sharedRuntime.cpp revision 7418:ef7449e07592
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "code/codeCache.hpp"
29#include "code/compiledIC.hpp"
30#include "code/scopeDesc.hpp"
31#include "code/vtableStubs.hpp"
32#include "compiler/abstractCompiler.hpp"
33#include "compiler/compileBroker.hpp"
34#include "compiler/compilerOracle.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "interpreter/interpreterRuntime.hpp"
38#include "memory/gcLocker.inline.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/oop.inline.hpp"
41#include "prims/forte.hpp"
42#include "prims/jvmtiExport.hpp"
43#include "prims/jvmtiRedefineClassesTrace.hpp"
44#include "prims/methodHandles.hpp"
45#include "prims/nativeLookup.hpp"
46#include "runtime/atomic.inline.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/biasedLocking.hpp"
49#include "runtime/handles.inline.hpp"
50#include "runtime/init.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/javaCalls.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/vframe.hpp"
56#include "runtime/vframeArray.hpp"
57#include "utilities/copy.hpp"
58#include "utilities/dtrace.hpp"
59#include "utilities/events.hpp"
60#include "utilities/hashtable.inline.hpp"
61#include "utilities/macros.hpp"
62#include "utilities/xmlstream.hpp"
63#ifdef COMPILER1
64#include "c1/c1_Runtime1.hpp"
65#endif
66
67PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
68
69// Shared stub locations
70RuntimeStub*        SharedRuntime::_wrong_method_blob;
71RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
72RuntimeStub*        SharedRuntime::_ic_miss_blob;
73RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
74RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
75RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
76
77DeoptimizationBlob* SharedRuntime::_deopt_blob;
78SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
79SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
80SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
81
82#ifdef COMPILER2
83UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
84#endif // COMPILER2
85
86
87//----------------------------generate_stubs-----------------------------------
88void SharedRuntime::generate_stubs() {
89  _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
90  _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
91  _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
92  _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
93  _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
94  _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
95
96#ifdef COMPILER2
97  // Vectors are generated only by C2.
98  if (is_wide_vector(MaxVectorSize)) {
99    _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
100  }
101#endif // COMPILER2
102  _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
103  _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
104
105  generate_deopt_blob();
106
107#ifdef COMPILER2
108  generate_uncommon_trap_blob();
109#endif // COMPILER2
110}
111
112#include <math.h>
113
114// Implementation of SharedRuntime
115
116#ifndef PRODUCT
117// For statistics
118int SharedRuntime::_ic_miss_ctr = 0;
119int SharedRuntime::_wrong_method_ctr = 0;
120int SharedRuntime::_resolve_static_ctr = 0;
121int SharedRuntime::_resolve_virtual_ctr = 0;
122int SharedRuntime::_resolve_opt_virtual_ctr = 0;
123int SharedRuntime::_implicit_null_throws = 0;
124int SharedRuntime::_implicit_div0_throws = 0;
125int SharedRuntime::_throw_null_ctr = 0;
126
127int SharedRuntime::_nof_normal_calls = 0;
128int SharedRuntime::_nof_optimized_calls = 0;
129int SharedRuntime::_nof_inlined_calls = 0;
130int SharedRuntime::_nof_megamorphic_calls = 0;
131int SharedRuntime::_nof_static_calls = 0;
132int SharedRuntime::_nof_inlined_static_calls = 0;
133int SharedRuntime::_nof_interface_calls = 0;
134int SharedRuntime::_nof_optimized_interface_calls = 0;
135int SharedRuntime::_nof_inlined_interface_calls = 0;
136int SharedRuntime::_nof_megamorphic_interface_calls = 0;
137int SharedRuntime::_nof_removable_exceptions = 0;
138
139int SharedRuntime::_new_instance_ctr=0;
140int SharedRuntime::_new_array_ctr=0;
141int SharedRuntime::_multi1_ctr=0;
142int SharedRuntime::_multi2_ctr=0;
143int SharedRuntime::_multi3_ctr=0;
144int SharedRuntime::_multi4_ctr=0;
145int SharedRuntime::_multi5_ctr=0;
146int SharedRuntime::_mon_enter_stub_ctr=0;
147int SharedRuntime::_mon_exit_stub_ctr=0;
148int SharedRuntime::_mon_enter_ctr=0;
149int SharedRuntime::_mon_exit_ctr=0;
150int SharedRuntime::_partial_subtype_ctr=0;
151int SharedRuntime::_jbyte_array_copy_ctr=0;
152int SharedRuntime::_jshort_array_copy_ctr=0;
153int SharedRuntime::_jint_array_copy_ctr=0;
154int SharedRuntime::_jlong_array_copy_ctr=0;
155int SharedRuntime::_oop_array_copy_ctr=0;
156int SharedRuntime::_checkcast_array_copy_ctr=0;
157int SharedRuntime::_unsafe_array_copy_ctr=0;
158int SharedRuntime::_generic_array_copy_ctr=0;
159int SharedRuntime::_slow_array_copy_ctr=0;
160int SharedRuntime::_find_handler_ctr=0;
161int SharedRuntime::_rethrow_ctr=0;
162
163int     SharedRuntime::_ICmiss_index                    = 0;
164int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
165address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
166
167
168void SharedRuntime::trace_ic_miss(address at) {
169  for (int i = 0; i < _ICmiss_index; i++) {
170    if (_ICmiss_at[i] == at) {
171      _ICmiss_count[i]++;
172      return;
173    }
174  }
175  int index = _ICmiss_index++;
176  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
177  _ICmiss_at[index] = at;
178  _ICmiss_count[index] = 1;
179}
180
181void SharedRuntime::print_ic_miss_histogram() {
182  if (ICMissHistogram) {
183    tty->print_cr("IC Miss Histogram:");
184    int tot_misses = 0;
185    for (int i = 0; i < _ICmiss_index; i++) {
186      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
187      tot_misses += _ICmiss_count[i];
188    }
189    tty->print_cr("Total IC misses: %7d", tot_misses);
190  }
191}
192#endif // PRODUCT
193
194#if INCLUDE_ALL_GCS
195
196// G1 write-barrier pre: executed before a pointer store.
197JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
198  if (orig == NULL) {
199    assert(false, "should be optimized out");
200    return;
201  }
202  assert(orig->is_oop(true /* ignore mark word */), "Error");
203  // store the original value that was in the field reference
204  thread->satb_mark_queue().enqueue(orig);
205JRT_END
206
207// G1 write-barrier post: executed after a pointer store.
208JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
209  thread->dirty_card_queue().enqueue(card_addr);
210JRT_END
211
212#endif // INCLUDE_ALL_GCS
213
214
215JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
216  return x * y;
217JRT_END
218
219
220JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
221  if (x == min_jlong && y == CONST64(-1)) {
222    return x;
223  } else {
224    return x / y;
225  }
226JRT_END
227
228
229JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
230  if (x == min_jlong && y == CONST64(-1)) {
231    return 0;
232  } else {
233    return x % y;
234  }
235JRT_END
236
237
238const juint  float_sign_mask  = 0x7FFFFFFF;
239const juint  float_infinity   = 0x7F800000;
240const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
241const julong double_infinity  = CONST64(0x7FF0000000000000);
242
243JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
244#ifdef _WIN64
245  // 64-bit Windows on amd64 returns the wrong values for
246  // infinity operands.
247  union { jfloat f; juint i; } xbits, ybits;
248  xbits.f = x;
249  ybits.f = y;
250  // x Mod Infinity == x unless x is infinity
251  if (((xbits.i & float_sign_mask) != float_infinity) &&
252       ((ybits.i & float_sign_mask) == float_infinity) ) {
253    return x;
254  }
255#endif
256  return ((jfloat)fmod((double)x,(double)y));
257JRT_END
258
259
260JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
261#ifdef _WIN64
262  union { jdouble d; julong l; } xbits, ybits;
263  xbits.d = x;
264  ybits.d = y;
265  // x Mod Infinity == x unless x is infinity
266  if (((xbits.l & double_sign_mask) != double_infinity) &&
267       ((ybits.l & double_sign_mask) == double_infinity) ) {
268    return x;
269  }
270#endif
271  return ((jdouble)fmod((double)x,(double)y));
272JRT_END
273
274#ifdef __SOFTFP__
275JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
276  return x + y;
277JRT_END
278
279JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
280  return x - y;
281JRT_END
282
283JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
284  return x * y;
285JRT_END
286
287JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
288  return x / y;
289JRT_END
290
291JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
292  return x + y;
293JRT_END
294
295JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
296  return x - y;
297JRT_END
298
299JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
300  return x * y;
301JRT_END
302
303JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
304  return x / y;
305JRT_END
306
307JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
308  return (jfloat)x;
309JRT_END
310
311JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
312  return (jdouble)x;
313JRT_END
314
315JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
316  return (jdouble)x;
317JRT_END
318
319JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
320  return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
321JRT_END
322
323JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
324  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
325JRT_END
326
327JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
328  return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
329JRT_END
330
331JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
332  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
333JRT_END
334
335// Functions to return the opposite of the aeabi functions for nan.
336JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
337  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
338JRT_END
339
340JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
341  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
342JRT_END
343
344JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
345  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
346JRT_END
347
348JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
349  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
350JRT_END
351
352JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
353  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
354JRT_END
355
356JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
357  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
358JRT_END
359
360JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
361  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
362JRT_END
363
364JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
365  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
366JRT_END
367
368// Intrinsics make gcc generate code for these.
369float  SharedRuntime::fneg(float f)   {
370  return -f;
371}
372
373double SharedRuntime::dneg(double f)  {
374  return -f;
375}
376
377#endif // __SOFTFP__
378
379#if defined(__SOFTFP__) || defined(E500V2)
380// Intrinsics make gcc generate code for these.
381double SharedRuntime::dabs(double f)  {
382  return (f <= (double)0.0) ? (double)0.0 - f : f;
383}
384
385#endif
386
387#if defined(__SOFTFP__) || defined(PPC32)
388double SharedRuntime::dsqrt(double f) {
389  return sqrt(f);
390}
391#endif
392
393JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
394  if (g_isnan(x))
395    return 0;
396  if (x >= (jfloat) max_jint)
397    return max_jint;
398  if (x <= (jfloat) min_jint)
399    return min_jint;
400  return (jint) x;
401JRT_END
402
403
404JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
405  if (g_isnan(x))
406    return 0;
407  if (x >= (jfloat) max_jlong)
408    return max_jlong;
409  if (x <= (jfloat) min_jlong)
410    return min_jlong;
411  return (jlong) x;
412JRT_END
413
414
415JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
416  if (g_isnan(x))
417    return 0;
418  if (x >= (jdouble) max_jint)
419    return max_jint;
420  if (x <= (jdouble) min_jint)
421    return min_jint;
422  return (jint) x;
423JRT_END
424
425
426JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
427  if (g_isnan(x))
428    return 0;
429  if (x >= (jdouble) max_jlong)
430    return max_jlong;
431  if (x <= (jdouble) min_jlong)
432    return min_jlong;
433  return (jlong) x;
434JRT_END
435
436
437JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
438  return (jfloat)x;
439JRT_END
440
441
442JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
443  return (jfloat)x;
444JRT_END
445
446
447JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
448  return (jdouble)x;
449JRT_END
450
451// Exception handling across interpreter/compiler boundaries
452//
453// exception_handler_for_return_address(...) returns the continuation address.
454// The continuation address is the entry point of the exception handler of the
455// previous frame depending on the return address.
456
457address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
458  assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
459
460  // Reset method handle flag.
461  thread->set_is_method_handle_return(false);
462
463  // The fastest case first
464  CodeBlob* blob = CodeCache::find_blob(return_address);
465  nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
466  if (nm != NULL) {
467    // Set flag if return address is a method handle call site.
468    thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
469    // native nmethods don't have exception handlers
470    assert(!nm->is_native_method(), "no exception handler");
471    assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
472    if (nm->is_deopt_pc(return_address)) {
473      // If we come here because of a stack overflow, the stack may be
474      // unguarded. Reguard the stack otherwise if we return to the
475      // deopt blob and the stack bang causes a stack overflow we
476      // crash.
477      bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
478      if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
479      assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
480      return SharedRuntime::deopt_blob()->unpack_with_exception();
481    } else {
482      return nm->exception_begin();
483    }
484  }
485
486  // Entry code
487  if (StubRoutines::returns_to_call_stub(return_address)) {
488    return StubRoutines::catch_exception_entry();
489  }
490  // Interpreted code
491  if (Interpreter::contains(return_address)) {
492    return Interpreter::rethrow_exception_entry();
493  }
494
495  guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
496  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
497
498#ifndef PRODUCT
499  { ResourceMark rm;
500    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
501    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
502    tty->print_cr("b) other problem");
503  }
504#endif // PRODUCT
505
506  ShouldNotReachHere();
507  return NULL;
508}
509
510
511JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
512  return raw_exception_handler_for_return_address(thread, return_address);
513JRT_END
514
515
516address SharedRuntime::get_poll_stub(address pc) {
517  address stub;
518  // Look up the code blob
519  CodeBlob *cb = CodeCache::find_blob(pc);
520
521  // Should be an nmethod
522  assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
523
524  // Look up the relocation information
525  assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
526    "safepoint polling: type must be poll");
527
528  assert(((NativeInstruction*)pc)->is_safepoint_poll(),
529    "Only polling locations are used for safepoint");
530
531  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
532  bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
533  if (at_poll_return) {
534    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
535           "polling page return stub not created yet");
536    stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
537  } else if (has_wide_vectors) {
538    assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
539           "polling page vectors safepoint stub not created yet");
540    stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
541  } else {
542    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
543           "polling page safepoint stub not created yet");
544    stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
545  }
546#ifndef PRODUCT
547  if (TraceSafepoint) {
548    char buf[256];
549    jio_snprintf(buf, sizeof(buf),
550                 "... found polling page %s exception at pc = "
551                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
552                 at_poll_return ? "return" : "loop",
553                 (intptr_t)pc, (intptr_t)stub);
554    tty->print_raw_cr(buf);
555  }
556#endif // PRODUCT
557  return stub;
558}
559
560
561oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
562  assert(caller.is_interpreted_frame(), "");
563  int args_size = ArgumentSizeComputer(sig).size() + 1;
564  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
565  oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
566  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
567  return result;
568}
569
570
571void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
572  if (JvmtiExport::can_post_on_exceptions()) {
573    vframeStream vfst(thread, true);
574    methodHandle method = methodHandle(thread, vfst.method());
575    address bcp = method()->bcp_from(vfst.bci());
576    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
577  }
578  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
579}
580
581void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
582  Handle h_exception = Exceptions::new_exception(thread, name, message);
583  throw_and_post_jvmti_exception(thread, h_exception);
584}
585
586// The interpreter code to call this tracing function is only
587// called/generated when TraceRedefineClasses has the right bits
588// set. Since obsolete methods are never compiled, we don't have
589// to modify the compilers to generate calls to this function.
590//
591JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
592    JavaThread* thread, Method* method))
593  assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
594
595  if (method->is_obsolete()) {
596    // We are calling an obsolete method, but this is not necessarily
597    // an error. Our method could have been redefined just after we
598    // fetched the Method* from the constant pool.
599
600    // RC_TRACE macro has an embedded ResourceMark
601    RC_TRACE_WITH_THREAD(0x00001000, thread,
602                         ("calling obsolete method '%s'",
603                          method->name_and_sig_as_C_string()));
604    if (RC_TRACE_ENABLED(0x00002000)) {
605      // this option is provided to debug calls to obsolete methods
606      guarantee(false, "faulting at call to an obsolete method.");
607    }
608  }
609  return 0;
610JRT_END
611
612// ret_pc points into caller; we are returning caller's exception handler
613// for given exception
614address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
615                                                    bool force_unwind, bool top_frame_only) {
616  assert(nm != NULL, "must exist");
617  ResourceMark rm;
618
619  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
620  // determine handler bci, if any
621  EXCEPTION_MARK;
622
623  int handler_bci = -1;
624  int scope_depth = 0;
625  if (!force_unwind) {
626    int bci = sd->bci();
627    bool recursive_exception = false;
628    do {
629      bool skip_scope_increment = false;
630      // exception handler lookup
631      KlassHandle ek (THREAD, exception->klass());
632      methodHandle mh(THREAD, sd->method());
633      handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
634      if (HAS_PENDING_EXCEPTION) {
635        recursive_exception = true;
636        // We threw an exception while trying to find the exception handler.
637        // Transfer the new exception to the exception handle which will
638        // be set into thread local storage, and do another lookup for an
639        // exception handler for this exception, this time starting at the
640        // BCI of the exception handler which caused the exception to be
641        // thrown (bugs 4307310 and 4546590). Set "exception" reference
642        // argument to ensure that the correct exception is thrown (4870175).
643        exception = Handle(THREAD, PENDING_EXCEPTION);
644        CLEAR_PENDING_EXCEPTION;
645        if (handler_bci >= 0) {
646          bci = handler_bci;
647          handler_bci = -1;
648          skip_scope_increment = true;
649        }
650      }
651      else {
652        recursive_exception = false;
653      }
654      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
655        sd = sd->sender();
656        if (sd != NULL) {
657          bci = sd->bci();
658        }
659        ++scope_depth;
660      }
661    } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
662  }
663
664  // found handling method => lookup exception handler
665  int catch_pco = ret_pc - nm->code_begin();
666
667  ExceptionHandlerTable table(nm);
668  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
669  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
670    // Allow abbreviated catch tables.  The idea is to allow a method
671    // to materialize its exceptions without committing to the exact
672    // routing of exceptions.  In particular this is needed for adding
673    // a synthetic handler to unlock monitors when inlining
674    // synchronized methods since the unlock path isn't represented in
675    // the bytecodes.
676    t = table.entry_for(catch_pco, -1, 0);
677  }
678
679#ifdef COMPILER1
680  if (t == NULL && nm->is_compiled_by_c1()) {
681    assert(nm->unwind_handler_begin() != NULL, "");
682    return nm->unwind_handler_begin();
683  }
684#endif
685
686  if (t == NULL) {
687    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
688    tty->print_cr("   Exception:");
689    exception->print();
690    tty->cr();
691    tty->print_cr(" Compiled exception table :");
692    table.print();
693    nm->print_code();
694    guarantee(false, "missing exception handler");
695    return NULL;
696  }
697
698  return nm->code_begin() + t->pco();
699}
700
701JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
702  // These errors occur only at call sites
703  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
704JRT_END
705
706JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
707  // These errors occur only at call sites
708  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
709JRT_END
710
711JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
712  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
713JRT_END
714
715JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
716  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
717JRT_END
718
719JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
720  // This entry point is effectively only used for NullPointerExceptions which occur at inline
721  // cache sites (when the callee activation is not yet set up) so we are at a call site
722  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
723JRT_END
724
725JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
726  // We avoid using the normal exception construction in this case because
727  // it performs an upcall to Java, and we're already out of stack space.
728  Klass* k = SystemDictionary::StackOverflowError_klass();
729  oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
730  Handle exception (thread, exception_oop);
731  if (StackTraceInThrowable) {
732    java_lang_Throwable::fill_in_stack_trace(exception);
733  }
734  throw_and_post_jvmti_exception(thread, exception);
735JRT_END
736
737address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
738                                                           address pc,
739                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
740{
741  address target_pc = NULL;
742
743  if (Interpreter::contains(pc)) {
744#ifdef CC_INTERP
745    // C++ interpreter doesn't throw implicit exceptions
746    ShouldNotReachHere();
747#else
748    switch (exception_kind) {
749      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
750      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
751      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
752      default:                      ShouldNotReachHere();
753    }
754#endif // !CC_INTERP
755  } else {
756    switch (exception_kind) {
757      case STACK_OVERFLOW: {
758        // Stack overflow only occurs upon frame setup; the callee is
759        // going to be unwound. Dispatch to a shared runtime stub
760        // which will cause the StackOverflowError to be fabricated
761        // and processed.
762        // Stack overflow should never occur during deoptimization:
763        // the compiled method bangs the stack by as much as the
764        // interpreter would need in case of a deoptimization. The
765        // deoptimization blob and uncommon trap blob bang the stack
766        // in a debug VM to verify the correctness of the compiled
767        // method stack banging.
768        assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
769        Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
770        return StubRoutines::throw_StackOverflowError_entry();
771      }
772
773      case IMPLICIT_NULL: {
774        if (VtableStubs::contains(pc)) {
775          // We haven't yet entered the callee frame. Fabricate an
776          // exception and begin dispatching it in the caller. Since
777          // the caller was at a call site, it's safe to destroy all
778          // caller-saved registers, as these entry points do.
779          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
780
781          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
782          if (vt_stub == NULL) return NULL;
783
784          if (vt_stub->is_abstract_method_error(pc)) {
785            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
786            Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
787            return StubRoutines::throw_AbstractMethodError_entry();
788          } else {
789            Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
790            return StubRoutines::throw_NullPointerException_at_call_entry();
791          }
792        } else {
793          CodeBlob* cb = CodeCache::find_blob(pc);
794
795          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
796          if (cb == NULL) return NULL;
797
798          // Exception happened in CodeCache. Must be either:
799          // 1. Inline-cache check in C2I handler blob,
800          // 2. Inline-cache check in nmethod, or
801          // 3. Implicit null exception in nmethod
802
803          if (!cb->is_nmethod()) {
804            bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
805            if (!is_in_blob) {
806              cb->print();
807              fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
808            }
809            Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
810            // There is no handler here, so we will simply unwind.
811            return StubRoutines::throw_NullPointerException_at_call_entry();
812          }
813
814          // Otherwise, it's an nmethod.  Consult its exception handlers.
815          nmethod* nm = (nmethod*)cb;
816          if (nm->inlinecache_check_contains(pc)) {
817            // exception happened inside inline-cache check code
818            // => the nmethod is not yet active (i.e., the frame
819            // is not set up yet) => use return address pushed by
820            // caller => don't push another return address
821            Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
822            return StubRoutines::throw_NullPointerException_at_call_entry();
823          }
824
825          if (nm->method()->is_method_handle_intrinsic()) {
826            // exception happened inside MH dispatch code, similar to a vtable stub
827            Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
828            return StubRoutines::throw_NullPointerException_at_call_entry();
829          }
830
831#ifndef PRODUCT
832          _implicit_null_throws++;
833#endif
834          target_pc = nm->continuation_for_implicit_exception(pc);
835          // If there's an unexpected fault, target_pc might be NULL,
836          // in which case we want to fall through into the normal
837          // error handling code.
838        }
839
840        break; // fall through
841      }
842
843
844      case IMPLICIT_DIVIDE_BY_ZERO: {
845        nmethod* nm = CodeCache::find_nmethod(pc);
846        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
847#ifndef PRODUCT
848        _implicit_div0_throws++;
849#endif
850        target_pc = nm->continuation_for_implicit_exception(pc);
851        // If there's an unexpected fault, target_pc might be NULL,
852        // in which case we want to fall through into the normal
853        // error handling code.
854        break; // fall through
855      }
856
857      default: ShouldNotReachHere();
858    }
859
860    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
861
862    // for AbortVMOnException flag
863    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
864    if (exception_kind == IMPLICIT_NULL) {
865      Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
866    } else {
867      Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
868    }
869    return target_pc;
870  }
871
872  ShouldNotReachHere();
873  return NULL;
874}
875
876
877/**
878 * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
879 * installed in the native function entry of all native Java methods before
880 * they get linked to their actual native methods.
881 *
882 * \note
883 * This method actually never gets called!  The reason is because
884 * the interpreter's native entries call NativeLookup::lookup() which
885 * throws the exception when the lookup fails.  The exception is then
886 * caught and forwarded on the return from NativeLookup::lookup() call
887 * before the call to the native function.  This might change in the future.
888 */
889JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
890{
891  // We return a bad value here to make sure that the exception is
892  // forwarded before we look at the return value.
893  THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
894}
895JNI_END
896
897address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
898  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
899}
900
901
902#ifndef PRODUCT
903JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
904  const frame f = thread->last_frame();
905  assert(f.is_interpreted_frame(), "must be an interpreted frame");
906#ifndef PRODUCT
907  methodHandle mh(THREAD, f.interpreter_frame_method());
908  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
909#endif // !PRODUCT
910  return preserve_this_value;
911JRT_END
912#endif // !PRODUCT
913
914JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
915  assert(obj->is_oop(), "must be a valid oop");
916  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
917  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
918JRT_END
919
920
921jlong SharedRuntime::get_java_tid(Thread* thread) {
922  if (thread != NULL) {
923    if (thread->is_Java_thread()) {
924      oop obj = ((JavaThread*)thread)->threadObj();
925      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
926    }
927  }
928  return 0;
929}
930
931/**
932 * This function ought to be a void function, but cannot be because
933 * it gets turned into a tail-call on sparc, which runs into dtrace bug
934 * 6254741.  Once that is fixed we can remove the dummy return value.
935 */
936int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
937  return dtrace_object_alloc_base(Thread::current(), o, size);
938}
939
940int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
941  assert(DTraceAllocProbes, "wrong call");
942  Klass* klass = o->klass();
943  Symbol* name = klass->name();
944  HOTSPOT_OBJECT_ALLOC(
945                   get_java_tid(thread),
946                   (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
947  return 0;
948}
949
950JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
951    JavaThread* thread, Method* method))
952  assert(DTraceMethodProbes, "wrong call");
953  Symbol* kname = method->klass_name();
954  Symbol* name = method->name();
955  Symbol* sig = method->signature();
956  HOTSPOT_METHOD_ENTRY(
957      get_java_tid(thread),
958      (char *) kname->bytes(), kname->utf8_length(),
959      (char *) name->bytes(), name->utf8_length(),
960      (char *) sig->bytes(), sig->utf8_length());
961  return 0;
962JRT_END
963
964JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
965    JavaThread* thread, Method* method))
966  assert(DTraceMethodProbes, "wrong call");
967  Symbol* kname = method->klass_name();
968  Symbol* name = method->name();
969  Symbol* sig = method->signature();
970  HOTSPOT_METHOD_RETURN(
971      get_java_tid(thread),
972      (char *) kname->bytes(), kname->utf8_length(),
973      (char *) name->bytes(), name->utf8_length(),
974      (char *) sig->bytes(), sig->utf8_length());
975  return 0;
976JRT_END
977
978
979// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
980// for a call current in progress, i.e., arguments has been pushed on stack
981// put callee has not been invoked yet.  Used by: resolve virtual/static,
982// vtable updates, etc.  Caller frame must be compiled.
983Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
984  ResourceMark rm(THREAD);
985
986  // last java frame on stack (which includes native call frames)
987  vframeStream vfst(thread, true);  // Do not skip and javaCalls
988
989  return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
990}
991
992
993// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
994// for a call current in progress, i.e., arguments has been pushed on stack
995// but callee has not been invoked yet.  Caller frame must be compiled.
996Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
997                                              vframeStream& vfst,
998                                              Bytecodes::Code& bc,
999                                              CallInfo& callinfo, TRAPS) {
1000  Handle receiver;
1001  Handle nullHandle;  //create a handy null handle for exception returns
1002
1003  assert(!vfst.at_end(), "Java frame must exist");
1004
1005  // Find caller and bci from vframe
1006  methodHandle caller(THREAD, vfst.method());
1007  int          bci   = vfst.bci();
1008
1009  // Find bytecode
1010  Bytecode_invoke bytecode(caller, bci);
1011  bc = bytecode.invoke_code();
1012  int bytecode_index = bytecode.index();
1013
1014  // Find receiver for non-static call
1015  if (bc != Bytecodes::_invokestatic &&
1016      bc != Bytecodes::_invokedynamic &&
1017      bc != Bytecodes::_invokehandle) {
1018    // This register map must be update since we need to find the receiver for
1019    // compiled frames. The receiver might be in a register.
1020    RegisterMap reg_map2(thread);
1021    frame stubFrame   = thread->last_frame();
1022    // Caller-frame is a compiled frame
1023    frame callerFrame = stubFrame.sender(&reg_map2);
1024
1025    methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1026    if (callee.is_null()) {
1027      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1028    }
1029    // Retrieve from a compiled argument list
1030    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1031
1032    if (receiver.is_null()) {
1033      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1034    }
1035  }
1036
1037  // Resolve method. This is parameterized by bytecode.
1038  constantPoolHandle constants(THREAD, caller->constants());
1039  assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1040  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1041
1042#ifdef ASSERT
1043  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1044  if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1045    assert(receiver.not_null(), "should have thrown exception");
1046    KlassHandle receiver_klass(THREAD, receiver->klass());
1047    Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1048                            // klass is already loaded
1049    KlassHandle static_receiver_klass(THREAD, rk);
1050    // Method handle invokes might have been optimized to a direct call
1051    // so don't check for the receiver class.
1052    // FIXME this weakens the assert too much
1053    methodHandle callee = callinfo.selected_method();
1054    assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1055           callee->is_method_handle_intrinsic() ||
1056           callee->is_compiled_lambda_form(),
1057           "actual receiver must be subclass of static receiver klass");
1058    if (receiver_klass->oop_is_instance()) {
1059      if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1060        tty->print_cr("ERROR: Klass not yet initialized!!");
1061        receiver_klass()->print();
1062      }
1063      assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1064    }
1065  }
1066#endif
1067
1068  return receiver;
1069}
1070
1071methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1072  ResourceMark rm(THREAD);
1073  // We need first to check if any Java activations (compiled, interpreted)
1074  // exist on the stack since last JavaCall.  If not, we need
1075  // to get the target method from the JavaCall wrapper.
1076  vframeStream vfst(thread, true);  // Do not skip any javaCalls
1077  methodHandle callee_method;
1078  if (vfst.at_end()) {
1079    // No Java frames were found on stack since we did the JavaCall.
1080    // Hence the stack can only contain an entry_frame.  We need to
1081    // find the target method from the stub frame.
1082    RegisterMap reg_map(thread, false);
1083    frame fr = thread->last_frame();
1084    assert(fr.is_runtime_frame(), "must be a runtimeStub");
1085    fr = fr.sender(&reg_map);
1086    assert(fr.is_entry_frame(), "must be");
1087    // fr is now pointing to the entry frame.
1088    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1089    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1090  } else {
1091    Bytecodes::Code bc;
1092    CallInfo callinfo;
1093    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1094    callee_method = callinfo.selected_method();
1095  }
1096  assert(callee_method()->is_method(), "must be");
1097  return callee_method;
1098}
1099
1100// Resolves a call.
1101methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1102                                           bool is_virtual,
1103                                           bool is_optimized, TRAPS) {
1104  methodHandle callee_method;
1105  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1106  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1107    int retry_count = 0;
1108    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1109           callee_method->method_holder() != SystemDictionary::Object_klass()) {
1110      // If has a pending exception then there is no need to re-try to
1111      // resolve this method.
1112      // If the method has been redefined, we need to try again.
1113      // Hack: we have no way to update the vtables of arrays, so don't
1114      // require that java.lang.Object has been updated.
1115
1116      // It is very unlikely that method is redefined more than 100 times
1117      // in the middle of resolve. If it is looping here more than 100 times
1118      // means then there could be a bug here.
1119      guarantee((retry_count++ < 100),
1120                "Could not resolve to latest version of redefined method");
1121      // method is redefined in the middle of resolve so re-try.
1122      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1123    }
1124  }
1125  return callee_method;
1126}
1127
1128// Resolves a call.  The compilers generate code for calls that go here
1129// and are patched with the real destination of the call.
1130methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1131                                           bool is_virtual,
1132                                           bool is_optimized, TRAPS) {
1133
1134  ResourceMark rm(thread);
1135  RegisterMap cbl_map(thread, false);
1136  frame caller_frame = thread->last_frame().sender(&cbl_map);
1137
1138  CodeBlob* caller_cb = caller_frame.cb();
1139  guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1140  nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1141
1142  // make sure caller is not getting deoptimized
1143  // and removed before we are done with it.
1144  // CLEANUP - with lazy deopt shouldn't need this lock
1145  nmethodLocker caller_lock(caller_nm);
1146
1147  // determine call info & receiver
1148  // note: a) receiver is NULL for static calls
1149  //       b) an exception is thrown if receiver is NULL for non-static calls
1150  CallInfo call_info;
1151  Bytecodes::Code invoke_code = Bytecodes::_illegal;
1152  Handle receiver = find_callee_info(thread, invoke_code,
1153                                     call_info, CHECK_(methodHandle()));
1154  methodHandle callee_method = call_info.selected_method();
1155
1156  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1157         (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1158         (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1159         ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1160
1161  assert(caller_nm->is_alive(), "It should be alive");
1162
1163#ifndef PRODUCT
1164  // tracing/debugging/statistics
1165  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1166                (is_virtual) ? (&_resolve_virtual_ctr) :
1167                               (&_resolve_static_ctr);
1168  Atomic::inc(addr);
1169
1170  if (TraceCallFixup) {
1171    ResourceMark rm(thread);
1172    tty->print("resolving %s%s (%s) call to",
1173      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1174      Bytecodes::name(invoke_code));
1175    callee_method->print_short_name(tty);
1176    tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1177  }
1178#endif
1179
1180  // JSR 292 key invariant:
1181  // If the resolved method is a MethodHandle invoke target the call
1182  // site must be a MethodHandle call site, because the lambda form might tail-call
1183  // leaving the stack in a state unknown to either caller or callee
1184  // TODO detune for now but we might need it again
1185//  assert(!callee_method->is_compiled_lambda_form() ||
1186//         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1187
1188  // Compute entry points. This might require generation of C2I converter
1189  // frames, so we cannot be holding any locks here. Furthermore, the
1190  // computation of the entry points is independent of patching the call.  We
1191  // always return the entry-point, but we only patch the stub if the call has
1192  // not been deoptimized.  Return values: For a virtual call this is an
1193  // (cached_oop, destination address) pair. For a static call/optimized
1194  // virtual this is just a destination address.
1195
1196  StaticCallInfo static_call_info;
1197  CompiledICInfo virtual_call_info;
1198
1199  // Make sure the callee nmethod does not get deoptimized and removed before
1200  // we are done patching the code.
1201  nmethod* callee_nm = callee_method->code();
1202  if (callee_nm != NULL && !callee_nm->is_in_use()) {
1203    // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1204    callee_nm = NULL;
1205  }
1206  nmethodLocker nl_callee(callee_nm);
1207#ifdef ASSERT
1208  address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1209#endif
1210
1211  if (is_virtual) {
1212    assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1213    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1214    KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1215    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1216                     is_optimized, static_bound, virtual_call_info,
1217                     CHECK_(methodHandle()));
1218  } else {
1219    // static call
1220    CompiledStaticCall::compute_entry(callee_method, static_call_info);
1221  }
1222
1223  // grab lock, check for deoptimization and potentially patch caller
1224  {
1225    MutexLocker ml_patch(CompiledIC_lock);
1226
1227    // Lock blocks for safepoint during which both nmethods can change state.
1228
1229    // Now that we are ready to patch if the Method* was redefined then
1230    // don't update call site and let the caller retry.
1231    // Don't update call site if callee nmethod was unloaded or deoptimized.
1232    // Don't update call site if callee nmethod was replaced by an other nmethod
1233    // which may happen when multiply alive nmethod (tiered compilation)
1234    // will be supported.
1235    if (!callee_method->is_old() &&
1236        (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1237#ifdef ASSERT
1238      // We must not try to patch to jump to an already unloaded method.
1239      if (dest_entry_point != 0) {
1240        CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1241        assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1242               "should not call unloaded nmethod");
1243      }
1244#endif
1245      if (is_virtual) {
1246        CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1247        if (inline_cache->is_clean()) {
1248          inline_cache->set_to_monomorphic(virtual_call_info);
1249        }
1250      } else {
1251        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1252        if (ssc->is_clean()) ssc->set(static_call_info);
1253      }
1254    }
1255
1256  } // unlock CompiledIC_lock
1257
1258  return callee_method;
1259}
1260
1261
1262// Inline caches exist only in compiled code
1263JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1264#ifdef ASSERT
1265  RegisterMap reg_map(thread, false);
1266  frame stub_frame = thread->last_frame();
1267  assert(stub_frame.is_runtime_frame(), "sanity check");
1268  frame caller_frame = stub_frame.sender(&reg_map);
1269  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1270#endif /* ASSERT */
1271
1272  methodHandle callee_method;
1273  JRT_BLOCK
1274    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1275    // Return Method* through TLS
1276    thread->set_vm_result_2(callee_method());
1277  JRT_BLOCK_END
1278  // return compiled code entry point after potential safepoints
1279  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1280  return callee_method->verified_code_entry();
1281JRT_END
1282
1283
1284// Handle call site that has been made non-entrant
1285JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1286  // 6243940 We might end up in here if the callee is deoptimized
1287  // as we race to call it.  We don't want to take a safepoint if
1288  // the caller was interpreted because the caller frame will look
1289  // interpreted to the stack walkers and arguments are now
1290  // "compiled" so it is much better to make this transition
1291  // invisible to the stack walking code. The i2c path will
1292  // place the callee method in the callee_target. It is stashed
1293  // there because if we try and find the callee by normal means a
1294  // safepoint is possible and have trouble gc'ing the compiled args.
1295  RegisterMap reg_map(thread, false);
1296  frame stub_frame = thread->last_frame();
1297  assert(stub_frame.is_runtime_frame(), "sanity check");
1298  frame caller_frame = stub_frame.sender(&reg_map);
1299
1300  if (caller_frame.is_interpreted_frame() ||
1301      caller_frame.is_entry_frame()) {
1302    Method* callee = thread->callee_target();
1303    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1304    thread->set_vm_result_2(callee);
1305    thread->set_callee_target(NULL);
1306    return callee->get_c2i_entry();
1307  }
1308
1309  // Must be compiled to compiled path which is safe to stackwalk
1310  methodHandle callee_method;
1311  JRT_BLOCK
1312    // Force resolving of caller (if we called from compiled frame)
1313    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1314    thread->set_vm_result_2(callee_method());
1315  JRT_BLOCK_END
1316  // return compiled code entry point after potential safepoints
1317  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1318  return callee_method->verified_code_entry();
1319JRT_END
1320
1321// Handle abstract method call
1322JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1323  return StubRoutines::throw_AbstractMethodError_entry();
1324JRT_END
1325
1326
1327// resolve a static call and patch code
1328JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1329  methodHandle callee_method;
1330  JRT_BLOCK
1331    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1332    thread->set_vm_result_2(callee_method());
1333  JRT_BLOCK_END
1334  // return compiled code entry point after potential safepoints
1335  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1336  return callee_method->verified_code_entry();
1337JRT_END
1338
1339
1340// resolve virtual call and update inline cache to monomorphic
1341JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1342  methodHandle callee_method;
1343  JRT_BLOCK
1344    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1345    thread->set_vm_result_2(callee_method());
1346  JRT_BLOCK_END
1347  // return compiled code entry point after potential safepoints
1348  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1349  return callee_method->verified_code_entry();
1350JRT_END
1351
1352
1353// Resolve a virtual call that can be statically bound (e.g., always
1354// monomorphic, so it has no inline cache).  Patch code to resolved target.
1355JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1356  methodHandle callee_method;
1357  JRT_BLOCK
1358    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1359    thread->set_vm_result_2(callee_method());
1360  JRT_BLOCK_END
1361  // return compiled code entry point after potential safepoints
1362  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1363  return callee_method->verified_code_entry();
1364JRT_END
1365
1366
1367
1368
1369
1370methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1371  ResourceMark rm(thread);
1372  CallInfo call_info;
1373  Bytecodes::Code bc;
1374
1375  // receiver is NULL for static calls. An exception is thrown for NULL
1376  // receivers for non-static calls
1377  Handle receiver = find_callee_info(thread, bc, call_info,
1378                                     CHECK_(methodHandle()));
1379  // Compiler1 can produce virtual call sites that can actually be statically bound
1380  // If we fell thru to below we would think that the site was going megamorphic
1381  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1382  // we'd try and do a vtable dispatch however methods that can be statically bound
1383  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1384  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1385  // plain ic_miss) and the site will be converted to an optimized virtual call site
1386  // never to miss again. I don't believe C2 will produce code like this but if it
1387  // did this would still be the correct thing to do for it too, hence no ifdef.
1388  //
1389  if (call_info.resolved_method()->can_be_statically_bound()) {
1390    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1391    if (TraceCallFixup) {
1392      RegisterMap reg_map(thread, false);
1393      frame caller_frame = thread->last_frame().sender(&reg_map);
1394      ResourceMark rm(thread);
1395      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1396      callee_method->print_short_name(tty);
1397      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1398      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1399    }
1400    return callee_method;
1401  }
1402
1403  methodHandle callee_method = call_info.selected_method();
1404
1405  bool should_be_mono = false;
1406
1407#ifndef PRODUCT
1408  Atomic::inc(&_ic_miss_ctr);
1409
1410  // Statistics & Tracing
1411  if (TraceCallFixup) {
1412    ResourceMark rm(thread);
1413    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1414    callee_method->print_short_name(tty);
1415    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1416  }
1417
1418  if (ICMissHistogram) {
1419    MutexLocker m(VMStatistic_lock);
1420    RegisterMap reg_map(thread, false);
1421    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1422    // produce statistics under the lock
1423    trace_ic_miss(f.pc());
1424  }
1425#endif
1426
1427  // install an event collector so that when a vtable stub is created the
1428  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1429  // event can't be posted when the stub is created as locks are held
1430  // - instead the event will be deferred until the event collector goes
1431  // out of scope.
1432  JvmtiDynamicCodeEventCollector event_collector;
1433
1434  // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1435  { MutexLocker ml_patch (CompiledIC_lock);
1436    RegisterMap reg_map(thread, false);
1437    frame caller_frame = thread->last_frame().sender(&reg_map);
1438    CodeBlob* cb = caller_frame.cb();
1439    if (cb->is_nmethod()) {
1440      CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1441      bool should_be_mono = false;
1442      if (inline_cache->is_optimized()) {
1443        if (TraceCallFixup) {
1444          ResourceMark rm(thread);
1445          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1446          callee_method->print_short_name(tty);
1447          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1448        }
1449        should_be_mono = true;
1450      } else if (inline_cache->is_icholder_call()) {
1451        CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1452        if (ic_oop != NULL) {
1453
1454          if (receiver()->klass() == ic_oop->holder_klass()) {
1455            // This isn't a real miss. We must have seen that compiled code
1456            // is now available and we want the call site converted to a
1457            // monomorphic compiled call site.
1458            // We can't assert for callee_method->code() != NULL because it
1459            // could have been deoptimized in the meantime
1460            if (TraceCallFixup) {
1461              ResourceMark rm(thread);
1462              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1463              callee_method->print_short_name(tty);
1464              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1465            }
1466            should_be_mono = true;
1467          }
1468        }
1469      }
1470
1471      if (should_be_mono) {
1472
1473        // We have a path that was monomorphic but was going interpreted
1474        // and now we have (or had) a compiled entry. We correct the IC
1475        // by using a new icBuffer.
1476        CompiledICInfo info;
1477        KlassHandle receiver_klass(THREAD, receiver()->klass());
1478        inline_cache->compute_monomorphic_entry(callee_method,
1479                                                receiver_klass,
1480                                                inline_cache->is_optimized(),
1481                                                false,
1482                                                info, CHECK_(methodHandle()));
1483        inline_cache->set_to_monomorphic(info);
1484      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1485        // Potential change to megamorphic
1486        bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1487        if (!successful) {
1488          inline_cache->set_to_clean();
1489        }
1490      } else {
1491        // Either clean or megamorphic
1492      }
1493    }
1494  } // Release CompiledIC_lock
1495
1496  return callee_method;
1497}
1498
1499//
1500// Resets a call-site in compiled code so it will get resolved again.
1501// This routines handles both virtual call sites, optimized virtual call
1502// sites, and static call sites. Typically used to change a call sites
1503// destination from compiled to interpreted.
1504//
1505methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1506  ResourceMark rm(thread);
1507  RegisterMap reg_map(thread, false);
1508  frame stub_frame = thread->last_frame();
1509  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1510  frame caller = stub_frame.sender(&reg_map);
1511
1512  // Do nothing if the frame isn't a live compiled frame.
1513  // nmethod could be deoptimized by the time we get here
1514  // so no update to the caller is needed.
1515
1516  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1517
1518    address pc = caller.pc();
1519
1520    // Default call_addr is the location of the "basic" call.
1521    // Determine the address of the call we a reresolving. With
1522    // Inline Caches we will always find a recognizable call.
1523    // With Inline Caches disabled we may or may not find a
1524    // recognizable call. We will always find a call for static
1525    // calls and for optimized virtual calls. For vanilla virtual
1526    // calls it depends on the state of the UseInlineCaches switch.
1527    //
1528    // With Inline Caches disabled we can get here for a virtual call
1529    // for two reasons:
1530    //   1 - calling an abstract method. The vtable for abstract methods
1531    //       will run us thru handle_wrong_method and we will eventually
1532    //       end up in the interpreter to throw the ame.
1533    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1534    //       call and between the time we fetch the entry address and
1535    //       we jump to it the target gets deoptimized. Similar to 1
1536    //       we will wind up in the interprter (thru a c2i with c2).
1537    //
1538    address call_addr = NULL;
1539    {
1540      // Get call instruction under lock because another thread may be
1541      // busy patching it.
1542      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1543      // Location of call instruction
1544      if (NativeCall::is_call_before(pc)) {
1545        NativeCall *ncall = nativeCall_before(pc);
1546        call_addr = ncall->instruction_address();
1547      }
1548    }
1549
1550    // Check for static or virtual call
1551    bool is_static_call = false;
1552    nmethod* caller_nm = CodeCache::find_nmethod(pc);
1553    // Make sure nmethod doesn't get deoptimized and removed until
1554    // this is done with it.
1555    // CLEANUP - with lazy deopt shouldn't need this lock
1556    nmethodLocker nmlock(caller_nm);
1557
1558    if (call_addr != NULL) {
1559      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1560      int ret = iter.next(); // Get item
1561      if (ret) {
1562        assert(iter.addr() == call_addr, "must find call");
1563        if (iter.type() == relocInfo::static_call_type) {
1564          is_static_call = true;
1565        } else {
1566          assert(iter.type() == relocInfo::virtual_call_type ||
1567                 iter.type() == relocInfo::opt_virtual_call_type
1568                , "unexpected relocInfo. type");
1569        }
1570      } else {
1571        assert(!UseInlineCaches, "relocation info. must exist for this address");
1572      }
1573
1574      // Cleaning the inline cache will force a new resolve. This is more robust
1575      // than directly setting it to the new destination, since resolving of calls
1576      // is always done through the same code path. (experience shows that it
1577      // leads to very hard to track down bugs, if an inline cache gets updated
1578      // to a wrong method). It should not be performance critical, since the
1579      // resolve is only done once.
1580
1581      MutexLocker ml(CompiledIC_lock);
1582      if (is_static_call) {
1583        CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1584        ssc->set_to_clean();
1585      } else {
1586        // compiled, dispatched call (which used to call an interpreted method)
1587        CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1588        inline_cache->set_to_clean();
1589      }
1590    }
1591
1592  }
1593
1594  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1595
1596
1597#ifndef PRODUCT
1598  Atomic::inc(&_wrong_method_ctr);
1599
1600  if (TraceCallFixup) {
1601    ResourceMark rm(thread);
1602    tty->print("handle_wrong_method reresolving call to");
1603    callee_method->print_short_name(tty);
1604    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1605  }
1606#endif
1607
1608  return callee_method;
1609}
1610
1611#ifdef ASSERT
1612void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1613                                                                const BasicType* sig_bt,
1614                                                                const VMRegPair* regs) {
1615  ResourceMark rm;
1616  const int total_args_passed = method->size_of_parameters();
1617  const VMRegPair*    regs_with_member_name = regs;
1618        VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1619
1620  const int member_arg_pos = total_args_passed - 1;
1621  assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1622  assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1623
1624  const bool is_outgoing = method->is_method_handle_intrinsic();
1625  int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1626
1627  for (int i = 0; i < member_arg_pos; i++) {
1628    VMReg a =    regs_with_member_name[i].first();
1629    VMReg b = regs_without_member_name[i].first();
1630    assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1631  }
1632  assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1633}
1634#endif
1635
1636// ---------------------------------------------------------------------------
1637// We are calling the interpreter via a c2i. Normally this would mean that
1638// we were called by a compiled method. However we could have lost a race
1639// where we went int -> i2c -> c2i and so the caller could in fact be
1640// interpreted. If the caller is compiled we attempt to patch the caller
1641// so he no longer calls into the interpreter.
1642IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1643  Method* moop(method);
1644
1645  address entry_point = moop->from_compiled_entry();
1646
1647  // It's possible that deoptimization can occur at a call site which hasn't
1648  // been resolved yet, in which case this function will be called from
1649  // an nmethod that has been patched for deopt and we can ignore the
1650  // request for a fixup.
1651  // Also it is possible that we lost a race in that from_compiled_entry
1652  // is now back to the i2c in that case we don't need to patch and if
1653  // we did we'd leap into space because the callsite needs to use
1654  // "to interpreter" stub in order to load up the Method*. Don't
1655  // ask me how I know this...
1656
1657  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1658  if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1659    return;
1660  }
1661
1662  // The check above makes sure this is a nmethod.
1663  nmethod* nm = cb->as_nmethod_or_null();
1664  assert(nm, "must be");
1665
1666  // Get the return PC for the passed caller PC.
1667  address return_pc = caller_pc + frame::pc_return_offset;
1668
1669  // There is a benign race here. We could be attempting to patch to a compiled
1670  // entry point at the same time the callee is being deoptimized. If that is
1671  // the case then entry_point may in fact point to a c2i and we'd patch the
1672  // call site with the same old data. clear_code will set code() to NULL
1673  // at the end of it. If we happen to see that NULL then we can skip trying
1674  // to patch. If we hit the window where the callee has a c2i in the
1675  // from_compiled_entry and the NULL isn't present yet then we lose the race
1676  // and patch the code with the same old data. Asi es la vida.
1677
1678  if (moop->code() == NULL) return;
1679
1680  if (nm->is_in_use()) {
1681
1682    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1683    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1684    if (NativeCall::is_call_before(return_pc)) {
1685      NativeCall *call = nativeCall_before(return_pc);
1686      //
1687      // bug 6281185. We might get here after resolving a call site to a vanilla
1688      // virtual call. Because the resolvee uses the verified entry it may then
1689      // see compiled code and attempt to patch the site by calling us. This would
1690      // then incorrectly convert the call site to optimized and its downhill from
1691      // there. If you're lucky you'll get the assert in the bugid, if not you've
1692      // just made a call site that could be megamorphic into a monomorphic site
1693      // for the rest of its life! Just another racing bug in the life of
1694      // fixup_callers_callsite ...
1695      //
1696      RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1697      iter.next();
1698      assert(iter.has_current(), "must have a reloc at java call site");
1699      relocInfo::relocType typ = iter.reloc()->type();
1700      if (typ != relocInfo::static_call_type &&
1701           typ != relocInfo::opt_virtual_call_type &&
1702           typ != relocInfo::static_stub_type) {
1703        return;
1704      }
1705      address destination = call->destination();
1706      if (destination != entry_point) {
1707        CodeBlob* callee = CodeCache::find_blob(destination);
1708        // callee == cb seems weird. It means calling interpreter thru stub.
1709        if (callee == cb || callee->is_adapter_blob()) {
1710          // static call or optimized virtual
1711          if (TraceCallFixup) {
1712            tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1713            moop->print_short_name(tty);
1714            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1715          }
1716          call->set_destination_mt_safe(entry_point);
1717        } else {
1718          if (TraceCallFixup) {
1719            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1720            moop->print_short_name(tty);
1721            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1722          }
1723          // assert is too strong could also be resolve destinations.
1724          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1725        }
1726      } else {
1727          if (TraceCallFixup) {
1728            tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1729            moop->print_short_name(tty);
1730            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1731          }
1732      }
1733    }
1734  }
1735IRT_END
1736
1737
1738// same as JVM_Arraycopy, but called directly from compiled code
1739JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1740                                                oopDesc* dest, jint dest_pos,
1741                                                jint length,
1742                                                JavaThread* thread)) {
1743#ifndef PRODUCT
1744  _slow_array_copy_ctr++;
1745#endif
1746  // Check if we have null pointers
1747  if (src == NULL || dest == NULL) {
1748    THROW(vmSymbols::java_lang_NullPointerException());
1749  }
1750  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1751  // even though the copy_array API also performs dynamic checks to ensure
1752  // that src and dest are truly arrays (and are conformable).
1753  // The copy_array mechanism is awkward and could be removed, but
1754  // the compilers don't call this function except as a last resort,
1755  // so it probably doesn't matter.
1756  src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1757                                        (arrayOopDesc*)dest, dest_pos,
1758                                        length, thread);
1759}
1760JRT_END
1761
1762char* SharedRuntime::generate_class_cast_message(
1763    JavaThread* thread, const char* objName) {
1764
1765  // Get target class name from the checkcast instruction
1766  vframeStream vfst(thread, true);
1767  assert(!vfst.at_end(), "Java frame must exist");
1768  Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1769  Klass* targetKlass = vfst.method()->constants()->klass_at(
1770    cc.index(), thread);
1771  return generate_class_cast_message(objName, targetKlass->external_name());
1772}
1773
1774char* SharedRuntime::generate_class_cast_message(
1775    const char* objName, const char* targetKlassName, const char* desc) {
1776  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1777
1778  char* message = NEW_RESOURCE_ARRAY(char, msglen);
1779  if (NULL == message) {
1780    // Shouldn't happen, but don't cause even more problems if it does
1781    message = const_cast<char*>(objName);
1782  } else {
1783    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1784  }
1785  return message;
1786}
1787
1788JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1789  (void) JavaThread::current()->reguard_stack();
1790JRT_END
1791
1792
1793// Handles the uncommon case in locking, i.e., contention or an inflated lock.
1794JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1795  oop obj(_obj);
1796  if (PrintBiasedLockingStatistics) {
1797    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1798  }
1799  Handle h_obj(THREAD, obj);
1800  if (UseBiasedLocking) {
1801    // Retry fast entry if bias is revoked to avoid unnecessary inflation
1802    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1803  } else {
1804    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1805  }
1806  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1807JRT_END
1808
1809// Handles the uncommon cases of monitor unlocking in compiled code
1810JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1811   oop obj(_obj);
1812  Thread* THREAD = JavaThread::current();
1813  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1814  // testing was unable to ever fire the assert that guarded it so I have removed it.
1815  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1816#undef MIGHT_HAVE_PENDING
1817#ifdef MIGHT_HAVE_PENDING
1818  // Save and restore any pending_exception around the exception mark.
1819  // While the slow_exit must not throw an exception, we could come into
1820  // this routine with one set.
1821  oop pending_excep = NULL;
1822  const char* pending_file;
1823  int pending_line;
1824  if (HAS_PENDING_EXCEPTION) {
1825    pending_excep = PENDING_EXCEPTION;
1826    pending_file  = THREAD->exception_file();
1827    pending_line  = THREAD->exception_line();
1828    CLEAR_PENDING_EXCEPTION;
1829  }
1830#endif /* MIGHT_HAVE_PENDING */
1831
1832  {
1833    // Exit must be non-blocking, and therefore no exceptions can be thrown.
1834    EXCEPTION_MARK;
1835    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1836  }
1837
1838#ifdef MIGHT_HAVE_PENDING
1839  if (pending_excep != NULL) {
1840    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1841  }
1842#endif /* MIGHT_HAVE_PENDING */
1843JRT_END
1844
1845#ifndef PRODUCT
1846
1847void SharedRuntime::print_statistics() {
1848  ttyLocker ttyl;
1849  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1850
1851  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1852
1853  SharedRuntime::print_ic_miss_histogram();
1854
1855  if (CountRemovableExceptions) {
1856    if (_nof_removable_exceptions > 0) {
1857      Unimplemented(); // this counter is not yet incremented
1858      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1859    }
1860  }
1861
1862  // Dump the JRT_ENTRY counters
1863  if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1864  if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1865  if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1866  if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1867  if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1868  if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1869  if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1870
1871  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1872  tty->print_cr("%5d wrong method", _wrong_method_ctr);
1873  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1874  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1875  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1876
1877  if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1878  if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1879  if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1880  if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1881  if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
1882  if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
1883  if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
1884  if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
1885  if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
1886  if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
1887  if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
1888  if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
1889  if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
1890  if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
1891  if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
1892  if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
1893
1894  AdapterHandlerLibrary::print_statistics();
1895
1896  if (xtty != NULL)  xtty->tail("statistics");
1897}
1898
1899inline double percent(int x, int y) {
1900  return 100.0 * x / MAX2(y, 1);
1901}
1902
1903class MethodArityHistogram {
1904 public:
1905  enum { MAX_ARITY = 256 };
1906 private:
1907  static int _arity_histogram[MAX_ARITY];     // histogram of #args
1908  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1909  static int _max_arity;                      // max. arity seen
1910  static int _max_size;                       // max. arg size seen
1911
1912  static void add_method_to_histogram(nmethod* nm) {
1913    Method* m = nm->method();
1914    ArgumentCount args(m->signature());
1915    int arity   = args.size() + (m->is_static() ? 0 : 1);
1916    int argsize = m->size_of_parameters();
1917    arity   = MIN2(arity, MAX_ARITY-1);
1918    argsize = MIN2(argsize, MAX_ARITY-1);
1919    int count = nm->method()->compiled_invocation_count();
1920    _arity_histogram[arity]  += count;
1921    _size_histogram[argsize] += count;
1922    _max_arity = MAX2(_max_arity, arity);
1923    _max_size  = MAX2(_max_size, argsize);
1924  }
1925
1926  void print_histogram_helper(int n, int* histo, const char* name) {
1927    const int N = MIN2(5, n);
1928    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1929    double sum = 0;
1930    double weighted_sum = 0;
1931    int i;
1932    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1933    double rest = sum;
1934    double percent = sum / 100;
1935    for (i = 0; i <= N; i++) {
1936      rest -= histo[i];
1937      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1938    }
1939    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1940    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1941  }
1942
1943  void print_histogram() {
1944    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1945    print_histogram_helper(_max_arity, _arity_histogram, "arity");
1946    tty->print_cr("\nSame for parameter size (in words):");
1947    print_histogram_helper(_max_size, _size_histogram, "size");
1948    tty->cr();
1949  }
1950
1951 public:
1952  MethodArityHistogram() {
1953    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1954    _max_arity = _max_size = 0;
1955    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
1956    CodeCache::nmethods_do(add_method_to_histogram);
1957    print_histogram();
1958  }
1959};
1960
1961int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1962int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1963int MethodArityHistogram::_max_arity;
1964int MethodArityHistogram::_max_size;
1965
1966void SharedRuntime::print_call_statistics(int comp_total) {
1967  tty->print_cr("Calls from compiled code:");
1968  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1969  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1970  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1971  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1972  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1973  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1974  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1975  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1976  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1977  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1978  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1979  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1980  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1981  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1982  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1983  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1984  tty->cr();
1985  tty->print_cr("Note 1: counter updates are not MT-safe.");
1986  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1987  tty->print_cr("        %% in nested categories are relative to their category");
1988  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1989  tty->cr();
1990
1991  MethodArityHistogram h;
1992}
1993#endif
1994
1995
1996// A simple wrapper class around the calling convention information
1997// that allows sharing of adapters for the same calling convention.
1998class AdapterFingerPrint : public CHeapObj<mtCode> {
1999 private:
2000  enum {
2001    _basic_type_bits = 4,
2002    _basic_type_mask = right_n_bits(_basic_type_bits),
2003    _basic_types_per_int = BitsPerInt / _basic_type_bits,
2004    _compact_int_count = 3
2005  };
2006  // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2007  // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2008
2009  union {
2010    int  _compact[_compact_int_count];
2011    int* _fingerprint;
2012  } _value;
2013  int _length; // A negative length indicates the fingerprint is in the compact form,
2014               // Otherwise _value._fingerprint is the array.
2015
2016  // Remap BasicTypes that are handled equivalently by the adapters.
2017  // These are correct for the current system but someday it might be
2018  // necessary to make this mapping platform dependent.
2019  static int adapter_encoding(BasicType in) {
2020    switch (in) {
2021      case T_BOOLEAN:
2022      case T_BYTE:
2023      case T_SHORT:
2024      case T_CHAR:
2025        // There are all promoted to T_INT in the calling convention
2026        return T_INT;
2027
2028      case T_OBJECT:
2029      case T_ARRAY:
2030        // In other words, we assume that any register good enough for
2031        // an int or long is good enough for a managed pointer.
2032#ifdef _LP64
2033        return T_LONG;
2034#else
2035        return T_INT;
2036#endif
2037
2038      case T_INT:
2039      case T_LONG:
2040      case T_FLOAT:
2041      case T_DOUBLE:
2042      case T_VOID:
2043        return in;
2044
2045      default:
2046        ShouldNotReachHere();
2047        return T_CONFLICT;
2048    }
2049  }
2050
2051 public:
2052  AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2053    // The fingerprint is based on the BasicType signature encoded
2054    // into an array of ints with eight entries per int.
2055    int* ptr;
2056    int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2057    if (len <= _compact_int_count) {
2058      assert(_compact_int_count == 3, "else change next line");
2059      _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2060      // Storing the signature encoded as signed chars hits about 98%
2061      // of the time.
2062      _length = -len;
2063      ptr = _value._compact;
2064    } else {
2065      _length = len;
2066      _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2067      ptr = _value._fingerprint;
2068    }
2069
2070    // Now pack the BasicTypes with 8 per int
2071    int sig_index = 0;
2072    for (int index = 0; index < len; index++) {
2073      int value = 0;
2074      for (int byte = 0; byte < _basic_types_per_int; byte++) {
2075        int bt = ((sig_index < total_args_passed)
2076                  ? adapter_encoding(sig_bt[sig_index++])
2077                  : 0);
2078        assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2079        value = (value << _basic_type_bits) | bt;
2080      }
2081      ptr[index] = value;
2082    }
2083  }
2084
2085  ~AdapterFingerPrint() {
2086    if (_length > 0) {
2087      FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2088    }
2089  }
2090
2091  int value(int index) {
2092    if (_length < 0) {
2093      return _value._compact[index];
2094    }
2095    return _value._fingerprint[index];
2096  }
2097  int length() {
2098    if (_length < 0) return -_length;
2099    return _length;
2100  }
2101
2102  bool is_compact() {
2103    return _length <= 0;
2104  }
2105
2106  unsigned int compute_hash() {
2107    int hash = 0;
2108    for (int i = 0; i < length(); i++) {
2109      int v = value(i);
2110      hash = (hash << 8) ^ v ^ (hash >> 5);
2111    }
2112    return (unsigned int)hash;
2113  }
2114
2115  const char* as_string() {
2116    stringStream st;
2117    st.print("0x");
2118    for (int i = 0; i < length(); i++) {
2119      st.print("%08x", value(i));
2120    }
2121    return st.as_string();
2122  }
2123
2124  bool equals(AdapterFingerPrint* other) {
2125    if (other->_length != _length) {
2126      return false;
2127    }
2128    if (_length < 0) {
2129      assert(_compact_int_count == 3, "else change next line");
2130      return _value._compact[0] == other->_value._compact[0] &&
2131             _value._compact[1] == other->_value._compact[1] &&
2132             _value._compact[2] == other->_value._compact[2];
2133    } else {
2134      for (int i = 0; i < _length; i++) {
2135        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2136          return false;
2137        }
2138      }
2139    }
2140    return true;
2141  }
2142};
2143
2144
2145// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2146class AdapterHandlerTable : public BasicHashtable<mtCode> {
2147  friend class AdapterHandlerTableIterator;
2148
2149 private:
2150
2151#ifndef PRODUCT
2152  static int _lookups; // number of calls to lookup
2153  static int _buckets; // number of buckets checked
2154  static int _equals;  // number of buckets checked with matching hash
2155  static int _hits;    // number of successful lookups
2156  static int _compact; // number of equals calls with compact signature
2157#endif
2158
2159  AdapterHandlerEntry* bucket(int i) {
2160    return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2161  }
2162
2163 public:
2164  AdapterHandlerTable()
2165    : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2166
2167  // Create a new entry suitable for insertion in the table
2168  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2169    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2170    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2171    return entry;
2172  }
2173
2174  // Insert an entry into the table
2175  void add(AdapterHandlerEntry* entry) {
2176    int index = hash_to_index(entry->hash());
2177    add_entry(index, entry);
2178  }
2179
2180  void free_entry(AdapterHandlerEntry* entry) {
2181    entry->deallocate();
2182    BasicHashtable<mtCode>::free_entry(entry);
2183  }
2184
2185  // Find a entry with the same fingerprint if it exists
2186  AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2187    NOT_PRODUCT(_lookups++);
2188    AdapterFingerPrint fp(total_args_passed, sig_bt);
2189    unsigned int hash = fp.compute_hash();
2190    int index = hash_to_index(hash);
2191    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2192      NOT_PRODUCT(_buckets++);
2193      if (e->hash() == hash) {
2194        NOT_PRODUCT(_equals++);
2195        if (fp.equals(e->fingerprint())) {
2196#ifndef PRODUCT
2197          if (fp.is_compact()) _compact++;
2198          _hits++;
2199#endif
2200          return e;
2201        }
2202      }
2203    }
2204    return NULL;
2205  }
2206
2207#ifndef PRODUCT
2208  void print_statistics() {
2209    ResourceMark rm;
2210    int longest = 0;
2211    int empty = 0;
2212    int total = 0;
2213    int nonempty = 0;
2214    for (int index = 0; index < table_size(); index++) {
2215      int count = 0;
2216      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2217        count++;
2218      }
2219      if (count != 0) nonempty++;
2220      if (count == 0) empty++;
2221      if (count > longest) longest = count;
2222      total += count;
2223    }
2224    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2225                  empty, longest, total, total / (double)nonempty);
2226    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2227                  _lookups, _buckets, _equals, _hits, _compact);
2228  }
2229#endif
2230};
2231
2232
2233#ifndef PRODUCT
2234
2235int AdapterHandlerTable::_lookups;
2236int AdapterHandlerTable::_buckets;
2237int AdapterHandlerTable::_equals;
2238int AdapterHandlerTable::_hits;
2239int AdapterHandlerTable::_compact;
2240
2241#endif
2242
2243class AdapterHandlerTableIterator : public StackObj {
2244 private:
2245  AdapterHandlerTable* _table;
2246  int _index;
2247  AdapterHandlerEntry* _current;
2248
2249  void scan() {
2250    while (_index < _table->table_size()) {
2251      AdapterHandlerEntry* a = _table->bucket(_index);
2252      _index++;
2253      if (a != NULL) {
2254        _current = a;
2255        return;
2256      }
2257    }
2258  }
2259
2260 public:
2261  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2262    scan();
2263  }
2264  bool has_next() {
2265    return _current != NULL;
2266  }
2267  AdapterHandlerEntry* next() {
2268    if (_current != NULL) {
2269      AdapterHandlerEntry* result = _current;
2270      _current = _current->next();
2271      if (_current == NULL) scan();
2272      return result;
2273    } else {
2274      return NULL;
2275    }
2276  }
2277};
2278
2279
2280// ---------------------------------------------------------------------------
2281// Implementation of AdapterHandlerLibrary
2282AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2283AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2284const int AdapterHandlerLibrary_size = 16*K;
2285BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2286
2287BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2288  // Should be called only when AdapterHandlerLibrary_lock is active.
2289  if (_buffer == NULL) // Initialize lazily
2290      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2291  return _buffer;
2292}
2293
2294void AdapterHandlerLibrary::initialize() {
2295  if (_adapters != NULL) return;
2296  _adapters = new AdapterHandlerTable();
2297
2298  // Create a special handler for abstract methods.  Abstract methods
2299  // are never compiled so an i2c entry is somewhat meaningless, but
2300  // throw AbstractMethodError just in case.
2301  // Pass wrong_method_abstract for the c2i transitions to return
2302  // AbstractMethodError for invalid invocations.
2303  address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2304  _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2305                                                              StubRoutines::throw_AbstractMethodError_entry(),
2306                                                              wrong_method_abstract, wrong_method_abstract);
2307}
2308
2309AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2310                                                      address i2c_entry,
2311                                                      address c2i_entry,
2312                                                      address c2i_unverified_entry) {
2313  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2314}
2315
2316AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2317  // Use customized signature handler.  Need to lock around updates to
2318  // the AdapterHandlerTable (it is not safe for concurrent readers
2319  // and a single writer: this could be fixed if it becomes a
2320  // problem).
2321
2322  // Get the address of the ic_miss handlers before we grab the
2323  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2324  // was caused by the initialization of the stubs happening
2325  // while we held the lock and then notifying jvmti while
2326  // holding it. This just forces the initialization to be a little
2327  // earlier.
2328  address ic_miss = SharedRuntime::get_ic_miss_stub();
2329  assert(ic_miss != NULL, "must have handler");
2330
2331  ResourceMark rm;
2332
2333  NOT_PRODUCT(int insts_size);
2334  AdapterBlob* new_adapter = NULL;
2335  AdapterHandlerEntry* entry = NULL;
2336  AdapterFingerPrint* fingerprint = NULL;
2337  {
2338    MutexLocker mu(AdapterHandlerLibrary_lock);
2339    // make sure data structure is initialized
2340    initialize();
2341
2342    if (method->is_abstract()) {
2343      return _abstract_method_handler;
2344    }
2345
2346    // Fill in the signature array, for the calling-convention call.
2347    int total_args_passed = method->size_of_parameters(); // All args on stack
2348
2349    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2350    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2351    int i = 0;
2352    if (!method->is_static())  // Pass in receiver first
2353      sig_bt[i++] = T_OBJECT;
2354    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2355      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2356      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2357        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2358    }
2359    assert(i == total_args_passed, "");
2360
2361    // Lookup method signature's fingerprint
2362    entry = _adapters->lookup(total_args_passed, sig_bt);
2363
2364#ifdef ASSERT
2365    AdapterHandlerEntry* shared_entry = NULL;
2366    // Start adapter sharing verification only after the VM is booted.
2367    if (VerifyAdapterSharing && (entry != NULL)) {
2368      shared_entry = entry;
2369      entry = NULL;
2370    }
2371#endif
2372
2373    if (entry != NULL) {
2374      return entry;
2375    }
2376
2377    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2378    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2379
2380    // Make a C heap allocated version of the fingerprint to store in the adapter
2381    fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2382
2383    // StubRoutines::code2() is initialized after this function can be called. As a result,
2384    // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2385    // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2386    // stub that ensure that an I2C stub is called from an interpreter frame.
2387    bool contains_all_checks = StubRoutines::code2() != NULL;
2388
2389    // Create I2C & C2I handlers
2390    BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2391    if (buf != NULL) {
2392      CodeBuffer buffer(buf);
2393      short buffer_locs[20];
2394      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2395                                             sizeof(buffer_locs)/sizeof(relocInfo));
2396
2397      MacroAssembler _masm(&buffer);
2398      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2399                                                     total_args_passed,
2400                                                     comp_args_on_stack,
2401                                                     sig_bt,
2402                                                     regs,
2403                                                     fingerprint);
2404#ifdef ASSERT
2405      if (VerifyAdapterSharing) {
2406        if (shared_entry != NULL) {
2407          assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2408          // Release the one just created and return the original
2409          _adapters->free_entry(entry);
2410          return shared_entry;
2411        } else  {
2412          entry->save_code(buf->code_begin(), buffer.insts_size());
2413        }
2414      }
2415#endif
2416
2417      new_adapter = AdapterBlob::create(&buffer);
2418      NOT_PRODUCT(insts_size = buffer.insts_size());
2419    }
2420    if (new_adapter == NULL) {
2421      // CodeCache is full, disable compilation
2422      // Ought to log this but compile log is only per compile thread
2423      // and we're some non descript Java thread.
2424      return NULL; // Out of CodeCache space
2425    }
2426    entry->relocate(new_adapter->content_begin());
2427#ifndef PRODUCT
2428    // debugging suppport
2429    if (PrintAdapterHandlers || PrintStubCode) {
2430      ttyLocker ttyl;
2431      entry->print_adapter_on(tty);
2432      tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2433                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2434                    method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2435      tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2436      if (Verbose || PrintStubCode) {
2437        address first_pc = entry->base_address();
2438        if (first_pc != NULL) {
2439          Disassembler::decode(first_pc, first_pc + insts_size);
2440          tty->cr();
2441        }
2442      }
2443    }
2444#endif
2445    // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2446    // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2447    if (contains_all_checks || !VerifyAdapterCalls) {
2448      _adapters->add(entry);
2449    }
2450  }
2451  // Outside of the lock
2452  if (new_adapter != NULL) {
2453    char blob_id[256];
2454    jio_snprintf(blob_id,
2455                 sizeof(blob_id),
2456                 "%s(%s)@" PTR_FORMAT,
2457                 new_adapter->name(),
2458                 fingerprint->as_string(),
2459                 new_adapter->content_begin());
2460    Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2461
2462    if (JvmtiExport::should_post_dynamic_code_generated()) {
2463      JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2464    }
2465  }
2466  return entry;
2467}
2468
2469address AdapterHandlerEntry::base_address() {
2470  address base = _i2c_entry;
2471  if (base == NULL)  base = _c2i_entry;
2472  assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2473  assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2474  return base;
2475}
2476
2477void AdapterHandlerEntry::relocate(address new_base) {
2478  address old_base = base_address();
2479  assert(old_base != NULL, "");
2480  ptrdiff_t delta = new_base - old_base;
2481  if (_i2c_entry != NULL)
2482    _i2c_entry += delta;
2483  if (_c2i_entry != NULL)
2484    _c2i_entry += delta;
2485  if (_c2i_unverified_entry != NULL)
2486    _c2i_unverified_entry += delta;
2487  assert(base_address() == new_base, "");
2488}
2489
2490
2491void AdapterHandlerEntry::deallocate() {
2492  delete _fingerprint;
2493#ifdef ASSERT
2494  if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2495#endif
2496}
2497
2498
2499#ifdef ASSERT
2500// Capture the code before relocation so that it can be compared
2501// against other versions.  If the code is captured after relocation
2502// then relative instructions won't be equivalent.
2503void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2504  _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2505  _saved_code_length = length;
2506  memcpy(_saved_code, buffer, length);
2507}
2508
2509
2510bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2511  if (length != _saved_code_length) {
2512    return false;
2513  }
2514
2515  return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2516}
2517#endif
2518
2519
2520/**
2521 * Create a native wrapper for this native method.  The wrapper converts the
2522 * Java-compiled calling convention to the native convention, handles
2523 * arguments, and transitions to native.  On return from the native we transition
2524 * back to java blocking if a safepoint is in progress.
2525 */
2526void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2527  ResourceMark rm;
2528  nmethod* nm = NULL;
2529
2530  assert(method->is_native(), "must be native");
2531  assert(method->is_method_handle_intrinsic() ||
2532         method->has_native_function(), "must have something valid to call!");
2533
2534  {
2535    // Perform the work while holding the lock, but perform any printing outside the lock
2536    MutexLocker mu(AdapterHandlerLibrary_lock);
2537    // See if somebody beat us to it
2538    nm = method->code();
2539    if (nm != NULL) {
2540      return;
2541    }
2542
2543    const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2544    assert(compile_id > 0, "Must generate native wrapper");
2545
2546
2547    ResourceMark rm;
2548    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2549    if (buf != NULL) {
2550      CodeBuffer buffer(buf);
2551      double locs_buf[20];
2552      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2553      MacroAssembler _masm(&buffer);
2554
2555      // Fill in the signature array, for the calling-convention call.
2556      const int total_args_passed = method->size_of_parameters();
2557
2558      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2559      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2560      int i=0;
2561      if (!method->is_static())  // Pass in receiver first
2562        sig_bt[i++] = T_OBJECT;
2563      SignatureStream ss(method->signature());
2564      for (; !ss.at_return_type(); ss.next()) {
2565        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2566        if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2567          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2568      }
2569      assert(i == total_args_passed, "");
2570      BasicType ret_type = ss.type();
2571
2572      // Now get the compiled-Java layout as input (or output) arguments.
2573      // NOTE: Stubs for compiled entry points of method handle intrinsics
2574      // are just trampolines so the argument registers must be outgoing ones.
2575      const bool is_outgoing = method->is_method_handle_intrinsic();
2576      int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2577
2578      // Generate the compiled-to-native wrapper code
2579      nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2580
2581      if (nm != NULL) {
2582        method->set_code(method, nm);
2583      }
2584    }
2585  } // Unlock AdapterHandlerLibrary_lock
2586
2587
2588  // Install the generated code.
2589  if (nm != NULL) {
2590    if (PrintCompilation) {
2591      ttyLocker ttyl;
2592      CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2593    }
2594    nm->post_compiled_method_load_event();
2595  }
2596}
2597
2598JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2599  assert(thread == JavaThread::current(), "must be");
2600  // The code is about to enter a JNI lazy critical native method and
2601  // _needs_gc is true, so if this thread is already in a critical
2602  // section then just return, otherwise this thread should block
2603  // until needs_gc has been cleared.
2604  if (thread->in_critical()) {
2605    return;
2606  }
2607  // Lock and unlock a critical section to give the system a chance to block
2608  GC_locker::lock_critical(thread);
2609  GC_locker::unlock_critical(thread);
2610JRT_END
2611
2612#ifdef HAVE_DTRACE_H
2613/**
2614 * Create a dtrace nmethod for this method.  The wrapper converts the
2615 * Java-compiled calling convention to the native convention, makes a dummy call
2616 * (actually nops for the size of the call instruction, which become a trap if
2617 * probe is enabled), and finally returns to the caller. Since this all looks like a
2618 * leaf, no thread transition is needed.
2619 */
2620nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2621  ResourceMark rm;
2622  nmethod* nm = NULL;
2623
2624  if (PrintCompilation) {
2625    ttyLocker ttyl;
2626    tty->print("---   n  ");
2627    method->print_short_name(tty);
2628    if (method->is_static()) {
2629      tty->print(" (static)");
2630    }
2631    tty->cr();
2632  }
2633
2634  {
2635    // perform the work while holding the lock, but perform any printing
2636    // outside the lock
2637    MutexLocker mu(AdapterHandlerLibrary_lock);
2638    // See if somebody beat us to it
2639    nm = method->code();
2640    if (nm) {
2641      return nm;
2642    }
2643
2644    ResourceMark rm;
2645
2646    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2647    if (buf != NULL) {
2648      CodeBuffer buffer(buf);
2649      // Need a few relocation entries
2650      double locs_buf[20];
2651      buffer.insts()->initialize_shared_locs(
2652        (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2653      MacroAssembler _masm(&buffer);
2654
2655      // Generate the compiled-to-native wrapper code
2656      nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2657    }
2658  }
2659  return nm;
2660}
2661
2662// the dtrace method needs to convert java lang string to utf8 string.
2663void SharedRuntime::get_utf(oopDesc* src, address dst) {
2664  typeArrayOop jlsValue  = java_lang_String::value(src);
2665  int          jlsOffset = java_lang_String::offset(src);
2666  int          jlsLen    = java_lang_String::length(src);
2667  jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2668                                           jlsValue->char_at_addr(jlsOffset);
2669  assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2670  (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2671}
2672#endif // ndef HAVE_DTRACE_H
2673
2674int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2675  int argcnt = in_args_count;
2676  if (CCallingConventionRequiresIntsAsLongs) {
2677    for (int in = 0; in < in_args_count; in++) {
2678      BasicType bt = in_sig_bt[in];
2679      switch (bt) {
2680        case T_BOOLEAN:
2681        case T_CHAR:
2682        case T_BYTE:
2683        case T_SHORT:
2684        case T_INT:
2685          argcnt++;
2686          break;
2687        default:
2688          break;
2689      }
2690    }
2691  } else {
2692    assert(0, "This should not be needed on this platform");
2693  }
2694
2695  return argcnt;
2696}
2697
2698void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2699                                             BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2700  if (CCallingConventionRequiresIntsAsLongs) {
2701    VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2702    BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2703
2704    int argcnt = 0;
2705    for (int in = 0; in < in_args_count; in++, argcnt++) {
2706      BasicType bt  = in_sig_bt[in];
2707      VMRegPair reg = in_regs[in];
2708      switch (bt) {
2709        case T_BOOLEAN:
2710        case T_CHAR:
2711        case T_BYTE:
2712        case T_SHORT:
2713        case T_INT:
2714          // Convert (bt) to (T_LONG,bt).
2715          new_in_sig_bt[argcnt] = T_LONG;
2716          new_in_sig_bt[argcnt+1] = bt;
2717          assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2718          new_in_regs[argcnt].set2(reg.first());
2719          new_in_regs[argcnt+1].set_bad();
2720          argcnt++;
2721          break;
2722        default:
2723          // No conversion needed.
2724          new_in_sig_bt[argcnt] = bt;
2725          new_in_regs[argcnt]   = reg;
2726          break;
2727      }
2728    }
2729    assert(argcnt == i2l_argcnt, "must match");
2730
2731    in_regs = new_in_regs;
2732    in_sig_bt = new_in_sig_bt;
2733    in_args_count = i2l_argcnt;
2734  } else {
2735    assert(0, "This should not be needed on this platform");
2736  }
2737}
2738
2739// -------------------------------------------------------------------------
2740// Java-Java calling convention
2741// (what you use when Java calls Java)
2742
2743//------------------------------name_for_receiver----------------------------------
2744// For a given signature, return the VMReg for parameter 0.
2745VMReg SharedRuntime::name_for_receiver() {
2746  VMRegPair regs;
2747  BasicType sig_bt = T_OBJECT;
2748  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2749  // Return argument 0 register.  In the LP64 build pointers
2750  // take 2 registers, but the VM wants only the 'main' name.
2751  return regs.first();
2752}
2753
2754VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2755  // This method is returning a data structure allocating as a
2756  // ResourceObject, so do not put any ResourceMarks in here.
2757  char *s = sig->as_C_string();
2758  int len = (int)strlen(s);
2759  s++; len--;                   // Skip opening paren
2760  char *t = s+len;
2761  while (*(--t) != ')');      // Find close paren
2762
2763  BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2764  VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2765  int cnt = 0;
2766  if (has_receiver) {
2767    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2768  }
2769
2770  while (s < t) {
2771    switch (*s++) {            // Switch on signature character
2772    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2773    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2774    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2775    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2776    case 'I': sig_bt[cnt++] = T_INT;     break;
2777    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2778    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2779    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2780    case 'V': sig_bt[cnt++] = T_VOID;    break;
2781    case 'L':                   // Oop
2782      while (*s++ != ';');   // Skip signature
2783      sig_bt[cnt++] = T_OBJECT;
2784      break;
2785    case '[': {                 // Array
2786      do {                      // Skip optional size
2787        while (*s >= '0' && *s <= '9') s++;
2788      } while (*s++ == '[');   // Nested arrays?
2789      // Skip element type
2790      if (s[-1] == 'L')
2791        while (*s++ != ';'); // Skip signature
2792      sig_bt[cnt++] = T_ARRAY;
2793      break;
2794    }
2795    default : ShouldNotReachHere();
2796    }
2797  }
2798
2799  if (has_appendix) {
2800    sig_bt[cnt++] = T_OBJECT;
2801  }
2802
2803  assert(cnt < 256, "grow table size");
2804
2805  int comp_args_on_stack;
2806  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2807
2808  // the calling convention doesn't count out_preserve_stack_slots so
2809  // we must add that in to get "true" stack offsets.
2810
2811  if (comp_args_on_stack) {
2812    for (int i = 0; i < cnt; i++) {
2813      VMReg reg1 = regs[i].first();
2814      if (reg1->is_stack()) {
2815        // Yuck
2816        reg1 = reg1->bias(out_preserve_stack_slots());
2817      }
2818      VMReg reg2 = regs[i].second();
2819      if (reg2->is_stack()) {
2820        // Yuck
2821        reg2 = reg2->bias(out_preserve_stack_slots());
2822      }
2823      regs[i].set_pair(reg2, reg1);
2824    }
2825  }
2826
2827  // results
2828  *arg_size = cnt;
2829  return regs;
2830}
2831
2832// OSR Migration Code
2833//
2834// This code is used convert interpreter frames into compiled frames.  It is
2835// called from very start of a compiled OSR nmethod.  A temp array is
2836// allocated to hold the interesting bits of the interpreter frame.  All
2837// active locks are inflated to allow them to move.  The displaced headers and
2838// active interpreter locals are copied into the temp buffer.  Then we return
2839// back to the compiled code.  The compiled code then pops the current
2840// interpreter frame off the stack and pushes a new compiled frame.  Then it
2841// copies the interpreter locals and displaced headers where it wants.
2842// Finally it calls back to free the temp buffer.
2843//
2844// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2845
2846JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2847
2848  //
2849  // This code is dependent on the memory layout of the interpreter local
2850  // array and the monitors. On all of our platforms the layout is identical
2851  // so this code is shared. If some platform lays the their arrays out
2852  // differently then this code could move to platform specific code or
2853  // the code here could be modified to copy items one at a time using
2854  // frame accessor methods and be platform independent.
2855
2856  frame fr = thread->last_frame();
2857  assert(fr.is_interpreted_frame(), "");
2858  assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2859
2860  // Figure out how many monitors are active.
2861  int active_monitor_count = 0;
2862  for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2863       kptr < fr.interpreter_frame_monitor_begin();
2864       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2865    if (kptr->obj() != NULL) active_monitor_count++;
2866  }
2867
2868  // QQQ we could place number of active monitors in the array so that compiled code
2869  // could double check it.
2870
2871  Method* moop = fr.interpreter_frame_method();
2872  int max_locals = moop->max_locals();
2873  // Allocate temp buffer, 1 word per local & 2 per active monitor
2874  int buf_size_words = max_locals + active_monitor_count*2;
2875  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2876
2877  // Copy the locals.  Order is preserved so that loading of longs works.
2878  // Since there's no GC I can copy the oops blindly.
2879  assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2880  Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2881                       (HeapWord*)&buf[0],
2882                       max_locals);
2883
2884  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2885  int i = max_locals;
2886  for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2887       kptr2 < fr.interpreter_frame_monitor_begin();
2888       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2889    if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2890      BasicLock *lock = kptr2->lock();
2891      // Inflate so the displaced header becomes position-independent
2892      if (lock->displaced_header()->is_unlocked())
2893        ObjectSynchronizer::inflate_helper(kptr2->obj());
2894      // Now the displaced header is free to move
2895      buf[i++] = (intptr_t)lock->displaced_header();
2896      buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2897    }
2898  }
2899  assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2900
2901  return buf;
2902JRT_END
2903
2904JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2905  FREE_C_HEAP_ARRAY(intptr_t, buf, mtCode);
2906JRT_END
2907
2908bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2909  AdapterHandlerTableIterator iter(_adapters);
2910  while (iter.has_next()) {
2911    AdapterHandlerEntry* a = iter.next();
2912    if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2913  }
2914  return false;
2915}
2916
2917void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2918  AdapterHandlerTableIterator iter(_adapters);
2919  while (iter.has_next()) {
2920    AdapterHandlerEntry* a = iter.next();
2921    if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2922      st->print("Adapter for signature: ");
2923      a->print_adapter_on(tty);
2924      return;
2925    }
2926  }
2927  assert(false, "Should have found handler");
2928}
2929
2930void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2931  st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2932               (intptr_t) this, fingerprint()->as_string(),
2933               get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2934
2935}
2936
2937#ifndef PRODUCT
2938
2939void AdapterHandlerLibrary::print_statistics() {
2940  _adapters->print_statistics();
2941}
2942
2943#endif /* PRODUCT */
2944