thread.cpp revision 9287:40bd4478a362
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/codeCacheExtensions.hpp"
32#include "code/scopeDesc.hpp"
33#include "compiler/compileBroker.hpp"
34#include "gc/shared/gcId.hpp"
35#include "gc/shared/gcLocker.inline.hpp"
36#include "gc/shared/workgroup.hpp"
37#include "interpreter/interpreter.hpp"
38#include "interpreter/linkResolver.hpp"
39#include "interpreter/oopMapCache.hpp"
40#include "jvmtifiles/jvmtiEnv.hpp"
41#include "logging/logConfiguration.hpp"
42#include "memory/metaspaceShared.hpp"
43#include "memory/oopFactory.hpp"
44#include "memory/universe.inline.hpp"
45#include "oops/instanceKlass.hpp"
46#include "oops/objArrayOop.hpp"
47#include "oops/oop.inline.hpp"
48#include "oops/symbol.hpp"
49#include "oops/verifyOopClosure.hpp"
50#include "prims/jvm_misc.hpp"
51#include "prims/jvmtiExport.hpp"
52#include "prims/jvmtiThreadState.hpp"
53#include "prims/privilegedStack.hpp"
54#include "runtime/arguments.hpp"
55#include "runtime/atomic.inline.hpp"
56#include "runtime/biasedLocking.hpp"
57#include "runtime/commandLineFlagConstraintList.hpp"
58#include "runtime/commandLineFlagRangeList.hpp"
59#include "runtime/deoptimization.hpp"
60#include "runtime/fprofiler.hpp"
61#include "runtime/frame.inline.hpp"
62#include "runtime/globals.hpp"
63#include "runtime/init.hpp"
64#include "runtime/interfaceSupport.hpp"
65#include "runtime/java.hpp"
66#include "runtime/javaCalls.hpp"
67#include "runtime/jniPeriodicChecker.hpp"
68#include "runtime/memprofiler.hpp"
69#include "runtime/mutexLocker.hpp"
70#include "runtime/objectMonitor.hpp"
71#include "runtime/orderAccess.inline.hpp"
72#include "runtime/osThread.hpp"
73#include "runtime/safepoint.hpp"
74#include "runtime/sharedRuntime.hpp"
75#include "runtime/statSampler.hpp"
76#include "runtime/stubRoutines.hpp"
77#include "runtime/sweeper.hpp"
78#include "runtime/task.hpp"
79#include "runtime/thread.inline.hpp"
80#include "runtime/threadCritical.hpp"
81#include "runtime/threadLocalStorage.hpp"
82#include "runtime/vframe.hpp"
83#include "runtime/vframeArray.hpp"
84#include "runtime/vframe_hp.hpp"
85#include "runtime/vmThread.hpp"
86#include "runtime/vm_operations.hpp"
87#include "runtime/vm_version.hpp"
88#include "services/attachListener.hpp"
89#include "services/management.hpp"
90#include "services/memTracker.hpp"
91#include "services/threadService.hpp"
92#include "trace/traceMacros.hpp"
93#include "trace/tracing.hpp"
94#include "utilities/defaultStream.hpp"
95#include "utilities/dtrace.hpp"
96#include "utilities/events.hpp"
97#include "utilities/macros.hpp"
98#include "utilities/preserveException.hpp"
99#if INCLUDE_ALL_GCS
100#include "gc/cms/concurrentMarkSweepThread.hpp"
101#include "gc/g1/concurrentMarkThread.inline.hpp"
102#include "gc/parallel/pcTasks.hpp"
103#endif // INCLUDE_ALL_GCS
104#if INCLUDE_JVMCI
105#include "jvmci/jvmciCompiler.hpp"
106#include "jvmci/jvmciRuntime.hpp"
107#endif
108#ifdef COMPILER1
109#include "c1/c1_Compiler.hpp"
110#endif
111#ifdef COMPILER2
112#include "opto/c2compiler.hpp"
113#include "opto/idealGraphPrinter.hpp"
114#endif
115#if INCLUDE_RTM_OPT
116#include "runtime/rtmLocking.hpp"
117#endif
118
119#ifdef DTRACE_ENABLED
120
121// Only bother with this argument setup if dtrace is available
122
123  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
124  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
125
126  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
127    {                                                                      \
128      ResourceMark rm(this);                                               \
129      int len = 0;                                                         \
130      const char* name = (javathread)->get_thread_name();                  \
131      len = strlen(name);                                                  \
132      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
133        (char *) name, len,                                                \
134        java_lang_Thread::thread_id((javathread)->threadObj()),            \
135        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
136        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
137    }
138
139#else //  ndef DTRACE_ENABLED
140
141  #define DTRACE_THREAD_PROBE(probe, javathread)
142
143#endif // ndef DTRACE_ENABLED
144
145
146// Class hierarchy
147// - Thread
148//   - VMThread
149//   - WatcherThread
150//   - ConcurrentMarkSweepThread
151//   - JavaThread
152//     - CompilerThread
153
154// ======= Thread ========
155// Support for forcing alignment of thread objects for biased locking
156void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
157  if (UseBiasedLocking) {
158    const int alignment = markOopDesc::biased_lock_alignment;
159    size_t aligned_size = size + (alignment - sizeof(intptr_t));
160    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
161                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
162                                                         AllocFailStrategy::RETURN_NULL);
163    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
164    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
165           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
166           "JavaThread alignment code overflowed allocated storage");
167    if (TraceBiasedLocking) {
168      if (aligned_addr != real_malloc_addr) {
169        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
170                      p2i(real_malloc_addr), p2i(aligned_addr));
171      }
172    }
173    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
174    return aligned_addr;
175  } else {
176    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
177                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
178  }
179}
180
181void Thread::operator delete(void* p) {
182  if (UseBiasedLocking) {
183    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
184    FreeHeap(real_malloc_addr);
185  } else {
186    FreeHeap(p);
187  }
188}
189
190
191// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
192// JavaThread
193
194
195Thread::Thread() {
196  // stack and get_thread
197  set_stack_base(NULL);
198  set_stack_size(0);
199  set_self_raw_id(0);
200  set_lgrp_id(-1);
201  DEBUG_ONLY(clear_suspendible_thread();)
202
203  // allocated data structures
204  set_osthread(NULL);
205  set_resource_area(new (mtThread)ResourceArea());
206  DEBUG_ONLY(_current_resource_mark = NULL;)
207  set_handle_area(new (mtThread) HandleArea(NULL));
208  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
209  set_active_handles(NULL);
210  set_free_handle_block(NULL);
211  set_last_handle_mark(NULL);
212
213  // This initial value ==> never claimed.
214  _oops_do_parity = 0;
215
216  // the handle mark links itself to last_handle_mark
217  new HandleMark(this);
218
219  // plain initialization
220  debug_only(_owned_locks = NULL;)
221  debug_only(_allow_allocation_count = 0;)
222  NOT_PRODUCT(_allow_safepoint_count = 0;)
223  NOT_PRODUCT(_skip_gcalot = false;)
224  _jvmti_env_iteration_count = 0;
225  set_allocated_bytes(0);
226  _vm_operation_started_count = 0;
227  _vm_operation_completed_count = 0;
228  _current_pending_monitor = NULL;
229  _current_pending_monitor_is_from_java = true;
230  _current_waiting_monitor = NULL;
231  _num_nested_signal = 0;
232  omFreeList = NULL;
233  omFreeCount = 0;
234  omFreeProvision = 32;
235  omInUseList = NULL;
236  omInUseCount = 0;
237
238#ifdef ASSERT
239  _visited_for_critical_count = false;
240#endif
241
242  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
243                         Monitor::_safepoint_check_sometimes);
244  _suspend_flags = 0;
245
246  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
247  _hashStateX = os::random();
248  _hashStateY = 842502087;
249  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
250  _hashStateW = 273326509;
251
252  _OnTrap   = 0;
253  _schedctl = NULL;
254  _Stalled  = 0;
255  _TypeTag  = 0x2BAD;
256
257  // Many of the following fields are effectively final - immutable
258  // Note that nascent threads can't use the Native Monitor-Mutex
259  // construct until the _MutexEvent is initialized ...
260  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
261  // we might instead use a stack of ParkEvents that we could provision on-demand.
262  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
263  // and ::Release()
264  _ParkEvent   = ParkEvent::Allocate(this);
265  _SleepEvent  = ParkEvent::Allocate(this);
266  _MutexEvent  = ParkEvent::Allocate(this);
267  _MuxEvent    = ParkEvent::Allocate(this);
268
269#ifdef CHECK_UNHANDLED_OOPS
270  if (CheckUnhandledOops) {
271    _unhandled_oops = new UnhandledOops(this);
272  }
273#endif // CHECK_UNHANDLED_OOPS
274#ifdef ASSERT
275  if (UseBiasedLocking) {
276    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
277    assert(this == _real_malloc_address ||
278           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
279           "bug in forced alignment of thread objects");
280  }
281#endif // ASSERT
282}
283
284// Non-inlined version to be used where thread.inline.hpp shouldn't be included.
285Thread* Thread::current_noinline() {
286  return Thread::current();
287}
288
289void Thread::initialize_thread_local_storage() {
290  // Note: Make sure this method only calls
291  // non-blocking operations. Otherwise, it might not work
292  // with the thread-startup/safepoint interaction.
293
294  // During Java thread startup, safepoint code should allow this
295  // method to complete because it may need to allocate memory to
296  // store information for the new thread.
297
298  // initialize structure dependent on thread local storage
299  ThreadLocalStorage::set_thread(this);
300}
301
302void Thread::record_stack_base_and_size() {
303  set_stack_base(os::current_stack_base());
304  set_stack_size(os::current_stack_size());
305  if (is_Java_thread()) {
306    ((JavaThread*) this)->set_stack_overflow_limit();
307  }
308  // CR 7190089: on Solaris, primordial thread's stack is adjusted
309  // in initialize_thread(). Without the adjustment, stack size is
310  // incorrect if stack is set to unlimited (ulimit -s unlimited).
311  // So far, only Solaris has real implementation of initialize_thread().
312  //
313  // set up any platform-specific state.
314  os::initialize_thread(this);
315
316#if INCLUDE_NMT
317  // record thread's native stack, stack grows downward
318  address stack_low_addr = stack_base() - stack_size();
319  MemTracker::record_thread_stack(stack_low_addr, stack_size());
320#endif // INCLUDE_NMT
321}
322
323
324Thread::~Thread() {
325  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
326  ObjectSynchronizer::omFlush(this);
327
328  EVENT_THREAD_DESTRUCT(this);
329
330  // stack_base can be NULL if the thread is never started or exited before
331  // record_stack_base_and_size called. Although, we would like to ensure
332  // that all started threads do call record_stack_base_and_size(), there is
333  // not proper way to enforce that.
334#if INCLUDE_NMT
335  if (_stack_base != NULL) {
336    address low_stack_addr = stack_base() - stack_size();
337    MemTracker::release_thread_stack(low_stack_addr, stack_size());
338#ifdef ASSERT
339    set_stack_base(NULL);
340#endif
341  }
342#endif // INCLUDE_NMT
343
344  // deallocate data structures
345  delete resource_area();
346  // since the handle marks are using the handle area, we have to deallocated the root
347  // handle mark before deallocating the thread's handle area,
348  assert(last_handle_mark() != NULL, "check we have an element");
349  delete last_handle_mark();
350  assert(last_handle_mark() == NULL, "check we have reached the end");
351
352  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
353  // We NULL out the fields for good hygiene.
354  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
355  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
356  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
357  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
358
359  delete handle_area();
360  delete metadata_handles();
361
362  // osthread() can be NULL, if creation of thread failed.
363  if (osthread() != NULL) os::free_thread(osthread());
364
365  delete _SR_lock;
366
367  // clear thread local storage if the Thread is deleting itself
368  if (this == Thread::current()) {
369    ThreadLocalStorage::set_thread(NULL);
370  } else {
371    // In the case where we're not the current thread, invalidate all the
372    // caches in case some code tries to get the current thread or the
373    // thread that was destroyed, and gets stale information.
374    ThreadLocalStorage::invalidate_all();
375  }
376  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
377}
378
379// NOTE: dummy function for assertion purpose.
380void Thread::run() {
381  ShouldNotReachHere();
382}
383
384#ifdef ASSERT
385// Private method to check for dangling thread pointer
386void check_for_dangling_thread_pointer(Thread *thread) {
387  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
388         "possibility of dangling Thread pointer");
389}
390#endif
391
392ThreadPriority Thread::get_priority(const Thread* const thread) {
393  ThreadPriority priority;
394  // Can return an error!
395  (void)os::get_priority(thread, priority);
396  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
397  return priority;
398}
399
400void Thread::set_priority(Thread* thread, ThreadPriority priority) {
401  debug_only(check_for_dangling_thread_pointer(thread);)
402  // Can return an error!
403  (void)os::set_priority(thread, priority);
404}
405
406
407void Thread::start(Thread* thread) {
408  // Start is different from resume in that its safety is guaranteed by context or
409  // being called from a Java method synchronized on the Thread object.
410  if (!DisableStartThread) {
411    if (thread->is_Java_thread()) {
412      // Initialize the thread state to RUNNABLE before starting this thread.
413      // Can not set it after the thread started because we do not know the
414      // exact thread state at that time. It could be in MONITOR_WAIT or
415      // in SLEEPING or some other state.
416      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
417                                          java_lang_Thread::RUNNABLE);
418    }
419    os::start_thread(thread);
420  }
421}
422
423// Enqueue a VM_Operation to do the job for us - sometime later
424void Thread::send_async_exception(oop java_thread, oop java_throwable) {
425  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
426  VMThread::execute(vm_stop);
427}
428
429
430// Check if an external suspend request has completed (or has been
431// cancelled). Returns true if the thread is externally suspended and
432// false otherwise.
433//
434// The bits parameter returns information about the code path through
435// the routine. Useful for debugging:
436//
437// set in is_ext_suspend_completed():
438// 0x00000001 - routine was entered
439// 0x00000010 - routine return false at end
440// 0x00000100 - thread exited (return false)
441// 0x00000200 - suspend request cancelled (return false)
442// 0x00000400 - thread suspended (return true)
443// 0x00001000 - thread is in a suspend equivalent state (return true)
444// 0x00002000 - thread is native and walkable (return true)
445// 0x00004000 - thread is native_trans and walkable (needed retry)
446//
447// set in wait_for_ext_suspend_completion():
448// 0x00010000 - routine was entered
449// 0x00020000 - suspend request cancelled before loop (return false)
450// 0x00040000 - thread suspended before loop (return true)
451// 0x00080000 - suspend request cancelled in loop (return false)
452// 0x00100000 - thread suspended in loop (return true)
453// 0x00200000 - suspend not completed during retry loop (return false)
454
455// Helper class for tracing suspend wait debug bits.
456//
457// 0x00000100 indicates that the target thread exited before it could
458// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
459// 0x00080000 each indicate a cancelled suspend request so they don't
460// count as wait failures either.
461#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
462
463class TraceSuspendDebugBits : public StackObj {
464 private:
465  JavaThread * jt;
466  bool         is_wait;
467  bool         called_by_wait;  // meaningful when !is_wait
468  uint32_t *   bits;
469
470 public:
471  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
472                        uint32_t *_bits) {
473    jt             = _jt;
474    is_wait        = _is_wait;
475    called_by_wait = _called_by_wait;
476    bits           = _bits;
477  }
478
479  ~TraceSuspendDebugBits() {
480    if (!is_wait) {
481#if 1
482      // By default, don't trace bits for is_ext_suspend_completed() calls.
483      // That trace is very chatty.
484      return;
485#else
486      if (!called_by_wait) {
487        // If tracing for is_ext_suspend_completed() is enabled, then only
488        // trace calls to it from wait_for_ext_suspend_completion()
489        return;
490      }
491#endif
492    }
493
494    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
495      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
496        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
497        ResourceMark rm;
498
499        tty->print_cr(
500                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
501                      jt->get_thread_name(), *bits);
502
503        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
504      }
505    }
506  }
507};
508#undef DEBUG_FALSE_BITS
509
510
511bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
512                                          uint32_t *bits) {
513  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
514
515  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
516  bool do_trans_retry;           // flag to force the retry
517
518  *bits |= 0x00000001;
519
520  do {
521    do_trans_retry = false;
522
523    if (is_exiting()) {
524      // Thread is in the process of exiting. This is always checked
525      // first to reduce the risk of dereferencing a freed JavaThread.
526      *bits |= 0x00000100;
527      return false;
528    }
529
530    if (!is_external_suspend()) {
531      // Suspend request is cancelled. This is always checked before
532      // is_ext_suspended() to reduce the risk of a rogue resume
533      // confusing the thread that made the suspend request.
534      *bits |= 0x00000200;
535      return false;
536    }
537
538    if (is_ext_suspended()) {
539      // thread is suspended
540      *bits |= 0x00000400;
541      return true;
542    }
543
544    // Now that we no longer do hard suspends of threads running
545    // native code, the target thread can be changing thread state
546    // while we are in this routine:
547    //
548    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
549    //
550    // We save a copy of the thread state as observed at this moment
551    // and make our decision about suspend completeness based on the
552    // copy. This closes the race where the thread state is seen as
553    // _thread_in_native_trans in the if-thread_blocked check, but is
554    // seen as _thread_blocked in if-thread_in_native_trans check.
555    JavaThreadState save_state = thread_state();
556
557    if (save_state == _thread_blocked && is_suspend_equivalent()) {
558      // If the thread's state is _thread_blocked and this blocking
559      // condition is known to be equivalent to a suspend, then we can
560      // consider the thread to be externally suspended. This means that
561      // the code that sets _thread_blocked has been modified to do
562      // self-suspension if the blocking condition releases. We also
563      // used to check for CONDVAR_WAIT here, but that is now covered by
564      // the _thread_blocked with self-suspension check.
565      //
566      // Return true since we wouldn't be here unless there was still an
567      // external suspend request.
568      *bits |= 0x00001000;
569      return true;
570    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
571      // Threads running native code will self-suspend on native==>VM/Java
572      // transitions. If its stack is walkable (should always be the case
573      // unless this function is called before the actual java_suspend()
574      // call), then the wait is done.
575      *bits |= 0x00002000;
576      return true;
577    } else if (!called_by_wait && !did_trans_retry &&
578               save_state == _thread_in_native_trans &&
579               frame_anchor()->walkable()) {
580      // The thread is transitioning from thread_in_native to another
581      // thread state. check_safepoint_and_suspend_for_native_trans()
582      // will force the thread to self-suspend. If it hasn't gotten
583      // there yet we may have caught the thread in-between the native
584      // code check above and the self-suspend. Lucky us. If we were
585      // called by wait_for_ext_suspend_completion(), then it
586      // will be doing the retries so we don't have to.
587      //
588      // Since we use the saved thread state in the if-statement above,
589      // there is a chance that the thread has already transitioned to
590      // _thread_blocked by the time we get here. In that case, we will
591      // make a single unnecessary pass through the logic below. This
592      // doesn't hurt anything since we still do the trans retry.
593
594      *bits |= 0x00004000;
595
596      // Once the thread leaves thread_in_native_trans for another
597      // thread state, we break out of this retry loop. We shouldn't
598      // need this flag to prevent us from getting back here, but
599      // sometimes paranoia is good.
600      did_trans_retry = true;
601
602      // We wait for the thread to transition to a more usable state.
603      for (int i = 1; i <= SuspendRetryCount; i++) {
604        // We used to do an "os::yield_all(i)" call here with the intention
605        // that yielding would increase on each retry. However, the parameter
606        // is ignored on Linux which means the yield didn't scale up. Waiting
607        // on the SR_lock below provides a much more predictable scale up for
608        // the delay. It also provides a simple/direct point to check for any
609        // safepoint requests from the VMThread
610
611        // temporarily drops SR_lock while doing wait with safepoint check
612        // (if we're a JavaThread - the WatcherThread can also call this)
613        // and increase delay with each retry
614        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
615
616        // check the actual thread state instead of what we saved above
617        if (thread_state() != _thread_in_native_trans) {
618          // the thread has transitioned to another thread state so
619          // try all the checks (except this one) one more time.
620          do_trans_retry = true;
621          break;
622        }
623      } // end retry loop
624
625
626    }
627  } while (do_trans_retry);
628
629  *bits |= 0x00000010;
630  return false;
631}
632
633// Wait for an external suspend request to complete (or be cancelled).
634// Returns true if the thread is externally suspended and false otherwise.
635//
636bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
637                                                 uint32_t *bits) {
638  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
639                             false /* !called_by_wait */, bits);
640
641  // local flag copies to minimize SR_lock hold time
642  bool is_suspended;
643  bool pending;
644  uint32_t reset_bits;
645
646  // set a marker so is_ext_suspend_completed() knows we are the caller
647  *bits |= 0x00010000;
648
649  // We use reset_bits to reinitialize the bits value at the top of
650  // each retry loop. This allows the caller to make use of any
651  // unused bits for their own marking purposes.
652  reset_bits = *bits;
653
654  {
655    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
656    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
657                                            delay, bits);
658    pending = is_external_suspend();
659  }
660  // must release SR_lock to allow suspension to complete
661
662  if (!pending) {
663    // A cancelled suspend request is the only false return from
664    // is_ext_suspend_completed() that keeps us from entering the
665    // retry loop.
666    *bits |= 0x00020000;
667    return false;
668  }
669
670  if (is_suspended) {
671    *bits |= 0x00040000;
672    return true;
673  }
674
675  for (int i = 1; i <= retries; i++) {
676    *bits = reset_bits;  // reinit to only track last retry
677
678    // We used to do an "os::yield_all(i)" call here with the intention
679    // that yielding would increase on each retry. However, the parameter
680    // is ignored on Linux which means the yield didn't scale up. Waiting
681    // on the SR_lock below provides a much more predictable scale up for
682    // the delay. It also provides a simple/direct point to check for any
683    // safepoint requests from the VMThread
684
685    {
686      MutexLocker ml(SR_lock());
687      // wait with safepoint check (if we're a JavaThread - the WatcherThread
688      // can also call this)  and increase delay with each retry
689      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
690
691      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
692                                              delay, bits);
693
694      // It is possible for the external suspend request to be cancelled
695      // (by a resume) before the actual suspend operation is completed.
696      // Refresh our local copy to see if we still need to wait.
697      pending = is_external_suspend();
698    }
699
700    if (!pending) {
701      // A cancelled suspend request is the only false return from
702      // is_ext_suspend_completed() that keeps us from staying in the
703      // retry loop.
704      *bits |= 0x00080000;
705      return false;
706    }
707
708    if (is_suspended) {
709      *bits |= 0x00100000;
710      return true;
711    }
712  } // end retry loop
713
714  // thread did not suspend after all our retries
715  *bits |= 0x00200000;
716  return false;
717}
718
719#ifndef PRODUCT
720void JavaThread::record_jump(address target, address instr, const char* file,
721                             int line) {
722
723  // This should not need to be atomic as the only way for simultaneous
724  // updates is via interrupts. Even then this should be rare or non-existent
725  // and we don't care that much anyway.
726
727  int index = _jmp_ring_index;
728  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
729  _jmp_ring[index]._target = (intptr_t) target;
730  _jmp_ring[index]._instruction = (intptr_t) instr;
731  _jmp_ring[index]._file = file;
732  _jmp_ring[index]._line = line;
733}
734#endif // PRODUCT
735
736// Called by flat profiler
737// Callers have already called wait_for_ext_suspend_completion
738// The assertion for that is currently too complex to put here:
739bool JavaThread::profile_last_Java_frame(frame* _fr) {
740  bool gotframe = false;
741  // self suspension saves needed state.
742  if (has_last_Java_frame() && _anchor.walkable()) {
743    *_fr = pd_last_frame();
744    gotframe = true;
745  }
746  return gotframe;
747}
748
749void Thread::interrupt(Thread* thread) {
750  debug_only(check_for_dangling_thread_pointer(thread);)
751  os::interrupt(thread);
752}
753
754bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
755  debug_only(check_for_dangling_thread_pointer(thread);)
756  // Note:  If clear_interrupted==false, this simply fetches and
757  // returns the value of the field osthread()->interrupted().
758  return os::is_interrupted(thread, clear_interrupted);
759}
760
761
762// GC Support
763bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
764  jint thread_parity = _oops_do_parity;
765  if (thread_parity != strong_roots_parity) {
766    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
767    if (res == thread_parity) {
768      return true;
769    } else {
770      guarantee(res == strong_roots_parity, "Or else what?");
771      return false;
772    }
773  }
774  return false;
775}
776
777void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
778  active_handles()->oops_do(f);
779  // Do oop for ThreadShadow
780  f->do_oop((oop*)&_pending_exception);
781  handle_area()->oops_do(f);
782}
783
784void Thread::nmethods_do(CodeBlobClosure* cf) {
785  // no nmethods in a generic thread...
786}
787
788void Thread::metadata_handles_do(void f(Metadata*)) {
789  // Only walk the Handles in Thread.
790  if (metadata_handles() != NULL) {
791    for (int i = 0; i< metadata_handles()->length(); i++) {
792      f(metadata_handles()->at(i));
793    }
794  }
795}
796
797void Thread::print_on(outputStream* st) const {
798  // get_priority assumes osthread initialized
799  if (osthread() != NULL) {
800    int os_prio;
801    if (os::get_native_priority(this, &os_prio) == OS_OK) {
802      st->print("os_prio=%d ", os_prio);
803    }
804    st->print("tid=" INTPTR_FORMAT " ", p2i(this));
805    ext().print_on(st);
806    osthread()->print_on(st);
807  }
808  debug_only(if (WizardMode) print_owned_locks_on(st);)
809}
810
811// Thread::print_on_error() is called by fatal error handler. Don't use
812// any lock or allocate memory.
813void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
814  if (is_VM_thread())                 st->print("VMThread");
815  else if (is_Compiler_thread())      st->print("CompilerThread");
816  else if (is_Java_thread())          st->print("JavaThread");
817  else if (is_GC_task_thread())       st->print("GCTaskThread");
818  else if (is_Watcher_thread())       st->print("WatcherThread");
819  else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
820  else                                st->print("Thread");
821
822  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
823            p2i(_stack_base - _stack_size), p2i(_stack_base));
824
825  if (osthread()) {
826    st->print(" [id=%d]", osthread()->thread_id());
827  }
828}
829
830#ifdef ASSERT
831void Thread::print_owned_locks_on(outputStream* st) const {
832  Monitor *cur = _owned_locks;
833  if (cur == NULL) {
834    st->print(" (no locks) ");
835  } else {
836    st->print_cr(" Locks owned:");
837    while (cur) {
838      cur->print_on(st);
839      cur = cur->next();
840    }
841  }
842}
843
844static int ref_use_count  = 0;
845
846bool Thread::owns_locks_but_compiled_lock() const {
847  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
848    if (cur != Compile_lock) return true;
849  }
850  return false;
851}
852
853
854#endif
855
856#ifndef PRODUCT
857
858// The flag: potential_vm_operation notifies if this particular safepoint state could potential
859// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
860// no threads which allow_vm_block's are held
861void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
862  // Check if current thread is allowed to block at a safepoint
863  if (!(_allow_safepoint_count == 0)) {
864    fatal("Possible safepoint reached by thread that does not allow it");
865  }
866  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
867    fatal("LEAF method calling lock?");
868  }
869
870#ifdef ASSERT
871  if (potential_vm_operation && is_Java_thread()
872      && !Universe::is_bootstrapping()) {
873    // Make sure we do not hold any locks that the VM thread also uses.
874    // This could potentially lead to deadlocks
875    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
876      // Threads_lock is special, since the safepoint synchronization will not start before this is
877      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
878      // since it is used to transfer control between JavaThreads and the VMThread
879      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
880      if ((cur->allow_vm_block() &&
881           cur != Threads_lock &&
882           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
883           cur != VMOperationRequest_lock &&
884           cur != VMOperationQueue_lock) ||
885           cur->rank() == Mutex::special) {
886        fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
887      }
888    }
889  }
890
891  if (GCALotAtAllSafepoints) {
892    // We could enter a safepoint here and thus have a gc
893    InterfaceSupport::check_gc_alot();
894  }
895#endif
896}
897#endif
898
899bool Thread::is_in_stack(address adr) const {
900  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
901  address end = os::current_stack_pointer();
902  // Allow non Java threads to call this without stack_base
903  if (_stack_base == NULL) return true;
904  if (stack_base() >= adr && adr >= end) return true;
905
906  return false;
907}
908
909
910bool Thread::is_in_usable_stack(address adr) const {
911  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
912  size_t usable_stack_size = _stack_size - stack_guard_size;
913
914  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
915}
916
917
918// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
919// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
920// used for compilation in the future. If that change is made, the need for these methods
921// should be revisited, and they should be removed if possible.
922
923bool Thread::is_lock_owned(address adr) const {
924  return on_local_stack(adr);
925}
926
927bool Thread::set_as_starting_thread() {
928  // NOTE: this must be called inside the main thread.
929  return os::create_main_thread((JavaThread*)this);
930}
931
932static void initialize_class(Symbol* class_name, TRAPS) {
933  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
934  InstanceKlass::cast(klass)->initialize(CHECK);
935}
936
937
938// Creates the initial ThreadGroup
939static Handle create_initial_thread_group(TRAPS) {
940  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
941  instanceKlassHandle klass (THREAD, k);
942
943  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
944  {
945    JavaValue result(T_VOID);
946    JavaCalls::call_special(&result,
947                            system_instance,
948                            klass,
949                            vmSymbols::object_initializer_name(),
950                            vmSymbols::void_method_signature(),
951                            CHECK_NH);
952  }
953  Universe::set_system_thread_group(system_instance());
954
955  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
956  {
957    JavaValue result(T_VOID);
958    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
959    JavaCalls::call_special(&result,
960                            main_instance,
961                            klass,
962                            vmSymbols::object_initializer_name(),
963                            vmSymbols::threadgroup_string_void_signature(),
964                            system_instance,
965                            string,
966                            CHECK_NH);
967  }
968  return main_instance;
969}
970
971// Creates the initial Thread
972static oop create_initial_thread(Handle thread_group, JavaThread* thread,
973                                 TRAPS) {
974  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
975  instanceKlassHandle klass (THREAD, k);
976  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
977
978  java_lang_Thread::set_thread(thread_oop(), thread);
979  java_lang_Thread::set_priority(thread_oop(), NormPriority);
980  thread->set_threadObj(thread_oop());
981
982  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
983
984  JavaValue result(T_VOID);
985  JavaCalls::call_special(&result, thread_oop,
986                          klass,
987                          vmSymbols::object_initializer_name(),
988                          vmSymbols::threadgroup_string_void_signature(),
989                          thread_group,
990                          string,
991                          CHECK_NULL);
992  return thread_oop();
993}
994
995static void call_initializeSystemClass(TRAPS) {
996  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
997  instanceKlassHandle klass (THREAD, k);
998
999  JavaValue result(T_VOID);
1000  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1001                         vmSymbols::void_method_signature(), CHECK);
1002}
1003
1004char java_runtime_name[128] = "";
1005char java_runtime_version[128] = "";
1006
1007// extract the JRE name from sun.misc.Version.java_runtime_name
1008static const char* get_java_runtime_name(TRAPS) {
1009  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1010                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1011  fieldDescriptor fd;
1012  bool found = k != NULL &&
1013               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1014                                                        vmSymbols::string_signature(), &fd);
1015  if (found) {
1016    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1017    if (name_oop == NULL) {
1018      return NULL;
1019    }
1020    const char* name = java_lang_String::as_utf8_string(name_oop,
1021                                                        java_runtime_name,
1022                                                        sizeof(java_runtime_name));
1023    return name;
1024  } else {
1025    return NULL;
1026  }
1027}
1028
1029// extract the JRE version from sun.misc.Version.java_runtime_version
1030static const char* get_java_runtime_version(TRAPS) {
1031  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1032                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1033  fieldDescriptor fd;
1034  bool found = k != NULL &&
1035               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1036                                                        vmSymbols::string_signature(), &fd);
1037  if (found) {
1038    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1039    if (name_oop == NULL) {
1040      return NULL;
1041    }
1042    const char* name = java_lang_String::as_utf8_string(name_oop,
1043                                                        java_runtime_version,
1044                                                        sizeof(java_runtime_version));
1045    return name;
1046  } else {
1047    return NULL;
1048  }
1049}
1050
1051// General purpose hook into Java code, run once when the VM is initialized.
1052// The Java library method itself may be changed independently from the VM.
1053static void call_postVMInitHook(TRAPS) {
1054  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1055  instanceKlassHandle klass (THREAD, k);
1056  if (klass.not_null()) {
1057    JavaValue result(T_VOID);
1058    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1059                           vmSymbols::void_method_signature(),
1060                           CHECK);
1061  }
1062}
1063
1064static void reset_vm_info_property(TRAPS) {
1065  // the vm info string
1066  ResourceMark rm(THREAD);
1067  const char *vm_info = VM_Version::vm_info_string();
1068
1069  // java.lang.System class
1070  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1071  instanceKlassHandle klass (THREAD, k);
1072
1073  // setProperty arguments
1074  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1075  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1076
1077  // return value
1078  JavaValue r(T_OBJECT);
1079
1080  // public static String setProperty(String key, String value);
1081  JavaCalls::call_static(&r,
1082                         klass,
1083                         vmSymbols::setProperty_name(),
1084                         vmSymbols::string_string_string_signature(),
1085                         key_str,
1086                         value_str,
1087                         CHECK);
1088}
1089
1090
1091void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1092                                    bool daemon, TRAPS) {
1093  assert(thread_group.not_null(), "thread group should be specified");
1094  assert(threadObj() == NULL, "should only create Java thread object once");
1095
1096  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1097  instanceKlassHandle klass (THREAD, k);
1098  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1099
1100  java_lang_Thread::set_thread(thread_oop(), this);
1101  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1102  set_threadObj(thread_oop());
1103
1104  JavaValue result(T_VOID);
1105  if (thread_name != NULL) {
1106    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1107    // Thread gets assigned specified name and null target
1108    JavaCalls::call_special(&result,
1109                            thread_oop,
1110                            klass,
1111                            vmSymbols::object_initializer_name(),
1112                            vmSymbols::threadgroup_string_void_signature(),
1113                            thread_group, // Argument 1
1114                            name,         // Argument 2
1115                            THREAD);
1116  } else {
1117    // Thread gets assigned name "Thread-nnn" and null target
1118    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1119    JavaCalls::call_special(&result,
1120                            thread_oop,
1121                            klass,
1122                            vmSymbols::object_initializer_name(),
1123                            vmSymbols::threadgroup_runnable_void_signature(),
1124                            thread_group, // Argument 1
1125                            Handle(),     // Argument 2
1126                            THREAD);
1127  }
1128
1129
1130  if (daemon) {
1131    java_lang_Thread::set_daemon(thread_oop());
1132  }
1133
1134  if (HAS_PENDING_EXCEPTION) {
1135    return;
1136  }
1137
1138  KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1139  Handle threadObj(THREAD, this->threadObj());
1140
1141  JavaCalls::call_special(&result,
1142                          thread_group,
1143                          group,
1144                          vmSymbols::add_method_name(),
1145                          vmSymbols::thread_void_signature(),
1146                          threadObj,          // Arg 1
1147                          THREAD);
1148}
1149
1150// NamedThread --  non-JavaThread subclasses with multiple
1151// uniquely named instances should derive from this.
1152NamedThread::NamedThread() : Thread() {
1153  _name = NULL;
1154  _processed_thread = NULL;
1155  _gc_id = GCId::undefined();
1156}
1157
1158NamedThread::~NamedThread() {
1159  if (_name != NULL) {
1160    FREE_C_HEAP_ARRAY(char, _name);
1161    _name = NULL;
1162  }
1163}
1164
1165void NamedThread::set_name(const char* format, ...) {
1166  guarantee(_name == NULL, "Only get to set name once.");
1167  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1168  guarantee(_name != NULL, "alloc failure");
1169  va_list ap;
1170  va_start(ap, format);
1171  jio_vsnprintf(_name, max_name_len, format, ap);
1172  va_end(ap);
1173}
1174
1175void NamedThread::initialize_named_thread() {
1176  set_native_thread_name(name());
1177}
1178
1179void NamedThread::print_on(outputStream* st) const {
1180  st->print("\"%s\" ", name());
1181  Thread::print_on(st);
1182  st->cr();
1183}
1184
1185
1186// ======= WatcherThread ========
1187
1188// The watcher thread exists to simulate timer interrupts.  It should
1189// be replaced by an abstraction over whatever native support for
1190// timer interrupts exists on the platform.
1191
1192WatcherThread* WatcherThread::_watcher_thread   = NULL;
1193bool WatcherThread::_startable = false;
1194volatile bool  WatcherThread::_should_terminate = false;
1195
1196WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1197  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1198  if (os::create_thread(this, os::watcher_thread)) {
1199    _watcher_thread = this;
1200
1201    // Set the watcher thread to the highest OS priority which should not be
1202    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1203    // is created. The only normal thread using this priority is the reference
1204    // handler thread, which runs for very short intervals only.
1205    // If the VMThread's priority is not lower than the WatcherThread profiling
1206    // will be inaccurate.
1207    os::set_priority(this, MaxPriority);
1208    if (!DisableStartThread) {
1209      os::start_thread(this);
1210    }
1211  }
1212}
1213
1214int WatcherThread::sleep() const {
1215  // The WatcherThread does not participate in the safepoint protocol
1216  // for the PeriodicTask_lock because it is not a JavaThread.
1217  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1218
1219  if (_should_terminate) {
1220    // check for termination before we do any housekeeping or wait
1221    return 0;  // we did not sleep.
1222  }
1223
1224  // remaining will be zero if there are no tasks,
1225  // causing the WatcherThread to sleep until a task is
1226  // enrolled
1227  int remaining = PeriodicTask::time_to_wait();
1228  int time_slept = 0;
1229
1230  // we expect this to timeout - we only ever get unparked when
1231  // we should terminate or when a new task has been enrolled
1232  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1233
1234  jlong time_before_loop = os::javaTimeNanos();
1235
1236  while (true) {
1237    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1238                                            remaining);
1239    jlong now = os::javaTimeNanos();
1240
1241    if (remaining == 0) {
1242      // if we didn't have any tasks we could have waited for a long time
1243      // consider the time_slept zero and reset time_before_loop
1244      time_slept = 0;
1245      time_before_loop = now;
1246    } else {
1247      // need to recalculate since we might have new tasks in _tasks
1248      time_slept = (int) ((now - time_before_loop) / 1000000);
1249    }
1250
1251    // Change to task list or spurious wakeup of some kind
1252    if (timedout || _should_terminate) {
1253      break;
1254    }
1255
1256    remaining = PeriodicTask::time_to_wait();
1257    if (remaining == 0) {
1258      // Last task was just disenrolled so loop around and wait until
1259      // another task gets enrolled
1260      continue;
1261    }
1262
1263    remaining -= time_slept;
1264    if (remaining <= 0) {
1265      break;
1266    }
1267  }
1268
1269  return time_slept;
1270}
1271
1272void WatcherThread::run() {
1273  assert(this == watcher_thread(), "just checking");
1274
1275  this->record_stack_base_and_size();
1276  this->initialize_thread_local_storage();
1277  this->set_native_thread_name(this->name());
1278  this->set_active_handles(JNIHandleBlock::allocate_block());
1279  while (true) {
1280    assert(watcher_thread() == Thread::current(), "thread consistency check");
1281    assert(watcher_thread() == this, "thread consistency check");
1282
1283    // Calculate how long it'll be until the next PeriodicTask work
1284    // should be done, and sleep that amount of time.
1285    int time_waited = sleep();
1286
1287    if (is_error_reported()) {
1288      // A fatal error has happened, the error handler(VMError::report_and_die)
1289      // should abort JVM after creating an error log file. However in some
1290      // rare cases, the error handler itself might deadlock. Here we try to
1291      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1292      //
1293      // This code is in WatcherThread because WatcherThread wakes up
1294      // periodically so the fatal error handler doesn't need to do anything;
1295      // also because the WatcherThread is less likely to crash than other
1296      // threads.
1297
1298      for (;;) {
1299        if (!ShowMessageBoxOnError
1300            && (OnError == NULL || OnError[0] == '\0')
1301            && Arguments::abort_hook() == NULL) {
1302          os::sleep(this, ErrorLogTimeout * 60 * 1000, false);
1303          fdStream err(defaultStream::output_fd());
1304          err.print_raw_cr("# [ timer expired, abort... ]");
1305          // skip atexit/vm_exit/vm_abort hooks
1306          os::die();
1307        }
1308
1309        // Wake up 5 seconds later, the fatal handler may reset OnError or
1310        // ShowMessageBoxOnError when it is ready to abort.
1311        os::sleep(this, 5 * 1000, false);
1312      }
1313    }
1314
1315    if (_should_terminate) {
1316      // check for termination before posting the next tick
1317      break;
1318    }
1319
1320    PeriodicTask::real_time_tick(time_waited);
1321  }
1322
1323  // Signal that it is terminated
1324  {
1325    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1326    _watcher_thread = NULL;
1327    Terminator_lock->notify();
1328  }
1329
1330  // Thread destructor usually does this..
1331  ThreadLocalStorage::set_thread(NULL);
1332}
1333
1334void WatcherThread::start() {
1335  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1336
1337  if (watcher_thread() == NULL && _startable) {
1338    _should_terminate = false;
1339    // Create the single instance of WatcherThread
1340    new WatcherThread();
1341  }
1342}
1343
1344void WatcherThread::make_startable() {
1345  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1346  _startable = true;
1347}
1348
1349void WatcherThread::stop() {
1350  {
1351    // Follow normal safepoint aware lock enter protocol since the
1352    // WatcherThread is stopped by another JavaThread.
1353    MutexLocker ml(PeriodicTask_lock);
1354    _should_terminate = true;
1355
1356    WatcherThread* watcher = watcher_thread();
1357    if (watcher != NULL) {
1358      // unpark the WatcherThread so it can see that it should terminate
1359      watcher->unpark();
1360    }
1361  }
1362
1363  MutexLocker mu(Terminator_lock);
1364
1365  while (watcher_thread() != NULL) {
1366    // This wait should make safepoint checks, wait without a timeout,
1367    // and wait as a suspend-equivalent condition.
1368    //
1369    // Note: If the FlatProfiler is running, then this thread is waiting
1370    // for the WatcherThread to terminate and the WatcherThread, via the
1371    // FlatProfiler task, is waiting for the external suspend request on
1372    // this thread to complete. wait_for_ext_suspend_completion() will
1373    // eventually timeout, but that takes time. Making this wait a
1374    // suspend-equivalent condition solves that timeout problem.
1375    //
1376    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1377                          Mutex::_as_suspend_equivalent_flag);
1378  }
1379}
1380
1381void WatcherThread::unpark() {
1382  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1383  PeriodicTask_lock->notify();
1384}
1385
1386void WatcherThread::print_on(outputStream* st) const {
1387  st->print("\"%s\" ", name());
1388  Thread::print_on(st);
1389  st->cr();
1390}
1391
1392// ======= JavaThread ========
1393
1394#if INCLUDE_JVMCI
1395
1396jlong* JavaThread::_jvmci_old_thread_counters;
1397
1398bool jvmci_counters_include(JavaThread* thread) {
1399  oop threadObj = thread->threadObj();
1400  return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1401}
1402
1403void JavaThread::collect_counters(typeArrayOop array) {
1404  if (JVMCICounterSize > 0) {
1405    MutexLocker tl(Threads_lock);
1406    for (int i = 0; i < array->length(); i++) {
1407      array->long_at_put(i, _jvmci_old_thread_counters[i]);
1408    }
1409    for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1410      if (jvmci_counters_include(tp)) {
1411        for (int i = 0; i < array->length(); i++) {
1412          array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1413        }
1414      }
1415    }
1416  }
1417}
1418
1419#endif // INCLUDE_JVMCI
1420
1421// A JavaThread is a normal Java thread
1422
1423void JavaThread::initialize() {
1424  // Initialize fields
1425
1426  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1427  set_claimed_par_id(UINT_MAX);
1428
1429  set_saved_exception_pc(NULL);
1430  set_threadObj(NULL);
1431  _anchor.clear();
1432  set_entry_point(NULL);
1433  set_jni_functions(jni_functions());
1434  set_callee_target(NULL);
1435  set_vm_result(NULL);
1436  set_vm_result_2(NULL);
1437  set_vframe_array_head(NULL);
1438  set_vframe_array_last(NULL);
1439  set_deferred_locals(NULL);
1440  set_deopt_mark(NULL);
1441  set_deopt_nmethod(NULL);
1442  clear_must_deopt_id();
1443  set_monitor_chunks(NULL);
1444  set_next(NULL);
1445  set_thread_state(_thread_new);
1446  _terminated = _not_terminated;
1447  _privileged_stack_top = NULL;
1448  _array_for_gc = NULL;
1449  _suspend_equivalent = false;
1450  _in_deopt_handler = 0;
1451  _doing_unsafe_access = false;
1452  _stack_guard_state = stack_guard_unused;
1453#if INCLUDE_JVMCI
1454  _pending_monitorenter = false;
1455  _pending_deoptimization = -1;
1456  _pending_failed_speculation = NULL;
1457  _pending_transfer_to_interpreter = false;
1458  _jvmci._alternate_call_target = NULL;
1459  assert(_jvmci._implicit_exception_pc == NULL, "must be");
1460  if (JVMCICounterSize > 0) {
1461    _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1462    memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1463  } else {
1464    _jvmci_counters = NULL;
1465  }
1466#endif // INCLUDE_JVMCI
1467  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1468  _exception_pc  = 0;
1469  _exception_handler_pc = 0;
1470  _is_method_handle_return = 0;
1471  _jvmti_thread_state= NULL;
1472  _should_post_on_exceptions_flag = JNI_FALSE;
1473  _jvmti_get_loaded_classes_closure = NULL;
1474  _interp_only_mode    = 0;
1475  _special_runtime_exit_condition = _no_async_condition;
1476  _pending_async_exception = NULL;
1477  _thread_stat = NULL;
1478  _thread_stat = new ThreadStatistics();
1479  _blocked_on_compilation = false;
1480  _jni_active_critical = 0;
1481  _pending_jni_exception_check_fn = NULL;
1482  _do_not_unlock_if_synchronized = false;
1483  _cached_monitor_info = NULL;
1484  _parker = Parker::Allocate(this);
1485
1486#ifndef PRODUCT
1487  _jmp_ring_index = 0;
1488  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1489    record_jump(NULL, NULL, NULL, 0);
1490  }
1491#endif // PRODUCT
1492
1493  set_thread_profiler(NULL);
1494  if (FlatProfiler::is_active()) {
1495    // This is where we would decide to either give each thread it's own profiler
1496    // or use one global one from FlatProfiler,
1497    // or up to some count of the number of profiled threads, etc.
1498    ThreadProfiler* pp = new ThreadProfiler();
1499    pp->engage();
1500    set_thread_profiler(pp);
1501  }
1502
1503  // Setup safepoint state info for this thread
1504  ThreadSafepointState::create(this);
1505
1506  debug_only(_java_call_counter = 0);
1507
1508  // JVMTI PopFrame support
1509  _popframe_condition = popframe_inactive;
1510  _popframe_preserved_args = NULL;
1511  _popframe_preserved_args_size = 0;
1512  _frames_to_pop_failed_realloc = 0;
1513
1514  pd_initialize();
1515}
1516
1517#if INCLUDE_ALL_GCS
1518SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1519DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1520#endif // INCLUDE_ALL_GCS
1521
1522JavaThread::JavaThread(bool is_attaching_via_jni) :
1523                       Thread()
1524#if INCLUDE_ALL_GCS
1525                       , _satb_mark_queue(&_satb_mark_queue_set),
1526                       _dirty_card_queue(&_dirty_card_queue_set)
1527#endif // INCLUDE_ALL_GCS
1528{
1529  initialize();
1530  if (is_attaching_via_jni) {
1531    _jni_attach_state = _attaching_via_jni;
1532  } else {
1533    _jni_attach_state = _not_attaching_via_jni;
1534  }
1535  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1536}
1537
1538bool JavaThread::reguard_stack(address cur_sp) {
1539  if (_stack_guard_state != stack_guard_yellow_disabled) {
1540    return true; // Stack already guarded or guard pages not needed.
1541  }
1542
1543  if (register_stack_overflow()) {
1544    // For those architectures which have separate register and
1545    // memory stacks, we must check the register stack to see if
1546    // it has overflowed.
1547    return false;
1548  }
1549
1550  // Java code never executes within the yellow zone: the latter is only
1551  // there to provoke an exception during stack banging.  If java code
1552  // is executing there, either StackShadowPages should be larger, or
1553  // some exception code in c1, c2 or the interpreter isn't unwinding
1554  // when it should.
1555  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1556
1557  enable_stack_yellow_zone();
1558  return true;
1559}
1560
1561bool JavaThread::reguard_stack(void) {
1562  return reguard_stack(os::current_stack_pointer());
1563}
1564
1565
1566void JavaThread::block_if_vm_exited() {
1567  if (_terminated == _vm_exited) {
1568    // _vm_exited is set at safepoint, and Threads_lock is never released
1569    // we will block here forever
1570    Threads_lock->lock_without_safepoint_check();
1571    ShouldNotReachHere();
1572  }
1573}
1574
1575
1576// Remove this ifdef when C1 is ported to the compiler interface.
1577static void compiler_thread_entry(JavaThread* thread, TRAPS);
1578static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1579
1580JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1581                       Thread()
1582#if INCLUDE_ALL_GCS
1583                       , _satb_mark_queue(&_satb_mark_queue_set),
1584                       _dirty_card_queue(&_dirty_card_queue_set)
1585#endif // INCLUDE_ALL_GCS
1586{
1587  initialize();
1588  _jni_attach_state = _not_attaching_via_jni;
1589  set_entry_point(entry_point);
1590  // Create the native thread itself.
1591  // %note runtime_23
1592  os::ThreadType thr_type = os::java_thread;
1593  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1594                                                     os::java_thread;
1595  os::create_thread(this, thr_type, stack_sz);
1596  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1597  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1598  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1599  // the exception consists of creating the exception object & initializing it, initialization
1600  // will leave the VM via a JavaCall and then all locks must be unlocked).
1601  //
1602  // The thread is still suspended when we reach here. Thread must be explicit started
1603  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1604  // by calling Threads:add. The reason why this is not done here, is because the thread
1605  // object must be fully initialized (take a look at JVM_Start)
1606}
1607
1608JavaThread::~JavaThread() {
1609
1610  // JSR166 -- return the parker to the free list
1611  Parker::Release(_parker);
1612  _parker = NULL;
1613
1614  // Free any remaining  previous UnrollBlock
1615  vframeArray* old_array = vframe_array_last();
1616
1617  if (old_array != NULL) {
1618    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1619    old_array->set_unroll_block(NULL);
1620    delete old_info;
1621    delete old_array;
1622  }
1623
1624  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1625  if (deferred != NULL) {
1626    // This can only happen if thread is destroyed before deoptimization occurs.
1627    assert(deferred->length() != 0, "empty array!");
1628    do {
1629      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1630      deferred->remove_at(0);
1631      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1632      delete dlv;
1633    } while (deferred->length() != 0);
1634    delete deferred;
1635  }
1636
1637  // All Java related clean up happens in exit
1638  ThreadSafepointState::destroy(this);
1639  if (_thread_profiler != NULL) delete _thread_profiler;
1640  if (_thread_stat != NULL) delete _thread_stat;
1641
1642#if INCLUDE_JVMCI
1643  if (JVMCICounterSize > 0) {
1644    if (jvmci_counters_include(this)) {
1645      for (int i = 0; i < JVMCICounterSize; i++) {
1646        _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1647      }
1648    }
1649    FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1650  }
1651#endif // INCLUDE_JVMCI
1652}
1653
1654
1655// The first routine called by a new Java thread
1656void JavaThread::run() {
1657  // initialize thread-local alloc buffer related fields
1658  this->initialize_tlab();
1659
1660  // used to test validity of stack trace backs
1661  this->record_base_of_stack_pointer();
1662
1663  // Record real stack base and size.
1664  this->record_stack_base_and_size();
1665
1666  // Initialize thread local storage; set before calling MutexLocker
1667  this->initialize_thread_local_storage();
1668
1669  this->create_stack_guard_pages();
1670
1671  this->cache_global_variables();
1672
1673  // Thread is now sufficient initialized to be handled by the safepoint code as being
1674  // in the VM. Change thread state from _thread_new to _thread_in_vm
1675  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1676
1677  assert(JavaThread::current() == this, "sanity check");
1678  assert(!Thread::current()->owns_locks(), "sanity check");
1679
1680  DTRACE_THREAD_PROBE(start, this);
1681
1682  // This operation might block. We call that after all safepoint checks for a new thread has
1683  // been completed.
1684  this->set_active_handles(JNIHandleBlock::allocate_block());
1685
1686  if (JvmtiExport::should_post_thread_life()) {
1687    JvmtiExport::post_thread_start(this);
1688  }
1689
1690  EventThreadStart event;
1691  if (event.should_commit()) {
1692    event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1693    event.commit();
1694  }
1695
1696  // We call another function to do the rest so we are sure that the stack addresses used
1697  // from there will be lower than the stack base just computed
1698  thread_main_inner();
1699
1700  // Note, thread is no longer valid at this point!
1701}
1702
1703
1704void JavaThread::thread_main_inner() {
1705  assert(JavaThread::current() == this, "sanity check");
1706  assert(this->threadObj() != NULL, "just checking");
1707
1708  // Execute thread entry point unless this thread has a pending exception
1709  // or has been stopped before starting.
1710  // Note: Due to JVM_StopThread we can have pending exceptions already!
1711  if (!this->has_pending_exception() &&
1712      !java_lang_Thread::is_stillborn(this->threadObj())) {
1713    {
1714      ResourceMark rm(this);
1715      this->set_native_thread_name(this->get_thread_name());
1716    }
1717    HandleMark hm(this);
1718    this->entry_point()(this, this);
1719  }
1720
1721  DTRACE_THREAD_PROBE(stop, this);
1722
1723  this->exit(false);
1724  delete this;
1725}
1726
1727
1728static void ensure_join(JavaThread* thread) {
1729  // We do not need to grap the Threads_lock, since we are operating on ourself.
1730  Handle threadObj(thread, thread->threadObj());
1731  assert(threadObj.not_null(), "java thread object must exist");
1732  ObjectLocker lock(threadObj, thread);
1733  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1734  thread->clear_pending_exception();
1735  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1736  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1737  // Clear the native thread instance - this makes isAlive return false and allows the join()
1738  // to complete once we've done the notify_all below
1739  java_lang_Thread::set_thread(threadObj(), NULL);
1740  lock.notify_all(thread);
1741  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1742  thread->clear_pending_exception();
1743}
1744
1745
1746// For any new cleanup additions, please check to see if they need to be applied to
1747// cleanup_failed_attach_current_thread as well.
1748void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1749  assert(this == JavaThread::current(), "thread consistency check");
1750
1751  HandleMark hm(this);
1752  Handle uncaught_exception(this, this->pending_exception());
1753  this->clear_pending_exception();
1754  Handle threadObj(this, this->threadObj());
1755  assert(threadObj.not_null(), "Java thread object should be created");
1756
1757  if (get_thread_profiler() != NULL) {
1758    get_thread_profiler()->disengage();
1759    ResourceMark rm;
1760    get_thread_profiler()->print(get_thread_name());
1761  }
1762
1763
1764  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1765  {
1766    EXCEPTION_MARK;
1767
1768    CLEAR_PENDING_EXCEPTION;
1769  }
1770  if (!destroy_vm) {
1771    if (uncaught_exception.not_null()) {
1772      EXCEPTION_MARK;
1773      // Call method Thread.dispatchUncaughtException().
1774      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1775      JavaValue result(T_VOID);
1776      JavaCalls::call_virtual(&result,
1777                              threadObj, thread_klass,
1778                              vmSymbols::dispatchUncaughtException_name(),
1779                              vmSymbols::throwable_void_signature(),
1780                              uncaught_exception,
1781                              THREAD);
1782      if (HAS_PENDING_EXCEPTION) {
1783        ResourceMark rm(this);
1784        jio_fprintf(defaultStream::error_stream(),
1785                    "\nException: %s thrown from the UncaughtExceptionHandler"
1786                    " in thread \"%s\"\n",
1787                    pending_exception()->klass()->external_name(),
1788                    get_thread_name());
1789        CLEAR_PENDING_EXCEPTION;
1790      }
1791    }
1792
1793    // Called before the java thread exit since we want to read info
1794    // from java_lang_Thread object
1795    EventThreadEnd event;
1796    if (event.should_commit()) {
1797      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1798      event.commit();
1799    }
1800
1801    // Call after last event on thread
1802    EVENT_THREAD_EXIT(this);
1803
1804    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1805    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1806    // is deprecated anyhow.
1807    if (!is_Compiler_thread()) {
1808      int count = 3;
1809      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1810        EXCEPTION_MARK;
1811        JavaValue result(T_VOID);
1812        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1813        JavaCalls::call_virtual(&result,
1814                                threadObj, thread_klass,
1815                                vmSymbols::exit_method_name(),
1816                                vmSymbols::void_method_signature(),
1817                                THREAD);
1818        CLEAR_PENDING_EXCEPTION;
1819      }
1820    }
1821    // notify JVMTI
1822    if (JvmtiExport::should_post_thread_life()) {
1823      JvmtiExport::post_thread_end(this);
1824    }
1825
1826    // We have notified the agents that we are exiting, before we go on,
1827    // we must check for a pending external suspend request and honor it
1828    // in order to not surprise the thread that made the suspend request.
1829    while (true) {
1830      {
1831        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1832        if (!is_external_suspend()) {
1833          set_terminated(_thread_exiting);
1834          ThreadService::current_thread_exiting(this);
1835          break;
1836        }
1837        // Implied else:
1838        // Things get a little tricky here. We have a pending external
1839        // suspend request, but we are holding the SR_lock so we
1840        // can't just self-suspend. So we temporarily drop the lock
1841        // and then self-suspend.
1842      }
1843
1844      ThreadBlockInVM tbivm(this);
1845      java_suspend_self();
1846
1847      // We're done with this suspend request, but we have to loop around
1848      // and check again. Eventually we will get SR_lock without a pending
1849      // external suspend request and will be able to mark ourselves as
1850      // exiting.
1851    }
1852    // no more external suspends are allowed at this point
1853  } else {
1854    // before_exit() has already posted JVMTI THREAD_END events
1855  }
1856
1857  // Notify waiters on thread object. This has to be done after exit() is called
1858  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1859  // group should have the destroyed bit set before waiters are notified).
1860  ensure_join(this);
1861  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1862
1863  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1864  // held by this thread must be released. The spec does not distinguish
1865  // between JNI-acquired and regular Java monitors. We can only see
1866  // regular Java monitors here if monitor enter-exit matching is broken.
1867  //
1868  // Optionally release any monitors for regular JavaThread exits. This
1869  // is provided as a work around for any bugs in monitor enter-exit
1870  // matching. This can be expensive so it is not enabled by default.
1871  // ObjectMonitor::Knob_ExitRelease is a superset of the
1872  // JNIDetachReleasesMonitors option.
1873  //
1874  // ensure_join() ignores IllegalThreadStateExceptions, and so does
1875  // ObjectSynchronizer::release_monitors_owned_by_thread().
1876  if ((exit_type == jni_detach && JNIDetachReleasesMonitors) ||
1877      ObjectMonitor::Knob_ExitRelease) {
1878    // Sanity check even though JNI DetachCurrentThread() would have
1879    // returned JNI_ERR if there was a Java frame. JavaThread exit
1880    // should be done executing Java code by the time we get here.
1881    assert(!this->has_last_Java_frame(),
1882           "should not have a Java frame when detaching or exiting");
1883    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1884    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1885  }
1886
1887  // These things needs to be done while we are still a Java Thread. Make sure that thread
1888  // is in a consistent state, in case GC happens
1889  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1890
1891  if (active_handles() != NULL) {
1892    JNIHandleBlock* block = active_handles();
1893    set_active_handles(NULL);
1894    JNIHandleBlock::release_block(block);
1895  }
1896
1897  if (free_handle_block() != NULL) {
1898    JNIHandleBlock* block = free_handle_block();
1899    set_free_handle_block(NULL);
1900    JNIHandleBlock::release_block(block);
1901  }
1902
1903  // These have to be removed while this is still a valid thread.
1904  remove_stack_guard_pages();
1905
1906  if (UseTLAB) {
1907    tlab().make_parsable(true);  // retire TLAB
1908  }
1909
1910  if (JvmtiEnv::environments_might_exist()) {
1911    JvmtiExport::cleanup_thread(this);
1912  }
1913
1914  // We must flush any deferred card marks before removing a thread from
1915  // the list of active threads.
1916  Universe::heap()->flush_deferred_store_barrier(this);
1917  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1918
1919#if INCLUDE_ALL_GCS
1920  // We must flush the G1-related buffers before removing a thread
1921  // from the list of active threads. We must do this after any deferred
1922  // card marks have been flushed (above) so that any entries that are
1923  // added to the thread's dirty card queue as a result are not lost.
1924  if (UseG1GC) {
1925    flush_barrier_queues();
1926  }
1927#endif // INCLUDE_ALL_GCS
1928
1929  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1930  Threads::remove(this);
1931}
1932
1933#if INCLUDE_ALL_GCS
1934// Flush G1-related queues.
1935void JavaThread::flush_barrier_queues() {
1936  satb_mark_queue().flush();
1937  dirty_card_queue().flush();
1938}
1939
1940void JavaThread::initialize_queues() {
1941  assert(!SafepointSynchronize::is_at_safepoint(),
1942         "we should not be at a safepoint");
1943
1944  ObjPtrQueue& satb_queue = satb_mark_queue();
1945  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1946  // The SATB queue should have been constructed with its active
1947  // field set to false.
1948  assert(!satb_queue.is_active(), "SATB queue should not be active");
1949  assert(satb_queue.is_empty(), "SATB queue should be empty");
1950  // If we are creating the thread during a marking cycle, we should
1951  // set the active field of the SATB queue to true.
1952  if (satb_queue_set.is_active()) {
1953    satb_queue.set_active(true);
1954  }
1955
1956  DirtyCardQueue& dirty_queue = dirty_card_queue();
1957  // The dirty card queue should have been constructed with its
1958  // active field set to true.
1959  assert(dirty_queue.is_active(), "dirty card queue should be active");
1960}
1961#endif // INCLUDE_ALL_GCS
1962
1963void JavaThread::cleanup_failed_attach_current_thread() {
1964  if (get_thread_profiler() != NULL) {
1965    get_thread_profiler()->disengage();
1966    ResourceMark rm;
1967    get_thread_profiler()->print(get_thread_name());
1968  }
1969
1970  if (active_handles() != NULL) {
1971    JNIHandleBlock* block = active_handles();
1972    set_active_handles(NULL);
1973    JNIHandleBlock::release_block(block);
1974  }
1975
1976  if (free_handle_block() != NULL) {
1977    JNIHandleBlock* block = free_handle_block();
1978    set_free_handle_block(NULL);
1979    JNIHandleBlock::release_block(block);
1980  }
1981
1982  // These have to be removed while this is still a valid thread.
1983  remove_stack_guard_pages();
1984
1985  if (UseTLAB) {
1986    tlab().make_parsable(true);  // retire TLAB, if any
1987  }
1988
1989#if INCLUDE_ALL_GCS
1990  if (UseG1GC) {
1991    flush_barrier_queues();
1992  }
1993#endif // INCLUDE_ALL_GCS
1994
1995  Threads::remove(this);
1996  delete this;
1997}
1998
1999
2000
2001
2002JavaThread* JavaThread::active() {
2003  Thread* thread = ThreadLocalStorage::thread();
2004  assert(thread != NULL, "just checking");
2005  if (thread->is_Java_thread()) {
2006    return (JavaThread*) thread;
2007  } else {
2008    assert(thread->is_VM_thread(), "this must be a vm thread");
2009    VM_Operation* op = ((VMThread*) thread)->vm_operation();
2010    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2011    assert(ret->is_Java_thread(), "must be a Java thread");
2012    return ret;
2013  }
2014}
2015
2016bool JavaThread::is_lock_owned(address adr) const {
2017  if (Thread::is_lock_owned(adr)) return true;
2018
2019  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2020    if (chunk->contains(adr)) return true;
2021  }
2022
2023  return false;
2024}
2025
2026
2027void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2028  chunk->set_next(monitor_chunks());
2029  set_monitor_chunks(chunk);
2030}
2031
2032void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2033  guarantee(monitor_chunks() != NULL, "must be non empty");
2034  if (monitor_chunks() == chunk) {
2035    set_monitor_chunks(chunk->next());
2036  } else {
2037    MonitorChunk* prev = monitor_chunks();
2038    while (prev->next() != chunk) prev = prev->next();
2039    prev->set_next(chunk->next());
2040  }
2041}
2042
2043// JVM support.
2044
2045// Note: this function shouldn't block if it's called in
2046// _thread_in_native_trans state (such as from
2047// check_special_condition_for_native_trans()).
2048void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2049
2050  if (has_last_Java_frame() && has_async_condition()) {
2051    // If we are at a polling page safepoint (not a poll return)
2052    // then we must defer async exception because live registers
2053    // will be clobbered by the exception path. Poll return is
2054    // ok because the call we a returning from already collides
2055    // with exception handling registers and so there is no issue.
2056    // (The exception handling path kills call result registers but
2057    //  this is ok since the exception kills the result anyway).
2058
2059    if (is_at_poll_safepoint()) {
2060      // if the code we are returning to has deoptimized we must defer
2061      // the exception otherwise live registers get clobbered on the
2062      // exception path before deoptimization is able to retrieve them.
2063      //
2064      RegisterMap map(this, false);
2065      frame caller_fr = last_frame().sender(&map);
2066      assert(caller_fr.is_compiled_frame(), "what?");
2067      if (caller_fr.is_deoptimized_frame()) {
2068        if (TraceExceptions) {
2069          ResourceMark rm;
2070          tty->print_cr("deferred async exception at compiled safepoint");
2071        }
2072        return;
2073      }
2074    }
2075  }
2076
2077  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2078  if (condition == _no_async_condition) {
2079    // Conditions have changed since has_special_runtime_exit_condition()
2080    // was called:
2081    // - if we were here only because of an external suspend request,
2082    //   then that was taken care of above (or cancelled) so we are done
2083    // - if we were here because of another async request, then it has
2084    //   been cleared between the has_special_runtime_exit_condition()
2085    //   and now so again we are done
2086    return;
2087  }
2088
2089  // Check for pending async. exception
2090  if (_pending_async_exception != NULL) {
2091    // Only overwrite an already pending exception, if it is not a threadDeath.
2092    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2093
2094      // We cannot call Exceptions::_throw(...) here because we cannot block
2095      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2096
2097      if (TraceExceptions) {
2098        ResourceMark rm;
2099        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2100        if (has_last_Java_frame()) {
2101          frame f = last_frame();
2102          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2103        }
2104        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2105      }
2106      _pending_async_exception = NULL;
2107      clear_has_async_exception();
2108    }
2109  }
2110
2111  if (check_unsafe_error &&
2112      condition == _async_unsafe_access_error && !has_pending_exception()) {
2113    condition = _no_async_condition;  // done
2114    switch (thread_state()) {
2115    case _thread_in_vm: {
2116      JavaThread* THREAD = this;
2117      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2118    }
2119    case _thread_in_native: {
2120      ThreadInVMfromNative tiv(this);
2121      JavaThread* THREAD = this;
2122      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2123    }
2124    case _thread_in_Java: {
2125      ThreadInVMfromJava tiv(this);
2126      JavaThread* THREAD = this;
2127      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2128    }
2129    default:
2130      ShouldNotReachHere();
2131    }
2132  }
2133
2134  assert(condition == _no_async_condition || has_pending_exception() ||
2135         (!check_unsafe_error && condition == _async_unsafe_access_error),
2136         "must have handled the async condition, if no exception");
2137}
2138
2139void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2140  //
2141  // Check for pending external suspend. Internal suspend requests do
2142  // not use handle_special_runtime_exit_condition().
2143  // If JNIEnv proxies are allowed, don't self-suspend if the target
2144  // thread is not the current thread. In older versions of jdbx, jdbx
2145  // threads could call into the VM with another thread's JNIEnv so we
2146  // can be here operating on behalf of a suspended thread (4432884).
2147  bool do_self_suspend = is_external_suspend_with_lock();
2148  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2149    //
2150    // Because thread is external suspended the safepoint code will count
2151    // thread as at a safepoint. This can be odd because we can be here
2152    // as _thread_in_Java which would normally transition to _thread_blocked
2153    // at a safepoint. We would like to mark the thread as _thread_blocked
2154    // before calling java_suspend_self like all other callers of it but
2155    // we must then observe proper safepoint protocol. (We can't leave
2156    // _thread_blocked with a safepoint in progress). However we can be
2157    // here as _thread_in_native_trans so we can't use a normal transition
2158    // constructor/destructor pair because they assert on that type of
2159    // transition. We could do something like:
2160    //
2161    // JavaThreadState state = thread_state();
2162    // set_thread_state(_thread_in_vm);
2163    // {
2164    //   ThreadBlockInVM tbivm(this);
2165    //   java_suspend_self()
2166    // }
2167    // set_thread_state(_thread_in_vm_trans);
2168    // if (safepoint) block;
2169    // set_thread_state(state);
2170    //
2171    // but that is pretty messy. Instead we just go with the way the
2172    // code has worked before and note that this is the only path to
2173    // java_suspend_self that doesn't put the thread in _thread_blocked
2174    // mode.
2175
2176    frame_anchor()->make_walkable(this);
2177    java_suspend_self();
2178
2179    // We might be here for reasons in addition to the self-suspend request
2180    // so check for other async requests.
2181  }
2182
2183  if (check_asyncs) {
2184    check_and_handle_async_exceptions();
2185  }
2186}
2187
2188void JavaThread::send_thread_stop(oop java_throwable)  {
2189  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2190  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2191  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2192
2193  // Do not throw asynchronous exceptions against the compiler thread
2194  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2195  if (!can_call_java()) return;
2196
2197  {
2198    // Actually throw the Throwable against the target Thread - however
2199    // only if there is no thread death exception installed already.
2200    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2201      // If the topmost frame is a runtime stub, then we are calling into
2202      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2203      // must deoptimize the caller before continuing, as the compiled  exception handler table
2204      // may not be valid
2205      if (has_last_Java_frame()) {
2206        frame f = last_frame();
2207        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2208          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2209          RegisterMap reg_map(this, UseBiasedLocking);
2210          frame compiled_frame = f.sender(&reg_map);
2211          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2212            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2213          }
2214        }
2215      }
2216
2217      // Set async. pending exception in thread.
2218      set_pending_async_exception(java_throwable);
2219
2220      if (TraceExceptions) {
2221        ResourceMark rm;
2222        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2223      }
2224      // for AbortVMOnException flag
2225      Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2226    }
2227  }
2228
2229
2230  // Interrupt thread so it will wake up from a potential wait()
2231  Thread::interrupt(this);
2232}
2233
2234// External suspension mechanism.
2235//
2236// Tell the VM to suspend a thread when ever it knows that it does not hold on
2237// to any VM_locks and it is at a transition
2238// Self-suspension will happen on the transition out of the vm.
2239// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2240//
2241// Guarantees on return:
2242//   + Target thread will not execute any new bytecode (that's why we need to
2243//     force a safepoint)
2244//   + Target thread will not enter any new monitors
2245//
2246void JavaThread::java_suspend() {
2247  { MutexLocker mu(Threads_lock);
2248    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2249      return;
2250    }
2251  }
2252
2253  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2254    if (!is_external_suspend()) {
2255      // a racing resume has cancelled us; bail out now
2256      return;
2257    }
2258
2259    // suspend is done
2260    uint32_t debug_bits = 0;
2261    // Warning: is_ext_suspend_completed() may temporarily drop the
2262    // SR_lock to allow the thread to reach a stable thread state if
2263    // it is currently in a transient thread state.
2264    if (is_ext_suspend_completed(false /* !called_by_wait */,
2265                                 SuspendRetryDelay, &debug_bits)) {
2266      return;
2267    }
2268  }
2269
2270  VM_ForceSafepoint vm_suspend;
2271  VMThread::execute(&vm_suspend);
2272}
2273
2274// Part II of external suspension.
2275// A JavaThread self suspends when it detects a pending external suspend
2276// request. This is usually on transitions. It is also done in places
2277// where continuing to the next transition would surprise the caller,
2278// e.g., monitor entry.
2279//
2280// Returns the number of times that the thread self-suspended.
2281//
2282// Note: DO NOT call java_suspend_self() when you just want to block current
2283//       thread. java_suspend_self() is the second stage of cooperative
2284//       suspension for external suspend requests and should only be used
2285//       to complete an external suspend request.
2286//
2287int JavaThread::java_suspend_self() {
2288  int ret = 0;
2289
2290  // we are in the process of exiting so don't suspend
2291  if (is_exiting()) {
2292    clear_external_suspend();
2293    return ret;
2294  }
2295
2296  assert(_anchor.walkable() ||
2297         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2298         "must have walkable stack");
2299
2300  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2301
2302  assert(!this->is_ext_suspended(),
2303         "a thread trying to self-suspend should not already be suspended");
2304
2305  if (this->is_suspend_equivalent()) {
2306    // If we are self-suspending as a result of the lifting of a
2307    // suspend equivalent condition, then the suspend_equivalent
2308    // flag is not cleared until we set the ext_suspended flag so
2309    // that wait_for_ext_suspend_completion() returns consistent
2310    // results.
2311    this->clear_suspend_equivalent();
2312  }
2313
2314  // A racing resume may have cancelled us before we grabbed SR_lock
2315  // above. Or another external suspend request could be waiting for us
2316  // by the time we return from SR_lock()->wait(). The thread
2317  // that requested the suspension may already be trying to walk our
2318  // stack and if we return now, we can change the stack out from under
2319  // it. This would be a "bad thing (TM)" and cause the stack walker
2320  // to crash. We stay self-suspended until there are no more pending
2321  // external suspend requests.
2322  while (is_external_suspend()) {
2323    ret++;
2324    this->set_ext_suspended();
2325
2326    // _ext_suspended flag is cleared by java_resume()
2327    while (is_ext_suspended()) {
2328      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2329    }
2330  }
2331
2332  return ret;
2333}
2334
2335#ifdef ASSERT
2336// verify the JavaThread has not yet been published in the Threads::list, and
2337// hence doesn't need protection from concurrent access at this stage
2338void JavaThread::verify_not_published() {
2339  if (!Threads_lock->owned_by_self()) {
2340    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2341    assert(!Threads::includes(this),
2342           "java thread shouldn't have been published yet!");
2343  } else {
2344    assert(!Threads::includes(this),
2345           "java thread shouldn't have been published yet!");
2346  }
2347}
2348#endif
2349
2350// Slow path when the native==>VM/Java barriers detect a safepoint is in
2351// progress or when _suspend_flags is non-zero.
2352// Current thread needs to self-suspend if there is a suspend request and/or
2353// block if a safepoint is in progress.
2354// Async exception ISN'T checked.
2355// Note only the ThreadInVMfromNative transition can call this function
2356// directly and when thread state is _thread_in_native_trans
2357void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2358  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2359
2360  JavaThread *curJT = JavaThread::current();
2361  bool do_self_suspend = thread->is_external_suspend();
2362
2363  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2364
2365  // If JNIEnv proxies are allowed, don't self-suspend if the target
2366  // thread is not the current thread. In older versions of jdbx, jdbx
2367  // threads could call into the VM with another thread's JNIEnv so we
2368  // can be here operating on behalf of a suspended thread (4432884).
2369  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2370    JavaThreadState state = thread->thread_state();
2371
2372    // We mark this thread_blocked state as a suspend-equivalent so
2373    // that a caller to is_ext_suspend_completed() won't be confused.
2374    // The suspend-equivalent state is cleared by java_suspend_self().
2375    thread->set_suspend_equivalent();
2376
2377    // If the safepoint code sees the _thread_in_native_trans state, it will
2378    // wait until the thread changes to other thread state. There is no
2379    // guarantee on how soon we can obtain the SR_lock and complete the
2380    // self-suspend request. It would be a bad idea to let safepoint wait for
2381    // too long. Temporarily change the state to _thread_blocked to
2382    // let the VM thread know that this thread is ready for GC. The problem
2383    // of changing thread state is that safepoint could happen just after
2384    // java_suspend_self() returns after being resumed, and VM thread will
2385    // see the _thread_blocked state. We must check for safepoint
2386    // after restoring the state and make sure we won't leave while a safepoint
2387    // is in progress.
2388    thread->set_thread_state(_thread_blocked);
2389    thread->java_suspend_self();
2390    thread->set_thread_state(state);
2391    // Make sure new state is seen by VM thread
2392    if (os::is_MP()) {
2393      if (UseMembar) {
2394        // Force a fence between the write above and read below
2395        OrderAccess::fence();
2396      } else {
2397        // Must use this rather than serialization page in particular on Windows
2398        InterfaceSupport::serialize_memory(thread);
2399      }
2400    }
2401  }
2402
2403  if (SafepointSynchronize::do_call_back()) {
2404    // If we are safepointing, then block the caller which may not be
2405    // the same as the target thread (see above).
2406    SafepointSynchronize::block(curJT);
2407  }
2408
2409  if (thread->is_deopt_suspend()) {
2410    thread->clear_deopt_suspend();
2411    RegisterMap map(thread, false);
2412    frame f = thread->last_frame();
2413    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2414      f = f.sender(&map);
2415    }
2416    if (f.id() == thread->must_deopt_id()) {
2417      thread->clear_must_deopt_id();
2418      f.deoptimize(thread);
2419    } else {
2420      fatal("missed deoptimization!");
2421    }
2422  }
2423}
2424
2425// Slow path when the native==>VM/Java barriers detect a safepoint is in
2426// progress or when _suspend_flags is non-zero.
2427// Current thread needs to self-suspend if there is a suspend request and/or
2428// block if a safepoint is in progress.
2429// Also check for pending async exception (not including unsafe access error).
2430// Note only the native==>VM/Java barriers can call this function and when
2431// thread state is _thread_in_native_trans.
2432void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2433  check_safepoint_and_suspend_for_native_trans(thread);
2434
2435  if (thread->has_async_exception()) {
2436    // We are in _thread_in_native_trans state, don't handle unsafe
2437    // access error since that may block.
2438    thread->check_and_handle_async_exceptions(false);
2439  }
2440}
2441
2442// This is a variant of the normal
2443// check_special_condition_for_native_trans with slightly different
2444// semantics for use by critical native wrappers.  It does all the
2445// normal checks but also performs the transition back into
2446// thread_in_Java state.  This is required so that critical natives
2447// can potentially block and perform a GC if they are the last thread
2448// exiting the GC_locker.
2449void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2450  check_special_condition_for_native_trans(thread);
2451
2452  // Finish the transition
2453  thread->set_thread_state(_thread_in_Java);
2454
2455  if (thread->do_critical_native_unlock()) {
2456    ThreadInVMfromJavaNoAsyncException tiv(thread);
2457    GC_locker::unlock_critical(thread);
2458    thread->clear_critical_native_unlock();
2459  }
2460}
2461
2462// We need to guarantee the Threads_lock here, since resumes are not
2463// allowed during safepoint synchronization
2464// Can only resume from an external suspension
2465void JavaThread::java_resume() {
2466  assert_locked_or_safepoint(Threads_lock);
2467
2468  // Sanity check: thread is gone, has started exiting or the thread
2469  // was not externally suspended.
2470  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2471    return;
2472  }
2473
2474  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2475
2476  clear_external_suspend();
2477
2478  if (is_ext_suspended()) {
2479    clear_ext_suspended();
2480    SR_lock()->notify_all();
2481  }
2482}
2483
2484void JavaThread::create_stack_guard_pages() {
2485  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2486  address low_addr = stack_base() - stack_size();
2487  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2488
2489  int allocate = os::allocate_stack_guard_pages();
2490  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2491
2492  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2493    warning("Attempt to allocate stack guard pages failed.");
2494    return;
2495  }
2496
2497  if (os::guard_memory((char *) low_addr, len)) {
2498    _stack_guard_state = stack_guard_enabled;
2499  } else {
2500    warning("Attempt to protect stack guard pages failed.");
2501    if (os::uncommit_memory((char *) low_addr, len)) {
2502      warning("Attempt to deallocate stack guard pages failed.");
2503    }
2504  }
2505}
2506
2507void JavaThread::remove_stack_guard_pages() {
2508  assert(Thread::current() == this, "from different thread");
2509  if (_stack_guard_state == stack_guard_unused) return;
2510  address low_addr = stack_base() - stack_size();
2511  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2512
2513  if (os::allocate_stack_guard_pages()) {
2514    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2515      _stack_guard_state = stack_guard_unused;
2516    } else {
2517      warning("Attempt to deallocate stack guard pages failed.");
2518    }
2519  } else {
2520    if (_stack_guard_state == stack_guard_unused) return;
2521    if (os::unguard_memory((char *) low_addr, len)) {
2522      _stack_guard_state = stack_guard_unused;
2523    } else {
2524      warning("Attempt to unprotect stack guard pages failed.");
2525    }
2526  }
2527}
2528
2529void JavaThread::enable_stack_yellow_zone() {
2530  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2531  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2532
2533  // The base notation is from the stacks point of view, growing downward.
2534  // We need to adjust it to work correctly with guard_memory()
2535  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2536
2537  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2538  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2539
2540  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2541    _stack_guard_state = stack_guard_enabled;
2542  } else {
2543    warning("Attempt to guard stack yellow zone failed.");
2544  }
2545  enable_register_stack_guard();
2546}
2547
2548void JavaThread::disable_stack_yellow_zone() {
2549  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2550  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2551
2552  // Simply return if called for a thread that does not use guard pages.
2553  if (_stack_guard_state == stack_guard_unused) return;
2554
2555  // The base notation is from the stacks point of view, growing downward.
2556  // We need to adjust it to work correctly with guard_memory()
2557  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2558
2559  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2560    _stack_guard_state = stack_guard_yellow_disabled;
2561  } else {
2562    warning("Attempt to unguard stack yellow zone failed.");
2563  }
2564  disable_register_stack_guard();
2565}
2566
2567void JavaThread::enable_stack_red_zone() {
2568  // The base notation is from the stacks point of view, growing downward.
2569  // We need to adjust it to work correctly with guard_memory()
2570  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2571  address base = stack_red_zone_base() - stack_red_zone_size();
2572
2573  guarantee(base < stack_base(), "Error calculating stack red zone");
2574  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2575
2576  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2577    warning("Attempt to guard stack red zone failed.");
2578  }
2579}
2580
2581void JavaThread::disable_stack_red_zone() {
2582  // The base notation is from the stacks point of view, growing downward.
2583  // We need to adjust it to work correctly with guard_memory()
2584  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2585  address base = stack_red_zone_base() - stack_red_zone_size();
2586  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2587    warning("Attempt to unguard stack red zone failed.");
2588  }
2589}
2590
2591void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2592  // ignore is there is no stack
2593  if (!has_last_Java_frame()) return;
2594  // traverse the stack frames. Starts from top frame.
2595  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2596    frame* fr = fst.current();
2597    f(fr, fst.register_map());
2598  }
2599}
2600
2601
2602#ifndef PRODUCT
2603// Deoptimization
2604// Function for testing deoptimization
2605void JavaThread::deoptimize() {
2606  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2607  StackFrameStream fst(this, UseBiasedLocking);
2608  bool deopt = false;           // Dump stack only if a deopt actually happens.
2609  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2610  // Iterate over all frames in the thread and deoptimize
2611  for (; !fst.is_done(); fst.next()) {
2612    if (fst.current()->can_be_deoptimized()) {
2613
2614      if (only_at) {
2615        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2616        // consists of comma or carriage return separated numbers so
2617        // search for the current bci in that string.
2618        address pc = fst.current()->pc();
2619        nmethod* nm =  (nmethod*) fst.current()->cb();
2620        ScopeDesc* sd = nm->scope_desc_at(pc);
2621        char buffer[8];
2622        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2623        size_t len = strlen(buffer);
2624        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2625        while (found != NULL) {
2626          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2627              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2628            // Check that the bci found is bracketed by terminators.
2629            break;
2630          }
2631          found = strstr(found + 1, buffer);
2632        }
2633        if (!found) {
2634          continue;
2635        }
2636      }
2637
2638      if (DebugDeoptimization && !deopt) {
2639        deopt = true; // One-time only print before deopt
2640        tty->print_cr("[BEFORE Deoptimization]");
2641        trace_frames();
2642        trace_stack();
2643      }
2644      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2645    }
2646  }
2647
2648  if (DebugDeoptimization && deopt) {
2649    tty->print_cr("[AFTER Deoptimization]");
2650    trace_frames();
2651  }
2652}
2653
2654
2655// Make zombies
2656void JavaThread::make_zombies() {
2657  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2658    if (fst.current()->can_be_deoptimized()) {
2659      // it is a Java nmethod
2660      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2661      nm->make_not_entrant();
2662    }
2663  }
2664}
2665#endif // PRODUCT
2666
2667
2668void JavaThread::deoptimized_wrt_marked_nmethods() {
2669  if (!has_last_Java_frame()) return;
2670  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2671  StackFrameStream fst(this, UseBiasedLocking);
2672  for (; !fst.is_done(); fst.next()) {
2673    if (fst.current()->should_be_deoptimized()) {
2674      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2675    }
2676  }
2677}
2678
2679
2680// If the caller is a NamedThread, then remember, in the current scope,
2681// the given JavaThread in its _processed_thread field.
2682class RememberProcessedThread: public StackObj {
2683  NamedThread* _cur_thr;
2684 public:
2685  RememberProcessedThread(JavaThread* jthr) {
2686    Thread* thread = Thread::current();
2687    if (thread->is_Named_thread()) {
2688      _cur_thr = (NamedThread *)thread;
2689      _cur_thr->set_processed_thread(jthr);
2690    } else {
2691      _cur_thr = NULL;
2692    }
2693  }
2694
2695  ~RememberProcessedThread() {
2696    if (_cur_thr) {
2697      _cur_thr->set_processed_thread(NULL);
2698    }
2699  }
2700};
2701
2702void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2703  // Verify that the deferred card marks have been flushed.
2704  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2705
2706  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2707  // since there may be more than one thread using each ThreadProfiler.
2708
2709  // Traverse the GCHandles
2710  Thread::oops_do(f, cld_f, cf);
2711
2712  JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2713
2714  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2715         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2716
2717  if (has_last_Java_frame()) {
2718    // Record JavaThread to GC thread
2719    RememberProcessedThread rpt(this);
2720
2721    // Traverse the privileged stack
2722    if (_privileged_stack_top != NULL) {
2723      _privileged_stack_top->oops_do(f);
2724    }
2725
2726    // traverse the registered growable array
2727    if (_array_for_gc != NULL) {
2728      for (int index = 0; index < _array_for_gc->length(); index++) {
2729        f->do_oop(_array_for_gc->adr_at(index));
2730      }
2731    }
2732
2733    // Traverse the monitor chunks
2734    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2735      chunk->oops_do(f);
2736    }
2737
2738    // Traverse the execution stack
2739    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2740      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2741    }
2742  }
2743
2744  // callee_target is never live across a gc point so NULL it here should
2745  // it still contain a methdOop.
2746
2747  set_callee_target(NULL);
2748
2749  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2750  // If we have deferred set_locals there might be oops waiting to be
2751  // written
2752  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2753  if (list != NULL) {
2754    for (int i = 0; i < list->length(); i++) {
2755      list->at(i)->oops_do(f);
2756    }
2757  }
2758
2759  // Traverse instance variables at the end since the GC may be moving things
2760  // around using this function
2761  f->do_oop((oop*) &_threadObj);
2762  f->do_oop((oop*) &_vm_result);
2763  f->do_oop((oop*) &_exception_oop);
2764  f->do_oop((oop*) &_pending_async_exception);
2765
2766  if (jvmti_thread_state() != NULL) {
2767    jvmti_thread_state()->oops_do(f);
2768  }
2769}
2770
2771void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2772  Thread::nmethods_do(cf);  // (super method is a no-op)
2773
2774  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2775         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2776
2777  if (has_last_Java_frame()) {
2778    // Traverse the execution stack
2779    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2780      fst.current()->nmethods_do(cf);
2781    }
2782  }
2783}
2784
2785void JavaThread::metadata_do(void f(Metadata*)) {
2786  if (has_last_Java_frame()) {
2787    // Traverse the execution stack to call f() on the methods in the stack
2788    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2789      fst.current()->metadata_do(f);
2790    }
2791  } else if (is_Compiler_thread()) {
2792    // need to walk ciMetadata in current compile tasks to keep alive.
2793    CompilerThread* ct = (CompilerThread*)this;
2794    if (ct->env() != NULL) {
2795      ct->env()->metadata_do(f);
2796    }
2797    if (ct->task() != NULL) {
2798      ct->task()->metadata_do(f);
2799    }
2800  }
2801}
2802
2803// Printing
2804const char* _get_thread_state_name(JavaThreadState _thread_state) {
2805  switch (_thread_state) {
2806  case _thread_uninitialized:     return "_thread_uninitialized";
2807  case _thread_new:               return "_thread_new";
2808  case _thread_new_trans:         return "_thread_new_trans";
2809  case _thread_in_native:         return "_thread_in_native";
2810  case _thread_in_native_trans:   return "_thread_in_native_trans";
2811  case _thread_in_vm:             return "_thread_in_vm";
2812  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2813  case _thread_in_Java:           return "_thread_in_Java";
2814  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2815  case _thread_blocked:           return "_thread_blocked";
2816  case _thread_blocked_trans:     return "_thread_blocked_trans";
2817  default:                        return "unknown thread state";
2818  }
2819}
2820
2821#ifndef PRODUCT
2822void JavaThread::print_thread_state_on(outputStream *st) const {
2823  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2824};
2825void JavaThread::print_thread_state() const {
2826  print_thread_state_on(tty);
2827}
2828#endif // PRODUCT
2829
2830// Called by Threads::print() for VM_PrintThreads operation
2831void JavaThread::print_on(outputStream *st) const {
2832  st->print("\"%s\" ", get_thread_name());
2833  oop thread_oop = threadObj();
2834  if (thread_oop != NULL) {
2835    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2836    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2837    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2838  }
2839  Thread::print_on(st);
2840  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2841  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2842  if (thread_oop != NULL) {
2843    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2844  }
2845#ifndef PRODUCT
2846  print_thread_state_on(st);
2847  _safepoint_state->print_on(st);
2848#endif // PRODUCT
2849}
2850
2851// Called by fatal error handler. The difference between this and
2852// JavaThread::print() is that we can't grab lock or allocate memory.
2853void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2854  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2855  oop thread_obj = threadObj();
2856  if (thread_obj != NULL) {
2857    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2858  }
2859  st->print(" [");
2860  st->print("%s", _get_thread_state_name(_thread_state));
2861  if (osthread()) {
2862    st->print(", id=%d", osthread()->thread_id());
2863  }
2864  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2865            p2i(_stack_base - _stack_size), p2i(_stack_base));
2866  st->print("]");
2867  return;
2868}
2869
2870// Verification
2871
2872static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2873
2874void JavaThread::verify() {
2875  // Verify oops in the thread.
2876  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2877
2878  // Verify the stack frames.
2879  frames_do(frame_verify);
2880}
2881
2882// CR 6300358 (sub-CR 2137150)
2883// Most callers of this method assume that it can't return NULL but a
2884// thread may not have a name whilst it is in the process of attaching to
2885// the VM - see CR 6412693, and there are places where a JavaThread can be
2886// seen prior to having it's threadObj set (eg JNI attaching threads and
2887// if vm exit occurs during initialization). These cases can all be accounted
2888// for such that this method never returns NULL.
2889const char* JavaThread::get_thread_name() const {
2890#ifdef ASSERT
2891  // early safepoints can hit while current thread does not yet have TLS
2892  if (!SafepointSynchronize::is_at_safepoint()) {
2893    Thread *cur = Thread::current();
2894    if (!(cur->is_Java_thread() && cur == this)) {
2895      // Current JavaThreads are allowed to get their own name without
2896      // the Threads_lock.
2897      assert_locked_or_safepoint(Threads_lock);
2898    }
2899  }
2900#endif // ASSERT
2901  return get_thread_name_string();
2902}
2903
2904// Returns a non-NULL representation of this thread's name, or a suitable
2905// descriptive string if there is no set name
2906const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2907  const char* name_str;
2908  oop thread_obj = threadObj();
2909  if (thread_obj != NULL) {
2910    oop name = java_lang_Thread::name(thread_obj);
2911    if (name != NULL) {
2912      if (buf == NULL) {
2913        name_str = java_lang_String::as_utf8_string(name);
2914      } else {
2915        name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2916      }
2917    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2918      name_str = "<no-name - thread is attaching>";
2919    } else {
2920      name_str = Thread::name();
2921    }
2922  } else {
2923    name_str = Thread::name();
2924  }
2925  assert(name_str != NULL, "unexpected NULL thread name");
2926  return name_str;
2927}
2928
2929
2930const char* JavaThread::get_threadgroup_name() const {
2931  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2932  oop thread_obj = threadObj();
2933  if (thread_obj != NULL) {
2934    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2935    if (thread_group != NULL) {
2936      // ThreadGroup.name can be null
2937      return java_lang_ThreadGroup::name(thread_group);
2938    }
2939  }
2940  return NULL;
2941}
2942
2943const char* JavaThread::get_parent_name() const {
2944  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2945  oop thread_obj = threadObj();
2946  if (thread_obj != NULL) {
2947    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2948    if (thread_group != NULL) {
2949      oop parent = java_lang_ThreadGroup::parent(thread_group);
2950      if (parent != NULL) {
2951        // ThreadGroup.name can be null
2952        return java_lang_ThreadGroup::name(parent);
2953      }
2954    }
2955  }
2956  return NULL;
2957}
2958
2959ThreadPriority JavaThread::java_priority() const {
2960  oop thr_oop = threadObj();
2961  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2962  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2963  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2964  return priority;
2965}
2966
2967void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2968
2969  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2970  // Link Java Thread object <-> C++ Thread
2971
2972  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2973  // and put it into a new Handle.  The Handle "thread_oop" can then
2974  // be used to pass the C++ thread object to other methods.
2975
2976  // Set the Java level thread object (jthread) field of the
2977  // new thread (a JavaThread *) to C++ thread object using the
2978  // "thread_oop" handle.
2979
2980  // Set the thread field (a JavaThread *) of the
2981  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2982
2983  Handle thread_oop(Thread::current(),
2984                    JNIHandles::resolve_non_null(jni_thread));
2985  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2986         "must be initialized");
2987  set_threadObj(thread_oop());
2988  java_lang_Thread::set_thread(thread_oop(), this);
2989
2990  if (prio == NoPriority) {
2991    prio = java_lang_Thread::priority(thread_oop());
2992    assert(prio != NoPriority, "A valid priority should be present");
2993  }
2994
2995  // Push the Java priority down to the native thread; needs Threads_lock
2996  Thread::set_priority(this, prio);
2997
2998  prepare_ext();
2999
3000  // Add the new thread to the Threads list and set it in motion.
3001  // We must have threads lock in order to call Threads::add.
3002  // It is crucial that we do not block before the thread is
3003  // added to the Threads list for if a GC happens, then the java_thread oop
3004  // will not be visited by GC.
3005  Threads::add(this);
3006}
3007
3008oop JavaThread::current_park_blocker() {
3009  // Support for JSR-166 locks
3010  oop thread_oop = threadObj();
3011  if (thread_oop != NULL &&
3012      JDK_Version::current().supports_thread_park_blocker()) {
3013    return java_lang_Thread::park_blocker(thread_oop);
3014  }
3015  return NULL;
3016}
3017
3018
3019void JavaThread::print_stack_on(outputStream* st) {
3020  if (!has_last_Java_frame()) return;
3021  ResourceMark rm;
3022  HandleMark   hm;
3023
3024  RegisterMap reg_map(this);
3025  vframe* start_vf = last_java_vframe(&reg_map);
3026  int count = 0;
3027  for (vframe* f = start_vf; f; f = f->sender()) {
3028    if (f->is_java_frame()) {
3029      javaVFrame* jvf = javaVFrame::cast(f);
3030      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3031
3032      // Print out lock information
3033      if (JavaMonitorsInStackTrace) {
3034        jvf->print_lock_info_on(st, count);
3035      }
3036    } else {
3037      // Ignore non-Java frames
3038    }
3039
3040    // Bail-out case for too deep stacks
3041    count++;
3042    if (MaxJavaStackTraceDepth == count) return;
3043  }
3044}
3045
3046
3047// JVMTI PopFrame support
3048void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3049  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3050  if (in_bytes(size_in_bytes) != 0) {
3051    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3052    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3053    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3054  }
3055}
3056
3057void* JavaThread::popframe_preserved_args() {
3058  return _popframe_preserved_args;
3059}
3060
3061ByteSize JavaThread::popframe_preserved_args_size() {
3062  return in_ByteSize(_popframe_preserved_args_size);
3063}
3064
3065WordSize JavaThread::popframe_preserved_args_size_in_words() {
3066  int sz = in_bytes(popframe_preserved_args_size());
3067  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3068  return in_WordSize(sz / wordSize);
3069}
3070
3071void JavaThread::popframe_free_preserved_args() {
3072  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3073  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3074  _popframe_preserved_args = NULL;
3075  _popframe_preserved_args_size = 0;
3076}
3077
3078#ifndef PRODUCT
3079
3080void JavaThread::trace_frames() {
3081  tty->print_cr("[Describe stack]");
3082  int frame_no = 1;
3083  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3084    tty->print("  %d. ", frame_no++);
3085    fst.current()->print_value_on(tty, this);
3086    tty->cr();
3087  }
3088}
3089
3090class PrintAndVerifyOopClosure: public OopClosure {
3091 protected:
3092  template <class T> inline void do_oop_work(T* p) {
3093    oop obj = oopDesc::load_decode_heap_oop(p);
3094    if (obj == NULL) return;
3095    tty->print(INTPTR_FORMAT ": ", p2i(p));
3096    if (obj->is_oop_or_null()) {
3097      if (obj->is_objArray()) {
3098        tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3099      } else {
3100        obj->print();
3101      }
3102    } else {
3103      tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3104    }
3105    tty->cr();
3106  }
3107 public:
3108  virtual void do_oop(oop* p) { do_oop_work(p); }
3109  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3110};
3111
3112
3113static void oops_print(frame* f, const RegisterMap *map) {
3114  PrintAndVerifyOopClosure print;
3115  f->print_value();
3116  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3117}
3118
3119// Print our all the locations that contain oops and whether they are
3120// valid or not.  This useful when trying to find the oldest frame
3121// where an oop has gone bad since the frame walk is from youngest to
3122// oldest.
3123void JavaThread::trace_oops() {
3124  tty->print_cr("[Trace oops]");
3125  frames_do(oops_print);
3126}
3127
3128
3129#ifdef ASSERT
3130// Print or validate the layout of stack frames
3131void JavaThread::print_frame_layout(int depth, bool validate_only) {
3132  ResourceMark rm;
3133  PRESERVE_EXCEPTION_MARK;
3134  FrameValues values;
3135  int frame_no = 0;
3136  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3137    fst.current()->describe(values, ++frame_no);
3138    if (depth == frame_no) break;
3139  }
3140  if (validate_only) {
3141    values.validate();
3142  } else {
3143    tty->print_cr("[Describe stack layout]");
3144    values.print(this);
3145  }
3146}
3147#endif
3148
3149void JavaThread::trace_stack_from(vframe* start_vf) {
3150  ResourceMark rm;
3151  int vframe_no = 1;
3152  for (vframe* f = start_vf; f; f = f->sender()) {
3153    if (f->is_java_frame()) {
3154      javaVFrame::cast(f)->print_activation(vframe_no++);
3155    } else {
3156      f->print();
3157    }
3158    if (vframe_no > StackPrintLimit) {
3159      tty->print_cr("...<more frames>...");
3160      return;
3161    }
3162  }
3163}
3164
3165
3166void JavaThread::trace_stack() {
3167  if (!has_last_Java_frame()) return;
3168  ResourceMark rm;
3169  HandleMark   hm;
3170  RegisterMap reg_map(this);
3171  trace_stack_from(last_java_vframe(&reg_map));
3172}
3173
3174
3175#endif // PRODUCT
3176
3177
3178javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3179  assert(reg_map != NULL, "a map must be given");
3180  frame f = last_frame();
3181  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3182    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3183  }
3184  return NULL;
3185}
3186
3187
3188Klass* JavaThread::security_get_caller_class(int depth) {
3189  vframeStream vfst(this);
3190  vfst.security_get_caller_frame(depth);
3191  if (!vfst.at_end()) {
3192    return vfst.method()->method_holder();
3193  }
3194  return NULL;
3195}
3196
3197static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3198  assert(thread->is_Compiler_thread(), "must be compiler thread");
3199  CompileBroker::compiler_thread_loop();
3200}
3201
3202static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3203  NMethodSweeper::sweeper_loop();
3204}
3205
3206// Create a CompilerThread
3207CompilerThread::CompilerThread(CompileQueue* queue,
3208                               CompilerCounters* counters)
3209                               : JavaThread(&compiler_thread_entry) {
3210  _env   = NULL;
3211  _log   = NULL;
3212  _task  = NULL;
3213  _queue = queue;
3214  _counters = counters;
3215  _buffer_blob = NULL;
3216  _compiler = NULL;
3217
3218#ifndef PRODUCT
3219  _ideal_graph_printer = NULL;
3220#endif
3221}
3222
3223bool CompilerThread::can_call_java() const {
3224  return _compiler != NULL && _compiler->is_jvmci();
3225}
3226
3227// Create sweeper thread
3228CodeCacheSweeperThread::CodeCacheSweeperThread()
3229: JavaThread(&sweeper_thread_entry) {
3230  _scanned_nmethod = NULL;
3231}
3232void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3233  JavaThread::oops_do(f, cld_f, cf);
3234  if (_scanned_nmethod != NULL && cf != NULL) {
3235    // Safepoints can occur when the sweeper is scanning an nmethod so
3236    // process it here to make sure it isn't unloaded in the middle of
3237    // a scan.
3238    cf->do_code_blob(_scanned_nmethod);
3239  }
3240}
3241
3242
3243// ======= Threads ========
3244
3245// The Threads class links together all active threads, and provides
3246// operations over all threads.  It is protected by its own Mutex
3247// lock, which is also used in other contexts to protect thread
3248// operations from having the thread being operated on from exiting
3249// and going away unexpectedly (e.g., safepoint synchronization)
3250
3251JavaThread* Threads::_thread_list = NULL;
3252int         Threads::_number_of_threads = 0;
3253int         Threads::_number_of_non_daemon_threads = 0;
3254int         Threads::_return_code = 0;
3255int         Threads::_thread_claim_parity = 0;
3256size_t      JavaThread::_stack_size_at_create = 0;
3257#ifdef ASSERT
3258bool        Threads::_vm_complete = false;
3259#endif
3260
3261// All JavaThreads
3262#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3263
3264// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3265void Threads::threads_do(ThreadClosure* tc) {
3266  assert_locked_or_safepoint(Threads_lock);
3267  // ALL_JAVA_THREADS iterates through all JavaThreads
3268  ALL_JAVA_THREADS(p) {
3269    tc->do_thread(p);
3270  }
3271  // Someday we could have a table or list of all non-JavaThreads.
3272  // For now, just manually iterate through them.
3273  tc->do_thread(VMThread::vm_thread());
3274  Universe::heap()->gc_threads_do(tc);
3275  WatcherThread *wt = WatcherThread::watcher_thread();
3276  // Strictly speaking, the following NULL check isn't sufficient to make sure
3277  // the data for WatcherThread is still valid upon being examined. However,
3278  // considering that WatchThread terminates when the VM is on the way to
3279  // exit at safepoint, the chance of the above is extremely small. The right
3280  // way to prevent termination of WatcherThread would be to acquire
3281  // Terminator_lock, but we can't do that without violating the lock rank
3282  // checking in some cases.
3283  if (wt != NULL) {
3284    tc->do_thread(wt);
3285  }
3286
3287  // If CompilerThreads ever become non-JavaThreads, add them here
3288}
3289
3290void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3291  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3292
3293  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3294    create_vm_init_libraries();
3295  }
3296
3297  initialize_class(vmSymbols::java_lang_String(), CHECK);
3298
3299  // Inject CompactStrings value after the static initializers for String ran.
3300  java_lang_String::set_compact_strings(CompactStrings);
3301
3302  // Initialize java_lang.System (needed before creating the thread)
3303  initialize_class(vmSymbols::java_lang_System(), CHECK);
3304  // The VM creates & returns objects of this class. Make sure it's initialized.
3305  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3306  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3307  Handle thread_group = create_initial_thread_group(CHECK);
3308  Universe::set_main_thread_group(thread_group());
3309  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3310  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3311  main_thread->set_threadObj(thread_object);
3312  // Set thread status to running since main thread has
3313  // been started and running.
3314  java_lang_Thread::set_thread_status(thread_object,
3315                                      java_lang_Thread::RUNNABLE);
3316
3317  // The VM preresolves methods to these classes. Make sure that they get initialized
3318  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3319  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3320  call_initializeSystemClass(CHECK);
3321
3322  // get the Java runtime name after java.lang.System is initialized
3323  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3324  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3325
3326  // an instance of OutOfMemory exception has been allocated earlier
3327  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3328  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3329  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3330  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3331  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3332  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3333  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3334  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3335}
3336
3337void Threads::initialize_jsr292_core_classes(TRAPS) {
3338  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3339  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3340  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3341}
3342
3343jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3344  extern void JDK_Version_init();
3345
3346  // Preinitialize version info.
3347  VM_Version::early_initialize();
3348
3349  // Check version
3350  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3351
3352  // Initialize the output stream module
3353  ostream_init();
3354
3355  // Process java launcher properties.
3356  Arguments::process_sun_java_launcher_properties(args);
3357
3358  // Initialize the os module before using TLS
3359  os::init();
3360
3361  // Record VM creation timing statistics
3362  TraceVmCreationTime create_vm_timer;
3363  create_vm_timer.start();
3364
3365  // Initialize system properties.
3366  Arguments::init_system_properties();
3367
3368  // So that JDK version can be used as a discriminator when parsing arguments
3369  JDK_Version_init();
3370
3371  // Update/Initialize System properties after JDK version number is known
3372  Arguments::init_version_specific_system_properties();
3373
3374  // Make sure to initialize log configuration *before* parsing arguments
3375  LogConfiguration::initialize(create_vm_timer.begin_time());
3376
3377  // Parse arguments
3378  jint parse_result = Arguments::parse(args);
3379  if (parse_result != JNI_OK) return parse_result;
3380
3381  os::init_before_ergo();
3382
3383  jint ergo_result = Arguments::apply_ergo();
3384  if (ergo_result != JNI_OK) return ergo_result;
3385
3386  // Final check of all ranges after ergonomics which may change values.
3387  if (!CommandLineFlagRangeList::check_ranges()) {
3388    return JNI_EINVAL;
3389  }
3390
3391  // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3392  bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3393  if (!constraint_result) {
3394    return JNI_EINVAL;
3395  }
3396
3397  if (PauseAtStartup) {
3398    os::pause();
3399  }
3400
3401  HOTSPOT_VM_INIT_BEGIN();
3402
3403  // Timing (must come after argument parsing)
3404  TraceTime timer("Create VM", TraceStartupTime);
3405
3406  // Initialize the os module after parsing the args
3407  jint os_init_2_result = os::init_2();
3408  if (os_init_2_result != JNI_OK) return os_init_2_result;
3409
3410  jint adjust_after_os_result = Arguments::adjust_after_os();
3411  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3412
3413  // initialize TLS
3414  ThreadLocalStorage::init();
3415
3416  // Initialize output stream logging
3417  ostream_init_log();
3418
3419  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3420  // Must be before create_vm_init_agents()
3421  if (Arguments::init_libraries_at_startup()) {
3422    convert_vm_init_libraries_to_agents();
3423  }
3424
3425  // Launch -agentlib/-agentpath and converted -Xrun agents
3426  if (Arguments::init_agents_at_startup()) {
3427    create_vm_init_agents();
3428  }
3429
3430  // Initialize Threads state
3431  _thread_list = NULL;
3432  _number_of_threads = 0;
3433  _number_of_non_daemon_threads = 0;
3434
3435  // Initialize global data structures and create system classes in heap
3436  vm_init_globals();
3437
3438#if INCLUDE_JVMCI
3439  if (JVMCICounterSize > 0) {
3440    JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3441    memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3442  } else {
3443    JavaThread::_jvmci_old_thread_counters = NULL;
3444  }
3445#endif // INCLUDE_JVMCI
3446
3447  // Attach the main thread to this os thread
3448  JavaThread* main_thread = new JavaThread();
3449  main_thread->set_thread_state(_thread_in_vm);
3450  // must do this before set_active_handles and initialize_thread_local_storage
3451  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3452  // change the stack size recorded here to one based on the java thread
3453  // stacksize. This adjusted size is what is used to figure the placement
3454  // of the guard pages.
3455  main_thread->record_stack_base_and_size();
3456  main_thread->initialize_thread_local_storage();
3457
3458  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3459
3460  if (!main_thread->set_as_starting_thread()) {
3461    vm_shutdown_during_initialization(
3462                                      "Failed necessary internal allocation. Out of swap space");
3463    delete main_thread;
3464    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3465    return JNI_ENOMEM;
3466  }
3467
3468  // Enable guard page *after* os::create_main_thread(), otherwise it would
3469  // crash Linux VM, see notes in os_linux.cpp.
3470  main_thread->create_stack_guard_pages();
3471
3472  // Initialize Java-Level synchronization subsystem
3473  ObjectMonitor::Initialize();
3474
3475  // Initialize global modules
3476  jint status = init_globals();
3477  if (status != JNI_OK) {
3478    delete main_thread;
3479    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3480    return status;
3481  }
3482
3483  // Should be done after the heap is fully created
3484  main_thread->cache_global_variables();
3485
3486  HandleMark hm;
3487
3488  { MutexLocker mu(Threads_lock);
3489    Threads::add(main_thread);
3490  }
3491
3492  // Any JVMTI raw monitors entered in onload will transition into
3493  // real raw monitor. VM is setup enough here for raw monitor enter.
3494  JvmtiExport::transition_pending_onload_raw_monitors();
3495
3496  // Create the VMThread
3497  { TraceTime timer("Start VMThread", TraceStartupTime);
3498    VMThread::create();
3499    Thread* vmthread = VMThread::vm_thread();
3500
3501    if (!os::create_thread(vmthread, os::vm_thread)) {
3502      vm_exit_during_initialization("Cannot create VM thread. "
3503                                    "Out of system resources.");
3504    }
3505
3506    // Wait for the VM thread to become ready, and VMThread::run to initialize
3507    // Monitors can have spurious returns, must always check another state flag
3508    {
3509      MutexLocker ml(Notify_lock);
3510      os::start_thread(vmthread);
3511      while (vmthread->active_handles() == NULL) {
3512        Notify_lock->wait();
3513      }
3514    }
3515  }
3516
3517  assert(Universe::is_fully_initialized(), "not initialized");
3518  if (VerifyDuringStartup) {
3519    // Make sure we're starting with a clean slate.
3520    VM_Verify verify_op;
3521    VMThread::execute(&verify_op);
3522  }
3523
3524  Thread* THREAD = Thread::current();
3525
3526  // At this point, the Universe is initialized, but we have not executed
3527  // any byte code.  Now is a good time (the only time) to dump out the
3528  // internal state of the JVM for sharing.
3529  if (DumpSharedSpaces) {
3530    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3531    ShouldNotReachHere();
3532  }
3533
3534  // Always call even when there are not JVMTI environments yet, since environments
3535  // may be attached late and JVMTI must track phases of VM execution
3536  JvmtiExport::enter_start_phase();
3537
3538  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3539  JvmtiExport::post_vm_start();
3540
3541  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3542
3543  // We need this for ClassDataSharing - the initial vm.info property is set
3544  // with the default value of CDS "sharing" which may be reset through
3545  // command line options.
3546  reset_vm_info_property(CHECK_JNI_ERR);
3547
3548  quicken_jni_functions();
3549
3550  // Must be run after init_ft which initializes ft_enabled
3551  if (TRACE_INITIALIZE() != JNI_OK) {
3552    vm_exit_during_initialization("Failed to initialize tracing backend");
3553  }
3554
3555  // Set flag that basic initialization has completed. Used by exceptions and various
3556  // debug stuff, that does not work until all basic classes have been initialized.
3557  set_init_completed();
3558
3559  LogConfiguration::post_initialize();
3560  Metaspace::post_initialize();
3561
3562  HOTSPOT_VM_INIT_END();
3563
3564  // record VM initialization completion time
3565#if INCLUDE_MANAGEMENT
3566  Management::record_vm_init_completed();
3567#endif // INCLUDE_MANAGEMENT
3568
3569  // Compute system loader. Note that this has to occur after set_init_completed, since
3570  // valid exceptions may be thrown in the process.
3571  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3572  // set_init_completed has just been called, causing exceptions not to be shortcut
3573  // anymore. We call vm_exit_during_initialization directly instead.
3574  SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3575
3576#if INCLUDE_ALL_GCS
3577  // Support for ConcurrentMarkSweep. This should be cleaned up
3578  // and better encapsulated. The ugly nested if test would go away
3579  // once things are properly refactored. XXX YSR
3580  if (UseConcMarkSweepGC || UseG1GC) {
3581    if (UseConcMarkSweepGC) {
3582      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3583    } else {
3584      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3585    }
3586  }
3587#endif // INCLUDE_ALL_GCS
3588
3589  // Always call even when there are not JVMTI environments yet, since environments
3590  // may be attached late and JVMTI must track phases of VM execution
3591  JvmtiExport::enter_live_phase();
3592
3593  // Signal Dispatcher needs to be started before VMInit event is posted
3594  os::signal_init();
3595
3596  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3597  if (!DisableAttachMechanism) {
3598    AttachListener::vm_start();
3599    if (StartAttachListener || AttachListener::init_at_startup()) {
3600      AttachListener::init();
3601    }
3602  }
3603
3604  // Launch -Xrun agents
3605  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3606  // back-end can launch with -Xdebug -Xrunjdwp.
3607  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3608    create_vm_init_libraries();
3609  }
3610
3611  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3612  JvmtiExport::post_vm_initialized();
3613
3614  if (TRACE_START() != JNI_OK) {
3615    vm_exit_during_initialization("Failed to start tracing backend.");
3616  }
3617
3618  if (CleanChunkPoolAsync) {
3619    Chunk::start_chunk_pool_cleaner_task();
3620  }
3621
3622#if INCLUDE_JVMCI
3623  if (EnableJVMCI) {
3624    const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3625    if (jvmciCompiler != NULL) {
3626      JVMCIRuntime::save_compiler(jvmciCompiler);
3627    }
3628    JVMCIRuntime::maybe_print_flags(CHECK_JNI_ERR);
3629  }
3630#endif // INCLUDE_JVMCI
3631
3632  // initialize compiler(s)
3633#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3634  CompileBroker::compilation_init();
3635#endif
3636
3637  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3638  // It is done after compilers are initialized, because otherwise compilations of
3639  // signature polymorphic MH intrinsics can be missed
3640  // (see SystemDictionary::find_method_handle_intrinsic).
3641  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3642
3643#if INCLUDE_MANAGEMENT
3644  Management::initialize(THREAD);
3645
3646  if (HAS_PENDING_EXCEPTION) {
3647    // management agent fails to start possibly due to
3648    // configuration problem and is responsible for printing
3649    // stack trace if appropriate. Simply exit VM.
3650    vm_exit(1);
3651  }
3652#endif // INCLUDE_MANAGEMENT
3653
3654  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3655  if (MemProfiling)                   MemProfiler::engage();
3656  StatSampler::engage();
3657  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3658
3659  BiasedLocking::init();
3660
3661#if INCLUDE_RTM_OPT
3662  RTMLockingCounters::init();
3663#endif
3664
3665  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3666    call_postVMInitHook(THREAD);
3667    // The Java side of PostVMInitHook.run must deal with all
3668    // exceptions and provide means of diagnosis.
3669    if (HAS_PENDING_EXCEPTION) {
3670      CLEAR_PENDING_EXCEPTION;
3671    }
3672  }
3673
3674  {
3675    MutexLocker ml(PeriodicTask_lock);
3676    // Make sure the WatcherThread can be started by WatcherThread::start()
3677    // or by dynamic enrollment.
3678    WatcherThread::make_startable();
3679    // Start up the WatcherThread if there are any periodic tasks
3680    // NOTE:  All PeriodicTasks should be registered by now. If they
3681    //   aren't, late joiners might appear to start slowly (we might
3682    //   take a while to process their first tick).
3683    if (PeriodicTask::num_tasks() > 0) {
3684      WatcherThread::start();
3685    }
3686  }
3687
3688  CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3689
3690  create_vm_timer.end();
3691#ifdef ASSERT
3692  _vm_complete = true;
3693#endif
3694  return JNI_OK;
3695}
3696
3697// type for the Agent_OnLoad and JVM_OnLoad entry points
3698extern "C" {
3699  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3700}
3701// Find a command line agent library and return its entry point for
3702//         -agentlib:  -agentpath:   -Xrun
3703// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3704static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3705                                    const char *on_load_symbols[],
3706                                    size_t num_symbol_entries) {
3707  OnLoadEntry_t on_load_entry = NULL;
3708  void *library = NULL;
3709
3710  if (!agent->valid()) {
3711    char buffer[JVM_MAXPATHLEN];
3712    char ebuf[1024] = "";
3713    const char *name = agent->name();
3714    const char *msg = "Could not find agent library ";
3715
3716    // First check to see if agent is statically linked into executable
3717    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3718      library = agent->os_lib();
3719    } else if (agent->is_absolute_path()) {
3720      library = os::dll_load(name, ebuf, sizeof ebuf);
3721      if (library == NULL) {
3722        const char *sub_msg = " in absolute path, with error: ";
3723        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3724        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3725        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3726        // If we can't find the agent, exit.
3727        vm_exit_during_initialization(buf, NULL);
3728        FREE_C_HEAP_ARRAY(char, buf);
3729      }
3730    } else {
3731      // Try to load the agent from the standard dll directory
3732      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3733                             name)) {
3734        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3735      }
3736      if (library == NULL) { // Try the local directory
3737        char ns[1] = {0};
3738        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3739          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3740        }
3741        if (library == NULL) {
3742          const char *sub_msg = " on the library path, with error: ";
3743          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3744          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3745          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3746          // If we can't find the agent, exit.
3747          vm_exit_during_initialization(buf, NULL);
3748          FREE_C_HEAP_ARRAY(char, buf);
3749        }
3750      }
3751    }
3752    agent->set_os_lib(library);
3753    agent->set_valid();
3754  }
3755
3756  // Find the OnLoad function.
3757  on_load_entry =
3758    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3759                                                          false,
3760                                                          on_load_symbols,
3761                                                          num_symbol_entries));
3762  return on_load_entry;
3763}
3764
3765// Find the JVM_OnLoad entry point
3766static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3767  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3768  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3769}
3770
3771// Find the Agent_OnLoad entry point
3772static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3773  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3774  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3775}
3776
3777// For backwards compatibility with -Xrun
3778// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3779// treated like -agentpath:
3780// Must be called before agent libraries are created
3781void Threads::convert_vm_init_libraries_to_agents() {
3782  AgentLibrary* agent;
3783  AgentLibrary* next;
3784
3785  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3786    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3787    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3788
3789    // If there is an JVM_OnLoad function it will get called later,
3790    // otherwise see if there is an Agent_OnLoad
3791    if (on_load_entry == NULL) {
3792      on_load_entry = lookup_agent_on_load(agent);
3793      if (on_load_entry != NULL) {
3794        // switch it to the agent list -- so that Agent_OnLoad will be called,
3795        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3796        Arguments::convert_library_to_agent(agent);
3797      } else {
3798        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3799      }
3800    }
3801  }
3802}
3803
3804// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3805// Invokes Agent_OnLoad
3806// Called very early -- before JavaThreads exist
3807void Threads::create_vm_init_agents() {
3808  extern struct JavaVM_ main_vm;
3809  AgentLibrary* agent;
3810
3811  JvmtiExport::enter_onload_phase();
3812
3813  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3814    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3815
3816    if (on_load_entry != NULL) {
3817      // Invoke the Agent_OnLoad function
3818      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3819      if (err != JNI_OK) {
3820        vm_exit_during_initialization("agent library failed to init", agent->name());
3821      }
3822    } else {
3823      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3824    }
3825  }
3826  JvmtiExport::enter_primordial_phase();
3827}
3828
3829extern "C" {
3830  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3831}
3832
3833void Threads::shutdown_vm_agents() {
3834  // Send any Agent_OnUnload notifications
3835  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3836  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3837  extern struct JavaVM_ main_vm;
3838  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3839
3840    // Find the Agent_OnUnload function.
3841    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3842                                                   os::find_agent_function(agent,
3843                                                   false,
3844                                                   on_unload_symbols,
3845                                                   num_symbol_entries));
3846
3847    // Invoke the Agent_OnUnload function
3848    if (unload_entry != NULL) {
3849      JavaThread* thread = JavaThread::current();
3850      ThreadToNativeFromVM ttn(thread);
3851      HandleMark hm(thread);
3852      (*unload_entry)(&main_vm);
3853    }
3854  }
3855}
3856
3857// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3858// Invokes JVM_OnLoad
3859void Threads::create_vm_init_libraries() {
3860  extern struct JavaVM_ main_vm;
3861  AgentLibrary* agent;
3862
3863  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3864    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3865
3866    if (on_load_entry != NULL) {
3867      // Invoke the JVM_OnLoad function
3868      JavaThread* thread = JavaThread::current();
3869      ThreadToNativeFromVM ttn(thread);
3870      HandleMark hm(thread);
3871      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3872      if (err != JNI_OK) {
3873        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3874      }
3875    } else {
3876      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3877    }
3878  }
3879}
3880
3881JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3882  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3883
3884  JavaThread* java_thread = NULL;
3885  // Sequential search for now.  Need to do better optimization later.
3886  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3887    oop tobj = thread->threadObj();
3888    if (!thread->is_exiting() &&
3889        tobj != NULL &&
3890        java_tid == java_lang_Thread::thread_id(tobj)) {
3891      java_thread = thread;
3892      break;
3893    }
3894  }
3895  return java_thread;
3896}
3897
3898
3899// Last thread running calls java.lang.Shutdown.shutdown()
3900void JavaThread::invoke_shutdown_hooks() {
3901  HandleMark hm(this);
3902
3903  // We could get here with a pending exception, if so clear it now.
3904  if (this->has_pending_exception()) {
3905    this->clear_pending_exception();
3906  }
3907
3908  EXCEPTION_MARK;
3909  Klass* k =
3910    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3911                                      THREAD);
3912  if (k != NULL) {
3913    // SystemDictionary::resolve_or_null will return null if there was
3914    // an exception.  If we cannot load the Shutdown class, just don't
3915    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3916    // and finalizers (if runFinalizersOnExit is set) won't be run.
3917    // Note that if a shutdown hook was registered or runFinalizersOnExit
3918    // was called, the Shutdown class would have already been loaded
3919    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3920    instanceKlassHandle shutdown_klass (THREAD, k);
3921    JavaValue result(T_VOID);
3922    JavaCalls::call_static(&result,
3923                           shutdown_klass,
3924                           vmSymbols::shutdown_method_name(),
3925                           vmSymbols::void_method_signature(),
3926                           THREAD);
3927  }
3928  CLEAR_PENDING_EXCEPTION;
3929}
3930
3931// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3932// the program falls off the end of main(). Another VM exit path is through
3933// vm_exit() when the program calls System.exit() to return a value or when
3934// there is a serious error in VM. The two shutdown paths are not exactly
3935// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3936// and VM_Exit op at VM level.
3937//
3938// Shutdown sequence:
3939//   + Shutdown native memory tracking if it is on
3940//   + Wait until we are the last non-daemon thread to execute
3941//     <-- every thing is still working at this moment -->
3942//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3943//        shutdown hooks, run finalizers if finalization-on-exit
3944//   + Call before_exit(), prepare for VM exit
3945//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3946//        currently the only user of this mechanism is File.deleteOnExit())
3947//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3948//        post thread end and vm death events to JVMTI,
3949//        stop signal thread
3950//   + Call JavaThread::exit(), it will:
3951//      > release JNI handle blocks, remove stack guard pages
3952//      > remove this thread from Threads list
3953//     <-- no more Java code from this thread after this point -->
3954//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3955//     the compiler threads at safepoint
3956//     <-- do not use anything that could get blocked by Safepoint -->
3957//   + Disable tracing at JNI/JVM barriers
3958//   + Set _vm_exited flag for threads that are still running native code
3959//   + Delete this thread
3960//   + Call exit_globals()
3961//      > deletes tty
3962//      > deletes PerfMemory resources
3963//   + Return to caller
3964
3965bool Threads::destroy_vm() {
3966  JavaThread* thread = JavaThread::current();
3967
3968#ifdef ASSERT
3969  _vm_complete = false;
3970#endif
3971  // Wait until we are the last non-daemon thread to execute
3972  { MutexLocker nu(Threads_lock);
3973    while (Threads::number_of_non_daemon_threads() > 1)
3974      // This wait should make safepoint checks, wait without a timeout,
3975      // and wait as a suspend-equivalent condition.
3976      //
3977      // Note: If the FlatProfiler is running and this thread is waiting
3978      // for another non-daemon thread to finish, then the FlatProfiler
3979      // is waiting for the external suspend request on this thread to
3980      // complete. wait_for_ext_suspend_completion() will eventually
3981      // timeout, but that takes time. Making this wait a suspend-
3982      // equivalent condition solves that timeout problem.
3983      //
3984      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3985                         Mutex::_as_suspend_equivalent_flag);
3986  }
3987
3988  // Hang forever on exit if we are reporting an error.
3989  if (ShowMessageBoxOnError && is_error_reported()) {
3990    os::infinite_sleep();
3991  }
3992  os::wait_for_keypress_at_exit();
3993
3994  // run Java level shutdown hooks
3995  thread->invoke_shutdown_hooks();
3996
3997  before_exit(thread);
3998
3999  thread->exit(true);
4000
4001  // Stop VM thread.
4002  {
4003    // 4945125 The vm thread comes to a safepoint during exit.
4004    // GC vm_operations can get caught at the safepoint, and the
4005    // heap is unparseable if they are caught. Grab the Heap_lock
4006    // to prevent this. The GC vm_operations will not be able to
4007    // queue until after the vm thread is dead. After this point,
4008    // we'll never emerge out of the safepoint before the VM exits.
4009
4010    MutexLocker ml(Heap_lock);
4011
4012    VMThread::wait_for_vm_thread_exit();
4013    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4014    VMThread::destroy();
4015  }
4016
4017  // clean up ideal graph printers
4018#if defined(COMPILER2) && !defined(PRODUCT)
4019  IdealGraphPrinter::clean_up();
4020#endif
4021
4022  // Now, all Java threads are gone except daemon threads. Daemon threads
4023  // running Java code or in VM are stopped by the Safepoint. However,
4024  // daemon threads executing native code are still running.  But they
4025  // will be stopped at native=>Java/VM barriers. Note that we can't
4026  // simply kill or suspend them, as it is inherently deadlock-prone.
4027
4028#ifndef PRODUCT
4029  // disable function tracing at JNI/JVM barriers
4030  TraceJNICalls = false;
4031  TraceJVMCalls = false;
4032  TraceRuntimeCalls = false;
4033#endif
4034
4035  VM_Exit::set_vm_exited();
4036
4037  notify_vm_shutdown();
4038
4039  delete thread;
4040
4041#if INCLUDE_JVMCI
4042  if (JVMCICounterSize > 0) {
4043    FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4044  }
4045#endif
4046
4047  // exit_globals() will delete tty
4048  exit_globals();
4049
4050  LogConfiguration::finalize();
4051
4052  return true;
4053}
4054
4055
4056jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4057  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4058  return is_supported_jni_version(version);
4059}
4060
4061
4062jboolean Threads::is_supported_jni_version(jint version) {
4063  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4064  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4065  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4066  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4067  return JNI_FALSE;
4068}
4069
4070
4071void Threads::add(JavaThread* p, bool force_daemon) {
4072  // The threads lock must be owned at this point
4073  assert_locked_or_safepoint(Threads_lock);
4074
4075  // See the comment for this method in thread.hpp for its purpose and
4076  // why it is called here.
4077  p->initialize_queues();
4078  p->set_next(_thread_list);
4079  _thread_list = p;
4080  _number_of_threads++;
4081  oop threadObj = p->threadObj();
4082  bool daemon = true;
4083  // Bootstrapping problem: threadObj can be null for initial
4084  // JavaThread (or for threads attached via JNI)
4085  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4086    _number_of_non_daemon_threads++;
4087    daemon = false;
4088  }
4089
4090  ThreadService::add_thread(p, daemon);
4091
4092  // Possible GC point.
4093  Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4094}
4095
4096void Threads::remove(JavaThread* p) {
4097  // Extra scope needed for Thread_lock, so we can check
4098  // that we do not remove thread without safepoint code notice
4099  { MutexLocker ml(Threads_lock);
4100
4101    assert(includes(p), "p must be present");
4102
4103    JavaThread* current = _thread_list;
4104    JavaThread* prev    = NULL;
4105
4106    while (current != p) {
4107      prev    = current;
4108      current = current->next();
4109    }
4110
4111    if (prev) {
4112      prev->set_next(current->next());
4113    } else {
4114      _thread_list = p->next();
4115    }
4116    _number_of_threads--;
4117    oop threadObj = p->threadObj();
4118    bool daemon = true;
4119    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4120      _number_of_non_daemon_threads--;
4121      daemon = false;
4122
4123      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4124      // on destroy_vm will wake up.
4125      if (number_of_non_daemon_threads() == 1) {
4126        Threads_lock->notify_all();
4127      }
4128    }
4129    ThreadService::remove_thread(p, daemon);
4130
4131    // Make sure that safepoint code disregard this thread. This is needed since
4132    // the thread might mess around with locks after this point. This can cause it
4133    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4134    // of this thread since it is removed from the queue.
4135    p->set_terminated_value();
4136  } // unlock Threads_lock
4137
4138  // Since Events::log uses a lock, we grab it outside the Threads_lock
4139  Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4140}
4141
4142// Threads_lock must be held when this is called (or must be called during a safepoint)
4143bool Threads::includes(JavaThread* p) {
4144  assert(Threads_lock->is_locked(), "sanity check");
4145  ALL_JAVA_THREADS(q) {
4146    if (q == p) {
4147      return true;
4148    }
4149  }
4150  return false;
4151}
4152
4153// Operations on the Threads list for GC.  These are not explicitly locked,
4154// but the garbage collector must provide a safe context for them to run.
4155// In particular, these things should never be called when the Threads_lock
4156// is held by some other thread. (Note: the Safepoint abstraction also
4157// uses the Threads_lock to guarantee this property. It also makes sure that
4158// all threads gets blocked when exiting or starting).
4159
4160void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4161  ALL_JAVA_THREADS(p) {
4162    p->oops_do(f, cld_f, cf);
4163  }
4164  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4165}
4166
4167void Threads::change_thread_claim_parity() {
4168  // Set the new claim parity.
4169  assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4170         "Not in range.");
4171  _thread_claim_parity++;
4172  if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4173  assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4174         "Not in range.");
4175}
4176
4177#ifdef ASSERT
4178void Threads::assert_all_threads_claimed() {
4179  ALL_JAVA_THREADS(p) {
4180    const int thread_parity = p->oops_do_parity();
4181    assert((thread_parity == _thread_claim_parity),
4182           "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4183  }
4184}
4185#endif // ASSERT
4186
4187void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4188  int cp = Threads::thread_claim_parity();
4189  ALL_JAVA_THREADS(p) {
4190    if (p->claim_oops_do(is_par, cp)) {
4191      p->oops_do(f, cld_f, cf);
4192    }
4193  }
4194  VMThread* vmt = VMThread::vm_thread();
4195  if (vmt->claim_oops_do(is_par, cp)) {
4196    vmt->oops_do(f, cld_f, cf);
4197  }
4198}
4199
4200#if INCLUDE_ALL_GCS
4201// Used by ParallelScavenge
4202void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4203  ALL_JAVA_THREADS(p) {
4204    q->enqueue(new ThreadRootsTask(p));
4205  }
4206  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4207}
4208
4209// Used by Parallel Old
4210void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4211  ALL_JAVA_THREADS(p) {
4212    q->enqueue(new ThreadRootsMarkingTask(p));
4213  }
4214  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4215}
4216#endif // INCLUDE_ALL_GCS
4217
4218void Threads::nmethods_do(CodeBlobClosure* cf) {
4219  ALL_JAVA_THREADS(p) {
4220    p->nmethods_do(cf);
4221  }
4222  VMThread::vm_thread()->nmethods_do(cf);
4223}
4224
4225void Threads::metadata_do(void f(Metadata*)) {
4226  ALL_JAVA_THREADS(p) {
4227    p->metadata_do(f);
4228  }
4229}
4230
4231class ThreadHandlesClosure : public ThreadClosure {
4232  void (*_f)(Metadata*);
4233 public:
4234  ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4235  virtual void do_thread(Thread* thread) {
4236    thread->metadata_handles_do(_f);
4237  }
4238};
4239
4240void Threads::metadata_handles_do(void f(Metadata*)) {
4241  // Only walk the Handles in Thread.
4242  ThreadHandlesClosure handles_closure(f);
4243  threads_do(&handles_closure);
4244}
4245
4246void Threads::deoptimized_wrt_marked_nmethods() {
4247  ALL_JAVA_THREADS(p) {
4248    p->deoptimized_wrt_marked_nmethods();
4249  }
4250}
4251
4252
4253// Get count Java threads that are waiting to enter the specified monitor.
4254GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4255                                                         address monitor,
4256                                                         bool doLock) {
4257  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4258         "must grab Threads_lock or be at safepoint");
4259  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4260
4261  int i = 0;
4262  {
4263    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4264    ALL_JAVA_THREADS(p) {
4265      if (!p->can_call_java()) continue;
4266
4267      address pending = (address)p->current_pending_monitor();
4268      if (pending == monitor) {             // found a match
4269        if (i < count) result->append(p);   // save the first count matches
4270        i++;
4271      }
4272    }
4273  }
4274  return result;
4275}
4276
4277
4278JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4279                                                      bool doLock) {
4280  assert(doLock ||
4281         Threads_lock->owned_by_self() ||
4282         SafepointSynchronize::is_at_safepoint(),
4283         "must grab Threads_lock or be at safepoint");
4284
4285  // NULL owner means not locked so we can skip the search
4286  if (owner == NULL) return NULL;
4287
4288  {
4289    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4290    ALL_JAVA_THREADS(p) {
4291      // first, see if owner is the address of a Java thread
4292      if (owner == (address)p) return p;
4293    }
4294  }
4295  // Cannot assert on lack of success here since this function may be
4296  // used by code that is trying to report useful problem information
4297  // like deadlock detection.
4298  if (UseHeavyMonitors) return NULL;
4299
4300  // If we didn't find a matching Java thread and we didn't force use of
4301  // heavyweight monitors, then the owner is the stack address of the
4302  // Lock Word in the owning Java thread's stack.
4303  //
4304  JavaThread* the_owner = NULL;
4305  {
4306    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4307    ALL_JAVA_THREADS(q) {
4308      if (q->is_lock_owned(owner)) {
4309        the_owner = q;
4310        break;
4311      }
4312    }
4313  }
4314  // cannot assert on lack of success here; see above comment
4315  return the_owner;
4316}
4317
4318// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4319void Threads::print_on(outputStream* st, bool print_stacks,
4320                       bool internal_format, bool print_concurrent_locks) {
4321  char buf[32];
4322  st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4323
4324  st->print_cr("Full thread dump %s (%s %s):",
4325               Abstract_VM_Version::vm_name(),
4326               Abstract_VM_Version::vm_release(),
4327               Abstract_VM_Version::vm_info_string());
4328  st->cr();
4329
4330#if INCLUDE_SERVICES
4331  // Dump concurrent locks
4332  ConcurrentLocksDump concurrent_locks;
4333  if (print_concurrent_locks) {
4334    concurrent_locks.dump_at_safepoint();
4335  }
4336#endif // INCLUDE_SERVICES
4337
4338  ALL_JAVA_THREADS(p) {
4339    ResourceMark rm;
4340    p->print_on(st);
4341    if (print_stacks) {
4342      if (internal_format) {
4343        p->trace_stack();
4344      } else {
4345        p->print_stack_on(st);
4346      }
4347    }
4348    st->cr();
4349#if INCLUDE_SERVICES
4350    if (print_concurrent_locks) {
4351      concurrent_locks.print_locks_on(p, st);
4352    }
4353#endif // INCLUDE_SERVICES
4354  }
4355
4356  VMThread::vm_thread()->print_on(st);
4357  st->cr();
4358  Universe::heap()->print_gc_threads_on(st);
4359  WatcherThread* wt = WatcherThread::watcher_thread();
4360  if (wt != NULL) {
4361    wt->print_on(st);
4362    st->cr();
4363  }
4364  CompileBroker::print_compiler_threads_on(st);
4365  st->flush();
4366}
4367
4368// Threads::print_on_error() is called by fatal error handler. It's possible
4369// that VM is not at safepoint and/or current thread is inside signal handler.
4370// Don't print stack trace, as the stack may not be walkable. Don't allocate
4371// memory (even in resource area), it might deadlock the error handler.
4372void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4373                             int buflen) {
4374  bool found_current = false;
4375  st->print_cr("Java Threads: ( => current thread )");
4376  ALL_JAVA_THREADS(thread) {
4377    bool is_current = (current == thread);
4378    found_current = found_current || is_current;
4379
4380    st->print("%s", is_current ? "=>" : "  ");
4381
4382    st->print(PTR_FORMAT, p2i(thread));
4383    st->print(" ");
4384    thread->print_on_error(st, buf, buflen);
4385    st->cr();
4386  }
4387  st->cr();
4388
4389  st->print_cr("Other Threads:");
4390  if (VMThread::vm_thread()) {
4391    bool is_current = (current == VMThread::vm_thread());
4392    found_current = found_current || is_current;
4393    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4394
4395    st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4396    st->print(" ");
4397    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4398    st->cr();
4399  }
4400  WatcherThread* wt = WatcherThread::watcher_thread();
4401  if (wt != NULL) {
4402    bool is_current = (current == wt);
4403    found_current = found_current || is_current;
4404    st->print("%s", is_current ? "=>" : "  ");
4405
4406    st->print(PTR_FORMAT, p2i(wt));
4407    st->print(" ");
4408    wt->print_on_error(st, buf, buflen);
4409    st->cr();
4410  }
4411  if (!found_current) {
4412    st->cr();
4413    st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4414    current->print_on_error(st, buf, buflen);
4415    st->cr();
4416  }
4417}
4418
4419// Internal SpinLock and Mutex
4420// Based on ParkEvent
4421
4422// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4423//
4424// We employ SpinLocks _only for low-contention, fixed-length
4425// short-duration critical sections where we're concerned
4426// about native mutex_t or HotSpot Mutex:: latency.
4427// The mux construct provides a spin-then-block mutual exclusion
4428// mechanism.
4429//
4430// Testing has shown that contention on the ListLock guarding gFreeList
4431// is common.  If we implement ListLock as a simple SpinLock it's common
4432// for the JVM to devolve to yielding with little progress.  This is true
4433// despite the fact that the critical sections protected by ListLock are
4434// extremely short.
4435//
4436// TODO-FIXME: ListLock should be of type SpinLock.
4437// We should make this a 1st-class type, integrated into the lock
4438// hierarchy as leaf-locks.  Critically, the SpinLock structure
4439// should have sufficient padding to avoid false-sharing and excessive
4440// cache-coherency traffic.
4441
4442
4443typedef volatile int SpinLockT;
4444
4445void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4446  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4447    return;   // normal fast-path return
4448  }
4449
4450  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4451  TEVENT(SpinAcquire - ctx);
4452  int ctr = 0;
4453  int Yields = 0;
4454  for (;;) {
4455    while (*adr != 0) {
4456      ++ctr;
4457      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4458        if (Yields > 5) {
4459          os::naked_short_sleep(1);
4460        } else {
4461          os::naked_yield();
4462          ++Yields;
4463        }
4464      } else {
4465        SpinPause();
4466      }
4467    }
4468    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4469  }
4470}
4471
4472void Thread::SpinRelease(volatile int * adr) {
4473  assert(*adr != 0, "invariant");
4474  OrderAccess::fence();      // guarantee at least release consistency.
4475  // Roach-motel semantics.
4476  // It's safe if subsequent LDs and STs float "up" into the critical section,
4477  // but prior LDs and STs within the critical section can't be allowed
4478  // to reorder or float past the ST that releases the lock.
4479  // Loads and stores in the critical section - which appear in program
4480  // order before the store that releases the lock - must also appear
4481  // before the store that releases the lock in memory visibility order.
4482  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4483  // the ST of 0 into the lock-word which releases the lock, so fence
4484  // more than covers this on all platforms.
4485  *adr = 0;
4486}
4487
4488// muxAcquire and muxRelease:
4489//
4490// *  muxAcquire and muxRelease support a single-word lock-word construct.
4491//    The LSB of the word is set IFF the lock is held.
4492//    The remainder of the word points to the head of a singly-linked list
4493//    of threads blocked on the lock.
4494//
4495// *  The current implementation of muxAcquire-muxRelease uses its own
4496//    dedicated Thread._MuxEvent instance.  If we're interested in
4497//    minimizing the peak number of extant ParkEvent instances then
4498//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4499//    as certain invariants were satisfied.  Specifically, care would need
4500//    to be taken with regards to consuming unpark() "permits".
4501//    A safe rule of thumb is that a thread would never call muxAcquire()
4502//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4503//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4504//    consume an unpark() permit intended for monitorenter, for instance.
4505//    One way around this would be to widen the restricted-range semaphore
4506//    implemented in park().  Another alternative would be to provide
4507//    multiple instances of the PlatformEvent() for each thread.  One
4508//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4509//
4510// *  Usage:
4511//    -- Only as leaf locks
4512//    -- for short-term locking only as muxAcquire does not perform
4513//       thread state transitions.
4514//
4515// Alternatives:
4516// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4517//    but with parking or spin-then-park instead of pure spinning.
4518// *  Use Taura-Oyama-Yonenzawa locks.
4519// *  It's possible to construct a 1-0 lock if we encode the lockword as
4520//    (List,LockByte).  Acquire will CAS the full lockword while Release
4521//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4522//    acquiring threads use timers (ParkTimed) to detect and recover from
4523//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4524//    boundaries by using placement-new.
4525// *  Augment MCS with advisory back-link fields maintained with CAS().
4526//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4527//    The validity of the backlinks must be ratified before we trust the value.
4528//    If the backlinks are invalid the exiting thread must back-track through the
4529//    the forward links, which are always trustworthy.
4530// *  Add a successor indication.  The LockWord is currently encoded as
4531//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4532//    to provide the usual futile-wakeup optimization.
4533//    See RTStt for details.
4534// *  Consider schedctl.sc_nopreempt to cover the critical section.
4535//
4536
4537
4538typedef volatile intptr_t MutexT;      // Mux Lock-word
4539enum MuxBits { LOCKBIT = 1 };
4540
4541void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4542  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4543  if (w == 0) return;
4544  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4545    return;
4546  }
4547
4548  TEVENT(muxAcquire - Contention);
4549  ParkEvent * const Self = Thread::current()->_MuxEvent;
4550  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4551  for (;;) {
4552    int its = (os::is_MP() ? 100 : 0) + 1;
4553
4554    // Optional spin phase: spin-then-park strategy
4555    while (--its >= 0) {
4556      w = *Lock;
4557      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4558        return;
4559      }
4560    }
4561
4562    Self->reset();
4563    Self->OnList = intptr_t(Lock);
4564    // The following fence() isn't _strictly necessary as the subsequent
4565    // CAS() both serializes execution and ratifies the fetched *Lock value.
4566    OrderAccess::fence();
4567    for (;;) {
4568      w = *Lock;
4569      if ((w & LOCKBIT) == 0) {
4570        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4571          Self->OnList = 0;   // hygiene - allows stronger asserts
4572          return;
4573        }
4574        continue;      // Interference -- *Lock changed -- Just retry
4575      }
4576      assert(w & LOCKBIT, "invariant");
4577      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4578      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4579    }
4580
4581    while (Self->OnList != 0) {
4582      Self->park();
4583    }
4584  }
4585}
4586
4587void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4588  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4589  if (w == 0) return;
4590  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4591    return;
4592  }
4593
4594  TEVENT(muxAcquire - Contention);
4595  ParkEvent * ReleaseAfter = NULL;
4596  if (ev == NULL) {
4597    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4598  }
4599  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4600  for (;;) {
4601    guarantee(ev->OnList == 0, "invariant");
4602    int its = (os::is_MP() ? 100 : 0) + 1;
4603
4604    // Optional spin phase: spin-then-park strategy
4605    while (--its >= 0) {
4606      w = *Lock;
4607      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4608        if (ReleaseAfter != NULL) {
4609          ParkEvent::Release(ReleaseAfter);
4610        }
4611        return;
4612      }
4613    }
4614
4615    ev->reset();
4616    ev->OnList = intptr_t(Lock);
4617    // The following fence() isn't _strictly necessary as the subsequent
4618    // CAS() both serializes execution and ratifies the fetched *Lock value.
4619    OrderAccess::fence();
4620    for (;;) {
4621      w = *Lock;
4622      if ((w & LOCKBIT) == 0) {
4623        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4624          ev->OnList = 0;
4625          // We call ::Release while holding the outer lock, thus
4626          // artificially lengthening the critical section.
4627          // Consider deferring the ::Release() until the subsequent unlock(),
4628          // after we've dropped the outer lock.
4629          if (ReleaseAfter != NULL) {
4630            ParkEvent::Release(ReleaseAfter);
4631          }
4632          return;
4633        }
4634        continue;      // Interference -- *Lock changed -- Just retry
4635      }
4636      assert(w & LOCKBIT, "invariant");
4637      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4638      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4639    }
4640
4641    while (ev->OnList != 0) {
4642      ev->park();
4643    }
4644  }
4645}
4646
4647// Release() must extract a successor from the list and then wake that thread.
4648// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4649// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4650// Release() would :
4651// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4652// (B) Extract a successor from the private list "in-hand"
4653// (C) attempt to CAS() the residual back into *Lock over null.
4654//     If there were any newly arrived threads and the CAS() would fail.
4655//     In that case Release() would detach the RATs, re-merge the list in-hand
4656//     with the RATs and repeat as needed.  Alternately, Release() might
4657//     detach and extract a successor, but then pass the residual list to the wakee.
4658//     The wakee would be responsible for reattaching and remerging before it
4659//     competed for the lock.
4660//
4661// Both "pop" and DMR are immune from ABA corruption -- there can be
4662// multiple concurrent pushers, but only one popper or detacher.
4663// This implementation pops from the head of the list.  This is unfair,
4664// but tends to provide excellent throughput as hot threads remain hot.
4665// (We wake recently run threads first).
4666//
4667// All paths through muxRelease() will execute a CAS.
4668// Release consistency -- We depend on the CAS in muxRelease() to provide full
4669// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4670// executed within the critical section are complete and globally visible before the
4671// store (CAS) to the lock-word that releases the lock becomes globally visible.
4672void Thread::muxRelease(volatile intptr_t * Lock)  {
4673  for (;;) {
4674    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4675    assert(w & LOCKBIT, "invariant");
4676    if (w == LOCKBIT) return;
4677    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4678    assert(List != NULL, "invariant");
4679    assert(List->OnList == intptr_t(Lock), "invariant");
4680    ParkEvent * const nxt = List->ListNext;
4681    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4682
4683    // The following CAS() releases the lock and pops the head element.
4684    // The CAS() also ratifies the previously fetched lock-word value.
4685    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4686      continue;
4687    }
4688    List->OnList = 0;
4689    OrderAccess::fence();
4690    List->unpark();
4691    return;
4692  }
4693}
4694
4695
4696void Threads::verify() {
4697  ALL_JAVA_THREADS(p) {
4698    p->verify();
4699  }
4700  VMThread* thread = VMThread::vm_thread();
4701  if (thread != NULL) thread->verify();
4702}
4703