thread.cpp revision 11811:133339642ba1
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/moduleEntry.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/codeCache.hpp"
32#include "code/codeCacheExtensions.hpp"
33#include "code/scopeDesc.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/compileTask.hpp"
36#include "gc/shared/gcId.hpp"
37#include "gc/shared/gcLocker.inline.hpp"
38#include "gc/shared/referencePendingListLocker.hpp"
39#include "gc/shared/workgroup.hpp"
40#include "interpreter/interpreter.hpp"
41#include "interpreter/linkResolver.hpp"
42#include "interpreter/oopMapCache.hpp"
43#include "jvmtifiles/jvmtiEnv.hpp"
44#include "logging/log.hpp"
45#include "logging/logConfiguration.hpp"
46#include "memory/metaspaceShared.hpp"
47#include "memory/oopFactory.hpp"
48#include "memory/resourceArea.hpp"
49#include "memory/universe.inline.hpp"
50#include "oops/instanceKlass.hpp"
51#include "oops/objArrayOop.hpp"
52#include "oops/oop.inline.hpp"
53#include "oops/symbol.hpp"
54#include "oops/verifyOopClosure.hpp"
55#include "prims/jvm_misc.hpp"
56#include "prims/jvmtiExport.hpp"
57#include "prims/jvmtiThreadState.hpp"
58#include "prims/privilegedStack.hpp"
59#include "runtime/arguments.hpp"
60#include "runtime/atomic.inline.hpp"
61#include "runtime/biasedLocking.hpp"
62#include "runtime/commandLineFlagConstraintList.hpp"
63#include "runtime/commandLineFlagWriteableList.hpp"
64#include "runtime/commandLineFlagRangeList.hpp"
65#include "runtime/deoptimization.hpp"
66#include "runtime/fprofiler.hpp"
67#include "runtime/frame.inline.hpp"
68#include "runtime/globals.hpp"
69#include "runtime/init.hpp"
70#include "runtime/interfaceSupport.hpp"
71#include "runtime/java.hpp"
72#include "runtime/javaCalls.hpp"
73#include "runtime/jniPeriodicChecker.hpp"
74#include "runtime/timerTrace.hpp"
75#include "runtime/memprofiler.hpp"
76#include "runtime/mutexLocker.hpp"
77#include "runtime/objectMonitor.hpp"
78#include "runtime/orderAccess.inline.hpp"
79#include "runtime/osThread.hpp"
80#include "runtime/safepoint.hpp"
81#include "runtime/sharedRuntime.hpp"
82#include "runtime/statSampler.hpp"
83#include "runtime/stubRoutines.hpp"
84#include "runtime/sweeper.hpp"
85#include "runtime/task.hpp"
86#include "runtime/thread.inline.hpp"
87#include "runtime/threadCritical.hpp"
88#include "runtime/vframe.hpp"
89#include "runtime/vframeArray.hpp"
90#include "runtime/vframe_hp.hpp"
91#include "runtime/vmThread.hpp"
92#include "runtime/vm_operations.hpp"
93#include "runtime/vm_version.hpp"
94#include "services/attachListener.hpp"
95#include "services/management.hpp"
96#include "services/memTracker.hpp"
97#include "services/threadService.hpp"
98#include "trace/traceMacros.hpp"
99#include "trace/tracing.hpp"
100#include "utilities/defaultStream.hpp"
101#include "utilities/dtrace.hpp"
102#include "utilities/events.hpp"
103#include "utilities/macros.hpp"
104#include "utilities/preserveException.hpp"
105#if INCLUDE_ALL_GCS
106#include "gc/cms/concurrentMarkSweepThread.hpp"
107#include "gc/g1/concurrentMarkThread.inline.hpp"
108#include "gc/parallel/pcTasks.hpp"
109#endif // INCLUDE_ALL_GCS
110#if INCLUDE_JVMCI
111#include "jvmci/jvmciCompiler.hpp"
112#include "jvmci/jvmciRuntime.hpp"
113#endif
114#ifdef COMPILER1
115#include "c1/c1_Compiler.hpp"
116#endif
117#ifdef COMPILER2
118#include "opto/c2compiler.hpp"
119#include "opto/idealGraphPrinter.hpp"
120#endif
121#if INCLUDE_RTM_OPT
122#include "runtime/rtmLocking.hpp"
123#endif
124
125// Initialization after module runtime initialization
126void universe_post_module_init();  // must happen after call_initPhase2
127
128#ifdef DTRACE_ENABLED
129
130// Only bother with this argument setup if dtrace is available
131
132  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
133  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
134
135  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
136    {                                                                      \
137      ResourceMark rm(this);                                               \
138      int len = 0;                                                         \
139      const char* name = (javathread)->get_thread_name();                  \
140      len = strlen(name);                                                  \
141      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
142        (char *) name, len,                                                \
143        java_lang_Thread::thread_id((javathread)->threadObj()),            \
144        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
145        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
146    }
147
148#else //  ndef DTRACE_ENABLED
149
150  #define DTRACE_THREAD_PROBE(probe, javathread)
151
152#endif // ndef DTRACE_ENABLED
153
154#ifndef USE_LIBRARY_BASED_TLS_ONLY
155// Current thread is maintained as a thread-local variable
156THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
157#endif
158// Class hierarchy
159// - Thread
160//   - VMThread
161//   - WatcherThread
162//   - ConcurrentMarkSweepThread
163//   - JavaThread
164//     - CompilerThread
165
166// ======= Thread ========
167// Support for forcing alignment of thread objects for biased locking
168void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
169  if (UseBiasedLocking) {
170    const int alignment = markOopDesc::biased_lock_alignment;
171    size_t aligned_size = size + (alignment - sizeof(intptr_t));
172    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
173                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
174                                                         AllocFailStrategy::RETURN_NULL);
175    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
176    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
177           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
178           "JavaThread alignment code overflowed allocated storage");
179    if (aligned_addr != real_malloc_addr) {
180      log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
181                              p2i(real_malloc_addr),
182                              p2i(aligned_addr));
183    }
184    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
185    return aligned_addr;
186  } else {
187    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
188                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
189  }
190}
191
192void Thread::operator delete(void* p) {
193  if (UseBiasedLocking) {
194    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
195    FreeHeap(real_malloc_addr);
196  } else {
197    FreeHeap(p);
198  }
199}
200
201
202// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
203// JavaThread
204
205
206Thread::Thread() {
207  // stack and get_thread
208  set_stack_base(NULL);
209  set_stack_size(0);
210  set_self_raw_id(0);
211  set_lgrp_id(-1);
212  DEBUG_ONLY(clear_suspendible_thread();)
213
214  // allocated data structures
215  set_osthread(NULL);
216  set_resource_area(new (mtThread)ResourceArea());
217  DEBUG_ONLY(_current_resource_mark = NULL;)
218  set_handle_area(new (mtThread) HandleArea(NULL));
219  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
220  set_active_handles(NULL);
221  set_free_handle_block(NULL);
222  set_last_handle_mark(NULL);
223
224  // This initial value ==> never claimed.
225  _oops_do_parity = 0;
226
227  // the handle mark links itself to last_handle_mark
228  new HandleMark(this);
229
230  // plain initialization
231  debug_only(_owned_locks = NULL;)
232  debug_only(_allow_allocation_count = 0;)
233  NOT_PRODUCT(_allow_safepoint_count = 0;)
234  NOT_PRODUCT(_skip_gcalot = false;)
235  _jvmti_env_iteration_count = 0;
236  set_allocated_bytes(0);
237  _vm_operation_started_count = 0;
238  _vm_operation_completed_count = 0;
239  _current_pending_monitor = NULL;
240  _current_pending_monitor_is_from_java = true;
241  _current_waiting_monitor = NULL;
242  _num_nested_signal = 0;
243  omFreeList = NULL;
244  omFreeCount = 0;
245  omFreeProvision = 32;
246  omInUseList = NULL;
247  omInUseCount = 0;
248
249#ifdef ASSERT
250  _visited_for_critical_count = false;
251#endif
252
253  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
254                         Monitor::_safepoint_check_sometimes);
255  _suspend_flags = 0;
256
257  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
258  _hashStateX = os::random();
259  _hashStateY = 842502087;
260  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
261  _hashStateW = 273326509;
262
263  _OnTrap   = 0;
264  _schedctl = NULL;
265  _Stalled  = 0;
266  _TypeTag  = 0x2BAD;
267
268  // Many of the following fields are effectively final - immutable
269  // Note that nascent threads can't use the Native Monitor-Mutex
270  // construct until the _MutexEvent is initialized ...
271  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
272  // we might instead use a stack of ParkEvents that we could provision on-demand.
273  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
274  // and ::Release()
275  _ParkEvent   = ParkEvent::Allocate(this);
276  _SleepEvent  = ParkEvent::Allocate(this);
277  _MutexEvent  = ParkEvent::Allocate(this);
278  _MuxEvent    = ParkEvent::Allocate(this);
279
280#ifdef CHECK_UNHANDLED_OOPS
281  if (CheckUnhandledOops) {
282    _unhandled_oops = new UnhandledOops(this);
283  }
284#endif // CHECK_UNHANDLED_OOPS
285#ifdef ASSERT
286  if (UseBiasedLocking) {
287    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
288    assert(this == _real_malloc_address ||
289           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
290           "bug in forced alignment of thread objects");
291  }
292#endif // ASSERT
293}
294
295void Thread::initialize_thread_current() {
296#ifndef USE_LIBRARY_BASED_TLS_ONLY
297  assert(_thr_current == NULL, "Thread::current already initialized");
298  _thr_current = this;
299#endif
300  assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
301  ThreadLocalStorage::set_thread(this);
302  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
303}
304
305void Thread::clear_thread_current() {
306  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
307#ifndef USE_LIBRARY_BASED_TLS_ONLY
308  _thr_current = NULL;
309#endif
310  ThreadLocalStorage::set_thread(NULL);
311}
312
313void Thread::record_stack_base_and_size() {
314  set_stack_base(os::current_stack_base());
315  set_stack_size(os::current_stack_size());
316  // CR 7190089: on Solaris, primordial thread's stack is adjusted
317  // in initialize_thread(). Without the adjustment, stack size is
318  // incorrect if stack is set to unlimited (ulimit -s unlimited).
319  // So far, only Solaris has real implementation of initialize_thread().
320  //
321  // set up any platform-specific state.
322  os::initialize_thread(this);
323
324  // Set stack limits after thread is initialized.
325  if (is_Java_thread()) {
326    ((JavaThread*) this)->set_stack_overflow_limit();
327    ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
328  }
329#if INCLUDE_NMT
330  // record thread's native stack, stack grows downward
331  MemTracker::record_thread_stack(stack_end(), stack_size());
332#endif // INCLUDE_NMT
333  log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
334    PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
335    os::current_thread_id(), p2i(stack_base() - stack_size()),
336    p2i(stack_base()), stack_size()/1024);
337}
338
339
340Thread::~Thread() {
341  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
342  ObjectSynchronizer::omFlush(this);
343
344  EVENT_THREAD_DESTRUCT(this);
345
346  // stack_base can be NULL if the thread is never started or exited before
347  // record_stack_base_and_size called. Although, we would like to ensure
348  // that all started threads do call record_stack_base_and_size(), there is
349  // not proper way to enforce that.
350#if INCLUDE_NMT
351  if (_stack_base != NULL) {
352    MemTracker::release_thread_stack(stack_end(), stack_size());
353#ifdef ASSERT
354    set_stack_base(NULL);
355#endif
356  }
357#endif // INCLUDE_NMT
358
359  // deallocate data structures
360  delete resource_area();
361  // since the handle marks are using the handle area, we have to deallocated the root
362  // handle mark before deallocating the thread's handle area,
363  assert(last_handle_mark() != NULL, "check we have an element");
364  delete last_handle_mark();
365  assert(last_handle_mark() == NULL, "check we have reached the end");
366
367  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
368  // We NULL out the fields for good hygiene.
369  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
370  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
371  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
372  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
373
374  delete handle_area();
375  delete metadata_handles();
376
377  // SR_handler uses this as a termination indicator -
378  // needs to happen before os::free_thread()
379  delete _SR_lock;
380  _SR_lock = NULL;
381
382  // osthread() can be NULL, if creation of thread failed.
383  if (osthread() != NULL) os::free_thread(osthread());
384
385  // clear Thread::current if thread is deleting itself.
386  // Needed to ensure JNI correctly detects non-attached threads.
387  if (this == Thread::current()) {
388    clear_thread_current();
389  }
390
391  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
392}
393
394// NOTE: dummy function for assertion purpose.
395void Thread::run() {
396  ShouldNotReachHere();
397}
398
399#ifdef ASSERT
400// Private method to check for dangling thread pointer
401void check_for_dangling_thread_pointer(Thread *thread) {
402  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
403         "possibility of dangling Thread pointer");
404}
405#endif
406
407ThreadPriority Thread::get_priority(const Thread* const thread) {
408  ThreadPriority priority;
409  // Can return an error!
410  (void)os::get_priority(thread, priority);
411  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
412  return priority;
413}
414
415void Thread::set_priority(Thread* thread, ThreadPriority priority) {
416  debug_only(check_for_dangling_thread_pointer(thread);)
417  // Can return an error!
418  (void)os::set_priority(thread, priority);
419}
420
421
422void Thread::start(Thread* thread) {
423  // Start is different from resume in that its safety is guaranteed by context or
424  // being called from a Java method synchronized on the Thread object.
425  if (!DisableStartThread) {
426    if (thread->is_Java_thread()) {
427      // Initialize the thread state to RUNNABLE before starting this thread.
428      // Can not set it after the thread started because we do not know the
429      // exact thread state at that time. It could be in MONITOR_WAIT or
430      // in SLEEPING or some other state.
431      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
432                                          java_lang_Thread::RUNNABLE);
433    }
434    os::start_thread(thread);
435  }
436}
437
438// Enqueue a VM_Operation to do the job for us - sometime later
439void Thread::send_async_exception(oop java_thread, oop java_throwable) {
440  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
441  VMThread::execute(vm_stop);
442}
443
444
445// Check if an external suspend request has completed (or has been
446// cancelled). Returns true if the thread is externally suspended and
447// false otherwise.
448//
449// The bits parameter returns information about the code path through
450// the routine. Useful for debugging:
451//
452// set in is_ext_suspend_completed():
453// 0x00000001 - routine was entered
454// 0x00000010 - routine return false at end
455// 0x00000100 - thread exited (return false)
456// 0x00000200 - suspend request cancelled (return false)
457// 0x00000400 - thread suspended (return true)
458// 0x00001000 - thread is in a suspend equivalent state (return true)
459// 0x00002000 - thread is native and walkable (return true)
460// 0x00004000 - thread is native_trans and walkable (needed retry)
461//
462// set in wait_for_ext_suspend_completion():
463// 0x00010000 - routine was entered
464// 0x00020000 - suspend request cancelled before loop (return false)
465// 0x00040000 - thread suspended before loop (return true)
466// 0x00080000 - suspend request cancelled in loop (return false)
467// 0x00100000 - thread suspended in loop (return true)
468// 0x00200000 - suspend not completed during retry loop (return false)
469
470// Helper class for tracing suspend wait debug bits.
471//
472// 0x00000100 indicates that the target thread exited before it could
473// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
474// 0x00080000 each indicate a cancelled suspend request so they don't
475// count as wait failures either.
476#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
477
478class TraceSuspendDebugBits : public StackObj {
479 private:
480  JavaThread * jt;
481  bool         is_wait;
482  bool         called_by_wait;  // meaningful when !is_wait
483  uint32_t *   bits;
484
485 public:
486  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
487                        uint32_t *_bits) {
488    jt             = _jt;
489    is_wait        = _is_wait;
490    called_by_wait = _called_by_wait;
491    bits           = _bits;
492  }
493
494  ~TraceSuspendDebugBits() {
495    if (!is_wait) {
496#if 1
497      // By default, don't trace bits for is_ext_suspend_completed() calls.
498      // That trace is very chatty.
499      return;
500#else
501      if (!called_by_wait) {
502        // If tracing for is_ext_suspend_completed() is enabled, then only
503        // trace calls to it from wait_for_ext_suspend_completion()
504        return;
505      }
506#endif
507    }
508
509    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
510      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
511        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
512        ResourceMark rm;
513
514        tty->print_cr(
515                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
516                      jt->get_thread_name(), *bits);
517
518        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
519      }
520    }
521  }
522};
523#undef DEBUG_FALSE_BITS
524
525
526bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
527                                          uint32_t *bits) {
528  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
529
530  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
531  bool do_trans_retry;           // flag to force the retry
532
533  *bits |= 0x00000001;
534
535  do {
536    do_trans_retry = false;
537
538    if (is_exiting()) {
539      // Thread is in the process of exiting. This is always checked
540      // first to reduce the risk of dereferencing a freed JavaThread.
541      *bits |= 0x00000100;
542      return false;
543    }
544
545    if (!is_external_suspend()) {
546      // Suspend request is cancelled. This is always checked before
547      // is_ext_suspended() to reduce the risk of a rogue resume
548      // confusing the thread that made the suspend request.
549      *bits |= 0x00000200;
550      return false;
551    }
552
553    if (is_ext_suspended()) {
554      // thread is suspended
555      *bits |= 0x00000400;
556      return true;
557    }
558
559    // Now that we no longer do hard suspends of threads running
560    // native code, the target thread can be changing thread state
561    // while we are in this routine:
562    //
563    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
564    //
565    // We save a copy of the thread state as observed at this moment
566    // and make our decision about suspend completeness based on the
567    // copy. This closes the race where the thread state is seen as
568    // _thread_in_native_trans in the if-thread_blocked check, but is
569    // seen as _thread_blocked in if-thread_in_native_trans check.
570    JavaThreadState save_state = thread_state();
571
572    if (save_state == _thread_blocked && is_suspend_equivalent()) {
573      // If the thread's state is _thread_blocked and this blocking
574      // condition is known to be equivalent to a suspend, then we can
575      // consider the thread to be externally suspended. This means that
576      // the code that sets _thread_blocked has been modified to do
577      // self-suspension if the blocking condition releases. We also
578      // used to check for CONDVAR_WAIT here, but that is now covered by
579      // the _thread_blocked with self-suspension check.
580      //
581      // Return true since we wouldn't be here unless there was still an
582      // external suspend request.
583      *bits |= 0x00001000;
584      return true;
585    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
586      // Threads running native code will self-suspend on native==>VM/Java
587      // transitions. If its stack is walkable (should always be the case
588      // unless this function is called before the actual java_suspend()
589      // call), then the wait is done.
590      *bits |= 0x00002000;
591      return true;
592    } else if (!called_by_wait && !did_trans_retry &&
593               save_state == _thread_in_native_trans &&
594               frame_anchor()->walkable()) {
595      // The thread is transitioning from thread_in_native to another
596      // thread state. check_safepoint_and_suspend_for_native_trans()
597      // will force the thread to self-suspend. If it hasn't gotten
598      // there yet we may have caught the thread in-between the native
599      // code check above and the self-suspend. Lucky us. If we were
600      // called by wait_for_ext_suspend_completion(), then it
601      // will be doing the retries so we don't have to.
602      //
603      // Since we use the saved thread state in the if-statement above,
604      // there is a chance that the thread has already transitioned to
605      // _thread_blocked by the time we get here. In that case, we will
606      // make a single unnecessary pass through the logic below. This
607      // doesn't hurt anything since we still do the trans retry.
608
609      *bits |= 0x00004000;
610
611      // Once the thread leaves thread_in_native_trans for another
612      // thread state, we break out of this retry loop. We shouldn't
613      // need this flag to prevent us from getting back here, but
614      // sometimes paranoia is good.
615      did_trans_retry = true;
616
617      // We wait for the thread to transition to a more usable state.
618      for (int i = 1; i <= SuspendRetryCount; i++) {
619        // We used to do an "os::yield_all(i)" call here with the intention
620        // that yielding would increase on each retry. However, the parameter
621        // is ignored on Linux which means the yield didn't scale up. Waiting
622        // on the SR_lock below provides a much more predictable scale up for
623        // the delay. It also provides a simple/direct point to check for any
624        // safepoint requests from the VMThread
625
626        // temporarily drops SR_lock while doing wait with safepoint check
627        // (if we're a JavaThread - the WatcherThread can also call this)
628        // and increase delay with each retry
629        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
630
631        // check the actual thread state instead of what we saved above
632        if (thread_state() != _thread_in_native_trans) {
633          // the thread has transitioned to another thread state so
634          // try all the checks (except this one) one more time.
635          do_trans_retry = true;
636          break;
637        }
638      } // end retry loop
639
640
641    }
642  } while (do_trans_retry);
643
644  *bits |= 0x00000010;
645  return false;
646}
647
648// Wait for an external suspend request to complete (or be cancelled).
649// Returns true if the thread is externally suspended and false otherwise.
650//
651bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
652                                                 uint32_t *bits) {
653  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
654                             false /* !called_by_wait */, bits);
655
656  // local flag copies to minimize SR_lock hold time
657  bool is_suspended;
658  bool pending;
659  uint32_t reset_bits;
660
661  // set a marker so is_ext_suspend_completed() knows we are the caller
662  *bits |= 0x00010000;
663
664  // We use reset_bits to reinitialize the bits value at the top of
665  // each retry loop. This allows the caller to make use of any
666  // unused bits for their own marking purposes.
667  reset_bits = *bits;
668
669  {
670    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
671    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
672                                            delay, bits);
673    pending = is_external_suspend();
674  }
675  // must release SR_lock to allow suspension to complete
676
677  if (!pending) {
678    // A cancelled suspend request is the only false return from
679    // is_ext_suspend_completed() that keeps us from entering the
680    // retry loop.
681    *bits |= 0x00020000;
682    return false;
683  }
684
685  if (is_suspended) {
686    *bits |= 0x00040000;
687    return true;
688  }
689
690  for (int i = 1; i <= retries; i++) {
691    *bits = reset_bits;  // reinit to only track last retry
692
693    // We used to do an "os::yield_all(i)" call here with the intention
694    // that yielding would increase on each retry. However, the parameter
695    // is ignored on Linux which means the yield didn't scale up. Waiting
696    // on the SR_lock below provides a much more predictable scale up for
697    // the delay. It also provides a simple/direct point to check for any
698    // safepoint requests from the VMThread
699
700    {
701      MutexLocker ml(SR_lock());
702      // wait with safepoint check (if we're a JavaThread - the WatcherThread
703      // can also call this)  and increase delay with each retry
704      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
705
706      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
707                                              delay, bits);
708
709      // It is possible for the external suspend request to be cancelled
710      // (by a resume) before the actual suspend operation is completed.
711      // Refresh our local copy to see if we still need to wait.
712      pending = is_external_suspend();
713    }
714
715    if (!pending) {
716      // A cancelled suspend request is the only false return from
717      // is_ext_suspend_completed() that keeps us from staying in the
718      // retry loop.
719      *bits |= 0x00080000;
720      return false;
721    }
722
723    if (is_suspended) {
724      *bits |= 0x00100000;
725      return true;
726    }
727  } // end retry loop
728
729  // thread did not suspend after all our retries
730  *bits |= 0x00200000;
731  return false;
732}
733
734#ifndef PRODUCT
735void JavaThread::record_jump(address target, address instr, const char* file,
736                             int line) {
737
738  // This should not need to be atomic as the only way for simultaneous
739  // updates is via interrupts. Even then this should be rare or non-existent
740  // and we don't care that much anyway.
741
742  int index = _jmp_ring_index;
743  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
744  _jmp_ring[index]._target = (intptr_t) target;
745  _jmp_ring[index]._instruction = (intptr_t) instr;
746  _jmp_ring[index]._file = file;
747  _jmp_ring[index]._line = line;
748}
749#endif // PRODUCT
750
751// Called by flat profiler
752// Callers have already called wait_for_ext_suspend_completion
753// The assertion for that is currently too complex to put here:
754bool JavaThread::profile_last_Java_frame(frame* _fr) {
755  bool gotframe = false;
756  // self suspension saves needed state.
757  if (has_last_Java_frame() && _anchor.walkable()) {
758    *_fr = pd_last_frame();
759    gotframe = true;
760  }
761  return gotframe;
762}
763
764void Thread::interrupt(Thread* thread) {
765  debug_only(check_for_dangling_thread_pointer(thread);)
766  os::interrupt(thread);
767}
768
769bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
770  debug_only(check_for_dangling_thread_pointer(thread);)
771  // Note:  If clear_interrupted==false, this simply fetches and
772  // returns the value of the field osthread()->interrupted().
773  return os::is_interrupted(thread, clear_interrupted);
774}
775
776
777// GC Support
778bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
779  jint thread_parity = _oops_do_parity;
780  if (thread_parity != strong_roots_parity) {
781    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
782    if (res == thread_parity) {
783      return true;
784    } else {
785      guarantee(res == strong_roots_parity, "Or else what?");
786      return false;
787    }
788  }
789  return false;
790}
791
792void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
793  active_handles()->oops_do(f);
794  // Do oop for ThreadShadow
795  f->do_oop((oop*)&_pending_exception);
796  handle_area()->oops_do(f);
797}
798
799void Thread::metadata_handles_do(void f(Metadata*)) {
800  // Only walk the Handles in Thread.
801  if (metadata_handles() != NULL) {
802    for (int i = 0; i< metadata_handles()->length(); i++) {
803      f(metadata_handles()->at(i));
804    }
805  }
806}
807
808void Thread::print_on(outputStream* st) const {
809  // get_priority assumes osthread initialized
810  if (osthread() != NULL) {
811    int os_prio;
812    if (os::get_native_priority(this, &os_prio) == OS_OK) {
813      st->print("os_prio=%d ", os_prio);
814    }
815    st->print("tid=" INTPTR_FORMAT " ", p2i(this));
816    ext().print_on(st);
817    osthread()->print_on(st);
818  }
819  debug_only(if (WizardMode) print_owned_locks_on(st);)
820}
821
822// Thread::print_on_error() is called by fatal error handler. Don't use
823// any lock or allocate memory.
824void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
825  assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
826
827  if (is_VM_thread())                 { st->print("VMThread"); }
828  else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
829  else if (is_Watcher_thread())       { st->print("WatcherThread"); }
830  else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
831  else                                { st->print("Thread"); }
832
833  if (is_Named_thread()) {
834    st->print(" \"%s\"", name());
835  }
836
837  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
838            p2i(stack_end()), p2i(stack_base()));
839
840  if (osthread()) {
841    st->print(" [id=%d]", osthread()->thread_id());
842  }
843}
844
845#ifdef ASSERT
846void Thread::print_owned_locks_on(outputStream* st) const {
847  Monitor *cur = _owned_locks;
848  if (cur == NULL) {
849    st->print(" (no locks) ");
850  } else {
851    st->print_cr(" Locks owned:");
852    while (cur) {
853      cur->print_on(st);
854      cur = cur->next();
855    }
856  }
857}
858
859static int ref_use_count  = 0;
860
861bool Thread::owns_locks_but_compiled_lock() const {
862  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
863    if (cur != Compile_lock) return true;
864  }
865  return false;
866}
867
868
869#endif
870
871#ifndef PRODUCT
872
873// The flag: potential_vm_operation notifies if this particular safepoint state could potential
874// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
875// no threads which allow_vm_block's are held
876void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
877  // Check if current thread is allowed to block at a safepoint
878  if (!(_allow_safepoint_count == 0)) {
879    fatal("Possible safepoint reached by thread that does not allow it");
880  }
881  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
882    fatal("LEAF method calling lock?");
883  }
884
885#ifdef ASSERT
886  if (potential_vm_operation && is_Java_thread()
887      && !Universe::is_bootstrapping()) {
888    // Make sure we do not hold any locks that the VM thread also uses.
889    // This could potentially lead to deadlocks
890    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
891      // Threads_lock is special, since the safepoint synchronization will not start before this is
892      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
893      // since it is used to transfer control between JavaThreads and the VMThread
894      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
895      if ((cur->allow_vm_block() &&
896           cur != Threads_lock &&
897           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
898           cur != VMOperationRequest_lock &&
899           cur != VMOperationQueue_lock) ||
900           cur->rank() == Mutex::special) {
901        fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
902      }
903    }
904  }
905
906  if (GCALotAtAllSafepoints) {
907    // We could enter a safepoint here and thus have a gc
908    InterfaceSupport::check_gc_alot();
909  }
910#endif
911}
912#endif
913
914bool Thread::is_in_stack(address adr) const {
915  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
916  address end = os::current_stack_pointer();
917  // Allow non Java threads to call this without stack_base
918  if (_stack_base == NULL) return true;
919  if (stack_base() >= adr && adr >= end) return true;
920
921  return false;
922}
923
924bool Thread::is_in_usable_stack(address adr) const {
925  size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
926  size_t usable_stack_size = _stack_size - stack_guard_size;
927
928  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
929}
930
931
932// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
933// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
934// used for compilation in the future. If that change is made, the need for these methods
935// should be revisited, and they should be removed if possible.
936
937bool Thread::is_lock_owned(address adr) const {
938  return on_local_stack(adr);
939}
940
941bool Thread::set_as_starting_thread() {
942  // NOTE: this must be called inside the main thread.
943  return os::create_main_thread((JavaThread*)this);
944}
945
946static void initialize_class(Symbol* class_name, TRAPS) {
947  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
948  InstanceKlass::cast(klass)->initialize(CHECK);
949}
950
951
952// Creates the initial ThreadGroup
953static Handle create_initial_thread_group(TRAPS) {
954  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
955  instanceKlassHandle klass (THREAD, k);
956
957  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
958  {
959    JavaValue result(T_VOID);
960    JavaCalls::call_special(&result,
961                            system_instance,
962                            klass,
963                            vmSymbols::object_initializer_name(),
964                            vmSymbols::void_method_signature(),
965                            CHECK_NH);
966  }
967  Universe::set_system_thread_group(system_instance());
968
969  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
970  {
971    JavaValue result(T_VOID);
972    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
973    JavaCalls::call_special(&result,
974                            main_instance,
975                            klass,
976                            vmSymbols::object_initializer_name(),
977                            vmSymbols::threadgroup_string_void_signature(),
978                            system_instance,
979                            string,
980                            CHECK_NH);
981  }
982  return main_instance;
983}
984
985// Creates the initial Thread
986static oop create_initial_thread(Handle thread_group, JavaThread* thread,
987                                 TRAPS) {
988  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
989  instanceKlassHandle klass (THREAD, k);
990  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
991
992  java_lang_Thread::set_thread(thread_oop(), thread);
993  java_lang_Thread::set_priority(thread_oop(), NormPriority);
994  thread->set_threadObj(thread_oop());
995
996  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
997
998  JavaValue result(T_VOID);
999  JavaCalls::call_special(&result, thread_oop,
1000                          klass,
1001                          vmSymbols::object_initializer_name(),
1002                          vmSymbols::threadgroup_string_void_signature(),
1003                          thread_group,
1004                          string,
1005                          CHECK_NULL);
1006  return thread_oop();
1007}
1008
1009char java_runtime_name[128] = "";
1010char java_runtime_version[128] = "";
1011
1012// extract the JRE name from java.lang.VersionProps.java_runtime_name
1013static const char* get_java_runtime_name(TRAPS) {
1014  Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1015                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1016  fieldDescriptor fd;
1017  bool found = k != NULL &&
1018               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1019                                                        vmSymbols::string_signature(), &fd);
1020  if (found) {
1021    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1022    if (name_oop == NULL) {
1023      return NULL;
1024    }
1025    const char* name = java_lang_String::as_utf8_string(name_oop,
1026                                                        java_runtime_name,
1027                                                        sizeof(java_runtime_name));
1028    return name;
1029  } else {
1030    return NULL;
1031  }
1032}
1033
1034// extract the JRE version from java.lang.VersionProps.java_runtime_version
1035static const char* get_java_runtime_version(TRAPS) {
1036  Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1037                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1038  fieldDescriptor fd;
1039  bool found = k != NULL &&
1040               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1041                                                        vmSymbols::string_signature(), &fd);
1042  if (found) {
1043    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1044    if (name_oop == NULL) {
1045      return NULL;
1046    }
1047    const char* name = java_lang_String::as_utf8_string(name_oop,
1048                                                        java_runtime_version,
1049                                                        sizeof(java_runtime_version));
1050    return name;
1051  } else {
1052    return NULL;
1053  }
1054}
1055
1056// General purpose hook into Java code, run once when the VM is initialized.
1057// The Java library method itself may be changed independently from the VM.
1058static void call_postVMInitHook(TRAPS) {
1059  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1060  instanceKlassHandle klass (THREAD, k);
1061  if (klass.not_null()) {
1062    JavaValue result(T_VOID);
1063    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1064                           vmSymbols::void_method_signature(),
1065                           CHECK);
1066  }
1067}
1068
1069static void reset_vm_info_property(TRAPS) {
1070  // the vm info string
1071  ResourceMark rm(THREAD);
1072  const char *vm_info = VM_Version::vm_info_string();
1073
1074  // java.lang.System class
1075  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1076  instanceKlassHandle klass (THREAD, k);
1077
1078  // setProperty arguments
1079  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1080  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1081
1082  // return value
1083  JavaValue r(T_OBJECT);
1084
1085  // public static String setProperty(String key, String value);
1086  JavaCalls::call_static(&r,
1087                         klass,
1088                         vmSymbols::setProperty_name(),
1089                         vmSymbols::string_string_string_signature(),
1090                         key_str,
1091                         value_str,
1092                         CHECK);
1093}
1094
1095
1096void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1097                                    bool daemon, TRAPS) {
1098  assert(thread_group.not_null(), "thread group should be specified");
1099  assert(threadObj() == NULL, "should only create Java thread object once");
1100
1101  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1102  instanceKlassHandle klass (THREAD, k);
1103  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1104
1105  java_lang_Thread::set_thread(thread_oop(), this);
1106  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1107  set_threadObj(thread_oop());
1108
1109  JavaValue result(T_VOID);
1110  if (thread_name != NULL) {
1111    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1112    // Thread gets assigned specified name and null target
1113    JavaCalls::call_special(&result,
1114                            thread_oop,
1115                            klass,
1116                            vmSymbols::object_initializer_name(),
1117                            vmSymbols::threadgroup_string_void_signature(),
1118                            thread_group, // Argument 1
1119                            name,         // Argument 2
1120                            THREAD);
1121  } else {
1122    // Thread gets assigned name "Thread-nnn" and null target
1123    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1124    JavaCalls::call_special(&result,
1125                            thread_oop,
1126                            klass,
1127                            vmSymbols::object_initializer_name(),
1128                            vmSymbols::threadgroup_runnable_void_signature(),
1129                            thread_group, // Argument 1
1130                            Handle(),     // Argument 2
1131                            THREAD);
1132  }
1133
1134
1135  if (daemon) {
1136    java_lang_Thread::set_daemon(thread_oop());
1137  }
1138
1139  if (HAS_PENDING_EXCEPTION) {
1140    return;
1141  }
1142
1143  KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1144  Handle threadObj(THREAD, this->threadObj());
1145
1146  JavaCalls::call_special(&result,
1147                          thread_group,
1148                          group,
1149                          vmSymbols::add_method_name(),
1150                          vmSymbols::thread_void_signature(),
1151                          threadObj,          // Arg 1
1152                          THREAD);
1153}
1154
1155// NamedThread --  non-JavaThread subclasses with multiple
1156// uniquely named instances should derive from this.
1157NamedThread::NamedThread() : Thread() {
1158  _name = NULL;
1159  _processed_thread = NULL;
1160  _gc_id = GCId::undefined();
1161}
1162
1163NamedThread::~NamedThread() {
1164  if (_name != NULL) {
1165    FREE_C_HEAP_ARRAY(char, _name);
1166    _name = NULL;
1167  }
1168}
1169
1170void NamedThread::set_name(const char* format, ...) {
1171  guarantee(_name == NULL, "Only get to set name once.");
1172  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1173  guarantee(_name != NULL, "alloc failure");
1174  va_list ap;
1175  va_start(ap, format);
1176  jio_vsnprintf(_name, max_name_len, format, ap);
1177  va_end(ap);
1178}
1179
1180void NamedThread::initialize_named_thread() {
1181  set_native_thread_name(name());
1182}
1183
1184void NamedThread::print_on(outputStream* st) const {
1185  st->print("\"%s\" ", name());
1186  Thread::print_on(st);
1187  st->cr();
1188}
1189
1190
1191// ======= WatcherThread ========
1192
1193// The watcher thread exists to simulate timer interrupts.  It should
1194// be replaced by an abstraction over whatever native support for
1195// timer interrupts exists on the platform.
1196
1197WatcherThread* WatcherThread::_watcher_thread   = NULL;
1198bool WatcherThread::_startable = false;
1199volatile bool  WatcherThread::_should_terminate = false;
1200
1201WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1202  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1203  if (os::create_thread(this, os::watcher_thread)) {
1204    _watcher_thread = this;
1205
1206    // Set the watcher thread to the highest OS priority which should not be
1207    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1208    // is created. The only normal thread using this priority is the reference
1209    // handler thread, which runs for very short intervals only.
1210    // If the VMThread's priority is not lower than the WatcherThread profiling
1211    // will be inaccurate.
1212    os::set_priority(this, MaxPriority);
1213    if (!DisableStartThread) {
1214      os::start_thread(this);
1215    }
1216  }
1217}
1218
1219int WatcherThread::sleep() const {
1220  // The WatcherThread does not participate in the safepoint protocol
1221  // for the PeriodicTask_lock because it is not a JavaThread.
1222  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1223
1224  if (_should_terminate) {
1225    // check for termination before we do any housekeeping or wait
1226    return 0;  // we did not sleep.
1227  }
1228
1229  // remaining will be zero if there are no tasks,
1230  // causing the WatcherThread to sleep until a task is
1231  // enrolled
1232  int remaining = PeriodicTask::time_to_wait();
1233  int time_slept = 0;
1234
1235  // we expect this to timeout - we only ever get unparked when
1236  // we should terminate or when a new task has been enrolled
1237  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1238
1239  jlong time_before_loop = os::javaTimeNanos();
1240
1241  while (true) {
1242    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1243                                            remaining);
1244    jlong now = os::javaTimeNanos();
1245
1246    if (remaining == 0) {
1247      // if we didn't have any tasks we could have waited for a long time
1248      // consider the time_slept zero and reset time_before_loop
1249      time_slept = 0;
1250      time_before_loop = now;
1251    } else {
1252      // need to recalculate since we might have new tasks in _tasks
1253      time_slept = (int) ((now - time_before_loop) / 1000000);
1254    }
1255
1256    // Change to task list or spurious wakeup of some kind
1257    if (timedout || _should_terminate) {
1258      break;
1259    }
1260
1261    remaining = PeriodicTask::time_to_wait();
1262    if (remaining == 0) {
1263      // Last task was just disenrolled so loop around and wait until
1264      // another task gets enrolled
1265      continue;
1266    }
1267
1268    remaining -= time_slept;
1269    if (remaining <= 0) {
1270      break;
1271    }
1272  }
1273
1274  return time_slept;
1275}
1276
1277void WatcherThread::run() {
1278  assert(this == watcher_thread(), "just checking");
1279
1280  this->record_stack_base_and_size();
1281  this->set_native_thread_name(this->name());
1282  this->set_active_handles(JNIHandleBlock::allocate_block());
1283  while (true) {
1284    assert(watcher_thread() == Thread::current(), "thread consistency check");
1285    assert(watcher_thread() == this, "thread consistency check");
1286
1287    // Calculate how long it'll be until the next PeriodicTask work
1288    // should be done, and sleep that amount of time.
1289    int time_waited = sleep();
1290
1291    if (is_error_reported()) {
1292      // A fatal error has happened, the error handler(VMError::report_and_die)
1293      // should abort JVM after creating an error log file. However in some
1294      // rare cases, the error handler itself might deadlock. Here we try to
1295      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1296      //
1297      // This code is in WatcherThread because WatcherThread wakes up
1298      // periodically so the fatal error handler doesn't need to do anything;
1299      // also because the WatcherThread is less likely to crash than other
1300      // threads.
1301
1302      for (;;) {
1303        if (!ShowMessageBoxOnError
1304            && (OnError == NULL || OnError[0] == '\0')
1305            && Arguments::abort_hook() == NULL) {
1306          os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1307          fdStream err(defaultStream::output_fd());
1308          err.print_raw_cr("# [ timer expired, abort... ]");
1309          // skip atexit/vm_exit/vm_abort hooks
1310          os::die();
1311        }
1312
1313        // Wake up 5 seconds later, the fatal handler may reset OnError or
1314        // ShowMessageBoxOnError when it is ready to abort.
1315        os::sleep(this, 5 * 1000, false);
1316      }
1317    }
1318
1319    if (_should_terminate) {
1320      // check for termination before posting the next tick
1321      break;
1322    }
1323
1324    PeriodicTask::real_time_tick(time_waited);
1325  }
1326
1327  // Signal that it is terminated
1328  {
1329    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1330    _watcher_thread = NULL;
1331    Terminator_lock->notify();
1332  }
1333}
1334
1335void WatcherThread::start() {
1336  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1337
1338  if (watcher_thread() == NULL && _startable) {
1339    _should_terminate = false;
1340    // Create the single instance of WatcherThread
1341    new WatcherThread();
1342  }
1343}
1344
1345void WatcherThread::make_startable() {
1346  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1347  _startable = true;
1348}
1349
1350void WatcherThread::stop() {
1351  {
1352    // Follow normal safepoint aware lock enter protocol since the
1353    // WatcherThread is stopped by another JavaThread.
1354    MutexLocker ml(PeriodicTask_lock);
1355    _should_terminate = true;
1356
1357    WatcherThread* watcher = watcher_thread();
1358    if (watcher != NULL) {
1359      // unpark the WatcherThread so it can see that it should terminate
1360      watcher->unpark();
1361    }
1362  }
1363
1364  MutexLocker mu(Terminator_lock);
1365
1366  while (watcher_thread() != NULL) {
1367    // This wait should make safepoint checks, wait without a timeout,
1368    // and wait as a suspend-equivalent condition.
1369    //
1370    // Note: If the FlatProfiler is running, then this thread is waiting
1371    // for the WatcherThread to terminate and the WatcherThread, via the
1372    // FlatProfiler task, is waiting for the external suspend request on
1373    // this thread to complete. wait_for_ext_suspend_completion() will
1374    // eventually timeout, but that takes time. Making this wait a
1375    // suspend-equivalent condition solves that timeout problem.
1376    //
1377    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1378                          Mutex::_as_suspend_equivalent_flag);
1379  }
1380}
1381
1382void WatcherThread::unpark() {
1383  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1384  PeriodicTask_lock->notify();
1385}
1386
1387void WatcherThread::print_on(outputStream* st) const {
1388  st->print("\"%s\" ", name());
1389  Thread::print_on(st);
1390  st->cr();
1391}
1392
1393// ======= JavaThread ========
1394
1395#if INCLUDE_JVMCI
1396
1397jlong* JavaThread::_jvmci_old_thread_counters;
1398
1399bool jvmci_counters_include(JavaThread* thread) {
1400  oop threadObj = thread->threadObj();
1401  return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1402}
1403
1404void JavaThread::collect_counters(typeArrayOop array) {
1405  if (JVMCICounterSize > 0) {
1406    MutexLocker tl(Threads_lock);
1407    for (int i = 0; i < array->length(); i++) {
1408      array->long_at_put(i, _jvmci_old_thread_counters[i]);
1409    }
1410    for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1411      if (jvmci_counters_include(tp)) {
1412        for (int i = 0; i < array->length(); i++) {
1413          array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1414        }
1415      }
1416    }
1417  }
1418}
1419
1420#endif // INCLUDE_JVMCI
1421
1422// A JavaThread is a normal Java thread
1423
1424void JavaThread::initialize() {
1425  // Initialize fields
1426
1427  set_saved_exception_pc(NULL);
1428  set_threadObj(NULL);
1429  _anchor.clear();
1430  set_entry_point(NULL);
1431  set_jni_functions(jni_functions());
1432  set_callee_target(NULL);
1433  set_vm_result(NULL);
1434  set_vm_result_2(NULL);
1435  set_vframe_array_head(NULL);
1436  set_vframe_array_last(NULL);
1437  set_deferred_locals(NULL);
1438  set_deopt_mark(NULL);
1439  set_deopt_compiled_method(NULL);
1440  clear_must_deopt_id();
1441  set_monitor_chunks(NULL);
1442  set_next(NULL);
1443  set_thread_state(_thread_new);
1444  _terminated = _not_terminated;
1445  _privileged_stack_top = NULL;
1446  _array_for_gc = NULL;
1447  _suspend_equivalent = false;
1448  _in_deopt_handler = 0;
1449  _doing_unsafe_access = false;
1450  _stack_guard_state = stack_guard_unused;
1451#if INCLUDE_JVMCI
1452  _pending_monitorenter = false;
1453  _pending_deoptimization = -1;
1454  _pending_failed_speculation = NULL;
1455  _pending_transfer_to_interpreter = false;
1456  _adjusting_comp_level = false;
1457  _jvmci._alternate_call_target = NULL;
1458  assert(_jvmci._implicit_exception_pc == NULL, "must be");
1459  if (JVMCICounterSize > 0) {
1460    _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1461    memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1462  } else {
1463    _jvmci_counters = NULL;
1464  }
1465#endif // INCLUDE_JVMCI
1466  _reserved_stack_activation = NULL;  // stack base not known yet
1467  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1468  _exception_pc  = 0;
1469  _exception_handler_pc = 0;
1470  _is_method_handle_return = 0;
1471  _jvmti_thread_state= NULL;
1472  _should_post_on_exceptions_flag = JNI_FALSE;
1473  _jvmti_get_loaded_classes_closure = NULL;
1474  _interp_only_mode    = 0;
1475  _special_runtime_exit_condition = _no_async_condition;
1476  _pending_async_exception = NULL;
1477  _thread_stat = NULL;
1478  _thread_stat = new ThreadStatistics();
1479  _blocked_on_compilation = false;
1480  _jni_active_critical = 0;
1481  _pending_jni_exception_check_fn = NULL;
1482  _do_not_unlock_if_synchronized = false;
1483  _cached_monitor_info = NULL;
1484  _parker = Parker::Allocate(this);
1485
1486#ifndef PRODUCT
1487  _jmp_ring_index = 0;
1488  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1489    record_jump(NULL, NULL, NULL, 0);
1490  }
1491#endif // PRODUCT
1492
1493  set_thread_profiler(NULL);
1494  if (FlatProfiler::is_active()) {
1495    // This is where we would decide to either give each thread it's own profiler
1496    // or use one global one from FlatProfiler,
1497    // or up to some count of the number of profiled threads, etc.
1498    ThreadProfiler* pp = new ThreadProfiler();
1499    pp->engage();
1500    set_thread_profiler(pp);
1501  }
1502
1503  // Setup safepoint state info for this thread
1504  ThreadSafepointState::create(this);
1505
1506  debug_only(_java_call_counter = 0);
1507
1508  // JVMTI PopFrame support
1509  _popframe_condition = popframe_inactive;
1510  _popframe_preserved_args = NULL;
1511  _popframe_preserved_args_size = 0;
1512  _frames_to_pop_failed_realloc = 0;
1513
1514  pd_initialize();
1515}
1516
1517#if INCLUDE_ALL_GCS
1518SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1519DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1520#endif // INCLUDE_ALL_GCS
1521
1522JavaThread::JavaThread(bool is_attaching_via_jni) :
1523                       Thread()
1524#if INCLUDE_ALL_GCS
1525                       , _satb_mark_queue(&_satb_mark_queue_set),
1526                       _dirty_card_queue(&_dirty_card_queue_set)
1527#endif // INCLUDE_ALL_GCS
1528{
1529  initialize();
1530  if (is_attaching_via_jni) {
1531    _jni_attach_state = _attaching_via_jni;
1532  } else {
1533    _jni_attach_state = _not_attaching_via_jni;
1534  }
1535  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1536}
1537
1538bool JavaThread::reguard_stack(address cur_sp) {
1539  if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1540      && _stack_guard_state != stack_guard_reserved_disabled) {
1541    return true; // Stack already guarded or guard pages not needed.
1542  }
1543
1544  if (register_stack_overflow()) {
1545    // For those architectures which have separate register and
1546    // memory stacks, we must check the register stack to see if
1547    // it has overflowed.
1548    return false;
1549  }
1550
1551  // Java code never executes within the yellow zone: the latter is only
1552  // there to provoke an exception during stack banging.  If java code
1553  // is executing there, either StackShadowPages should be larger, or
1554  // some exception code in c1, c2 or the interpreter isn't unwinding
1555  // when it should.
1556  guarantee(cur_sp > stack_reserved_zone_base(),
1557            "not enough space to reguard - increase StackShadowPages");
1558  if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1559    enable_stack_yellow_reserved_zone();
1560    if (reserved_stack_activation() != stack_base()) {
1561      set_reserved_stack_activation(stack_base());
1562    }
1563  } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1564    set_reserved_stack_activation(stack_base());
1565    enable_stack_reserved_zone();
1566  }
1567  return true;
1568}
1569
1570bool JavaThread::reguard_stack(void) {
1571  return reguard_stack(os::current_stack_pointer());
1572}
1573
1574
1575void JavaThread::block_if_vm_exited() {
1576  if (_terminated == _vm_exited) {
1577    // _vm_exited is set at safepoint, and Threads_lock is never released
1578    // we will block here forever
1579    Threads_lock->lock_without_safepoint_check();
1580    ShouldNotReachHere();
1581  }
1582}
1583
1584
1585// Remove this ifdef when C1 is ported to the compiler interface.
1586static void compiler_thread_entry(JavaThread* thread, TRAPS);
1587static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1588
1589JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1590                       Thread()
1591#if INCLUDE_ALL_GCS
1592                       , _satb_mark_queue(&_satb_mark_queue_set),
1593                       _dirty_card_queue(&_dirty_card_queue_set)
1594#endif // INCLUDE_ALL_GCS
1595{
1596  initialize();
1597  _jni_attach_state = _not_attaching_via_jni;
1598  set_entry_point(entry_point);
1599  // Create the native thread itself.
1600  // %note runtime_23
1601  os::ThreadType thr_type = os::java_thread;
1602  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1603                                                     os::java_thread;
1604  os::create_thread(this, thr_type, stack_sz);
1605  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1606  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1607  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1608  // the exception consists of creating the exception object & initializing it, initialization
1609  // will leave the VM via a JavaCall and then all locks must be unlocked).
1610  //
1611  // The thread is still suspended when we reach here. Thread must be explicit started
1612  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1613  // by calling Threads:add. The reason why this is not done here, is because the thread
1614  // object must be fully initialized (take a look at JVM_Start)
1615}
1616
1617JavaThread::~JavaThread() {
1618
1619  // JSR166 -- return the parker to the free list
1620  Parker::Release(_parker);
1621  _parker = NULL;
1622
1623  // Free any remaining  previous UnrollBlock
1624  vframeArray* old_array = vframe_array_last();
1625
1626  if (old_array != NULL) {
1627    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1628    old_array->set_unroll_block(NULL);
1629    delete old_info;
1630    delete old_array;
1631  }
1632
1633  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1634  if (deferred != NULL) {
1635    // This can only happen if thread is destroyed before deoptimization occurs.
1636    assert(deferred->length() != 0, "empty array!");
1637    do {
1638      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1639      deferred->remove_at(0);
1640      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1641      delete dlv;
1642    } while (deferred->length() != 0);
1643    delete deferred;
1644  }
1645
1646  // All Java related clean up happens in exit
1647  ThreadSafepointState::destroy(this);
1648  if (_thread_profiler != NULL) delete _thread_profiler;
1649  if (_thread_stat != NULL) delete _thread_stat;
1650
1651#if INCLUDE_JVMCI
1652  if (JVMCICounterSize > 0) {
1653    if (jvmci_counters_include(this)) {
1654      for (int i = 0; i < JVMCICounterSize; i++) {
1655        _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1656      }
1657    }
1658    FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1659  }
1660#endif // INCLUDE_JVMCI
1661}
1662
1663
1664// The first routine called by a new Java thread
1665void JavaThread::run() {
1666  // initialize thread-local alloc buffer related fields
1667  this->initialize_tlab();
1668
1669  // used to test validity of stack trace backs
1670  this->record_base_of_stack_pointer();
1671
1672  // Record real stack base and size.
1673  this->record_stack_base_and_size();
1674
1675  this->create_stack_guard_pages();
1676
1677  this->cache_global_variables();
1678
1679  // Thread is now sufficient initialized to be handled by the safepoint code as being
1680  // in the VM. Change thread state from _thread_new to _thread_in_vm
1681  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1682
1683  assert(JavaThread::current() == this, "sanity check");
1684  assert(!Thread::current()->owns_locks(), "sanity check");
1685
1686  DTRACE_THREAD_PROBE(start, this);
1687
1688  // This operation might block. We call that after all safepoint checks for a new thread has
1689  // been completed.
1690  this->set_active_handles(JNIHandleBlock::allocate_block());
1691
1692  if (JvmtiExport::should_post_thread_life()) {
1693    JvmtiExport::post_thread_start(this);
1694  }
1695
1696  EventThreadStart event;
1697  if (event.should_commit()) {
1698    event.set_thread(THREAD_TRACE_ID(this));
1699    event.commit();
1700  }
1701
1702  // We call another function to do the rest so we are sure that the stack addresses used
1703  // from there will be lower than the stack base just computed
1704  thread_main_inner();
1705
1706  // Note, thread is no longer valid at this point!
1707}
1708
1709
1710void JavaThread::thread_main_inner() {
1711  assert(JavaThread::current() == this, "sanity check");
1712  assert(this->threadObj() != NULL, "just checking");
1713
1714  // Execute thread entry point unless this thread has a pending exception
1715  // or has been stopped before starting.
1716  // Note: Due to JVM_StopThread we can have pending exceptions already!
1717  if (!this->has_pending_exception() &&
1718      !java_lang_Thread::is_stillborn(this->threadObj())) {
1719    {
1720      ResourceMark rm(this);
1721      this->set_native_thread_name(this->get_thread_name());
1722    }
1723    HandleMark hm(this);
1724    this->entry_point()(this, this);
1725  }
1726
1727  DTRACE_THREAD_PROBE(stop, this);
1728
1729  this->exit(false);
1730  delete this;
1731}
1732
1733
1734static void ensure_join(JavaThread* thread) {
1735  // We do not need to grap the Threads_lock, since we are operating on ourself.
1736  Handle threadObj(thread, thread->threadObj());
1737  assert(threadObj.not_null(), "java thread object must exist");
1738  ObjectLocker lock(threadObj, thread);
1739  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1740  thread->clear_pending_exception();
1741  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1742  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1743  // Clear the native thread instance - this makes isAlive return false and allows the join()
1744  // to complete once we've done the notify_all below
1745  java_lang_Thread::set_thread(threadObj(), NULL);
1746  lock.notify_all(thread);
1747  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1748  thread->clear_pending_exception();
1749}
1750
1751
1752// For any new cleanup additions, please check to see if they need to be applied to
1753// cleanup_failed_attach_current_thread as well.
1754void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1755  assert(this == JavaThread::current(), "thread consistency check");
1756
1757  HandleMark hm(this);
1758  Handle uncaught_exception(this, this->pending_exception());
1759  this->clear_pending_exception();
1760  Handle threadObj(this, this->threadObj());
1761  assert(threadObj.not_null(), "Java thread object should be created");
1762
1763  if (get_thread_profiler() != NULL) {
1764    get_thread_profiler()->disengage();
1765    ResourceMark rm;
1766    get_thread_profiler()->print(get_thread_name());
1767  }
1768
1769
1770  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1771  {
1772    EXCEPTION_MARK;
1773
1774    CLEAR_PENDING_EXCEPTION;
1775  }
1776  if (!destroy_vm) {
1777    if (uncaught_exception.not_null()) {
1778      EXCEPTION_MARK;
1779      // Call method Thread.dispatchUncaughtException().
1780      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1781      JavaValue result(T_VOID);
1782      JavaCalls::call_virtual(&result,
1783                              threadObj, thread_klass,
1784                              vmSymbols::dispatchUncaughtException_name(),
1785                              vmSymbols::throwable_void_signature(),
1786                              uncaught_exception,
1787                              THREAD);
1788      if (HAS_PENDING_EXCEPTION) {
1789        ResourceMark rm(this);
1790        jio_fprintf(defaultStream::error_stream(),
1791                    "\nException: %s thrown from the UncaughtExceptionHandler"
1792                    " in thread \"%s\"\n",
1793                    pending_exception()->klass()->external_name(),
1794                    get_thread_name());
1795        CLEAR_PENDING_EXCEPTION;
1796      }
1797    }
1798
1799    // Called before the java thread exit since we want to read info
1800    // from java_lang_Thread object
1801    EventThreadEnd event;
1802    if (event.should_commit()) {
1803      event.set_thread(THREAD_TRACE_ID(this));
1804      event.commit();
1805    }
1806
1807    // Call after last event on thread
1808    EVENT_THREAD_EXIT(this);
1809
1810    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1811    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1812    // is deprecated anyhow.
1813    if (!is_Compiler_thread()) {
1814      int count = 3;
1815      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1816        EXCEPTION_MARK;
1817        JavaValue result(T_VOID);
1818        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1819        JavaCalls::call_virtual(&result,
1820                                threadObj, thread_klass,
1821                                vmSymbols::exit_method_name(),
1822                                vmSymbols::void_method_signature(),
1823                                THREAD);
1824        CLEAR_PENDING_EXCEPTION;
1825      }
1826    }
1827    // notify JVMTI
1828    if (JvmtiExport::should_post_thread_life()) {
1829      JvmtiExport::post_thread_end(this);
1830    }
1831
1832    // We have notified the agents that we are exiting, before we go on,
1833    // we must check for a pending external suspend request and honor it
1834    // in order to not surprise the thread that made the suspend request.
1835    while (true) {
1836      {
1837        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1838        if (!is_external_suspend()) {
1839          set_terminated(_thread_exiting);
1840          ThreadService::current_thread_exiting(this);
1841          break;
1842        }
1843        // Implied else:
1844        // Things get a little tricky here. We have a pending external
1845        // suspend request, but we are holding the SR_lock so we
1846        // can't just self-suspend. So we temporarily drop the lock
1847        // and then self-suspend.
1848      }
1849
1850      ThreadBlockInVM tbivm(this);
1851      java_suspend_self();
1852
1853      // We're done with this suspend request, but we have to loop around
1854      // and check again. Eventually we will get SR_lock without a pending
1855      // external suspend request and will be able to mark ourselves as
1856      // exiting.
1857    }
1858    // no more external suspends are allowed at this point
1859  } else {
1860    // before_exit() has already posted JVMTI THREAD_END events
1861  }
1862
1863  // Notify waiters on thread object. This has to be done after exit() is called
1864  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1865  // group should have the destroyed bit set before waiters are notified).
1866  ensure_join(this);
1867  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1868
1869  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1870  // held by this thread must be released. The spec does not distinguish
1871  // between JNI-acquired and regular Java monitors. We can only see
1872  // regular Java monitors here if monitor enter-exit matching is broken.
1873  //
1874  // Optionally release any monitors for regular JavaThread exits. This
1875  // is provided as a work around for any bugs in monitor enter-exit
1876  // matching. This can be expensive so it is not enabled by default.
1877  //
1878  // ensure_join() ignores IllegalThreadStateExceptions, and so does
1879  // ObjectSynchronizer::release_monitors_owned_by_thread().
1880  if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1881    // Sanity check even though JNI DetachCurrentThread() would have
1882    // returned JNI_ERR if there was a Java frame. JavaThread exit
1883    // should be done executing Java code by the time we get here.
1884    assert(!this->has_last_Java_frame(),
1885           "should not have a Java frame when detaching or exiting");
1886    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1887    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1888  }
1889
1890  // These things needs to be done while we are still a Java Thread. Make sure that thread
1891  // is in a consistent state, in case GC happens
1892  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1893
1894  if (active_handles() != NULL) {
1895    JNIHandleBlock* block = active_handles();
1896    set_active_handles(NULL);
1897    JNIHandleBlock::release_block(block);
1898  }
1899
1900  if (free_handle_block() != NULL) {
1901    JNIHandleBlock* block = free_handle_block();
1902    set_free_handle_block(NULL);
1903    JNIHandleBlock::release_block(block);
1904  }
1905
1906  // These have to be removed while this is still a valid thread.
1907  remove_stack_guard_pages();
1908
1909  if (UseTLAB) {
1910    tlab().make_parsable(true);  // retire TLAB
1911  }
1912
1913  if (JvmtiEnv::environments_might_exist()) {
1914    JvmtiExport::cleanup_thread(this);
1915  }
1916
1917  // We must flush any deferred card marks before removing a thread from
1918  // the list of active threads.
1919  Universe::heap()->flush_deferred_store_barrier(this);
1920  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1921
1922#if INCLUDE_ALL_GCS
1923  // We must flush the G1-related buffers before removing a thread
1924  // from the list of active threads. We must do this after any deferred
1925  // card marks have been flushed (above) so that any entries that are
1926  // added to the thread's dirty card queue as a result are not lost.
1927  if (UseG1GC) {
1928    flush_barrier_queues();
1929  }
1930#endif // INCLUDE_ALL_GCS
1931
1932  log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1933    exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1934    os::current_thread_id());
1935
1936  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1937  Threads::remove(this);
1938}
1939
1940#if INCLUDE_ALL_GCS
1941// Flush G1-related queues.
1942void JavaThread::flush_barrier_queues() {
1943  satb_mark_queue().flush();
1944  dirty_card_queue().flush();
1945}
1946
1947void JavaThread::initialize_queues() {
1948  assert(!SafepointSynchronize::is_at_safepoint(),
1949         "we should not be at a safepoint");
1950
1951  SATBMarkQueue& satb_queue = satb_mark_queue();
1952  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1953  // The SATB queue should have been constructed with its active
1954  // field set to false.
1955  assert(!satb_queue.is_active(), "SATB queue should not be active");
1956  assert(satb_queue.is_empty(), "SATB queue should be empty");
1957  // If we are creating the thread during a marking cycle, we should
1958  // set the active field of the SATB queue to true.
1959  if (satb_queue_set.is_active()) {
1960    satb_queue.set_active(true);
1961  }
1962
1963  DirtyCardQueue& dirty_queue = dirty_card_queue();
1964  // The dirty card queue should have been constructed with its
1965  // active field set to true.
1966  assert(dirty_queue.is_active(), "dirty card queue should be active");
1967}
1968#endif // INCLUDE_ALL_GCS
1969
1970void JavaThread::cleanup_failed_attach_current_thread() {
1971  if (get_thread_profiler() != NULL) {
1972    get_thread_profiler()->disengage();
1973    ResourceMark rm;
1974    get_thread_profiler()->print(get_thread_name());
1975  }
1976
1977  if (active_handles() != NULL) {
1978    JNIHandleBlock* block = active_handles();
1979    set_active_handles(NULL);
1980    JNIHandleBlock::release_block(block);
1981  }
1982
1983  if (free_handle_block() != NULL) {
1984    JNIHandleBlock* block = free_handle_block();
1985    set_free_handle_block(NULL);
1986    JNIHandleBlock::release_block(block);
1987  }
1988
1989  // These have to be removed while this is still a valid thread.
1990  remove_stack_guard_pages();
1991
1992  if (UseTLAB) {
1993    tlab().make_parsable(true);  // retire TLAB, if any
1994  }
1995
1996#if INCLUDE_ALL_GCS
1997  if (UseG1GC) {
1998    flush_barrier_queues();
1999  }
2000#endif // INCLUDE_ALL_GCS
2001
2002  Threads::remove(this);
2003  delete this;
2004}
2005
2006
2007
2008
2009JavaThread* JavaThread::active() {
2010  Thread* thread = Thread::current();
2011  if (thread->is_Java_thread()) {
2012    return (JavaThread*) thread;
2013  } else {
2014    assert(thread->is_VM_thread(), "this must be a vm thread");
2015    VM_Operation* op = ((VMThread*) thread)->vm_operation();
2016    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2017    assert(ret->is_Java_thread(), "must be a Java thread");
2018    return ret;
2019  }
2020}
2021
2022bool JavaThread::is_lock_owned(address adr) const {
2023  if (Thread::is_lock_owned(adr)) return true;
2024
2025  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2026    if (chunk->contains(adr)) return true;
2027  }
2028
2029  return false;
2030}
2031
2032
2033void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2034  chunk->set_next(monitor_chunks());
2035  set_monitor_chunks(chunk);
2036}
2037
2038void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2039  guarantee(monitor_chunks() != NULL, "must be non empty");
2040  if (monitor_chunks() == chunk) {
2041    set_monitor_chunks(chunk->next());
2042  } else {
2043    MonitorChunk* prev = monitor_chunks();
2044    while (prev->next() != chunk) prev = prev->next();
2045    prev->set_next(chunk->next());
2046  }
2047}
2048
2049// JVM support.
2050
2051// Note: this function shouldn't block if it's called in
2052// _thread_in_native_trans state (such as from
2053// check_special_condition_for_native_trans()).
2054void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2055
2056  if (has_last_Java_frame() && has_async_condition()) {
2057    // If we are at a polling page safepoint (not a poll return)
2058    // then we must defer async exception because live registers
2059    // will be clobbered by the exception path. Poll return is
2060    // ok because the call we a returning from already collides
2061    // with exception handling registers and so there is no issue.
2062    // (The exception handling path kills call result registers but
2063    //  this is ok since the exception kills the result anyway).
2064
2065    if (is_at_poll_safepoint()) {
2066      // if the code we are returning to has deoptimized we must defer
2067      // the exception otherwise live registers get clobbered on the
2068      // exception path before deoptimization is able to retrieve them.
2069      //
2070      RegisterMap map(this, false);
2071      frame caller_fr = last_frame().sender(&map);
2072      assert(caller_fr.is_compiled_frame(), "what?");
2073      if (caller_fr.is_deoptimized_frame()) {
2074        log_info(exceptions)("deferred async exception at compiled safepoint");
2075        return;
2076      }
2077    }
2078  }
2079
2080  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2081  if (condition == _no_async_condition) {
2082    // Conditions have changed since has_special_runtime_exit_condition()
2083    // was called:
2084    // - if we were here only because of an external suspend request,
2085    //   then that was taken care of above (or cancelled) so we are done
2086    // - if we were here because of another async request, then it has
2087    //   been cleared between the has_special_runtime_exit_condition()
2088    //   and now so again we are done
2089    return;
2090  }
2091
2092  // Check for pending async. exception
2093  if (_pending_async_exception != NULL) {
2094    // Only overwrite an already pending exception, if it is not a threadDeath.
2095    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2096
2097      // We cannot call Exceptions::_throw(...) here because we cannot block
2098      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2099
2100      if (log_is_enabled(Info, exceptions)) {
2101        ResourceMark rm;
2102        outputStream* logstream = Log(exceptions)::info_stream();
2103        logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2104          if (has_last_Java_frame()) {
2105            frame f = last_frame();
2106           logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2107          }
2108        logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2109      }
2110      _pending_async_exception = NULL;
2111      clear_has_async_exception();
2112    }
2113  }
2114
2115  if (check_unsafe_error &&
2116      condition == _async_unsafe_access_error && !has_pending_exception()) {
2117    condition = _no_async_condition;  // done
2118    switch (thread_state()) {
2119    case _thread_in_vm: {
2120      JavaThread* THREAD = this;
2121      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2122    }
2123    case _thread_in_native: {
2124      ThreadInVMfromNative tiv(this);
2125      JavaThread* THREAD = this;
2126      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2127    }
2128    case _thread_in_Java: {
2129      ThreadInVMfromJava tiv(this);
2130      JavaThread* THREAD = this;
2131      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2132    }
2133    default:
2134      ShouldNotReachHere();
2135    }
2136  }
2137
2138  assert(condition == _no_async_condition || has_pending_exception() ||
2139         (!check_unsafe_error && condition == _async_unsafe_access_error),
2140         "must have handled the async condition, if no exception");
2141}
2142
2143void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2144  //
2145  // Check for pending external suspend. Internal suspend requests do
2146  // not use handle_special_runtime_exit_condition().
2147  // If JNIEnv proxies are allowed, don't self-suspend if the target
2148  // thread is not the current thread. In older versions of jdbx, jdbx
2149  // threads could call into the VM with another thread's JNIEnv so we
2150  // can be here operating on behalf of a suspended thread (4432884).
2151  bool do_self_suspend = is_external_suspend_with_lock();
2152  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2153    //
2154    // Because thread is external suspended the safepoint code will count
2155    // thread as at a safepoint. This can be odd because we can be here
2156    // as _thread_in_Java which would normally transition to _thread_blocked
2157    // at a safepoint. We would like to mark the thread as _thread_blocked
2158    // before calling java_suspend_self like all other callers of it but
2159    // we must then observe proper safepoint protocol. (We can't leave
2160    // _thread_blocked with a safepoint in progress). However we can be
2161    // here as _thread_in_native_trans so we can't use a normal transition
2162    // constructor/destructor pair because they assert on that type of
2163    // transition. We could do something like:
2164    //
2165    // JavaThreadState state = thread_state();
2166    // set_thread_state(_thread_in_vm);
2167    // {
2168    //   ThreadBlockInVM tbivm(this);
2169    //   java_suspend_self()
2170    // }
2171    // set_thread_state(_thread_in_vm_trans);
2172    // if (safepoint) block;
2173    // set_thread_state(state);
2174    //
2175    // but that is pretty messy. Instead we just go with the way the
2176    // code has worked before and note that this is the only path to
2177    // java_suspend_self that doesn't put the thread in _thread_blocked
2178    // mode.
2179
2180    frame_anchor()->make_walkable(this);
2181    java_suspend_self();
2182
2183    // We might be here for reasons in addition to the self-suspend request
2184    // so check for other async requests.
2185  }
2186
2187  if (check_asyncs) {
2188    check_and_handle_async_exceptions();
2189  }
2190}
2191
2192void JavaThread::send_thread_stop(oop java_throwable)  {
2193  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2194  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2195  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2196
2197  // Do not throw asynchronous exceptions against the compiler thread
2198  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2199  if (!can_call_java()) return;
2200
2201  {
2202    // Actually throw the Throwable against the target Thread - however
2203    // only if there is no thread death exception installed already.
2204    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2205      // If the topmost frame is a runtime stub, then we are calling into
2206      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2207      // must deoptimize the caller before continuing, as the compiled  exception handler table
2208      // may not be valid
2209      if (has_last_Java_frame()) {
2210        frame f = last_frame();
2211        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2212          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2213          RegisterMap reg_map(this, UseBiasedLocking);
2214          frame compiled_frame = f.sender(&reg_map);
2215          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2216            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2217          }
2218        }
2219      }
2220
2221      // Set async. pending exception in thread.
2222      set_pending_async_exception(java_throwable);
2223
2224      if (log_is_enabled(Info, exceptions)) {
2225         ResourceMark rm;
2226        log_info(exceptions)("Pending Async. exception installed of type: %s",
2227                             InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2228      }
2229      // for AbortVMOnException flag
2230      Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2231    }
2232  }
2233
2234
2235  // Interrupt thread so it will wake up from a potential wait()
2236  Thread::interrupt(this);
2237}
2238
2239// External suspension mechanism.
2240//
2241// Tell the VM to suspend a thread when ever it knows that it does not hold on
2242// to any VM_locks and it is at a transition
2243// Self-suspension will happen on the transition out of the vm.
2244// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2245//
2246// Guarantees on return:
2247//   + Target thread will not execute any new bytecode (that's why we need to
2248//     force a safepoint)
2249//   + Target thread will not enter any new monitors
2250//
2251void JavaThread::java_suspend() {
2252  { MutexLocker mu(Threads_lock);
2253    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2254      return;
2255    }
2256  }
2257
2258  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2259    if (!is_external_suspend()) {
2260      // a racing resume has cancelled us; bail out now
2261      return;
2262    }
2263
2264    // suspend is done
2265    uint32_t debug_bits = 0;
2266    // Warning: is_ext_suspend_completed() may temporarily drop the
2267    // SR_lock to allow the thread to reach a stable thread state if
2268    // it is currently in a transient thread state.
2269    if (is_ext_suspend_completed(false /* !called_by_wait */,
2270                                 SuspendRetryDelay, &debug_bits)) {
2271      return;
2272    }
2273  }
2274
2275  VM_ForceSafepoint vm_suspend;
2276  VMThread::execute(&vm_suspend);
2277}
2278
2279// Part II of external suspension.
2280// A JavaThread self suspends when it detects a pending external suspend
2281// request. This is usually on transitions. It is also done in places
2282// where continuing to the next transition would surprise the caller,
2283// e.g., monitor entry.
2284//
2285// Returns the number of times that the thread self-suspended.
2286//
2287// Note: DO NOT call java_suspend_self() when you just want to block current
2288//       thread. java_suspend_self() is the second stage of cooperative
2289//       suspension for external suspend requests and should only be used
2290//       to complete an external suspend request.
2291//
2292int JavaThread::java_suspend_self() {
2293  int ret = 0;
2294
2295  // we are in the process of exiting so don't suspend
2296  if (is_exiting()) {
2297    clear_external_suspend();
2298    return ret;
2299  }
2300
2301  assert(_anchor.walkable() ||
2302         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2303         "must have walkable stack");
2304
2305  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2306
2307  assert(!this->is_ext_suspended(),
2308         "a thread trying to self-suspend should not already be suspended");
2309
2310  if (this->is_suspend_equivalent()) {
2311    // If we are self-suspending as a result of the lifting of a
2312    // suspend equivalent condition, then the suspend_equivalent
2313    // flag is not cleared until we set the ext_suspended flag so
2314    // that wait_for_ext_suspend_completion() returns consistent
2315    // results.
2316    this->clear_suspend_equivalent();
2317  }
2318
2319  // A racing resume may have cancelled us before we grabbed SR_lock
2320  // above. Or another external suspend request could be waiting for us
2321  // by the time we return from SR_lock()->wait(). The thread
2322  // that requested the suspension may already be trying to walk our
2323  // stack and if we return now, we can change the stack out from under
2324  // it. This would be a "bad thing (TM)" and cause the stack walker
2325  // to crash. We stay self-suspended until there are no more pending
2326  // external suspend requests.
2327  while (is_external_suspend()) {
2328    ret++;
2329    this->set_ext_suspended();
2330
2331    // _ext_suspended flag is cleared by java_resume()
2332    while (is_ext_suspended()) {
2333      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2334    }
2335  }
2336
2337  return ret;
2338}
2339
2340#ifdef ASSERT
2341// verify the JavaThread has not yet been published in the Threads::list, and
2342// hence doesn't need protection from concurrent access at this stage
2343void JavaThread::verify_not_published() {
2344  if (!Threads_lock->owned_by_self()) {
2345    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2346    assert(!Threads::includes(this),
2347           "java thread shouldn't have been published yet!");
2348  } else {
2349    assert(!Threads::includes(this),
2350           "java thread shouldn't have been published yet!");
2351  }
2352}
2353#endif
2354
2355// Slow path when the native==>VM/Java barriers detect a safepoint is in
2356// progress or when _suspend_flags is non-zero.
2357// Current thread needs to self-suspend if there is a suspend request and/or
2358// block if a safepoint is in progress.
2359// Async exception ISN'T checked.
2360// Note only the ThreadInVMfromNative transition can call this function
2361// directly and when thread state is _thread_in_native_trans
2362void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2363  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2364
2365  JavaThread *curJT = JavaThread::current();
2366  bool do_self_suspend = thread->is_external_suspend();
2367
2368  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2369
2370  // If JNIEnv proxies are allowed, don't self-suspend if the target
2371  // thread is not the current thread. In older versions of jdbx, jdbx
2372  // threads could call into the VM with another thread's JNIEnv so we
2373  // can be here operating on behalf of a suspended thread (4432884).
2374  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2375    JavaThreadState state = thread->thread_state();
2376
2377    // We mark this thread_blocked state as a suspend-equivalent so
2378    // that a caller to is_ext_suspend_completed() won't be confused.
2379    // The suspend-equivalent state is cleared by java_suspend_self().
2380    thread->set_suspend_equivalent();
2381
2382    // If the safepoint code sees the _thread_in_native_trans state, it will
2383    // wait until the thread changes to other thread state. There is no
2384    // guarantee on how soon we can obtain the SR_lock and complete the
2385    // self-suspend request. It would be a bad idea to let safepoint wait for
2386    // too long. Temporarily change the state to _thread_blocked to
2387    // let the VM thread know that this thread is ready for GC. The problem
2388    // of changing thread state is that safepoint could happen just after
2389    // java_suspend_self() returns after being resumed, and VM thread will
2390    // see the _thread_blocked state. We must check for safepoint
2391    // after restoring the state and make sure we won't leave while a safepoint
2392    // is in progress.
2393    thread->set_thread_state(_thread_blocked);
2394    thread->java_suspend_self();
2395    thread->set_thread_state(state);
2396    // Make sure new state is seen by VM thread
2397    if (os::is_MP()) {
2398      if (UseMembar) {
2399        // Force a fence between the write above and read below
2400        OrderAccess::fence();
2401      } else {
2402        // Must use this rather than serialization page in particular on Windows
2403        InterfaceSupport::serialize_memory(thread);
2404      }
2405    }
2406  }
2407
2408  if (SafepointSynchronize::do_call_back()) {
2409    // If we are safepointing, then block the caller which may not be
2410    // the same as the target thread (see above).
2411    SafepointSynchronize::block(curJT);
2412  }
2413
2414  if (thread->is_deopt_suspend()) {
2415    thread->clear_deopt_suspend();
2416    RegisterMap map(thread, false);
2417    frame f = thread->last_frame();
2418    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2419      f = f.sender(&map);
2420    }
2421    if (f.id() == thread->must_deopt_id()) {
2422      thread->clear_must_deopt_id();
2423      f.deoptimize(thread);
2424    } else {
2425      fatal("missed deoptimization!");
2426    }
2427  }
2428}
2429
2430// Slow path when the native==>VM/Java barriers detect a safepoint is in
2431// progress or when _suspend_flags is non-zero.
2432// Current thread needs to self-suspend if there is a suspend request and/or
2433// block if a safepoint is in progress.
2434// Also check for pending async exception (not including unsafe access error).
2435// Note only the native==>VM/Java barriers can call this function and when
2436// thread state is _thread_in_native_trans.
2437void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2438  check_safepoint_and_suspend_for_native_trans(thread);
2439
2440  if (thread->has_async_exception()) {
2441    // We are in _thread_in_native_trans state, don't handle unsafe
2442    // access error since that may block.
2443    thread->check_and_handle_async_exceptions(false);
2444  }
2445}
2446
2447// This is a variant of the normal
2448// check_special_condition_for_native_trans with slightly different
2449// semantics for use by critical native wrappers.  It does all the
2450// normal checks but also performs the transition back into
2451// thread_in_Java state.  This is required so that critical natives
2452// can potentially block and perform a GC if they are the last thread
2453// exiting the GCLocker.
2454void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2455  check_special_condition_for_native_trans(thread);
2456
2457  // Finish the transition
2458  thread->set_thread_state(_thread_in_Java);
2459
2460  if (thread->do_critical_native_unlock()) {
2461    ThreadInVMfromJavaNoAsyncException tiv(thread);
2462    GCLocker::unlock_critical(thread);
2463    thread->clear_critical_native_unlock();
2464  }
2465}
2466
2467// We need to guarantee the Threads_lock here, since resumes are not
2468// allowed during safepoint synchronization
2469// Can only resume from an external suspension
2470void JavaThread::java_resume() {
2471  assert_locked_or_safepoint(Threads_lock);
2472
2473  // Sanity check: thread is gone, has started exiting or the thread
2474  // was not externally suspended.
2475  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2476    return;
2477  }
2478
2479  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2480
2481  clear_external_suspend();
2482
2483  if (is_ext_suspended()) {
2484    clear_ext_suspended();
2485    SR_lock()->notify_all();
2486  }
2487}
2488
2489size_t JavaThread::_stack_red_zone_size = 0;
2490size_t JavaThread::_stack_yellow_zone_size = 0;
2491size_t JavaThread::_stack_reserved_zone_size = 0;
2492size_t JavaThread::_stack_shadow_zone_size = 0;
2493
2494void JavaThread::create_stack_guard_pages() {
2495  if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2496  address low_addr = stack_end();
2497  size_t len = stack_guard_zone_size();
2498
2499  int must_commit = os::must_commit_stack_guard_pages();
2500  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2501
2502  if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2503    log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2504    return;
2505  }
2506
2507  if (os::guard_memory((char *) low_addr, len)) {
2508    _stack_guard_state = stack_guard_enabled;
2509  } else {
2510    log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2511      PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2512    if (os::uncommit_memory((char *) low_addr, len)) {
2513      log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2514    }
2515    return;
2516  }
2517
2518  log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2519    PTR_FORMAT "-" PTR_FORMAT ".",
2520    os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2521}
2522
2523void JavaThread::remove_stack_guard_pages() {
2524  assert(Thread::current() == this, "from different thread");
2525  if (_stack_guard_state == stack_guard_unused) return;
2526  address low_addr = stack_end();
2527  size_t len = stack_guard_zone_size();
2528
2529  if (os::must_commit_stack_guard_pages()) {
2530    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2531      _stack_guard_state = stack_guard_unused;
2532    } else {
2533      log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2534        PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2535      return;
2536    }
2537  } else {
2538    if (_stack_guard_state == stack_guard_unused) return;
2539    if (os::unguard_memory((char *) low_addr, len)) {
2540      _stack_guard_state = stack_guard_unused;
2541    } else {
2542      log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2543        PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2544      return;
2545    }
2546  }
2547
2548  log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2549    PTR_FORMAT "-" PTR_FORMAT ".",
2550    os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2551}
2552
2553void JavaThread::enable_stack_reserved_zone() {
2554  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2555  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2556
2557  // The base notation is from the stack's point of view, growing downward.
2558  // We need to adjust it to work correctly with guard_memory()
2559  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2560
2561  guarantee(base < stack_base(),"Error calculating stack reserved zone");
2562  guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2563
2564  if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2565    _stack_guard_state = stack_guard_enabled;
2566  } else {
2567    warning("Attempt to guard stack reserved zone failed.");
2568  }
2569  enable_register_stack_guard();
2570}
2571
2572void JavaThread::disable_stack_reserved_zone() {
2573  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2574  assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2575
2576  // Simply return if called for a thread that does not use guard pages.
2577  if (_stack_guard_state == stack_guard_unused) return;
2578
2579  // The base notation is from the stack's point of view, growing downward.
2580  // We need to adjust it to work correctly with guard_memory()
2581  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2582
2583  if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2584    _stack_guard_state = stack_guard_reserved_disabled;
2585  } else {
2586    warning("Attempt to unguard stack reserved zone failed.");
2587  }
2588  disable_register_stack_guard();
2589}
2590
2591void JavaThread::enable_stack_yellow_reserved_zone() {
2592  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2593  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2594
2595  // The base notation is from the stacks point of view, growing downward.
2596  // We need to adjust it to work correctly with guard_memory()
2597  address base = stack_red_zone_base();
2598
2599  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2600  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2601
2602  if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2603    _stack_guard_state = stack_guard_enabled;
2604  } else {
2605    warning("Attempt to guard stack yellow zone failed.");
2606  }
2607  enable_register_stack_guard();
2608}
2609
2610void JavaThread::disable_stack_yellow_reserved_zone() {
2611  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2612  assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2613
2614  // Simply return if called for a thread that does not use guard pages.
2615  if (_stack_guard_state == stack_guard_unused) return;
2616
2617  // The base notation is from the stacks point of view, growing downward.
2618  // We need to adjust it to work correctly with guard_memory()
2619  address base = stack_red_zone_base();
2620
2621  if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2622    _stack_guard_state = stack_guard_yellow_reserved_disabled;
2623  } else {
2624    warning("Attempt to unguard stack yellow zone failed.");
2625  }
2626  disable_register_stack_guard();
2627}
2628
2629void JavaThread::enable_stack_red_zone() {
2630  // The base notation is from the stacks point of view, growing downward.
2631  // We need to adjust it to work correctly with guard_memory()
2632  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2633  address base = stack_red_zone_base() - stack_red_zone_size();
2634
2635  guarantee(base < stack_base(), "Error calculating stack red zone");
2636  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2637
2638  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2639    warning("Attempt to guard stack red zone failed.");
2640  }
2641}
2642
2643void JavaThread::disable_stack_red_zone() {
2644  // The base notation is from the stacks point of view, growing downward.
2645  // We need to adjust it to work correctly with guard_memory()
2646  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2647  address base = stack_red_zone_base() - stack_red_zone_size();
2648  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2649    warning("Attempt to unguard stack red zone failed.");
2650  }
2651}
2652
2653void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2654  // ignore is there is no stack
2655  if (!has_last_Java_frame()) return;
2656  // traverse the stack frames. Starts from top frame.
2657  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2658    frame* fr = fst.current();
2659    f(fr, fst.register_map());
2660  }
2661}
2662
2663
2664#ifndef PRODUCT
2665// Deoptimization
2666// Function for testing deoptimization
2667void JavaThread::deoptimize() {
2668  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2669  StackFrameStream fst(this, UseBiasedLocking);
2670  bool deopt = false;           // Dump stack only if a deopt actually happens.
2671  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2672  // Iterate over all frames in the thread and deoptimize
2673  for (; !fst.is_done(); fst.next()) {
2674    if (fst.current()->can_be_deoptimized()) {
2675
2676      if (only_at) {
2677        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2678        // consists of comma or carriage return separated numbers so
2679        // search for the current bci in that string.
2680        address pc = fst.current()->pc();
2681        nmethod* nm =  (nmethod*) fst.current()->cb();
2682        ScopeDesc* sd = nm->scope_desc_at(pc);
2683        char buffer[8];
2684        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2685        size_t len = strlen(buffer);
2686        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2687        while (found != NULL) {
2688          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2689              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2690            // Check that the bci found is bracketed by terminators.
2691            break;
2692          }
2693          found = strstr(found + 1, buffer);
2694        }
2695        if (!found) {
2696          continue;
2697        }
2698      }
2699
2700      if (DebugDeoptimization && !deopt) {
2701        deopt = true; // One-time only print before deopt
2702        tty->print_cr("[BEFORE Deoptimization]");
2703        trace_frames();
2704        trace_stack();
2705      }
2706      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2707    }
2708  }
2709
2710  if (DebugDeoptimization && deopt) {
2711    tty->print_cr("[AFTER Deoptimization]");
2712    trace_frames();
2713  }
2714}
2715
2716
2717// Make zombies
2718void JavaThread::make_zombies() {
2719  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2720    if (fst.current()->can_be_deoptimized()) {
2721      // it is a Java nmethod
2722      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2723      nm->make_not_entrant();
2724    }
2725  }
2726}
2727#endif // PRODUCT
2728
2729
2730void JavaThread::deoptimized_wrt_marked_nmethods() {
2731  if (!has_last_Java_frame()) return;
2732  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2733  StackFrameStream fst(this, UseBiasedLocking);
2734  for (; !fst.is_done(); fst.next()) {
2735    if (fst.current()->should_be_deoptimized()) {
2736      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2737    }
2738  }
2739}
2740
2741
2742// If the caller is a NamedThread, then remember, in the current scope,
2743// the given JavaThread in its _processed_thread field.
2744class RememberProcessedThread: public StackObj {
2745  NamedThread* _cur_thr;
2746 public:
2747  RememberProcessedThread(JavaThread* jthr) {
2748    Thread* thread = Thread::current();
2749    if (thread->is_Named_thread()) {
2750      _cur_thr = (NamedThread *)thread;
2751      _cur_thr->set_processed_thread(jthr);
2752    } else {
2753      _cur_thr = NULL;
2754    }
2755  }
2756
2757  ~RememberProcessedThread() {
2758    if (_cur_thr) {
2759      _cur_thr->set_processed_thread(NULL);
2760    }
2761  }
2762};
2763
2764void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2765  // Verify that the deferred card marks have been flushed.
2766  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2767
2768  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2769  // since there may be more than one thread using each ThreadProfiler.
2770
2771  // Traverse the GCHandles
2772  Thread::oops_do(f, cf);
2773
2774  JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2775
2776  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2777         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2778
2779  if (has_last_Java_frame()) {
2780    // Record JavaThread to GC thread
2781    RememberProcessedThread rpt(this);
2782
2783    // Traverse the privileged stack
2784    if (_privileged_stack_top != NULL) {
2785      _privileged_stack_top->oops_do(f);
2786    }
2787
2788    // traverse the registered growable array
2789    if (_array_for_gc != NULL) {
2790      for (int index = 0; index < _array_for_gc->length(); index++) {
2791        f->do_oop(_array_for_gc->adr_at(index));
2792      }
2793    }
2794
2795    // Traverse the monitor chunks
2796    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2797      chunk->oops_do(f);
2798    }
2799
2800    // Traverse the execution stack
2801    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2802      fst.current()->oops_do(f, cf, fst.register_map());
2803    }
2804  }
2805
2806  // callee_target is never live across a gc point so NULL it here should
2807  // it still contain a methdOop.
2808
2809  set_callee_target(NULL);
2810
2811  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2812  // If we have deferred set_locals there might be oops waiting to be
2813  // written
2814  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2815  if (list != NULL) {
2816    for (int i = 0; i < list->length(); i++) {
2817      list->at(i)->oops_do(f);
2818    }
2819  }
2820
2821  // Traverse instance variables at the end since the GC may be moving things
2822  // around using this function
2823  f->do_oop((oop*) &_threadObj);
2824  f->do_oop((oop*) &_vm_result);
2825  f->do_oop((oop*) &_exception_oop);
2826  f->do_oop((oop*) &_pending_async_exception);
2827
2828  if (jvmti_thread_state() != NULL) {
2829    jvmti_thread_state()->oops_do(f);
2830  }
2831}
2832
2833void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2834  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2835         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2836
2837  if (has_last_Java_frame()) {
2838    // Traverse the execution stack
2839    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2840      fst.current()->nmethods_do(cf);
2841    }
2842  }
2843}
2844
2845void JavaThread::metadata_do(void f(Metadata*)) {
2846  if (has_last_Java_frame()) {
2847    // Traverse the execution stack to call f() on the methods in the stack
2848    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2849      fst.current()->metadata_do(f);
2850    }
2851  } else if (is_Compiler_thread()) {
2852    // need to walk ciMetadata in current compile tasks to keep alive.
2853    CompilerThread* ct = (CompilerThread*)this;
2854    if (ct->env() != NULL) {
2855      ct->env()->metadata_do(f);
2856    }
2857    if (ct->task() != NULL) {
2858      ct->task()->metadata_do(f);
2859    }
2860  }
2861}
2862
2863// Printing
2864const char* _get_thread_state_name(JavaThreadState _thread_state) {
2865  switch (_thread_state) {
2866  case _thread_uninitialized:     return "_thread_uninitialized";
2867  case _thread_new:               return "_thread_new";
2868  case _thread_new_trans:         return "_thread_new_trans";
2869  case _thread_in_native:         return "_thread_in_native";
2870  case _thread_in_native_trans:   return "_thread_in_native_trans";
2871  case _thread_in_vm:             return "_thread_in_vm";
2872  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2873  case _thread_in_Java:           return "_thread_in_Java";
2874  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2875  case _thread_blocked:           return "_thread_blocked";
2876  case _thread_blocked_trans:     return "_thread_blocked_trans";
2877  default:                        return "unknown thread state";
2878  }
2879}
2880
2881#ifndef PRODUCT
2882void JavaThread::print_thread_state_on(outputStream *st) const {
2883  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2884};
2885void JavaThread::print_thread_state() const {
2886  print_thread_state_on(tty);
2887}
2888#endif // PRODUCT
2889
2890// Called by Threads::print() for VM_PrintThreads operation
2891void JavaThread::print_on(outputStream *st) const {
2892  st->print_raw("\"");
2893  st->print_raw(get_thread_name());
2894  st->print_raw("\" ");
2895  oop thread_oop = threadObj();
2896  if (thread_oop != NULL) {
2897    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2898    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2899    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2900  }
2901  Thread::print_on(st);
2902  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2903  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2904  if (thread_oop != NULL) {
2905    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2906  }
2907#ifndef PRODUCT
2908  print_thread_state_on(st);
2909  _safepoint_state->print_on(st);
2910#endif // PRODUCT
2911  if (is_Compiler_thread()) {
2912    CompilerThread* ct = (CompilerThread*)this;
2913    if (ct->task() != NULL) {
2914      st->print("   Compiling: ");
2915      ct->task()->print(st, NULL, true, false);
2916    } else {
2917      st->print("   No compile task");
2918    }
2919    st->cr();
2920  }
2921}
2922
2923void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2924  st->print("%s", get_thread_name_string(buf, buflen));
2925}
2926
2927// Called by fatal error handler. The difference between this and
2928// JavaThread::print() is that we can't grab lock or allocate memory.
2929void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2930  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2931  oop thread_obj = threadObj();
2932  if (thread_obj != NULL) {
2933    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2934  }
2935  st->print(" [");
2936  st->print("%s", _get_thread_state_name(_thread_state));
2937  if (osthread()) {
2938    st->print(", id=%d", osthread()->thread_id());
2939  }
2940  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2941            p2i(stack_end()), p2i(stack_base()));
2942  st->print("]");
2943  return;
2944}
2945
2946// Verification
2947
2948static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2949
2950void JavaThread::verify() {
2951  // Verify oops in the thread.
2952  oops_do(&VerifyOopClosure::verify_oop, NULL);
2953
2954  // Verify the stack frames.
2955  frames_do(frame_verify);
2956}
2957
2958// CR 6300358 (sub-CR 2137150)
2959// Most callers of this method assume that it can't return NULL but a
2960// thread may not have a name whilst it is in the process of attaching to
2961// the VM - see CR 6412693, and there are places where a JavaThread can be
2962// seen prior to having it's threadObj set (eg JNI attaching threads and
2963// if vm exit occurs during initialization). These cases can all be accounted
2964// for such that this method never returns NULL.
2965const char* JavaThread::get_thread_name() const {
2966#ifdef ASSERT
2967  // early safepoints can hit while current thread does not yet have TLS
2968  if (!SafepointSynchronize::is_at_safepoint()) {
2969    Thread *cur = Thread::current();
2970    if (!(cur->is_Java_thread() && cur == this)) {
2971      // Current JavaThreads are allowed to get their own name without
2972      // the Threads_lock.
2973      assert_locked_or_safepoint(Threads_lock);
2974    }
2975  }
2976#endif // ASSERT
2977  return get_thread_name_string();
2978}
2979
2980// Returns a non-NULL representation of this thread's name, or a suitable
2981// descriptive string if there is no set name
2982const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2983  const char* name_str;
2984  oop thread_obj = threadObj();
2985  if (thread_obj != NULL) {
2986    oop name = java_lang_Thread::name(thread_obj);
2987    if (name != NULL) {
2988      if (buf == NULL) {
2989        name_str = java_lang_String::as_utf8_string(name);
2990      } else {
2991        name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2992      }
2993    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2994      name_str = "<no-name - thread is attaching>";
2995    } else {
2996      name_str = Thread::name();
2997    }
2998  } else {
2999    name_str = Thread::name();
3000  }
3001  assert(name_str != NULL, "unexpected NULL thread name");
3002  return name_str;
3003}
3004
3005
3006const char* JavaThread::get_threadgroup_name() const {
3007  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3008  oop thread_obj = threadObj();
3009  if (thread_obj != NULL) {
3010    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3011    if (thread_group != NULL) {
3012      // ThreadGroup.name can be null
3013      return java_lang_ThreadGroup::name(thread_group);
3014    }
3015  }
3016  return NULL;
3017}
3018
3019const char* JavaThread::get_parent_name() const {
3020  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3021  oop thread_obj = threadObj();
3022  if (thread_obj != NULL) {
3023    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3024    if (thread_group != NULL) {
3025      oop parent = java_lang_ThreadGroup::parent(thread_group);
3026      if (parent != NULL) {
3027        // ThreadGroup.name can be null
3028        return java_lang_ThreadGroup::name(parent);
3029      }
3030    }
3031  }
3032  return NULL;
3033}
3034
3035ThreadPriority JavaThread::java_priority() const {
3036  oop thr_oop = threadObj();
3037  if (thr_oop == NULL) return NormPriority; // Bootstrapping
3038  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3039  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3040  return priority;
3041}
3042
3043void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3044
3045  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3046  // Link Java Thread object <-> C++ Thread
3047
3048  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3049  // and put it into a new Handle.  The Handle "thread_oop" can then
3050  // be used to pass the C++ thread object to other methods.
3051
3052  // Set the Java level thread object (jthread) field of the
3053  // new thread (a JavaThread *) to C++ thread object using the
3054  // "thread_oop" handle.
3055
3056  // Set the thread field (a JavaThread *) of the
3057  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3058
3059  Handle thread_oop(Thread::current(),
3060                    JNIHandles::resolve_non_null(jni_thread));
3061  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3062         "must be initialized");
3063  set_threadObj(thread_oop());
3064  java_lang_Thread::set_thread(thread_oop(), this);
3065
3066  if (prio == NoPriority) {
3067    prio = java_lang_Thread::priority(thread_oop());
3068    assert(prio != NoPriority, "A valid priority should be present");
3069  }
3070
3071  // Push the Java priority down to the native thread; needs Threads_lock
3072  Thread::set_priority(this, prio);
3073
3074  prepare_ext();
3075
3076  // Add the new thread to the Threads list and set it in motion.
3077  // We must have threads lock in order to call Threads::add.
3078  // It is crucial that we do not block before the thread is
3079  // added to the Threads list for if a GC happens, then the java_thread oop
3080  // will not be visited by GC.
3081  Threads::add(this);
3082}
3083
3084oop JavaThread::current_park_blocker() {
3085  // Support for JSR-166 locks
3086  oop thread_oop = threadObj();
3087  if (thread_oop != NULL &&
3088      JDK_Version::current().supports_thread_park_blocker()) {
3089    return java_lang_Thread::park_blocker(thread_oop);
3090  }
3091  return NULL;
3092}
3093
3094
3095void JavaThread::print_stack_on(outputStream* st) {
3096  if (!has_last_Java_frame()) return;
3097  ResourceMark rm;
3098  HandleMark   hm;
3099
3100  RegisterMap reg_map(this);
3101  vframe* start_vf = last_java_vframe(&reg_map);
3102  int count = 0;
3103  for (vframe* f = start_vf; f; f = f->sender()) {
3104    if (f->is_java_frame()) {
3105      javaVFrame* jvf = javaVFrame::cast(f);
3106      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3107
3108      // Print out lock information
3109      if (JavaMonitorsInStackTrace) {
3110        jvf->print_lock_info_on(st, count);
3111      }
3112    } else {
3113      // Ignore non-Java frames
3114    }
3115
3116    // Bail-out case for too deep stacks
3117    count++;
3118    if (MaxJavaStackTraceDepth == count) return;
3119  }
3120}
3121
3122
3123// JVMTI PopFrame support
3124void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3125  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3126  if (in_bytes(size_in_bytes) != 0) {
3127    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3128    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3129    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3130  }
3131}
3132
3133void* JavaThread::popframe_preserved_args() {
3134  return _popframe_preserved_args;
3135}
3136
3137ByteSize JavaThread::popframe_preserved_args_size() {
3138  return in_ByteSize(_popframe_preserved_args_size);
3139}
3140
3141WordSize JavaThread::popframe_preserved_args_size_in_words() {
3142  int sz = in_bytes(popframe_preserved_args_size());
3143  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3144  return in_WordSize(sz / wordSize);
3145}
3146
3147void JavaThread::popframe_free_preserved_args() {
3148  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3149  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3150  _popframe_preserved_args = NULL;
3151  _popframe_preserved_args_size = 0;
3152}
3153
3154#ifndef PRODUCT
3155
3156void JavaThread::trace_frames() {
3157  tty->print_cr("[Describe stack]");
3158  int frame_no = 1;
3159  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3160    tty->print("  %d. ", frame_no++);
3161    fst.current()->print_value_on(tty, this);
3162    tty->cr();
3163  }
3164}
3165
3166class PrintAndVerifyOopClosure: public OopClosure {
3167 protected:
3168  template <class T> inline void do_oop_work(T* p) {
3169    oop obj = oopDesc::load_decode_heap_oop(p);
3170    if (obj == NULL) return;
3171    tty->print(INTPTR_FORMAT ": ", p2i(p));
3172    if (obj->is_oop_or_null()) {
3173      if (obj->is_objArray()) {
3174        tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3175      } else {
3176        obj->print();
3177      }
3178    } else {
3179      tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3180    }
3181    tty->cr();
3182  }
3183 public:
3184  virtual void do_oop(oop* p) { do_oop_work(p); }
3185  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3186};
3187
3188
3189static void oops_print(frame* f, const RegisterMap *map) {
3190  PrintAndVerifyOopClosure print;
3191  f->print_value();
3192  f->oops_do(&print, NULL, (RegisterMap*)map);
3193}
3194
3195// Print our all the locations that contain oops and whether they are
3196// valid or not.  This useful when trying to find the oldest frame
3197// where an oop has gone bad since the frame walk is from youngest to
3198// oldest.
3199void JavaThread::trace_oops() {
3200  tty->print_cr("[Trace oops]");
3201  frames_do(oops_print);
3202}
3203
3204
3205#ifdef ASSERT
3206// Print or validate the layout of stack frames
3207void JavaThread::print_frame_layout(int depth, bool validate_only) {
3208  ResourceMark rm;
3209  PRESERVE_EXCEPTION_MARK;
3210  FrameValues values;
3211  int frame_no = 0;
3212  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3213    fst.current()->describe(values, ++frame_no);
3214    if (depth == frame_no) break;
3215  }
3216  if (validate_only) {
3217    values.validate();
3218  } else {
3219    tty->print_cr("[Describe stack layout]");
3220    values.print(this);
3221  }
3222}
3223#endif
3224
3225void JavaThread::trace_stack_from(vframe* start_vf) {
3226  ResourceMark rm;
3227  int vframe_no = 1;
3228  for (vframe* f = start_vf; f; f = f->sender()) {
3229    if (f->is_java_frame()) {
3230      javaVFrame::cast(f)->print_activation(vframe_no++);
3231    } else {
3232      f->print();
3233    }
3234    if (vframe_no > StackPrintLimit) {
3235      tty->print_cr("...<more frames>...");
3236      return;
3237    }
3238  }
3239}
3240
3241
3242void JavaThread::trace_stack() {
3243  if (!has_last_Java_frame()) return;
3244  ResourceMark rm;
3245  HandleMark   hm;
3246  RegisterMap reg_map(this);
3247  trace_stack_from(last_java_vframe(&reg_map));
3248}
3249
3250
3251#endif // PRODUCT
3252
3253
3254javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3255  assert(reg_map != NULL, "a map must be given");
3256  frame f = last_frame();
3257  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3258    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3259  }
3260  return NULL;
3261}
3262
3263
3264Klass* JavaThread::security_get_caller_class(int depth) {
3265  vframeStream vfst(this);
3266  vfst.security_get_caller_frame(depth);
3267  if (!vfst.at_end()) {
3268    return vfst.method()->method_holder();
3269  }
3270  return NULL;
3271}
3272
3273static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3274  assert(thread->is_Compiler_thread(), "must be compiler thread");
3275  CompileBroker::compiler_thread_loop();
3276}
3277
3278static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3279  NMethodSweeper::sweeper_loop();
3280}
3281
3282// Create a CompilerThread
3283CompilerThread::CompilerThread(CompileQueue* queue,
3284                               CompilerCounters* counters)
3285                               : JavaThread(&compiler_thread_entry) {
3286  _env   = NULL;
3287  _log   = NULL;
3288  _task  = NULL;
3289  _queue = queue;
3290  _counters = counters;
3291  _buffer_blob = NULL;
3292  _compiler = NULL;
3293
3294#ifndef PRODUCT
3295  _ideal_graph_printer = NULL;
3296#endif
3297}
3298
3299bool CompilerThread::can_call_java() const {
3300  return _compiler != NULL && _compiler->is_jvmci();
3301}
3302
3303// Create sweeper thread
3304CodeCacheSweeperThread::CodeCacheSweeperThread()
3305: JavaThread(&sweeper_thread_entry) {
3306  _scanned_compiled_method = NULL;
3307}
3308
3309void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3310  JavaThread::oops_do(f, cf);
3311  if (_scanned_compiled_method != NULL && cf != NULL) {
3312    // Safepoints can occur when the sweeper is scanning an nmethod so
3313    // process it here to make sure it isn't unloaded in the middle of
3314    // a scan.
3315    cf->do_code_blob(_scanned_compiled_method);
3316  }
3317}
3318
3319void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3320  JavaThread::nmethods_do(cf);
3321  if (_scanned_compiled_method != NULL && cf != NULL) {
3322    // Safepoints can occur when the sweeper is scanning an nmethod so
3323    // process it here to make sure it isn't unloaded in the middle of
3324    // a scan.
3325    cf->do_code_blob(_scanned_compiled_method);
3326  }
3327}
3328
3329
3330// ======= Threads ========
3331
3332// The Threads class links together all active threads, and provides
3333// operations over all threads.  It is protected by its own Mutex
3334// lock, which is also used in other contexts to protect thread
3335// operations from having the thread being operated on from exiting
3336// and going away unexpectedly (e.g., safepoint synchronization)
3337
3338JavaThread* Threads::_thread_list = NULL;
3339int         Threads::_number_of_threads = 0;
3340int         Threads::_number_of_non_daemon_threads = 0;
3341int         Threads::_return_code = 0;
3342int         Threads::_thread_claim_parity = 0;
3343size_t      JavaThread::_stack_size_at_create = 0;
3344#ifdef ASSERT
3345bool        Threads::_vm_complete = false;
3346#endif
3347
3348// All JavaThreads
3349#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3350
3351// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3352void Threads::threads_do(ThreadClosure* tc) {
3353  assert_locked_or_safepoint(Threads_lock);
3354  // ALL_JAVA_THREADS iterates through all JavaThreads
3355  ALL_JAVA_THREADS(p) {
3356    tc->do_thread(p);
3357  }
3358  // Someday we could have a table or list of all non-JavaThreads.
3359  // For now, just manually iterate through them.
3360  tc->do_thread(VMThread::vm_thread());
3361  Universe::heap()->gc_threads_do(tc);
3362  WatcherThread *wt = WatcherThread::watcher_thread();
3363  // Strictly speaking, the following NULL check isn't sufficient to make sure
3364  // the data for WatcherThread is still valid upon being examined. However,
3365  // considering that WatchThread terminates when the VM is on the way to
3366  // exit at safepoint, the chance of the above is extremely small. The right
3367  // way to prevent termination of WatcherThread would be to acquire
3368  // Terminator_lock, but we can't do that without violating the lock rank
3369  // checking in some cases.
3370  if (wt != NULL) {
3371    tc->do_thread(wt);
3372  }
3373
3374  // If CompilerThreads ever become non-JavaThreads, add them here
3375}
3376
3377// The system initialization in the library has three phases.
3378//
3379// Phase 1: java.lang.System class initialization
3380//     java.lang.System is a primordial class loaded and initialized
3381//     by the VM early during startup.  java.lang.System.<clinit>
3382//     only does registerNatives and keeps the rest of the class
3383//     initialization work later until thread initialization completes.
3384//
3385//     System.initPhase1 initializes the system properties, the static
3386//     fields in, out, and err. Set up java signal handlers, OS-specific
3387//     system settings, and thread group of the main thread.
3388static void call_initPhase1(TRAPS) {
3389  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3390  instanceKlassHandle klass (THREAD, k);
3391
3392  JavaValue result(T_VOID);
3393  JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3394                                         vmSymbols::void_method_signature(), CHECK);
3395}
3396
3397// Phase 2. Module system initialization
3398//     This will initialize the module system.  Only java.base classes
3399//     can be loaded until phase 2 completes.
3400//
3401//     Call System.initPhase2 after the compiler initialization and jsr292
3402//     classes get initialized because module initialization runs a lot of java
3403//     code, that for performance reasons, should be compiled.  Also, this will
3404//     enable the startup code to use lambda and other language features in this
3405//     phase and onward.
3406//
3407//     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3408static void call_initPhase2(TRAPS) {
3409  TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, modules, startuptime));
3410
3411  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3412  instanceKlassHandle klass (THREAD, k);
3413
3414  JavaValue result(T_VOID);
3415  JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3416                                         vmSymbols::void_method_signature(), CHECK);
3417  universe_post_module_init();
3418}
3419
3420// Phase 3. final setup - set security manager, system class loader and TCCL
3421//
3422//     This will instantiate and set the security manager, set the system class
3423//     loader as well as the thread context class loader.  The security manager
3424//     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3425//     other modules or the application's classpath.
3426static void call_initPhase3(TRAPS) {
3427  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3428  instanceKlassHandle klass (THREAD, k);
3429
3430  JavaValue result(T_VOID);
3431  JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3432                                         vmSymbols::void_method_signature(), CHECK);
3433}
3434
3435void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3436  TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3437
3438  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3439    create_vm_init_libraries();
3440  }
3441
3442  initialize_class(vmSymbols::java_lang_String(), CHECK);
3443
3444  // Inject CompactStrings value after the static initializers for String ran.
3445  java_lang_String::set_compact_strings(CompactStrings);
3446
3447  // Initialize java_lang.System (needed before creating the thread)
3448  initialize_class(vmSymbols::java_lang_System(), CHECK);
3449  // The VM creates & returns objects of this class. Make sure it's initialized.
3450  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3451  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3452  Handle thread_group = create_initial_thread_group(CHECK);
3453  Universe::set_main_thread_group(thread_group());
3454  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3455  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3456  main_thread->set_threadObj(thread_object);
3457  // Set thread status to running since main thread has
3458  // been started and running.
3459  java_lang_Thread::set_thread_status(thread_object,
3460                                      java_lang_Thread::RUNNABLE);
3461
3462  // The VM creates objects of this class.
3463  initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3464
3465  // The VM preresolves methods to these classes. Make sure that they get initialized
3466  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3467  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3468
3469  // Phase 1 of the system initialization in the library, java.lang.System class initialization
3470  call_initPhase1(CHECK);
3471
3472  // get the Java runtime name after java.lang.System is initialized
3473  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3474  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3475
3476  // an instance of OutOfMemory exception has been allocated earlier
3477  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3478  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3479  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3480  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3481  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3482  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3483  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3484  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3485}
3486
3487void Threads::initialize_jsr292_core_classes(TRAPS) {
3488  TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3489
3490  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3491  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3492  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3493}
3494
3495jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3496  extern void JDK_Version_init();
3497
3498  // Preinitialize version info.
3499  VM_Version::early_initialize();
3500
3501  // Check version
3502  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3503
3504  // Initialize library-based TLS
3505  ThreadLocalStorage::init();
3506
3507  // Initialize the output stream module
3508  ostream_init();
3509
3510  // Process java launcher properties.
3511  Arguments::process_sun_java_launcher_properties(args);
3512
3513  // Initialize the os module
3514  os::init();
3515
3516  // Record VM creation timing statistics
3517  TraceVmCreationTime create_vm_timer;
3518  create_vm_timer.start();
3519
3520  // Initialize system properties.
3521  Arguments::init_system_properties();
3522
3523  // So that JDK version can be used as a discriminator when parsing arguments
3524  JDK_Version_init();
3525
3526  // Update/Initialize System properties after JDK version number is known
3527  Arguments::init_version_specific_system_properties();
3528
3529  // Make sure to initialize log configuration *before* parsing arguments
3530  LogConfiguration::initialize(create_vm_timer.begin_time());
3531
3532  // Parse arguments
3533  jint parse_result = Arguments::parse(args);
3534  if (parse_result != JNI_OK) return parse_result;
3535
3536  os::init_before_ergo();
3537
3538  jint ergo_result = Arguments::apply_ergo();
3539  if (ergo_result != JNI_OK) return ergo_result;
3540
3541  // Final check of all ranges after ergonomics which may change values.
3542  if (!CommandLineFlagRangeList::check_ranges()) {
3543    return JNI_EINVAL;
3544  }
3545
3546  // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3547  bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3548  if (!constraint_result) {
3549    return JNI_EINVAL;
3550  }
3551
3552  CommandLineFlagWriteableList::mark_startup();
3553
3554  if (PauseAtStartup) {
3555    os::pause();
3556  }
3557
3558  HOTSPOT_VM_INIT_BEGIN();
3559
3560  // Timing (must come after argument parsing)
3561  TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3562
3563  // Initialize the os module after parsing the args
3564  jint os_init_2_result = os::init_2();
3565  if (os_init_2_result != JNI_OK) return os_init_2_result;
3566
3567  jint adjust_after_os_result = Arguments::adjust_after_os();
3568  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3569
3570  // Initialize output stream logging
3571  ostream_init_log();
3572
3573  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3574  // Must be before create_vm_init_agents()
3575  if (Arguments::init_libraries_at_startup()) {
3576    convert_vm_init_libraries_to_agents();
3577  }
3578
3579  // Launch -agentlib/-agentpath and converted -Xrun agents
3580  if (Arguments::init_agents_at_startup()) {
3581    create_vm_init_agents();
3582  }
3583
3584  // Initialize Threads state
3585  _thread_list = NULL;
3586  _number_of_threads = 0;
3587  _number_of_non_daemon_threads = 0;
3588
3589  // Initialize global data structures and create system classes in heap
3590  vm_init_globals();
3591
3592#if INCLUDE_JVMCI
3593  if (JVMCICounterSize > 0) {
3594    JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3595    memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3596  } else {
3597    JavaThread::_jvmci_old_thread_counters = NULL;
3598  }
3599#endif // INCLUDE_JVMCI
3600
3601  // Attach the main thread to this os thread
3602  JavaThread* main_thread = new JavaThread();
3603  main_thread->set_thread_state(_thread_in_vm);
3604  main_thread->initialize_thread_current();
3605  // must do this before set_active_handles
3606  main_thread->record_stack_base_and_size();
3607  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3608
3609  if (!main_thread->set_as_starting_thread()) {
3610    vm_shutdown_during_initialization(
3611                                      "Failed necessary internal allocation. Out of swap space");
3612    delete main_thread;
3613    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3614    return JNI_ENOMEM;
3615  }
3616
3617  // Enable guard page *after* os::create_main_thread(), otherwise it would
3618  // crash Linux VM, see notes in os_linux.cpp.
3619  main_thread->create_stack_guard_pages();
3620
3621  // Initialize Java-Level synchronization subsystem
3622  ObjectMonitor::Initialize();
3623
3624  // Initialize global modules
3625  jint status = init_globals();
3626  if (status != JNI_OK) {
3627    delete main_thread;
3628    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3629    return status;
3630  }
3631
3632  if (TRACE_INITIALIZE() != JNI_OK) {
3633    vm_exit_during_initialization("Failed to initialize tracing backend");
3634  }
3635
3636  // Should be done after the heap is fully created
3637  main_thread->cache_global_variables();
3638
3639  HandleMark hm;
3640
3641  { MutexLocker mu(Threads_lock);
3642    Threads::add(main_thread);
3643  }
3644
3645  // Any JVMTI raw monitors entered in onload will transition into
3646  // real raw monitor. VM is setup enough here for raw monitor enter.
3647  JvmtiExport::transition_pending_onload_raw_monitors();
3648
3649  // Create the VMThread
3650  { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3651
3652  VMThread::create();
3653    Thread* vmthread = VMThread::vm_thread();
3654
3655    if (!os::create_thread(vmthread, os::vm_thread)) {
3656      vm_exit_during_initialization("Cannot create VM thread. "
3657                                    "Out of system resources.");
3658    }
3659
3660    // Wait for the VM thread to become ready, and VMThread::run to initialize
3661    // Monitors can have spurious returns, must always check another state flag
3662    {
3663      MutexLocker ml(Notify_lock);
3664      os::start_thread(vmthread);
3665      while (vmthread->active_handles() == NULL) {
3666        Notify_lock->wait();
3667      }
3668    }
3669  }
3670
3671  assert(Universe::is_fully_initialized(), "not initialized");
3672  if (VerifyDuringStartup) {
3673    // Make sure we're starting with a clean slate.
3674    VM_Verify verify_op;
3675    VMThread::execute(&verify_op);
3676  }
3677
3678  Thread* THREAD = Thread::current();
3679
3680  // At this point, the Universe is initialized, but we have not executed
3681  // any byte code.  Now is a good time (the only time) to dump out the
3682  // internal state of the JVM for sharing.
3683  if (DumpSharedSpaces) {
3684    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3685    ShouldNotReachHere();
3686  }
3687
3688  // Always call even when there are not JVMTI environments yet, since environments
3689  // may be attached late and JVMTI must track phases of VM execution
3690  JvmtiExport::enter_early_start_phase();
3691
3692  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3693  JvmtiExport::post_early_vm_start();
3694
3695  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3696
3697  // We need this for ClassDataSharing - the initial vm.info property is set
3698  // with the default value of CDS "sharing" which may be reset through
3699  // command line options.
3700  reset_vm_info_property(CHECK_JNI_ERR);
3701
3702  quicken_jni_functions();
3703
3704  // No more stub generation allowed after that point.
3705  StubCodeDesc::freeze();
3706
3707  // Set flag that basic initialization has completed. Used by exceptions and various
3708  // debug stuff, that does not work until all basic classes have been initialized.
3709  set_init_completed();
3710
3711  LogConfiguration::post_initialize();
3712  Metaspace::post_initialize();
3713
3714  HOTSPOT_VM_INIT_END();
3715
3716  // record VM initialization completion time
3717#if INCLUDE_MANAGEMENT
3718  Management::record_vm_init_completed();
3719#endif // INCLUDE_MANAGEMENT
3720
3721  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3722  // set_init_completed has just been called, causing exceptions not to be shortcut
3723  // anymore. We call vm_exit_during_initialization directly instead.
3724
3725  // Initialize reference pending list locker
3726  bool needs_locker_thread = Universe::heap()->needs_reference_pending_list_locker_thread();
3727  ReferencePendingListLocker::initialize(needs_locker_thread, CHECK_JNI_ERR);
3728
3729  // Signal Dispatcher needs to be started before VMInit event is posted
3730  os::signal_init();
3731
3732  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3733  if (!DisableAttachMechanism) {
3734    AttachListener::vm_start();
3735    if (StartAttachListener || AttachListener::init_at_startup()) {
3736      AttachListener::init();
3737    }
3738  }
3739
3740  // Launch -Xrun agents
3741  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3742  // back-end can launch with -Xdebug -Xrunjdwp.
3743  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3744    create_vm_init_libraries();
3745  }
3746
3747  if (CleanChunkPoolAsync) {
3748    Chunk::start_chunk_pool_cleaner_task();
3749  }
3750
3751  // initialize compiler(s)
3752#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3753  CompileBroker::compilation_init(CHECK_JNI_ERR);
3754#endif
3755
3756  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3757  // It is done after compilers are initialized, because otherwise compilations of
3758  // signature polymorphic MH intrinsics can be missed
3759  // (see SystemDictionary::find_method_handle_intrinsic).
3760  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3761
3762  // This will initialize the module system.  Only java.base classes can be
3763  // loaded until phase 2 completes
3764  call_initPhase2(CHECK_JNI_ERR);
3765
3766  // Always call even when there are not JVMTI environments yet, since environments
3767  // may be attached late and JVMTI must track phases of VM execution
3768  JvmtiExport::enter_start_phase();
3769
3770  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3771  JvmtiExport::post_vm_start();
3772
3773  // Final system initialization including security manager and system class loader
3774  call_initPhase3(CHECK_JNI_ERR);
3775
3776  // cache the system class loader
3777  SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3778
3779#if INCLUDE_JVMCI
3780  if (EnableJVMCI && UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation)) {
3781    // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3782    // compilations via JVMCI will not actually block until JVMCI is initialized.
3783    JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3784  }
3785#endif
3786
3787  // Always call even when there are not JVMTI environments yet, since environments
3788  // may be attached late and JVMTI must track phases of VM execution
3789  JvmtiExport::enter_live_phase();
3790
3791  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3792  JvmtiExport::post_vm_initialized();
3793
3794  if (TRACE_START() != JNI_OK) {
3795    vm_exit_during_initialization("Failed to start tracing backend.");
3796  }
3797
3798#if INCLUDE_MANAGEMENT
3799  Management::initialize(THREAD);
3800
3801  if (HAS_PENDING_EXCEPTION) {
3802    // management agent fails to start possibly due to
3803    // configuration problem and is responsible for printing
3804    // stack trace if appropriate. Simply exit VM.
3805    vm_exit(1);
3806  }
3807#endif // INCLUDE_MANAGEMENT
3808
3809  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3810  if (MemProfiling)                   MemProfiler::engage();
3811  StatSampler::engage();
3812  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3813
3814  BiasedLocking::init();
3815
3816#if INCLUDE_RTM_OPT
3817  RTMLockingCounters::init();
3818#endif
3819
3820  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3821    call_postVMInitHook(THREAD);
3822    // The Java side of PostVMInitHook.run must deal with all
3823    // exceptions and provide means of diagnosis.
3824    if (HAS_PENDING_EXCEPTION) {
3825      CLEAR_PENDING_EXCEPTION;
3826    }
3827  }
3828
3829  {
3830    MutexLocker ml(PeriodicTask_lock);
3831    // Make sure the WatcherThread can be started by WatcherThread::start()
3832    // or by dynamic enrollment.
3833    WatcherThread::make_startable();
3834    // Start up the WatcherThread if there are any periodic tasks
3835    // NOTE:  All PeriodicTasks should be registered by now. If they
3836    //   aren't, late joiners might appear to start slowly (we might
3837    //   take a while to process their first tick).
3838    if (PeriodicTask::num_tasks() > 0) {
3839      WatcherThread::start();
3840    }
3841  }
3842
3843  CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3844
3845  create_vm_timer.end();
3846#ifdef ASSERT
3847  _vm_complete = true;
3848#endif
3849  return JNI_OK;
3850}
3851
3852// type for the Agent_OnLoad and JVM_OnLoad entry points
3853extern "C" {
3854  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3855}
3856// Find a command line agent library and return its entry point for
3857//         -agentlib:  -agentpath:   -Xrun
3858// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3859static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3860                                    const char *on_load_symbols[],
3861                                    size_t num_symbol_entries) {
3862  OnLoadEntry_t on_load_entry = NULL;
3863  void *library = NULL;
3864
3865  if (!agent->valid()) {
3866    char buffer[JVM_MAXPATHLEN];
3867    char ebuf[1024] = "";
3868    const char *name = agent->name();
3869    const char *msg = "Could not find agent library ";
3870
3871    // First check to see if agent is statically linked into executable
3872    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3873      library = agent->os_lib();
3874    } else if (agent->is_absolute_path()) {
3875      library = os::dll_load(name, ebuf, sizeof ebuf);
3876      if (library == NULL) {
3877        const char *sub_msg = " in absolute path, with error: ";
3878        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3879        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3880        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3881        // If we can't find the agent, exit.
3882        vm_exit_during_initialization(buf, NULL);
3883        FREE_C_HEAP_ARRAY(char, buf);
3884      }
3885    } else {
3886      // Try to load the agent from the standard dll directory
3887      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3888                             name)) {
3889        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3890      }
3891      if (library == NULL) { // Try the local directory
3892        char ns[1] = {0};
3893        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3894          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3895        }
3896        if (library == NULL) {
3897          const char *sub_msg = " on the library path, with error: ";
3898          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3899          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3900          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3901          // If we can't find the agent, exit.
3902          vm_exit_during_initialization(buf, NULL);
3903          FREE_C_HEAP_ARRAY(char, buf);
3904        }
3905      }
3906    }
3907    agent->set_os_lib(library);
3908    agent->set_valid();
3909  }
3910
3911  // Find the OnLoad function.
3912  on_load_entry =
3913    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3914                                                          false,
3915                                                          on_load_symbols,
3916                                                          num_symbol_entries));
3917  return on_load_entry;
3918}
3919
3920// Find the JVM_OnLoad entry point
3921static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3922  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3923  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3924}
3925
3926// Find the Agent_OnLoad entry point
3927static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3928  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3929  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3930}
3931
3932// For backwards compatibility with -Xrun
3933// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3934// treated like -agentpath:
3935// Must be called before agent libraries are created
3936void Threads::convert_vm_init_libraries_to_agents() {
3937  AgentLibrary* agent;
3938  AgentLibrary* next;
3939
3940  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3941    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3942    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3943
3944    // If there is an JVM_OnLoad function it will get called later,
3945    // otherwise see if there is an Agent_OnLoad
3946    if (on_load_entry == NULL) {
3947      on_load_entry = lookup_agent_on_load(agent);
3948      if (on_load_entry != NULL) {
3949        // switch it to the agent list -- so that Agent_OnLoad will be called,
3950        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3951        Arguments::convert_library_to_agent(agent);
3952      } else {
3953        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3954      }
3955    }
3956  }
3957}
3958
3959// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3960// Invokes Agent_OnLoad
3961// Called very early -- before JavaThreads exist
3962void Threads::create_vm_init_agents() {
3963  extern struct JavaVM_ main_vm;
3964  AgentLibrary* agent;
3965
3966  JvmtiExport::enter_onload_phase();
3967
3968  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3969    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3970
3971    if (on_load_entry != NULL) {
3972      // Invoke the Agent_OnLoad function
3973      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3974      if (err != JNI_OK) {
3975        vm_exit_during_initialization("agent library failed to init", agent->name());
3976      }
3977    } else {
3978      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3979    }
3980  }
3981  JvmtiExport::enter_primordial_phase();
3982}
3983
3984extern "C" {
3985  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3986}
3987
3988void Threads::shutdown_vm_agents() {
3989  // Send any Agent_OnUnload notifications
3990  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3991  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3992  extern struct JavaVM_ main_vm;
3993  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3994
3995    // Find the Agent_OnUnload function.
3996    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3997                                                   os::find_agent_function(agent,
3998                                                   false,
3999                                                   on_unload_symbols,
4000                                                   num_symbol_entries));
4001
4002    // Invoke the Agent_OnUnload function
4003    if (unload_entry != NULL) {
4004      JavaThread* thread = JavaThread::current();
4005      ThreadToNativeFromVM ttn(thread);
4006      HandleMark hm(thread);
4007      (*unload_entry)(&main_vm);
4008    }
4009  }
4010}
4011
4012// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4013// Invokes JVM_OnLoad
4014void Threads::create_vm_init_libraries() {
4015  extern struct JavaVM_ main_vm;
4016  AgentLibrary* agent;
4017
4018  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4019    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4020
4021    if (on_load_entry != NULL) {
4022      // Invoke the JVM_OnLoad function
4023      JavaThread* thread = JavaThread::current();
4024      ThreadToNativeFromVM ttn(thread);
4025      HandleMark hm(thread);
4026      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4027      if (err != JNI_OK) {
4028        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4029      }
4030    } else {
4031      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4032    }
4033  }
4034}
4035
4036JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4037  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4038
4039  JavaThread* java_thread = NULL;
4040  // Sequential search for now.  Need to do better optimization later.
4041  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4042    oop tobj = thread->threadObj();
4043    if (!thread->is_exiting() &&
4044        tobj != NULL &&
4045        java_tid == java_lang_Thread::thread_id(tobj)) {
4046      java_thread = thread;
4047      break;
4048    }
4049  }
4050  return java_thread;
4051}
4052
4053
4054// Last thread running calls java.lang.Shutdown.shutdown()
4055void JavaThread::invoke_shutdown_hooks() {
4056  HandleMark hm(this);
4057
4058  // We could get here with a pending exception, if so clear it now.
4059  if (this->has_pending_exception()) {
4060    this->clear_pending_exception();
4061  }
4062
4063  EXCEPTION_MARK;
4064  Klass* k =
4065    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4066                                      THREAD);
4067  if (k != NULL) {
4068    // SystemDictionary::resolve_or_null will return null if there was
4069    // an exception.  If we cannot load the Shutdown class, just don't
4070    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4071    // and finalizers (if runFinalizersOnExit is set) won't be run.
4072    // Note that if a shutdown hook was registered or runFinalizersOnExit
4073    // was called, the Shutdown class would have already been loaded
4074    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4075    instanceKlassHandle shutdown_klass (THREAD, k);
4076    JavaValue result(T_VOID);
4077    JavaCalls::call_static(&result,
4078                           shutdown_klass,
4079                           vmSymbols::shutdown_method_name(),
4080                           vmSymbols::void_method_signature(),
4081                           THREAD);
4082  }
4083  CLEAR_PENDING_EXCEPTION;
4084}
4085
4086// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4087// the program falls off the end of main(). Another VM exit path is through
4088// vm_exit() when the program calls System.exit() to return a value or when
4089// there is a serious error in VM. The two shutdown paths are not exactly
4090// the same, but they share Shutdown.shutdown() at Java level and before_exit()
4091// and VM_Exit op at VM level.
4092//
4093// Shutdown sequence:
4094//   + Shutdown native memory tracking if it is on
4095//   + Wait until we are the last non-daemon thread to execute
4096//     <-- every thing is still working at this moment -->
4097//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4098//        shutdown hooks, run finalizers if finalization-on-exit
4099//   + Call before_exit(), prepare for VM exit
4100//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4101//        currently the only user of this mechanism is File.deleteOnExit())
4102//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4103//        post thread end and vm death events to JVMTI,
4104//        stop signal thread
4105//   + Call JavaThread::exit(), it will:
4106//      > release JNI handle blocks, remove stack guard pages
4107//      > remove this thread from Threads list
4108//     <-- no more Java code from this thread after this point -->
4109//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4110//     the compiler threads at safepoint
4111//     <-- do not use anything that could get blocked by Safepoint -->
4112//   + Disable tracing at JNI/JVM barriers
4113//   + Set _vm_exited flag for threads that are still running native code
4114//   + Delete this thread
4115//   + Call exit_globals()
4116//      > deletes tty
4117//      > deletes PerfMemory resources
4118//   + Return to caller
4119
4120bool Threads::destroy_vm() {
4121  JavaThread* thread = JavaThread::current();
4122
4123#ifdef ASSERT
4124  _vm_complete = false;
4125#endif
4126  // Wait until we are the last non-daemon thread to execute
4127  { MutexLocker nu(Threads_lock);
4128    while (Threads::number_of_non_daemon_threads() > 1)
4129      // This wait should make safepoint checks, wait without a timeout,
4130      // and wait as a suspend-equivalent condition.
4131      //
4132      // Note: If the FlatProfiler is running and this thread is waiting
4133      // for another non-daemon thread to finish, then the FlatProfiler
4134      // is waiting for the external suspend request on this thread to
4135      // complete. wait_for_ext_suspend_completion() will eventually
4136      // timeout, but that takes time. Making this wait a suspend-
4137      // equivalent condition solves that timeout problem.
4138      //
4139      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4140                         Mutex::_as_suspend_equivalent_flag);
4141  }
4142
4143  // Hang forever on exit if we are reporting an error.
4144  if (ShowMessageBoxOnError && is_error_reported()) {
4145    os::infinite_sleep();
4146  }
4147  os::wait_for_keypress_at_exit();
4148
4149  // run Java level shutdown hooks
4150  thread->invoke_shutdown_hooks();
4151
4152  before_exit(thread);
4153
4154  thread->exit(true);
4155
4156  // Stop VM thread.
4157  {
4158    // 4945125 The vm thread comes to a safepoint during exit.
4159    // GC vm_operations can get caught at the safepoint, and the
4160    // heap is unparseable if they are caught. Grab the Heap_lock
4161    // to prevent this. The GC vm_operations will not be able to
4162    // queue until after the vm thread is dead. After this point,
4163    // we'll never emerge out of the safepoint before the VM exits.
4164
4165    MutexLocker ml(Heap_lock);
4166
4167    VMThread::wait_for_vm_thread_exit();
4168    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4169    VMThread::destroy();
4170  }
4171
4172  // clean up ideal graph printers
4173#if defined(COMPILER2) && !defined(PRODUCT)
4174  IdealGraphPrinter::clean_up();
4175#endif
4176
4177  // Now, all Java threads are gone except daemon threads. Daemon threads
4178  // running Java code or in VM are stopped by the Safepoint. However,
4179  // daemon threads executing native code are still running.  But they
4180  // will be stopped at native=>Java/VM barriers. Note that we can't
4181  // simply kill or suspend them, as it is inherently deadlock-prone.
4182
4183  VM_Exit::set_vm_exited();
4184
4185  notify_vm_shutdown();
4186
4187  delete thread;
4188
4189#if INCLUDE_JVMCI
4190  if (JVMCICounterSize > 0) {
4191    FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4192  }
4193#endif
4194
4195  // exit_globals() will delete tty
4196  exit_globals();
4197
4198  LogConfiguration::finalize();
4199
4200  return true;
4201}
4202
4203
4204jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4205  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4206  return is_supported_jni_version(version);
4207}
4208
4209
4210jboolean Threads::is_supported_jni_version(jint version) {
4211  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4212  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4213  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4214  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4215  if (version == JNI_VERSION_9) return JNI_TRUE;
4216  return JNI_FALSE;
4217}
4218
4219
4220void Threads::add(JavaThread* p, bool force_daemon) {
4221  // The threads lock must be owned at this point
4222  assert_locked_or_safepoint(Threads_lock);
4223
4224  // See the comment for this method in thread.hpp for its purpose and
4225  // why it is called here.
4226  p->initialize_queues();
4227  p->set_next(_thread_list);
4228  _thread_list = p;
4229  _number_of_threads++;
4230  oop threadObj = p->threadObj();
4231  bool daemon = true;
4232  // Bootstrapping problem: threadObj can be null for initial
4233  // JavaThread (or for threads attached via JNI)
4234  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4235    _number_of_non_daemon_threads++;
4236    daemon = false;
4237  }
4238
4239  ThreadService::add_thread(p, daemon);
4240
4241  // Possible GC point.
4242  Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4243}
4244
4245void Threads::remove(JavaThread* p) {
4246  // Extra scope needed for Thread_lock, so we can check
4247  // that we do not remove thread without safepoint code notice
4248  { MutexLocker ml(Threads_lock);
4249
4250    assert(includes(p), "p must be present");
4251
4252    JavaThread* current = _thread_list;
4253    JavaThread* prev    = NULL;
4254
4255    while (current != p) {
4256      prev    = current;
4257      current = current->next();
4258    }
4259
4260    if (prev) {
4261      prev->set_next(current->next());
4262    } else {
4263      _thread_list = p->next();
4264    }
4265    _number_of_threads--;
4266    oop threadObj = p->threadObj();
4267    bool daemon = true;
4268    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4269      _number_of_non_daemon_threads--;
4270      daemon = false;
4271
4272      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4273      // on destroy_vm will wake up.
4274      if (number_of_non_daemon_threads() == 1) {
4275        Threads_lock->notify_all();
4276      }
4277    }
4278    ThreadService::remove_thread(p, daemon);
4279
4280    // Make sure that safepoint code disregard this thread. This is needed since
4281    // the thread might mess around with locks after this point. This can cause it
4282    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4283    // of this thread since it is removed from the queue.
4284    p->set_terminated_value();
4285  } // unlock Threads_lock
4286
4287  // Since Events::log uses a lock, we grab it outside the Threads_lock
4288  Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4289}
4290
4291// Threads_lock must be held when this is called (or must be called during a safepoint)
4292bool Threads::includes(JavaThread* p) {
4293  assert(Threads_lock->is_locked(), "sanity check");
4294  ALL_JAVA_THREADS(q) {
4295    if (q == p) {
4296      return true;
4297    }
4298  }
4299  return false;
4300}
4301
4302// Operations on the Threads list for GC.  These are not explicitly locked,
4303// but the garbage collector must provide a safe context for them to run.
4304// In particular, these things should never be called when the Threads_lock
4305// is held by some other thread. (Note: the Safepoint abstraction also
4306// uses the Threads_lock to guarantee this property. It also makes sure that
4307// all threads gets blocked when exiting or starting).
4308
4309void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4310  ALL_JAVA_THREADS(p) {
4311    p->oops_do(f, cf);
4312  }
4313  VMThread::vm_thread()->oops_do(f, cf);
4314}
4315
4316void Threads::change_thread_claim_parity() {
4317  // Set the new claim parity.
4318  assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4319         "Not in range.");
4320  _thread_claim_parity++;
4321  if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4322  assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4323         "Not in range.");
4324}
4325
4326#ifdef ASSERT
4327void Threads::assert_all_threads_claimed() {
4328  ALL_JAVA_THREADS(p) {
4329    const int thread_parity = p->oops_do_parity();
4330    assert((thread_parity == _thread_claim_parity),
4331           "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4332  }
4333}
4334#endif // ASSERT
4335
4336void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4337  int cp = Threads::thread_claim_parity();
4338  ALL_JAVA_THREADS(p) {
4339    if (p->claim_oops_do(is_par, cp)) {
4340      p->oops_do(f, cf);
4341    }
4342  }
4343  VMThread* vmt = VMThread::vm_thread();
4344  if (vmt->claim_oops_do(is_par, cp)) {
4345    vmt->oops_do(f, cf);
4346  }
4347}
4348
4349#if INCLUDE_ALL_GCS
4350// Used by ParallelScavenge
4351void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4352  ALL_JAVA_THREADS(p) {
4353    q->enqueue(new ThreadRootsTask(p));
4354  }
4355  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4356}
4357
4358// Used by Parallel Old
4359void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4360  ALL_JAVA_THREADS(p) {
4361    q->enqueue(new ThreadRootsMarkingTask(p));
4362  }
4363  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4364}
4365#endif // INCLUDE_ALL_GCS
4366
4367void Threads::nmethods_do(CodeBlobClosure* cf) {
4368  ALL_JAVA_THREADS(p) {
4369    // This is used by the code cache sweeper to mark nmethods that are active
4370    // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4371    // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4372    if(!p->is_Code_cache_sweeper_thread()) {
4373      p->nmethods_do(cf);
4374    }
4375  }
4376}
4377
4378void Threads::metadata_do(void f(Metadata*)) {
4379  ALL_JAVA_THREADS(p) {
4380    p->metadata_do(f);
4381  }
4382}
4383
4384class ThreadHandlesClosure : public ThreadClosure {
4385  void (*_f)(Metadata*);
4386 public:
4387  ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4388  virtual void do_thread(Thread* thread) {
4389    thread->metadata_handles_do(_f);
4390  }
4391};
4392
4393void Threads::metadata_handles_do(void f(Metadata*)) {
4394  // Only walk the Handles in Thread.
4395  ThreadHandlesClosure handles_closure(f);
4396  threads_do(&handles_closure);
4397}
4398
4399void Threads::deoptimized_wrt_marked_nmethods() {
4400  ALL_JAVA_THREADS(p) {
4401    p->deoptimized_wrt_marked_nmethods();
4402  }
4403}
4404
4405
4406// Get count Java threads that are waiting to enter the specified monitor.
4407GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4408                                                         address monitor,
4409                                                         bool doLock) {
4410  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4411         "must grab Threads_lock or be at safepoint");
4412  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4413
4414  int i = 0;
4415  {
4416    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4417    ALL_JAVA_THREADS(p) {
4418      if (!p->can_call_java()) continue;
4419
4420      address pending = (address)p->current_pending_monitor();
4421      if (pending == monitor) {             // found a match
4422        if (i < count) result->append(p);   // save the first count matches
4423        i++;
4424      }
4425    }
4426  }
4427  return result;
4428}
4429
4430
4431JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4432                                                      bool doLock) {
4433  assert(doLock ||
4434         Threads_lock->owned_by_self() ||
4435         SafepointSynchronize::is_at_safepoint(),
4436         "must grab Threads_lock or be at safepoint");
4437
4438  // NULL owner means not locked so we can skip the search
4439  if (owner == NULL) return NULL;
4440
4441  {
4442    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4443    ALL_JAVA_THREADS(p) {
4444      // first, see if owner is the address of a Java thread
4445      if (owner == (address)p) return p;
4446    }
4447  }
4448  // Cannot assert on lack of success here since this function may be
4449  // used by code that is trying to report useful problem information
4450  // like deadlock detection.
4451  if (UseHeavyMonitors) return NULL;
4452
4453  // If we didn't find a matching Java thread and we didn't force use of
4454  // heavyweight monitors, then the owner is the stack address of the
4455  // Lock Word in the owning Java thread's stack.
4456  //
4457  JavaThread* the_owner = NULL;
4458  {
4459    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4460    ALL_JAVA_THREADS(q) {
4461      if (q->is_lock_owned(owner)) {
4462        the_owner = q;
4463        break;
4464      }
4465    }
4466  }
4467  // cannot assert on lack of success here; see above comment
4468  return the_owner;
4469}
4470
4471// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4472void Threads::print_on(outputStream* st, bool print_stacks,
4473                       bool internal_format, bool print_concurrent_locks) {
4474  char buf[32];
4475  st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4476
4477  st->print_cr("Full thread dump %s (%s %s):",
4478               Abstract_VM_Version::vm_name(),
4479               Abstract_VM_Version::vm_release(),
4480               Abstract_VM_Version::vm_info_string());
4481  st->cr();
4482
4483#if INCLUDE_SERVICES
4484  // Dump concurrent locks
4485  ConcurrentLocksDump concurrent_locks;
4486  if (print_concurrent_locks) {
4487    concurrent_locks.dump_at_safepoint();
4488  }
4489#endif // INCLUDE_SERVICES
4490
4491  ALL_JAVA_THREADS(p) {
4492    ResourceMark rm;
4493    p->print_on(st);
4494    if (print_stacks) {
4495      if (internal_format) {
4496        p->trace_stack();
4497      } else {
4498        p->print_stack_on(st);
4499      }
4500    }
4501    st->cr();
4502#if INCLUDE_SERVICES
4503    if (print_concurrent_locks) {
4504      concurrent_locks.print_locks_on(p, st);
4505    }
4506#endif // INCLUDE_SERVICES
4507  }
4508
4509  VMThread::vm_thread()->print_on(st);
4510  st->cr();
4511  Universe::heap()->print_gc_threads_on(st);
4512  WatcherThread* wt = WatcherThread::watcher_thread();
4513  if (wt != NULL) {
4514    wt->print_on(st);
4515    st->cr();
4516  }
4517  st->flush();
4518}
4519
4520void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4521                             int buflen, bool* found_current) {
4522  if (this_thread != NULL) {
4523    bool is_current = (current == this_thread);
4524    *found_current = *found_current || is_current;
4525    st->print("%s", is_current ? "=>" : "  ");
4526
4527    st->print(PTR_FORMAT, p2i(this_thread));
4528    st->print(" ");
4529    this_thread->print_on_error(st, buf, buflen);
4530    st->cr();
4531  }
4532}
4533
4534class PrintOnErrorClosure : public ThreadClosure {
4535  outputStream* _st;
4536  Thread* _current;
4537  char* _buf;
4538  int _buflen;
4539  bool* _found_current;
4540 public:
4541  PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4542                      int buflen, bool* found_current) :
4543   _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4544
4545  virtual void do_thread(Thread* thread) {
4546    Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4547  }
4548};
4549
4550// Threads::print_on_error() is called by fatal error handler. It's possible
4551// that VM is not at safepoint and/or current thread is inside signal handler.
4552// Don't print stack trace, as the stack may not be walkable. Don't allocate
4553// memory (even in resource area), it might deadlock the error handler.
4554void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4555                             int buflen) {
4556  bool found_current = false;
4557  st->print_cr("Java Threads: ( => current thread )");
4558  ALL_JAVA_THREADS(thread) {
4559    print_on_error(thread, st, current, buf, buflen, &found_current);
4560  }
4561  st->cr();
4562
4563  st->print_cr("Other Threads:");
4564  print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4565  print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4566
4567  PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4568  Universe::heap()->gc_threads_do(&print_closure);
4569
4570  if (!found_current) {
4571    st->cr();
4572    st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4573    current->print_on_error(st, buf, buflen);
4574    st->cr();
4575  }
4576  st->cr();
4577  st->print_cr("Threads with active compile tasks:");
4578  print_threads_compiling(st, buf, buflen);
4579}
4580
4581void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4582  ALL_JAVA_THREADS(thread) {
4583    if (thread->is_Compiler_thread()) {
4584      CompilerThread* ct = (CompilerThread*) thread;
4585      if (ct->task() != NULL) {
4586        thread->print_name_on_error(st, buf, buflen);
4587        ct->task()->print(st, NULL, true, true);
4588      }
4589    }
4590  }
4591}
4592
4593
4594// Internal SpinLock and Mutex
4595// Based on ParkEvent
4596
4597// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4598//
4599// We employ SpinLocks _only for low-contention, fixed-length
4600// short-duration critical sections where we're concerned
4601// about native mutex_t or HotSpot Mutex:: latency.
4602// The mux construct provides a spin-then-block mutual exclusion
4603// mechanism.
4604//
4605// Testing has shown that contention on the ListLock guarding gFreeList
4606// is common.  If we implement ListLock as a simple SpinLock it's common
4607// for the JVM to devolve to yielding with little progress.  This is true
4608// despite the fact that the critical sections protected by ListLock are
4609// extremely short.
4610//
4611// TODO-FIXME: ListLock should be of type SpinLock.
4612// We should make this a 1st-class type, integrated into the lock
4613// hierarchy as leaf-locks.  Critically, the SpinLock structure
4614// should have sufficient padding to avoid false-sharing and excessive
4615// cache-coherency traffic.
4616
4617
4618typedef volatile int SpinLockT;
4619
4620void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4621  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4622    return;   // normal fast-path return
4623  }
4624
4625  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4626  TEVENT(SpinAcquire - ctx);
4627  int ctr = 0;
4628  int Yields = 0;
4629  for (;;) {
4630    while (*adr != 0) {
4631      ++ctr;
4632      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4633        if (Yields > 5) {
4634          os::naked_short_sleep(1);
4635        } else {
4636          os::naked_yield();
4637          ++Yields;
4638        }
4639      } else {
4640        SpinPause();
4641      }
4642    }
4643    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4644  }
4645}
4646
4647void Thread::SpinRelease(volatile int * adr) {
4648  assert(*adr != 0, "invariant");
4649  OrderAccess::fence();      // guarantee at least release consistency.
4650  // Roach-motel semantics.
4651  // It's safe if subsequent LDs and STs float "up" into the critical section,
4652  // but prior LDs and STs within the critical section can't be allowed
4653  // to reorder or float past the ST that releases the lock.
4654  // Loads and stores in the critical section - which appear in program
4655  // order before the store that releases the lock - must also appear
4656  // before the store that releases the lock in memory visibility order.
4657  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4658  // the ST of 0 into the lock-word which releases the lock, so fence
4659  // more than covers this on all platforms.
4660  *adr = 0;
4661}
4662
4663// muxAcquire and muxRelease:
4664//
4665// *  muxAcquire and muxRelease support a single-word lock-word construct.
4666//    The LSB of the word is set IFF the lock is held.
4667//    The remainder of the word points to the head of a singly-linked list
4668//    of threads blocked on the lock.
4669//
4670// *  The current implementation of muxAcquire-muxRelease uses its own
4671//    dedicated Thread._MuxEvent instance.  If we're interested in
4672//    minimizing the peak number of extant ParkEvent instances then
4673//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4674//    as certain invariants were satisfied.  Specifically, care would need
4675//    to be taken with regards to consuming unpark() "permits".
4676//    A safe rule of thumb is that a thread would never call muxAcquire()
4677//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4678//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4679//    consume an unpark() permit intended for monitorenter, for instance.
4680//    One way around this would be to widen the restricted-range semaphore
4681//    implemented in park().  Another alternative would be to provide
4682//    multiple instances of the PlatformEvent() for each thread.  One
4683//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4684//
4685// *  Usage:
4686//    -- Only as leaf locks
4687//    -- for short-term locking only as muxAcquire does not perform
4688//       thread state transitions.
4689//
4690// Alternatives:
4691// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4692//    but with parking or spin-then-park instead of pure spinning.
4693// *  Use Taura-Oyama-Yonenzawa locks.
4694// *  It's possible to construct a 1-0 lock if we encode the lockword as
4695//    (List,LockByte).  Acquire will CAS the full lockword while Release
4696//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4697//    acquiring threads use timers (ParkTimed) to detect and recover from
4698//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4699//    boundaries by using placement-new.
4700// *  Augment MCS with advisory back-link fields maintained with CAS().
4701//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4702//    The validity of the backlinks must be ratified before we trust the value.
4703//    If the backlinks are invalid the exiting thread must back-track through the
4704//    the forward links, which are always trustworthy.
4705// *  Add a successor indication.  The LockWord is currently encoded as
4706//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4707//    to provide the usual futile-wakeup optimization.
4708//    See RTStt for details.
4709// *  Consider schedctl.sc_nopreempt to cover the critical section.
4710//
4711
4712
4713typedef volatile intptr_t MutexT;      // Mux Lock-word
4714enum MuxBits { LOCKBIT = 1 };
4715
4716void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4717  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4718  if (w == 0) return;
4719  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4720    return;
4721  }
4722
4723  TEVENT(muxAcquire - Contention);
4724  ParkEvent * const Self = Thread::current()->_MuxEvent;
4725  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4726  for (;;) {
4727    int its = (os::is_MP() ? 100 : 0) + 1;
4728
4729    // Optional spin phase: spin-then-park strategy
4730    while (--its >= 0) {
4731      w = *Lock;
4732      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4733        return;
4734      }
4735    }
4736
4737    Self->reset();
4738    Self->OnList = intptr_t(Lock);
4739    // The following fence() isn't _strictly necessary as the subsequent
4740    // CAS() both serializes execution and ratifies the fetched *Lock value.
4741    OrderAccess::fence();
4742    for (;;) {
4743      w = *Lock;
4744      if ((w & LOCKBIT) == 0) {
4745        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4746          Self->OnList = 0;   // hygiene - allows stronger asserts
4747          return;
4748        }
4749        continue;      // Interference -- *Lock changed -- Just retry
4750      }
4751      assert(w & LOCKBIT, "invariant");
4752      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4753      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4754    }
4755
4756    while (Self->OnList != 0) {
4757      Self->park();
4758    }
4759  }
4760}
4761
4762void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4763  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4764  if (w == 0) return;
4765  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4766    return;
4767  }
4768
4769  TEVENT(muxAcquire - Contention);
4770  ParkEvent * ReleaseAfter = NULL;
4771  if (ev == NULL) {
4772    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4773  }
4774  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4775  for (;;) {
4776    guarantee(ev->OnList == 0, "invariant");
4777    int its = (os::is_MP() ? 100 : 0) + 1;
4778
4779    // Optional spin phase: spin-then-park strategy
4780    while (--its >= 0) {
4781      w = *Lock;
4782      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4783        if (ReleaseAfter != NULL) {
4784          ParkEvent::Release(ReleaseAfter);
4785        }
4786        return;
4787      }
4788    }
4789
4790    ev->reset();
4791    ev->OnList = intptr_t(Lock);
4792    // The following fence() isn't _strictly necessary as the subsequent
4793    // CAS() both serializes execution and ratifies the fetched *Lock value.
4794    OrderAccess::fence();
4795    for (;;) {
4796      w = *Lock;
4797      if ((w & LOCKBIT) == 0) {
4798        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4799          ev->OnList = 0;
4800          // We call ::Release while holding the outer lock, thus
4801          // artificially lengthening the critical section.
4802          // Consider deferring the ::Release() until the subsequent unlock(),
4803          // after we've dropped the outer lock.
4804          if (ReleaseAfter != NULL) {
4805            ParkEvent::Release(ReleaseAfter);
4806          }
4807          return;
4808        }
4809        continue;      // Interference -- *Lock changed -- Just retry
4810      }
4811      assert(w & LOCKBIT, "invariant");
4812      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4813      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4814    }
4815
4816    while (ev->OnList != 0) {
4817      ev->park();
4818    }
4819  }
4820}
4821
4822// Release() must extract a successor from the list and then wake that thread.
4823// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4824// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4825// Release() would :
4826// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4827// (B) Extract a successor from the private list "in-hand"
4828// (C) attempt to CAS() the residual back into *Lock over null.
4829//     If there were any newly arrived threads and the CAS() would fail.
4830//     In that case Release() would detach the RATs, re-merge the list in-hand
4831//     with the RATs and repeat as needed.  Alternately, Release() might
4832//     detach and extract a successor, but then pass the residual list to the wakee.
4833//     The wakee would be responsible for reattaching and remerging before it
4834//     competed for the lock.
4835//
4836// Both "pop" and DMR are immune from ABA corruption -- there can be
4837// multiple concurrent pushers, but only one popper or detacher.
4838// This implementation pops from the head of the list.  This is unfair,
4839// but tends to provide excellent throughput as hot threads remain hot.
4840// (We wake recently run threads first).
4841//
4842// All paths through muxRelease() will execute a CAS.
4843// Release consistency -- We depend on the CAS in muxRelease() to provide full
4844// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4845// executed within the critical section are complete and globally visible before the
4846// store (CAS) to the lock-word that releases the lock becomes globally visible.
4847void Thread::muxRelease(volatile intptr_t * Lock)  {
4848  for (;;) {
4849    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4850    assert(w & LOCKBIT, "invariant");
4851    if (w == LOCKBIT) return;
4852    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4853    assert(List != NULL, "invariant");
4854    assert(List->OnList == intptr_t(Lock), "invariant");
4855    ParkEvent * const nxt = List->ListNext;
4856    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4857
4858    // The following CAS() releases the lock and pops the head element.
4859    // The CAS() also ratifies the previously fetched lock-word value.
4860    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4861      continue;
4862    }
4863    List->OnList = 0;
4864    OrderAccess::fence();
4865    List->unpark();
4866    return;
4867  }
4868}
4869
4870
4871void Threads::verify() {
4872  ALL_JAVA_THREADS(p) {
4873    p->verify();
4874  }
4875  VMThread* thread = VMThread::vm_thread();
4876  if (thread != NULL) thread->verify();
4877}
4878