components
812     *          violates RFC&nbsp;2396
813     */
814    public URI(String scheme, String ssp, String fragment)
815        throws URISyntaxException
816    {
817        new Parser(toString(scheme, ssp,
818                            null, null, null, -1,
819                            null, null, fragment))
820            .parse(false);
821    }
822
823    /**
824     * Creates a URI by parsing the given string.
825     *
826     * <p> This convenience factory method works as if by invoking the {@link
827     * #URI(String)} constructor; any {@link URISyntaxException} thrown by the
828     * constructor is caught and wrapped in a new {@link
829     * IllegalArgumentException} object, which is then thrown.
830     *
831     * <p> This method is provided for use in situations where it is known that
832     * the given string is a legal URI, for example for URI constants declared
833     * within in a program, and so it would be considered a programming error
834     * for the string not to parse as such.  The constructors, which throw
835     * {@link URISyntaxException} directly, should be used situations where a
836     * URI is being constructed from user input or from some other source that
837     * may be prone to errors.  </p>
838     *
839     * @param  str   The string to be parsed into a URI
840     * @return The new URI
841     *
842     * @throws  NullPointerException
843     *          If {@code str} is {@code null}
844     *
845     * @throws  IllegalArgumentException
846     *          If the given string violates RFC&nbsp;2396
847     */
848    public static URI create(String str) {
849        try {
850            return new URI(str);
851        } catch (URISyntaxException x) {
852            throw new IllegalArgumentException(x.getMessage(), x);
853        }
854    }
855
856
857    // -- Operations --
858
859    /**
860     * Attempts to parse this URI's authority component, if defined, into
861     * user-information, host, and port components.
862     *
863     * <p> If this URI's authority component has already been recognized as
864     * being server-based then it will already have been parsed into
865     * user-information, host, and port components.  In this case, or if this
866     * URI has no authority component, this method simply returns this URI.
867     *
868     * <p> Otherwise this method attempts once more to parse the authority
869     * component into user-information, host, and port components, and throws
870     * an exception describing why the authority component could not be parsed
871     * in that way.
872     *
873     * <p> This method is provided because the generic URI syntax specified in
874     * <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
875     * cannot always distinguish a malformed server-based authority from a
876     * legitimate registry-based authority.  It must therefore treat some
877     * instances of the former as instances of the latter.  The authority
878     * component in the URI string {@code "//foo:bar"}, for example, is not a
879     * legal server-based authority but it is legal as a registry-based
880     * authority.
881     *
882     * <p> In many common situations, for example when working URIs that are
883     * known to be either URNs or URLs, the hierarchical URIs being used will
884     * always be server-based.  They therefore must either be parsed as such or
885     * treated as an error.  In these cases a statement such as
886     *
887     * <blockquote>
888     * {@code URI }<i>u</i>{@code  = new URI(str).parseServerAuthority();}
889     * </blockquote>
890     *
891     * <p> can be used to ensure that <i>u</i> always refers to a URI that, if
892     * it has an authority component, has a server-based authority with proper
893     * user-information, host, and port components.  Invoking this method also
894     * ensures that if the authority could not be parsed in that way then an
895     * appropriate diagnostic message can be issued based upon the exception
896     * that is thrown. </p>
897     *
898     * @return  A URI whose authority field has been parsed
899     *          as a server-based authority
900     *
901     * @throws  URISyntaxException
902     *          If the authority component of this URI is defined
903     *          but cannot be parsed as a server-based authority
904     *          according to RFC&nbsp;2396
905     */
906    public URI parseServerAuthority()
907        throws URISyntaxException
908    {
909        // We could be clever and cache the error message and index from the
910        // exception thrown during the original parse, but that would require
911        // either more fields or a more-obscure representation.
912        if ((host != null) || (authority == null))
913            return this;
914        defineString();
915        new Parser(string).parse(true);
916        return this;
917    }
918
919    /**
920     * Normalizes this URI's path.
921     *
922     * <p> If this URI is opaque, or if its path is already in normal form,
923     * then this URI is returned.  Otherwise a new URI is constructed that is
924     * identical to this URI except that its path is computed by normalizing
925     * this URI's path in a manner consistent with <a
926     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
927     * section&nbsp;5.2, step&nbsp;6, sub-steps&nbsp;c through&nbsp;f; that is:
928     * </p>
929     *
930     * <ol>
931     *
932     *   <li><p> All {@code "."} segments are removed. </p></li>
933     *
934     *   <li><p> If a {@code ".."} segment is preceded by a non-{@code ".."}
935     *   segment then both of these segments are removed.  This step is
936     *   repeated until it is no longer applicable. </p></li>
937     *
938     *   <li><p> If the path is relative, and if its first segment contains a
939     *   colon character ({@code ':'}), then a {@code "."} segment is
940     *   prepended.  This prevents a relative URI with a path such as
941     *   {@code "a:b/c/d"} from later being re-parsed as an opaque URI with a
942     *   scheme of {@code "a"} and a scheme-specific part of {@code "b/c/d"}.
943     *   <b><i>(Deviation from RFC&nbsp;2396)</i></b> </p></li>
944     *
945     * </ol>
946     *
947     * <p> A normalized path will begin with one or more {@code ".."} segments
948     * if there were insufficient non-{@code ".."} segments preceding them to
949     * allow their removal.  A normalized path will begin with a {@code "."}
950     * segment if one was inserted by step 3 above.  Otherwise, a normalized
951     * path will not contain any {@code "."} or {@code ".."} segments. </p>
952     *
953     * @return  A URI equivalent to this URI,
954     *          but whose path is in normal form
955     */
956    public URI normalize() {
957        return normalize(this);
958    }
959
960    /**
961     * Resolves the given URI against this URI.
962     *
963     * <p> If the given URI is already absolute, or if this URI is opaque, then
964     * the given URI is returned.
965     *
966     * <p><a name="resolve-frag"></a> If the given URI's fragment component is
967     * defined, its path component is empty, and its scheme, authority, and
968     * query components are undefined, then a URI with the given fragment but
969     * with all other components equal to those of this URI is returned.  This
970     * allows a URI representing a standalone fragment reference, such as
971     * {@code "#foo"}, to be usefully resolved against a base URI.
972     *
973     * <p> Otherwise this method constructs a new hierarchical URI in a manner
974     * consistent with <a
975     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
976     * section&nbsp;5.2; that is: </p>
977     *
978     * <ol>
979     *
980     *   <li><p> A new URI is constructed with this URI's scheme and the given
981     *   URI's query and fragment components. </p></li>
982     *
983     *   <li><p> If the given URI has an authority component then the new URI's
984     *   authority and path are taken from the given URI. </p></li>
985     *
986     *   <li><p> Otherwise the new URI's authority component is copied from
987     *   this URI, and its path is computed as follows: </p>
988     *
989     *   <ol>
990     *
991     *     <li><p> If the given URI's path is absolute then the new URI's path
992     *     is taken from the given URI. </p></li>
993     *
994     *     <li><p> Otherwise the given URI's path is relative, and so the new
995     *     URI's path is computed by resolving the path of the given URI
996     *     against the path of this URI.  This is done by concatenating all but
997     *     the last segment of this URI's path, if any, with the given URI's
998     *     path and then normalizing the result as if by invoking the {@link
999     *     #normalize() normalize} method. </p></li>
1000     *
1001     *   </ol></li>
1002     *
1003     * </ol>
1004     *
1005     * <p> The result of this method is absolute if, and only if, either this
1006     * URI is absolute or the given URI is absolute.  </p>
1007     *
1008     * @param  uri  The URI to be resolved against this URI
1009     * @return The resulting URI
1010     *
1011     * @throws  NullPointerException
1012     *          If {@code uri} is {@code null}
1013     */
1014    public URI resolve(URI uri) {
1015        return resolve(this, uri);
1016    }
1017
1018    /**
1019     * Constructs a new URI by parsing the given string and then resolving it
1020     * against this URI.
1021     *
1022     * <p> This convenience method works as if invoking it were equivalent to
1023     * evaluating the expression {@link #resolve(java.net.URI)
1024     * resolve}{@code (URI.}{@link #create(String) create}{@code (str))}. </p>
1025     *
1026     * @param  str   The string to be parsed into a URI
1027     * @return The resulting URI
1028     *
1029     * @throws  NullPointerException
1030     *          If {@code str} is {@code null}
1031     *
1032     * @throws  IllegalArgumentException
1033     *          If the given string violates RFC&nbsp;2396
1034     */
1035    public URI resolve(String str) {
1036        return resolve(URI.create(str));
1037    }
1038
1039    /**
1040     * Relativizes the given URI against this URI.
1041     *
1042     * <p> The relativization of the given URI against this URI is computed as
1043     * follows: </p>
1044     *
1045     * <ol>
1046     *
1047     *   <li><p> If either this URI or the given URI are opaque, or if the
1048     *   scheme and authority components of the two URIs are not identical, or
1049     *   if the path of this URI is not a prefix of the path of the given URI,
1050     *   then the given URI is returned. </p></li>
1051     *
1052     *   <li><p> Otherwise a new relative hierarchical URI is constructed with
1053     *   query and fragment components taken from the given URI and with a path
1054     *   component computed by removing this URI's path from the beginning of
1055     *   the given URI's path. </p></li>
1056     *
1057     * </ol>
1058     *
1059     * @param  uri  The URI to be relativized against this URI
1060     * @return The resulting URI
1061     *
1062     * @throws  NullPointerException
1063     *          If {@code uri} is {@code null}
1064     */
1065    public URI relativize(URI uri) {
1066        return relativize(this, uri);
1067    }
1068
1069    /**
1070     * Constructs a URL from this URI.
1071     *
1072     * <p> This convenience method works as if invoking it were equivalent to
1073     * evaluating the expression {@code new URL(this.toString())} after
1074     * first checking that this URI is absolute. </p>
1075     *
1076     * @return  A URL constructed from this URI
1077     *
1078     * @throws  IllegalArgumentException
1079     *          If this URL is not absolute
1080     *
1081     * @throws  MalformedURLException
1082     *          If a protocol handler for the URL could not be found,
1083     *          or if some other error occurred while constructing the URL
1084     */
1085    public URL toURL()
1086        throws MalformedURLException {
1087        if (!isAbsolute())
1088            throw new IllegalArgumentException("URI is not absolute");
1089        return new URL(toString());
1090    }
1091
1092    // -- Component access methods --
1093
1094    /**
1095     * Returns the scheme component of this URI.
1096     *
1097     * <p> The scheme component of a URI, if defined, only contains characters
1098     * in the <i>alphanum</i> category and in the string {@code "-.+"}.  A
1099     * scheme always starts with an <i>alpha</i> character. <p>
1100     *
1101     * The scheme component of a URI cannot contain escaped octets, hence this
1102     * method does not perform any decoding.
1103     *
1104     * @return  The scheme component of this URI,
1105     *          or {@code null} if the scheme is undefined
1106     */
1107    public String getScheme() {
1108        return scheme;
1109    }
1110
1111    /**
1112     * Tells whether or not this URI is absolute.
1113     *
1114     * <p> A URI is absolute if, and only if, it has a scheme component. </p>
1115     *
1116     * @return  {@code true} if, and only if, this URI is absolute
1117     */
1118    public boolean isAbsolute() {
1119        return scheme != null;
1120    }
1121
1122    /**
1123     * Tells whether or not this URI is opaque.
1124     *
1125     * <p> A URI is opaque if, and only if, it is absolute and its
1126     * scheme-specific part does not begin with a slash character ('/').
1127     * An opaque URI has a scheme, a scheme-specific part, and possibly
1128     * a fragment; all other components are undefined. </p>
1129     *
1130     * @return  {@code true} if, and only if, this URI is opaque
1131     */
1132    public boolean isOpaque() {
1133        return path == null;
1134    }
1135
1136    /**
1137     * Returns the raw scheme-specific part of this URI.  The scheme-specific
1138     * part is never undefined, though it may be empty.
1139     *
1140     * <p> The scheme-specific part of a URI only contains legal URI
1141     * characters. </p>
1142     *
1143     * @return  The raw scheme-specific part of this URI
1144     *          (never {@code null})
1145     */
1146    public String getRawSchemeSpecificPart() {
1147        defineSchemeSpecificPart();
1148        return schemeSpecificPart;
1149    }
1150
1151    /**
1152     * Returns the decoded scheme-specific part of this URI.
1153     *
1154     * <p> The string returned by this method is equal to that returned by the
1155     * {@link #getRawSchemeSpecificPart() getRawSchemeSpecificPart} method
1156     * except that all sequences of escaped octets are <a
1157     * href="#decode">decoded</a>.  </p>
1158     *
1159     * @return  The decoded scheme-specific part of this URI
1160     *          (never {@code null})
1161     */
1162    public String getSchemeSpecificPart() {
1163        if (decodedSchemeSpecificPart == null)
1164            decodedSchemeSpecificPart = decode(getRawSchemeSpecificPart());
1165        return decodedSchemeSpecificPart;
1166    }
1167
1168    /**
1169     * Returns the raw authority component of this URI.
1170     *
1171     * <p> The authority component of a URI, if defined, only contains the
1172     * commercial-at character ({@code '@'}) and characters in the
1173     * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and <i>other</i>
1174     * categories.  If the authority is server-based then it is further
1175     * constrained to have valid user-information, host, and port
1176     * components. </p>
1177     *
1178     * @return  The raw authority component of this URI,
1179     *          or {@code null} if the authority is undefined
1180     */
1181    public String getRawAuthority() {
1182        return authority;
1183    }
1184
1185    /**
1186     * Returns the decoded authority component of this URI.
1187     *
1188     * <p> The string returned by this method is equal to that returned by the
1189     * {@link #getRawAuthority() getRawAuthority} method except that all
1190     * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1191     *
1192     * @return  The decoded authority component of this URI,
1193     *          or {@code null} if the authority is undefined
1194     */
1195    public String getAuthority() {
1196        if (decodedAuthority == null)
1197            decodedAuthority = decode(authority);
1198        return decodedAuthority;
1199    }
1200
1201    /**
1202     * Returns the raw user-information component of this URI.
1203     *
1204     * <p> The user-information component of a URI, if defined, only contains
1205     * characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and
1206     * <i>other</i> categories. </p>
1207     *
1208     * @return  The raw user-information component of this URI,
1209     *          or {@code null} if the user information is undefined
1210     */
1211    public String getRawUserInfo() {
1212        return userInfo;
1213    }
1214
1215    /**
1216     * Returns the decoded user-information component of this URI.
1217     *
1218     * <p> The string returned by this method is equal to that returned by the
1219     * {@link #getRawUserInfo() getRawUserInfo} method except that all
1220     * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1221     *
1222     * @return  The decoded user-information component of this URI,
1223     *          or {@code null} if the user information is undefined
1224     */
1225    public String getUserInfo() {
1226        if ((decodedUserInfo == null) && (userInfo != null))
1227            decodedUserInfo = decode(userInfo);
1228        return decodedUserInfo;
1229    }
1230
1231    /**
1232     * Returns the host component of this URI.
1233     *
1234     * <p> The host component of a URI, if defined, will have one of the
1235     * following forms: </p>
1236     *
1237     * <ul>
1238     *
1239     *   <li><p> A domain name consisting of one or more <i>labels</i>
1240     *   separated by period characters ({@code '.'}), optionally followed by
1241     *   a period character.  Each label consists of <i>alphanum</i> characters
1242     *   as well as hyphen characters ({@code '-'}), though hyphens never
1243     *   occur as the first or last characters in a label. The rightmost
1244     *   label of a domain name consisting of two or more labels, begins
1245     *   with an <i>alpha</i> character. </li>
1246     *
1247     *   <li><p> A dotted-quad IPv4 address of the form
1248     *   <i>digit</i>{@code +.}<i>digit</i>{@code +.}<i>digit</i>{@code +.}<i>digit</i>{@code +},
1249     *   where no <i>digit</i> sequence is longer than three characters and no
1250     *   sequence has a value larger than 255. </p></li>
1251     *
1252     *   <li><p> An IPv6 address enclosed in square brackets ({@code '['} and
1253     *   {@code ']'}) and consisting of hexadecimal digits, colon characters
1254     *   ({@code ':'}), and possibly an embedded IPv4 address.  The full
1255     *   syntax of IPv6 addresses is specified in <a
1256     *   href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6
1257     *   Addressing Architecture</i></a>.  </p></li>
1258     *
1259     * </ul>
1260     *
1261     * The host component of a URI cannot contain escaped octets, hence this
1262     * method does not perform any decoding.
1263     *
1264     * @return  The host component of this URI,
1265     *          or {@code null} if the host is undefined
1266     */
1267    public String getHost() {
1268        return host;
1269    }
1270
1271    /**
1272     * Returns the port number of this URI.
1273     *
1274     * <p> The port component of a URI, if defined, is a non-negative
1275     * integer. </p>
1276     *
1277     * @return  The port component of this URI,
1278     *          or {@code -1} if the port is undefined
1279     */
1280    public int getPort() {
1281        return port;
1282    }
1283
1284    /**
1285     * Returns the raw path component of this URI.
1286     *
1287     * <p> The path component of a URI, if defined, only contains the slash
1288     * character ({@code '/'}), the commercial-at character ({@code '@'}),
1289     * and characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>,
1290     * and <i>other</i> categories. </p>
1291     *
1292     * @return  The path component of this URI,
1293     *          or {@code null} if the path is undefined
1294     */
1295    public String getRawPath() {
1296        return path;
1297    }
1298
1299    /**
1300     * Returns the decoded path component of this URI.
1301     *
1302     * <p> The string returned by this method is equal to that returned by the
1303     * {@link #getRawPath() getRawPath} method except that all sequences of
1304     * escaped octets are <a href="#decode">decoded</a>.  </p>
1305     *
1306     * @return  The decoded path component of this URI,
1307     *          or {@code null} if the path is undefined
1308     */
1309    public String getPath() {
1310        if ((decodedPath == null) && (path != null))
1311            decodedPath = decode(path);
1312        return decodedPath;
1313    }
1314
1315    /**
1316     * Returns the raw query component of this URI.
1317     *
1318     * <p> The query component of a URI, if defined, only contains legal URI
1319     * characters. </p>
1320     *
1321     * @return  The raw query component of this URI,
1322     *          or {@code null} if the query is undefined
1323     */
1324    public String getRawQuery() {
1325        return query;
1326    }
1327
1328    /**
1329     * Returns the decoded query component of this URI.
1330     *
1331     * <p> The string returned by this method is equal to that returned by the
1332     * {@link #getRawQuery() getRawQuery} method except that all sequences of
1333     * escaped octets are <a href="#decode">decoded</a>.  </p>
1334     *
1335     * @return  The decoded query component of this URI,
1336     *          or {@code null} if the query is undefined
1337     */
1338    public String getQuery() {
1339        if ((decodedQuery == null) && (query != null))
1340            decodedQuery = decode(query, false);
1341        return decodedQuery;
1342    }
1343
1344    /**
1345     * Returns the raw fragment component of this URI.
1346     *
1347     * <p> The fragment component of a URI, if defined, only contains legal URI
1348     * characters. </p>
1349     *
1350     * @return  The raw fragment component of this URI,
1351     *          or {@code null} if the fragment is undefined
1352     */
1353    public String getRawFragment() {
1354        return fragment;
1355    }
1356
1357    /**
1358     * Returns the decoded fragment component of this URI.
1359     *
1360     * <p> The string returned by this method is equal to that returned by the
1361     * {@link #getRawFragment() getRawFragment} method except that all
1362     * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1363     *
1364     * @return  The decoded fragment component of this URI,
1365     *          or {@code null} if the fragment is undefined
1366     */
1367    public String getFragment() {
1368        if ((decodedFragment == null) && (fragment != null))
1369            decodedFragment = decode(fragment, false);
1370        return decodedFragment;
1371    }
1372
1373
1374    // -- Equality, comparison, hash code, toString, and serialization --
1375
1376    /**
1377     * Tests this URI for equality with another object.
1378     *
1379     * <p> If the given object is not a URI then this method immediately
1380     * returns {@code false}.
1381     *
1382     * <p> For two URIs to be considered equal requires that either both are
1383     * opaque or both are hierarchical.  Their schemes must either both be
1384     * undefined or else be equal without regard to case. Their fragments
1385     * must either both be undefined or else be equal.
1386     *
1387     * <p> For two opaque URIs to be considered equal, their scheme-specific
1388     * parts must be equal.
1389     *
1390     * <p> For two hierarchical URIs to be considered equal, their paths must
1391     * be equal and their queries must either both be undefined or else be
1392     * equal.  Their authorities must either both be undefined, or both be
1393     * registry-based, or both be server-based.  If their authorities are
1394     * defined and are registry-based, then they must be equal.  If their
1395     * authorities are defined and are server-based, then their hosts must be
1396     * equal without regard to case, their port numbers must be equal, and
1397     * their user-information components must be equal.
1398     *
1399     * <p> When testing the user-information, path, query, fragment, authority,
1400     * or scheme-specific parts of two URIs for equality, the raw forms rather
1401     * than the encoded forms of these components are compared and the
1402     * hexadecimal digits of escaped octets are compared without regard to
1403     * case.
1404     *
1405     * <p> This method satisfies the general contract of the {@link
1406     * java.lang.Object#equals(Object) Object.equals} method. </p>
1407     *
1408     * @param   ob   The object to which this object is to be compared
1409     *
1410     * @return  {@code true} if, and only if, the given object is a URI that
1411     *          is identical to this URI
1412     */
1413    public boolean equals(Object ob) {
1414        if (ob == this)
1415            return true;
1416        if (!(ob instanceof URI))
1417            return false;
1418        URI that = (URI)ob;
1419        if (this.isOpaque() != that.isOpaque()) return false;
1420        if (!equalIgnoringCase(this.scheme, that.scheme)) return false;
1421        if (!equal(this.fragment, that.fragment)) return false;
1422
1423        // Opaque
1424        if (this.isOpaque())
1425            return equal(this.schemeSpecificPart, that.schemeSpecificPart);
1426
1427        // Hierarchical
1428        if (!equal(this.path, that.path)) return false;
1429        if (!equal(this.query, that.query)) return false;
1430
1431        // Authorities
1432        if (this.authority == that.authority) return true;
1433        if (this.host != null) {
1434            // Server-based
1435            if (!equal(this.userInfo, that.userInfo)) return false;
1436            if (!equalIgnoringCase(this.host, that.host)) return false;
1437            if (this.port != that.port) return false;
1438        } else if (this.authority != null) {
1439            // Registry-based
1440            if (!equal(this.authority, that.authority)) return false;
1441        } else if (this.authority != that.authority) {
1442            return false;
1443        }
1444
1445        return true;
1446    }
1447
1448    /**
1449     * Returns a hash-code value for this URI.  The hash code is based upon all
1450     * of the URI's components, and satisfies the general contract of the
1451     * {@link java.lang.Object#hashCode() Object.hashCode} method.
1452     *
1453     * @return  A hash-code value for this URI
1454     */
1455    public int hashCode() {
1456        if (hash != 0)
1457            return hash;
1458        int h = hashIgnoringCase(0, scheme);
1459        h = hash(h, fragment);
1460        if (isOpaque()) {
1461            h = hash(h, schemeSpecificPart);
1462        } else {
1463            h = hash(h, path);
1464            h = hash(h, query);
1465            if (host != null) {
1466                h = hash(h, userInfo);
1467                h = hashIgnoringCase(h, host);
1468                h += 1949 * port;
1469            } else {
1470                h = hash(h, authority);
1471            }
1472        }
1473        hash = h;
1474        return h;
1475    }
1476
1477    /**
1478     * Compares this URI to another object, which must be a URI.
1479     *
1480     * <p> When comparing corresponding components of two URIs, if one
1481     * component is undefined but the other is defined then the first is
1482     * considered to be less than the second.  Unless otherwise noted, string
1483     * components are ordered according to their natural, case-sensitive
1484     * ordering as defined by the {@link java.lang.String#compareTo(Object)
1485     * String.compareTo} method.  String components that are subject to
1486     * encoding are compared by comparing their raw forms rather than their
1487     * encoded forms.
1488     *
1489     * <p> The ordering of URIs is defined as follows: </p>
1490     *
1491     * <ul>
1492     *
1493     *   <li><p> Two URIs with different schemes are ordered according the
1494     *   ordering of their schemes, without regard to case. </p></li>
1495     *
1496     *   <li><p> A hierarchical URI is considered to be less than an opaque URI
1497     *   with an identical scheme. </p></li>
1498     *
1499     *   <li><p> Two opaque URIs with identical schemes are ordered according
1500     *   to the ordering of their scheme-specific parts. </p></li>
1501     *
1502     *   <li><p> Two opaque URIs with identical schemes and scheme-specific
1503     *   parts are ordered according to the ordering of their
1504     *   fragments. </p></li>
1505     *
1506     *   <li><p> Two hierarchical URIs with identical schemes are ordered
1507     *   according to the ordering of their authority components: </p>
1508     *
1509     *   <ul>
1510     *
1511     *     <li><p> If both authority components are server-based then the URIs
1512     *     are ordered according to their user-information components; if these
1513     *     components are identical then the URIs are ordered according to the
1514     *     ordering of their hosts, without regard to case; if the hosts are
1515     *     identical then the URIs are ordered according to the ordering of
1516     *     their ports. </p></li>
1517     *
1518     *     <li><p> If one or both authority components are registry-based then
1519     *     the URIs are ordered according to the ordering of their authority
1520     *     components. </p></li>
1521     *
1522     *   </ul></li>
1523     *
1524     *   <li><p> Finally, two hierarchical URIs with identical schemes and
1525     *   authority components are ordered according to the ordering of their
1526     *   paths; if their paths are identical then they are ordered according to
1527     *   the ordering of their queries; if the queries are identical then they
1528     *   are ordered according to the order of their fragments. </p></li>
1529     *
1530     * </ul>
1531     *
1532     * <p> This method satisfies the general contract of the {@link
1533     * java.lang.Comparable#compareTo(Object) Comparable.compareTo}
1534     * method. </p>
1535     *
1536     * @param   that
1537     *          The object to which this URI is to be compared
1538     *
1539     * @return  A negative integer, zero, or a positive integer as this URI is
1540     *          less than, equal to, or greater than the given URI
1541     *
1542     * @throws  ClassCastException
1543     *          If the given object is not a URI
1544     */
1545    public int compareTo(URI that) {
1546        int c;
1547
1548        if ((c = compareIgnoringCase(this.scheme, that.scheme)) != 0)
1549            return c;
1550
1551        if (this.isOpaque()) {
1552            if (that.isOpaque()) {
1553                // Both opaque
1554                if ((c = compare(this.schemeSpecificPart,
1555                                 that.schemeSpecificPart)) != 0)
1556                    return c;
1557                return compare(this.fragment, that.fragment);
1558            }
1559            return +1;                  // Opaque > hierarchical
1560        } else if (that.isOpaque()) {
1561            return -1;                  // Hierarchical < opaque
1562        }
1563
1564        // Hierarchical
1565        if ((this.host != null) && (that.host != null)) {
1566            // Both server-based
1567            if ((c = compare(this.userInfo, that.userInfo)) != 0)
1568                return c;
1569            if ((c = compareIgnoringCase(this.host, that.host)) != 0)
1570                return c;
1571            if ((c = this.port - that.port) != 0)
1572                return c;
1573        } else {
1574            // If one or both authorities are registry-based then we simply
1575            // compare them in the usual, case-sensitive way.  If one is
1576            // registry-based and one is server-based then the strings are
1577            // guaranteed to be unequal, hence the comparison will never return
1578            // zero and the compareTo and equals methods will remain
1579            // consistent.
1580            if ((c = compare(this.authority, that.authority)) != 0) return c;
1581        }
1582
1583        if ((c = compare(this.path, that.path)) != 0) return c;
1584        if ((c = compare(this.query, that.query)) != 0) return c;
1585        return compare(this.fragment, that.fragment);
1586    }
1587
1588    /**
1589     * Returns the content of this URI as a string.
1590     *
1591     * <p> If this URI was created by invoking one of the constructors in this
1592     * class then a string equivalent to the original input string, or to the
1593     * string computed from the originally-given components, as appropriate, is
1594     * returned.  Otherwise this URI was created by normalization, resolution,
1595     * or relativization, and so a string is constructed from this URI's
1596     * components according to the rules specified in <a
1597     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
1598     * section&nbsp;5.2, step&nbsp;7. </p>
1599     *
1600     * @return  The string form of this URI
1601     */
1602    public String toString() {
1603        defineString();
1604        return string;
1605    }
1606
1607    /**
1608     * Returns the content of this URI as a US-ASCII string.
1609     *
1610     * <p> If this URI does not contain any characters in the <i>other</i>
1611     * category then an invocation of this method will return the same value as
1612     * an invocation of the {@link #toString() toString} method.  Otherwise
1613     * this method works as if by invoking that method and then <a
1614     * href="#encode">encoding</a> the result.  </p>
1615     *
1616     * @return  The string form of this URI, encoded as needed
1617     *          so that it only contains characters in the US-ASCII
1618     *          charset
1619     */
1620    public String toASCIIString() {
1621        defineString();
1622        return encode(string);
1623    }
1624
1625
1626    // -- Serialization support --
1627
1628    /**
1629     * Saves the content of this URI to the given serial stream.
1630     *
1631     * <p> The only serializable field of a URI instance is its {@code string}
1632     * field.  That field is given a value, if it does not have one already,
1633     * and then the {@link java.io.ObjectOutputStream#defaultWriteObject()}
1634     * method of the given object-output stream is invoked. </p>
1635     *
1636     * @param  os  The object-output stream to which this object
1637     *             is to be written
1638     */
1639    private void writeObject(ObjectOutputStream os)
1640        throws IOException
1641    {
1642        defineString();
1643        os.defaultWriteObject();        // Writes the string field only
1644    }
1645
1646    /**
1647     * Reconstitutes a URI from the given serial stream.
1648     *
1649     * <p> The {@link java.io.ObjectInputStream#defaultReadObject()} method is
1650     * invoked to read the value of the {@code string} field.  The result is
1651     * then parsed in the usual way.
1652     *
1653     * @param  is  The object-input stream from which this object
1654     *             is being read
1655     */
1656    private void readObject(ObjectInputStream is)
1657        throws ClassNotFoundException, IOException
1658    {
1659        port = -1;                      // Argh
1660        is.defaultReadObject();
1661        try {
1662            new Parser(string).parse(false);
1663        } catch (URISyntaxException x) {
1664            IOException y = new InvalidObjectException("Invalid URI");
1665            y.initCause(x);
1666            throw y;
1667        }
1668    }
1669
1670
1671    // -- End of public methods --
1672
1673
1674    // -- Utility methods for string-field comparison and hashing --
1675
1676    // These methods return appropriate values for null string arguments,
1677    // thereby simplifying the equals, hashCode, and compareTo methods.
1678    //
1679    // The case-ignoring methods should only be applied to strings whose
1680    // characters are all known to be US-ASCII.  Because of this restriction,
1681    // these methods are faster than the similar methods in the String class.
1682
1683    // US-ASCII only
1684    private static int toLower(char c) {
1685        if ((c >= 'A') && (c <= 'Z'))
1686            return c + ('a' - 'A');
1687        return c;
1688    }
1689
1690    // US-ASCII only
1691    private static int toUpper(char c) {
1692        if ((c >= 'a') && (c <= 'z'))
1693            return c - ('a' - 'A');
1694        return c;
1695    }
1696
1697    private static boolean equal(String s, String t) {
1698        if (s == t) return true;
1699        if ((s != null) && (t != null)) {
1700            if (s.length() != t.length())
1701                return false;
1702            if (s.indexOf('%') < 0)
1703                return s.equals(t);
1704            int n = s.length();
1705            for (int i = 0; i < n;) {
1706                char c = s.charAt(i);
1707                char d = t.charAt(i);
1708                if (c != '%') {
1709                    if (c != d)
1710                        return false;
1711                    i++;
1712                    continue;
1713                }
1714                if (d != '%')
1715                    return false;
1716                i++;
1717                if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1718                    return false;
1719                i++;
1720                if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1721                    return false;
1722                i++;
1723            }
1724            return true;
1725        }
1726        return false;
1727    }
1728
1729    // US-ASCII only
1730    private static boolean equalIgnoringCase(String s, String t) {
1731        if (s == t) return true;
1732        if ((s != null) && (t != null)) {
1733            int n = s.length();
1734            if (t.length() != n)
1735                return false;
1736            for (int i = 0; i < n; i++) {
1737                if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1738                    return false;
1739            }
1740            return true;
1741        }
1742        return false;
1743    }
1744
1745    private static int hash(int hash, String s) {
1746        if (s == null) return hash;
1747        return s.indexOf('%') < 0 ? hash * 127 + s.hashCode()
1748                                  : normalizedHash(hash, s);
1749    }
1750
1751
1752    private static int normalizedHash(int hash, String s) {
1753        int h = 0;
1754        for (int index = 0; index < s.length(); index++) {
1755            char ch = s.charAt(index);
1756            h = 31 * h + ch;
1757            if (ch == '%') {
1758                /*
1759                 * Process the next two encoded characters
1760                 */
1761                for (int i = index + 1; i < index + 3; i++)
1762                    h = 31 * h + toUpper(s.charAt(i));
1763                index += 2;
1764            }
1765        }
1766        return hash * 127 + h;
1767    }
1768
1769    // US-ASCII only
1770    private static int hashIgnoringCase(int hash, String s) {
1771        if (s == null) return hash;
1772        int h = hash;
1773        int n = s.length();
1774        for (int i = 0; i < n; i++)
1775            h = 31 * h + toLower(s.charAt(i));
1776        return h;
1777    }
1778
1779    private static int compare(String s, String t) {
1780        if (s == t) return 0;
1781        if (s != null) {
1782            if (t != null)
1783                return s.compareTo(t);
1784            else
1785                return +1;
1786        } else {
1787            return -1;
1788        }
1789    }
1790
1791    // US-ASCII only
1792    private static int compareIgnoringCase(String s, String t) {
1793        if (s == t) return 0;
1794        if (s != null) {
1795            if (t != null) {
1796                int sn = s.length();
1797                int tn = t.length();
1798                int n = sn < tn ? sn : tn;
1799                for (int i = 0; i < n; i++) {
1800                    int c = toLower(s.charAt(i)) - toLower(t.charAt(i));
1801                    if (c != 0)
1802                        return c;
1803                }
1804                return sn - tn;
1805            }
1806            return +1;
1807        } else {
1808            return -1;
1809        }
1810    }
1811
1812
1813    // -- String construction --
1814
1815    // If a scheme is given then the path, if given, must be absolute
1816    //
1817    private static void checkPath(String s, String scheme, String path)
1818        throws URISyntaxException
1819    {
1820        if (scheme != null) {
1821            if ((path != null)
1822                && ((path.length() > 0) && (path.charAt(0) != '/')))
1823                throw new URISyntaxException(s,
1824                                             "Relative path in absolute URI");
1825        }
1826    }
1827
1828    private void appendAuthority(StringBuffer sb,
1829                                 String authority,
1830                                 String userInfo,
1831                                 String host,
1832                                 int port)
1833    {
1834        if (host != null) {
1835            sb.append("//");
1836            if (userInfo != null) {
1837                sb.append(quote(userInfo, L_USERINFO, H_USERINFO));
1838                sb.append('@');
1839            }
1840            boolean needBrackets = ((host.indexOf(':') >= 0)
1841                                    && !host.startsWith("[")
1842                                    && !host.endsWith("]"));
1843            if (needBrackets) sb.append('[');
1844            sb.append(host);
1845            if (needBrackets) sb.append(']');
1846            if (port != -1) {
1847                sb.append(':');
1848                sb.append(port);
1849            }
1850        } else if (authority != null) {
1851            sb.append("//");
1852            if (authority.startsWith("[")) {
1853                // authority should (but may not) contain an embedded IPv6 address
1854                int end = authority.indexOf(']');
1855                String doquote = authority, dontquote = "";
1856                if (end != -1 && authority.indexOf(':') != -1) {
1857                    // the authority contains an IPv6 address
1858                    if (end == authority.length()) {
1859                        dontquote = authority;
1860                        doquote = "";
1861                    } else {
1862                        dontquote = authority.substring(0 , end + 1);
1863                        doquote = authority.substring(end + 1);
1864                    }
1865                }
1866                sb.append(dontquote);
1867                sb.append(quote(doquote,
1868                            L_REG_NAME | L_SERVER,
1869                            H_REG_NAME | H_SERVER));
1870            } else {
1871                sb.append(quote(authority,
1872                            L_REG_NAME | L_SERVER,
1873                            H_REG_NAME | H_SERVER));
1874            }
1875        }
1876    }
1877
1878    private void appendSchemeSpecificPart(StringBuffer sb,
1879                                          String opaquePart,
1880                                          String authority,
1881                                          String userInfo,
1882                                          String host,
1883                                          int port,
1884                                          String path,
1885                                          String query)
1886    {
1887        if (opaquePart != null) {
1888            /* check if SSP begins with an IPv6 address
1889             * because we must not quote a literal IPv6 address
1890             */
1891            if (opaquePart.startsWith("//[")) {
1892                int end =  opaquePart.indexOf(']');
1893                if (end != -1 && opaquePart.indexOf(':')!=-1) {
1894                    String doquote, dontquote;
1895                    if (end == opaquePart.length()) {
1896                        dontquote = opaquePart;
1897                        doquote = "";
1898                    } else {
1899                        dontquote = opaquePart.substring(0,end+1);
1900                        doquote = opaquePart.substring(end+1);
1901                    }
1902                    sb.append (dontquote);
1903                    sb.append(quote(doquote, L_URIC, H_URIC));
1904                }
1905            } else {
1906                sb.append(quote(opaquePart, L_URIC, H_URIC));
1907            }
1908        } else {
1909            appendAuthority(sb, authority, userInfo, host, port);
1910            if (path != null)
1911                sb.append(quote(path, L_PATH, H_PATH));
1912            if (query != null) {
1913                sb.append('?');
1914                sb.append(quote(query, L_URIC, H_URIC));
1915            }
1916        }
1917    }
1918
1919    private void appendFragment(StringBuffer sb, String fragment) {
1920        if (fragment != null) {
1921            sb.append('#');
1922            sb.append(quote(fragment, L_URIC, H_URIC));
1923        }
1924    }
1925
1926    private String toString(String scheme,
1927                            String opaquePart,
1928                            String authority,
1929                            String userInfo,
1930                            String host,
1931                            int port,
1932                            String path,
1933                            String query,
1934                            String fragment)
1935    {
1936        StringBuffer sb = new StringBuffer();
1937        if (scheme != null) {
1938            sb.append(scheme);
1939            sb.append(':');
1940        }
1941        appendSchemeSpecificPart(sb, opaquePart,
1942                                 authority, userInfo, host, port,
1943                                 path, query);
1944        appendFragment(sb, fragment);
1945        return sb.toString();
1946    }
1947
1948    private void defineSchemeSpecificPart() {
1949        if (schemeSpecificPart != null) return;
1950        StringBuffer sb = new StringBuffer();
1951        appendSchemeSpecificPart(sb, null, getAuthority(), getUserInfo(),
1952                                 host, port, getPath(), getQuery());
1953        if (sb.length() == 0) return;
1954        schemeSpecificPart = sb.toString();
1955    }
1956
1957    private void defineString() {
1958        if (string != null) return;
1959
1960        StringBuilder sb = new StringBuilder();
1961        if (scheme != null) {
1962            sb.append(scheme);
1963            sb.append(':');
1964        }
1965        if (isOpaque()) {
1966            sb.append(schemeSpecificPart);
1967        } else {
1968            if (host != null) {
1969                sb.append("//");
1970                if (userInfo != null) {
1971                    sb.append(userInfo);
1972                    sb.append('@');
1973                }
1974                boolean needBrackets = ((host.indexOf(':') >= 0)
1975                                    && !host.startsWith("[")
1976                                    && !host.endsWith("]"));
1977                if (needBrackets) sb.append('[');
1978                sb.append(host);
1979                if (needBrackets) sb.append(']');
1980                if (port != -1) {
1981                    sb.append(':');
1982                    sb.append(port);
1983                }
1984            } else if (authority != null) {
1985                sb.append("//");
1986                sb.append(authority);
1987            }
1988            if (path != null)
1989                sb.append(path);
1990            if (query != null) {
1991                sb.append('?');
1992                sb.append(query);
1993            }
1994        }
1995        if (fragment != null) {
1996            sb.append('#');
1997            sb.append(fragment);
1998        }
1999        string = sb.toString();
2000    }
2001
2002
2003    // -- Normalization, resolution, and relativization --
2004
2005    // RFC2396 5.2 (6)
2006    private static String resolvePath(String base, String child,
2007                                      boolean absolute)
2008    {
2009        int i = base.lastIndexOf('/');
2010        int cn = child.length();
2011        String path = "";
2012
2013        if (cn == 0) {
2014            // 5.2 (6a)
2015            if (i >= 0)
2016                path = base.substring(0, i + 1);
2017        } else {
2018            StringBuilder sb = new StringBuilder(base.length() + cn);
2019            // 5.2 (6a)
2020            if (i >= 0)
2021                sb.append(base, 0, i + 1);
2022            // 5.2 (6b)
2023            sb.append(child);
2024            path = sb.toString();
2025        }
2026
2027        // 5.2 (6c-f)
2028        String np = normalize(path);
2029
2030        // 5.2 (6g): If the result is absolute but the path begins with "../",
2031        // then we simply leave the path as-is
2032
2033        return np;
2034    }
2035
2036    // RFC2396 5.2
2037    private static URI resolve(URI base, URI child) {
2038        // check if child if opaque first so that NPE is thrown
2039        // if child is null.
2040        if (child.isOpaque() || base.isOpaque())
2041            return child;
2042
2043        // 5.2 (2): Reference to current document (lone fragment)
2044        if ((child.scheme == null) && (child.authority == null)
2045            && child.path.equals("") && (child.fragment != null)
2046            && (child.query == null)) {
2047            if ((base.fragment != null)
2048                && child.fragment.equals(base.fragment)) {
2049                return base;
2050            }
2051            URI ru = new URI();
2052            ru.scheme = base.scheme;
2053            ru.authority = base.authority;
2054            ru.userInfo = base.userInfo;
2055            ru.host = base.host;
2056            ru.port = base.port;
2057            ru.path = base.path;
2058            ru.fragment = child.fragment;
2059            ru.query = base.query;
2060            return ru;
2061        }
2062
2063        // 5.2 (3): Child is absolute
2064        if (child.scheme != null)
2065            return child;
2066
2067        URI ru = new URI();             // Resolved URI
2068        ru.scheme = base.scheme;
2069        ru.query = child.query;
2070        ru.fragment = child.fragment;
2071
2072        // 5.2 (4): Authority
2073        if (child.authority == null) {
2074            ru.authority = base.authority;
2075            ru.host = base.host;
2076            ru.userInfo = base.userInfo;
2077            ru.port = base.port;
2078
2079            String cp = (child.path == null) ? "" : child.path;
2080            if ((cp.length() > 0) && (cp.charAt(0) == '/')) {
2081                // 5.2 (5): Child path is absolute
2082                ru.path = child.path;
2083            } else {
2084                // 5.2 (6): Resolve relative path
2085                ru.path = resolvePath(base.path, cp, base.isAbsolute());
2086            }
2087        } else {
2088            ru.authority = child.authority;
2089            ru.host = child.host;
2090            ru.userInfo = child.userInfo;
2091            ru.host = child.host;
2092            ru.port = child.port;
2093            ru.path = child.path;
2094        }
2095
2096        // 5.2 (7): Recombine (nothing to do here)
2097        return ru;
2098    }
2099
2100    // If the given URI's path is normal then return the URI;
2101    // o.w., return a new URI containing the normalized path.
2102    //
2103    private static URI normalize(URI u) {
2104        if (u.isOpaque() || (u.path == null) || (u.path.length() == 0))
2105            return u;
2106
2107        String np = normalize(u.path);
2108        if (np == u.path)
2109            return u;
2110
2111        URI v = new URI();
2112        v.scheme = u.scheme;
2113        v.fragment = u.fragment;
2114        v.authority = u.authority;
2115        v.userInfo = u.userInfo;
2116        v.host = u.host;
2117        v.port = u.port;
2118        v.path = np;
2119        v.query = u.query;
2120        return v;
2121    }
2122
2123    // If both URIs are hierarchical, their scheme and authority components are
2124    // identical, and the base path is a prefix of the child's path, then
2125    // return a relative URI that, when resolved against the base, yields the
2126    // child; otherwise, return the child.
2127    //
2128    private static URI relativize(URI base, URI child) {
2129        // check if child if opaque first so that NPE is thrown
2130        // if child is null.
2131        if (child.isOpaque() || base.isOpaque())
2132            return child;
2133        if (!equalIgnoringCase(base.scheme, child.scheme)
2134            || !equal(base.authority, child.authority))
2135            return child;
2136
2137        String bp = normalize(base.path);
2138        String cp = normalize(child.path);
2139        if (!bp.equals(cp)) {
2140            if (!bp.endsWith("/"))
2141                bp = bp + "/";
2142            if (!cp.startsWith(bp))
2143                return child;
2144        }
2145
2146        URI v = new URI();
2147        v.path = cp.substring(bp.length());
2148        v.query = child.query;
2149        v.fragment = child.fragment;
2150        return v;
2151    }
2152
2153
2154
2155    // -- Path normalization --
2156
2157    // The following algorithm for path normalization avoids the creation of a
2158    // string object for each segment, as well as the use of a string buffer to
2159    // compute the final result, by using a single char array and editing it in
2160    // place.  The array is first split into segments, replacing each slash
2161    // with '\0' and creating a segment-index array, each element of which is
2162    // the index of the first char in the corresponding segment.  We then walk
2163    // through both arrays, removing ".", "..", and other segments as necessary
2164    // by setting their entries in the index array to -1.  Finally, the two
2165    // arrays are used to rejoin the segments and compute the final result.
2166    //
2167    // This code is based upon src/solaris/native/java/io/canonicalize_md.c
2168
2169
2170    // Check the given path to see if it might need normalization.  A path
2171    // might need normalization if it contains duplicate slashes, a "."
2172    // segment, or a ".." segment.  Return -1 if no further normalization is
2173    // possible, otherwise return the number of segments found.
2174    //
2175    // This method takes a string argument rather than a char array so that
2176    // this test can be performed without invoking path.toCharArray().
2177    //
2178    private static int needsNormalization(String path) {
2179        boolean normal = true;
2180        int ns = 0;                     // Number of segments
2181        int end = path.length() - 1;    // Index of last char in path
2182        int p = 0;                      // Index of next char in path
2183
2184        // Skip initial slashes
2185        while (p <= end) {
2186            if (path.charAt(p) != '/') break;
2187            p++;
2188        }
2189        if (p > 1) normal = false;
2190
2191        // Scan segments
2192        while (p <= end) {
2193
2194            // Looking at "." or ".." ?
2195            if ((path.charAt(p) == '.')
2196                && ((p == end)
2197                    || ((path.charAt(p + 1) == '/')
2198                        || ((path.charAt(p + 1) == '.')
2199                            && ((p + 1 == end)
2200                                || (path.charAt(p + 2) == '/')))))) {
2201                normal = false;
2202            }
2203            ns++;
2204
2205            // Find beginning of next segment
2206            while (p <= end) {
2207                if (path.charAt(p++) != '/')
2208                    continue;
2209
2210                // Skip redundant slashes
2211                while (p <= end) {
2212                    if (path.charAt(p) != '/') break;
2213                    normal = false;
2214                    p++;
2215                }
2216
2217                break;
2218            }
2219        }
2220
2221        return normal ? -1 : ns;
2222    }
2223
2224
2225    // Split the given path into segments, replacing slashes with nulls and
2226    // filling in the given segment-index array.
2227    //
2228    // Preconditions:
2229    //   segs.length == Number of segments in path
2230    //
2231    // Postconditions:
2232    //   All slashes in path replaced by '\0'
2233    //   segs[i] == Index of first char in segment i (0 <= i < segs.length)
2234    //
2235    private static void split(char[] path, int[] segs) {
2236        int end = path.length - 1;      // Index of last char in path
2237        int p = 0;                      // Index of next char in path
2238        int i = 0;                      // Index of current segment
2239
2240        // Skip initial slashes
2241        while (p <= end) {
2242            if (path[p] != '/') break;
2243            path[p] = '\0';
2244            p++;
2245        }
2246
2247        while (p <= end) {
2248
2249            // Note start of segment
2250            segs[i++] = p++;
2251
2252            // Find beginning of next segment
2253            while (p <= end) {
2254                if (path[p++] != '/')
2255                    continue;
2256                path[p - 1] = '\0';
2257
2258                // Skip redundant slashes
2259                while (p <= end) {
2260                    if (path[p] != '/') break;
2261                    path[p++] = '\0';
2262                }
2263                break;
2264            }
2265        }
2266
2267        if (i != segs.length)
2268            throw new InternalError();  // ASSERT
2269    }
2270
2271
2272    // Join the segments in the given path according to the given segment-index
2273    // array, ignoring those segments whose index entries have been set to -1,
2274    // and inserting slashes as needed.  Return the length of the resulting
2275    // path.
2276    //
2277    // Preconditions:
2278    //   segs[i] == -1 implies segment i is to be ignored
2279    //   path computed by split, as above, with '\0' having replaced '/'
2280    //
2281    // Postconditions:
2282    //   path[0] .. path[return value] == Resulting path
2283    //
2284    private static int join(char[] path, int[] segs) {
2285        int ns = segs.length;           // Number of segments
2286        int end = path.length - 1;      // Index of last char in path
2287        int p = 0;                      // Index of next path char to write
2288
2289        if (path[p] == '\0') {
2290            // Restore initial slash for absolute paths
2291            path[p++] = '/';
2292        }
2293
2294        for (int i = 0; i < ns; i++) {
2295            int q = segs[i];            // Current segment
2296            if (q == -1)
2297                // Ignore this segment
2298                continue;
2299
2300            if (p == q) {
2301                // We're already at this segment, so just skip to its end
2302                while ((p <= end) && (path[p] != '\0'))
2303                    p++;
2304                if (p <= end) {
2305                    // Preserve trailing slash
2306                    path[p++] = '/';
2307                }
2308            } else if (p < q) {
2309                // Copy q down to p
2310                while ((q <= end) && (path[q] != '\0'))
2311                    path[p++] = path[q++];
2312                if (q <= end) {
2313                    // Preserve trailing slash
2314                    path[p++] = '/';
2315                }
2316            } else
2317                throw new InternalError(); // ASSERT false
2318        }
2319
2320        return p;
2321    }
2322
2323
2324    // Remove "." segments from the given path, and remove segment pairs
2325    // consisting of a non-".." segment followed by a ".." segment.
2326    //
2327    private static void removeDots(char[] path, int[] segs) {
2328        int ns = segs.length;
2329        int end = path.length - 1;
2330
2331        for (int i = 0; i < ns; i++) {
2332            int dots = 0;               // Number of dots found (0, 1, or 2)
2333
2334            // Find next occurrence of "." or ".."
2335            do {
2336                int p = segs[i];
2337                if (path[p] == '.') {
2338                    if (p == end) {
2339                        dots = 1;
2340                        break;
2341                    } else if (path[p + 1] == '\0') {
2342                        dots = 1;
2343                        break;
2344                    } else if ((path[p + 1] == '.')
2345                               && ((p + 1 == end)
2346                                   || (path[p + 2] == '\0'))) {
2347                        dots = 2;
2348                        break;
2349                    }
2350                }
2351                i++;
2352            } while (i < ns);
2353            if ((i > ns) || (dots == 0))
2354                break;
2355
2356            if (dots == 1) {
2357                // Remove this occurrence of "."
2358                segs[i] = -1;
2359            } else {
2360                // If there is a preceding non-".." segment, remove both that
2361                // segment and this occurrence of ".."; otherwise, leave this
2362                // ".." segment as-is.
2363                int j;
2364                for (j = i - 1; j >= 0; j--) {
2365                    if (segs[j] != -1) break;
2366                }
2367                if (j >= 0) {
2368                    int q = segs[j];
2369                    if (!((path[q] == '.')
2370                          && (path[q + 1] == '.')
2371                          && (path[q + 2] == '\0'))) {
2372                        segs[i] = -1;
2373                        segs[j] = -1;
2374                    }
2375                }
2376            }
2377        }
2378    }
2379
2380
2381    // DEVIATION: If the normalized path is relative, and if the first
2382    // segment could be parsed as a scheme name, then prepend a "." segment
2383    //
2384    private static void maybeAddLeadingDot(char[] path, int[] segs) {
2385
2386        if (path[0] == '\0')
2387            // The path is absolute
2388            return;
2389
2390        int ns = segs.length;
2391        int f = 0;                      // Index of first segment
2392        while (f < ns) {
2393            if (segs[f] >= 0)
2394                break;
2395            f++;
2396        }
2397        if ((f >= ns) || (f == 0))
2398            // The path is empty, or else the original first segment survived,
2399            // in which case we already know that no leading "." is needed
2400            return;
2401
2402        int p = segs[f];
2403        while ((p < path.length) && (path[p] != ':') && (path[p] != '\0')) p++;
2404        if (p >= path.length || path[p] == '\0')
2405            // No colon in first segment, so no "." needed
2406            return;
2407
2408        // At this point we know that the first segment is unused,
2409        // hence we can insert a "." segment at that position
2410        path[0] = '.';
2411        path[1] = '\0';
2412        segs[0] = 0;
2413    }
2414
2415
2416    // Normalize the given path string.  A normal path string has no empty
2417    // segments (i.e., occurrences of "//"), no segments equal to ".", and no
2418    // segments equal to ".." that are preceded by a segment not equal to "..".
2419    // In contrast to Unix-style pathname normalization, for URI paths we
2420    // always retain trailing slashes.
2421    //
2422    private static String normalize(String ps) {
2423
2424        // Does this path need normalization?
2425        int ns = needsNormalization(ps);        // Number of segments
2426        if (ns < 0)
2427            // Nope -- just return it
2428            return ps;
2429
2430        char[] path = ps.toCharArray();         // Path in char-array form
2431
2432        // Split path into segments
2433        int[] segs = new int[ns];               // Segment-index array
2434        split(path, segs);
2435
2436        // Remove dots
2437        removeDots(path, segs);
2438
2439        // Prevent scheme-name confusion
2440        maybeAddLeadingDot(path, segs);
2441
2442        // Join the remaining segments and return the result
2443        String s = new String(path, 0, join(path, segs));
2444        if (s.equals(ps)) {
2445            // string was already normalized
2446            return ps;
2447        }
2448        return s;
2449    }
2450
2451
2452
2453    // -- Character classes for parsing --
2454
2455    // RFC2396 precisely specifies which characters in the US-ASCII charset are
2456    // permissible in the various components of a URI reference.  We here
2457    // define a set of mask pairs to aid in enforcing these restrictions.  Each
2458    // mask pair consists of two longs, a low mask and a high mask.  Taken
2459    // together they represent a 128-bit mask, where bit i is set iff the
2460    // character with value i is permitted.
2461    //
2462    // This approach is more efficient than sequentially searching arrays of
2463    // permitted characters.  It could be made still more efficient by
2464    // precompiling the mask information so that a character's presence in a
2465    // given mask could be determined by a single table lookup.
2466
2467    // Compute the low-order mask for the characters in the given string
2468    private static long lowMask(String chars) {
2469        int n = chars.length();
2470        long m = 0;
2471        for (int i = 0; i < n; i++) {
2472            char c = chars.charAt(i);
2473            if (c < 64)
2474                m |= (1L << c);
2475        }
2476        return m;
2477    }
2478
2479    // Compute the high-order mask for the characters in the given string
2480    private static long highMask(String chars) {
2481        int n = chars.length();
2482        long m = 0;
2483        for (int i = 0; i < n; i++) {
2484            char c = chars.charAt(i);
2485            if ((c >= 64) && (c < 128))
2486                m |= (1L << (c - 64));
2487        }
2488        return m;
2489    }
2490
2491    // Compute a low-order mask for the characters
2492    // between first and last, inclusive
2493    private static long lowMask(char first, char last) {
2494        long m = 0;
2495        int f = Math.max(Math.min(first, 63), 0);
2496        int l = Math.max(Math.min(last, 63), 0);
2497        for (int i = f; i <= l; i++)
2498            m |= 1L << i;
2499        return m;
2500    }
2501
2502    // Compute a high-order mask for the characters
2503    // between first and last, inclusive
2504    private static long highMask(char first, char last) {
2505        long m = 0;
2506        int f = Math.max(Math.min(first, 127), 64) - 64;
2507        int l = Math.max(Math.min(last, 127), 64) - 64;
2508        for (int i = f; i <= l; i++)
2509            m |= 1L << i;
2510        return m;
2511    }
2512
2513    // Tell whether the given character is permitted by the given mask pair
2514    private static boolean match(char c, long lowMask, long highMask) {
2515        if (c == 0) // 0 doesn't have a slot in the mask. So, it never matches.
2516            return false;
2517        if (c < 64)
2518            return ((1L << c) & lowMask) != 0;
2519        if (c < 128)
2520            return ((1L << (c - 64)) & highMask) != 0;
2521        return false;
2522    }
2523
2524    // Character-class masks, in reverse order from RFC2396 because
2525    // initializers for static fields cannot make forward references.
2526
2527    // digit    = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
2528    //            "8" | "9"
2529    private static final long L_DIGIT = lowMask('0', '9');
2530    private static final long H_DIGIT = 0L;
2531
2532    // upalpha  = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
2533    //            "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
2534    //            "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
2535    private static final long L_UPALPHA = 0L;
2536    private static final long H_UPALPHA = highMask('A', 'Z');
2537
2538    // lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
2539    //            "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
2540    //            "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
2541    private static final long L_LOWALPHA = 0L;
2542    private static final long H_LOWALPHA = highMask('a', 'z');
2543
2544    // alpha         = lowalpha | upalpha
2545    private static final long L_ALPHA = L_LOWALPHA | L_UPALPHA;
2546    private static final long H_ALPHA = H_LOWALPHA | H_UPALPHA;
2547
2548    // alphanum      = alpha | digit
2549    private static final long L_ALPHANUM = L_DIGIT | L_ALPHA;
2550    private static final long H_ALPHANUM = H_DIGIT | H_ALPHA;
2551
2552    // hex           = digit | "A" | "B" | "C" | "D" | "E" | "F" |
2553    //                         "a" | "b" | "c" | "d" | "e" | "f"
2554    private static final long L_HEX = L_DIGIT;
2555    private static final long H_HEX = highMask('A', 'F') | highMask('a', 'f');
2556
2557    // mark          = "-" | "_" | "." | "!" | "~" | "*" | "'" |
2558    //                 "(" | ")"
2559    private static final long L_MARK = lowMask("-_.!~*'()");
2560    private static final long H_MARK = highMask("-_.!~*'()");
2561
2562    // unreserved    = alphanum | mark
2563    private static final long L_UNRESERVED = L_ALPHANUM | L_MARK;
2564    private static final long H_UNRESERVED = H_ALPHANUM | H_MARK;
2565
2566    // reserved      = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
2567    //                 "$" | "," | "[" | "]"
2568    // Added per RFC2732: "[", "]"
2569    private static final long L_RESERVED = lowMask(";/?:@&=+$,[]");
2570    private static final long H_RESERVED = highMask(";/?:@&=+$,[]");
2571
2572    // The zero'th bit is used to indicate that escape pairs and non-US-ASCII
2573    // characters are allowed; this is handled by the scanEscape method below.
2574    private static final long L_ESCAPED = 1L;
2575    private static final long H_ESCAPED = 0L;
2576
2577    // uric          = reserved | unreserved | escaped
2578    private static final long L_URIC = L_RESERVED | L_UNRESERVED | L_ESCAPED;
2579    private static final long H_URIC = H_RESERVED | H_UNRESERVED | H_ESCAPED;
2580
2581    // pchar         = unreserved | escaped |
2582    //                 ":" | "@" | "&" | "=" | "+" | "$" | ","
2583    private static final long L_PCHAR
2584        = L_UNRESERVED | L_ESCAPED | lowMask(":@&=+$,");
2585    private static final long H_PCHAR
2586        = H_UNRESERVED | H_ESCAPED | highMask(":@&=+$,");
2587
2588    // All valid path characters
2589    private static final long L_PATH = L_PCHAR | lowMask(";/");
2590    private static final long H_PATH = H_PCHAR | highMask(";/");
2591
2592    // Dash, for use in domainlabel and toplabel
2593    private static final long L_DASH = lowMask("-");
2594    private static final long H_DASH = highMask("-");
2595
2596    // Dot, for use in hostnames
2597    private static final long L_DOT = lowMask(".");
2598    private static final long H_DOT = highMask(".");
2599
2600    // userinfo      = *( unreserved | escaped |
2601    //                    ";" | ":" | "&" | "=" | "+" | "$" | "," )
2602    private static final long L_USERINFO
2603        = L_UNRESERVED | L_ESCAPED | lowMask(";:&=+$,");
2604    private static final long H_USERINFO
2605        = H_UNRESERVED | H_ESCAPED | highMask(";:&=+$,");
2606
2607    // reg_name      = 1*( unreserved | escaped | "$" | "," |
2608    //                     ";" | ":" | "@" | "&" | "=" | "+" )
2609    private static final long L_REG_NAME
2610        = L_UNRESERVED | L_ESCAPED | lowMask("$,;:@&=+");
2611    private static final long H_REG_NAME
2612        = H_UNRESERVED | H_ESCAPED | highMask("$,;:@&=+");
2613
2614    // All valid characters for server-based authorities
2615    private static final long L_SERVER
2616        = L_USERINFO | L_ALPHANUM | L_DASH | lowMask(".:@[]");
2617    private static final long H_SERVER
2618        = H_USERINFO | H_ALPHANUM | H_DASH | highMask(".:@[]");
2619
2620    // Special case of server authority that represents an IPv6 address
2621    // In this case, a % does not signify an escape sequence
2622    private static final long L_SERVER_PERCENT
2623        = L_SERVER | lowMask("%");
2624    private static final long H_SERVER_PERCENT
2625        = H_SERVER | highMask("%");
2626    private static final long L_LEFT_BRACKET = lowMask("[");
2627    private static final long H_LEFT_BRACKET = highMask("[");
2628
2629    // scheme        = alpha *( alpha | digit | "+" | "-" | "." )
2630    private static final long L_SCHEME = L_ALPHA | L_DIGIT | lowMask("+-.");
2631    private static final long H_SCHEME = H_ALPHA | H_DIGIT | highMask("+-.");
2632
2633    // uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" |
2634    //                 "&" | "=" | "+" | "$" | ","
2635    private static final long L_URIC_NO_SLASH
2636        = L_UNRESERVED | L_ESCAPED | lowMask(";?:@&=+$,");
2637    private static final long H_URIC_NO_SLASH
2638        = H_UNRESERVED | H_ESCAPED | highMask(";?:@&=+$,");
2639
2640    // scope_id = alpha | digit | "_" | "."
2641    private static final long L_SCOPE_ID
2642        = L_ALPHANUM | lowMask("_.");
2643    private static final long H_SCOPE_ID
2644        = H_ALPHANUM | highMask("_.");
2645
2646    // -- Escaping and encoding --
2647
2648    private static final char[] hexDigits = {
2649        '0', '1', '2', '3', '4', '5', '6', '7',
2650        '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
2651    };
2652
2653    private static void appendEscape(StringBuffer sb, byte b) {
2654        sb.append('%');
2655        sb.append(hexDigits[(b >> 4) & 0x0f]);
2656        sb.append(hexDigits[(b >> 0) & 0x0f]);
2657    }
2658
2659    private static void appendEncoded(StringBuffer sb, char c) {
2660        ByteBuffer bb = null;
2661        try {
2662            bb = ThreadLocalCoders.encoderFor("UTF-8")
2663                .encode(CharBuffer.wrap("" + c));
2664        } catch (CharacterCodingException x) {
2665            assert false;
2666        }
2667        while (bb.hasRemaining()) {
2668            int b = bb.get() & 0xff;
2669            if (b >= 0x80)
2670                appendEscape(sb, (byte)b);
2671            else
2672                sb.append((char)b);
2673        }
2674    }
2675
2676    // Quote any characters in s that are not permitted
2677    // by the given mask pair
2678    //
2679    private static String quote(String s, long lowMask, long highMask) {
2680        int n = s.length();
2681        StringBuffer sb = null;
2682        boolean allowNonASCII = ((lowMask & L_ESCAPED) != 0);
2683        for (int i = 0; i < s.length(); i++) {
2684            char c = s.charAt(i);
2685            if (c < '\u0080') {
2686                if (!match(c, lowMask, highMask)) {
2687                    if (sb == null) {
2688                        sb = new StringBuffer();
2689                        sb.append(s, 0, i);
2690                    }
2691                    appendEscape(sb, (byte)c);
2692                } else {
2693                    if (sb != null)
2694                        sb.append(c);
2695                }
2696            } else if (allowNonASCII
2697                       && (Character.isSpaceChar(c)
2698                           || Character.isISOControl(c))) {
2699                if (sb == null) {
2700                    sb = new StringBuffer();
2701                    sb.append(s, 0, i);
2702                }
2703                appendEncoded(sb, c);
2704            } else {
2705                if (sb != null)
2706                    sb.append(c);
2707            }
2708        }
2709        return (sb == null) ? s : sb.toString();
2710    }
2711
2712    // Encodes all characters >= \u0080 into escaped, normalized UTF-8 octets,
2713    // assuming that s is otherwise legal
2714    //
2715    private static String encode(String s) {
2716        int n = s.length();
2717        if (n == 0)
2718            return s;
2719
2720        // First check whether we actually need to encode
2721        for (int i = 0;;) {
2722            if (s.charAt(i) >= '\u0080')
2723                break;
2724            if (++i >= n)
2725                return s;
2726        }
2727
2728        String ns = Normalizer.normalize(s, Normalizer.Form.NFC);
2729        ByteBuffer bb = null;
2730        try {
2731            bb = ThreadLocalCoders.encoderFor("UTF-8")
2732                .encode(CharBuffer.wrap(ns));
2733        } catch (CharacterCodingException x) {
2734            assert false;
2735        }
2736
2737        StringBuffer sb = new StringBuffer();
2738        while (bb.hasRemaining()) {
2739            int b = bb.get() & 0xff;
2740            if (b >= 0x80)
2741                appendEscape(sb, (byte)b);
2742            else
2743                sb.append((char)b);
2744        }
2745        return sb.toString();
2746    }
2747
2748    private static int decode(char c) {
2749        if ((c >= '0') && (c <= '9'))
2750            return c - '0';
2751        if ((c >= 'a') && (c <= 'f'))
2752            return c - 'a' + 10;
2753        if ((c >= 'A') && (c <= 'F'))
2754            return c - 'A' + 10;
2755        assert false;
2756        return -1;
2757    }
2758
2759    private static byte decode(char c1, char c2) {
2760        return (byte)(  ((decode(c1) & 0xf) << 4)
2761                      | ((decode(c2) & 0xf) << 0));
2762    }
2763
2764    // Evaluates all escapes in s, applying UTF-8 decoding if needed.  Assumes
2765    // that escapes are well-formed syntactically, i.e., of the form %XX.  If a
2766    // sequence of escaped octets is not valid UTF-8 then the erroneous octets
2767    // are replaced with '\uFFFD'.
2768    // Exception: any "%" found between "[]" is left alone. It is an IPv6 literal
2769    //            with a scope_id
2770    //
2771    private static String decode(String s) {
2772        return decode(s, true);
2773    }
2774
2775    // This method was introduced as a generalization of URI.decode method
2776    // to provide a fix for JDK-8037396
2777    private static String decode(String s, boolean ignorePercentInBrackets) {
2778        if (s == null)
2779            return s;
2780        int n = s.length();
2781        if (n == 0)
2782            return s;
2783        if (s.indexOf('%') < 0)
2784            return s;
2785
2786        StringBuilder sb = new StringBuilder(n);
2787        ByteBuffer bb = ByteBuffer.allocate(n);
2788        CharBuffer cb = CharBuffer.allocate(n);
2789        CharsetDecoder dec = ThreadLocalCoders.decoderFor("UTF-8")
2790                .onMalformedInput(CodingErrorAction.REPLACE)
2791                .onUnmappableCharacter(CodingErrorAction.REPLACE);
2792
2793        // This is not horribly efficient, but it will do for now
2794        char c = s.charAt(0);
2795        boolean betweenBrackets = false;
2796
2797        for (int i = 0; i < n;) {
2798            assert c == s.charAt(i);    // Loop invariant
2799            if (c == '[') {
2800                betweenBrackets = true;
2801            } else if (betweenBrackets && c == ']') {
2802                betweenBrackets = false;
2803            }
2804            if (c != '%' || (betweenBrackets && ignorePercentInBrackets)) {
2805                sb.append(c);
2806                if (++i >= n)
2807                    break;
2808                c = s.charAt(i);
2809                continue;
2810            }
2811            bb.clear();
2812            int ui = i;
2813            for (;;) {
2814                assert (n - i >= 2);
2815                bb.put(decode(s.charAt(++i), s.charAt(++i)));
2816                if (++i >= n)
2817                    break;
2818                c = s.charAt(i);
2819                if (c != '%')
2820                    break;
2821            }
2822            bb.flip();
2823            cb.clear();
2824            dec.reset();
2825            CoderResult cr = dec.decode(bb, cb, true);
2826            assert cr.isUnderflow();
2827            cr = dec.flush(cb);
2828            assert cr.isUnderflow();
2829            sb.append(cb.flip().toString());
2830        }
2831
2832        return sb.toString();
2833    }
2834
2835
2836    // -- Parsing --
2837
2838    // For convenience we wrap the input URI string in a new instance of the
2839    // following internal class.  This saves always having to pass the input
2840    // string as an argument to each internal scan/parse method.
2841
2842    private class Parser {
2843
2844        private String input;           // URI input string
2845        private boolean requireServerAuthority = false;
2846
2847        Parser(String s) {
2848            input = s;
2849            string = s;
2850        }
2851
2852        // -- Methods for throwing URISyntaxException in various ways --
2853
2854        private void fail(String reason) throws URISyntaxException {
2855            throw new URISyntaxException(input, reason);
2856        }
2857
2858        private void fail(String reason, int p) throws URISyntaxException {
2859            throw new URISyntaxException(input, reason, p);
2860        }
2861
2862        private void failExpecting(String expected, int p)
2863            throws URISyntaxException
2864        {
2865            fail("Expected " + expected, p);
2866        }
2867
2868        private void failExpecting(String expected, String prior, int p)
2869            throws URISyntaxException
2870        {
2871            fail("Expected " + expected + " following " + prior, p);
2872        }
2873
2874
2875        // -- Simple access to the input string --
2876
2877        // Return a substring of the input string
2878        //
2879        private String substring(int start, int end) {
2880            return input.substring(start, end);
2881        }
2882
2883        // Return the char at position p,
2884        // assuming that p < input.length()
2885        //
2886        private char charAt(int p) {
2887            return input.charAt(p);
2888        }
2889
2890        // Tells whether start < end and, if so, whether charAt(start) == c
2891        //
2892        private boolean at(int start, int end, char c) {
2893            return (start < end) && (charAt(start) == c);
2894        }
2895
2896        // Tells whether start + s.length() < end and, if so,
2897        // whether the chars at the start position match s exactly
2898        //
2899        private boolean at(int start, int end, String s) {
2900            int p = start;
2901            int sn = s.length();
2902            if (sn > end - p)
2903                return false;
2904            int i = 0;
2905            while (i < sn) {
2906                if (charAt(p++) != s.charAt(i)) {
2907                    break;
2908                }
2909                i++;
2910            }
2911            return (i == sn);
2912        }
2913
2914
2915        // -- Scanning --
2916
2917        // The various scan and parse methods that follow use a uniform
2918        // convention of taking the current start position and end index as
2919        // their first two arguments.  The start is inclusive while the end is
2920        // exclusive, just as in the String class, i.e., a start/end pair
2921        // denotes the left-open interval [start, end) of the input string.
2922        //
2923        // These methods never proceed past the end position.  They may return
2924        // -1 to indicate outright failure, but more often they simply return
2925        // the position of the first char after the last char scanned.  Thus
2926        // a typical idiom is
2927        //
2928        //     int p = start;
2929        //     int q = scan(p, end, ...);
2930        //     if (q > p)
2931        //         // We scanned something
2932        //         ...;
2933        //     else if (q == p)
2934        //         // We scanned nothing
2935        //         ...;
2936        //     else if (q == -1)
2937        //         // Something went wrong
2938        //         ...;
2939
2940
2941        // Scan a specific char: If the char at the given start position is
2942        // equal to c, return the index of the next char; otherwise, return the
2943        // start position.
2944        //
2945        private int scan(int start, int end, char c) {
2946            if ((start < end) && (charAt(start) == c))
2947                return start + 1;
2948            return start;
2949        }
2950
2951        // Scan forward from the given start position.  Stop at the first char
2952        // in the err string (in which case -1 is returned), or the first char
2953        // in the stop string (in which case the index of the preceding char is
2954        // returned), or the end of the input string (in which case the length
2955        // of the input string is returned).  May return the start position if
2956        // nothing matches.
2957        //
2958        private int scan(int start, int end, String err, String stop) {
2959            int p = start;
2960            while (p < end) {
2961                char c = charAt(p);
2962                if (err.indexOf(c) >= 0)
2963                    return -1;
2964                if (stop.indexOf(c) >= 0)
2965                    break;
2966                p++;
2967            }
2968            return p;
2969        }
2970
2971        // Scan a potential escape sequence, starting at the given position,
2972        // with the given first char (i.e., charAt(start) == c).
2973        //
2974        // This method assumes that if escapes are allowed then visible
2975        // non-US-ASCII chars are also allowed.
2976        //
2977        private int scanEscape(int start, int n, char first)
2978            throws URISyntaxException
2979        {
2980            int p = start;
2981            char c = first;
2982            if (c == '%') {
2983                // Process escape pair
2984                if ((p + 3 <= n)
2985                    && match(charAt(p + 1), L_HEX, H_HEX)
2986                    && match(charAt(p + 2), L_HEX, H_HEX)) {
2987                    return p + 3;
2988                }
2989                fail("Malformed escape pair", p);
2990            } else if ((c > 128)
2991                       && !Character.isSpaceChar(c)
2992                       && !Character.isISOControl(c)) {
2993                // Allow unescaped but visible non-US-ASCII chars
2994                return p + 1;
2995            }
2996            return p;
2997        }
2998
2999        // Scan chars that match the given mask pair
3000        //
3001        private int scan(int start, int n, long lowMask, long highMask)
3002            throws URISyntaxException
3003        {
3004            int p = start;
3005            while (p < n) {
3006                char c = charAt(p);
3007                if (match(c, lowMask, highMask)) {
3008                    p++;
3009                    continue;
3010                }
3011                if ((lowMask & L_ESCAPED) != 0) {
3012                    int q = scanEscape(p, n, c);
3013                    if (q > p) {
3014                        p = q;
3015                        continue;
3016                    }
3017                }
3018                break;
3019            }
3020            return p;
3021        }
3022
3023        // Check that each of the chars in [start, end) matches the given mask
3024        //
3025        private void checkChars(int start, int end,
3026                                long lowMask, long highMask,
3027                                String what)
3028            throws URISyntaxException
3029        {
3030            int p = scan(start, end, lowMask, highMask);
3031            if (p < end)
3032                fail("Illegal character in " + what, p);
3033        }
3034
3035        // Check that the char at position p matches the given mask
3036        //
3037        private void checkChar(int p,
3038                               long lowMask, long highMask,
3039                               String what)
3040            throws URISyntaxException
3041        {
3042            checkChars(p, p + 1, lowMask, highMask, what);
3043        }
3044
3045
3046        // -- Parsing --
3047
3048        // [<scheme>:]<scheme-specific-part>[#<fragment>]
3049        //
3050        void parse(boolean rsa) throws URISyntaxException {
3051            requireServerAuthority = rsa;
3052            int ssp;                    // Start of scheme-specific part
3053            int n = input.length();
3054            int p = scan(0, n, "/?#", ":");
3055            if ((p >= 0) && at(p, n, ':')) {
3056                if (p == 0)
3057                    failExpecting("scheme name", 0);
3058                checkChar(0, L_ALPHA, H_ALPHA, "scheme name");
3059                checkChars(1, p, L_SCHEME, H_SCHEME, "scheme name");
3060                scheme = substring(0, p);
3061                p++;                    // Skip ':'
3062                ssp = p;
3063                if (at(p, n, '/')) {
3064                    p = parseHierarchical(p, n);
3065                } else {
3066                    int q = scan(p, n, "", "#");
3067                    if (q <= p)
3068                        failExpecting("scheme-specific part", p);
3069                    checkChars(p, q, L_URIC, H_URIC, "opaque part");
3070                    p = q;
3071                }
3072            } else {
3073                ssp = 0;
3074                p = parseHierarchical(0, n);
3075            }
3076            schemeSpecificPart = substring(ssp, p);
3077            if (at(p, n, '#')) {
3078                checkChars(p + 1, n, L_URIC, H_URIC, "fragment");
3079                fragment = substring(p + 1, n);
3080                p = n;
3081            }
3082            if (p < n)
3083                fail("end of URI", p);
3084        }
3085
3086        // [//authority]<path>[?<query>]
3087        //
3088        // DEVIATION from RFC2396: We allow an empty authority component as
3089        // long as it's followed by a non-empty path, query component, or
3090        // fragment component.  This is so that URIs such as "file:///foo/bar"
3091        // will parse.  This seems to be the intent of RFC2396, though the
3092        // grammar does not permit it.  If the authority is empty then the
3093        // userInfo, host, and port components are undefined.
3094        //
3095        // DEVIATION from RFC2396: We allow empty relative paths.  This seems
3096        // to be the intent of RFC2396, but the grammar does not permit it.
3097        // The primary consequence of this deviation is that "#f" parses as a
3098        // relative URI with an empty path.
3099        //
3100        private int parseHierarchical(int start, int n)
3101            throws URISyntaxException
3102        {
3103            int p = start;
3104            if (at(p, n, '/') && at(p + 1, n, '/')) {
3105                p += 2;
3106                int q = scan(p, n, "", "/?#");
3107                if (q > p) {
3108                    p = parseAuthority(p, q);
3109                } else if (q < n) {
3110                    // DEVIATION: Allow empty authority prior to non-empty
3111                    // path, query component or fragment identifier
3112                } else
3113                    failExpecting("authority", p);
3114            }
3115            int q = scan(p, n, "", "?#"); // DEVIATION: May be empty
3116            checkChars(p, q, L_PATH, H_PATH, "path");
3117            path = substring(p, q);
3118            p = q;
3119            if (at(p, n, '?')) {
3120                p++;
3121                q = scan(p, n, "", "#");
3122                checkChars(p, q, L_URIC, H_URIC, "query");
3123                query = substring(p, q);
3124                p = q;
3125            }
3126            return p;
3127        }
3128
3129        // authority     = server | reg_name
3130        //
3131        // Ambiguity: An authority that is a registry name rather than a server
3132        // might have a prefix that parses as a server.  We use the fact that
3133        // the authority component is always followed by '/' or the end of the
3134        // input string to resolve this: If the complete authority did not
3135        // parse as a server then we try to parse it as a registry name.
3136        //
3137        private int parseAuthority(int start, int n)
3138            throws URISyntaxException
3139        {
3140            int p = start;
3141            int q = p;
3142            URISyntaxException ex = null;
3143
3144            boolean serverChars;
3145            boolean regChars;
3146
3147            if (scan(p, n, "", "]") > p) {
3148                // contains a literal IPv6 address, therefore % is allowed
3149                serverChars = (scan(p, n, L_SERVER_PERCENT, H_SERVER_PERCENT) == n);
3150            } else {
3151                serverChars = (scan(p, n, L_SERVER, H_SERVER) == n);
3152            }
3153            regChars = (scan(p, n, L_REG_NAME, H_REG_NAME) == n);
3154
3155            if (regChars && !serverChars) {
3156                // Must be a registry-based authority
3157                authority = substring(p, n);
3158                return n;
3159            }
3160
3161            if (serverChars) {
3162                // Might be (probably is) a server-based authority, so attempt
3163                // to parse it as such.  If the attempt fails, try to treat it
3164                // as a registry-based authority.
3165                try {
3166                    q = parseServer(p, n);
3167                    if (q < n)
3168                        failExpecting("end of authority", q);
3169                    authority = substring(p, n);
3170                } catch (URISyntaxException x) {
3171                    // Undo results of failed parse
3172                    userInfo = null;
3173                    host = null;
3174                    port = -1;
3175                    if (requireServerAuthority) {
3176                        // If we're insisting upon a server-based authority,
3177                        // then just re-throw the exception
3178                        throw x;
3179                    } else {
3180                        // Save the exception in case it doesn't parse as a
3181                        // registry either
3182                        ex = x;
3183                        q = p;
3184                    }
3185                }
3186            }
3187
3188            if (q < n) {
3189                if (regChars) {
3190                    // Registry-based authority
3191                    authority = substring(p, n);
3192                } else if (ex != null) {
3193                    // Re-throw exception; it was probably due to
3194                    // a malformed IPv6 address
3195                    throw ex;
3196                } else {
3197                    fail("Illegal character in authority", q);
3198                }
3199            }
3200
3201            return n;
3202        }
3203
3204
3205        // [<userinfo>@]<host>[:<port>]
3206        //
3207        private int parseServer(int start, int n)
3208            throws URISyntaxException
3209        {
3210            int p = start;
3211            int q;
3212
3213            // userinfo
3214            q = scan(p, n, "/?#", "@");
3215            if ((q >= p) && at(q, n, '@')) {
3216                checkChars(p, q, L_USERINFO, H_USERINFO, "user info");
3217                userInfo = substring(p, q);
3218                p = q + 1;              // Skip '@'
3219            }
3220
3221            // hostname, IPv4 address, or IPv6 address
3222            if (at(p, n, '[')) {
3223                // DEVIATION from RFC2396: Support IPv6 addresses, per RFC2732
3224                p++;
3225                q = scan(p, n, "/?#", "]");
3226                if ((q > p) && at(q, n, ']')) {
3227                    // look for a "%" scope id
3228                    int r = scan (p, q, "", "%");
3229                    if (r > p) {
3230                        parseIPv6Reference(p, r);
3231                        if (r+1 == q) {
3232                            fail ("scope id expected");
3233                        }
3234                        checkChars (r+1, q, L_SCOPE_ID, H_SCOPE_ID,
3235                                                "scope id");
3236                    } else {
3237                        parseIPv6Reference(p, q);
3238                    }
3239                    host = substring(p-1, q+1);
3240                    p = q + 1;
3241                } else {
3242                    failExpecting("closing bracket for IPv6 address", q);
3243                }
3244            } else {
3245                q = parseIPv4Address(p, n);
3246                if (q <= p)
3247                    q = parseHostname(p, n);
3248                p = q;
3249            }
3250
3251            // port
3252            if (at(p, n, ':')) {
3253                p++;
3254                q = scan(p, n, "", "/");
3255                if (q > p) {
3256                    checkChars(p, q, L_DIGIT, H_DIGIT, "port number");
3257                    try {
3258                        port = Integer.parseInt(input, p, q, 10);
3259                    } catch (NumberFormatException x) {
3260                        fail("Malformed port number", p);
3261                    }
3262                    p = q;
3263                }
3264            }
3265            if (p < n)
3266                failExpecting("port number", p);
3267
3268            return p;
3269        }
3270
3271        // Scan a string of decimal digits whose value fits in a byte
3272        //
3273        private int scanByte(int start, int n)
3274            throws URISyntaxException
3275        {
3276            int p = start;
3277            int q = scan(p, n, L_DIGIT, H_DIGIT);
3278            if (q <= p) return q;
3279            if (Integer.parseInt(input, p, q, 10) > 255) return p;
3280            return q;
3281        }
3282
3283        // Scan an IPv4 address.
3284        //
3285        // If the strict argument is true then we require that the given
3286        // interval contain nothing besides an IPv4 address; if it is false
3287        // then we only require that it start with an IPv4 address.
3288        //
3289        // If the interval does not contain or start with (depending upon the
3290        // strict argument) a legal IPv4 address characters then we return -1
3291        // immediately; otherwise we insist that these characters parse as a
3292        // legal IPv4 address and throw an exception on failure.
3293        //
3294        // We assume that any string of decimal digits and dots must be an IPv4
3295        // address.  It won't parse as a hostname anyway, so making that
3296        // assumption here allows more meaningful exceptions to be thrown.
3297        //
3298        private int scanIPv4Address(int start, int n, boolean strict)
3299            throws URISyntaxException
3300        {
3301            int p = start;
3302            int q;
3303            int m = scan(p, n, L_DIGIT | L_DOT, H_DIGIT | H_DOT);
3304            if ((m <= p) || (strict && (m != n)))
3305                return -1;
3306            for (;;) {
3307                // Per RFC2732: At most three digits per byte
3308                // Further constraint: Each element fits in a byte
3309                if ((q = scanByte(p, m)) <= p) break;   p = q;
3310                if ((q = scan(p, m, '.')) <= p) break;  p = q;
3311                if ((q = scanByte(p, m)) <= p) break;   p = q;
3312                if ((q = scan(p, m, '.')) <= p) break;  p = q;
3313                if ((q = scanByte(p, m)) <= p) break;   p = q;
3314                if ((q = scan(p, m, '.')) <= p) break;  p = q;
3315                if ((q = scanByte(p, m)) <= p) break;   p = q;
3316                if (q < m) break;
3317                return q;
3318            }
3319            fail("Malformed IPv4 address", q);
3320            return -1;
3321        }
3322
3323        // Take an IPv4 address: Throw an exception if the given interval
3324        // contains anything except an IPv4 address
3325        //
3326        private int takeIPv4Address(int start, int n, String expected)
3327            throws URISyntaxException
3328        {
3329            int p = scanIPv4Address(start, n, true);
3330            if (p <= start)
3331                failExpecting(expected, start);
3332            return p;
3333        }
3334
3335        // Attempt to parse an IPv4 address, returning -1 on failure but
3336        // allowing the given interval to contain [:<characters>] after
3337        // the IPv4 address.
3338        //
3339        private int parseIPv4Address(int start, int n) {
3340            int p;
3341
3342            try {
3343                p = scanIPv4Address(start, n, false);
3344            } catch (URISyntaxException x) {
3345                return -1;
3346            } catch (NumberFormatException nfe) {
3347                return -1;
3348            }
3349
3350            if (p > start && p < n) {
3351                // IPv4 address is followed by something - check that
3352                // it's a ":" as this is the only valid character to
3353                // follow an address.
3354                if (charAt(p) != ':') {
3355                    p = -1;
3356                }
3357            }
3358
3359            if (p > start)
3360                host = substring(start, p);
3361
3362            return p;
3363        }
3364
3365        // hostname      = domainlabel [ "." ] | 1*( domainlabel "." ) toplabel [ "." ]
3366        // domainlabel   = alphanum | alphanum *( alphanum | "-" ) alphanum
3367        // toplabel      = alpha | alpha *( alphanum | "-" ) alphanum
3368        //
3369        private int parseHostname(int start, int n)
3370            throws URISyntaxException
3371        {
3372            int p = start;
3373            int q;
3374            int l = -1;                 // Start of last parsed label
3375
3376            do {
3377                // domainlabel = alphanum [ *( alphanum | "-" ) alphanum ]
3378                q = scan(p, n, L_ALPHANUM, H_ALPHANUM);
3379                if (q <= p)
3380                    break;
3381                l = p;
3382                if (q > p) {
3383                    p = q;
3384                    q = scan(p, n, L_ALPHANUM | L_DASH, H_ALPHANUM | H_DASH);
3385                    if (q > p) {
3386                        if (charAt(q - 1) == '-')
3387                            fail("Illegal character in hostname", q - 1);
3388                        p = q;
3389                    }
3390                }
3391                q = scan(p, n, '.');
3392                if (q <= p)
3393                    break;
3394                p = q;
3395            } while (p < n);
3396
3397            if ((p < n) && !at(p, n, ':'))
3398                fail("Illegal character in hostname", p);
3399
3400            if (l < 0)
3401                failExpecting("hostname", start);
3402
3403            // for a fully qualified hostname check that the rightmost
3404            // label starts with an alpha character.
3405            if (l > start && !match(charAt(l), L_ALPHA, H_ALPHA)) {
3406                fail("Illegal character in hostname", l);
3407            }
3408
3409            host = substring(start, p);
3410            return p;
3411        }
3412
3413
3414        // IPv6 address parsing, from RFC2373: IPv6 Addressing Architecture
3415        //
3416        // Bug: The grammar in RFC2373 Appendix B does not allow addresses of
3417        // the form ::12.34.56.78, which are clearly shown in the examples
3418        // earlier in the document.  Here is the original grammar:
3419        //
3420        //   IPv6address = hexpart [ ":" IPv4address ]
3421        //   hexpart     = hexseq | hexseq "::" [ hexseq ] | "::" [ hexseq ]
3422        //   hexseq      = hex4 *( ":" hex4)
3423        //   hex4        = 1*4HEXDIG
3424        //
3425        // We therefore use the following revised grammar:
3426        //
3427        //   IPv6address = hexseq [ ":" IPv4address ]
3428        //                 | hexseq [ "::" [ hexpost ] ]
3429        //                 | "::" [ hexpost ]
3430        //   hexpost     = hexseq | hexseq ":" IPv4address | IPv4address
3431        //   hexseq      = hex4 *( ":" hex4)
3432        //   hex4        = 1*4HEXDIG
3433        //
3434        // This covers all and only the following cases:
3435        //
3436        //   hexseq
3437        //   hexseq : IPv4address
3438        //   hexseq ::
3439        //   hexseq :: hexseq
3440        //   hexseq :: hexseq : IPv4address
3441        //   hexseq :: IPv4address
3442        //   :: hexseq
3443        //   :: hexseq : IPv4address
3444        //   :: IPv4address
3445        //   ::
3446        //
3447        // Additionally we constrain the IPv6 address as follows :-
3448        //
3449        //  i.  IPv6 addresses without compressed zeros should contain
3450        //      exactly 16 bytes.
3451        //
3452        //  ii. IPv6 addresses with compressed zeros should contain
3453        //      less than 16 bytes.
3454
3455        private int ipv6byteCount = 0;
3456
3457        private int parseIPv6Reference(int start, int n)
3458            throws URISyntaxException
3459        {
3460            int p = start;
3461            int q;
3462            boolean compressedZeros = false;
3463
3464            q = scanHexSeq(p, n);
3465
3466            if (q > p) {
3467                p = q;
3468                if (at(p, n, "::")) {
3469                    compressedZeros = true;
3470                    p = scanHexPost(p + 2, n);
3471                } else if (at(p, n, ':')) {
3472                    p = takeIPv4Address(p + 1,  n, "IPv4 address");
3473                    ipv6byteCount += 4;
3474                }
3475            } else if (at(p, n, "::")) {
3476                compressedZeros = true;
3477                p = scanHexPost(p + 2, n);
3478            }
3479            if (p < n)
3480                fail("Malformed IPv6 address", start);
3481            if (ipv6byteCount > 16)
3482                fail("IPv6 address too long", start);
3483            if (!compressedZeros && ipv6byteCount < 16)
3484                fail("IPv6 address too short", start);
3485            if (compressedZeros && ipv6byteCount == 16)
3486                fail("Malformed IPv6 address", start);
3487
3488            return p;
3489        }
3490
3491        private int scanHexPost(int start, int n)
3492            throws URISyntaxException
3493        {
3494            int p = start;
3495            int q;
3496
3497            if (p == n)
3498                return p;
3499
3500            q = scanHexSeq(p, n);
3501            if (q > p) {
3502                p = q;
3503                if (at(p, n, ':')) {
3504                    p++;
3505                    p = takeIPv4Address(p, n, "hex digits or IPv4 address");
3506                    ipv6byteCount += 4;
3507                }
3508            } else {
3509                p = takeIPv4Address(p, n, "hex digits or IPv4 address");
3510                ipv6byteCount += 4;
3511            }
3512            return p;
3513        }
3514
3515        // Scan a hex sequence; return -1 if one could not be scanned
3516        //
3517        private int scanHexSeq(int start, int n)
3518            throws URISyntaxException
3519        {
3520            int p = start;
3521            int q;
3522
3523            q = scan(p, n, L_HEX, H_HEX);
3524            if (q <= p)
3525                return -1;
3526            if (at(q, n, '.'))          // Beginning of IPv4 address
3527                return -1;
3528            if (q > p + 4)
3529                fail("IPv6 hexadecimal digit sequence too long", p);
3530            ipv6byteCount += 2;
3531            p = q;
3532            while (p < n) {
3533                if (!at(p, n, ':'))
3534                    break;
3535                if (at(p + 1, n, ':'))
3536                    break;              // "::"
3537                p++;
3538                q = scan(p, n, L_HEX, H_HEX);
3539                if (q <= p)
3540                    failExpecting("digits for an IPv6 address", p);
3541                if (at(q, n, '.')) {    // Beginning of IPv4 address
3542                    p--;
3543                    break;
3544                }
3545                if (q > p + 4)
3546                    fail("IPv6 hexadecimal digit sequence too long", p);
3547                ipv6byteCount += 2;
3548                p = q;
3549            }
3550
3551            return p;
3552        }
3553
3554    }
3555
3556}
3557