thread.cpp revision 11330:778d1fc95e05
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/moduleEntry.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/codeCache.hpp"
32#include "code/codeCacheExtensions.hpp"
33#include "code/scopeDesc.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/compileTask.hpp"
36#include "gc/shared/gcId.hpp"
37#include "gc/shared/gcLocker.inline.hpp"
38#include "gc/shared/referencePendingListLocker.hpp"
39#include "gc/shared/workgroup.hpp"
40#include "interpreter/interpreter.hpp"
41#include "interpreter/linkResolver.hpp"
42#include "interpreter/oopMapCache.hpp"
43#include "jvmtifiles/jvmtiEnv.hpp"
44#include "logging/log.hpp"
45#include "logging/logConfiguration.hpp"
46#include "memory/metaspaceShared.hpp"
47#include "memory/oopFactory.hpp"
48#include "memory/resourceArea.hpp"
49#include "memory/universe.inline.hpp"
50#include "oops/instanceKlass.hpp"
51#include "oops/objArrayOop.hpp"
52#include "oops/oop.inline.hpp"
53#include "oops/symbol.hpp"
54#include "oops/verifyOopClosure.hpp"
55#include "prims/jvm_misc.hpp"
56#include "prims/jvmtiExport.hpp"
57#include "prims/jvmtiThreadState.hpp"
58#include "prims/privilegedStack.hpp"
59#include "runtime/arguments.hpp"
60#include "runtime/atomic.inline.hpp"
61#include "runtime/biasedLocking.hpp"
62#include "runtime/commandLineFlagConstraintList.hpp"
63#include "runtime/commandLineFlagWriteableList.hpp"
64#include "runtime/commandLineFlagRangeList.hpp"
65#include "runtime/deoptimization.hpp"
66#include "runtime/fprofiler.hpp"
67#include "runtime/frame.inline.hpp"
68#include "runtime/globals.hpp"
69#include "runtime/init.hpp"
70#include "runtime/interfaceSupport.hpp"
71#include "runtime/java.hpp"
72#include "runtime/javaCalls.hpp"
73#include "runtime/jniPeriodicChecker.hpp"
74#include "runtime/timerTrace.hpp"
75#include "runtime/memprofiler.hpp"
76#include "runtime/mutexLocker.hpp"
77#include "runtime/objectMonitor.hpp"
78#include "runtime/orderAccess.inline.hpp"
79#include "runtime/osThread.hpp"
80#include "runtime/safepoint.hpp"
81#include "runtime/sharedRuntime.hpp"
82#include "runtime/statSampler.hpp"
83#include "runtime/stubRoutines.hpp"
84#include "runtime/sweeper.hpp"
85#include "runtime/task.hpp"
86#include "runtime/thread.inline.hpp"
87#include "runtime/threadCritical.hpp"
88#include "runtime/vframe.hpp"
89#include "runtime/vframeArray.hpp"
90#include "runtime/vframe_hp.hpp"
91#include "runtime/vmThread.hpp"
92#include "runtime/vm_operations.hpp"
93#include "runtime/vm_version.hpp"
94#include "services/attachListener.hpp"
95#include "services/management.hpp"
96#include "services/memTracker.hpp"
97#include "services/threadService.hpp"
98#include "trace/traceMacros.hpp"
99#include "trace/tracing.hpp"
100#include "utilities/defaultStream.hpp"
101#include "utilities/dtrace.hpp"
102#include "utilities/events.hpp"
103#include "utilities/macros.hpp"
104#include "utilities/preserveException.hpp"
105#if INCLUDE_ALL_GCS
106#include "gc/cms/concurrentMarkSweepThread.hpp"
107#include "gc/g1/concurrentMarkThread.inline.hpp"
108#include "gc/parallel/pcTasks.hpp"
109#endif // INCLUDE_ALL_GCS
110#if INCLUDE_JVMCI
111#include "jvmci/jvmciCompiler.hpp"
112#include "jvmci/jvmciRuntime.hpp"
113#endif
114#ifdef COMPILER1
115#include "c1/c1_Compiler.hpp"
116#endif
117#ifdef COMPILER2
118#include "opto/c2compiler.hpp"
119#include "opto/idealGraphPrinter.hpp"
120#endif
121#if INCLUDE_RTM_OPT
122#include "runtime/rtmLocking.hpp"
123#endif
124
125// Initialization after module runtime initialization
126void universe_post_module_init();  // must happen after call_initPhase2
127
128#ifdef DTRACE_ENABLED
129
130// Only bother with this argument setup if dtrace is available
131
132  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
133  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
134
135  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
136    {                                                                      \
137      ResourceMark rm(this);                                               \
138      int len = 0;                                                         \
139      const char* name = (javathread)->get_thread_name();                  \
140      len = strlen(name);                                                  \
141      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
142        (char *) name, len,                                                \
143        java_lang_Thread::thread_id((javathread)->threadObj()),            \
144        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
145        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
146    }
147
148#else //  ndef DTRACE_ENABLED
149
150  #define DTRACE_THREAD_PROBE(probe, javathread)
151
152#endif // ndef DTRACE_ENABLED
153
154#ifndef USE_LIBRARY_BASED_TLS_ONLY
155// Current thread is maintained as a thread-local variable
156THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
157#endif
158// Class hierarchy
159// - Thread
160//   - VMThread
161//   - WatcherThread
162//   - ConcurrentMarkSweepThread
163//   - JavaThread
164//     - CompilerThread
165
166// ======= Thread ========
167// Support for forcing alignment of thread objects for biased locking
168void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
169  if (UseBiasedLocking) {
170    const int alignment = markOopDesc::biased_lock_alignment;
171    size_t aligned_size = size + (alignment - sizeof(intptr_t));
172    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
173                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
174                                                         AllocFailStrategy::RETURN_NULL);
175    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
176    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
177           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
178           "JavaThread alignment code overflowed allocated storage");
179    if (aligned_addr != real_malloc_addr) {
180      log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
181                              p2i(real_malloc_addr),
182                              p2i(aligned_addr));
183    }
184    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
185    return aligned_addr;
186  } else {
187    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
188                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
189  }
190}
191
192void Thread::operator delete(void* p) {
193  if (UseBiasedLocking) {
194    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
195    FreeHeap(real_malloc_addr);
196  } else {
197    FreeHeap(p);
198  }
199}
200
201
202// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
203// JavaThread
204
205
206Thread::Thread() {
207  // stack and get_thread
208  set_stack_base(NULL);
209  set_stack_size(0);
210  set_self_raw_id(0);
211  set_lgrp_id(-1);
212  DEBUG_ONLY(clear_suspendible_thread();)
213
214  // allocated data structures
215  set_osthread(NULL);
216  set_resource_area(new (mtThread)ResourceArea());
217  DEBUG_ONLY(_current_resource_mark = NULL;)
218  set_handle_area(new (mtThread) HandleArea(NULL));
219  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
220  set_active_handles(NULL);
221  set_free_handle_block(NULL);
222  set_last_handle_mark(NULL);
223
224  // This initial value ==> never claimed.
225  _oops_do_parity = 0;
226
227  // the handle mark links itself to last_handle_mark
228  new HandleMark(this);
229
230  // plain initialization
231  debug_only(_owned_locks = NULL;)
232  debug_only(_allow_allocation_count = 0;)
233  NOT_PRODUCT(_allow_safepoint_count = 0;)
234  NOT_PRODUCT(_skip_gcalot = false;)
235  _jvmti_env_iteration_count = 0;
236  set_allocated_bytes(0);
237  _vm_operation_started_count = 0;
238  _vm_operation_completed_count = 0;
239  _current_pending_monitor = NULL;
240  _current_pending_monitor_is_from_java = true;
241  _current_waiting_monitor = NULL;
242  _num_nested_signal = 0;
243  omFreeList = NULL;
244  omFreeCount = 0;
245  omFreeProvision = 32;
246  omInUseList = NULL;
247  omInUseCount = 0;
248
249#ifdef ASSERT
250  _visited_for_critical_count = false;
251#endif
252
253  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
254                         Monitor::_safepoint_check_sometimes);
255  _suspend_flags = 0;
256
257  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
258  _hashStateX = os::random();
259  _hashStateY = 842502087;
260  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
261  _hashStateW = 273326509;
262
263  _OnTrap   = 0;
264  _schedctl = NULL;
265  _Stalled  = 0;
266  _TypeTag  = 0x2BAD;
267
268  // Many of the following fields are effectively final - immutable
269  // Note that nascent threads can't use the Native Monitor-Mutex
270  // construct until the _MutexEvent is initialized ...
271  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
272  // we might instead use a stack of ParkEvents that we could provision on-demand.
273  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
274  // and ::Release()
275  _ParkEvent   = ParkEvent::Allocate(this);
276  _SleepEvent  = ParkEvent::Allocate(this);
277  _MutexEvent  = ParkEvent::Allocate(this);
278  _MuxEvent    = ParkEvent::Allocate(this);
279
280#ifdef CHECK_UNHANDLED_OOPS
281  if (CheckUnhandledOops) {
282    _unhandled_oops = new UnhandledOops(this);
283  }
284#endif // CHECK_UNHANDLED_OOPS
285#ifdef ASSERT
286  if (UseBiasedLocking) {
287    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
288    assert(this == _real_malloc_address ||
289           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
290           "bug in forced alignment of thread objects");
291  }
292#endif // ASSERT
293}
294
295void Thread::initialize_thread_current() {
296#ifndef USE_LIBRARY_BASED_TLS_ONLY
297  assert(_thr_current == NULL, "Thread::current already initialized");
298  _thr_current = this;
299#endif
300  assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
301  ThreadLocalStorage::set_thread(this);
302  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
303}
304
305void Thread::clear_thread_current() {
306  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
307#ifndef USE_LIBRARY_BASED_TLS_ONLY
308  _thr_current = NULL;
309#endif
310  ThreadLocalStorage::set_thread(NULL);
311}
312
313void Thread::record_stack_base_and_size() {
314  set_stack_base(os::current_stack_base());
315  set_stack_size(os::current_stack_size());
316  // CR 7190089: on Solaris, primordial thread's stack is adjusted
317  // in initialize_thread(). Without the adjustment, stack size is
318  // incorrect if stack is set to unlimited (ulimit -s unlimited).
319  // So far, only Solaris has real implementation of initialize_thread().
320  //
321  // set up any platform-specific state.
322  os::initialize_thread(this);
323
324  // Set stack limits after thread is initialized.
325  if (is_Java_thread()) {
326    ((JavaThread*) this)->set_stack_overflow_limit();
327    ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
328  }
329#if INCLUDE_NMT
330  // record thread's native stack, stack grows downward
331  MemTracker::record_thread_stack(stack_end(), stack_size());
332#endif // INCLUDE_NMT
333  log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
334    PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
335    os::current_thread_id(), p2i(stack_base() - stack_size()),
336    p2i(stack_base()), stack_size()/1024);
337}
338
339
340Thread::~Thread() {
341  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
342  ObjectSynchronizer::omFlush(this);
343
344  EVENT_THREAD_DESTRUCT(this);
345
346  // stack_base can be NULL if the thread is never started or exited before
347  // record_stack_base_and_size called. Although, we would like to ensure
348  // that all started threads do call record_stack_base_and_size(), there is
349  // not proper way to enforce that.
350#if INCLUDE_NMT
351  if (_stack_base != NULL) {
352    MemTracker::release_thread_stack(stack_end(), stack_size());
353#ifdef ASSERT
354    set_stack_base(NULL);
355#endif
356  }
357#endif // INCLUDE_NMT
358
359  // deallocate data structures
360  delete resource_area();
361  // since the handle marks are using the handle area, we have to deallocated the root
362  // handle mark before deallocating the thread's handle area,
363  assert(last_handle_mark() != NULL, "check we have an element");
364  delete last_handle_mark();
365  assert(last_handle_mark() == NULL, "check we have reached the end");
366
367  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
368  // We NULL out the fields for good hygiene.
369  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
370  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
371  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
372  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
373
374  delete handle_area();
375  delete metadata_handles();
376
377  // osthread() can be NULL, if creation of thread failed.
378  if (osthread() != NULL) os::free_thread(osthread());
379
380  delete _SR_lock;
381
382  // clear Thread::current if thread is deleting itself.
383  // Needed to ensure JNI correctly detects non-attached threads.
384  if (this == Thread::current()) {
385    clear_thread_current();
386  }
387
388  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
389}
390
391// NOTE: dummy function for assertion purpose.
392void Thread::run() {
393  ShouldNotReachHere();
394}
395
396#ifdef ASSERT
397// Private method to check for dangling thread pointer
398void check_for_dangling_thread_pointer(Thread *thread) {
399  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
400         "possibility of dangling Thread pointer");
401}
402#endif
403
404ThreadPriority Thread::get_priority(const Thread* const thread) {
405  ThreadPriority priority;
406  // Can return an error!
407  (void)os::get_priority(thread, priority);
408  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
409  return priority;
410}
411
412void Thread::set_priority(Thread* thread, ThreadPriority priority) {
413  debug_only(check_for_dangling_thread_pointer(thread);)
414  // Can return an error!
415  (void)os::set_priority(thread, priority);
416}
417
418
419void Thread::start(Thread* thread) {
420  // Start is different from resume in that its safety is guaranteed by context or
421  // being called from a Java method synchronized on the Thread object.
422  if (!DisableStartThread) {
423    if (thread->is_Java_thread()) {
424      // Initialize the thread state to RUNNABLE before starting this thread.
425      // Can not set it after the thread started because we do not know the
426      // exact thread state at that time. It could be in MONITOR_WAIT or
427      // in SLEEPING or some other state.
428      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
429                                          java_lang_Thread::RUNNABLE);
430    }
431    os::start_thread(thread);
432  }
433}
434
435// Enqueue a VM_Operation to do the job for us - sometime later
436void Thread::send_async_exception(oop java_thread, oop java_throwable) {
437  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
438  VMThread::execute(vm_stop);
439}
440
441
442// Check if an external suspend request has completed (or has been
443// cancelled). Returns true if the thread is externally suspended and
444// false otherwise.
445//
446// The bits parameter returns information about the code path through
447// the routine. Useful for debugging:
448//
449// set in is_ext_suspend_completed():
450// 0x00000001 - routine was entered
451// 0x00000010 - routine return false at end
452// 0x00000100 - thread exited (return false)
453// 0x00000200 - suspend request cancelled (return false)
454// 0x00000400 - thread suspended (return true)
455// 0x00001000 - thread is in a suspend equivalent state (return true)
456// 0x00002000 - thread is native and walkable (return true)
457// 0x00004000 - thread is native_trans and walkable (needed retry)
458//
459// set in wait_for_ext_suspend_completion():
460// 0x00010000 - routine was entered
461// 0x00020000 - suspend request cancelled before loop (return false)
462// 0x00040000 - thread suspended before loop (return true)
463// 0x00080000 - suspend request cancelled in loop (return false)
464// 0x00100000 - thread suspended in loop (return true)
465// 0x00200000 - suspend not completed during retry loop (return false)
466
467// Helper class for tracing suspend wait debug bits.
468//
469// 0x00000100 indicates that the target thread exited before it could
470// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
471// 0x00080000 each indicate a cancelled suspend request so they don't
472// count as wait failures either.
473#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
474
475class TraceSuspendDebugBits : public StackObj {
476 private:
477  JavaThread * jt;
478  bool         is_wait;
479  bool         called_by_wait;  // meaningful when !is_wait
480  uint32_t *   bits;
481
482 public:
483  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
484                        uint32_t *_bits) {
485    jt             = _jt;
486    is_wait        = _is_wait;
487    called_by_wait = _called_by_wait;
488    bits           = _bits;
489  }
490
491  ~TraceSuspendDebugBits() {
492    if (!is_wait) {
493#if 1
494      // By default, don't trace bits for is_ext_suspend_completed() calls.
495      // That trace is very chatty.
496      return;
497#else
498      if (!called_by_wait) {
499        // If tracing for is_ext_suspend_completed() is enabled, then only
500        // trace calls to it from wait_for_ext_suspend_completion()
501        return;
502      }
503#endif
504    }
505
506    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
507      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
508        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
509        ResourceMark rm;
510
511        tty->print_cr(
512                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
513                      jt->get_thread_name(), *bits);
514
515        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
516      }
517    }
518  }
519};
520#undef DEBUG_FALSE_BITS
521
522
523bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
524                                          uint32_t *bits) {
525  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
526
527  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
528  bool do_trans_retry;           // flag to force the retry
529
530  *bits |= 0x00000001;
531
532  do {
533    do_trans_retry = false;
534
535    if (is_exiting()) {
536      // Thread is in the process of exiting. This is always checked
537      // first to reduce the risk of dereferencing a freed JavaThread.
538      *bits |= 0x00000100;
539      return false;
540    }
541
542    if (!is_external_suspend()) {
543      // Suspend request is cancelled. This is always checked before
544      // is_ext_suspended() to reduce the risk of a rogue resume
545      // confusing the thread that made the suspend request.
546      *bits |= 0x00000200;
547      return false;
548    }
549
550    if (is_ext_suspended()) {
551      // thread is suspended
552      *bits |= 0x00000400;
553      return true;
554    }
555
556    // Now that we no longer do hard suspends of threads running
557    // native code, the target thread can be changing thread state
558    // while we are in this routine:
559    //
560    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
561    //
562    // We save a copy of the thread state as observed at this moment
563    // and make our decision about suspend completeness based on the
564    // copy. This closes the race where the thread state is seen as
565    // _thread_in_native_trans in the if-thread_blocked check, but is
566    // seen as _thread_blocked in if-thread_in_native_trans check.
567    JavaThreadState save_state = thread_state();
568
569    if (save_state == _thread_blocked && is_suspend_equivalent()) {
570      // If the thread's state is _thread_blocked and this blocking
571      // condition is known to be equivalent to a suspend, then we can
572      // consider the thread to be externally suspended. This means that
573      // the code that sets _thread_blocked has been modified to do
574      // self-suspension if the blocking condition releases. We also
575      // used to check for CONDVAR_WAIT here, but that is now covered by
576      // the _thread_blocked with self-suspension check.
577      //
578      // Return true since we wouldn't be here unless there was still an
579      // external suspend request.
580      *bits |= 0x00001000;
581      return true;
582    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
583      // Threads running native code will self-suspend on native==>VM/Java
584      // transitions. If its stack is walkable (should always be the case
585      // unless this function is called before the actual java_suspend()
586      // call), then the wait is done.
587      *bits |= 0x00002000;
588      return true;
589    } else if (!called_by_wait && !did_trans_retry &&
590               save_state == _thread_in_native_trans &&
591               frame_anchor()->walkable()) {
592      // The thread is transitioning from thread_in_native to another
593      // thread state. check_safepoint_and_suspend_for_native_trans()
594      // will force the thread to self-suspend. If it hasn't gotten
595      // there yet we may have caught the thread in-between the native
596      // code check above and the self-suspend. Lucky us. If we were
597      // called by wait_for_ext_suspend_completion(), then it
598      // will be doing the retries so we don't have to.
599      //
600      // Since we use the saved thread state in the if-statement above,
601      // there is a chance that the thread has already transitioned to
602      // _thread_blocked by the time we get here. In that case, we will
603      // make a single unnecessary pass through the logic below. This
604      // doesn't hurt anything since we still do the trans retry.
605
606      *bits |= 0x00004000;
607
608      // Once the thread leaves thread_in_native_trans for another
609      // thread state, we break out of this retry loop. We shouldn't
610      // need this flag to prevent us from getting back here, but
611      // sometimes paranoia is good.
612      did_trans_retry = true;
613
614      // We wait for the thread to transition to a more usable state.
615      for (int i = 1; i <= SuspendRetryCount; i++) {
616        // We used to do an "os::yield_all(i)" call here with the intention
617        // that yielding would increase on each retry. However, the parameter
618        // is ignored on Linux which means the yield didn't scale up. Waiting
619        // on the SR_lock below provides a much more predictable scale up for
620        // the delay. It also provides a simple/direct point to check for any
621        // safepoint requests from the VMThread
622
623        // temporarily drops SR_lock while doing wait with safepoint check
624        // (if we're a JavaThread - the WatcherThread can also call this)
625        // and increase delay with each retry
626        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
627
628        // check the actual thread state instead of what we saved above
629        if (thread_state() != _thread_in_native_trans) {
630          // the thread has transitioned to another thread state so
631          // try all the checks (except this one) one more time.
632          do_trans_retry = true;
633          break;
634        }
635      } // end retry loop
636
637
638    }
639  } while (do_trans_retry);
640
641  *bits |= 0x00000010;
642  return false;
643}
644
645// Wait for an external suspend request to complete (or be cancelled).
646// Returns true if the thread is externally suspended and false otherwise.
647//
648bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
649                                                 uint32_t *bits) {
650  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
651                             false /* !called_by_wait */, bits);
652
653  // local flag copies to minimize SR_lock hold time
654  bool is_suspended;
655  bool pending;
656  uint32_t reset_bits;
657
658  // set a marker so is_ext_suspend_completed() knows we are the caller
659  *bits |= 0x00010000;
660
661  // We use reset_bits to reinitialize the bits value at the top of
662  // each retry loop. This allows the caller to make use of any
663  // unused bits for their own marking purposes.
664  reset_bits = *bits;
665
666  {
667    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
668    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
669                                            delay, bits);
670    pending = is_external_suspend();
671  }
672  // must release SR_lock to allow suspension to complete
673
674  if (!pending) {
675    // A cancelled suspend request is the only false return from
676    // is_ext_suspend_completed() that keeps us from entering the
677    // retry loop.
678    *bits |= 0x00020000;
679    return false;
680  }
681
682  if (is_suspended) {
683    *bits |= 0x00040000;
684    return true;
685  }
686
687  for (int i = 1; i <= retries; i++) {
688    *bits = reset_bits;  // reinit to only track last retry
689
690    // We used to do an "os::yield_all(i)" call here with the intention
691    // that yielding would increase on each retry. However, the parameter
692    // is ignored on Linux which means the yield didn't scale up. Waiting
693    // on the SR_lock below provides a much more predictable scale up for
694    // the delay. It also provides a simple/direct point to check for any
695    // safepoint requests from the VMThread
696
697    {
698      MutexLocker ml(SR_lock());
699      // wait with safepoint check (if we're a JavaThread - the WatcherThread
700      // can also call this)  and increase delay with each retry
701      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
702
703      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
704                                              delay, bits);
705
706      // It is possible for the external suspend request to be cancelled
707      // (by a resume) before the actual suspend operation is completed.
708      // Refresh our local copy to see if we still need to wait.
709      pending = is_external_suspend();
710    }
711
712    if (!pending) {
713      // A cancelled suspend request is the only false return from
714      // is_ext_suspend_completed() that keeps us from staying in the
715      // retry loop.
716      *bits |= 0x00080000;
717      return false;
718    }
719
720    if (is_suspended) {
721      *bits |= 0x00100000;
722      return true;
723    }
724  } // end retry loop
725
726  // thread did not suspend after all our retries
727  *bits |= 0x00200000;
728  return false;
729}
730
731#ifndef PRODUCT
732void JavaThread::record_jump(address target, address instr, const char* file,
733                             int line) {
734
735  // This should not need to be atomic as the only way for simultaneous
736  // updates is via interrupts. Even then this should be rare or non-existent
737  // and we don't care that much anyway.
738
739  int index = _jmp_ring_index;
740  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
741  _jmp_ring[index]._target = (intptr_t) target;
742  _jmp_ring[index]._instruction = (intptr_t) instr;
743  _jmp_ring[index]._file = file;
744  _jmp_ring[index]._line = line;
745}
746#endif // PRODUCT
747
748// Called by flat profiler
749// Callers have already called wait_for_ext_suspend_completion
750// The assertion for that is currently too complex to put here:
751bool JavaThread::profile_last_Java_frame(frame* _fr) {
752  bool gotframe = false;
753  // self suspension saves needed state.
754  if (has_last_Java_frame() && _anchor.walkable()) {
755    *_fr = pd_last_frame();
756    gotframe = true;
757  }
758  return gotframe;
759}
760
761void Thread::interrupt(Thread* thread) {
762  debug_only(check_for_dangling_thread_pointer(thread);)
763  os::interrupt(thread);
764}
765
766bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
767  debug_only(check_for_dangling_thread_pointer(thread);)
768  // Note:  If clear_interrupted==false, this simply fetches and
769  // returns the value of the field osthread()->interrupted().
770  return os::is_interrupted(thread, clear_interrupted);
771}
772
773
774// GC Support
775bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
776  jint thread_parity = _oops_do_parity;
777  if (thread_parity != strong_roots_parity) {
778    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
779    if (res == thread_parity) {
780      return true;
781    } else {
782      guarantee(res == strong_roots_parity, "Or else what?");
783      return false;
784    }
785  }
786  return false;
787}
788
789void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
790  active_handles()->oops_do(f);
791  // Do oop for ThreadShadow
792  f->do_oop((oop*)&_pending_exception);
793  handle_area()->oops_do(f);
794}
795
796void Thread::metadata_handles_do(void f(Metadata*)) {
797  // Only walk the Handles in Thread.
798  if (metadata_handles() != NULL) {
799    for (int i = 0; i< metadata_handles()->length(); i++) {
800      f(metadata_handles()->at(i));
801    }
802  }
803}
804
805void Thread::print_on(outputStream* st) const {
806  // get_priority assumes osthread initialized
807  if (osthread() != NULL) {
808    int os_prio;
809    if (os::get_native_priority(this, &os_prio) == OS_OK) {
810      st->print("os_prio=%d ", os_prio);
811    }
812    st->print("tid=" INTPTR_FORMAT " ", p2i(this));
813    ext().print_on(st);
814    osthread()->print_on(st);
815  }
816  debug_only(if (WizardMode) print_owned_locks_on(st);)
817}
818
819// Thread::print_on_error() is called by fatal error handler. Don't use
820// any lock or allocate memory.
821void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
822  assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
823
824  if (is_VM_thread())                 { st->print("VMThread"); }
825  else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
826  else if (is_Watcher_thread())       { st->print("WatcherThread"); }
827  else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
828  else                                { st->print("Thread"); }
829
830  if (is_Named_thread()) {
831    st->print(" \"%s\"", name());
832  }
833
834  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
835            p2i(stack_end()), p2i(stack_base()));
836
837  if (osthread()) {
838    st->print(" [id=%d]", osthread()->thread_id());
839  }
840}
841
842#ifdef ASSERT
843void Thread::print_owned_locks_on(outputStream* st) const {
844  Monitor *cur = _owned_locks;
845  if (cur == NULL) {
846    st->print(" (no locks) ");
847  } else {
848    st->print_cr(" Locks owned:");
849    while (cur) {
850      cur->print_on(st);
851      cur = cur->next();
852    }
853  }
854}
855
856static int ref_use_count  = 0;
857
858bool Thread::owns_locks_but_compiled_lock() const {
859  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
860    if (cur != Compile_lock) return true;
861  }
862  return false;
863}
864
865
866#endif
867
868#ifndef PRODUCT
869
870// The flag: potential_vm_operation notifies if this particular safepoint state could potential
871// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
872// no threads which allow_vm_block's are held
873void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
874  // Check if current thread is allowed to block at a safepoint
875  if (!(_allow_safepoint_count == 0)) {
876    fatal("Possible safepoint reached by thread that does not allow it");
877  }
878  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
879    fatal("LEAF method calling lock?");
880  }
881
882#ifdef ASSERT
883  if (potential_vm_operation && is_Java_thread()
884      && !Universe::is_bootstrapping()) {
885    // Make sure we do not hold any locks that the VM thread also uses.
886    // This could potentially lead to deadlocks
887    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
888      // Threads_lock is special, since the safepoint synchronization will not start before this is
889      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
890      // since it is used to transfer control between JavaThreads and the VMThread
891      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
892      if ((cur->allow_vm_block() &&
893           cur != Threads_lock &&
894           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
895           cur != VMOperationRequest_lock &&
896           cur != VMOperationQueue_lock) ||
897           cur->rank() == Mutex::special) {
898        fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
899      }
900    }
901  }
902
903  if (GCALotAtAllSafepoints) {
904    // We could enter a safepoint here and thus have a gc
905    InterfaceSupport::check_gc_alot();
906  }
907#endif
908}
909#endif
910
911bool Thread::is_in_stack(address adr) const {
912  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
913  address end = os::current_stack_pointer();
914  // Allow non Java threads to call this without stack_base
915  if (_stack_base == NULL) return true;
916  if (stack_base() >= adr && adr >= end) return true;
917
918  return false;
919}
920
921bool Thread::is_in_usable_stack(address adr) const {
922  size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
923  size_t usable_stack_size = _stack_size - stack_guard_size;
924
925  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
926}
927
928
929// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
930// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
931// used for compilation in the future. If that change is made, the need for these methods
932// should be revisited, and they should be removed if possible.
933
934bool Thread::is_lock_owned(address adr) const {
935  return on_local_stack(adr);
936}
937
938bool Thread::set_as_starting_thread() {
939  // NOTE: this must be called inside the main thread.
940  return os::create_main_thread((JavaThread*)this);
941}
942
943static void initialize_class(Symbol* class_name, TRAPS) {
944  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
945  InstanceKlass::cast(klass)->initialize(CHECK);
946}
947
948
949// Creates the initial ThreadGroup
950static Handle create_initial_thread_group(TRAPS) {
951  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
952  instanceKlassHandle klass (THREAD, k);
953
954  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
955  {
956    JavaValue result(T_VOID);
957    JavaCalls::call_special(&result,
958                            system_instance,
959                            klass,
960                            vmSymbols::object_initializer_name(),
961                            vmSymbols::void_method_signature(),
962                            CHECK_NH);
963  }
964  Universe::set_system_thread_group(system_instance());
965
966  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
967  {
968    JavaValue result(T_VOID);
969    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
970    JavaCalls::call_special(&result,
971                            main_instance,
972                            klass,
973                            vmSymbols::object_initializer_name(),
974                            vmSymbols::threadgroup_string_void_signature(),
975                            system_instance,
976                            string,
977                            CHECK_NH);
978  }
979  return main_instance;
980}
981
982// Creates the initial Thread
983static oop create_initial_thread(Handle thread_group, JavaThread* thread,
984                                 TRAPS) {
985  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
986  instanceKlassHandle klass (THREAD, k);
987  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
988
989  java_lang_Thread::set_thread(thread_oop(), thread);
990  java_lang_Thread::set_priority(thread_oop(), NormPriority);
991  thread->set_threadObj(thread_oop());
992
993  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
994
995  JavaValue result(T_VOID);
996  JavaCalls::call_special(&result, thread_oop,
997                          klass,
998                          vmSymbols::object_initializer_name(),
999                          vmSymbols::threadgroup_string_void_signature(),
1000                          thread_group,
1001                          string,
1002                          CHECK_NULL);
1003  return thread_oop();
1004}
1005
1006char java_runtime_name[128] = "";
1007char java_runtime_version[128] = "";
1008
1009// extract the JRE name from java.lang.VersionProps.java_runtime_name
1010static const char* get_java_runtime_name(TRAPS) {
1011  Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1012                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1013  fieldDescriptor fd;
1014  bool found = k != NULL &&
1015               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1016                                                        vmSymbols::string_signature(), &fd);
1017  if (found) {
1018    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1019    if (name_oop == NULL) {
1020      return NULL;
1021    }
1022    const char* name = java_lang_String::as_utf8_string(name_oop,
1023                                                        java_runtime_name,
1024                                                        sizeof(java_runtime_name));
1025    return name;
1026  } else {
1027    return NULL;
1028  }
1029}
1030
1031// extract the JRE version from java.lang.VersionProps.java_runtime_version
1032static const char* get_java_runtime_version(TRAPS) {
1033  Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1034                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1035  fieldDescriptor fd;
1036  bool found = k != NULL &&
1037               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1038                                                        vmSymbols::string_signature(), &fd);
1039  if (found) {
1040    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1041    if (name_oop == NULL) {
1042      return NULL;
1043    }
1044    const char* name = java_lang_String::as_utf8_string(name_oop,
1045                                                        java_runtime_version,
1046                                                        sizeof(java_runtime_version));
1047    return name;
1048  } else {
1049    return NULL;
1050  }
1051}
1052
1053// General purpose hook into Java code, run once when the VM is initialized.
1054// The Java library method itself may be changed independently from the VM.
1055static void call_postVMInitHook(TRAPS) {
1056  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1057  instanceKlassHandle klass (THREAD, k);
1058  if (klass.not_null()) {
1059    JavaValue result(T_VOID);
1060    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1061                           vmSymbols::void_method_signature(),
1062                           CHECK);
1063  }
1064}
1065
1066static void reset_vm_info_property(TRAPS) {
1067  // the vm info string
1068  ResourceMark rm(THREAD);
1069  const char *vm_info = VM_Version::vm_info_string();
1070
1071  // java.lang.System class
1072  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1073  instanceKlassHandle klass (THREAD, k);
1074
1075  // setProperty arguments
1076  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1077  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1078
1079  // return value
1080  JavaValue r(T_OBJECT);
1081
1082  // public static String setProperty(String key, String value);
1083  JavaCalls::call_static(&r,
1084                         klass,
1085                         vmSymbols::setProperty_name(),
1086                         vmSymbols::string_string_string_signature(),
1087                         key_str,
1088                         value_str,
1089                         CHECK);
1090}
1091
1092
1093void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1094                                    bool daemon, TRAPS) {
1095  assert(thread_group.not_null(), "thread group should be specified");
1096  assert(threadObj() == NULL, "should only create Java thread object once");
1097
1098  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1099  instanceKlassHandle klass (THREAD, k);
1100  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1101
1102  java_lang_Thread::set_thread(thread_oop(), this);
1103  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1104  set_threadObj(thread_oop());
1105
1106  JavaValue result(T_VOID);
1107  if (thread_name != NULL) {
1108    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1109    // Thread gets assigned specified name and null target
1110    JavaCalls::call_special(&result,
1111                            thread_oop,
1112                            klass,
1113                            vmSymbols::object_initializer_name(),
1114                            vmSymbols::threadgroup_string_void_signature(),
1115                            thread_group, // Argument 1
1116                            name,         // Argument 2
1117                            THREAD);
1118  } else {
1119    // Thread gets assigned name "Thread-nnn" and null target
1120    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1121    JavaCalls::call_special(&result,
1122                            thread_oop,
1123                            klass,
1124                            vmSymbols::object_initializer_name(),
1125                            vmSymbols::threadgroup_runnable_void_signature(),
1126                            thread_group, // Argument 1
1127                            Handle(),     // Argument 2
1128                            THREAD);
1129  }
1130
1131
1132  if (daemon) {
1133    java_lang_Thread::set_daemon(thread_oop());
1134  }
1135
1136  if (HAS_PENDING_EXCEPTION) {
1137    return;
1138  }
1139
1140  KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1141  Handle threadObj(THREAD, this->threadObj());
1142
1143  JavaCalls::call_special(&result,
1144                          thread_group,
1145                          group,
1146                          vmSymbols::add_method_name(),
1147                          vmSymbols::thread_void_signature(),
1148                          threadObj,          // Arg 1
1149                          THREAD);
1150}
1151
1152// NamedThread --  non-JavaThread subclasses with multiple
1153// uniquely named instances should derive from this.
1154NamedThread::NamedThread() : Thread() {
1155  _name = NULL;
1156  _processed_thread = NULL;
1157  _gc_id = GCId::undefined();
1158}
1159
1160NamedThread::~NamedThread() {
1161  if (_name != NULL) {
1162    FREE_C_HEAP_ARRAY(char, _name);
1163    _name = NULL;
1164  }
1165}
1166
1167void NamedThread::set_name(const char* format, ...) {
1168  guarantee(_name == NULL, "Only get to set name once.");
1169  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1170  guarantee(_name != NULL, "alloc failure");
1171  va_list ap;
1172  va_start(ap, format);
1173  jio_vsnprintf(_name, max_name_len, format, ap);
1174  va_end(ap);
1175}
1176
1177void NamedThread::initialize_named_thread() {
1178  set_native_thread_name(name());
1179}
1180
1181void NamedThread::print_on(outputStream* st) const {
1182  st->print("\"%s\" ", name());
1183  Thread::print_on(st);
1184  st->cr();
1185}
1186
1187
1188// ======= WatcherThread ========
1189
1190// The watcher thread exists to simulate timer interrupts.  It should
1191// be replaced by an abstraction over whatever native support for
1192// timer interrupts exists on the platform.
1193
1194WatcherThread* WatcherThread::_watcher_thread   = NULL;
1195bool WatcherThread::_startable = false;
1196volatile bool  WatcherThread::_should_terminate = false;
1197
1198WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1199  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1200  if (os::create_thread(this, os::watcher_thread)) {
1201    _watcher_thread = this;
1202
1203    // Set the watcher thread to the highest OS priority which should not be
1204    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1205    // is created. The only normal thread using this priority is the reference
1206    // handler thread, which runs for very short intervals only.
1207    // If the VMThread's priority is not lower than the WatcherThread profiling
1208    // will be inaccurate.
1209    os::set_priority(this, MaxPriority);
1210    if (!DisableStartThread) {
1211      os::start_thread(this);
1212    }
1213  }
1214}
1215
1216int WatcherThread::sleep() const {
1217  // The WatcherThread does not participate in the safepoint protocol
1218  // for the PeriodicTask_lock because it is not a JavaThread.
1219  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1220
1221  if (_should_terminate) {
1222    // check for termination before we do any housekeeping or wait
1223    return 0;  // we did not sleep.
1224  }
1225
1226  // remaining will be zero if there are no tasks,
1227  // causing the WatcherThread to sleep until a task is
1228  // enrolled
1229  int remaining = PeriodicTask::time_to_wait();
1230  int time_slept = 0;
1231
1232  // we expect this to timeout - we only ever get unparked when
1233  // we should terminate or when a new task has been enrolled
1234  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1235
1236  jlong time_before_loop = os::javaTimeNanos();
1237
1238  while (true) {
1239    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1240                                            remaining);
1241    jlong now = os::javaTimeNanos();
1242
1243    if (remaining == 0) {
1244      // if we didn't have any tasks we could have waited for a long time
1245      // consider the time_slept zero and reset time_before_loop
1246      time_slept = 0;
1247      time_before_loop = now;
1248    } else {
1249      // need to recalculate since we might have new tasks in _tasks
1250      time_slept = (int) ((now - time_before_loop) / 1000000);
1251    }
1252
1253    // Change to task list or spurious wakeup of some kind
1254    if (timedout || _should_terminate) {
1255      break;
1256    }
1257
1258    remaining = PeriodicTask::time_to_wait();
1259    if (remaining == 0) {
1260      // Last task was just disenrolled so loop around and wait until
1261      // another task gets enrolled
1262      continue;
1263    }
1264
1265    remaining -= time_slept;
1266    if (remaining <= 0) {
1267      break;
1268    }
1269  }
1270
1271  return time_slept;
1272}
1273
1274void WatcherThread::run() {
1275  assert(this == watcher_thread(), "just checking");
1276
1277  this->record_stack_base_and_size();
1278  this->set_native_thread_name(this->name());
1279  this->set_active_handles(JNIHandleBlock::allocate_block());
1280  while (true) {
1281    assert(watcher_thread() == Thread::current(), "thread consistency check");
1282    assert(watcher_thread() == this, "thread consistency check");
1283
1284    // Calculate how long it'll be until the next PeriodicTask work
1285    // should be done, and sleep that amount of time.
1286    int time_waited = sleep();
1287
1288    if (is_error_reported()) {
1289      // A fatal error has happened, the error handler(VMError::report_and_die)
1290      // should abort JVM after creating an error log file. However in some
1291      // rare cases, the error handler itself might deadlock. Here we try to
1292      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1293      //
1294      // This code is in WatcherThread because WatcherThread wakes up
1295      // periodically so the fatal error handler doesn't need to do anything;
1296      // also because the WatcherThread is less likely to crash than other
1297      // threads.
1298
1299      for (;;) {
1300        if (!ShowMessageBoxOnError
1301            && (OnError == NULL || OnError[0] == '\0')
1302            && Arguments::abort_hook() == NULL) {
1303          os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1304          fdStream err(defaultStream::output_fd());
1305          err.print_raw_cr("# [ timer expired, abort... ]");
1306          // skip atexit/vm_exit/vm_abort hooks
1307          os::die();
1308        }
1309
1310        // Wake up 5 seconds later, the fatal handler may reset OnError or
1311        // ShowMessageBoxOnError when it is ready to abort.
1312        os::sleep(this, 5 * 1000, false);
1313      }
1314    }
1315
1316    if (_should_terminate) {
1317      // check for termination before posting the next tick
1318      break;
1319    }
1320
1321    PeriodicTask::real_time_tick(time_waited);
1322  }
1323
1324  // Signal that it is terminated
1325  {
1326    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1327    _watcher_thread = NULL;
1328    Terminator_lock->notify();
1329  }
1330}
1331
1332void WatcherThread::start() {
1333  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1334
1335  if (watcher_thread() == NULL && _startable) {
1336    _should_terminate = false;
1337    // Create the single instance of WatcherThread
1338    new WatcherThread();
1339  }
1340}
1341
1342void WatcherThread::make_startable() {
1343  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1344  _startable = true;
1345}
1346
1347void WatcherThread::stop() {
1348  {
1349    // Follow normal safepoint aware lock enter protocol since the
1350    // WatcherThread is stopped by another JavaThread.
1351    MutexLocker ml(PeriodicTask_lock);
1352    _should_terminate = true;
1353
1354    WatcherThread* watcher = watcher_thread();
1355    if (watcher != NULL) {
1356      // unpark the WatcherThread so it can see that it should terminate
1357      watcher->unpark();
1358    }
1359  }
1360
1361  MutexLocker mu(Terminator_lock);
1362
1363  while (watcher_thread() != NULL) {
1364    // This wait should make safepoint checks, wait without a timeout,
1365    // and wait as a suspend-equivalent condition.
1366    //
1367    // Note: If the FlatProfiler is running, then this thread is waiting
1368    // for the WatcherThread to terminate and the WatcherThread, via the
1369    // FlatProfiler task, is waiting for the external suspend request on
1370    // this thread to complete. wait_for_ext_suspend_completion() will
1371    // eventually timeout, but that takes time. Making this wait a
1372    // suspend-equivalent condition solves that timeout problem.
1373    //
1374    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1375                          Mutex::_as_suspend_equivalent_flag);
1376  }
1377}
1378
1379void WatcherThread::unpark() {
1380  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1381  PeriodicTask_lock->notify();
1382}
1383
1384void WatcherThread::print_on(outputStream* st) const {
1385  st->print("\"%s\" ", name());
1386  Thread::print_on(st);
1387  st->cr();
1388}
1389
1390// ======= JavaThread ========
1391
1392#if INCLUDE_JVMCI
1393
1394jlong* JavaThread::_jvmci_old_thread_counters;
1395
1396bool jvmci_counters_include(JavaThread* thread) {
1397  oop threadObj = thread->threadObj();
1398  return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1399}
1400
1401void JavaThread::collect_counters(typeArrayOop array) {
1402  if (JVMCICounterSize > 0) {
1403    MutexLocker tl(Threads_lock);
1404    for (int i = 0; i < array->length(); i++) {
1405      array->long_at_put(i, _jvmci_old_thread_counters[i]);
1406    }
1407    for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1408      if (jvmci_counters_include(tp)) {
1409        for (int i = 0; i < array->length(); i++) {
1410          array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1411        }
1412      }
1413    }
1414  }
1415}
1416
1417#endif // INCLUDE_JVMCI
1418
1419// A JavaThread is a normal Java thread
1420
1421void JavaThread::initialize() {
1422  // Initialize fields
1423
1424  set_saved_exception_pc(NULL);
1425  set_threadObj(NULL);
1426  _anchor.clear();
1427  set_entry_point(NULL);
1428  set_jni_functions(jni_functions());
1429  set_callee_target(NULL);
1430  set_vm_result(NULL);
1431  set_vm_result_2(NULL);
1432  set_vframe_array_head(NULL);
1433  set_vframe_array_last(NULL);
1434  set_deferred_locals(NULL);
1435  set_deopt_mark(NULL);
1436  set_deopt_compiled_method(NULL);
1437  clear_must_deopt_id();
1438  set_monitor_chunks(NULL);
1439  set_next(NULL);
1440  set_thread_state(_thread_new);
1441  _terminated = _not_terminated;
1442  _privileged_stack_top = NULL;
1443  _array_for_gc = NULL;
1444  _suspend_equivalent = false;
1445  _in_deopt_handler = 0;
1446  _doing_unsafe_access = false;
1447  _stack_guard_state = stack_guard_unused;
1448#if INCLUDE_JVMCI
1449  _pending_monitorenter = false;
1450  _pending_deoptimization = -1;
1451  _pending_failed_speculation = NULL;
1452  _pending_transfer_to_interpreter = false;
1453  _adjusting_comp_level = false;
1454  _jvmci._alternate_call_target = NULL;
1455  assert(_jvmci._implicit_exception_pc == NULL, "must be");
1456  if (JVMCICounterSize > 0) {
1457    _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1458    memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1459  } else {
1460    _jvmci_counters = NULL;
1461  }
1462#endif // INCLUDE_JVMCI
1463  _reserved_stack_activation = NULL;  // stack base not known yet
1464  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1465  _exception_pc  = 0;
1466  _exception_handler_pc = 0;
1467  _is_method_handle_return = 0;
1468  _jvmti_thread_state= NULL;
1469  _should_post_on_exceptions_flag = JNI_FALSE;
1470  _jvmti_get_loaded_classes_closure = NULL;
1471  _interp_only_mode    = 0;
1472  _special_runtime_exit_condition = _no_async_condition;
1473  _pending_async_exception = NULL;
1474  _thread_stat = NULL;
1475  _thread_stat = new ThreadStatistics();
1476  _blocked_on_compilation = false;
1477  _jni_active_critical = 0;
1478  _pending_jni_exception_check_fn = NULL;
1479  _do_not_unlock_if_synchronized = false;
1480  _cached_monitor_info = NULL;
1481  _parker = Parker::Allocate(this);
1482
1483#ifndef PRODUCT
1484  _jmp_ring_index = 0;
1485  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1486    record_jump(NULL, NULL, NULL, 0);
1487  }
1488#endif // PRODUCT
1489
1490  set_thread_profiler(NULL);
1491  if (FlatProfiler::is_active()) {
1492    // This is where we would decide to either give each thread it's own profiler
1493    // or use one global one from FlatProfiler,
1494    // or up to some count of the number of profiled threads, etc.
1495    ThreadProfiler* pp = new ThreadProfiler();
1496    pp->engage();
1497    set_thread_profiler(pp);
1498  }
1499
1500  // Setup safepoint state info for this thread
1501  ThreadSafepointState::create(this);
1502
1503  debug_only(_java_call_counter = 0);
1504
1505  // JVMTI PopFrame support
1506  _popframe_condition = popframe_inactive;
1507  _popframe_preserved_args = NULL;
1508  _popframe_preserved_args_size = 0;
1509  _frames_to_pop_failed_realloc = 0;
1510
1511  pd_initialize();
1512}
1513
1514#if INCLUDE_ALL_GCS
1515SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1516DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1517#endif // INCLUDE_ALL_GCS
1518
1519JavaThread::JavaThread(bool is_attaching_via_jni) :
1520                       Thread()
1521#if INCLUDE_ALL_GCS
1522                       , _satb_mark_queue(&_satb_mark_queue_set),
1523                       _dirty_card_queue(&_dirty_card_queue_set)
1524#endif // INCLUDE_ALL_GCS
1525{
1526  initialize();
1527  if (is_attaching_via_jni) {
1528    _jni_attach_state = _attaching_via_jni;
1529  } else {
1530    _jni_attach_state = _not_attaching_via_jni;
1531  }
1532  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1533}
1534
1535bool JavaThread::reguard_stack(address cur_sp) {
1536  if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1537      && _stack_guard_state != stack_guard_reserved_disabled) {
1538    return true; // Stack already guarded or guard pages not needed.
1539  }
1540
1541  if (register_stack_overflow()) {
1542    // For those architectures which have separate register and
1543    // memory stacks, we must check the register stack to see if
1544    // it has overflowed.
1545    return false;
1546  }
1547
1548  // Java code never executes within the yellow zone: the latter is only
1549  // there to provoke an exception during stack banging.  If java code
1550  // is executing there, either StackShadowPages should be larger, or
1551  // some exception code in c1, c2 or the interpreter isn't unwinding
1552  // when it should.
1553  guarantee(cur_sp > stack_reserved_zone_base(),
1554            "not enough space to reguard - increase StackShadowPages");
1555  if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1556    enable_stack_yellow_reserved_zone();
1557    if (reserved_stack_activation() != stack_base()) {
1558      set_reserved_stack_activation(stack_base());
1559    }
1560  } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1561    set_reserved_stack_activation(stack_base());
1562    enable_stack_reserved_zone();
1563  }
1564  return true;
1565}
1566
1567bool JavaThread::reguard_stack(void) {
1568  return reguard_stack(os::current_stack_pointer());
1569}
1570
1571
1572void JavaThread::block_if_vm_exited() {
1573  if (_terminated == _vm_exited) {
1574    // _vm_exited is set at safepoint, and Threads_lock is never released
1575    // we will block here forever
1576    Threads_lock->lock_without_safepoint_check();
1577    ShouldNotReachHere();
1578  }
1579}
1580
1581
1582// Remove this ifdef when C1 is ported to the compiler interface.
1583static void compiler_thread_entry(JavaThread* thread, TRAPS);
1584static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1585
1586JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1587                       Thread()
1588#if INCLUDE_ALL_GCS
1589                       , _satb_mark_queue(&_satb_mark_queue_set),
1590                       _dirty_card_queue(&_dirty_card_queue_set)
1591#endif // INCLUDE_ALL_GCS
1592{
1593  initialize();
1594  _jni_attach_state = _not_attaching_via_jni;
1595  set_entry_point(entry_point);
1596  // Create the native thread itself.
1597  // %note runtime_23
1598  os::ThreadType thr_type = os::java_thread;
1599  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1600                                                     os::java_thread;
1601  os::create_thread(this, thr_type, stack_sz);
1602  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1603  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1604  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1605  // the exception consists of creating the exception object & initializing it, initialization
1606  // will leave the VM via a JavaCall and then all locks must be unlocked).
1607  //
1608  // The thread is still suspended when we reach here. Thread must be explicit started
1609  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1610  // by calling Threads:add. The reason why this is not done here, is because the thread
1611  // object must be fully initialized (take a look at JVM_Start)
1612}
1613
1614JavaThread::~JavaThread() {
1615
1616  // JSR166 -- return the parker to the free list
1617  Parker::Release(_parker);
1618  _parker = NULL;
1619
1620  // Free any remaining  previous UnrollBlock
1621  vframeArray* old_array = vframe_array_last();
1622
1623  if (old_array != NULL) {
1624    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1625    old_array->set_unroll_block(NULL);
1626    delete old_info;
1627    delete old_array;
1628  }
1629
1630  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1631  if (deferred != NULL) {
1632    // This can only happen if thread is destroyed before deoptimization occurs.
1633    assert(deferred->length() != 0, "empty array!");
1634    do {
1635      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1636      deferred->remove_at(0);
1637      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1638      delete dlv;
1639    } while (deferred->length() != 0);
1640    delete deferred;
1641  }
1642
1643  // All Java related clean up happens in exit
1644  ThreadSafepointState::destroy(this);
1645  if (_thread_profiler != NULL) delete _thread_profiler;
1646  if (_thread_stat != NULL) delete _thread_stat;
1647
1648#if INCLUDE_JVMCI
1649  if (JVMCICounterSize > 0) {
1650    if (jvmci_counters_include(this)) {
1651      for (int i = 0; i < JVMCICounterSize; i++) {
1652        _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1653      }
1654    }
1655    FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1656  }
1657#endif // INCLUDE_JVMCI
1658}
1659
1660
1661// The first routine called by a new Java thread
1662void JavaThread::run() {
1663  // initialize thread-local alloc buffer related fields
1664  this->initialize_tlab();
1665
1666  // used to test validity of stack trace backs
1667  this->record_base_of_stack_pointer();
1668
1669  // Record real stack base and size.
1670  this->record_stack_base_and_size();
1671
1672  this->create_stack_guard_pages();
1673
1674  this->cache_global_variables();
1675
1676  // Thread is now sufficient initialized to be handled by the safepoint code as being
1677  // in the VM. Change thread state from _thread_new to _thread_in_vm
1678  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1679
1680  assert(JavaThread::current() == this, "sanity check");
1681  assert(!Thread::current()->owns_locks(), "sanity check");
1682
1683  DTRACE_THREAD_PROBE(start, this);
1684
1685  // This operation might block. We call that after all safepoint checks for a new thread has
1686  // been completed.
1687  this->set_active_handles(JNIHandleBlock::allocate_block());
1688
1689  if (JvmtiExport::should_post_thread_life()) {
1690    JvmtiExport::post_thread_start(this);
1691  }
1692
1693  EventThreadStart event;
1694  if (event.should_commit()) {
1695    event.set_thread(THREAD_TRACE_ID(this));
1696    event.commit();
1697  }
1698
1699  // We call another function to do the rest so we are sure that the stack addresses used
1700  // from there will be lower than the stack base just computed
1701  thread_main_inner();
1702
1703  // Note, thread is no longer valid at this point!
1704}
1705
1706
1707void JavaThread::thread_main_inner() {
1708  assert(JavaThread::current() == this, "sanity check");
1709  assert(this->threadObj() != NULL, "just checking");
1710
1711  // Execute thread entry point unless this thread has a pending exception
1712  // or has been stopped before starting.
1713  // Note: Due to JVM_StopThread we can have pending exceptions already!
1714  if (!this->has_pending_exception() &&
1715      !java_lang_Thread::is_stillborn(this->threadObj())) {
1716    {
1717      ResourceMark rm(this);
1718      this->set_native_thread_name(this->get_thread_name());
1719    }
1720    HandleMark hm(this);
1721    this->entry_point()(this, this);
1722  }
1723
1724  DTRACE_THREAD_PROBE(stop, this);
1725
1726  this->exit(false);
1727  delete this;
1728}
1729
1730
1731static void ensure_join(JavaThread* thread) {
1732  // We do not need to grap the Threads_lock, since we are operating on ourself.
1733  Handle threadObj(thread, thread->threadObj());
1734  assert(threadObj.not_null(), "java thread object must exist");
1735  ObjectLocker lock(threadObj, thread);
1736  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1737  thread->clear_pending_exception();
1738  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1739  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1740  // Clear the native thread instance - this makes isAlive return false and allows the join()
1741  // to complete once we've done the notify_all below
1742  java_lang_Thread::set_thread(threadObj(), NULL);
1743  lock.notify_all(thread);
1744  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1745  thread->clear_pending_exception();
1746}
1747
1748
1749// For any new cleanup additions, please check to see if they need to be applied to
1750// cleanup_failed_attach_current_thread as well.
1751void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1752  assert(this == JavaThread::current(), "thread consistency check");
1753
1754  HandleMark hm(this);
1755  Handle uncaught_exception(this, this->pending_exception());
1756  this->clear_pending_exception();
1757  Handle threadObj(this, this->threadObj());
1758  assert(threadObj.not_null(), "Java thread object should be created");
1759
1760  if (get_thread_profiler() != NULL) {
1761    get_thread_profiler()->disengage();
1762    ResourceMark rm;
1763    get_thread_profiler()->print(get_thread_name());
1764  }
1765
1766
1767  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1768  {
1769    EXCEPTION_MARK;
1770
1771    CLEAR_PENDING_EXCEPTION;
1772  }
1773  if (!destroy_vm) {
1774    if (uncaught_exception.not_null()) {
1775      EXCEPTION_MARK;
1776      // Call method Thread.dispatchUncaughtException().
1777      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1778      JavaValue result(T_VOID);
1779      JavaCalls::call_virtual(&result,
1780                              threadObj, thread_klass,
1781                              vmSymbols::dispatchUncaughtException_name(),
1782                              vmSymbols::throwable_void_signature(),
1783                              uncaught_exception,
1784                              THREAD);
1785      if (HAS_PENDING_EXCEPTION) {
1786        ResourceMark rm(this);
1787        jio_fprintf(defaultStream::error_stream(),
1788                    "\nException: %s thrown from the UncaughtExceptionHandler"
1789                    " in thread \"%s\"\n",
1790                    pending_exception()->klass()->external_name(),
1791                    get_thread_name());
1792        CLEAR_PENDING_EXCEPTION;
1793      }
1794    }
1795
1796    // Called before the java thread exit since we want to read info
1797    // from java_lang_Thread object
1798    EventThreadEnd event;
1799    if (event.should_commit()) {
1800      event.set_thread(THREAD_TRACE_ID(this));
1801      event.commit();
1802    }
1803
1804    // Call after last event on thread
1805    EVENT_THREAD_EXIT(this);
1806
1807    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1808    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1809    // is deprecated anyhow.
1810    if (!is_Compiler_thread()) {
1811      int count = 3;
1812      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1813        EXCEPTION_MARK;
1814        JavaValue result(T_VOID);
1815        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1816        JavaCalls::call_virtual(&result,
1817                                threadObj, thread_klass,
1818                                vmSymbols::exit_method_name(),
1819                                vmSymbols::void_method_signature(),
1820                                THREAD);
1821        CLEAR_PENDING_EXCEPTION;
1822      }
1823    }
1824    // notify JVMTI
1825    if (JvmtiExport::should_post_thread_life()) {
1826      JvmtiExport::post_thread_end(this);
1827    }
1828
1829    // We have notified the agents that we are exiting, before we go on,
1830    // we must check for a pending external suspend request and honor it
1831    // in order to not surprise the thread that made the suspend request.
1832    while (true) {
1833      {
1834        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1835        if (!is_external_suspend()) {
1836          set_terminated(_thread_exiting);
1837          ThreadService::current_thread_exiting(this);
1838          break;
1839        }
1840        // Implied else:
1841        // Things get a little tricky here. We have a pending external
1842        // suspend request, but we are holding the SR_lock so we
1843        // can't just self-suspend. So we temporarily drop the lock
1844        // and then self-suspend.
1845      }
1846
1847      ThreadBlockInVM tbivm(this);
1848      java_suspend_self();
1849
1850      // We're done with this suspend request, but we have to loop around
1851      // and check again. Eventually we will get SR_lock without a pending
1852      // external suspend request and will be able to mark ourselves as
1853      // exiting.
1854    }
1855    // no more external suspends are allowed at this point
1856  } else {
1857    // before_exit() has already posted JVMTI THREAD_END events
1858  }
1859
1860  // Notify waiters on thread object. This has to be done after exit() is called
1861  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1862  // group should have the destroyed bit set before waiters are notified).
1863  ensure_join(this);
1864  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1865
1866  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1867  // held by this thread must be released. The spec does not distinguish
1868  // between JNI-acquired and regular Java monitors. We can only see
1869  // regular Java monitors here if monitor enter-exit matching is broken.
1870  //
1871  // Optionally release any monitors for regular JavaThread exits. This
1872  // is provided as a work around for any bugs in monitor enter-exit
1873  // matching. This can be expensive so it is not enabled by default.
1874  //
1875  // ensure_join() ignores IllegalThreadStateExceptions, and so does
1876  // ObjectSynchronizer::release_monitors_owned_by_thread().
1877  if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1878    // Sanity check even though JNI DetachCurrentThread() would have
1879    // returned JNI_ERR if there was a Java frame. JavaThread exit
1880    // should be done executing Java code by the time we get here.
1881    assert(!this->has_last_Java_frame(),
1882           "should not have a Java frame when detaching or exiting");
1883    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1884    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1885  }
1886
1887  // These things needs to be done while we are still a Java Thread. Make sure that thread
1888  // is in a consistent state, in case GC happens
1889  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1890
1891  if (active_handles() != NULL) {
1892    JNIHandleBlock* block = active_handles();
1893    set_active_handles(NULL);
1894    JNIHandleBlock::release_block(block);
1895  }
1896
1897  if (free_handle_block() != NULL) {
1898    JNIHandleBlock* block = free_handle_block();
1899    set_free_handle_block(NULL);
1900    JNIHandleBlock::release_block(block);
1901  }
1902
1903  // These have to be removed while this is still a valid thread.
1904  remove_stack_guard_pages();
1905
1906  if (UseTLAB) {
1907    tlab().make_parsable(true);  // retire TLAB
1908  }
1909
1910  if (JvmtiEnv::environments_might_exist()) {
1911    JvmtiExport::cleanup_thread(this);
1912  }
1913
1914  // We must flush any deferred card marks before removing a thread from
1915  // the list of active threads.
1916  Universe::heap()->flush_deferred_store_barrier(this);
1917  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1918
1919#if INCLUDE_ALL_GCS
1920  // We must flush the G1-related buffers before removing a thread
1921  // from the list of active threads. We must do this after any deferred
1922  // card marks have been flushed (above) so that any entries that are
1923  // added to the thread's dirty card queue as a result are not lost.
1924  if (UseG1GC) {
1925    flush_barrier_queues();
1926  }
1927#endif // INCLUDE_ALL_GCS
1928
1929  log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1930    exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1931    os::current_thread_id());
1932
1933  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1934  Threads::remove(this);
1935}
1936
1937#if INCLUDE_ALL_GCS
1938// Flush G1-related queues.
1939void JavaThread::flush_barrier_queues() {
1940  satb_mark_queue().flush();
1941  dirty_card_queue().flush();
1942}
1943
1944void JavaThread::initialize_queues() {
1945  assert(!SafepointSynchronize::is_at_safepoint(),
1946         "we should not be at a safepoint");
1947
1948  SATBMarkQueue& satb_queue = satb_mark_queue();
1949  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1950  // The SATB queue should have been constructed with its active
1951  // field set to false.
1952  assert(!satb_queue.is_active(), "SATB queue should not be active");
1953  assert(satb_queue.is_empty(), "SATB queue should be empty");
1954  // If we are creating the thread during a marking cycle, we should
1955  // set the active field of the SATB queue to true.
1956  if (satb_queue_set.is_active()) {
1957    satb_queue.set_active(true);
1958  }
1959
1960  DirtyCardQueue& dirty_queue = dirty_card_queue();
1961  // The dirty card queue should have been constructed with its
1962  // active field set to true.
1963  assert(dirty_queue.is_active(), "dirty card queue should be active");
1964}
1965#endif // INCLUDE_ALL_GCS
1966
1967void JavaThread::cleanup_failed_attach_current_thread() {
1968  if (get_thread_profiler() != NULL) {
1969    get_thread_profiler()->disengage();
1970    ResourceMark rm;
1971    get_thread_profiler()->print(get_thread_name());
1972  }
1973
1974  if (active_handles() != NULL) {
1975    JNIHandleBlock* block = active_handles();
1976    set_active_handles(NULL);
1977    JNIHandleBlock::release_block(block);
1978  }
1979
1980  if (free_handle_block() != NULL) {
1981    JNIHandleBlock* block = free_handle_block();
1982    set_free_handle_block(NULL);
1983    JNIHandleBlock::release_block(block);
1984  }
1985
1986  // These have to be removed while this is still a valid thread.
1987  remove_stack_guard_pages();
1988
1989  if (UseTLAB) {
1990    tlab().make_parsable(true);  // retire TLAB, if any
1991  }
1992
1993#if INCLUDE_ALL_GCS
1994  if (UseG1GC) {
1995    flush_barrier_queues();
1996  }
1997#endif // INCLUDE_ALL_GCS
1998
1999  Threads::remove(this);
2000  delete this;
2001}
2002
2003
2004
2005
2006JavaThread* JavaThread::active() {
2007  Thread* thread = Thread::current();
2008  if (thread->is_Java_thread()) {
2009    return (JavaThread*) thread;
2010  } else {
2011    assert(thread->is_VM_thread(), "this must be a vm thread");
2012    VM_Operation* op = ((VMThread*) thread)->vm_operation();
2013    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2014    assert(ret->is_Java_thread(), "must be a Java thread");
2015    return ret;
2016  }
2017}
2018
2019bool JavaThread::is_lock_owned(address adr) const {
2020  if (Thread::is_lock_owned(adr)) return true;
2021
2022  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2023    if (chunk->contains(adr)) return true;
2024  }
2025
2026  return false;
2027}
2028
2029
2030void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2031  chunk->set_next(monitor_chunks());
2032  set_monitor_chunks(chunk);
2033}
2034
2035void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2036  guarantee(monitor_chunks() != NULL, "must be non empty");
2037  if (monitor_chunks() == chunk) {
2038    set_monitor_chunks(chunk->next());
2039  } else {
2040    MonitorChunk* prev = monitor_chunks();
2041    while (prev->next() != chunk) prev = prev->next();
2042    prev->set_next(chunk->next());
2043  }
2044}
2045
2046// JVM support.
2047
2048// Note: this function shouldn't block if it's called in
2049// _thread_in_native_trans state (such as from
2050// check_special_condition_for_native_trans()).
2051void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2052
2053  if (has_last_Java_frame() && has_async_condition()) {
2054    // If we are at a polling page safepoint (not a poll return)
2055    // then we must defer async exception because live registers
2056    // will be clobbered by the exception path. Poll return is
2057    // ok because the call we a returning from already collides
2058    // with exception handling registers and so there is no issue.
2059    // (The exception handling path kills call result registers but
2060    //  this is ok since the exception kills the result anyway).
2061
2062    if (is_at_poll_safepoint()) {
2063      // if the code we are returning to has deoptimized we must defer
2064      // the exception otherwise live registers get clobbered on the
2065      // exception path before deoptimization is able to retrieve them.
2066      //
2067      RegisterMap map(this, false);
2068      frame caller_fr = last_frame().sender(&map);
2069      assert(caller_fr.is_compiled_frame(), "what?");
2070      if (caller_fr.is_deoptimized_frame()) {
2071        log_info(exceptions)("deferred async exception at compiled safepoint");
2072        return;
2073      }
2074    }
2075  }
2076
2077  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2078  if (condition == _no_async_condition) {
2079    // Conditions have changed since has_special_runtime_exit_condition()
2080    // was called:
2081    // - if we were here only because of an external suspend request,
2082    //   then that was taken care of above (or cancelled) so we are done
2083    // - if we were here because of another async request, then it has
2084    //   been cleared between the has_special_runtime_exit_condition()
2085    //   and now so again we are done
2086    return;
2087  }
2088
2089  // Check for pending async. exception
2090  if (_pending_async_exception != NULL) {
2091    // Only overwrite an already pending exception, if it is not a threadDeath.
2092    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2093
2094      // We cannot call Exceptions::_throw(...) here because we cannot block
2095      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2096
2097      if (log_is_enabled(Info, exceptions)) {
2098        ResourceMark rm;
2099        outputStream* logstream = Log(exceptions)::info_stream();
2100        logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2101          if (has_last_Java_frame()) {
2102            frame f = last_frame();
2103           logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2104          }
2105        logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2106      }
2107      _pending_async_exception = NULL;
2108      clear_has_async_exception();
2109    }
2110  }
2111
2112  if (check_unsafe_error &&
2113      condition == _async_unsafe_access_error && !has_pending_exception()) {
2114    condition = _no_async_condition;  // done
2115    switch (thread_state()) {
2116    case _thread_in_vm: {
2117      JavaThread* THREAD = this;
2118      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2119    }
2120    case _thread_in_native: {
2121      ThreadInVMfromNative tiv(this);
2122      JavaThread* THREAD = this;
2123      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2124    }
2125    case _thread_in_Java: {
2126      ThreadInVMfromJava tiv(this);
2127      JavaThread* THREAD = this;
2128      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2129    }
2130    default:
2131      ShouldNotReachHere();
2132    }
2133  }
2134
2135  assert(condition == _no_async_condition || has_pending_exception() ||
2136         (!check_unsafe_error && condition == _async_unsafe_access_error),
2137         "must have handled the async condition, if no exception");
2138}
2139
2140void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2141  //
2142  // Check for pending external suspend. Internal suspend requests do
2143  // not use handle_special_runtime_exit_condition().
2144  // If JNIEnv proxies are allowed, don't self-suspend if the target
2145  // thread is not the current thread. In older versions of jdbx, jdbx
2146  // threads could call into the VM with another thread's JNIEnv so we
2147  // can be here operating on behalf of a suspended thread (4432884).
2148  bool do_self_suspend = is_external_suspend_with_lock();
2149  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2150    //
2151    // Because thread is external suspended the safepoint code will count
2152    // thread as at a safepoint. This can be odd because we can be here
2153    // as _thread_in_Java which would normally transition to _thread_blocked
2154    // at a safepoint. We would like to mark the thread as _thread_blocked
2155    // before calling java_suspend_self like all other callers of it but
2156    // we must then observe proper safepoint protocol. (We can't leave
2157    // _thread_blocked with a safepoint in progress). However we can be
2158    // here as _thread_in_native_trans so we can't use a normal transition
2159    // constructor/destructor pair because they assert on that type of
2160    // transition. We could do something like:
2161    //
2162    // JavaThreadState state = thread_state();
2163    // set_thread_state(_thread_in_vm);
2164    // {
2165    //   ThreadBlockInVM tbivm(this);
2166    //   java_suspend_self()
2167    // }
2168    // set_thread_state(_thread_in_vm_trans);
2169    // if (safepoint) block;
2170    // set_thread_state(state);
2171    //
2172    // but that is pretty messy. Instead we just go with the way the
2173    // code has worked before and note that this is the only path to
2174    // java_suspend_self that doesn't put the thread in _thread_blocked
2175    // mode.
2176
2177    frame_anchor()->make_walkable(this);
2178    java_suspend_self();
2179
2180    // We might be here for reasons in addition to the self-suspend request
2181    // so check for other async requests.
2182  }
2183
2184  if (check_asyncs) {
2185    check_and_handle_async_exceptions();
2186  }
2187}
2188
2189void JavaThread::send_thread_stop(oop java_throwable)  {
2190  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2191  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2192  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2193
2194  // Do not throw asynchronous exceptions against the compiler thread
2195  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2196  if (!can_call_java()) return;
2197
2198  {
2199    // Actually throw the Throwable against the target Thread - however
2200    // only if there is no thread death exception installed already.
2201    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2202      // If the topmost frame is a runtime stub, then we are calling into
2203      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2204      // must deoptimize the caller before continuing, as the compiled  exception handler table
2205      // may not be valid
2206      if (has_last_Java_frame()) {
2207        frame f = last_frame();
2208        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2209          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2210          RegisterMap reg_map(this, UseBiasedLocking);
2211          frame compiled_frame = f.sender(&reg_map);
2212          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2213            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2214          }
2215        }
2216      }
2217
2218      // Set async. pending exception in thread.
2219      set_pending_async_exception(java_throwable);
2220
2221      if (log_is_enabled(Info, exceptions)) {
2222         ResourceMark rm;
2223        log_info(exceptions)("Pending Async. exception installed of type: %s",
2224                             InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2225      }
2226      // for AbortVMOnException flag
2227      Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2228    }
2229  }
2230
2231
2232  // Interrupt thread so it will wake up from a potential wait()
2233  Thread::interrupt(this);
2234}
2235
2236// External suspension mechanism.
2237//
2238// Tell the VM to suspend a thread when ever it knows that it does not hold on
2239// to any VM_locks and it is at a transition
2240// Self-suspension will happen on the transition out of the vm.
2241// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2242//
2243// Guarantees on return:
2244//   + Target thread will not execute any new bytecode (that's why we need to
2245//     force a safepoint)
2246//   + Target thread will not enter any new monitors
2247//
2248void JavaThread::java_suspend() {
2249  { MutexLocker mu(Threads_lock);
2250    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2251      return;
2252    }
2253  }
2254
2255  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2256    if (!is_external_suspend()) {
2257      // a racing resume has cancelled us; bail out now
2258      return;
2259    }
2260
2261    // suspend is done
2262    uint32_t debug_bits = 0;
2263    // Warning: is_ext_suspend_completed() may temporarily drop the
2264    // SR_lock to allow the thread to reach a stable thread state if
2265    // it is currently in a transient thread state.
2266    if (is_ext_suspend_completed(false /* !called_by_wait */,
2267                                 SuspendRetryDelay, &debug_bits)) {
2268      return;
2269    }
2270  }
2271
2272  VM_ForceSafepoint vm_suspend;
2273  VMThread::execute(&vm_suspend);
2274}
2275
2276// Part II of external suspension.
2277// A JavaThread self suspends when it detects a pending external suspend
2278// request. This is usually on transitions. It is also done in places
2279// where continuing to the next transition would surprise the caller,
2280// e.g., monitor entry.
2281//
2282// Returns the number of times that the thread self-suspended.
2283//
2284// Note: DO NOT call java_suspend_self() when you just want to block current
2285//       thread. java_suspend_self() is the second stage of cooperative
2286//       suspension for external suspend requests and should only be used
2287//       to complete an external suspend request.
2288//
2289int JavaThread::java_suspend_self() {
2290  int ret = 0;
2291
2292  // we are in the process of exiting so don't suspend
2293  if (is_exiting()) {
2294    clear_external_suspend();
2295    return ret;
2296  }
2297
2298  assert(_anchor.walkable() ||
2299         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2300         "must have walkable stack");
2301
2302  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2303
2304  assert(!this->is_ext_suspended(),
2305         "a thread trying to self-suspend should not already be suspended");
2306
2307  if (this->is_suspend_equivalent()) {
2308    // If we are self-suspending as a result of the lifting of a
2309    // suspend equivalent condition, then the suspend_equivalent
2310    // flag is not cleared until we set the ext_suspended flag so
2311    // that wait_for_ext_suspend_completion() returns consistent
2312    // results.
2313    this->clear_suspend_equivalent();
2314  }
2315
2316  // A racing resume may have cancelled us before we grabbed SR_lock
2317  // above. Or another external suspend request could be waiting for us
2318  // by the time we return from SR_lock()->wait(). The thread
2319  // that requested the suspension may already be trying to walk our
2320  // stack and if we return now, we can change the stack out from under
2321  // it. This would be a "bad thing (TM)" and cause the stack walker
2322  // to crash. We stay self-suspended until there are no more pending
2323  // external suspend requests.
2324  while (is_external_suspend()) {
2325    ret++;
2326    this->set_ext_suspended();
2327
2328    // _ext_suspended flag is cleared by java_resume()
2329    while (is_ext_suspended()) {
2330      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2331    }
2332  }
2333
2334  return ret;
2335}
2336
2337#ifdef ASSERT
2338// verify the JavaThread has not yet been published in the Threads::list, and
2339// hence doesn't need protection from concurrent access at this stage
2340void JavaThread::verify_not_published() {
2341  if (!Threads_lock->owned_by_self()) {
2342    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2343    assert(!Threads::includes(this),
2344           "java thread shouldn't have been published yet!");
2345  } else {
2346    assert(!Threads::includes(this),
2347           "java thread shouldn't have been published yet!");
2348  }
2349}
2350#endif
2351
2352// Slow path when the native==>VM/Java barriers detect a safepoint is in
2353// progress or when _suspend_flags is non-zero.
2354// Current thread needs to self-suspend if there is a suspend request and/or
2355// block if a safepoint is in progress.
2356// Async exception ISN'T checked.
2357// Note only the ThreadInVMfromNative transition can call this function
2358// directly and when thread state is _thread_in_native_trans
2359void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2360  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2361
2362  JavaThread *curJT = JavaThread::current();
2363  bool do_self_suspend = thread->is_external_suspend();
2364
2365  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2366
2367  // If JNIEnv proxies are allowed, don't self-suspend if the target
2368  // thread is not the current thread. In older versions of jdbx, jdbx
2369  // threads could call into the VM with another thread's JNIEnv so we
2370  // can be here operating on behalf of a suspended thread (4432884).
2371  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2372    JavaThreadState state = thread->thread_state();
2373
2374    // We mark this thread_blocked state as a suspend-equivalent so
2375    // that a caller to is_ext_suspend_completed() won't be confused.
2376    // The suspend-equivalent state is cleared by java_suspend_self().
2377    thread->set_suspend_equivalent();
2378
2379    // If the safepoint code sees the _thread_in_native_trans state, it will
2380    // wait until the thread changes to other thread state. There is no
2381    // guarantee on how soon we can obtain the SR_lock and complete the
2382    // self-suspend request. It would be a bad idea to let safepoint wait for
2383    // too long. Temporarily change the state to _thread_blocked to
2384    // let the VM thread know that this thread is ready for GC. The problem
2385    // of changing thread state is that safepoint could happen just after
2386    // java_suspend_self() returns after being resumed, and VM thread will
2387    // see the _thread_blocked state. We must check for safepoint
2388    // after restoring the state and make sure we won't leave while a safepoint
2389    // is in progress.
2390    thread->set_thread_state(_thread_blocked);
2391    thread->java_suspend_self();
2392    thread->set_thread_state(state);
2393    // Make sure new state is seen by VM thread
2394    if (os::is_MP()) {
2395      if (UseMembar) {
2396        // Force a fence between the write above and read below
2397        OrderAccess::fence();
2398      } else {
2399        // Must use this rather than serialization page in particular on Windows
2400        InterfaceSupport::serialize_memory(thread);
2401      }
2402    }
2403  }
2404
2405  if (SafepointSynchronize::do_call_back()) {
2406    // If we are safepointing, then block the caller which may not be
2407    // the same as the target thread (see above).
2408    SafepointSynchronize::block(curJT);
2409  }
2410
2411  if (thread->is_deopt_suspend()) {
2412    thread->clear_deopt_suspend();
2413    RegisterMap map(thread, false);
2414    frame f = thread->last_frame();
2415    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2416      f = f.sender(&map);
2417    }
2418    if (f.id() == thread->must_deopt_id()) {
2419      thread->clear_must_deopt_id();
2420      f.deoptimize(thread);
2421    } else {
2422      fatal("missed deoptimization!");
2423    }
2424  }
2425}
2426
2427// Slow path when the native==>VM/Java barriers detect a safepoint is in
2428// progress or when _suspend_flags is non-zero.
2429// Current thread needs to self-suspend if there is a suspend request and/or
2430// block if a safepoint is in progress.
2431// Also check for pending async exception (not including unsafe access error).
2432// Note only the native==>VM/Java barriers can call this function and when
2433// thread state is _thread_in_native_trans.
2434void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2435  check_safepoint_and_suspend_for_native_trans(thread);
2436
2437  if (thread->has_async_exception()) {
2438    // We are in _thread_in_native_trans state, don't handle unsafe
2439    // access error since that may block.
2440    thread->check_and_handle_async_exceptions(false);
2441  }
2442}
2443
2444// This is a variant of the normal
2445// check_special_condition_for_native_trans with slightly different
2446// semantics for use by critical native wrappers.  It does all the
2447// normal checks but also performs the transition back into
2448// thread_in_Java state.  This is required so that critical natives
2449// can potentially block and perform a GC if they are the last thread
2450// exiting the GCLocker.
2451void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2452  check_special_condition_for_native_trans(thread);
2453
2454  // Finish the transition
2455  thread->set_thread_state(_thread_in_Java);
2456
2457  if (thread->do_critical_native_unlock()) {
2458    ThreadInVMfromJavaNoAsyncException tiv(thread);
2459    GCLocker::unlock_critical(thread);
2460    thread->clear_critical_native_unlock();
2461  }
2462}
2463
2464// We need to guarantee the Threads_lock here, since resumes are not
2465// allowed during safepoint synchronization
2466// Can only resume from an external suspension
2467void JavaThread::java_resume() {
2468  assert_locked_or_safepoint(Threads_lock);
2469
2470  // Sanity check: thread is gone, has started exiting or the thread
2471  // was not externally suspended.
2472  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2473    return;
2474  }
2475
2476  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2477
2478  clear_external_suspend();
2479
2480  if (is_ext_suspended()) {
2481    clear_ext_suspended();
2482    SR_lock()->notify_all();
2483  }
2484}
2485
2486size_t JavaThread::_stack_red_zone_size = 0;
2487size_t JavaThread::_stack_yellow_zone_size = 0;
2488size_t JavaThread::_stack_reserved_zone_size = 0;
2489size_t JavaThread::_stack_shadow_zone_size = 0;
2490
2491void JavaThread::create_stack_guard_pages() {
2492  if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2493  address low_addr = stack_end();
2494  size_t len = stack_guard_zone_size();
2495
2496  int allocate = os::allocate_stack_guard_pages();
2497  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2498
2499  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2500    log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2501    return;
2502  }
2503
2504  if (os::guard_memory((char *) low_addr, len)) {
2505    _stack_guard_state = stack_guard_enabled;
2506  } else {
2507    log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2508      PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2509    if (os::uncommit_memory((char *) low_addr, len)) {
2510      log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2511    }
2512    return;
2513  }
2514
2515  log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2516    PTR_FORMAT "-" PTR_FORMAT ".",
2517    os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2518
2519}
2520
2521void JavaThread::remove_stack_guard_pages() {
2522  assert(Thread::current() == this, "from different thread");
2523  if (_stack_guard_state == stack_guard_unused) return;
2524  address low_addr = stack_end();
2525  size_t len = stack_guard_zone_size();
2526
2527  if (os::allocate_stack_guard_pages()) {
2528    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2529      _stack_guard_state = stack_guard_unused;
2530    } else {
2531      log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2532        PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2533      return;
2534    }
2535  } else {
2536    if (_stack_guard_state == stack_guard_unused) return;
2537    if (os::unguard_memory((char *) low_addr, len)) {
2538      _stack_guard_state = stack_guard_unused;
2539    } else {
2540      log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2541        PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2542      return;
2543    }
2544  }
2545
2546  log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2547    PTR_FORMAT "-" PTR_FORMAT ".",
2548    os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2549
2550}
2551
2552void JavaThread::enable_stack_reserved_zone() {
2553  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2554  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2555
2556  // The base notation is from the stack's point of view, growing downward.
2557  // We need to adjust it to work correctly with guard_memory()
2558  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2559
2560  guarantee(base < stack_base(),"Error calculating stack reserved zone");
2561  guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2562
2563  if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2564    _stack_guard_state = stack_guard_enabled;
2565  } else {
2566    warning("Attempt to guard stack reserved zone failed.");
2567  }
2568  enable_register_stack_guard();
2569}
2570
2571void JavaThread::disable_stack_reserved_zone() {
2572  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2573  assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2574
2575  // Simply return if called for a thread that does not use guard pages.
2576  if (_stack_guard_state == stack_guard_unused) return;
2577
2578  // The base notation is from the stack's point of view, growing downward.
2579  // We need to adjust it to work correctly with guard_memory()
2580  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2581
2582  if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2583    _stack_guard_state = stack_guard_reserved_disabled;
2584  } else {
2585    warning("Attempt to unguard stack reserved zone failed.");
2586  }
2587  disable_register_stack_guard();
2588}
2589
2590void JavaThread::enable_stack_yellow_reserved_zone() {
2591  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2592  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2593
2594  // The base notation is from the stacks point of view, growing downward.
2595  // We need to adjust it to work correctly with guard_memory()
2596  address base = stack_red_zone_base();
2597
2598  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2599  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2600
2601  if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2602    _stack_guard_state = stack_guard_enabled;
2603  } else {
2604    warning("Attempt to guard stack yellow zone failed.");
2605  }
2606  enable_register_stack_guard();
2607}
2608
2609void JavaThread::disable_stack_yellow_reserved_zone() {
2610  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2611  assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2612
2613  // Simply return if called for a thread that does not use guard pages.
2614  if (_stack_guard_state == stack_guard_unused) return;
2615
2616  // The base notation is from the stacks point of view, growing downward.
2617  // We need to adjust it to work correctly with guard_memory()
2618  address base = stack_red_zone_base();
2619
2620  if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2621    _stack_guard_state = stack_guard_yellow_reserved_disabled;
2622  } else {
2623    warning("Attempt to unguard stack yellow zone failed.");
2624  }
2625  disable_register_stack_guard();
2626}
2627
2628void JavaThread::enable_stack_red_zone() {
2629  // The base notation is from the stacks point of view, growing downward.
2630  // We need to adjust it to work correctly with guard_memory()
2631  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2632  address base = stack_red_zone_base() - stack_red_zone_size();
2633
2634  guarantee(base < stack_base(), "Error calculating stack red zone");
2635  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2636
2637  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2638    warning("Attempt to guard stack red zone failed.");
2639  }
2640}
2641
2642void JavaThread::disable_stack_red_zone() {
2643  // The base notation is from the stacks point of view, growing downward.
2644  // We need to adjust it to work correctly with guard_memory()
2645  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2646  address base = stack_red_zone_base() - stack_red_zone_size();
2647  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2648    warning("Attempt to unguard stack red zone failed.");
2649  }
2650}
2651
2652void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2653  // ignore is there is no stack
2654  if (!has_last_Java_frame()) return;
2655  // traverse the stack frames. Starts from top frame.
2656  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2657    frame* fr = fst.current();
2658    f(fr, fst.register_map());
2659  }
2660}
2661
2662
2663#ifndef PRODUCT
2664// Deoptimization
2665// Function for testing deoptimization
2666void JavaThread::deoptimize() {
2667  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2668  StackFrameStream fst(this, UseBiasedLocking);
2669  bool deopt = false;           // Dump stack only if a deopt actually happens.
2670  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2671  // Iterate over all frames in the thread and deoptimize
2672  for (; !fst.is_done(); fst.next()) {
2673    if (fst.current()->can_be_deoptimized()) {
2674
2675      if (only_at) {
2676        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2677        // consists of comma or carriage return separated numbers so
2678        // search for the current bci in that string.
2679        address pc = fst.current()->pc();
2680        nmethod* nm =  (nmethod*) fst.current()->cb();
2681        ScopeDesc* sd = nm->scope_desc_at(pc);
2682        char buffer[8];
2683        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2684        size_t len = strlen(buffer);
2685        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2686        while (found != NULL) {
2687          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2688              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2689            // Check that the bci found is bracketed by terminators.
2690            break;
2691          }
2692          found = strstr(found + 1, buffer);
2693        }
2694        if (!found) {
2695          continue;
2696        }
2697      }
2698
2699      if (DebugDeoptimization && !deopt) {
2700        deopt = true; // One-time only print before deopt
2701        tty->print_cr("[BEFORE Deoptimization]");
2702        trace_frames();
2703        trace_stack();
2704      }
2705      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2706    }
2707  }
2708
2709  if (DebugDeoptimization && deopt) {
2710    tty->print_cr("[AFTER Deoptimization]");
2711    trace_frames();
2712  }
2713}
2714
2715
2716// Make zombies
2717void JavaThread::make_zombies() {
2718  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2719    if (fst.current()->can_be_deoptimized()) {
2720      // it is a Java nmethod
2721      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2722      nm->make_not_entrant();
2723    }
2724  }
2725}
2726#endif // PRODUCT
2727
2728
2729void JavaThread::deoptimized_wrt_marked_nmethods() {
2730  if (!has_last_Java_frame()) return;
2731  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2732  StackFrameStream fst(this, UseBiasedLocking);
2733  for (; !fst.is_done(); fst.next()) {
2734    if (fst.current()->should_be_deoptimized()) {
2735      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2736    }
2737  }
2738}
2739
2740
2741// If the caller is a NamedThread, then remember, in the current scope,
2742// the given JavaThread in its _processed_thread field.
2743class RememberProcessedThread: public StackObj {
2744  NamedThread* _cur_thr;
2745 public:
2746  RememberProcessedThread(JavaThread* jthr) {
2747    Thread* thread = Thread::current();
2748    if (thread->is_Named_thread()) {
2749      _cur_thr = (NamedThread *)thread;
2750      _cur_thr->set_processed_thread(jthr);
2751    } else {
2752      _cur_thr = NULL;
2753    }
2754  }
2755
2756  ~RememberProcessedThread() {
2757    if (_cur_thr) {
2758      _cur_thr->set_processed_thread(NULL);
2759    }
2760  }
2761};
2762
2763void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2764  // Verify that the deferred card marks have been flushed.
2765  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2766
2767  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2768  // since there may be more than one thread using each ThreadProfiler.
2769
2770  // Traverse the GCHandles
2771  Thread::oops_do(f, cf);
2772
2773  JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2774
2775  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2776         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2777
2778  if (has_last_Java_frame()) {
2779    // Record JavaThread to GC thread
2780    RememberProcessedThread rpt(this);
2781
2782    // Traverse the privileged stack
2783    if (_privileged_stack_top != NULL) {
2784      _privileged_stack_top->oops_do(f);
2785    }
2786
2787    // traverse the registered growable array
2788    if (_array_for_gc != NULL) {
2789      for (int index = 0; index < _array_for_gc->length(); index++) {
2790        f->do_oop(_array_for_gc->adr_at(index));
2791      }
2792    }
2793
2794    // Traverse the monitor chunks
2795    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2796      chunk->oops_do(f);
2797    }
2798
2799    // Traverse the execution stack
2800    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2801      fst.current()->oops_do(f, cf, fst.register_map());
2802    }
2803  }
2804
2805  // callee_target is never live across a gc point so NULL it here should
2806  // it still contain a methdOop.
2807
2808  set_callee_target(NULL);
2809
2810  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2811  // If we have deferred set_locals there might be oops waiting to be
2812  // written
2813  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2814  if (list != NULL) {
2815    for (int i = 0; i < list->length(); i++) {
2816      list->at(i)->oops_do(f);
2817    }
2818  }
2819
2820  // Traverse instance variables at the end since the GC may be moving things
2821  // around using this function
2822  f->do_oop((oop*) &_threadObj);
2823  f->do_oop((oop*) &_vm_result);
2824  f->do_oop((oop*) &_exception_oop);
2825  f->do_oop((oop*) &_pending_async_exception);
2826
2827  if (jvmti_thread_state() != NULL) {
2828    jvmti_thread_state()->oops_do(f);
2829  }
2830}
2831
2832void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2833  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2834         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2835
2836  if (has_last_Java_frame()) {
2837    // Traverse the execution stack
2838    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2839      fst.current()->nmethods_do(cf);
2840    }
2841  }
2842}
2843
2844void JavaThread::metadata_do(void f(Metadata*)) {
2845  if (has_last_Java_frame()) {
2846    // Traverse the execution stack to call f() on the methods in the stack
2847    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2848      fst.current()->metadata_do(f);
2849    }
2850  } else if (is_Compiler_thread()) {
2851    // need to walk ciMetadata in current compile tasks to keep alive.
2852    CompilerThread* ct = (CompilerThread*)this;
2853    if (ct->env() != NULL) {
2854      ct->env()->metadata_do(f);
2855    }
2856    if (ct->task() != NULL) {
2857      ct->task()->metadata_do(f);
2858    }
2859  }
2860}
2861
2862// Printing
2863const char* _get_thread_state_name(JavaThreadState _thread_state) {
2864  switch (_thread_state) {
2865  case _thread_uninitialized:     return "_thread_uninitialized";
2866  case _thread_new:               return "_thread_new";
2867  case _thread_new_trans:         return "_thread_new_trans";
2868  case _thread_in_native:         return "_thread_in_native";
2869  case _thread_in_native_trans:   return "_thread_in_native_trans";
2870  case _thread_in_vm:             return "_thread_in_vm";
2871  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2872  case _thread_in_Java:           return "_thread_in_Java";
2873  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2874  case _thread_blocked:           return "_thread_blocked";
2875  case _thread_blocked_trans:     return "_thread_blocked_trans";
2876  default:                        return "unknown thread state";
2877  }
2878}
2879
2880#ifndef PRODUCT
2881void JavaThread::print_thread_state_on(outputStream *st) const {
2882  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2883};
2884void JavaThread::print_thread_state() const {
2885  print_thread_state_on(tty);
2886}
2887#endif // PRODUCT
2888
2889// Called by Threads::print() for VM_PrintThreads operation
2890void JavaThread::print_on(outputStream *st) const {
2891  st->print_raw("\"");
2892  st->print_raw(get_thread_name());
2893  st->print_raw("\" ");
2894  oop thread_oop = threadObj();
2895  if (thread_oop != NULL) {
2896    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2897    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2898    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2899  }
2900  Thread::print_on(st);
2901  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2902  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2903  if (thread_oop != NULL) {
2904    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2905  }
2906#ifndef PRODUCT
2907  print_thread_state_on(st);
2908  _safepoint_state->print_on(st);
2909#endif // PRODUCT
2910  if (is_Compiler_thread()) {
2911    CompilerThread* ct = (CompilerThread*)this;
2912    if (ct->task() != NULL) {
2913      st->print("   Compiling: ");
2914      ct->task()->print(st, NULL, true, false);
2915    } else {
2916      st->print("   No compile task");
2917    }
2918    st->cr();
2919  }
2920}
2921
2922void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2923  st->print("%s", get_thread_name_string(buf, buflen));
2924}
2925
2926// Called by fatal error handler. The difference between this and
2927// JavaThread::print() is that we can't grab lock or allocate memory.
2928void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2929  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2930  oop thread_obj = threadObj();
2931  if (thread_obj != NULL) {
2932    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2933  }
2934  st->print(" [");
2935  st->print("%s", _get_thread_state_name(_thread_state));
2936  if (osthread()) {
2937    st->print(", id=%d", osthread()->thread_id());
2938  }
2939  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2940            p2i(stack_end()), p2i(stack_base()));
2941  st->print("]");
2942  return;
2943}
2944
2945// Verification
2946
2947static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2948
2949void JavaThread::verify() {
2950  // Verify oops in the thread.
2951  oops_do(&VerifyOopClosure::verify_oop, NULL);
2952
2953  // Verify the stack frames.
2954  frames_do(frame_verify);
2955}
2956
2957// CR 6300358 (sub-CR 2137150)
2958// Most callers of this method assume that it can't return NULL but a
2959// thread may not have a name whilst it is in the process of attaching to
2960// the VM - see CR 6412693, and there are places where a JavaThread can be
2961// seen prior to having it's threadObj set (eg JNI attaching threads and
2962// if vm exit occurs during initialization). These cases can all be accounted
2963// for such that this method never returns NULL.
2964const char* JavaThread::get_thread_name() const {
2965#ifdef ASSERT
2966  // early safepoints can hit while current thread does not yet have TLS
2967  if (!SafepointSynchronize::is_at_safepoint()) {
2968    Thread *cur = Thread::current();
2969    if (!(cur->is_Java_thread() && cur == this)) {
2970      // Current JavaThreads are allowed to get their own name without
2971      // the Threads_lock.
2972      assert_locked_or_safepoint(Threads_lock);
2973    }
2974  }
2975#endif // ASSERT
2976  return get_thread_name_string();
2977}
2978
2979// Returns a non-NULL representation of this thread's name, or a suitable
2980// descriptive string if there is no set name
2981const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2982  const char* name_str;
2983  oop thread_obj = threadObj();
2984  if (thread_obj != NULL) {
2985    oop name = java_lang_Thread::name(thread_obj);
2986    if (name != NULL) {
2987      if (buf == NULL) {
2988        name_str = java_lang_String::as_utf8_string(name);
2989      } else {
2990        name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2991      }
2992    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2993      name_str = "<no-name - thread is attaching>";
2994    } else {
2995      name_str = Thread::name();
2996    }
2997  } else {
2998    name_str = Thread::name();
2999  }
3000  assert(name_str != NULL, "unexpected NULL thread name");
3001  return name_str;
3002}
3003
3004
3005const char* JavaThread::get_threadgroup_name() const {
3006  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3007  oop thread_obj = threadObj();
3008  if (thread_obj != NULL) {
3009    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3010    if (thread_group != NULL) {
3011      // ThreadGroup.name can be null
3012      return java_lang_ThreadGroup::name(thread_group);
3013    }
3014  }
3015  return NULL;
3016}
3017
3018const char* JavaThread::get_parent_name() const {
3019  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3020  oop thread_obj = threadObj();
3021  if (thread_obj != NULL) {
3022    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3023    if (thread_group != NULL) {
3024      oop parent = java_lang_ThreadGroup::parent(thread_group);
3025      if (parent != NULL) {
3026        // ThreadGroup.name can be null
3027        return java_lang_ThreadGroup::name(parent);
3028      }
3029    }
3030  }
3031  return NULL;
3032}
3033
3034ThreadPriority JavaThread::java_priority() const {
3035  oop thr_oop = threadObj();
3036  if (thr_oop == NULL) return NormPriority; // Bootstrapping
3037  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3038  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3039  return priority;
3040}
3041
3042void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3043
3044  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3045  // Link Java Thread object <-> C++ Thread
3046
3047  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3048  // and put it into a new Handle.  The Handle "thread_oop" can then
3049  // be used to pass the C++ thread object to other methods.
3050
3051  // Set the Java level thread object (jthread) field of the
3052  // new thread (a JavaThread *) to C++ thread object using the
3053  // "thread_oop" handle.
3054
3055  // Set the thread field (a JavaThread *) of the
3056  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3057
3058  Handle thread_oop(Thread::current(),
3059                    JNIHandles::resolve_non_null(jni_thread));
3060  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3061         "must be initialized");
3062  set_threadObj(thread_oop());
3063  java_lang_Thread::set_thread(thread_oop(), this);
3064
3065  if (prio == NoPriority) {
3066    prio = java_lang_Thread::priority(thread_oop());
3067    assert(prio != NoPriority, "A valid priority should be present");
3068  }
3069
3070  // Push the Java priority down to the native thread; needs Threads_lock
3071  Thread::set_priority(this, prio);
3072
3073  prepare_ext();
3074
3075  // Add the new thread to the Threads list and set it in motion.
3076  // We must have threads lock in order to call Threads::add.
3077  // It is crucial that we do not block before the thread is
3078  // added to the Threads list for if a GC happens, then the java_thread oop
3079  // will not be visited by GC.
3080  Threads::add(this);
3081}
3082
3083oop JavaThread::current_park_blocker() {
3084  // Support for JSR-166 locks
3085  oop thread_oop = threadObj();
3086  if (thread_oop != NULL &&
3087      JDK_Version::current().supports_thread_park_blocker()) {
3088    return java_lang_Thread::park_blocker(thread_oop);
3089  }
3090  return NULL;
3091}
3092
3093
3094void JavaThread::print_stack_on(outputStream* st) {
3095  if (!has_last_Java_frame()) return;
3096  ResourceMark rm;
3097  HandleMark   hm;
3098
3099  RegisterMap reg_map(this);
3100  vframe* start_vf = last_java_vframe(&reg_map);
3101  int count = 0;
3102  for (vframe* f = start_vf; f; f = f->sender()) {
3103    if (f->is_java_frame()) {
3104      javaVFrame* jvf = javaVFrame::cast(f);
3105      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3106
3107      // Print out lock information
3108      if (JavaMonitorsInStackTrace) {
3109        jvf->print_lock_info_on(st, count);
3110      }
3111    } else {
3112      // Ignore non-Java frames
3113    }
3114
3115    // Bail-out case for too deep stacks
3116    count++;
3117    if (MaxJavaStackTraceDepth == count) return;
3118  }
3119}
3120
3121
3122// JVMTI PopFrame support
3123void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3124  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3125  if (in_bytes(size_in_bytes) != 0) {
3126    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3127    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3128    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3129  }
3130}
3131
3132void* JavaThread::popframe_preserved_args() {
3133  return _popframe_preserved_args;
3134}
3135
3136ByteSize JavaThread::popframe_preserved_args_size() {
3137  return in_ByteSize(_popframe_preserved_args_size);
3138}
3139
3140WordSize JavaThread::popframe_preserved_args_size_in_words() {
3141  int sz = in_bytes(popframe_preserved_args_size());
3142  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3143  return in_WordSize(sz / wordSize);
3144}
3145
3146void JavaThread::popframe_free_preserved_args() {
3147  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3148  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3149  _popframe_preserved_args = NULL;
3150  _popframe_preserved_args_size = 0;
3151}
3152
3153#ifndef PRODUCT
3154
3155void JavaThread::trace_frames() {
3156  tty->print_cr("[Describe stack]");
3157  int frame_no = 1;
3158  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3159    tty->print("  %d. ", frame_no++);
3160    fst.current()->print_value_on(tty, this);
3161    tty->cr();
3162  }
3163}
3164
3165class PrintAndVerifyOopClosure: public OopClosure {
3166 protected:
3167  template <class T> inline void do_oop_work(T* p) {
3168    oop obj = oopDesc::load_decode_heap_oop(p);
3169    if (obj == NULL) return;
3170    tty->print(INTPTR_FORMAT ": ", p2i(p));
3171    if (obj->is_oop_or_null()) {
3172      if (obj->is_objArray()) {
3173        tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3174      } else {
3175        obj->print();
3176      }
3177    } else {
3178      tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3179    }
3180    tty->cr();
3181  }
3182 public:
3183  virtual void do_oop(oop* p) { do_oop_work(p); }
3184  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3185};
3186
3187
3188static void oops_print(frame* f, const RegisterMap *map) {
3189  PrintAndVerifyOopClosure print;
3190  f->print_value();
3191  f->oops_do(&print, NULL, (RegisterMap*)map);
3192}
3193
3194// Print our all the locations that contain oops and whether they are
3195// valid or not.  This useful when trying to find the oldest frame
3196// where an oop has gone bad since the frame walk is from youngest to
3197// oldest.
3198void JavaThread::trace_oops() {
3199  tty->print_cr("[Trace oops]");
3200  frames_do(oops_print);
3201}
3202
3203
3204#ifdef ASSERT
3205// Print or validate the layout of stack frames
3206void JavaThread::print_frame_layout(int depth, bool validate_only) {
3207  ResourceMark rm;
3208  PRESERVE_EXCEPTION_MARK;
3209  FrameValues values;
3210  int frame_no = 0;
3211  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3212    fst.current()->describe(values, ++frame_no);
3213    if (depth == frame_no) break;
3214  }
3215  if (validate_only) {
3216    values.validate();
3217  } else {
3218    tty->print_cr("[Describe stack layout]");
3219    values.print(this);
3220  }
3221}
3222#endif
3223
3224void JavaThread::trace_stack_from(vframe* start_vf) {
3225  ResourceMark rm;
3226  int vframe_no = 1;
3227  for (vframe* f = start_vf; f; f = f->sender()) {
3228    if (f->is_java_frame()) {
3229      javaVFrame::cast(f)->print_activation(vframe_no++);
3230    } else {
3231      f->print();
3232    }
3233    if (vframe_no > StackPrintLimit) {
3234      tty->print_cr("...<more frames>...");
3235      return;
3236    }
3237  }
3238}
3239
3240
3241void JavaThread::trace_stack() {
3242  if (!has_last_Java_frame()) return;
3243  ResourceMark rm;
3244  HandleMark   hm;
3245  RegisterMap reg_map(this);
3246  trace_stack_from(last_java_vframe(&reg_map));
3247}
3248
3249
3250#endif // PRODUCT
3251
3252
3253javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3254  assert(reg_map != NULL, "a map must be given");
3255  frame f = last_frame();
3256  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3257    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3258  }
3259  return NULL;
3260}
3261
3262
3263Klass* JavaThread::security_get_caller_class(int depth) {
3264  vframeStream vfst(this);
3265  vfst.security_get_caller_frame(depth);
3266  if (!vfst.at_end()) {
3267    return vfst.method()->method_holder();
3268  }
3269  return NULL;
3270}
3271
3272static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3273  assert(thread->is_Compiler_thread(), "must be compiler thread");
3274  CompileBroker::compiler_thread_loop();
3275}
3276
3277static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3278  NMethodSweeper::sweeper_loop();
3279}
3280
3281// Create a CompilerThread
3282CompilerThread::CompilerThread(CompileQueue* queue,
3283                               CompilerCounters* counters)
3284                               : JavaThread(&compiler_thread_entry) {
3285  _env   = NULL;
3286  _log   = NULL;
3287  _task  = NULL;
3288  _queue = queue;
3289  _counters = counters;
3290  _buffer_blob = NULL;
3291  _compiler = NULL;
3292
3293#ifndef PRODUCT
3294  _ideal_graph_printer = NULL;
3295#endif
3296}
3297
3298bool CompilerThread::can_call_java() const {
3299  return _compiler != NULL && _compiler->is_jvmci();
3300}
3301
3302// Create sweeper thread
3303CodeCacheSweeperThread::CodeCacheSweeperThread()
3304: JavaThread(&sweeper_thread_entry) {
3305  _scanned_compiled_method = NULL;
3306}
3307
3308void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3309  JavaThread::oops_do(f, cf);
3310  if (_scanned_compiled_method != NULL && cf != NULL) {
3311    // Safepoints can occur when the sweeper is scanning an nmethod so
3312    // process it here to make sure it isn't unloaded in the middle of
3313    // a scan.
3314    cf->do_code_blob(_scanned_compiled_method);
3315  }
3316}
3317
3318void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3319  JavaThread::nmethods_do(cf);
3320  if (_scanned_compiled_method != NULL && cf != NULL) {
3321    // Safepoints can occur when the sweeper is scanning an nmethod so
3322    // process it here to make sure it isn't unloaded in the middle of
3323    // a scan.
3324    cf->do_code_blob(_scanned_compiled_method);
3325  }
3326}
3327
3328
3329// ======= Threads ========
3330
3331// The Threads class links together all active threads, and provides
3332// operations over all threads.  It is protected by its own Mutex
3333// lock, which is also used in other contexts to protect thread
3334// operations from having the thread being operated on from exiting
3335// and going away unexpectedly (e.g., safepoint synchronization)
3336
3337JavaThread* Threads::_thread_list = NULL;
3338int         Threads::_number_of_threads = 0;
3339int         Threads::_number_of_non_daemon_threads = 0;
3340int         Threads::_return_code = 0;
3341int         Threads::_thread_claim_parity = 0;
3342size_t      JavaThread::_stack_size_at_create = 0;
3343#ifdef ASSERT
3344bool        Threads::_vm_complete = false;
3345#endif
3346
3347// All JavaThreads
3348#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3349
3350// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3351void Threads::threads_do(ThreadClosure* tc) {
3352  assert_locked_or_safepoint(Threads_lock);
3353  // ALL_JAVA_THREADS iterates through all JavaThreads
3354  ALL_JAVA_THREADS(p) {
3355    tc->do_thread(p);
3356  }
3357  // Someday we could have a table or list of all non-JavaThreads.
3358  // For now, just manually iterate through them.
3359  tc->do_thread(VMThread::vm_thread());
3360  Universe::heap()->gc_threads_do(tc);
3361  WatcherThread *wt = WatcherThread::watcher_thread();
3362  // Strictly speaking, the following NULL check isn't sufficient to make sure
3363  // the data for WatcherThread is still valid upon being examined. However,
3364  // considering that WatchThread terminates when the VM is on the way to
3365  // exit at safepoint, the chance of the above is extremely small. The right
3366  // way to prevent termination of WatcherThread would be to acquire
3367  // Terminator_lock, but we can't do that without violating the lock rank
3368  // checking in some cases.
3369  if (wt != NULL) {
3370    tc->do_thread(wt);
3371  }
3372
3373  // If CompilerThreads ever become non-JavaThreads, add them here
3374}
3375
3376// The system initialization in the library has three phases.
3377//
3378// Phase 1: java.lang.System class initialization
3379//     java.lang.System is a primordial class loaded and initialized
3380//     by the VM early during startup.  java.lang.System.<clinit>
3381//     only does registerNatives and keeps the rest of the class
3382//     initialization work later until thread initialization completes.
3383//
3384//     System.initPhase1 initializes the system properties, the static
3385//     fields in, out, and err. Set up java signal handlers, OS-specific
3386//     system settings, and thread group of the main thread.
3387static void call_initPhase1(TRAPS) {
3388  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3389  instanceKlassHandle klass (THREAD, k);
3390
3391  JavaValue result(T_VOID);
3392  JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3393                                         vmSymbols::void_method_signature(), CHECK);
3394}
3395
3396// Phase 2. Module system initialization
3397//     This will initialize the module system.  Only java.base classes
3398//     can be loaded until phase 2 completes.
3399//
3400//     Call System.initPhase2 after the compiler initialization and jsr292
3401//     classes get initialized because module initialization runs a lot of java
3402//     code, that for performance reasons, should be compiled.  Also, this will
3403//     enable the startup code to use lambda and other language features in this
3404//     phase and onward.
3405//
3406//     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3407static void call_initPhase2(TRAPS) {
3408  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3409  instanceKlassHandle klass (THREAD, k);
3410
3411  JavaValue result(T_VOID);
3412  JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3413                                         vmSymbols::void_method_signature(), CHECK);
3414  universe_post_module_init();
3415}
3416
3417// Phase 3. final setup - set security manager, system class loader and TCCL
3418//
3419//     This will instantiate and set the security manager, set the system class
3420//     loader as well as the thread context class loader.  The security manager
3421//     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3422//     other modules or the application's classpath.
3423static void call_initPhase3(TRAPS) {
3424  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3425  instanceKlassHandle klass (THREAD, k);
3426
3427  JavaValue result(T_VOID);
3428  JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3429                                         vmSymbols::void_method_signature(), CHECK);
3430}
3431
3432void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3433  TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3434
3435  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3436    create_vm_init_libraries();
3437  }
3438
3439  initialize_class(vmSymbols::java_lang_String(), CHECK);
3440
3441  // Inject CompactStrings value after the static initializers for String ran.
3442  java_lang_String::set_compact_strings(CompactStrings);
3443
3444  // Initialize java_lang.System (needed before creating the thread)
3445  initialize_class(vmSymbols::java_lang_System(), CHECK);
3446  // The VM creates & returns objects of this class. Make sure it's initialized.
3447  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3448  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3449  Handle thread_group = create_initial_thread_group(CHECK);
3450  Universe::set_main_thread_group(thread_group());
3451  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3452  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3453  main_thread->set_threadObj(thread_object);
3454  // Set thread status to running since main thread has
3455  // been started and running.
3456  java_lang_Thread::set_thread_status(thread_object,
3457                                      java_lang_Thread::RUNNABLE);
3458
3459  // The VM creates objects of this class.
3460  initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3461
3462  // The VM preresolves methods to these classes. Make sure that they get initialized
3463  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3464  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3465
3466  // Phase 1 of the system initialization in the library, java.lang.System class initialization
3467  call_initPhase1(CHECK);
3468
3469  // get the Java runtime name after java.lang.System is initialized
3470  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3471  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3472
3473  // an instance of OutOfMemory exception has been allocated earlier
3474  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3475  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3476  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3477  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3478  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3479  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3480  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3481  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3482}
3483
3484void Threads::initialize_jsr292_core_classes(TRAPS) {
3485  TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3486
3487  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3488  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3489  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3490}
3491
3492jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3493  extern void JDK_Version_init();
3494
3495  // Preinitialize version info.
3496  VM_Version::early_initialize();
3497
3498  // Check version
3499  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3500
3501  // Initialize library-based TLS
3502  ThreadLocalStorage::init();
3503
3504  // Initialize the output stream module
3505  ostream_init();
3506
3507  // Process java launcher properties.
3508  Arguments::process_sun_java_launcher_properties(args);
3509
3510  // Initialize the os module
3511  os::init();
3512
3513  // Record VM creation timing statistics
3514  TraceVmCreationTime create_vm_timer;
3515  create_vm_timer.start();
3516
3517  // Initialize system properties.
3518  Arguments::init_system_properties();
3519
3520  // So that JDK version can be used as a discriminator when parsing arguments
3521  JDK_Version_init();
3522
3523  // Update/Initialize System properties after JDK version number is known
3524  Arguments::init_version_specific_system_properties();
3525
3526  // Make sure to initialize log configuration *before* parsing arguments
3527  LogConfiguration::initialize(create_vm_timer.begin_time());
3528
3529  // Parse arguments
3530  jint parse_result = Arguments::parse(args);
3531  if (parse_result != JNI_OK) return parse_result;
3532
3533  os::init_before_ergo();
3534
3535  jint ergo_result = Arguments::apply_ergo();
3536  if (ergo_result != JNI_OK) return ergo_result;
3537
3538  // Final check of all ranges after ergonomics which may change values.
3539  if (!CommandLineFlagRangeList::check_ranges()) {
3540    return JNI_EINVAL;
3541  }
3542
3543  // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3544  bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3545  if (!constraint_result) {
3546    return JNI_EINVAL;
3547  }
3548
3549  CommandLineFlagWriteableList::mark_startup();
3550
3551  if (PauseAtStartup) {
3552    os::pause();
3553  }
3554
3555  HOTSPOT_VM_INIT_BEGIN();
3556
3557  // Timing (must come after argument parsing)
3558  TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3559
3560  // Initialize the os module after parsing the args
3561  jint os_init_2_result = os::init_2();
3562  if (os_init_2_result != JNI_OK) return os_init_2_result;
3563
3564  jint adjust_after_os_result = Arguments::adjust_after_os();
3565  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3566
3567  // Initialize output stream logging
3568  ostream_init_log();
3569
3570  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3571  // Must be before create_vm_init_agents()
3572  if (Arguments::init_libraries_at_startup()) {
3573    convert_vm_init_libraries_to_agents();
3574  }
3575
3576  // Launch -agentlib/-agentpath and converted -Xrun agents
3577  if (Arguments::init_agents_at_startup()) {
3578    create_vm_init_agents();
3579  }
3580
3581  // Initialize Threads state
3582  _thread_list = NULL;
3583  _number_of_threads = 0;
3584  _number_of_non_daemon_threads = 0;
3585
3586  // Initialize global data structures and create system classes in heap
3587  vm_init_globals();
3588
3589#if INCLUDE_JVMCI
3590  if (JVMCICounterSize > 0) {
3591    JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3592    memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3593  } else {
3594    JavaThread::_jvmci_old_thread_counters = NULL;
3595  }
3596#endif // INCLUDE_JVMCI
3597
3598  // Attach the main thread to this os thread
3599  JavaThread* main_thread = new JavaThread();
3600  main_thread->set_thread_state(_thread_in_vm);
3601  main_thread->initialize_thread_current();
3602  // must do this before set_active_handles
3603  main_thread->record_stack_base_and_size();
3604  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3605
3606  if (!main_thread->set_as_starting_thread()) {
3607    vm_shutdown_during_initialization(
3608                                      "Failed necessary internal allocation. Out of swap space");
3609    delete main_thread;
3610    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3611    return JNI_ENOMEM;
3612  }
3613
3614  // Enable guard page *after* os::create_main_thread(), otherwise it would
3615  // crash Linux VM, see notes in os_linux.cpp.
3616  main_thread->create_stack_guard_pages();
3617
3618  // Initialize Java-Level synchronization subsystem
3619  ObjectMonitor::Initialize();
3620
3621  // Initialize global modules
3622  jint status = init_globals();
3623  if (status != JNI_OK) {
3624    delete main_thread;
3625    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3626    return status;
3627  }
3628
3629  if (TRACE_INITIALIZE() != JNI_OK) {
3630    vm_exit_during_initialization("Failed to initialize tracing backend");
3631  }
3632
3633  // Should be done after the heap is fully created
3634  main_thread->cache_global_variables();
3635
3636  HandleMark hm;
3637
3638  { MutexLocker mu(Threads_lock);
3639    Threads::add(main_thread);
3640  }
3641
3642  // Any JVMTI raw monitors entered in onload will transition into
3643  // real raw monitor. VM is setup enough here for raw monitor enter.
3644  JvmtiExport::transition_pending_onload_raw_monitors();
3645
3646  // Create the VMThread
3647  { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3648
3649  VMThread::create();
3650    Thread* vmthread = VMThread::vm_thread();
3651
3652    if (!os::create_thread(vmthread, os::vm_thread)) {
3653      vm_exit_during_initialization("Cannot create VM thread. "
3654                                    "Out of system resources.");
3655    }
3656
3657    // Wait for the VM thread to become ready, and VMThread::run to initialize
3658    // Monitors can have spurious returns, must always check another state flag
3659    {
3660      MutexLocker ml(Notify_lock);
3661      os::start_thread(vmthread);
3662      while (vmthread->active_handles() == NULL) {
3663        Notify_lock->wait();
3664      }
3665    }
3666  }
3667
3668  assert(Universe::is_fully_initialized(), "not initialized");
3669  if (VerifyDuringStartup) {
3670    // Make sure we're starting with a clean slate.
3671    VM_Verify verify_op;
3672    VMThread::execute(&verify_op);
3673  }
3674
3675  Thread* THREAD = Thread::current();
3676
3677  // At this point, the Universe is initialized, but we have not executed
3678  // any byte code.  Now is a good time (the only time) to dump out the
3679  // internal state of the JVM for sharing.
3680  if (DumpSharedSpaces) {
3681    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3682    ShouldNotReachHere();
3683  }
3684
3685  // Always call even when there are not JVMTI environments yet, since environments
3686  // may be attached late and JVMTI must track phases of VM execution
3687  JvmtiExport::enter_early_start_phase();
3688
3689  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3690  JvmtiExport::post_early_vm_start();
3691
3692  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3693
3694  // We need this for ClassDataSharing - the initial vm.info property is set
3695  // with the default value of CDS "sharing" which may be reset through
3696  // command line options.
3697  reset_vm_info_property(CHECK_JNI_ERR);
3698
3699  quicken_jni_functions();
3700
3701  // No more stub generation allowed after that point.
3702  StubCodeDesc::freeze();
3703
3704  // Set flag that basic initialization has completed. Used by exceptions and various
3705  // debug stuff, that does not work until all basic classes have been initialized.
3706  set_init_completed();
3707
3708  LogConfiguration::post_initialize();
3709  Metaspace::post_initialize();
3710
3711  HOTSPOT_VM_INIT_END();
3712
3713  // record VM initialization completion time
3714#if INCLUDE_MANAGEMENT
3715  Management::record_vm_init_completed();
3716#endif // INCLUDE_MANAGEMENT
3717
3718  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3719  // set_init_completed has just been called, causing exceptions not to be shortcut
3720  // anymore. We call vm_exit_during_initialization directly instead.
3721
3722  // Initialize reference pending list locker
3723  bool needs_locker_thread = Universe::heap()->needs_reference_pending_list_locker_thread();
3724  ReferencePendingListLocker::initialize(needs_locker_thread, CHECK_JNI_ERR);
3725
3726  // Signal Dispatcher needs to be started before VMInit event is posted
3727  os::signal_init();
3728
3729  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3730  if (!DisableAttachMechanism) {
3731    AttachListener::vm_start();
3732    if (StartAttachListener || AttachListener::init_at_startup()) {
3733      AttachListener::init();
3734    }
3735  }
3736
3737  // Launch -Xrun agents
3738  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3739  // back-end can launch with -Xdebug -Xrunjdwp.
3740  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3741    create_vm_init_libraries();
3742  }
3743
3744  if (CleanChunkPoolAsync) {
3745    Chunk::start_chunk_pool_cleaner_task();
3746  }
3747
3748  // initialize compiler(s)
3749#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3750  CompileBroker::compilation_init(CHECK_JNI_ERR);
3751#endif
3752
3753  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3754  // It is done after compilers are initialized, because otherwise compilations of
3755  // signature polymorphic MH intrinsics can be missed
3756  // (see SystemDictionary::find_method_handle_intrinsic).
3757  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3758
3759  // This will initialize the module system.  Only java.base classes can be
3760  // loaded until phase 2 completes
3761  call_initPhase2(CHECK_JNI_ERR);
3762
3763  // Always call even when there are not JVMTI environments yet, since environments
3764  // may be attached late and JVMTI must track phases of VM execution
3765  JvmtiExport::enter_start_phase();
3766
3767  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3768  JvmtiExport::post_vm_start();
3769
3770  // Final system initialization including security manager and system class loader
3771  call_initPhase3(CHECK_JNI_ERR);
3772
3773  // cache the system class loader
3774  SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3775
3776  // Always call even when there are not JVMTI environments yet, since environments
3777  // may be attached late and JVMTI must track phases of VM execution
3778  JvmtiExport::enter_live_phase();
3779
3780  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3781  JvmtiExport::post_vm_initialized();
3782
3783  if (TRACE_START() != JNI_OK) {
3784    vm_exit_during_initialization("Failed to start tracing backend.");
3785  }
3786
3787#if INCLUDE_MANAGEMENT
3788  Management::initialize(THREAD);
3789
3790  if (HAS_PENDING_EXCEPTION) {
3791    // management agent fails to start possibly due to
3792    // configuration problem and is responsible for printing
3793    // stack trace if appropriate. Simply exit VM.
3794    vm_exit(1);
3795  }
3796#endif // INCLUDE_MANAGEMENT
3797
3798  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3799  if (MemProfiling)                   MemProfiler::engage();
3800  StatSampler::engage();
3801  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3802
3803  BiasedLocking::init();
3804
3805#if INCLUDE_RTM_OPT
3806  RTMLockingCounters::init();
3807#endif
3808
3809  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3810    call_postVMInitHook(THREAD);
3811    // The Java side of PostVMInitHook.run must deal with all
3812    // exceptions and provide means of diagnosis.
3813    if (HAS_PENDING_EXCEPTION) {
3814      CLEAR_PENDING_EXCEPTION;
3815    }
3816  }
3817
3818  {
3819    MutexLocker ml(PeriodicTask_lock);
3820    // Make sure the WatcherThread can be started by WatcherThread::start()
3821    // or by dynamic enrollment.
3822    WatcherThread::make_startable();
3823    // Start up the WatcherThread if there are any periodic tasks
3824    // NOTE:  All PeriodicTasks should be registered by now. If they
3825    //   aren't, late joiners might appear to start slowly (we might
3826    //   take a while to process their first tick).
3827    if (PeriodicTask::num_tasks() > 0) {
3828      WatcherThread::start();
3829    }
3830  }
3831
3832  CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3833
3834  create_vm_timer.end();
3835#ifdef ASSERT
3836  _vm_complete = true;
3837#endif
3838  return JNI_OK;
3839}
3840
3841// type for the Agent_OnLoad and JVM_OnLoad entry points
3842extern "C" {
3843  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3844}
3845// Find a command line agent library and return its entry point for
3846//         -agentlib:  -agentpath:   -Xrun
3847// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3848static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3849                                    const char *on_load_symbols[],
3850                                    size_t num_symbol_entries) {
3851  OnLoadEntry_t on_load_entry = NULL;
3852  void *library = NULL;
3853
3854  if (!agent->valid()) {
3855    char buffer[JVM_MAXPATHLEN];
3856    char ebuf[1024] = "";
3857    const char *name = agent->name();
3858    const char *msg = "Could not find agent library ";
3859
3860    // First check to see if agent is statically linked into executable
3861    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3862      library = agent->os_lib();
3863    } else if (agent->is_absolute_path()) {
3864      library = os::dll_load(name, ebuf, sizeof ebuf);
3865      if (library == NULL) {
3866        const char *sub_msg = " in absolute path, with error: ";
3867        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3868        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3869        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3870        // If we can't find the agent, exit.
3871        vm_exit_during_initialization(buf, NULL);
3872        FREE_C_HEAP_ARRAY(char, buf);
3873      }
3874    } else {
3875      // Try to load the agent from the standard dll directory
3876      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3877                             name)) {
3878        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3879      }
3880      if (library == NULL) { // Try the local directory
3881        char ns[1] = {0};
3882        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3883          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3884        }
3885        if (library == NULL) {
3886          const char *sub_msg = " on the library path, with error: ";
3887          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3888          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3889          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3890          // If we can't find the agent, exit.
3891          vm_exit_during_initialization(buf, NULL);
3892          FREE_C_HEAP_ARRAY(char, buf);
3893        }
3894      }
3895    }
3896    agent->set_os_lib(library);
3897    agent->set_valid();
3898  }
3899
3900  // Find the OnLoad function.
3901  on_load_entry =
3902    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3903                                                          false,
3904                                                          on_load_symbols,
3905                                                          num_symbol_entries));
3906  return on_load_entry;
3907}
3908
3909// Find the JVM_OnLoad entry point
3910static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3911  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3912  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3913}
3914
3915// Find the Agent_OnLoad entry point
3916static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3917  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3918  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3919}
3920
3921// For backwards compatibility with -Xrun
3922// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3923// treated like -agentpath:
3924// Must be called before agent libraries are created
3925void Threads::convert_vm_init_libraries_to_agents() {
3926  AgentLibrary* agent;
3927  AgentLibrary* next;
3928
3929  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3930    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3931    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3932
3933    // If there is an JVM_OnLoad function it will get called later,
3934    // otherwise see if there is an Agent_OnLoad
3935    if (on_load_entry == NULL) {
3936      on_load_entry = lookup_agent_on_load(agent);
3937      if (on_load_entry != NULL) {
3938        // switch it to the agent list -- so that Agent_OnLoad will be called,
3939        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3940        Arguments::convert_library_to_agent(agent);
3941      } else {
3942        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3943      }
3944    }
3945  }
3946}
3947
3948// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3949// Invokes Agent_OnLoad
3950// Called very early -- before JavaThreads exist
3951void Threads::create_vm_init_agents() {
3952  extern struct JavaVM_ main_vm;
3953  AgentLibrary* agent;
3954
3955  JvmtiExport::enter_onload_phase();
3956
3957  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3958    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3959
3960    if (on_load_entry != NULL) {
3961      // Invoke the Agent_OnLoad function
3962      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3963      if (err != JNI_OK) {
3964        vm_exit_during_initialization("agent library failed to init", agent->name());
3965      }
3966    } else {
3967      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3968    }
3969  }
3970  JvmtiExport::enter_primordial_phase();
3971}
3972
3973extern "C" {
3974  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3975}
3976
3977void Threads::shutdown_vm_agents() {
3978  // Send any Agent_OnUnload notifications
3979  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3980  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3981  extern struct JavaVM_ main_vm;
3982  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3983
3984    // Find the Agent_OnUnload function.
3985    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3986                                                   os::find_agent_function(agent,
3987                                                   false,
3988                                                   on_unload_symbols,
3989                                                   num_symbol_entries));
3990
3991    // Invoke the Agent_OnUnload function
3992    if (unload_entry != NULL) {
3993      JavaThread* thread = JavaThread::current();
3994      ThreadToNativeFromVM ttn(thread);
3995      HandleMark hm(thread);
3996      (*unload_entry)(&main_vm);
3997    }
3998  }
3999}
4000
4001// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4002// Invokes JVM_OnLoad
4003void Threads::create_vm_init_libraries() {
4004  extern struct JavaVM_ main_vm;
4005  AgentLibrary* agent;
4006
4007  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4008    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4009
4010    if (on_load_entry != NULL) {
4011      // Invoke the JVM_OnLoad function
4012      JavaThread* thread = JavaThread::current();
4013      ThreadToNativeFromVM ttn(thread);
4014      HandleMark hm(thread);
4015      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4016      if (err != JNI_OK) {
4017        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4018      }
4019    } else {
4020      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4021    }
4022  }
4023}
4024
4025JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4026  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4027
4028  JavaThread* java_thread = NULL;
4029  // Sequential search for now.  Need to do better optimization later.
4030  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4031    oop tobj = thread->threadObj();
4032    if (!thread->is_exiting() &&
4033        tobj != NULL &&
4034        java_tid == java_lang_Thread::thread_id(tobj)) {
4035      java_thread = thread;
4036      break;
4037    }
4038  }
4039  return java_thread;
4040}
4041
4042
4043// Last thread running calls java.lang.Shutdown.shutdown()
4044void JavaThread::invoke_shutdown_hooks() {
4045  HandleMark hm(this);
4046
4047  // We could get here with a pending exception, if so clear it now.
4048  if (this->has_pending_exception()) {
4049    this->clear_pending_exception();
4050  }
4051
4052  EXCEPTION_MARK;
4053  Klass* k =
4054    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4055                                      THREAD);
4056  if (k != NULL) {
4057    // SystemDictionary::resolve_or_null will return null if there was
4058    // an exception.  If we cannot load the Shutdown class, just don't
4059    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4060    // and finalizers (if runFinalizersOnExit is set) won't be run.
4061    // Note that if a shutdown hook was registered or runFinalizersOnExit
4062    // was called, the Shutdown class would have already been loaded
4063    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4064    instanceKlassHandle shutdown_klass (THREAD, k);
4065    JavaValue result(T_VOID);
4066    JavaCalls::call_static(&result,
4067                           shutdown_klass,
4068                           vmSymbols::shutdown_method_name(),
4069                           vmSymbols::void_method_signature(),
4070                           THREAD);
4071  }
4072  CLEAR_PENDING_EXCEPTION;
4073}
4074
4075// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4076// the program falls off the end of main(). Another VM exit path is through
4077// vm_exit() when the program calls System.exit() to return a value or when
4078// there is a serious error in VM. The two shutdown paths are not exactly
4079// the same, but they share Shutdown.shutdown() at Java level and before_exit()
4080// and VM_Exit op at VM level.
4081//
4082// Shutdown sequence:
4083//   + Shutdown native memory tracking if it is on
4084//   + Wait until we are the last non-daemon thread to execute
4085//     <-- every thing is still working at this moment -->
4086//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4087//        shutdown hooks, run finalizers if finalization-on-exit
4088//   + Call before_exit(), prepare for VM exit
4089//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4090//        currently the only user of this mechanism is File.deleteOnExit())
4091//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4092//        post thread end and vm death events to JVMTI,
4093//        stop signal thread
4094//   + Call JavaThread::exit(), it will:
4095//      > release JNI handle blocks, remove stack guard pages
4096//      > remove this thread from Threads list
4097//     <-- no more Java code from this thread after this point -->
4098//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4099//     the compiler threads at safepoint
4100//     <-- do not use anything that could get blocked by Safepoint -->
4101//   + Disable tracing at JNI/JVM barriers
4102//   + Set _vm_exited flag for threads that are still running native code
4103//   + Delete this thread
4104//   + Call exit_globals()
4105//      > deletes tty
4106//      > deletes PerfMemory resources
4107//   + Return to caller
4108
4109bool Threads::destroy_vm() {
4110  JavaThread* thread = JavaThread::current();
4111
4112#ifdef ASSERT
4113  _vm_complete = false;
4114#endif
4115  // Wait until we are the last non-daemon thread to execute
4116  { MutexLocker nu(Threads_lock);
4117    while (Threads::number_of_non_daemon_threads() > 1)
4118      // This wait should make safepoint checks, wait without a timeout,
4119      // and wait as a suspend-equivalent condition.
4120      //
4121      // Note: If the FlatProfiler is running and this thread is waiting
4122      // for another non-daemon thread to finish, then the FlatProfiler
4123      // is waiting for the external suspend request on this thread to
4124      // complete. wait_for_ext_suspend_completion() will eventually
4125      // timeout, but that takes time. Making this wait a suspend-
4126      // equivalent condition solves that timeout problem.
4127      //
4128      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4129                         Mutex::_as_suspend_equivalent_flag);
4130  }
4131
4132  // Hang forever on exit if we are reporting an error.
4133  if (ShowMessageBoxOnError && is_error_reported()) {
4134    os::infinite_sleep();
4135  }
4136  os::wait_for_keypress_at_exit();
4137
4138  // run Java level shutdown hooks
4139  thread->invoke_shutdown_hooks();
4140
4141  before_exit(thread);
4142
4143  thread->exit(true);
4144
4145  // Stop VM thread.
4146  {
4147    // 4945125 The vm thread comes to a safepoint during exit.
4148    // GC vm_operations can get caught at the safepoint, and the
4149    // heap is unparseable if they are caught. Grab the Heap_lock
4150    // to prevent this. The GC vm_operations will not be able to
4151    // queue until after the vm thread is dead. After this point,
4152    // we'll never emerge out of the safepoint before the VM exits.
4153
4154    MutexLocker ml(Heap_lock);
4155
4156    VMThread::wait_for_vm_thread_exit();
4157    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4158    VMThread::destroy();
4159  }
4160
4161  // clean up ideal graph printers
4162#if defined(COMPILER2) && !defined(PRODUCT)
4163  IdealGraphPrinter::clean_up();
4164#endif
4165
4166  // Now, all Java threads are gone except daemon threads. Daemon threads
4167  // running Java code or in VM are stopped by the Safepoint. However,
4168  // daemon threads executing native code are still running.  But they
4169  // will be stopped at native=>Java/VM barriers. Note that we can't
4170  // simply kill or suspend them, as it is inherently deadlock-prone.
4171
4172  VM_Exit::set_vm_exited();
4173
4174  notify_vm_shutdown();
4175
4176  delete thread;
4177
4178#if INCLUDE_JVMCI
4179  if (JVMCICounterSize > 0) {
4180    FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4181  }
4182#endif
4183
4184  // exit_globals() will delete tty
4185  exit_globals();
4186
4187  LogConfiguration::finalize();
4188
4189  return true;
4190}
4191
4192
4193jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4194  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4195  return is_supported_jni_version(version);
4196}
4197
4198
4199jboolean Threads::is_supported_jni_version(jint version) {
4200  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4201  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4202  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4203  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4204  if (version == JNI_VERSION_9) return JNI_TRUE;
4205  return JNI_FALSE;
4206}
4207
4208
4209void Threads::add(JavaThread* p, bool force_daemon) {
4210  // The threads lock must be owned at this point
4211  assert_locked_or_safepoint(Threads_lock);
4212
4213  // See the comment for this method in thread.hpp for its purpose and
4214  // why it is called here.
4215  p->initialize_queues();
4216  p->set_next(_thread_list);
4217  _thread_list = p;
4218  _number_of_threads++;
4219  oop threadObj = p->threadObj();
4220  bool daemon = true;
4221  // Bootstrapping problem: threadObj can be null for initial
4222  // JavaThread (or for threads attached via JNI)
4223  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4224    _number_of_non_daemon_threads++;
4225    daemon = false;
4226  }
4227
4228  ThreadService::add_thread(p, daemon);
4229
4230  // Possible GC point.
4231  Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4232}
4233
4234void Threads::remove(JavaThread* p) {
4235  // Extra scope needed for Thread_lock, so we can check
4236  // that we do not remove thread without safepoint code notice
4237  { MutexLocker ml(Threads_lock);
4238
4239    assert(includes(p), "p must be present");
4240
4241    JavaThread* current = _thread_list;
4242    JavaThread* prev    = NULL;
4243
4244    while (current != p) {
4245      prev    = current;
4246      current = current->next();
4247    }
4248
4249    if (prev) {
4250      prev->set_next(current->next());
4251    } else {
4252      _thread_list = p->next();
4253    }
4254    _number_of_threads--;
4255    oop threadObj = p->threadObj();
4256    bool daemon = true;
4257    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4258      _number_of_non_daemon_threads--;
4259      daemon = false;
4260
4261      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4262      // on destroy_vm will wake up.
4263      if (number_of_non_daemon_threads() == 1) {
4264        Threads_lock->notify_all();
4265      }
4266    }
4267    ThreadService::remove_thread(p, daemon);
4268
4269    // Make sure that safepoint code disregard this thread. This is needed since
4270    // the thread might mess around with locks after this point. This can cause it
4271    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4272    // of this thread since it is removed from the queue.
4273    p->set_terminated_value();
4274  } // unlock Threads_lock
4275
4276  // Since Events::log uses a lock, we grab it outside the Threads_lock
4277  Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4278}
4279
4280// Threads_lock must be held when this is called (or must be called during a safepoint)
4281bool Threads::includes(JavaThread* p) {
4282  assert(Threads_lock->is_locked(), "sanity check");
4283  ALL_JAVA_THREADS(q) {
4284    if (q == p) {
4285      return true;
4286    }
4287  }
4288  return false;
4289}
4290
4291// Operations on the Threads list for GC.  These are not explicitly locked,
4292// but the garbage collector must provide a safe context for them to run.
4293// In particular, these things should never be called when the Threads_lock
4294// is held by some other thread. (Note: the Safepoint abstraction also
4295// uses the Threads_lock to guarantee this property. It also makes sure that
4296// all threads gets blocked when exiting or starting).
4297
4298void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4299  ALL_JAVA_THREADS(p) {
4300    p->oops_do(f, cf);
4301  }
4302  VMThread::vm_thread()->oops_do(f, cf);
4303}
4304
4305void Threads::change_thread_claim_parity() {
4306  // Set the new claim parity.
4307  assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4308         "Not in range.");
4309  _thread_claim_parity++;
4310  if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4311  assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4312         "Not in range.");
4313}
4314
4315#ifdef ASSERT
4316void Threads::assert_all_threads_claimed() {
4317  ALL_JAVA_THREADS(p) {
4318    const int thread_parity = p->oops_do_parity();
4319    assert((thread_parity == _thread_claim_parity),
4320           "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4321  }
4322}
4323#endif // ASSERT
4324
4325void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4326  int cp = Threads::thread_claim_parity();
4327  ALL_JAVA_THREADS(p) {
4328    if (p->claim_oops_do(is_par, cp)) {
4329      p->oops_do(f, cf);
4330    }
4331  }
4332  VMThread* vmt = VMThread::vm_thread();
4333  if (vmt->claim_oops_do(is_par, cp)) {
4334    vmt->oops_do(f, cf);
4335  }
4336}
4337
4338#if INCLUDE_ALL_GCS
4339// Used by ParallelScavenge
4340void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4341  ALL_JAVA_THREADS(p) {
4342    q->enqueue(new ThreadRootsTask(p));
4343  }
4344  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4345}
4346
4347// Used by Parallel Old
4348void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4349  ALL_JAVA_THREADS(p) {
4350    q->enqueue(new ThreadRootsMarkingTask(p));
4351  }
4352  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4353}
4354#endif // INCLUDE_ALL_GCS
4355
4356void Threads::nmethods_do(CodeBlobClosure* cf) {
4357  ALL_JAVA_THREADS(p) {
4358    // This is used by the code cache sweeper to mark nmethods that are active
4359    // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4360    // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4361    if(!p->is_Code_cache_sweeper_thread()) {
4362      p->nmethods_do(cf);
4363    }
4364  }
4365}
4366
4367void Threads::metadata_do(void f(Metadata*)) {
4368  ALL_JAVA_THREADS(p) {
4369    p->metadata_do(f);
4370  }
4371}
4372
4373class ThreadHandlesClosure : public ThreadClosure {
4374  void (*_f)(Metadata*);
4375 public:
4376  ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4377  virtual void do_thread(Thread* thread) {
4378    thread->metadata_handles_do(_f);
4379  }
4380};
4381
4382void Threads::metadata_handles_do(void f(Metadata*)) {
4383  // Only walk the Handles in Thread.
4384  ThreadHandlesClosure handles_closure(f);
4385  threads_do(&handles_closure);
4386}
4387
4388void Threads::deoptimized_wrt_marked_nmethods() {
4389  ALL_JAVA_THREADS(p) {
4390    p->deoptimized_wrt_marked_nmethods();
4391  }
4392}
4393
4394
4395// Get count Java threads that are waiting to enter the specified monitor.
4396GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4397                                                         address monitor,
4398                                                         bool doLock) {
4399  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4400         "must grab Threads_lock or be at safepoint");
4401  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4402
4403  int i = 0;
4404  {
4405    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4406    ALL_JAVA_THREADS(p) {
4407      if (!p->can_call_java()) continue;
4408
4409      address pending = (address)p->current_pending_monitor();
4410      if (pending == monitor) {             // found a match
4411        if (i < count) result->append(p);   // save the first count matches
4412        i++;
4413      }
4414    }
4415  }
4416  return result;
4417}
4418
4419
4420JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4421                                                      bool doLock) {
4422  assert(doLock ||
4423         Threads_lock->owned_by_self() ||
4424         SafepointSynchronize::is_at_safepoint(),
4425         "must grab Threads_lock or be at safepoint");
4426
4427  // NULL owner means not locked so we can skip the search
4428  if (owner == NULL) return NULL;
4429
4430  {
4431    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4432    ALL_JAVA_THREADS(p) {
4433      // first, see if owner is the address of a Java thread
4434      if (owner == (address)p) return p;
4435    }
4436  }
4437  // Cannot assert on lack of success here since this function may be
4438  // used by code that is trying to report useful problem information
4439  // like deadlock detection.
4440  if (UseHeavyMonitors) return NULL;
4441
4442  // If we didn't find a matching Java thread and we didn't force use of
4443  // heavyweight monitors, then the owner is the stack address of the
4444  // Lock Word in the owning Java thread's stack.
4445  //
4446  JavaThread* the_owner = NULL;
4447  {
4448    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4449    ALL_JAVA_THREADS(q) {
4450      if (q->is_lock_owned(owner)) {
4451        the_owner = q;
4452        break;
4453      }
4454    }
4455  }
4456  // cannot assert on lack of success here; see above comment
4457  return the_owner;
4458}
4459
4460// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4461void Threads::print_on(outputStream* st, bool print_stacks,
4462                       bool internal_format, bool print_concurrent_locks) {
4463  char buf[32];
4464  st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4465
4466  st->print_cr("Full thread dump %s (%s %s):",
4467               Abstract_VM_Version::vm_name(),
4468               Abstract_VM_Version::vm_release(),
4469               Abstract_VM_Version::vm_info_string());
4470  st->cr();
4471
4472#if INCLUDE_SERVICES
4473  // Dump concurrent locks
4474  ConcurrentLocksDump concurrent_locks;
4475  if (print_concurrent_locks) {
4476    concurrent_locks.dump_at_safepoint();
4477  }
4478#endif // INCLUDE_SERVICES
4479
4480  ALL_JAVA_THREADS(p) {
4481    ResourceMark rm;
4482    p->print_on(st);
4483    if (print_stacks) {
4484      if (internal_format) {
4485        p->trace_stack();
4486      } else {
4487        p->print_stack_on(st);
4488      }
4489    }
4490    st->cr();
4491#if INCLUDE_SERVICES
4492    if (print_concurrent_locks) {
4493      concurrent_locks.print_locks_on(p, st);
4494    }
4495#endif // INCLUDE_SERVICES
4496  }
4497
4498  VMThread::vm_thread()->print_on(st);
4499  st->cr();
4500  Universe::heap()->print_gc_threads_on(st);
4501  WatcherThread* wt = WatcherThread::watcher_thread();
4502  if (wt != NULL) {
4503    wt->print_on(st);
4504    st->cr();
4505  }
4506  st->flush();
4507}
4508
4509void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4510                             int buflen, bool* found_current) {
4511  if (this_thread != NULL) {
4512    bool is_current = (current == this_thread);
4513    *found_current = *found_current || is_current;
4514    st->print("%s", is_current ? "=>" : "  ");
4515
4516    st->print(PTR_FORMAT, p2i(this_thread));
4517    st->print(" ");
4518    this_thread->print_on_error(st, buf, buflen);
4519    st->cr();
4520  }
4521}
4522
4523class PrintOnErrorClosure : public ThreadClosure {
4524  outputStream* _st;
4525  Thread* _current;
4526  char* _buf;
4527  int _buflen;
4528  bool* _found_current;
4529 public:
4530  PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4531                      int buflen, bool* found_current) :
4532   _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4533
4534  virtual void do_thread(Thread* thread) {
4535    Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4536  }
4537};
4538
4539// Threads::print_on_error() is called by fatal error handler. It's possible
4540// that VM is not at safepoint and/or current thread is inside signal handler.
4541// Don't print stack trace, as the stack may not be walkable. Don't allocate
4542// memory (even in resource area), it might deadlock the error handler.
4543void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4544                             int buflen) {
4545  bool found_current = false;
4546  st->print_cr("Java Threads: ( => current thread )");
4547  ALL_JAVA_THREADS(thread) {
4548    print_on_error(thread, st, current, buf, buflen, &found_current);
4549  }
4550  st->cr();
4551
4552  st->print_cr("Other Threads:");
4553  print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4554  print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4555
4556  PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4557  Universe::heap()->gc_threads_do(&print_closure);
4558
4559  if (!found_current) {
4560    st->cr();
4561    st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4562    current->print_on_error(st, buf, buflen);
4563    st->cr();
4564  }
4565  st->cr();
4566  st->print_cr("Threads with active compile tasks:");
4567  print_threads_compiling(st, buf, buflen);
4568}
4569
4570void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4571  ALL_JAVA_THREADS(thread) {
4572    if (thread->is_Compiler_thread()) {
4573      CompilerThread* ct = (CompilerThread*) thread;
4574      if (ct->task() != NULL) {
4575        thread->print_name_on_error(st, buf, buflen);
4576        ct->task()->print(st, NULL, true, true);
4577      }
4578    }
4579  }
4580}
4581
4582
4583// Internal SpinLock and Mutex
4584// Based on ParkEvent
4585
4586// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4587//
4588// We employ SpinLocks _only for low-contention, fixed-length
4589// short-duration critical sections where we're concerned
4590// about native mutex_t or HotSpot Mutex:: latency.
4591// The mux construct provides a spin-then-block mutual exclusion
4592// mechanism.
4593//
4594// Testing has shown that contention on the ListLock guarding gFreeList
4595// is common.  If we implement ListLock as a simple SpinLock it's common
4596// for the JVM to devolve to yielding with little progress.  This is true
4597// despite the fact that the critical sections protected by ListLock are
4598// extremely short.
4599//
4600// TODO-FIXME: ListLock should be of type SpinLock.
4601// We should make this a 1st-class type, integrated into the lock
4602// hierarchy as leaf-locks.  Critically, the SpinLock structure
4603// should have sufficient padding to avoid false-sharing and excessive
4604// cache-coherency traffic.
4605
4606
4607typedef volatile int SpinLockT;
4608
4609void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4610  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4611    return;   // normal fast-path return
4612  }
4613
4614  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4615  TEVENT(SpinAcquire - ctx);
4616  int ctr = 0;
4617  int Yields = 0;
4618  for (;;) {
4619    while (*adr != 0) {
4620      ++ctr;
4621      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4622        if (Yields > 5) {
4623          os::naked_short_sleep(1);
4624        } else {
4625          os::naked_yield();
4626          ++Yields;
4627        }
4628      } else {
4629        SpinPause();
4630      }
4631    }
4632    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4633  }
4634}
4635
4636void Thread::SpinRelease(volatile int * adr) {
4637  assert(*adr != 0, "invariant");
4638  OrderAccess::fence();      // guarantee at least release consistency.
4639  // Roach-motel semantics.
4640  // It's safe if subsequent LDs and STs float "up" into the critical section,
4641  // but prior LDs and STs within the critical section can't be allowed
4642  // to reorder or float past the ST that releases the lock.
4643  // Loads and stores in the critical section - which appear in program
4644  // order before the store that releases the lock - must also appear
4645  // before the store that releases the lock in memory visibility order.
4646  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4647  // the ST of 0 into the lock-word which releases the lock, so fence
4648  // more than covers this on all platforms.
4649  *adr = 0;
4650}
4651
4652// muxAcquire and muxRelease:
4653//
4654// *  muxAcquire and muxRelease support a single-word lock-word construct.
4655//    The LSB of the word is set IFF the lock is held.
4656//    The remainder of the word points to the head of a singly-linked list
4657//    of threads blocked on the lock.
4658//
4659// *  The current implementation of muxAcquire-muxRelease uses its own
4660//    dedicated Thread._MuxEvent instance.  If we're interested in
4661//    minimizing the peak number of extant ParkEvent instances then
4662//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4663//    as certain invariants were satisfied.  Specifically, care would need
4664//    to be taken with regards to consuming unpark() "permits".
4665//    A safe rule of thumb is that a thread would never call muxAcquire()
4666//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4667//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4668//    consume an unpark() permit intended for monitorenter, for instance.
4669//    One way around this would be to widen the restricted-range semaphore
4670//    implemented in park().  Another alternative would be to provide
4671//    multiple instances of the PlatformEvent() for each thread.  One
4672//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4673//
4674// *  Usage:
4675//    -- Only as leaf locks
4676//    -- for short-term locking only as muxAcquire does not perform
4677//       thread state transitions.
4678//
4679// Alternatives:
4680// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4681//    but with parking or spin-then-park instead of pure spinning.
4682// *  Use Taura-Oyama-Yonenzawa locks.
4683// *  It's possible to construct a 1-0 lock if we encode the lockword as
4684//    (List,LockByte).  Acquire will CAS the full lockword while Release
4685//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4686//    acquiring threads use timers (ParkTimed) to detect and recover from
4687//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4688//    boundaries by using placement-new.
4689// *  Augment MCS with advisory back-link fields maintained with CAS().
4690//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4691//    The validity of the backlinks must be ratified before we trust the value.
4692//    If the backlinks are invalid the exiting thread must back-track through the
4693//    the forward links, which are always trustworthy.
4694// *  Add a successor indication.  The LockWord is currently encoded as
4695//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4696//    to provide the usual futile-wakeup optimization.
4697//    See RTStt for details.
4698// *  Consider schedctl.sc_nopreempt to cover the critical section.
4699//
4700
4701
4702typedef volatile intptr_t MutexT;      // Mux Lock-word
4703enum MuxBits { LOCKBIT = 1 };
4704
4705void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4706  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4707  if (w == 0) return;
4708  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4709    return;
4710  }
4711
4712  TEVENT(muxAcquire - Contention);
4713  ParkEvent * const Self = Thread::current()->_MuxEvent;
4714  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4715  for (;;) {
4716    int its = (os::is_MP() ? 100 : 0) + 1;
4717
4718    // Optional spin phase: spin-then-park strategy
4719    while (--its >= 0) {
4720      w = *Lock;
4721      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4722        return;
4723      }
4724    }
4725
4726    Self->reset();
4727    Self->OnList = intptr_t(Lock);
4728    // The following fence() isn't _strictly necessary as the subsequent
4729    // CAS() both serializes execution and ratifies the fetched *Lock value.
4730    OrderAccess::fence();
4731    for (;;) {
4732      w = *Lock;
4733      if ((w & LOCKBIT) == 0) {
4734        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4735          Self->OnList = 0;   // hygiene - allows stronger asserts
4736          return;
4737        }
4738        continue;      // Interference -- *Lock changed -- Just retry
4739      }
4740      assert(w & LOCKBIT, "invariant");
4741      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4742      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4743    }
4744
4745    while (Self->OnList != 0) {
4746      Self->park();
4747    }
4748  }
4749}
4750
4751void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4752  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4753  if (w == 0) return;
4754  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4755    return;
4756  }
4757
4758  TEVENT(muxAcquire - Contention);
4759  ParkEvent * ReleaseAfter = NULL;
4760  if (ev == NULL) {
4761    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4762  }
4763  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4764  for (;;) {
4765    guarantee(ev->OnList == 0, "invariant");
4766    int its = (os::is_MP() ? 100 : 0) + 1;
4767
4768    // Optional spin phase: spin-then-park strategy
4769    while (--its >= 0) {
4770      w = *Lock;
4771      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4772        if (ReleaseAfter != NULL) {
4773          ParkEvent::Release(ReleaseAfter);
4774        }
4775        return;
4776      }
4777    }
4778
4779    ev->reset();
4780    ev->OnList = intptr_t(Lock);
4781    // The following fence() isn't _strictly necessary as the subsequent
4782    // CAS() both serializes execution and ratifies the fetched *Lock value.
4783    OrderAccess::fence();
4784    for (;;) {
4785      w = *Lock;
4786      if ((w & LOCKBIT) == 0) {
4787        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4788          ev->OnList = 0;
4789          // We call ::Release while holding the outer lock, thus
4790          // artificially lengthening the critical section.
4791          // Consider deferring the ::Release() until the subsequent unlock(),
4792          // after we've dropped the outer lock.
4793          if (ReleaseAfter != NULL) {
4794            ParkEvent::Release(ReleaseAfter);
4795          }
4796          return;
4797        }
4798        continue;      // Interference -- *Lock changed -- Just retry
4799      }
4800      assert(w & LOCKBIT, "invariant");
4801      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4802      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4803    }
4804
4805    while (ev->OnList != 0) {
4806      ev->park();
4807    }
4808  }
4809}
4810
4811// Release() must extract a successor from the list and then wake that thread.
4812// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4813// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4814// Release() would :
4815// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4816// (B) Extract a successor from the private list "in-hand"
4817// (C) attempt to CAS() the residual back into *Lock over null.
4818//     If there were any newly arrived threads and the CAS() would fail.
4819//     In that case Release() would detach the RATs, re-merge the list in-hand
4820//     with the RATs and repeat as needed.  Alternately, Release() might
4821//     detach and extract a successor, but then pass the residual list to the wakee.
4822//     The wakee would be responsible for reattaching and remerging before it
4823//     competed for the lock.
4824//
4825// Both "pop" and DMR are immune from ABA corruption -- there can be
4826// multiple concurrent pushers, but only one popper or detacher.
4827// This implementation pops from the head of the list.  This is unfair,
4828// but tends to provide excellent throughput as hot threads remain hot.
4829// (We wake recently run threads first).
4830//
4831// All paths through muxRelease() will execute a CAS.
4832// Release consistency -- We depend on the CAS in muxRelease() to provide full
4833// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4834// executed within the critical section are complete and globally visible before the
4835// store (CAS) to the lock-word that releases the lock becomes globally visible.
4836void Thread::muxRelease(volatile intptr_t * Lock)  {
4837  for (;;) {
4838    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4839    assert(w & LOCKBIT, "invariant");
4840    if (w == LOCKBIT) return;
4841    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4842    assert(List != NULL, "invariant");
4843    assert(List->OnList == intptr_t(Lock), "invariant");
4844    ParkEvent * const nxt = List->ListNext;
4845    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4846
4847    // The following CAS() releases the lock and pops the head element.
4848    // The CAS() also ratifies the previously fetched lock-word value.
4849    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4850      continue;
4851    }
4852    List->OnList = 0;
4853    OrderAccess::fence();
4854    List->unpark();
4855    return;
4856  }
4857}
4858
4859
4860void Threads::verify() {
4861  ALL_JAVA_THREADS(p) {
4862    p->verify();
4863  }
4864  VMThread* thread = VMThread::vm_thread();
4865  if (thread != NULL) thread->verify();
4866}
4867