globalDefinitions.hpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// This file holds all globally used constants & types, class (forward)
26// declarations and a few frequently used utility functions.
27
28//----------------------------------------------------------------------------------------------------
29// Constants
30
31const int LogBytesPerShort   = 1;
32const int LogBytesPerInt     = 2;
33#ifdef _LP64
34const int LogBytesPerWord    = 3;
35#else
36const int LogBytesPerWord    = 2;
37#endif
38const int LogBytesPerLong    = 3;
39
40const int BytesPerShort      = 1 << LogBytesPerShort;
41const int BytesPerInt        = 1 << LogBytesPerInt;
42const int BytesPerWord       = 1 << LogBytesPerWord;
43const int BytesPerLong       = 1 << LogBytesPerLong;
44
45const int LogBitsPerByte     = 3;
46const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
47const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
48const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
49const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
50
51const int BitsPerByte        = 1 << LogBitsPerByte;
52const int BitsPerShort       = 1 << LogBitsPerShort;
53const int BitsPerInt         = 1 << LogBitsPerInt;
54const int BitsPerWord        = 1 << LogBitsPerWord;
55const int BitsPerLong        = 1 << LogBitsPerLong;
56
57const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
58const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
59
60const int WordsPerLong       = 2;       // Number of stack entries for longs
61
62const int oopSize            = sizeof(char*); // Full-width oop
63extern int heapOopSize;                       // Oop within a java object
64const int wordSize           = sizeof(char*);
65const int longSize           = sizeof(jlong);
66const int jintSize           = sizeof(jint);
67const int size_tSize         = sizeof(size_t);
68
69const int BytesPerOop        = BytesPerWord;  // Full-width oop
70
71extern int LogBytesPerHeapOop;                // Oop within a java object
72extern int LogBitsPerHeapOop;
73extern int BytesPerHeapOop;
74extern int BitsPerHeapOop;
75
76const int BitsPerJavaInteger = 32;
77const int BitsPerJavaLong    = 64;
78const int BitsPerSize_t      = size_tSize * BitsPerByte;
79
80// Size of a char[] needed to represent a jint as a string in decimal.
81const int jintAsStringSize = 12;
82
83// In fact this should be
84// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
85// see os::set_memory_serialize_page()
86#ifdef _LP64
87const int SerializePageShiftCount = 4;
88#else
89const int SerializePageShiftCount = 3;
90#endif
91
92// An opaque struct of heap-word width, so that HeapWord* can be a generic
93// pointer into the heap.  We require that object sizes be measured in
94// units of heap words, so that that
95//   HeapWord* hw;
96//   hw += oop(hw)->foo();
97// works, where foo is a method (like size or scavenge) that returns the
98// object size.
99class HeapWord {
100  friend class VMStructs;
101 private:
102  char* i;
103#ifndef PRODUCT
104 public:
105  char* value() { return i; }
106#endif
107};
108
109// HeapWordSize must be 2^LogHeapWordSize.
110const int HeapWordSize        = sizeof(HeapWord);
111#ifdef _LP64
112const int LogHeapWordSize     = 3;
113#else
114const int LogHeapWordSize     = 2;
115#endif
116const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
117const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
118
119// The larger HeapWordSize for 64bit requires larger heaps
120// for the same application running in 64bit.  See bug 4967770.
121// The minimum alignment to a heap word size is done.  Other
122// parts of the memory system may required additional alignment
123// and are responsible for those alignments.
124#ifdef _LP64
125#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
126#else
127#define ScaleForWordSize(x) (x)
128#endif
129
130// The minimum number of native machine words necessary to contain "byte_size"
131// bytes.
132inline size_t heap_word_size(size_t byte_size) {
133  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
134}
135
136
137const size_t K                  = 1024;
138const size_t M                  = K*K;
139const size_t G                  = M*K;
140const size_t HWperKB            = K / sizeof(HeapWord);
141
142const size_t LOG_K              = 10;
143const size_t LOG_M              = 2 * LOG_K;
144const size_t LOG_G              = 2 * LOG_M;
145
146const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
147const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
148
149// Constants for converting from a base unit to milli-base units.  For
150// example from seconds to milliseconds and microseconds
151
152const int MILLIUNITS    = 1000;         // milli units per base unit
153const int MICROUNITS    = 1000000;      // micro units per base unit
154const int NANOUNITS     = 1000000000;   // nano units per base unit
155
156inline const char* proper_unit_for_byte_size(size_t s) {
157  if (s >= 10*M) {
158    return "M";
159  } else if (s >= 10*K) {
160    return "K";
161  } else {
162    return "B";
163  }
164}
165
166inline size_t byte_size_in_proper_unit(size_t s) {
167  if (s >= 10*M) {
168    return s/M;
169  } else if (s >= 10*K) {
170    return s/K;
171  } else {
172    return s;
173  }
174}
175
176
177//----------------------------------------------------------------------------------------------------
178// VM type definitions
179
180// intx and uintx are the 'extended' int and 'extended' unsigned int types;
181// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
182
183typedef intptr_t  intx;
184typedef uintptr_t uintx;
185
186const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
187const intx  max_intx  = (uintx)min_intx - 1;
188const uintx max_uintx = (uintx)-1;
189
190// Table of values:
191//      sizeof intx         4               8
192// min_intx             0x80000000      0x8000000000000000
193// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
194// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
195
196typedef unsigned int uint;   NEEDS_CLEANUP
197
198
199//----------------------------------------------------------------------------------------------------
200// Java type definitions
201
202// All kinds of 'plain' byte addresses
203typedef   signed char s_char;
204typedef unsigned char u_char;
205typedef u_char*       address;
206typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
207                                    // except for some implementations of a C++
208                                    // linkage pointer to function. Should never
209                                    // need one of those to be placed in this
210                                    // type anyway.
211
212//  Utility functions to "portably" (?) bit twiddle pointers
213//  Where portable means keep ANSI C++ compilers quiet
214
215inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
216inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
217
218//  Utility functions to "portably" make cast to/from function pointers.
219
220inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
221inline address_word  castable_address(address x)              { return address_word(x) ; }
222inline address_word  castable_address(void* x)                { return address_word(x) ; }
223
224// Pointer subtraction.
225// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
226// the range we might need to find differences from one end of the heap
227// to the other.
228// A typical use might be:
229//     if (pointer_delta(end(), top()) >= size) {
230//       // enough room for an object of size
231//       ...
232// and then additions like
233//       ... top() + size ...
234// are safe because we know that top() is at least size below end().
235inline size_t pointer_delta(const void* left,
236                            const void* right,
237                            size_t element_size) {
238  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
239}
240// A version specialized for HeapWord*'s.
241inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
242  return pointer_delta(left, right, sizeof(HeapWord));
243}
244
245//
246// ANSI C++ does not allow casting from one pointer type to a function pointer
247// directly without at best a warning. This macro accomplishes it silently
248// In every case that is present at this point the value be cast is a pointer
249// to a C linkage function. In somecase the type used for the cast reflects
250// that linkage and a picky compiler would not complain. In other cases because
251// there is no convenient place to place a typedef with extern C linkage (i.e
252// a platform dependent header file) it doesn't. At this point no compiler seems
253// picky enough to catch these instances (which are few). It is possible that
254// using templates could fix these for all cases. This use of templates is likely
255// so far from the middle of the road that it is likely to be problematic in
256// many C++ compilers.
257//
258#define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
259#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
260
261// Unsigned byte types for os and stream.hpp
262
263// Unsigned one, two, four and eigth byte quantities used for describing
264// the .class file format. See JVM book chapter 4.
265
266typedef jubyte  u1;
267typedef jushort u2;
268typedef juint   u4;
269typedef julong  u8;
270
271const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
272const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
273const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
274const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
275
276//----------------------------------------------------------------------------------------------------
277// JVM spec restrictions
278
279const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
280
281
282//----------------------------------------------------------------------------------------------------
283// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
284//
285// Determines whether on-the-fly class replacement and frame popping are enabled.
286
287#define HOTSWAP
288
289//----------------------------------------------------------------------------------------------------
290// Object alignment, in units of HeapWords.
291//
292// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
293// reference fields can be naturally aligned.
294
295const int MinObjAlignment            = HeapWordsPerLong;
296const int MinObjAlignmentInBytes     = MinObjAlignment * HeapWordSize;
297const int MinObjAlignmentInBytesMask = MinObjAlignmentInBytes - 1;
298
299const int LogMinObjAlignment         = LogHeapWordsPerLong;
300const int LogMinObjAlignmentInBytes  = LogMinObjAlignment + LogHeapWordSize;
301
302// Machine dependent stuff
303
304#include "incls/_globalDefinitions_pd.hpp.incl"
305
306// The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
307// Note: this value must be a power of 2
308
309#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
310
311// Signed variants of alignment helpers.  There are two versions of each, a macro
312// for use in places like enum definitions that require compile-time constant
313// expressions and a function for all other places so as to get type checking.
314
315#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
316
317inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
318  return align_size_up_(size, alignment);
319}
320
321#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
322
323inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
324  return align_size_down_(size, alignment);
325}
326
327// Align objects by rounding up their size, in HeapWord units.
328
329#define align_object_size_(size) align_size_up_(size, MinObjAlignment)
330
331inline intptr_t align_object_size(intptr_t size) {
332  return align_size_up(size, MinObjAlignment);
333}
334
335// Pad out certain offsets to jlong alignment, in HeapWord units.
336
337#define align_object_offset_(offset) align_size_up_(offset, HeapWordsPerLong)
338
339inline intptr_t align_object_offset(intptr_t offset) {
340  return align_size_up(offset, HeapWordsPerLong);
341}
342
343inline bool is_object_aligned(intptr_t offset) {
344  return offset == align_object_offset(offset);
345}
346
347
348//----------------------------------------------------------------------------------------------------
349// Utility macros for compilers
350// used to silence compiler warnings
351
352#define Unused_Variable(var) var
353
354
355//----------------------------------------------------------------------------------------------------
356// Miscellaneous
357
358// 6302670 Eliminate Hotspot __fabsf dependency
359// All fabs() callers should call this function instead, which will implicitly
360// convert the operand to double, avoiding a dependency on __fabsf which
361// doesn't exist in early versions of Solaris 8.
362inline double fabsd(double value) {
363  return fabs(value);
364}
365
366inline jint low (jlong value)                    { return jint(value); }
367inline jint high(jlong value)                    { return jint(value >> 32); }
368
369// the fancy casts are a hopefully portable way
370// to do unsigned 32 to 64 bit type conversion
371inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
372                                                   *value |= (jlong)(julong)(juint)low; }
373
374inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
375                                                   *value |= (jlong)high       << 32; }
376
377inline jlong jlong_from(jint h, jint l) {
378  jlong result = 0; // initialization to avoid warning
379  set_high(&result, h);
380  set_low(&result,  l);
381  return result;
382}
383
384union jlong_accessor {
385  jint  words[2];
386  jlong long_value;
387};
388
389void basic_types_init(); // cannot define here; uses assert
390
391
392// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
393enum BasicType {
394  T_BOOLEAN  =  4,
395  T_CHAR     =  5,
396  T_FLOAT    =  6,
397  T_DOUBLE   =  7,
398  T_BYTE     =  8,
399  T_SHORT    =  9,
400  T_INT      = 10,
401  T_LONG     = 11,
402  T_OBJECT   = 12,
403  T_ARRAY    = 13,
404  T_VOID     = 14,
405  T_ADDRESS  = 15,
406  T_NARROWOOP= 16,
407  T_CONFLICT = 17, // for stack value type with conflicting contents
408  T_ILLEGAL  = 99
409};
410
411inline bool is_java_primitive(BasicType t) {
412  return T_BOOLEAN <= t && t <= T_LONG;
413}
414
415inline bool is_subword_type(BasicType t) {
416  // these guys are processed exactly like T_INT in calling sequences:
417  return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
418}
419
420inline bool is_signed_subword_type(BasicType t) {
421  return (t == T_BYTE || t == T_SHORT);
422}
423
424// Convert a char from a classfile signature to a BasicType
425inline BasicType char2type(char c) {
426  switch( c ) {
427  case 'B': return T_BYTE;
428  case 'C': return T_CHAR;
429  case 'D': return T_DOUBLE;
430  case 'F': return T_FLOAT;
431  case 'I': return T_INT;
432  case 'J': return T_LONG;
433  case 'S': return T_SHORT;
434  case 'Z': return T_BOOLEAN;
435  case 'V': return T_VOID;
436  case 'L': return T_OBJECT;
437  case '[': return T_ARRAY;
438  }
439  return T_ILLEGAL;
440}
441
442extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
443inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
444extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
445extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
446inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
447extern BasicType name2type(const char* name);
448
449// Auxilary math routines
450// least common multiple
451extern size_t lcm(size_t a, size_t b);
452
453
454// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
455enum BasicTypeSize {
456  T_BOOLEAN_size = 1,
457  T_CHAR_size    = 1,
458  T_FLOAT_size   = 1,
459  T_DOUBLE_size  = 2,
460  T_BYTE_size    = 1,
461  T_SHORT_size   = 1,
462  T_INT_size     = 1,
463  T_LONG_size    = 2,
464  T_OBJECT_size  = 1,
465  T_ARRAY_size   = 1,
466  T_NARROWOOP_size = 1,
467  T_VOID_size    = 0
468};
469
470
471// maps a BasicType to its instance field storage type:
472// all sub-word integral types are widened to T_INT
473extern BasicType type2field[T_CONFLICT+1];
474extern BasicType type2wfield[T_CONFLICT+1];
475
476
477// size in bytes
478enum ArrayElementSize {
479  T_BOOLEAN_aelem_bytes = 1,
480  T_CHAR_aelem_bytes    = 2,
481  T_FLOAT_aelem_bytes   = 4,
482  T_DOUBLE_aelem_bytes  = 8,
483  T_BYTE_aelem_bytes    = 1,
484  T_SHORT_aelem_bytes   = 2,
485  T_INT_aelem_bytes     = 4,
486  T_LONG_aelem_bytes    = 8,
487#ifdef _LP64
488  T_OBJECT_aelem_bytes  = 8,
489  T_ARRAY_aelem_bytes   = 8,
490#else
491  T_OBJECT_aelem_bytes  = 4,
492  T_ARRAY_aelem_bytes   = 4,
493#endif
494  T_NARROWOOP_aelem_bytes = 4,
495  T_VOID_aelem_bytes    = 0
496};
497
498extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
499#ifdef ASSERT
500extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
501#else
502inline int type2aelembytes(BasicType t) { return _type2aelembytes[t]; }
503#endif
504
505
506// JavaValue serves as a container for arbitrary Java values.
507
508class JavaValue {
509
510 public:
511  typedef union JavaCallValue {
512    jfloat   f;
513    jdouble  d;
514    jint     i;
515    jlong    l;
516    jobject  h;
517  } JavaCallValue;
518
519 private:
520  BasicType _type;
521  JavaCallValue _value;
522
523 public:
524  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
525
526  JavaValue(jfloat value) {
527    _type    = T_FLOAT;
528    _value.f = value;
529  }
530
531  JavaValue(jdouble value) {
532    _type    = T_DOUBLE;
533    _value.d = value;
534  }
535
536 jfloat get_jfloat() const { return _value.f; }
537 jdouble get_jdouble() const { return _value.d; }
538 jint get_jint() const { return _value.i; }
539 jlong get_jlong() const { return _value.l; }
540 jobject get_jobject() const { return _value.h; }
541 JavaCallValue* get_value_addr() { return &_value; }
542 BasicType get_type() const { return _type; }
543
544 void set_jfloat(jfloat f) { _value.f = f;}
545 void set_jdouble(jdouble d) { _value.d = d;}
546 void set_jint(jint i) { _value.i = i;}
547 void set_jlong(jlong l) { _value.l = l;}
548 void set_jobject(jobject h) { _value.h = h;}
549 void set_type(BasicType t) { _type = t; }
550
551 jboolean get_jboolean() const { return (jboolean) (_value.i);}
552 jbyte get_jbyte() const { return (jbyte) (_value.i);}
553 jchar get_jchar() const { return (jchar) (_value.i);}
554 jshort get_jshort() const { return (jshort) (_value.i);}
555
556};
557
558
559#define STACK_BIAS      0
560// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
561// in order to extend the reach of the stack pointer.
562#if defined(SPARC) && defined(_LP64)
563#undef STACK_BIAS
564#define STACK_BIAS      0x7ff
565#endif
566
567
568// TosState describes the top-of-stack state before and after the execution of
569// a bytecode or method. The top-of-stack value may be cached in one or more CPU
570// registers. The TosState corresponds to the 'machine represention' of this cached
571// value. There's 4 states corresponding to the JAVA types int, long, float & double
572// as well as a 5th state in case the top-of-stack value is actually on the top
573// of stack (in memory) and thus not cached. The atos state corresponds to the itos
574// state when it comes to machine representation but is used separately for (oop)
575// type specific operations (e.g. verification code).
576
577enum TosState {         // describes the tos cache contents
578  btos = 0,             // byte, bool tos cached
579  ctos = 1,             // char tos cached
580  stos = 2,             // short tos cached
581  itos = 3,             // int tos cached
582  ltos = 4,             // long tos cached
583  ftos = 5,             // float tos cached
584  dtos = 6,             // double tos cached
585  atos = 7,             // object cached
586  vtos = 8,             // tos not cached
587  number_of_states,
588  ilgl                  // illegal state: should not occur
589};
590
591
592inline TosState as_TosState(BasicType type) {
593  switch (type) {
594    case T_BYTE   : return btos;
595    case T_BOOLEAN: return btos; // FIXME: Add ztos
596    case T_CHAR   : return ctos;
597    case T_SHORT  : return stos;
598    case T_INT    : return itos;
599    case T_LONG   : return ltos;
600    case T_FLOAT  : return ftos;
601    case T_DOUBLE : return dtos;
602    case T_VOID   : return vtos;
603    case T_ARRAY  : // fall through
604    case T_OBJECT : return atos;
605  }
606  return ilgl;
607}
608
609inline BasicType as_BasicType(TosState state) {
610  switch (state) {
611    //case ztos: return T_BOOLEAN;//FIXME
612    case btos : return T_BYTE;
613    case ctos : return T_CHAR;
614    case stos : return T_SHORT;
615    case itos : return T_INT;
616    case ltos : return T_LONG;
617    case ftos : return T_FLOAT;
618    case dtos : return T_DOUBLE;
619    case atos : return T_OBJECT;
620    case vtos : return T_VOID;
621  }
622  return T_ILLEGAL;
623}
624
625
626// Helper function to convert BasicType info into TosState
627// Note: Cannot define here as it uses global constant at the time being.
628TosState as_TosState(BasicType type);
629
630
631// ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
632
633enum ReferenceType {
634 REF_NONE,      // Regular class
635 REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
636 REF_SOFT,      // Subclass of java/lang/ref/SoftReference
637 REF_WEAK,      // Subclass of java/lang/ref/WeakReference
638 REF_FINAL,     // Subclass of java/lang/ref/FinalReference
639 REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
640};
641
642
643// JavaThreadState keeps track of which part of the code a thread is executing in. This
644// information is needed by the safepoint code.
645//
646// There are 4 essential states:
647//
648//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
649//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
650//  _thread_in_vm       : Executing in the vm
651//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
652//
653// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
654// a transition from one state to another. These extra states makes it possible for the safepoint code to
655// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
656//
657// Given a state, the xxx_trans state can always be found by adding 1.
658//
659enum JavaThreadState {
660  _thread_uninitialized     =  0, // should never happen (missing initialization)
661  _thread_new               =  2, // just starting up, i.e., in process of being initialized
662  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
663  _thread_in_native         =  4, // running in native code
664  _thread_in_native_trans   =  5, // corresponding transition state
665  _thread_in_vm             =  6, // running in VM
666  _thread_in_vm_trans       =  7, // corresponding transition state
667  _thread_in_Java           =  8, // running in Java or in stub code
668  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
669  _thread_blocked           = 10, // blocked in vm
670  _thread_blocked_trans     = 11, // corresponding transition state
671  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
672};
673
674
675// Handy constants for deciding which compiler mode to use.
676enum MethodCompilation {
677  InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
678  InvalidOSREntryBci = -2
679};
680
681// Enumeration to distinguish tiers of compilation
682enum CompLevel {
683  CompLevel_none              = 0,
684  CompLevel_fast_compile      = 1,
685  CompLevel_full_optimization = 2,
686
687  CompLevel_highest_tier      = CompLevel_full_optimization,
688#ifdef TIERED
689  CompLevel_initial_compile   = CompLevel_fast_compile
690#else
691  CompLevel_initial_compile   = CompLevel_full_optimization
692#endif // TIERED
693};
694
695inline bool is_tier1_compile(int comp_level) {
696  return comp_level == CompLevel_fast_compile;
697}
698inline bool is_tier2_compile(int comp_level) {
699  return comp_level == CompLevel_full_optimization;
700}
701inline bool is_highest_tier_compile(int comp_level) {
702  return comp_level == CompLevel_highest_tier;
703}
704
705//----------------------------------------------------------------------------------------------------
706// 'Forward' declarations of frequently used classes
707// (in order to reduce interface dependencies & reduce
708// number of unnecessary compilations after changes)
709
710class symbolTable;
711class ClassFileStream;
712
713class Event;
714
715class Thread;
716class  VMThread;
717class  JavaThread;
718class Threads;
719
720class VM_Operation;
721class VMOperationQueue;
722
723class CodeBlob;
724class  nmethod;
725class  OSRAdapter;
726class  I2CAdapter;
727class  C2IAdapter;
728class CompiledIC;
729class relocInfo;
730class ScopeDesc;
731class PcDesc;
732
733class Recompiler;
734class Recompilee;
735class RecompilationPolicy;
736class RFrame;
737class  CompiledRFrame;
738class  InterpretedRFrame;
739
740class frame;
741
742class vframe;
743class   javaVFrame;
744class     interpretedVFrame;
745class     compiledVFrame;
746class     deoptimizedVFrame;
747class   externalVFrame;
748class     entryVFrame;
749
750class RegisterMap;
751
752class Mutex;
753class Monitor;
754class BasicLock;
755class BasicObjectLock;
756
757class PeriodicTask;
758
759class JavaCallWrapper;
760
761class   oopDesc;
762
763class NativeCall;
764
765class zone;
766
767class StubQueue;
768
769class outputStream;
770
771class ResourceArea;
772
773class DebugInformationRecorder;
774class ScopeValue;
775class CompressedStream;
776class   DebugInfoReadStream;
777class   DebugInfoWriteStream;
778class LocationValue;
779class ConstantValue;
780class IllegalValue;
781
782class PrivilegedElement;
783class MonitorArray;
784
785class MonitorInfo;
786
787class OffsetClosure;
788class OopMapCache;
789class InterpreterOopMap;
790class OopMapCacheEntry;
791class OSThread;
792
793typedef int (*OSThreadStartFunc)(void*);
794
795class Space;
796
797class JavaValue;
798class methodHandle;
799class JavaCallArguments;
800
801// Basic support for errors (general debug facilities not defined at this point fo the include phase)
802
803extern void basic_fatal(const char* msg);
804
805
806//----------------------------------------------------------------------------------------------------
807// Special constants for debugging
808
809const jint     badInt           = -3;                       // generic "bad int" value
810const long     badAddressVal    = -2;                       // generic "bad address" value
811const long     badOopVal        = -1;                       // generic "bad oop" value
812const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
813const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
814const int      badResourceValue = 0xAB;                     // value used to zap resource area
815const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
816const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
817const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
818const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
819const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
820const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
821
822
823// (These must be implemented as #defines because C++ compilers are
824// not obligated to inline non-integral constants!)
825#define       badAddress        ((address)::badAddressVal)
826#define       badOop            ((oop)::badOopVal)
827#define       badHeapWord       (::badHeapWordVal)
828#define       badJNIHandle      ((oop)::badJNIHandleVal)
829
830// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
831#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
832
833//----------------------------------------------------------------------------------------------------
834// Utility functions for bitfield manipulations
835
836const intptr_t AllBits    = ~0; // all bits set in a word
837const intptr_t NoBits     =  0; // no bits set in a word
838const jlong    NoLongBits =  0; // no bits set in a long
839const intptr_t OneBit     =  1; // only right_most bit set in a word
840
841// get a word with the n.th or the right-most or left-most n bits set
842// (note: #define used only so that they can be used in enum constant definitions)
843#define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
844#define right_n_bits(n)   (nth_bit(n) - 1)
845#define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
846
847// bit-operations using a mask m
848inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
849inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
850inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
851inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
852inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
853
854// bit-operations using the n.th bit
855inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
856inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
857inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
858
859// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
860inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
861  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
862}
863
864
865//----------------------------------------------------------------------------------------------------
866// Utility functions for integers
867
868// Avoid use of global min/max macros which may cause unwanted double
869// evaluation of arguments.
870#ifdef max
871#undef max
872#endif
873
874#ifdef min
875#undef min
876#endif
877
878#define max(a,b) Do_not_use_max_use_MAX2_instead
879#define min(a,b) Do_not_use_min_use_MIN2_instead
880
881// It is necessary to use templates here. Having normal overloaded
882// functions does not work because it is necessary to provide both 32-
883// and 64-bit overloaded functions, which does not work, and having
884// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
885// will be even more error-prone than macros.
886template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
887template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
888template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
889template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
890template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
891template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
892
893template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
894
895// true if x is a power of 2, false otherwise
896inline bool is_power_of_2(intptr_t x) {
897  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
898}
899
900// long version of is_power_of_2
901inline bool is_power_of_2_long(jlong x) {
902  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
903}
904
905//* largest i such that 2^i <= x
906//  A negative value of 'x' will return '31'
907inline int log2_intptr(intptr_t x) {
908  int i = -1;
909  uintptr_t p =  1;
910  while (p != 0 && p <= (uintptr_t)x) {
911    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
912    i++; p *= 2;
913  }
914  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
915  // (if p = 0 then overflow occurred and i = 31)
916  return i;
917}
918
919//* largest i such that 2^i <= x
920//  A negative value of 'x' will return '63'
921inline int log2_long(jlong x) {
922  int i = -1;
923  julong p =  1;
924  while (p != 0 && p <= (julong)x) {
925    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
926    i++; p *= 2;
927  }
928  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
929  // (if p = 0 then overflow occurred and i = 63)
930  return i;
931}
932
933//* the argument must be exactly a power of 2
934inline int exact_log2(intptr_t x) {
935  #ifdef ASSERT
936    if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
937  #endif
938  return log2_intptr(x);
939}
940
941//* the argument must be exactly a power of 2
942inline int exact_log2_long(jlong x) {
943  #ifdef ASSERT
944    if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
945  #endif
946  return log2_long(x);
947}
948
949
950// returns integer round-up to the nearest multiple of s (s must be a power of two)
951inline intptr_t round_to(intptr_t x, uintx s) {
952  #ifdef ASSERT
953    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
954  #endif
955  const uintx m = s - 1;
956  return mask_bits(x + m, ~m);
957}
958
959// returns integer round-down to the nearest multiple of s (s must be a power of two)
960inline intptr_t round_down(intptr_t x, uintx s) {
961  #ifdef ASSERT
962    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
963  #endif
964  const uintx m = s - 1;
965  return mask_bits(x, ~m);
966}
967
968
969inline bool is_odd (intx x) { return x & 1;      }
970inline bool is_even(intx x) { return !is_odd(x); }
971
972// "to" should be greater than "from."
973inline intx byte_size(void* from, void* to) {
974  return (address)to - (address)from;
975}
976
977//----------------------------------------------------------------------------------------------------
978// Avoid non-portable casts with these routines (DEPRECATED)
979
980// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
981//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
982
983// Given sequence of four bytes, build into a 32-bit word
984// following the conventions used in class files.
985// On the 386, this could be realized with a simple address cast.
986//
987
988// This routine takes eight bytes:
989inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
990  return  ( u8(c1) << 56 )  &  ( u8(0xff) << 56 )
991       |  ( u8(c2) << 48 )  &  ( u8(0xff) << 48 )
992       |  ( u8(c3) << 40 )  &  ( u8(0xff) << 40 )
993       |  ( u8(c4) << 32 )  &  ( u8(0xff) << 32 )
994       |  ( u8(c5) << 24 )  &  ( u8(0xff) << 24 )
995       |  ( u8(c6) << 16 )  &  ( u8(0xff) << 16 )
996       |  ( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 )
997       |  ( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 );
998}
999
1000// This routine takes four bytes:
1001inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1002  return  ( u4(c1) << 24 )  &  0xff000000
1003       |  ( u4(c2) << 16 )  &  0x00ff0000
1004       |  ( u4(c3) <<  8 )  &  0x0000ff00
1005       |  ( u4(c4) <<  0 )  &  0x000000ff;
1006}
1007
1008// And this one works if the four bytes are contiguous in memory:
1009inline u4 build_u4_from( u1* p ) {
1010  return  build_u4_from( p[0], p[1], p[2], p[3] );
1011}
1012
1013// Ditto for two-byte ints:
1014inline u2 build_u2_from( u1 c1, u1 c2 ) {
1015  return  u2(( u2(c1) <<  8 )  &  0xff00
1016          |  ( u2(c2) <<  0 )  &  0x00ff);
1017}
1018
1019// And this one works if the two bytes are contiguous in memory:
1020inline u2 build_u2_from( u1* p ) {
1021  return  build_u2_from( p[0], p[1] );
1022}
1023
1024// Ditto for floats:
1025inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1026  u4 u = build_u4_from( c1, c2, c3, c4 );
1027  return  *(jfloat*)&u;
1028}
1029
1030inline jfloat build_float_from( u1* p ) {
1031  u4 u = build_u4_from( p );
1032  return  *(jfloat*)&u;
1033}
1034
1035
1036// now (64-bit) longs
1037
1038inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1039  return  ( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 )
1040       |  ( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 )
1041       |  ( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 )
1042       |  ( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 )
1043       |  ( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 )
1044       |  ( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 )
1045       |  ( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 )
1046       |  ( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 );
1047}
1048
1049inline jlong build_long_from( u1* p ) {
1050  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1051}
1052
1053
1054// Doubles, too!
1055inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1056  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1057  return  *(jdouble*)&u;
1058}
1059
1060inline jdouble build_double_from( u1* p ) {
1061  jlong u = build_long_from( p );
1062  return  *(jdouble*)&u;
1063}
1064
1065
1066// Portable routines to go the other way:
1067
1068inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1069  c1 = u1(x >> 8);
1070  c2 = u1(x);
1071}
1072
1073inline void explode_short_to( u2 x, u1* p ) {
1074  explode_short_to( x, p[0], p[1]);
1075}
1076
1077inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1078  c1 = u1(x >> 24);
1079  c2 = u1(x >> 16);
1080  c3 = u1(x >>  8);
1081  c4 = u1(x);
1082}
1083
1084inline void explode_int_to( u4 x, u1* p ) {
1085  explode_int_to( x, p[0], p[1], p[2], p[3]);
1086}
1087
1088
1089// Pack and extract shorts to/from ints:
1090
1091inline int extract_low_short_from_int(jint x) {
1092  return x & 0xffff;
1093}
1094
1095inline int extract_high_short_from_int(jint x) {
1096  return (x >> 16) & 0xffff;
1097}
1098
1099inline int build_int_from_shorts( jushort low, jushort high ) {
1100  return ((int)((unsigned int)high << 16) | (unsigned int)low);
1101}
1102
1103// Printf-style formatters for fixed- and variable-width types as pointers and
1104// integers.
1105//
1106// Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1107// must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
1108// '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
1109// (in ILP32).
1110
1111// Format 32-bit quantities.
1112#define INT32_FORMAT  "%d"
1113#define UINT32_FORMAT "%u"
1114#define INT32_FORMAT_W(width)   "%" #width "d"
1115#define UINT32_FORMAT_W(width)  "%" #width "u"
1116
1117#define PTR32_FORMAT  "0x%08x"
1118
1119// Format 64-bit quantities.
1120#define INT64_FORMAT  "%" FORMAT64_MODIFIER "d"
1121#define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
1122#define PTR64_FORMAT  "0x%016" FORMAT64_MODIFIER "x"
1123
1124#define INT64_FORMAT_W(width)  "%" #width FORMAT64_MODIFIER "d"
1125#define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
1126
1127// Format macros that allow the field width to be specified.  The width must be
1128// a string literal (e.g., "8") or a macro that evaluates to one.
1129#ifdef _LP64
1130#define UINTX_FORMAT_W(width)   UINT64_FORMAT_W(width)
1131#define SSIZE_FORMAT_W(width)   INT64_FORMAT_W(width)
1132#define SIZE_FORMAT_W(width)    UINT64_FORMAT_W(width)
1133#else
1134#define UINTX_FORMAT_W(width)   UINT32_FORMAT_W(width)
1135#define SSIZE_FORMAT_W(width)   INT32_FORMAT_W(width)
1136#define SIZE_FORMAT_W(width)    UINT32_FORMAT_W(width)
1137#endif // _LP64
1138
1139// Format pointers and size_t (or size_t-like integer types) which change size
1140// between 32- and 64-bit. The pointer format theoretically should be "%p",
1141// however, it has different output on different platforms. On Windows, the data
1142// will be padded with zeros automatically. On Solaris, we can use "%016p" &
1143// "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
1144// On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
1145// 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
1146// GCC 4.3.2, however requires the data to be converted to "intptr_t" when
1147// using "%x".
1148#ifdef  _LP64
1149#define PTR_FORMAT    PTR64_FORMAT
1150#define UINTX_FORMAT  UINT64_FORMAT
1151#define INTX_FORMAT   INT64_FORMAT
1152#define SIZE_FORMAT   UINT64_FORMAT
1153#define SSIZE_FORMAT  INT64_FORMAT
1154#else   // !_LP64
1155#define PTR_FORMAT    PTR32_FORMAT
1156#define UINTX_FORMAT  UINT32_FORMAT
1157#define INTX_FORMAT   INT32_FORMAT
1158#define SIZE_FORMAT   UINT32_FORMAT
1159#define SSIZE_FORMAT  INT32_FORMAT
1160#endif  // _LP64
1161
1162#define INTPTR_FORMAT PTR_FORMAT
1163
1164// Enable zap-a-lot if in debug version.
1165
1166# ifdef ASSERT
1167# ifdef COMPILER2
1168#   define ENABLE_ZAP_DEAD_LOCALS
1169#endif /* COMPILER2 */
1170# endif /* ASSERT */
1171
1172#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1173