bitMap.inline.hpp revision 6646:b596a1063e90
1/*
2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_UTILITIES_BITMAP_INLINE_HPP
26#define SHARE_VM_UTILITIES_BITMAP_INLINE_HPP
27
28#include "runtime/atomic.inline.hpp"
29#include "utilities/bitMap.hpp"
30
31#ifdef ASSERT
32inline void BitMap::verify_index(idx_t index) const {
33  assert(index < _size, "BitMap index out of bounds");
34}
35
36inline void BitMap::verify_range(idx_t beg_index, idx_t end_index) const {
37  assert(beg_index <= end_index, "BitMap range error");
38  // Note that [0,0) and [size,size) are both valid ranges.
39  if (end_index != _size) verify_index(end_index);
40}
41#endif // #ifdef ASSERT
42
43inline void BitMap::set_bit(idx_t bit) {
44  verify_index(bit);
45  *word_addr(bit) |= bit_mask(bit);
46}
47
48inline void BitMap::clear_bit(idx_t bit) {
49  verify_index(bit);
50  *word_addr(bit) &= ~bit_mask(bit);
51}
52
53inline bool BitMap::par_set_bit(idx_t bit) {
54  verify_index(bit);
55  volatile bm_word_t* const addr = word_addr(bit);
56  const bm_word_t mask = bit_mask(bit);
57  bm_word_t old_val = *addr;
58
59  do {
60    const bm_word_t new_val = old_val | mask;
61    if (new_val == old_val) {
62      return false;     // Someone else beat us to it.
63    }
64    const bm_word_t cur_val = (bm_word_t) Atomic::cmpxchg_ptr((void*) new_val,
65                                                      (volatile void*) addr,
66                                                      (void*) old_val);
67    if (cur_val == old_val) {
68      return true;      // Success.
69    }
70    old_val = cur_val;  // The value changed, try again.
71  } while (true);
72}
73
74inline bool BitMap::par_clear_bit(idx_t bit) {
75  verify_index(bit);
76  volatile bm_word_t* const addr = word_addr(bit);
77  const bm_word_t mask = ~bit_mask(bit);
78  bm_word_t old_val = *addr;
79
80  do {
81    const bm_word_t new_val = old_val & mask;
82    if (new_val == old_val) {
83      return false;     // Someone else beat us to it.
84    }
85    const bm_word_t cur_val = (bm_word_t) Atomic::cmpxchg_ptr((void*) new_val,
86                                                      (volatile void*) addr,
87                                                      (void*) old_val);
88    if (cur_val == old_val) {
89      return true;      // Success.
90    }
91    old_val = cur_val;  // The value changed, try again.
92  } while (true);
93}
94
95inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
96  if (hint == small_range && end - beg == 1) {
97    set_bit(beg);
98  } else {
99    if (hint == large_range) {
100      set_large_range(beg, end);
101    } else {
102      set_range(beg, end);
103    }
104  }
105}
106
107inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
108  if (hint == small_range && end - beg == 1) {
109    clear_bit(beg);
110  } else {
111    if (hint == large_range) {
112      clear_large_range(beg, end);
113    } else {
114      clear_range(beg, end);
115    }
116  }
117}
118
119inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
120  if (hint == small_range && end - beg == 1) {
121    par_at_put(beg, true);
122  } else {
123    if (hint == large_range) {
124      par_at_put_large_range(beg, end, true);
125    } else {
126      par_at_put_range(beg, end, true);
127    }
128  }
129}
130
131inline void BitMap::set_range_of_words(idx_t beg, idx_t end) {
132  bm_word_t* map = _map;
133  for (idx_t i = beg; i < end; ++i) map[i] = ~(uintptr_t)0;
134}
135
136
137inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) {
138  bm_word_t* map = _map;
139  for (idx_t i = beg; i < end; ++i) map[i] = 0;
140}
141
142
143inline void BitMap::clear() {
144  clear_range_of_words(0, size_in_words());
145}
146
147
148inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
149  if (hint == small_range && end - beg == 1) {
150    par_at_put(beg, false);
151  } else {
152    if (hint == large_range) {
153      par_at_put_large_range(beg, end, false);
154    } else {
155      par_at_put_range(beg, end, false);
156    }
157  }
158}
159
160inline BitMap::idx_t
161BitMap::get_next_one_offset_inline(idx_t l_offset, idx_t r_offset) const {
162  assert(l_offset <= size(), "BitMap index out of bounds");
163  assert(r_offset <= size(), "BitMap index out of bounds");
164  assert(l_offset <= r_offset, "l_offset > r_offset ?");
165
166  if (l_offset == r_offset) {
167    return l_offset;
168  }
169  idx_t   index = word_index(l_offset);
170  idx_t r_index = word_index(r_offset-1) + 1;
171  idx_t res_offset = l_offset;
172
173  // check bits including and to the _left_ of offset's position
174  idx_t pos = bit_in_word(res_offset);
175  idx_t res = map(index) >> pos;
176  if (res != (uintptr_t)NoBits) {
177    // find the position of the 1-bit
178    for (; !(res & 1); res_offset++) {
179      res = res >> 1;
180    }
181
182#ifdef ASSERT
183    // In the following assert, if r_offset is not bitamp word aligned,
184    // checking that res_offset is strictly less than r_offset is too
185    // strong and will trip the assert.
186    //
187    // Consider the case where l_offset is bit 15 and r_offset is bit 17
188    // of the same map word, and where bits [15:16:17:18] == [00:00:00:01].
189    // All the bits in the range [l_offset:r_offset) are 0.
190    // The loop that calculates res_offset, above, would yield the offset
191    // of bit 18 because it's in the same map word as l_offset and there
192    // is a set bit in that map word above l_offset (i.e. res != NoBits).
193    //
194    // In this case, however, we can assert is that res_offset is strictly
195    // less than size() since we know that there is at least one set bit
196    // at an offset above, but in the same map word as, r_offset.
197    // Otherwise, if r_offset is word aligned then it will not be in the
198    // same map word as l_offset (unless it equals l_offset). So either
199    // there won't be a set bit between l_offset and the end of it's map
200    // word (i.e. res == NoBits), or res_offset will be less than r_offset.
201
202    idx_t limit = is_word_aligned(r_offset) ? r_offset : size();
203    assert(res_offset >= l_offset && res_offset < limit, "just checking");
204#endif // ASSERT
205    return MIN2(res_offset, r_offset);
206  }
207  // skip over all word length 0-bit runs
208  for (index++; index < r_index; index++) {
209    res = map(index);
210    if (res != (uintptr_t)NoBits) {
211      // found a 1, return the offset
212      for (res_offset = bit_index(index); !(res & 1); res_offset++) {
213        res = res >> 1;
214      }
215      assert(res & 1, "tautology; see loop condition");
216      assert(res_offset >= l_offset, "just checking");
217      return MIN2(res_offset, r_offset);
218    }
219  }
220  return r_offset;
221}
222
223inline BitMap::idx_t
224BitMap::get_next_zero_offset_inline(idx_t l_offset, idx_t r_offset) const {
225  assert(l_offset <= size(), "BitMap index out of bounds");
226  assert(r_offset <= size(), "BitMap index out of bounds");
227  assert(l_offset <= r_offset, "l_offset > r_offset ?");
228
229  if (l_offset == r_offset) {
230    return l_offset;
231  }
232  idx_t   index = word_index(l_offset);
233  idx_t r_index = word_index(r_offset-1) + 1;
234  idx_t res_offset = l_offset;
235
236  // check bits including and to the _left_ of offset's position
237  idx_t pos = res_offset & (BitsPerWord - 1);
238  idx_t res = (map(index) >> pos) | left_n_bits((int)pos);
239
240  if (res != (uintptr_t)AllBits) {
241    // find the position of the 0-bit
242    for (; res & 1; res_offset++) {
243      res = res >> 1;
244    }
245    assert(res_offset >= l_offset, "just checking");
246    return MIN2(res_offset, r_offset);
247  }
248  // skip over all word length 1-bit runs
249  for (index++; index < r_index; index++) {
250    res = map(index);
251    if (res != (uintptr_t)AllBits) {
252      // found a 0, return the offset
253      for (res_offset = index << LogBitsPerWord; res & 1;
254           res_offset++) {
255        res = res >> 1;
256      }
257      assert(!(res & 1), "tautology; see loop condition");
258      assert(res_offset >= l_offset, "just checking");
259      return MIN2(res_offset, r_offset);
260    }
261  }
262  return r_offset;
263}
264
265inline BitMap::idx_t
266BitMap::get_next_one_offset_inline_aligned_right(idx_t l_offset,
267                                                 idx_t r_offset) const
268{
269  verify_range(l_offset, r_offset);
270  assert(bit_in_word(r_offset) == 0, "r_offset not word-aligned");
271
272  if (l_offset == r_offset) {
273    return l_offset;
274  }
275  idx_t   index = word_index(l_offset);
276  idx_t r_index = word_index(r_offset);
277  idx_t res_offset = l_offset;
278
279  // check bits including and to the _left_ of offset's position
280  idx_t res = map(index) >> bit_in_word(res_offset);
281  if (res != (uintptr_t)NoBits) {
282    // find the position of the 1-bit
283    for (; !(res & 1); res_offset++) {
284      res = res >> 1;
285    }
286    assert(res_offset >= l_offset &&
287           res_offset < r_offset, "just checking");
288    return res_offset;
289  }
290  // skip over all word length 0-bit runs
291  for (index++; index < r_index; index++) {
292    res = map(index);
293    if (res != (uintptr_t)NoBits) {
294      // found a 1, return the offset
295      for (res_offset = bit_index(index); !(res & 1); res_offset++) {
296        res = res >> 1;
297      }
298      assert(res & 1, "tautology; see loop condition");
299      assert(res_offset >= l_offset && res_offset < r_offset, "just checking");
300      return res_offset;
301    }
302  }
303  return r_offset;
304}
305
306
307// Returns a bit mask for a range of bits [beg, end) within a single word.  Each
308// bit in the mask is 0 if the bit is in the range, 1 if not in the range.  The
309// returned mask can be used directly to clear the range, or inverted to set the
310// range.  Note:  end must not be 0.
311inline BitMap::bm_word_t
312BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const {
313  assert(end != 0, "does not work when end == 0");
314  assert(beg == end || word_index(beg) == word_index(end - 1),
315         "must be a single-word range");
316  bm_word_t mask = bit_mask(beg) - 1;   // low (right) bits
317  if (bit_in_word(end) != 0) {
318    mask |= ~(bit_mask(end) - 1);       // high (left) bits
319  }
320  return mask;
321}
322
323inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) {
324  memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(uintptr_t));
325}
326
327inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) {
328  memset(_map + beg, 0, (end - beg) * sizeof(uintptr_t));
329}
330
331inline BitMap::idx_t BitMap::word_index_round_up(idx_t bit) const {
332  idx_t bit_rounded_up = bit + (BitsPerWord - 1);
333  // Check for integer arithmetic overflow.
334  return bit_rounded_up > bit ? word_index(bit_rounded_up) : size_in_words();
335}
336
337inline BitMap::idx_t BitMap::get_next_one_offset(idx_t l_offset,
338                                          idx_t r_offset) const {
339  return get_next_one_offset_inline(l_offset, r_offset);
340}
341
342inline BitMap::idx_t BitMap::get_next_zero_offset(idx_t l_offset,
343                                           idx_t r_offset) const {
344  return get_next_zero_offset_inline(l_offset, r_offset);
345}
346
347inline void BitMap2D::clear() {
348  _map.clear();
349}
350
351#endif // SHARE_VM_UTILITIES_BITMAP_INLINE_HPP
352