lowMemoryDetector.cpp revision 2062:3582bf76420e
1/*
2 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "oops/oop.inline.hpp"
29#include "runtime/interfaceSupport.hpp"
30#include "runtime/java.hpp"
31#include "runtime/javaCalls.hpp"
32#include "runtime/mutex.hpp"
33#include "runtime/mutexLocker.hpp"
34#include "services/lowMemoryDetector.hpp"
35#include "services/management.hpp"
36
37LowMemoryDetectorThread* LowMemoryDetector::_detector_thread = NULL;
38volatile bool LowMemoryDetector::_enabled_for_collected_pools = false;
39volatile jint LowMemoryDetector::_disabled_count = 0;
40
41void LowMemoryDetector::initialize() {
42  EXCEPTION_MARK;
43
44  instanceKlassHandle klass (THREAD,  SystemDictionary::Thread_klass());
45  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
46
47  const char thread_name[] = "Low Memory Detector";
48  Handle string = java_lang_String::create_from_str(thread_name, CHECK);
49
50  // Initialize thread_oop to put it into the system threadGroup
51  Handle thread_group (THREAD, Universe::system_thread_group());
52  JavaValue result(T_VOID);
53  JavaCalls::call_special(&result, thread_oop,
54                          klass,
55                          vmSymbols::object_initializer_name(),
56                          vmSymbols::threadgroup_string_void_signature(),
57                          thread_group,
58                          string,
59                          CHECK);
60
61  {
62    MutexLocker mu(Threads_lock);
63    _detector_thread = new LowMemoryDetectorThread(&low_memory_detector_thread_entry);
64
65    // At this point it may be possible that no osthread was created for the
66    // JavaThread due to lack of memory. We would have to throw an exception
67    // in that case. However, since this must work and we do not allow
68    // exceptions anyway, check and abort if this fails.
69    if (_detector_thread == NULL || _detector_thread->osthread() == NULL) {
70      vm_exit_during_initialization("java.lang.OutOfMemoryError",
71                                    "unable to create new native thread");
72    }
73
74    java_lang_Thread::set_thread(thread_oop(), _detector_thread);
75    java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
76    java_lang_Thread::set_daemon(thread_oop());
77    _detector_thread->set_threadObj(thread_oop());
78
79    Threads::add(_detector_thread);
80    Thread::start(_detector_thread);
81  }
82}
83
84bool LowMemoryDetector::has_pending_requests() {
85  assert(LowMemory_lock->owned_by_self(), "Must own LowMemory_lock");
86  bool has_requests = false;
87  int num_memory_pools = MemoryService::num_memory_pools();
88  for (int i = 0; i < num_memory_pools; i++) {
89    MemoryPool* pool = MemoryService::get_memory_pool(i);
90    SensorInfo* sensor = pool->usage_sensor();
91    if (sensor != NULL) {
92      has_requests = has_requests || sensor->has_pending_requests();
93    }
94
95    SensorInfo* gc_sensor = pool->gc_usage_sensor();
96    if (gc_sensor != NULL) {
97      has_requests = has_requests || gc_sensor->has_pending_requests();
98    }
99  }
100  return has_requests;
101}
102
103void LowMemoryDetector::low_memory_detector_thread_entry(JavaThread* jt, TRAPS) {
104  while (true) {
105    bool   sensors_changed = false;
106
107    {
108      // _no_safepoint_check_flag is used here as LowMemory_lock is a
109      // special lock and the VMThread may acquire this lock at safepoint.
110      // Need state transition ThreadBlockInVM so that this thread
111      // will be handled by safepoint correctly when this thread is
112      // notified at a safepoint.
113
114      // This ThreadBlockInVM object is not also considered to be
115      // suspend-equivalent because LowMemoryDetector threads are
116      // not visible to external suspension.
117
118      ThreadBlockInVM tbivm(jt);
119
120      MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
121      while (!(sensors_changed = has_pending_requests())) {
122        // wait until one of the sensors has pending requests
123        LowMemory_lock->wait(Mutex::_no_safepoint_check_flag);
124      }
125    }
126
127    {
128      ResourceMark rm(THREAD);
129      HandleMark hm(THREAD);
130
131      // No need to hold LowMemory_lock to call out to Java
132      int num_memory_pools = MemoryService::num_memory_pools();
133      for (int i = 0; i < num_memory_pools; i++) {
134        MemoryPool* pool = MemoryService::get_memory_pool(i);
135        SensorInfo* sensor = pool->usage_sensor();
136        SensorInfo* gc_sensor = pool->gc_usage_sensor();
137        if (sensor != NULL && sensor->has_pending_requests()) {
138          sensor->process_pending_requests(CHECK);
139        }
140        if (gc_sensor != NULL && gc_sensor->has_pending_requests()) {
141          gc_sensor->process_pending_requests(CHECK);
142        }
143      }
144    }
145  }
146}
147
148// This method could be called from any Java threads
149// and also VMThread.
150void LowMemoryDetector::detect_low_memory() {
151  MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
152
153  bool has_pending_requests = false;
154  int num_memory_pools = MemoryService::num_memory_pools();
155  for (int i = 0; i < num_memory_pools; i++) {
156    MemoryPool* pool = MemoryService::get_memory_pool(i);
157    SensorInfo* sensor = pool->usage_sensor();
158    if (sensor != NULL &&
159        pool->usage_threshold()->is_high_threshold_supported() &&
160        pool->usage_threshold()->high_threshold() != 0) {
161      MemoryUsage usage = pool->get_memory_usage();
162      sensor->set_gauge_sensor_level(usage,
163                                     pool->usage_threshold());
164      has_pending_requests = has_pending_requests || sensor->has_pending_requests();
165    }
166  }
167
168  if (has_pending_requests) {
169    LowMemory_lock->notify_all();
170  }
171}
172
173// This method could be called from any Java threads
174// and also VMThread.
175void LowMemoryDetector::detect_low_memory(MemoryPool* pool) {
176  SensorInfo* sensor = pool->usage_sensor();
177  if (sensor == NULL ||
178      !pool->usage_threshold()->is_high_threshold_supported() ||
179      pool->usage_threshold()->high_threshold() == 0) {
180    return;
181  }
182
183  {
184    MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
185
186    MemoryUsage usage = pool->get_memory_usage();
187    sensor->set_gauge_sensor_level(usage,
188                                   pool->usage_threshold());
189    if (sensor->has_pending_requests()) {
190      // notify sensor state update
191      LowMemory_lock->notify_all();
192    }
193  }
194}
195
196// Only called by VMThread at GC time
197void LowMemoryDetector::detect_after_gc_memory(MemoryPool* pool) {
198  SensorInfo* sensor = pool->gc_usage_sensor();
199  if (sensor == NULL ||
200      !pool->gc_usage_threshold()->is_high_threshold_supported() ||
201      pool->gc_usage_threshold()->high_threshold() == 0) {
202    return;
203  }
204
205  {
206    MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
207
208    MemoryUsage usage = pool->get_last_collection_usage();
209    sensor->set_counter_sensor_level(usage, pool->gc_usage_threshold());
210
211    if (sensor->has_pending_requests()) {
212      // notify sensor state update
213      LowMemory_lock->notify_all();
214    }
215  }
216}
217
218// recompute enabled flag
219void LowMemoryDetector::recompute_enabled_for_collected_pools() {
220  bool enabled = false;
221  int num_memory_pools = MemoryService::num_memory_pools();
222  for (int i=0; i<num_memory_pools; i++) {
223    MemoryPool* pool = MemoryService::get_memory_pool(i);
224    if (pool->is_collected_pool() && is_enabled(pool)) {
225      enabled = true;
226      break;
227    }
228  }
229  _enabled_for_collected_pools = enabled;
230}
231
232SensorInfo::SensorInfo() {
233  _sensor_obj = NULL;
234  _sensor_on = false;
235  _sensor_count = 0;
236  _pending_trigger_count = 0;
237  _pending_clear_count = 0;
238}
239
240// When this method is used, the memory usage is monitored
241// as a gauge attribute.  Sensor notifications (trigger or
242// clear) is only emitted at the first time it crosses
243// a threshold.
244//
245// High and low thresholds are designed to provide a
246// hysteresis mechanism to avoid repeated triggering
247// of notifications when the attribute value makes small oscillations
248// around the high or low threshold value.
249//
250// The sensor will be triggered if:
251//  (1) the usage is crossing above the high threshold and
252//      the sensor is currently off and no pending
253//      trigger requests; or
254//  (2) the usage is crossing above the high threshold and
255//      the sensor will be off (i.e. sensor is currently on
256//      and has pending clear requests).
257//
258// Subsequent crossings of the high threshold value do not cause
259// any triggers unless the usage becomes less than the low threshold.
260//
261// The sensor will be cleared if:
262//  (1) the usage is crossing below the low threshold and
263//      the sensor is currently on and no pending
264//      clear requests; or
265//  (2) the usage is crossing below the low threshold and
266//      the sensor will be on (i.e. sensor is currently off
267//      and has pending trigger requests).
268//
269// Subsequent crossings of the low threshold value do not cause
270// any clears unless the usage becomes greater than or equal
271// to the high threshold.
272//
273// If the current level is between high and low threhsold, no change.
274//
275void SensorInfo::set_gauge_sensor_level(MemoryUsage usage, ThresholdSupport* high_low_threshold) {
276  assert(high_low_threshold->is_high_threshold_supported(), "just checking");
277
278  bool is_over_high = high_low_threshold->is_high_threshold_crossed(usage);
279  bool is_below_low = high_low_threshold->is_low_threshold_crossed(usage);
280
281  assert(!(is_over_high && is_below_low), "Can't be both true");
282
283  if (is_over_high &&
284        ((!_sensor_on && _pending_trigger_count == 0) ||
285         _pending_clear_count > 0)) {
286    // low memory detected and need to increment the trigger pending count
287    // if the sensor is off or will be off due to _pending_clear_ > 0
288    // Request to trigger the sensor
289    _pending_trigger_count++;
290    _usage = usage;
291
292    if (_pending_clear_count > 0) {
293      // non-zero pending clear requests indicates that there are
294      // pending requests to clear this sensor.
295      // This trigger request needs to clear this clear count
296      // since the resulting sensor flag should be on.
297      _pending_clear_count = 0;
298    }
299  } else if (is_below_low &&
300               ((_sensor_on && _pending_clear_count == 0) ||
301                (_pending_trigger_count > 0 && _pending_clear_count == 0))) {
302    // memory usage returns below the threshold
303    // Request to clear the sensor if the sensor is on or will be on due to
304    // _pending_trigger_count > 0 and also no clear request
305    _pending_clear_count++;
306  }
307}
308
309// When this method is used, the memory usage is monitored as a
310// simple counter attribute.  The sensor will be triggered
311// whenever the usage is crossing the threshold to keep track
312// of the number of times the VM detects such a condition occurs.
313//
314// High and low thresholds are designed to provide a
315// hysteresis mechanism to avoid repeated triggering
316// of notifications when the attribute value makes small oscillations
317// around the high or low threshold value.
318//
319// The sensor will be triggered if:
320//   - the usage is crossing above the high threshold regardless
321//     of the current sensor state.
322//
323// The sensor will be cleared if:
324//  (1) the usage is crossing below the low threshold and
325//      the sensor is currently on; or
326//  (2) the usage is crossing below the low threshold and
327//      the sensor will be on (i.e. sensor is currently off
328//      and has pending trigger requests).
329void SensorInfo::set_counter_sensor_level(MemoryUsage usage, ThresholdSupport* counter_threshold) {
330  assert(counter_threshold->is_high_threshold_supported(), "just checking");
331
332  bool is_over_high = counter_threshold->is_high_threshold_crossed(usage);
333  bool is_below_low = counter_threshold->is_low_threshold_crossed(usage);
334
335  assert(!(is_over_high && is_below_low), "Can't be both true");
336
337  if (is_over_high) {
338    _pending_trigger_count++;
339    _usage = usage;
340    _pending_clear_count = 0;
341  } else if (is_below_low && (_sensor_on || _pending_trigger_count > 0)) {
342    _pending_clear_count++;
343  }
344}
345
346void SensorInfo::oops_do(OopClosure* f) {
347  f->do_oop((oop*) &_sensor_obj);
348}
349
350void SensorInfo::process_pending_requests(TRAPS) {
351  if (!has_pending_requests()) {
352    return;
353  }
354
355  int pending_count = pending_trigger_count();
356  if (pending_clear_count() > 0) {
357    clear(pending_count, CHECK);
358  } else {
359    trigger(pending_count, CHECK);
360  }
361
362}
363
364void SensorInfo::trigger(int count, TRAPS) {
365  assert(count <= _pending_trigger_count, "just checking");
366
367  if (_sensor_obj != NULL) {
368    klassOop k = Management::sun_management_Sensor_klass(CHECK);
369    instanceKlassHandle sensorKlass (THREAD, k);
370    Handle sensor_h(THREAD, _sensor_obj);
371    Handle usage_h = MemoryService::create_MemoryUsage_obj(_usage, CHECK);
372
373    JavaValue result(T_VOID);
374    JavaCallArguments args(sensor_h);
375    args.push_int((int) count);
376    args.push_oop(usage_h);
377
378    JavaCalls::call_virtual(&result,
379                            sensorKlass,
380                            vmSymbols::trigger_name(),
381                            vmSymbols::trigger_method_signature(),
382                            &args,
383                            CHECK);
384  }
385
386  {
387    // Holds LowMemory_lock and update the sensor state
388    MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
389    _sensor_on = true;
390    _sensor_count += count;
391    _pending_trigger_count = _pending_trigger_count - count;
392  }
393}
394
395void SensorInfo::clear(int count, TRAPS) {
396  if (_sensor_obj != NULL) {
397    klassOop k = Management::sun_management_Sensor_klass(CHECK);
398    instanceKlassHandle sensorKlass (THREAD, k);
399    Handle sensor(THREAD, _sensor_obj);
400
401    JavaValue result(T_VOID);
402    JavaCallArguments args(sensor);
403    args.push_int((int) count);
404    JavaCalls::call_virtual(&result,
405                            sensorKlass,
406                            vmSymbols::clear_name(),
407                            vmSymbols::int_void_signature(),
408                            &args,
409                            CHECK);
410  }
411
412  {
413    // Holds LowMemory_lock and update the sensor state
414    MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
415    _sensor_on = false;
416    _pending_clear_count = 0;
417    _pending_trigger_count = _pending_trigger_count - count;
418  }
419}
420
421//--------------------------------------------------------------
422// Non-product code
423
424#ifndef PRODUCT
425void SensorInfo::print() {
426  tty->print_cr("%s count = %ld pending_triggers = %ld pending_clears = %ld",
427                (_sensor_on ? "on" : "off"),
428                _sensor_count, _pending_trigger_count, _pending_clear_count);
429}
430
431#endif // PRODUCT
432