sharedRuntime.cpp revision 1426:2338d41fbd81
1/*
2 * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_sharedRuntime.cpp.incl"
27#include <math.h>
28
29HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
30HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
31                      char*, int, char*, int, char*, int);
32HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
33                      char*, int, char*, int, char*, int);
34
35// Implementation of SharedRuntime
36
37#ifndef PRODUCT
38// For statistics
39int SharedRuntime::_ic_miss_ctr = 0;
40int SharedRuntime::_wrong_method_ctr = 0;
41int SharedRuntime::_resolve_static_ctr = 0;
42int SharedRuntime::_resolve_virtual_ctr = 0;
43int SharedRuntime::_resolve_opt_virtual_ctr = 0;
44int SharedRuntime::_implicit_null_throws = 0;
45int SharedRuntime::_implicit_div0_throws = 0;
46int SharedRuntime::_throw_null_ctr = 0;
47
48int SharedRuntime::_nof_normal_calls = 0;
49int SharedRuntime::_nof_optimized_calls = 0;
50int SharedRuntime::_nof_inlined_calls = 0;
51int SharedRuntime::_nof_megamorphic_calls = 0;
52int SharedRuntime::_nof_static_calls = 0;
53int SharedRuntime::_nof_inlined_static_calls = 0;
54int SharedRuntime::_nof_interface_calls = 0;
55int SharedRuntime::_nof_optimized_interface_calls = 0;
56int SharedRuntime::_nof_inlined_interface_calls = 0;
57int SharedRuntime::_nof_megamorphic_interface_calls = 0;
58int SharedRuntime::_nof_removable_exceptions = 0;
59
60int SharedRuntime::_new_instance_ctr=0;
61int SharedRuntime::_new_array_ctr=0;
62int SharedRuntime::_multi1_ctr=0;
63int SharedRuntime::_multi2_ctr=0;
64int SharedRuntime::_multi3_ctr=0;
65int SharedRuntime::_multi4_ctr=0;
66int SharedRuntime::_multi5_ctr=0;
67int SharedRuntime::_mon_enter_stub_ctr=0;
68int SharedRuntime::_mon_exit_stub_ctr=0;
69int SharedRuntime::_mon_enter_ctr=0;
70int SharedRuntime::_mon_exit_ctr=0;
71int SharedRuntime::_partial_subtype_ctr=0;
72int SharedRuntime::_jbyte_array_copy_ctr=0;
73int SharedRuntime::_jshort_array_copy_ctr=0;
74int SharedRuntime::_jint_array_copy_ctr=0;
75int SharedRuntime::_jlong_array_copy_ctr=0;
76int SharedRuntime::_oop_array_copy_ctr=0;
77int SharedRuntime::_checkcast_array_copy_ctr=0;
78int SharedRuntime::_unsafe_array_copy_ctr=0;
79int SharedRuntime::_generic_array_copy_ctr=0;
80int SharedRuntime::_slow_array_copy_ctr=0;
81int SharedRuntime::_find_handler_ctr=0;
82int SharedRuntime::_rethrow_ctr=0;
83
84int     SharedRuntime::_ICmiss_index                    = 0;
85int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
86address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
87
88void SharedRuntime::trace_ic_miss(address at) {
89  for (int i = 0; i < _ICmiss_index; i++) {
90    if (_ICmiss_at[i] == at) {
91      _ICmiss_count[i]++;
92      return;
93    }
94  }
95  int index = _ICmiss_index++;
96  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
97  _ICmiss_at[index] = at;
98  _ICmiss_count[index] = 1;
99}
100
101void SharedRuntime::print_ic_miss_histogram() {
102  if (ICMissHistogram) {
103    tty->print_cr ("IC Miss Histogram:");
104    int tot_misses = 0;
105    for (int i = 0; i < _ICmiss_index; i++) {
106      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
107      tot_misses += _ICmiss_count[i];
108    }
109    tty->print_cr ("Total IC misses: %7d", tot_misses);
110  }
111}
112#endif // PRODUCT
113
114#ifndef SERIALGC
115
116// G1 write-barrier pre: executed before a pointer store.
117JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
118  if (orig == NULL) {
119    assert(false, "should be optimized out");
120    return;
121  }
122  assert(orig->is_oop(true /* ignore mark word */), "Error");
123  // store the original value that was in the field reference
124  thread->satb_mark_queue().enqueue(orig);
125JRT_END
126
127// G1 write-barrier post: executed after a pointer store.
128JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
129  thread->dirty_card_queue().enqueue(card_addr);
130JRT_END
131
132#endif // !SERIALGC
133
134
135JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
136  return x * y;
137JRT_END
138
139
140JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
141  if (x == min_jlong && y == CONST64(-1)) {
142    return x;
143  } else {
144    return x / y;
145  }
146JRT_END
147
148
149JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
150  if (x == min_jlong && y == CONST64(-1)) {
151    return 0;
152  } else {
153    return x % y;
154  }
155JRT_END
156
157
158const juint  float_sign_mask  = 0x7FFFFFFF;
159const juint  float_infinity   = 0x7F800000;
160const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
161const julong double_infinity  = CONST64(0x7FF0000000000000);
162
163JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
164#ifdef _WIN64
165  // 64-bit Windows on amd64 returns the wrong values for
166  // infinity operands.
167  union { jfloat f; juint i; } xbits, ybits;
168  xbits.f = x;
169  ybits.f = y;
170  // x Mod Infinity == x unless x is infinity
171  if ( ((xbits.i & float_sign_mask) != float_infinity) &&
172       ((ybits.i & float_sign_mask) == float_infinity) ) {
173    return x;
174  }
175#endif
176  return ((jfloat)fmod((double)x,(double)y));
177JRT_END
178
179
180JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
181#ifdef _WIN64
182  union { jdouble d; julong l; } xbits, ybits;
183  xbits.d = x;
184  ybits.d = y;
185  // x Mod Infinity == x unless x is infinity
186  if ( ((xbits.l & double_sign_mask) != double_infinity) &&
187       ((ybits.l & double_sign_mask) == double_infinity) ) {
188    return x;
189  }
190#endif
191  return ((jdouble)fmod((double)x,(double)y));
192JRT_END
193
194
195JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
196  if (g_isnan(x))
197    return 0;
198  if (x >= (jfloat) max_jint)
199    return max_jint;
200  if (x <= (jfloat) min_jint)
201    return min_jint;
202  return (jint) x;
203JRT_END
204
205
206JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
207  if (g_isnan(x))
208    return 0;
209  if (x >= (jfloat) max_jlong)
210    return max_jlong;
211  if (x <= (jfloat) min_jlong)
212    return min_jlong;
213  return (jlong) x;
214JRT_END
215
216
217JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
218  if (g_isnan(x))
219    return 0;
220  if (x >= (jdouble) max_jint)
221    return max_jint;
222  if (x <= (jdouble) min_jint)
223    return min_jint;
224  return (jint) x;
225JRT_END
226
227
228JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
229  if (g_isnan(x))
230    return 0;
231  if (x >= (jdouble) max_jlong)
232    return max_jlong;
233  if (x <= (jdouble) min_jlong)
234    return min_jlong;
235  return (jlong) x;
236JRT_END
237
238
239JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
240  return (jfloat)x;
241JRT_END
242
243
244JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
245  return (jfloat)x;
246JRT_END
247
248
249JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
250  return (jdouble)x;
251JRT_END
252
253// Exception handling accross interpreter/compiler boundaries
254//
255// exception_handler_for_return_address(...) returns the continuation address.
256// The continuation address is the entry point of the exception handler of the
257// previous frame depending on the return address.
258
259address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
260  assert(frame::verify_return_pc(return_address), "must be a return pc");
261
262  // Reset MethodHandle flag.
263  thread->set_is_method_handle_return(false);
264
265  // the fastest case first
266  CodeBlob* blob = CodeCache::find_blob(return_address);
267  if (blob != NULL && blob->is_nmethod()) {
268    nmethod* code = (nmethod*)blob;
269    assert(code != NULL, "nmethod must be present");
270    // Check if the return address is a MethodHandle call site.
271    thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
272    // native nmethods don't have exception handlers
273    assert(!code->is_native_method(), "no exception handler");
274    assert(code->header_begin() != code->exception_begin(), "no exception handler");
275    if (code->is_deopt_pc(return_address)) {
276      return SharedRuntime::deopt_blob()->unpack_with_exception();
277    } else {
278      return code->exception_begin();
279    }
280  }
281
282  // Entry code
283  if (StubRoutines::returns_to_call_stub(return_address)) {
284    return StubRoutines::catch_exception_entry();
285  }
286  // Interpreted code
287  if (Interpreter::contains(return_address)) {
288    return Interpreter::rethrow_exception_entry();
289  }
290
291  // Compiled code
292  if (CodeCache::contains(return_address)) {
293    CodeBlob* blob = CodeCache::find_blob(return_address);
294    if (blob->is_nmethod()) {
295      nmethod* code = (nmethod*)blob;
296      assert(code != NULL, "nmethod must be present");
297      // Check if the return address is a MethodHandle call site.
298      thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
299      assert(code->header_begin() != code->exception_begin(), "no exception handler");
300      return code->exception_begin();
301    }
302    if (blob->is_runtime_stub()) {
303      ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
304    }
305  }
306  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
307#ifndef PRODUCT
308  { ResourceMark rm;
309    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
310    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
311    tty->print_cr("b) other problem");
312  }
313#endif // PRODUCT
314  ShouldNotReachHere();
315  return NULL;
316}
317
318
319JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
320  return raw_exception_handler_for_return_address(thread, return_address);
321JRT_END
322
323
324address SharedRuntime::get_poll_stub(address pc) {
325  address stub;
326  // Look up the code blob
327  CodeBlob *cb = CodeCache::find_blob(pc);
328
329  // Should be an nmethod
330  assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
331
332  // Look up the relocation information
333  assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
334    "safepoint polling: type must be poll" );
335
336  assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
337    "Only polling locations are used for safepoint");
338
339  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
340  if (at_poll_return) {
341    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
342           "polling page return stub not created yet");
343    stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
344  } else {
345    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
346           "polling page safepoint stub not created yet");
347    stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
348  }
349#ifndef PRODUCT
350  if( TraceSafepoint ) {
351    char buf[256];
352    jio_snprintf(buf, sizeof(buf),
353                 "... found polling page %s exception at pc = "
354                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
355                 at_poll_return ? "return" : "loop",
356                 (intptr_t)pc, (intptr_t)stub);
357    tty->print_raw_cr(buf);
358  }
359#endif // PRODUCT
360  return stub;
361}
362
363
364oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
365  assert(caller.is_interpreted_frame(), "");
366  int args_size = ArgumentSizeComputer(sig).size() + 1;
367  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
368  oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
369  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
370  return result;
371}
372
373
374void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
375  if (JvmtiExport::can_post_on_exceptions()) {
376    vframeStream vfst(thread, true);
377    methodHandle method = methodHandle(thread, vfst.method());
378    address bcp = method()->bcp_from(vfst.bci());
379    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
380  }
381  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
382}
383
384void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
385  Handle h_exception = Exceptions::new_exception(thread, name, message);
386  throw_and_post_jvmti_exception(thread, h_exception);
387}
388
389// The interpreter code to call this tracing function is only
390// called/generated when TraceRedefineClasses has the right bits
391// set. Since obsolete methods are never compiled, we don't have
392// to modify the compilers to generate calls to this function.
393//
394JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
395    JavaThread* thread, methodOopDesc* method))
396  assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
397
398  if (method->is_obsolete()) {
399    // We are calling an obsolete method, but this is not necessarily
400    // an error. Our method could have been redefined just after we
401    // fetched the methodOop from the constant pool.
402
403    // RC_TRACE macro has an embedded ResourceMark
404    RC_TRACE_WITH_THREAD(0x00001000, thread,
405                         ("calling obsolete method '%s'",
406                          method->name_and_sig_as_C_string()));
407    if (RC_TRACE_ENABLED(0x00002000)) {
408      // this option is provided to debug calls to obsolete methods
409      guarantee(false, "faulting at call to an obsolete method.");
410    }
411  }
412  return 0;
413JRT_END
414
415// ret_pc points into caller; we are returning caller's exception handler
416// for given exception
417address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
418                                                    bool force_unwind, bool top_frame_only) {
419  assert(nm != NULL, "must exist");
420  ResourceMark rm;
421
422  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
423  // determine handler bci, if any
424  EXCEPTION_MARK;
425
426  int handler_bci = -1;
427  int scope_depth = 0;
428  if (!force_unwind) {
429    int bci = sd->bci();
430    do {
431      bool skip_scope_increment = false;
432      // exception handler lookup
433      KlassHandle ek (THREAD, exception->klass());
434      handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
435      if (HAS_PENDING_EXCEPTION) {
436        // We threw an exception while trying to find the exception handler.
437        // Transfer the new exception to the exception handle which will
438        // be set into thread local storage, and do another lookup for an
439        // exception handler for this exception, this time starting at the
440        // BCI of the exception handler which caused the exception to be
441        // thrown (bugs 4307310 and 4546590). Set "exception" reference
442        // argument to ensure that the correct exception is thrown (4870175).
443        exception = Handle(THREAD, PENDING_EXCEPTION);
444        CLEAR_PENDING_EXCEPTION;
445        if (handler_bci >= 0) {
446          bci = handler_bci;
447          handler_bci = -1;
448          skip_scope_increment = true;
449        }
450      }
451      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
452        sd = sd->sender();
453        if (sd != NULL) {
454          bci = sd->bci();
455        }
456        ++scope_depth;
457      }
458    } while (!top_frame_only && handler_bci < 0 && sd != NULL);
459  }
460
461  // found handling method => lookup exception handler
462  int catch_pco = ret_pc - nm->instructions_begin();
463
464  ExceptionHandlerTable table(nm);
465  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
466  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
467    // Allow abbreviated catch tables.  The idea is to allow a method
468    // to materialize its exceptions without committing to the exact
469    // routing of exceptions.  In particular this is needed for adding
470    // a synthethic handler to unlock monitors when inlining
471    // synchonized methods since the unlock path isn't represented in
472    // the bytecodes.
473    t = table.entry_for(catch_pco, -1, 0);
474  }
475
476#ifdef COMPILER1
477  if (t == NULL && nm->is_compiled_by_c1()) {
478    assert(nm->unwind_handler_begin() != NULL, "");
479    return nm->unwind_handler_begin();
480  }
481#endif
482
483  if (t == NULL) {
484    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
485    tty->print_cr("   Exception:");
486    exception->print();
487    tty->cr();
488    tty->print_cr(" Compiled exception table :");
489    table.print();
490    nm->print_code();
491    guarantee(false, "missing exception handler");
492    return NULL;
493  }
494
495  return nm->instructions_begin() + t->pco();
496}
497
498JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
499  // These errors occur only at call sites
500  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
501JRT_END
502
503JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
504  // These errors occur only at call sites
505  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
506JRT_END
507
508JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
509  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
510JRT_END
511
512JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
513  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
514JRT_END
515
516JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
517  // This entry point is effectively only used for NullPointerExceptions which occur at inline
518  // cache sites (when the callee activation is not yet set up) so we are at a call site
519  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
520JRT_END
521
522JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
523  // We avoid using the normal exception construction in this case because
524  // it performs an upcall to Java, and we're already out of stack space.
525  klassOop k = SystemDictionary::StackOverflowError_klass();
526  oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
527  Handle exception (thread, exception_oop);
528  if (StackTraceInThrowable) {
529    java_lang_Throwable::fill_in_stack_trace(exception);
530  }
531  throw_and_post_jvmti_exception(thread, exception);
532JRT_END
533
534address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
535                                                           address pc,
536                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
537{
538  address target_pc = NULL;
539
540  if (Interpreter::contains(pc)) {
541#ifdef CC_INTERP
542    // C++ interpreter doesn't throw implicit exceptions
543    ShouldNotReachHere();
544#else
545    switch (exception_kind) {
546      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
547      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
548      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
549      default:                      ShouldNotReachHere();
550    }
551#endif // !CC_INTERP
552  } else {
553    switch (exception_kind) {
554      case STACK_OVERFLOW: {
555        // Stack overflow only occurs upon frame setup; the callee is
556        // going to be unwound. Dispatch to a shared runtime stub
557        // which will cause the StackOverflowError to be fabricated
558        // and processed.
559        // For stack overflow in deoptimization blob, cleanup thread.
560        if (thread->deopt_mark() != NULL) {
561          Deoptimization::cleanup_deopt_info(thread, NULL);
562        }
563        return StubRoutines::throw_StackOverflowError_entry();
564      }
565
566      case IMPLICIT_NULL: {
567        if (VtableStubs::contains(pc)) {
568          // We haven't yet entered the callee frame. Fabricate an
569          // exception and begin dispatching it in the caller. Since
570          // the caller was at a call site, it's safe to destroy all
571          // caller-saved registers, as these entry points do.
572          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
573
574          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
575          if (vt_stub == NULL) return NULL;
576
577          if (vt_stub->is_abstract_method_error(pc)) {
578            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
579            return StubRoutines::throw_AbstractMethodError_entry();
580          } else {
581            return StubRoutines::throw_NullPointerException_at_call_entry();
582          }
583        } else {
584          CodeBlob* cb = CodeCache::find_blob(pc);
585
586          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
587          if (cb == NULL) return NULL;
588
589          // Exception happened in CodeCache. Must be either:
590          // 1. Inline-cache check in C2I handler blob,
591          // 2. Inline-cache check in nmethod, or
592          // 3. Implict null exception in nmethod
593
594          if (!cb->is_nmethod()) {
595            guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
596                      "exception happened outside interpreter, nmethods and vtable stubs (1)");
597            // There is no handler here, so we will simply unwind.
598            return StubRoutines::throw_NullPointerException_at_call_entry();
599          }
600
601          // Otherwise, it's an nmethod.  Consult its exception handlers.
602          nmethod* nm = (nmethod*)cb;
603          if (nm->inlinecache_check_contains(pc)) {
604            // exception happened inside inline-cache check code
605            // => the nmethod is not yet active (i.e., the frame
606            // is not set up yet) => use return address pushed by
607            // caller => don't push another return address
608            return StubRoutines::throw_NullPointerException_at_call_entry();
609          }
610
611#ifndef PRODUCT
612          _implicit_null_throws++;
613#endif
614          target_pc = nm->continuation_for_implicit_exception(pc);
615          // If there's an unexpected fault, target_pc might be NULL,
616          // in which case we want to fall through into the normal
617          // error handling code.
618        }
619
620        break; // fall through
621      }
622
623
624      case IMPLICIT_DIVIDE_BY_ZERO: {
625        nmethod* nm = CodeCache::find_nmethod(pc);
626        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
627#ifndef PRODUCT
628        _implicit_div0_throws++;
629#endif
630        target_pc = nm->continuation_for_implicit_exception(pc);
631        // If there's an unexpected fault, target_pc might be NULL,
632        // in which case we want to fall through into the normal
633        // error handling code.
634        break; // fall through
635      }
636
637      default: ShouldNotReachHere();
638    }
639
640    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
641
642    // for AbortVMOnException flag
643    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
644    if (exception_kind == IMPLICIT_NULL) {
645      Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
646    } else {
647      Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
648    }
649    return target_pc;
650  }
651
652  ShouldNotReachHere();
653  return NULL;
654}
655
656
657JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
658{
659  THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
660}
661JNI_END
662
663
664address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
665  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
666}
667
668
669#ifndef PRODUCT
670JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
671  const frame f = thread->last_frame();
672  assert(f.is_interpreted_frame(), "must be an interpreted frame");
673#ifndef PRODUCT
674  methodHandle mh(THREAD, f.interpreter_frame_method());
675  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
676#endif // !PRODUCT
677  return preserve_this_value;
678JRT_END
679#endif // !PRODUCT
680
681
682JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
683  os::yield_all(attempts);
684JRT_END
685
686
687JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
688  assert(obj->is_oop(), "must be a valid oop");
689  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
690  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
691JRT_END
692
693
694jlong SharedRuntime::get_java_tid(Thread* thread) {
695  if (thread != NULL) {
696    if (thread->is_Java_thread()) {
697      oop obj = ((JavaThread*)thread)->threadObj();
698      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
699    }
700  }
701  return 0;
702}
703
704/**
705 * This function ought to be a void function, but cannot be because
706 * it gets turned into a tail-call on sparc, which runs into dtrace bug
707 * 6254741.  Once that is fixed we can remove the dummy return value.
708 */
709int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
710  return dtrace_object_alloc_base(Thread::current(), o);
711}
712
713int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
714  assert(DTraceAllocProbes, "wrong call");
715  Klass* klass = o->blueprint();
716  int size = o->size();
717  symbolOop name = klass->name();
718  HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
719                   name->bytes(), name->utf8_length(), size * HeapWordSize);
720  return 0;
721}
722
723JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
724    JavaThread* thread, methodOopDesc* method))
725  assert(DTraceMethodProbes, "wrong call");
726  symbolOop kname = method->klass_name();
727  symbolOop name = method->name();
728  symbolOop sig = method->signature();
729  HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
730      kname->bytes(), kname->utf8_length(),
731      name->bytes(), name->utf8_length(),
732      sig->bytes(), sig->utf8_length());
733  return 0;
734JRT_END
735
736JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
737    JavaThread* thread, methodOopDesc* method))
738  assert(DTraceMethodProbes, "wrong call");
739  symbolOop kname = method->klass_name();
740  symbolOop name = method->name();
741  symbolOop sig = method->signature();
742  HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
743      kname->bytes(), kname->utf8_length(),
744      name->bytes(), name->utf8_length(),
745      sig->bytes(), sig->utf8_length());
746  return 0;
747JRT_END
748
749
750// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
751// for a call current in progress, i.e., arguments has been pushed on stack
752// put callee has not been invoked yet.  Used by: resolve virtual/static,
753// vtable updates, etc.  Caller frame must be compiled.
754Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
755  ResourceMark rm(THREAD);
756
757  // last java frame on stack (which includes native call frames)
758  vframeStream vfst(thread, true);  // Do not skip and javaCalls
759
760  return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
761}
762
763
764// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
765// for a call current in progress, i.e., arguments has been pushed on stack
766// but callee has not been invoked yet.  Caller frame must be compiled.
767Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
768                                              vframeStream& vfst,
769                                              Bytecodes::Code& bc,
770                                              CallInfo& callinfo, TRAPS) {
771  Handle receiver;
772  Handle nullHandle;  //create a handy null handle for exception returns
773
774  assert(!vfst.at_end(), "Java frame must exist");
775
776  // Find caller and bci from vframe
777  methodHandle caller (THREAD, vfst.method());
778  int          bci    = vfst.bci();
779
780  // Find bytecode
781  Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
782  bc = bytecode->adjusted_invoke_code();
783  int bytecode_index = bytecode->index();
784
785  // Find receiver for non-static call
786  if (bc != Bytecodes::_invokestatic) {
787    // This register map must be update since we need to find the receiver for
788    // compiled frames. The receiver might be in a register.
789    RegisterMap reg_map2(thread);
790    frame stubFrame   = thread->last_frame();
791    // Caller-frame is a compiled frame
792    frame callerFrame = stubFrame.sender(&reg_map2);
793
794    methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
795    if (callee.is_null()) {
796      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
797    }
798    // Retrieve from a compiled argument list
799    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
800
801    if (receiver.is_null()) {
802      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
803    }
804  }
805
806  // Resolve method. This is parameterized by bytecode.
807  constantPoolHandle constants (THREAD, caller->constants());
808  assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
809  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
810
811#ifdef ASSERT
812  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
813  if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
814    assert(receiver.not_null(), "should have thrown exception");
815    KlassHandle receiver_klass (THREAD, receiver->klass());
816    klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
817                            // klass is already loaded
818    KlassHandle static_receiver_klass (THREAD, rk);
819    assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
820    if (receiver_klass->oop_is_instance()) {
821      if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
822        tty->print_cr("ERROR: Klass not yet initialized!!");
823        receiver_klass.print();
824      }
825      assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
826    }
827  }
828#endif
829
830  return receiver;
831}
832
833methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
834  ResourceMark rm(THREAD);
835  // We need first to check if any Java activations (compiled, interpreted)
836  // exist on the stack since last JavaCall.  If not, we need
837  // to get the target method from the JavaCall wrapper.
838  vframeStream vfst(thread, true);  // Do not skip any javaCalls
839  methodHandle callee_method;
840  if (vfst.at_end()) {
841    // No Java frames were found on stack since we did the JavaCall.
842    // Hence the stack can only contain an entry_frame.  We need to
843    // find the target method from the stub frame.
844    RegisterMap reg_map(thread, false);
845    frame fr = thread->last_frame();
846    assert(fr.is_runtime_frame(), "must be a runtimeStub");
847    fr = fr.sender(&reg_map);
848    assert(fr.is_entry_frame(), "must be");
849    // fr is now pointing to the entry frame.
850    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
851    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
852  } else {
853    Bytecodes::Code bc;
854    CallInfo callinfo;
855    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
856    callee_method = callinfo.selected_method();
857  }
858  assert(callee_method()->is_method(), "must be");
859  return callee_method;
860}
861
862// Resolves a call.
863methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
864                                           bool is_virtual,
865                                           bool is_optimized, TRAPS) {
866  methodHandle callee_method;
867  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
868  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
869    int retry_count = 0;
870    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
871           callee_method->method_holder() != SystemDictionary::Object_klass()) {
872      // If has a pending exception then there is no need to re-try to
873      // resolve this method.
874      // If the method has been redefined, we need to try again.
875      // Hack: we have no way to update the vtables of arrays, so don't
876      // require that java.lang.Object has been updated.
877
878      // It is very unlikely that method is redefined more than 100 times
879      // in the middle of resolve. If it is looping here more than 100 times
880      // means then there could be a bug here.
881      guarantee((retry_count++ < 100),
882                "Could not resolve to latest version of redefined method");
883      // method is redefined in the middle of resolve so re-try.
884      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
885    }
886  }
887  return callee_method;
888}
889
890// Resolves a call.  The compilers generate code for calls that go here
891// and are patched with the real destination of the call.
892methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
893                                           bool is_virtual,
894                                           bool is_optimized, TRAPS) {
895
896  ResourceMark rm(thread);
897  RegisterMap cbl_map(thread, false);
898  frame caller_frame = thread->last_frame().sender(&cbl_map);
899
900  CodeBlob* caller_cb = caller_frame.cb();
901  guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
902  nmethod* caller_nm = caller_cb->as_nmethod_or_null();
903  // make sure caller is not getting deoptimized
904  // and removed before we are done with it.
905  // CLEANUP - with lazy deopt shouldn't need this lock
906  nmethodLocker caller_lock(caller_nm);
907
908
909  // determine call info & receiver
910  // note: a) receiver is NULL for static calls
911  //       b) an exception is thrown if receiver is NULL for non-static calls
912  CallInfo call_info;
913  Bytecodes::Code invoke_code = Bytecodes::_illegal;
914  Handle receiver = find_callee_info(thread, invoke_code,
915                                     call_info, CHECK_(methodHandle()));
916  methodHandle callee_method = call_info.selected_method();
917
918  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
919         ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
920
921#ifndef PRODUCT
922  // tracing/debugging/statistics
923  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
924                (is_virtual) ? (&_resolve_virtual_ctr) :
925                               (&_resolve_static_ctr);
926  Atomic::inc(addr);
927
928  if (TraceCallFixup) {
929    ResourceMark rm(thread);
930    tty->print("resolving %s%s (%s) call to",
931      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
932      Bytecodes::name(invoke_code));
933    callee_method->print_short_name(tty);
934    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
935  }
936#endif
937
938  // JSR 292
939  // If the resolved method is a MethodHandle invoke target the call
940  // site must be a MethodHandle call site.
941  if (callee_method->is_method_handle_invoke()) {
942    assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
943  }
944
945  // Compute entry points. This might require generation of C2I converter
946  // frames, so we cannot be holding any locks here. Furthermore, the
947  // computation of the entry points is independent of patching the call.  We
948  // always return the entry-point, but we only patch the stub if the call has
949  // not been deoptimized.  Return values: For a virtual call this is an
950  // (cached_oop, destination address) pair. For a static call/optimized
951  // virtual this is just a destination address.
952
953  StaticCallInfo static_call_info;
954  CompiledICInfo virtual_call_info;
955
956  // Make sure the callee nmethod does not get deoptimized and removed before
957  // we are done patching the code.
958  nmethod* callee_nm = callee_method->code();
959  nmethodLocker nl_callee(callee_nm);
960#ifdef ASSERT
961  address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
962#endif
963
964  if (is_virtual) {
965    assert(receiver.not_null(), "sanity check");
966    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
967    KlassHandle h_klass(THREAD, receiver->klass());
968    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
969                     is_optimized, static_bound, virtual_call_info,
970                     CHECK_(methodHandle()));
971  } else {
972    // static call
973    CompiledStaticCall::compute_entry(callee_method, static_call_info);
974  }
975
976  // grab lock, check for deoptimization and potentially patch caller
977  {
978    MutexLocker ml_patch(CompiledIC_lock);
979
980    // Now that we are ready to patch if the methodOop was redefined then
981    // don't update call site and let the caller retry.
982
983    if (!callee_method->is_old()) {
984#ifdef ASSERT
985      // We must not try to patch to jump to an already unloaded method.
986      if (dest_entry_point != 0) {
987        assert(CodeCache::find_blob(dest_entry_point) != NULL,
988               "should not unload nmethod while locked");
989      }
990#endif
991      if (is_virtual) {
992        CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
993        if (inline_cache->is_clean()) {
994          inline_cache->set_to_monomorphic(virtual_call_info);
995        }
996      } else {
997        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
998        if (ssc->is_clean()) ssc->set(static_call_info);
999      }
1000    }
1001
1002  } // unlock CompiledIC_lock
1003
1004  return callee_method;
1005}
1006
1007
1008// Inline caches exist only in compiled code
1009JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1010#ifdef ASSERT
1011  RegisterMap reg_map(thread, false);
1012  frame stub_frame = thread->last_frame();
1013  assert(stub_frame.is_runtime_frame(), "sanity check");
1014  frame caller_frame = stub_frame.sender(&reg_map);
1015  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1016#endif /* ASSERT */
1017
1018  methodHandle callee_method;
1019  JRT_BLOCK
1020    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1021    // Return methodOop through TLS
1022    thread->set_vm_result(callee_method());
1023  JRT_BLOCK_END
1024  // return compiled code entry point after potential safepoints
1025  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1026  return callee_method->verified_code_entry();
1027JRT_END
1028
1029
1030// Handle call site that has been made non-entrant
1031JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1032  // 6243940 We might end up in here if the callee is deoptimized
1033  // as we race to call it.  We don't want to take a safepoint if
1034  // the caller was interpreted because the caller frame will look
1035  // interpreted to the stack walkers and arguments are now
1036  // "compiled" so it is much better to make this transition
1037  // invisible to the stack walking code. The i2c path will
1038  // place the callee method in the callee_target. It is stashed
1039  // there because if we try and find the callee by normal means a
1040  // safepoint is possible and have trouble gc'ing the compiled args.
1041  RegisterMap reg_map(thread, false);
1042  frame stub_frame = thread->last_frame();
1043  assert(stub_frame.is_runtime_frame(), "sanity check");
1044  frame caller_frame = stub_frame.sender(&reg_map);
1045
1046  // MethodHandle invokes don't have a CompiledIC and should always
1047  // simply redispatch to the callee_target.
1048  address   sender_pc = caller_frame.pc();
1049  CodeBlob* sender_cb = caller_frame.cb();
1050  nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1051  bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1052  if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1053    // If the callee_target is set, then we have come here via an i2c
1054    // adapter.
1055    methodOop callee = thread->callee_target();
1056    if (callee != NULL) {
1057      assert(callee->is_method(), "sanity");
1058      is_mh_invoke_via_adapter = true;
1059    }
1060  }
1061
1062  if (caller_frame.is_interpreted_frame() ||
1063      caller_frame.is_entry_frame()       ||
1064      is_mh_invoke_via_adapter) {
1065    methodOop callee = thread->callee_target();
1066    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1067    thread->set_vm_result(callee);
1068    thread->set_callee_target(NULL);
1069    return callee->get_c2i_entry();
1070  }
1071
1072  // Must be compiled to compiled path which is safe to stackwalk
1073  methodHandle callee_method;
1074  JRT_BLOCK
1075    // Force resolving of caller (if we called from compiled frame)
1076    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1077    thread->set_vm_result(callee_method());
1078  JRT_BLOCK_END
1079  // return compiled code entry point after potential safepoints
1080  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1081  return callee_method->verified_code_entry();
1082JRT_END
1083
1084
1085// resolve a static call and patch code
1086JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1087  methodHandle callee_method;
1088  JRT_BLOCK
1089    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1090    thread->set_vm_result(callee_method());
1091  JRT_BLOCK_END
1092  // return compiled code entry point after potential safepoints
1093  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1094  return callee_method->verified_code_entry();
1095JRT_END
1096
1097
1098// resolve virtual call and update inline cache to monomorphic
1099JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1100  methodHandle callee_method;
1101  JRT_BLOCK
1102    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1103    thread->set_vm_result(callee_method());
1104  JRT_BLOCK_END
1105  // return compiled code entry point after potential safepoints
1106  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1107  return callee_method->verified_code_entry();
1108JRT_END
1109
1110
1111// Resolve a virtual call that can be statically bound (e.g., always
1112// monomorphic, so it has no inline cache).  Patch code to resolved target.
1113JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1114  methodHandle callee_method;
1115  JRT_BLOCK
1116    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1117    thread->set_vm_result(callee_method());
1118  JRT_BLOCK_END
1119  // return compiled code entry point after potential safepoints
1120  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1121  return callee_method->verified_code_entry();
1122JRT_END
1123
1124
1125
1126
1127
1128methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1129  ResourceMark rm(thread);
1130  CallInfo call_info;
1131  Bytecodes::Code bc;
1132
1133  // receiver is NULL for static calls. An exception is thrown for NULL
1134  // receivers for non-static calls
1135  Handle receiver = find_callee_info(thread, bc, call_info,
1136                                     CHECK_(methodHandle()));
1137  // Compiler1 can produce virtual call sites that can actually be statically bound
1138  // If we fell thru to below we would think that the site was going megamorphic
1139  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1140  // we'd try and do a vtable dispatch however methods that can be statically bound
1141  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1142  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1143  // plain ic_miss) and the site will be converted to an optimized virtual call site
1144  // never to miss again. I don't believe C2 will produce code like this but if it
1145  // did this would still be the correct thing to do for it too, hence no ifdef.
1146  //
1147  if (call_info.resolved_method()->can_be_statically_bound()) {
1148    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1149    if (TraceCallFixup) {
1150      RegisterMap reg_map(thread, false);
1151      frame caller_frame = thread->last_frame().sender(&reg_map);
1152      ResourceMark rm(thread);
1153      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1154      callee_method->print_short_name(tty);
1155      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1156      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1157    }
1158    return callee_method;
1159  }
1160
1161  methodHandle callee_method = call_info.selected_method();
1162
1163  bool should_be_mono = false;
1164
1165#ifndef PRODUCT
1166  Atomic::inc(&_ic_miss_ctr);
1167
1168  // Statistics & Tracing
1169  if (TraceCallFixup) {
1170    ResourceMark rm(thread);
1171    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1172    callee_method->print_short_name(tty);
1173    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1174  }
1175
1176  if (ICMissHistogram) {
1177    MutexLocker m(VMStatistic_lock);
1178    RegisterMap reg_map(thread, false);
1179    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1180    // produce statistics under the lock
1181    trace_ic_miss(f.pc());
1182  }
1183#endif
1184
1185  // install an event collector so that when a vtable stub is created the
1186  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1187  // event can't be posted when the stub is created as locks are held
1188  // - instead the event will be deferred until the event collector goes
1189  // out of scope.
1190  JvmtiDynamicCodeEventCollector event_collector;
1191
1192  // Update inline cache to megamorphic. Skip update if caller has been
1193  // made non-entrant or we are called from interpreted.
1194  { MutexLocker ml_patch (CompiledIC_lock);
1195    RegisterMap reg_map(thread, false);
1196    frame caller_frame = thread->last_frame().sender(&reg_map);
1197    CodeBlob* cb = caller_frame.cb();
1198    if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1199      // Not a non-entrant nmethod, so find inline_cache
1200      CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1201      bool should_be_mono = false;
1202      if (inline_cache->is_optimized()) {
1203        if (TraceCallFixup) {
1204          ResourceMark rm(thread);
1205          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1206          callee_method->print_short_name(tty);
1207          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1208        }
1209        should_be_mono = true;
1210      } else {
1211        compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1212        if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1213
1214          if (receiver()->klass() == ic_oop->holder_klass()) {
1215            // This isn't a real miss. We must have seen that compiled code
1216            // is now available and we want the call site converted to a
1217            // monomorphic compiled call site.
1218            // We can't assert for callee_method->code() != NULL because it
1219            // could have been deoptimized in the meantime
1220            if (TraceCallFixup) {
1221              ResourceMark rm(thread);
1222              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1223              callee_method->print_short_name(tty);
1224              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1225            }
1226            should_be_mono = true;
1227          }
1228        }
1229      }
1230
1231      if (should_be_mono) {
1232
1233        // We have a path that was monomorphic but was going interpreted
1234        // and now we have (or had) a compiled entry. We correct the IC
1235        // by using a new icBuffer.
1236        CompiledICInfo info;
1237        KlassHandle receiver_klass(THREAD, receiver()->klass());
1238        inline_cache->compute_monomorphic_entry(callee_method,
1239                                                receiver_klass,
1240                                                inline_cache->is_optimized(),
1241                                                false,
1242                                                info, CHECK_(methodHandle()));
1243        inline_cache->set_to_monomorphic(info);
1244      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1245        // Change to megamorphic
1246        inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1247      } else {
1248        // Either clean or megamorphic
1249      }
1250    }
1251  } // Release CompiledIC_lock
1252
1253  return callee_method;
1254}
1255
1256//
1257// Resets a call-site in compiled code so it will get resolved again.
1258// This routines handles both virtual call sites, optimized virtual call
1259// sites, and static call sites. Typically used to change a call sites
1260// destination from compiled to interpreted.
1261//
1262methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1263  ResourceMark rm(thread);
1264  RegisterMap reg_map(thread, false);
1265  frame stub_frame = thread->last_frame();
1266  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1267  frame caller = stub_frame.sender(&reg_map);
1268
1269  // Do nothing if the frame isn't a live compiled frame.
1270  // nmethod could be deoptimized by the time we get here
1271  // so no update to the caller is needed.
1272
1273  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1274
1275    address pc = caller.pc();
1276    Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1277
1278    // Default call_addr is the location of the "basic" call.
1279    // Determine the address of the call we a reresolving. With
1280    // Inline Caches we will always find a recognizable call.
1281    // With Inline Caches disabled we may or may not find a
1282    // recognizable call. We will always find a call for static
1283    // calls and for optimized virtual calls. For vanilla virtual
1284    // calls it depends on the state of the UseInlineCaches switch.
1285    //
1286    // With Inline Caches disabled we can get here for a virtual call
1287    // for two reasons:
1288    //   1 - calling an abstract method. The vtable for abstract methods
1289    //       will run us thru handle_wrong_method and we will eventually
1290    //       end up in the interpreter to throw the ame.
1291    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1292    //       call and between the time we fetch the entry address and
1293    //       we jump to it the target gets deoptimized. Similar to 1
1294    //       we will wind up in the interprter (thru a c2i with c2).
1295    //
1296    address call_addr = NULL;
1297    {
1298      // Get call instruction under lock because another thread may be
1299      // busy patching it.
1300      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1301      // Location of call instruction
1302      if (NativeCall::is_call_before(pc)) {
1303        NativeCall *ncall = nativeCall_before(pc);
1304        call_addr = ncall->instruction_address();
1305      }
1306    }
1307
1308    // Check for static or virtual call
1309    bool is_static_call = false;
1310    nmethod* caller_nm = CodeCache::find_nmethod(pc);
1311    // Make sure nmethod doesn't get deoptimized and removed until
1312    // this is done with it.
1313    // CLEANUP - with lazy deopt shouldn't need this lock
1314    nmethodLocker nmlock(caller_nm);
1315
1316    if (call_addr != NULL) {
1317      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1318      int ret = iter.next(); // Get item
1319      if (ret) {
1320        assert(iter.addr() == call_addr, "must find call");
1321        if (iter.type() == relocInfo::static_call_type) {
1322          is_static_call = true;
1323        } else {
1324          assert(iter.type() == relocInfo::virtual_call_type ||
1325                 iter.type() == relocInfo::opt_virtual_call_type
1326                , "unexpected relocInfo. type");
1327        }
1328      } else {
1329        assert(!UseInlineCaches, "relocation info. must exist for this address");
1330      }
1331
1332      // Cleaning the inline cache will force a new resolve. This is more robust
1333      // than directly setting it to the new destination, since resolving of calls
1334      // is always done through the same code path. (experience shows that it
1335      // leads to very hard to track down bugs, if an inline cache gets updated
1336      // to a wrong method). It should not be performance critical, since the
1337      // resolve is only done once.
1338
1339      MutexLocker ml(CompiledIC_lock);
1340      //
1341      // We do not patch the call site if the nmethod has been made non-entrant
1342      // as it is a waste of time
1343      //
1344      if (caller_nm->is_in_use()) {
1345        if (is_static_call) {
1346          CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1347          ssc->set_to_clean();
1348        } else {
1349          // compiled, dispatched call (which used to call an interpreted method)
1350          CompiledIC* inline_cache = CompiledIC_at(call_addr);
1351          inline_cache->set_to_clean();
1352        }
1353      }
1354    }
1355
1356  }
1357
1358  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1359
1360
1361#ifndef PRODUCT
1362  Atomic::inc(&_wrong_method_ctr);
1363
1364  if (TraceCallFixup) {
1365    ResourceMark rm(thread);
1366    tty->print("handle_wrong_method reresolving call to");
1367    callee_method->print_short_name(tty);
1368    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1369  }
1370#endif
1371
1372  return callee_method;
1373}
1374
1375// ---------------------------------------------------------------------------
1376// We are calling the interpreter via a c2i. Normally this would mean that
1377// we were called by a compiled method. However we could have lost a race
1378// where we went int -> i2c -> c2i and so the caller could in fact be
1379// interpreted. If the caller is compiled we attempt to patch the caller
1380// so he no longer calls into the interpreter.
1381IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1382  methodOop moop(method);
1383
1384  address entry_point = moop->from_compiled_entry();
1385
1386  // It's possible that deoptimization can occur at a call site which hasn't
1387  // been resolved yet, in which case this function will be called from
1388  // an nmethod that has been patched for deopt and we can ignore the
1389  // request for a fixup.
1390  // Also it is possible that we lost a race in that from_compiled_entry
1391  // is now back to the i2c in that case we don't need to patch and if
1392  // we did we'd leap into space because the callsite needs to use
1393  // "to interpreter" stub in order to load up the methodOop. Don't
1394  // ask me how I know this...
1395
1396  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1397  if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1398    return;
1399  }
1400
1401  // The check above makes sure this is a nmethod.
1402  nmethod* nm = cb->as_nmethod_or_null();
1403  assert(nm, "must be");
1404
1405  // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1406  // to implement MethodHandle actions.
1407  if (nm->is_method_handle_return(caller_pc)) {
1408    return;
1409  }
1410
1411  // There is a benign race here. We could be attempting to patch to a compiled
1412  // entry point at the same time the callee is being deoptimized. If that is
1413  // the case then entry_point may in fact point to a c2i and we'd patch the
1414  // call site with the same old data. clear_code will set code() to NULL
1415  // at the end of it. If we happen to see that NULL then we can skip trying
1416  // to patch. If we hit the window where the callee has a c2i in the
1417  // from_compiled_entry and the NULL isn't present yet then we lose the race
1418  // and patch the code with the same old data. Asi es la vida.
1419
1420  if (moop->code() == NULL) return;
1421
1422  if (nm->is_in_use()) {
1423
1424    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1425    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1426    if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1427      NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1428      //
1429      // bug 6281185. We might get here after resolving a call site to a vanilla
1430      // virtual call. Because the resolvee uses the verified entry it may then
1431      // see compiled code and attempt to patch the site by calling us. This would
1432      // then incorrectly convert the call site to optimized and its downhill from
1433      // there. If you're lucky you'll get the assert in the bugid, if not you've
1434      // just made a call site that could be megamorphic into a monomorphic site
1435      // for the rest of its life! Just another racing bug in the life of
1436      // fixup_callers_callsite ...
1437      //
1438      RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
1439      iter.next();
1440      assert(iter.has_current(), "must have a reloc at java call site");
1441      relocInfo::relocType typ = iter.reloc()->type();
1442      if ( typ != relocInfo::static_call_type &&
1443           typ != relocInfo::opt_virtual_call_type &&
1444           typ != relocInfo::static_stub_type) {
1445        return;
1446      }
1447      address destination = call->destination();
1448      if (destination != entry_point) {
1449        CodeBlob* callee = CodeCache::find_blob(destination);
1450        // callee == cb seems weird. It means calling interpreter thru stub.
1451        if (callee == cb || callee->is_adapter_blob()) {
1452          // static call or optimized virtual
1453          if (TraceCallFixup) {
1454            tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1455            moop->print_short_name(tty);
1456            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1457          }
1458          call->set_destination_mt_safe(entry_point);
1459        } else {
1460          if (TraceCallFixup) {
1461            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1462            moop->print_short_name(tty);
1463            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1464          }
1465          // assert is too strong could also be resolve destinations.
1466          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1467        }
1468      } else {
1469          if (TraceCallFixup) {
1470            tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1471            moop->print_short_name(tty);
1472            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1473          }
1474      }
1475    }
1476  }
1477
1478IRT_END
1479
1480
1481// same as JVM_Arraycopy, but called directly from compiled code
1482JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1483                                                oopDesc* dest, jint dest_pos,
1484                                                jint length,
1485                                                JavaThread* thread)) {
1486#ifndef PRODUCT
1487  _slow_array_copy_ctr++;
1488#endif
1489  // Check if we have null pointers
1490  if (src == NULL || dest == NULL) {
1491    THROW(vmSymbols::java_lang_NullPointerException());
1492  }
1493  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1494  // even though the copy_array API also performs dynamic checks to ensure
1495  // that src and dest are truly arrays (and are conformable).
1496  // The copy_array mechanism is awkward and could be removed, but
1497  // the compilers don't call this function except as a last resort,
1498  // so it probably doesn't matter.
1499  Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1500                                        (arrayOopDesc*)dest, dest_pos,
1501                                        length, thread);
1502}
1503JRT_END
1504
1505char* SharedRuntime::generate_class_cast_message(
1506    JavaThread* thread, const char* objName) {
1507
1508  // Get target class name from the checkcast instruction
1509  vframeStream vfst(thread, true);
1510  assert(!vfst.at_end(), "Java frame must exist");
1511  Bytecode_checkcast* cc = Bytecode_checkcast_at(
1512    vfst.method()->bcp_from(vfst.bci()));
1513  Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1514    cc->index(), thread));
1515  return generate_class_cast_message(objName, targetKlass->external_name());
1516}
1517
1518char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1519                                                        oopDesc* required,
1520                                                        oopDesc* actual) {
1521  assert(EnableMethodHandles, "");
1522  oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1523  if (singleKlass != NULL) {
1524    const char* objName = "argument or return value";
1525    if (actual != NULL) {
1526      // be flexible about the junk passed in:
1527      klassOop ak = (actual->is_klass()
1528                     ? (klassOop)actual
1529                     : actual->klass());
1530      objName = Klass::cast(ak)->external_name();
1531    }
1532    Klass* targetKlass = Klass::cast(required->is_klass()
1533                                     ? (klassOop)required
1534                                     : java_lang_Class::as_klassOop(required));
1535    return generate_class_cast_message(objName, targetKlass->external_name());
1536  } else {
1537    // %%% need to get the MethodType string, without messing around too much
1538    // Get a signature from the invoke instruction
1539    const char* mhName = "method handle";
1540    const char* targetType = "the required signature";
1541    vframeStream vfst(thread, true);
1542    if (!vfst.at_end()) {
1543      Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
1544      methodHandle target;
1545      {
1546        EXCEPTION_MARK;
1547        target = call->static_target(THREAD);
1548        if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1549      }
1550      if (target.not_null()
1551          && target->is_method_handle_invoke()
1552          && required == target->method_handle_type()) {
1553        targetType = target->signature()->as_C_string();
1554      }
1555    }
1556    klassOop kignore; int fignore;
1557    methodOop actual_method = MethodHandles::decode_method(actual,
1558                                                          kignore, fignore);
1559    if (actual_method != NULL) {
1560      if (actual_method->name() == vmSymbols::invoke_name())
1561        mhName = "$";
1562      else
1563        mhName = actual_method->signature()->as_C_string();
1564      if (mhName[0] == '$')
1565        mhName = actual_method->signature()->as_C_string();
1566    }
1567    return generate_class_cast_message(mhName, targetType,
1568                                       " cannot be called as ");
1569  }
1570}
1571
1572oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1573                                                            oopDesc* required) {
1574  if (required == NULL)  return NULL;
1575  if (required->klass() == SystemDictionary::Class_klass())
1576    return required;
1577  if (required->is_klass())
1578    return Klass::cast(klassOop(required))->java_mirror();
1579  return NULL;
1580}
1581
1582
1583char* SharedRuntime::generate_class_cast_message(
1584    const char* objName, const char* targetKlassName, const char* desc) {
1585  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1586
1587  char* message = NEW_RESOURCE_ARRAY(char, msglen);
1588  if (NULL == message) {
1589    // Shouldn't happen, but don't cause even more problems if it does
1590    message = const_cast<char*>(objName);
1591  } else {
1592    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1593  }
1594  return message;
1595}
1596
1597JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1598  (void) JavaThread::current()->reguard_stack();
1599JRT_END
1600
1601
1602// Handles the uncommon case in locking, i.e., contention or an inflated lock.
1603#ifndef PRODUCT
1604int SharedRuntime::_monitor_enter_ctr=0;
1605#endif
1606JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1607  oop obj(_obj);
1608#ifndef PRODUCT
1609  _monitor_enter_ctr++;             // monitor enter slow
1610#endif
1611  if (PrintBiasedLockingStatistics) {
1612    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1613  }
1614  Handle h_obj(THREAD, obj);
1615  if (UseBiasedLocking) {
1616    // Retry fast entry if bias is revoked to avoid unnecessary inflation
1617    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1618  } else {
1619    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1620  }
1621  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1622JRT_END
1623
1624#ifndef PRODUCT
1625int SharedRuntime::_monitor_exit_ctr=0;
1626#endif
1627// Handles the uncommon cases of monitor unlocking in compiled code
1628JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1629   oop obj(_obj);
1630#ifndef PRODUCT
1631  _monitor_exit_ctr++;              // monitor exit slow
1632#endif
1633  Thread* THREAD = JavaThread::current();
1634  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1635  // testing was unable to ever fire the assert that guarded it so I have removed it.
1636  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1637#undef MIGHT_HAVE_PENDING
1638#ifdef MIGHT_HAVE_PENDING
1639  // Save and restore any pending_exception around the exception mark.
1640  // While the slow_exit must not throw an exception, we could come into
1641  // this routine with one set.
1642  oop pending_excep = NULL;
1643  const char* pending_file;
1644  int pending_line;
1645  if (HAS_PENDING_EXCEPTION) {
1646    pending_excep = PENDING_EXCEPTION;
1647    pending_file  = THREAD->exception_file();
1648    pending_line  = THREAD->exception_line();
1649    CLEAR_PENDING_EXCEPTION;
1650  }
1651#endif /* MIGHT_HAVE_PENDING */
1652
1653  {
1654    // Exit must be non-blocking, and therefore no exceptions can be thrown.
1655    EXCEPTION_MARK;
1656    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1657  }
1658
1659#ifdef MIGHT_HAVE_PENDING
1660  if (pending_excep != NULL) {
1661    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1662  }
1663#endif /* MIGHT_HAVE_PENDING */
1664JRT_END
1665
1666#ifndef PRODUCT
1667
1668void SharedRuntime::print_statistics() {
1669  ttyLocker ttyl;
1670  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1671
1672  if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1673  if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1674  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1675
1676  SharedRuntime::print_ic_miss_histogram();
1677
1678  if (CountRemovableExceptions) {
1679    if (_nof_removable_exceptions > 0) {
1680      Unimplemented(); // this counter is not yet incremented
1681      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1682    }
1683  }
1684
1685  // Dump the JRT_ENTRY counters
1686  if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1687  if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1688  if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1689  if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1690  if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1691  if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1692  if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1693
1694  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1695  tty->print_cr("%5d wrong method", _wrong_method_ctr );
1696  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1697  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1698  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1699
1700  if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1701  if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1702  if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1703  if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1704  if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1705  if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1706  if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1707  if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1708  if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1709  if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1710  if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1711  if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1712  if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1713  if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1714  if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1715  if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1716
1717  AdapterHandlerLibrary::print_statistics();
1718
1719  if (xtty != NULL)  xtty->tail("statistics");
1720}
1721
1722inline double percent(int x, int y) {
1723  return 100.0 * x / MAX2(y, 1);
1724}
1725
1726class MethodArityHistogram {
1727 public:
1728  enum { MAX_ARITY = 256 };
1729 private:
1730  static int _arity_histogram[MAX_ARITY];     // histogram of #args
1731  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1732  static int _max_arity;                      // max. arity seen
1733  static int _max_size;                       // max. arg size seen
1734
1735  static void add_method_to_histogram(nmethod* nm) {
1736    methodOop m = nm->method();
1737    ArgumentCount args(m->signature());
1738    int arity   = args.size() + (m->is_static() ? 0 : 1);
1739    int argsize = m->size_of_parameters();
1740    arity   = MIN2(arity, MAX_ARITY-1);
1741    argsize = MIN2(argsize, MAX_ARITY-1);
1742    int count = nm->method()->compiled_invocation_count();
1743    _arity_histogram[arity]  += count;
1744    _size_histogram[argsize] += count;
1745    _max_arity = MAX2(_max_arity, arity);
1746    _max_size  = MAX2(_max_size, argsize);
1747  }
1748
1749  void print_histogram_helper(int n, int* histo, const char* name) {
1750    const int N = MIN2(5, n);
1751    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1752    double sum = 0;
1753    double weighted_sum = 0;
1754    int i;
1755    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1756    double rest = sum;
1757    double percent = sum / 100;
1758    for (i = 0; i <= N; i++) {
1759      rest -= histo[i];
1760      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1761    }
1762    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1763    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1764  }
1765
1766  void print_histogram() {
1767    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1768    print_histogram_helper(_max_arity, _arity_histogram, "arity");
1769    tty->print_cr("\nSame for parameter size (in words):");
1770    print_histogram_helper(_max_size, _size_histogram, "size");
1771    tty->cr();
1772  }
1773
1774 public:
1775  MethodArityHistogram() {
1776    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1777    _max_arity = _max_size = 0;
1778    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1779    CodeCache::nmethods_do(add_method_to_histogram);
1780    print_histogram();
1781  }
1782};
1783
1784int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1785int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1786int MethodArityHistogram::_max_arity;
1787int MethodArityHistogram::_max_size;
1788
1789void SharedRuntime::print_call_statistics(int comp_total) {
1790  tty->print_cr("Calls from compiled code:");
1791  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1792  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1793  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1794  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1795  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1796  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1797  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1798  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1799  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1800  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1801  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1802  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1803  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1804  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1805  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1806  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1807  tty->cr();
1808  tty->print_cr("Note 1: counter updates are not MT-safe.");
1809  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1810  tty->print_cr("        %% in nested categories are relative to their category");
1811  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1812  tty->cr();
1813
1814  MethodArityHistogram h;
1815}
1816#endif
1817
1818
1819// A simple wrapper class around the calling convention information
1820// that allows sharing of adapters for the same calling convention.
1821class AdapterFingerPrint : public CHeapObj {
1822 private:
1823  union {
1824    int  _compact[3];
1825    int* _fingerprint;
1826  } _value;
1827  int _length; // A negative length indicates the fingerprint is in the compact form,
1828               // Otherwise _value._fingerprint is the array.
1829
1830  // Remap BasicTypes that are handled equivalently by the adapters.
1831  // These are correct for the current system but someday it might be
1832  // necessary to make this mapping platform dependent.
1833  static BasicType adapter_encoding(BasicType in) {
1834    assert((~0xf & in) == 0, "must fit in 4 bits");
1835    switch(in) {
1836      case T_BOOLEAN:
1837      case T_BYTE:
1838      case T_SHORT:
1839      case T_CHAR:
1840        // There are all promoted to T_INT in the calling convention
1841        return T_INT;
1842
1843      case T_OBJECT:
1844      case T_ARRAY:
1845#ifdef _LP64
1846        return T_LONG;
1847#else
1848        return T_INT;
1849#endif
1850
1851      case T_INT:
1852      case T_LONG:
1853      case T_FLOAT:
1854      case T_DOUBLE:
1855      case T_VOID:
1856        return in;
1857
1858      default:
1859        ShouldNotReachHere();
1860        return T_CONFLICT;
1861    }
1862  }
1863
1864 public:
1865  AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
1866    // The fingerprint is based on the BasicType signature encoded
1867    // into an array of ints with four entries per int.
1868    int* ptr;
1869    int len = (total_args_passed + 3) >> 2;
1870    if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
1871      _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
1872      // Storing the signature encoded as signed chars hits about 98%
1873      // of the time.
1874      _length = -len;
1875      ptr = _value._compact;
1876    } else {
1877      _length = len;
1878      _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
1879      ptr = _value._fingerprint;
1880    }
1881
1882    // Now pack the BasicTypes with 4 per int
1883    int sig_index = 0;
1884    for (int index = 0; index < len; index++) {
1885      int value = 0;
1886      for (int byte = 0; byte < 4; byte++) {
1887        if (sig_index < total_args_passed) {
1888          value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
1889        }
1890      }
1891      ptr[index] = value;
1892    }
1893  }
1894
1895  ~AdapterFingerPrint() {
1896    if (_length > 0) {
1897      FREE_C_HEAP_ARRAY(int, _value._fingerprint);
1898    }
1899  }
1900
1901  int value(int index) {
1902    if (_length < 0) {
1903      return _value._compact[index];
1904    }
1905    return _value._fingerprint[index];
1906  }
1907  int length() {
1908    if (_length < 0) return -_length;
1909    return _length;
1910  }
1911
1912  bool is_compact() {
1913    return _length <= 0;
1914  }
1915
1916  unsigned int compute_hash() {
1917    int hash = 0;
1918    for (int i = 0; i < length(); i++) {
1919      int v = value(i);
1920      hash = (hash << 8) ^ v ^ (hash >> 5);
1921    }
1922    return (unsigned int)hash;
1923  }
1924
1925  const char* as_string() {
1926    stringStream st;
1927    for (int i = 0; i < length(); i++) {
1928      st.print(PTR_FORMAT, value(i));
1929    }
1930    return st.as_string();
1931  }
1932
1933  bool equals(AdapterFingerPrint* other) {
1934    if (other->_length != _length) {
1935      return false;
1936    }
1937    if (_length < 0) {
1938      return _value._compact[0] == other->_value._compact[0] &&
1939             _value._compact[1] == other->_value._compact[1] &&
1940             _value._compact[2] == other->_value._compact[2];
1941    } else {
1942      for (int i = 0; i < _length; i++) {
1943        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
1944          return false;
1945        }
1946      }
1947    }
1948    return true;
1949  }
1950};
1951
1952
1953// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
1954class AdapterHandlerTable : public BasicHashtable {
1955  friend class AdapterHandlerTableIterator;
1956
1957 private:
1958
1959#ifndef PRODUCT
1960  static int _lookups; // number of calls to lookup
1961  static int _buckets; // number of buckets checked
1962  static int _equals;  // number of buckets checked with matching hash
1963  static int _hits;    // number of successful lookups
1964  static int _compact; // number of equals calls with compact signature
1965#endif
1966
1967  AdapterHandlerEntry* bucket(int i) {
1968    return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
1969  }
1970
1971 public:
1972  AdapterHandlerTable()
1973    : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
1974
1975  // Create a new entry suitable for insertion in the table
1976  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
1977    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
1978    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1979    return entry;
1980  }
1981
1982  // Insert an entry into the table
1983  void add(AdapterHandlerEntry* entry) {
1984    int index = hash_to_index(entry->hash());
1985    add_entry(index, entry);
1986  }
1987
1988  void free_entry(AdapterHandlerEntry* entry) {
1989    entry->deallocate();
1990    BasicHashtable::free_entry(entry);
1991  }
1992
1993  // Find a entry with the same fingerprint if it exists
1994  AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
1995    NOT_PRODUCT(_lookups++);
1996    AdapterFingerPrint fp(total_args_passed, sig_bt);
1997    unsigned int hash = fp.compute_hash();
1998    int index = hash_to_index(hash);
1999    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2000      NOT_PRODUCT(_buckets++);
2001      if (e->hash() == hash) {
2002        NOT_PRODUCT(_equals++);
2003        if (fp.equals(e->fingerprint())) {
2004#ifndef PRODUCT
2005          if (fp.is_compact()) _compact++;
2006          _hits++;
2007#endif
2008          return e;
2009        }
2010      }
2011    }
2012    return NULL;
2013  }
2014
2015#ifndef PRODUCT
2016  void print_statistics() {
2017    ResourceMark rm;
2018    int longest = 0;
2019    int empty = 0;
2020    int total = 0;
2021    int nonempty = 0;
2022    for (int index = 0; index < table_size(); index++) {
2023      int count = 0;
2024      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2025        count++;
2026      }
2027      if (count != 0) nonempty++;
2028      if (count == 0) empty++;
2029      if (count > longest) longest = count;
2030      total += count;
2031    }
2032    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2033                  empty, longest, total, total / (double)nonempty);
2034    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2035                  _lookups, _buckets, _equals, _hits, _compact);
2036  }
2037#endif
2038};
2039
2040
2041#ifndef PRODUCT
2042
2043int AdapterHandlerTable::_lookups;
2044int AdapterHandlerTable::_buckets;
2045int AdapterHandlerTable::_equals;
2046int AdapterHandlerTable::_hits;
2047int AdapterHandlerTable::_compact;
2048
2049class AdapterHandlerTableIterator : public StackObj {
2050 private:
2051  AdapterHandlerTable* _table;
2052  int _index;
2053  AdapterHandlerEntry* _current;
2054
2055  void scan() {
2056    while (_index < _table->table_size()) {
2057      AdapterHandlerEntry* a = _table->bucket(_index);
2058      if (a != NULL) {
2059        _current = a;
2060        return;
2061      }
2062      _index++;
2063    }
2064  }
2065
2066 public:
2067  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2068    scan();
2069  }
2070  bool has_next() {
2071    return _current != NULL;
2072  }
2073  AdapterHandlerEntry* next() {
2074    if (_current != NULL) {
2075      AdapterHandlerEntry* result = _current;
2076      _current = _current->next();
2077      if (_current == NULL) scan();
2078      return result;
2079    } else {
2080      return NULL;
2081    }
2082  }
2083};
2084#endif
2085
2086
2087// ---------------------------------------------------------------------------
2088// Implementation of AdapterHandlerLibrary
2089AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2090AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2091const int AdapterHandlerLibrary_size = 16*K;
2092BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2093
2094BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2095  // Should be called only when AdapterHandlerLibrary_lock is active.
2096  if (_buffer == NULL) // Initialize lazily
2097      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2098  return _buffer;
2099}
2100
2101void AdapterHandlerLibrary::initialize() {
2102  if (_adapters != NULL) return;
2103  _adapters = new AdapterHandlerTable();
2104
2105  // Create a special handler for abstract methods.  Abstract methods
2106  // are never compiled so an i2c entry is somewhat meaningless, but
2107  // fill it in with something appropriate just in case.  Pass handle
2108  // wrong method for the c2i transitions.
2109  address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2110  _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2111                                                              StubRoutines::throw_AbstractMethodError_entry(),
2112                                                              wrong_method, wrong_method);
2113}
2114
2115AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2116                                                      address i2c_entry,
2117                                                      address c2i_entry,
2118                                                      address c2i_unverified_entry) {
2119  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2120}
2121
2122AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2123  // Use customized signature handler.  Need to lock around updates to
2124  // the AdapterHandlerTable (it is not safe for concurrent readers
2125  // and a single writer: this could be fixed if it becomes a
2126  // problem).
2127
2128  // Get the address of the ic_miss handlers before we grab the
2129  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2130  // was caused by the initialization of the stubs happening
2131  // while we held the lock and then notifying jvmti while
2132  // holding it. This just forces the initialization to be a little
2133  // earlier.
2134  address ic_miss = SharedRuntime::get_ic_miss_stub();
2135  assert(ic_miss != NULL, "must have handler");
2136
2137  ResourceMark rm;
2138
2139  NOT_PRODUCT(int code_size);
2140  AdapterBlob* B = NULL;
2141  AdapterHandlerEntry* entry = NULL;
2142  AdapterFingerPrint* fingerprint = NULL;
2143  {
2144    MutexLocker mu(AdapterHandlerLibrary_lock);
2145    // make sure data structure is initialized
2146    initialize();
2147
2148    if (method->is_abstract()) {
2149      return _abstract_method_handler;
2150    }
2151
2152    // Fill in the signature array, for the calling-convention call.
2153    int total_args_passed = method->size_of_parameters(); // All args on stack
2154
2155    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2156    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2157    int i = 0;
2158    if (!method->is_static())  // Pass in receiver first
2159      sig_bt[i++] = T_OBJECT;
2160    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2161      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2162      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2163        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2164    }
2165    assert(i == total_args_passed, "");
2166
2167    // Lookup method signature's fingerprint
2168    entry = _adapters->lookup(total_args_passed, sig_bt);
2169
2170#ifdef ASSERT
2171    AdapterHandlerEntry* shared_entry = NULL;
2172    if (VerifyAdapterSharing && entry != NULL) {
2173      shared_entry = entry;
2174      entry = NULL;
2175    }
2176#endif
2177
2178    if (entry != NULL) {
2179      return entry;
2180    }
2181
2182    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2183    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2184
2185    // Make a C heap allocated version of the fingerprint to store in the adapter
2186    fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2187
2188    // Create I2C & C2I handlers
2189
2190    BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2191    if (buf != NULL) {
2192      CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2193      short buffer_locs[20];
2194      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2195                                             sizeof(buffer_locs)/sizeof(relocInfo));
2196      MacroAssembler _masm(&buffer);
2197
2198      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2199                                                     total_args_passed,
2200                                                     comp_args_on_stack,
2201                                                     sig_bt,
2202                                                     regs,
2203                                                     fingerprint);
2204
2205#ifdef ASSERT
2206      if (VerifyAdapterSharing) {
2207        if (shared_entry != NULL) {
2208          assert(shared_entry->compare_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt),
2209                 "code must match");
2210          // Release the one just created and return the original
2211          _adapters->free_entry(entry);
2212          return shared_entry;
2213        } else  {
2214          entry->save_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt);
2215        }
2216      }
2217#endif
2218
2219      B = AdapterBlob::create(&buffer);
2220      NOT_PRODUCT(code_size = buffer.code_size());
2221    }
2222    if (B == NULL) {
2223      // CodeCache is full, disable compilation
2224      // Ought to log this but compile log is only per compile thread
2225      // and we're some non descript Java thread.
2226      MutexUnlocker mu(AdapterHandlerLibrary_lock);
2227      CompileBroker::handle_full_code_cache();
2228      return NULL; // Out of CodeCache space
2229    }
2230    entry->relocate(B->instructions_begin());
2231#ifndef PRODUCT
2232    // debugging suppport
2233    if (PrintAdapterHandlers) {
2234      tty->cr();
2235      tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2236                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2237                    method->signature()->as_C_string(), fingerprint->as_string(), code_size );
2238      tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2239      Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + code_size);
2240    }
2241#endif
2242
2243    _adapters->add(entry);
2244  }
2245  // Outside of the lock
2246  if (B != NULL) {
2247    char blob_id[256];
2248    jio_snprintf(blob_id,
2249                 sizeof(blob_id),
2250                 "%s(%s)@" PTR_FORMAT,
2251                 B->name(),
2252                 fingerprint->as_string(),
2253                 B->instructions_begin());
2254    VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
2255    Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
2256
2257    if (JvmtiExport::should_post_dynamic_code_generated()) {
2258      JvmtiExport::post_dynamic_code_generated(blob_id,
2259                                               B->instructions_begin(),
2260                                               B->instructions_end());
2261    }
2262  }
2263  return entry;
2264}
2265
2266void AdapterHandlerEntry::relocate(address new_base) {
2267    ptrdiff_t delta = new_base - _i2c_entry;
2268    _i2c_entry += delta;
2269    _c2i_entry += delta;
2270    _c2i_unverified_entry += delta;
2271}
2272
2273
2274void AdapterHandlerEntry::deallocate() {
2275  delete _fingerprint;
2276#ifdef ASSERT
2277  if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2278  if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2279#endif
2280}
2281
2282
2283#ifdef ASSERT
2284// Capture the code before relocation so that it can be compared
2285// against other versions.  If the code is captured after relocation
2286// then relative instructions won't be equivalent.
2287void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2288  _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2289  _code_length = length;
2290  memcpy(_saved_code, buffer, length);
2291  _total_args_passed = total_args_passed;
2292  _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2293  memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2294}
2295
2296
2297bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2298  if (length != _code_length) {
2299    return false;
2300  }
2301  for (int i = 0; i < length; i++) {
2302    if (buffer[i] != _saved_code[i]) {
2303      return false;
2304    }
2305  }
2306  return true;
2307}
2308#endif
2309
2310
2311// Create a native wrapper for this native method.  The wrapper converts the
2312// java compiled calling convention to the native convention, handlizes
2313// arguments, and transitions to native.  On return from the native we transition
2314// back to java blocking if a safepoint is in progress.
2315nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2316  ResourceMark rm;
2317  nmethod* nm = NULL;
2318
2319  if (PrintCompilation) {
2320    ttyLocker ttyl;
2321    tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
2322    method->print_short_name(tty);
2323    if (method->is_static()) {
2324      tty->print(" (static)");
2325    }
2326    tty->cr();
2327  }
2328
2329  assert(method->has_native_function(), "must have something valid to call!");
2330
2331  {
2332    // perform the work while holding the lock, but perform any printing outside the lock
2333    MutexLocker mu(AdapterHandlerLibrary_lock);
2334    // See if somebody beat us to it
2335    nm = method->code();
2336    if (nm) {
2337      return nm;
2338    }
2339
2340    ResourceMark rm;
2341
2342    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2343    if (buf != NULL) {
2344      CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2345      double locs_buf[20];
2346      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2347      MacroAssembler _masm(&buffer);
2348
2349      // Fill in the signature array, for the calling-convention call.
2350      int total_args_passed = method->size_of_parameters();
2351
2352      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2353      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2354      int i=0;
2355      if( !method->is_static() )  // Pass in receiver first
2356        sig_bt[i++] = T_OBJECT;
2357      SignatureStream ss(method->signature());
2358      for( ; !ss.at_return_type(); ss.next()) {
2359        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2360        if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2361          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2362      }
2363      assert( i==total_args_passed, "" );
2364      BasicType ret_type = ss.type();
2365
2366      // Now get the compiled-Java layout as input arguments
2367      int comp_args_on_stack;
2368      comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2369
2370      // Generate the compiled-to-native wrapper code
2371      nm = SharedRuntime::generate_native_wrapper(&_masm,
2372                                                  method,
2373                                                  total_args_passed,
2374                                                  comp_args_on_stack,
2375                                                  sig_bt,regs,
2376                                                  ret_type);
2377    }
2378  }
2379
2380  // Must unlock before calling set_code
2381  // Install the generated code.
2382  if (nm != NULL) {
2383    method->set_code(method, nm);
2384    nm->post_compiled_method_load_event();
2385  } else {
2386    // CodeCache is full, disable compilation
2387    // Ought to log this but compile log is only per compile thread
2388    // and we're some non descript Java thread.
2389    MutexUnlocker mu(AdapterHandlerLibrary_lock);
2390    CompileBroker::handle_full_code_cache();
2391  }
2392  return nm;
2393}
2394
2395#ifdef HAVE_DTRACE_H
2396// Create a dtrace nmethod for this method.  The wrapper converts the
2397// java compiled calling convention to the native convention, makes a dummy call
2398// (actually nops for the size of the call instruction, which become a trap if
2399// probe is enabled). The returns to the caller. Since this all looks like a
2400// leaf no thread transition is needed.
2401
2402nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2403  ResourceMark rm;
2404  nmethod* nm = NULL;
2405
2406  if (PrintCompilation) {
2407    ttyLocker ttyl;
2408    tty->print("---   n%s  ");
2409    method->print_short_name(tty);
2410    if (method->is_static()) {
2411      tty->print(" (static)");
2412    }
2413    tty->cr();
2414  }
2415
2416  {
2417    // perform the work while holding the lock, but perform any printing
2418    // outside the lock
2419    MutexLocker mu(AdapterHandlerLibrary_lock);
2420    // See if somebody beat us to it
2421    nm = method->code();
2422    if (nm) {
2423      return nm;
2424    }
2425
2426    ResourceMark rm;
2427
2428    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2429    if (buf != NULL) {
2430      CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2431      // Need a few relocation entries
2432      double locs_buf[20];
2433      buffer.insts()->initialize_shared_locs(
2434        (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2435      MacroAssembler _masm(&buffer);
2436
2437      // Generate the compiled-to-native wrapper code
2438      nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2439    }
2440  }
2441  return nm;
2442}
2443
2444// the dtrace method needs to convert java lang string to utf8 string.
2445void SharedRuntime::get_utf(oopDesc* src, address dst) {
2446  typeArrayOop jlsValue  = java_lang_String::value(src);
2447  int          jlsOffset = java_lang_String::offset(src);
2448  int          jlsLen    = java_lang_String::length(src);
2449  jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2450                                           jlsValue->char_at_addr(jlsOffset);
2451  (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2452}
2453#endif // ndef HAVE_DTRACE_H
2454
2455// -------------------------------------------------------------------------
2456// Java-Java calling convention
2457// (what you use when Java calls Java)
2458
2459//------------------------------name_for_receiver----------------------------------
2460// For a given signature, return the VMReg for parameter 0.
2461VMReg SharedRuntime::name_for_receiver() {
2462  VMRegPair regs;
2463  BasicType sig_bt = T_OBJECT;
2464  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2465  // Return argument 0 register.  In the LP64 build pointers
2466  // take 2 registers, but the VM wants only the 'main' name.
2467  return regs.first();
2468}
2469
2470VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
2471  // This method is returning a data structure allocating as a
2472  // ResourceObject, so do not put any ResourceMarks in here.
2473  char *s = sig->as_C_string();
2474  int len = (int)strlen(s);
2475  *s++; len--;                  // Skip opening paren
2476  char *t = s+len;
2477  while( *(--t) != ')' ) ;      // Find close paren
2478
2479  BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2480  VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2481  int cnt = 0;
2482  if (has_receiver) {
2483    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2484  }
2485
2486  while( s < t ) {
2487    switch( *s++ ) {            // Switch on signature character
2488    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2489    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2490    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2491    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2492    case 'I': sig_bt[cnt++] = T_INT;     break;
2493    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2494    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2495    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2496    case 'V': sig_bt[cnt++] = T_VOID;    break;
2497    case 'L':                   // Oop
2498      while( *s++ != ';'  ) ;   // Skip signature
2499      sig_bt[cnt++] = T_OBJECT;
2500      break;
2501    case '[': {                 // Array
2502      do {                      // Skip optional size
2503        while( *s >= '0' && *s <= '9' ) s++;
2504      } while( *s++ == '[' );   // Nested arrays?
2505      // Skip element type
2506      if( s[-1] == 'L' )
2507        while( *s++ != ';'  ) ; // Skip signature
2508      sig_bt[cnt++] = T_ARRAY;
2509      break;
2510    }
2511    default : ShouldNotReachHere();
2512    }
2513  }
2514  assert( cnt < 256, "grow table size" );
2515
2516  int comp_args_on_stack;
2517  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2518
2519  // the calling convention doesn't count out_preserve_stack_slots so
2520  // we must add that in to get "true" stack offsets.
2521
2522  if (comp_args_on_stack) {
2523    for (int i = 0; i < cnt; i++) {
2524      VMReg reg1 = regs[i].first();
2525      if( reg1->is_stack()) {
2526        // Yuck
2527        reg1 = reg1->bias(out_preserve_stack_slots());
2528      }
2529      VMReg reg2 = regs[i].second();
2530      if( reg2->is_stack()) {
2531        // Yuck
2532        reg2 = reg2->bias(out_preserve_stack_slots());
2533      }
2534      regs[i].set_pair(reg2, reg1);
2535    }
2536  }
2537
2538  // results
2539  *arg_size = cnt;
2540  return regs;
2541}
2542
2543// OSR Migration Code
2544//
2545// This code is used convert interpreter frames into compiled frames.  It is
2546// called from very start of a compiled OSR nmethod.  A temp array is
2547// allocated to hold the interesting bits of the interpreter frame.  All
2548// active locks are inflated to allow them to move.  The displaced headers and
2549// active interpeter locals are copied into the temp buffer.  Then we return
2550// back to the compiled code.  The compiled code then pops the current
2551// interpreter frame off the stack and pushes a new compiled frame.  Then it
2552// copies the interpreter locals and displaced headers where it wants.
2553// Finally it calls back to free the temp buffer.
2554//
2555// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2556
2557JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2558
2559#ifdef IA64
2560  ShouldNotReachHere(); // NYI
2561#endif /* IA64 */
2562
2563  //
2564  // This code is dependent on the memory layout of the interpreter local
2565  // array and the monitors. On all of our platforms the layout is identical
2566  // so this code is shared. If some platform lays the their arrays out
2567  // differently then this code could move to platform specific code or
2568  // the code here could be modified to copy items one at a time using
2569  // frame accessor methods and be platform independent.
2570
2571  frame fr = thread->last_frame();
2572  assert( fr.is_interpreted_frame(), "" );
2573  assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2574
2575  // Figure out how many monitors are active.
2576  int active_monitor_count = 0;
2577  for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2578       kptr < fr.interpreter_frame_monitor_begin();
2579       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2580    if( kptr->obj() != NULL ) active_monitor_count++;
2581  }
2582
2583  // QQQ we could place number of active monitors in the array so that compiled code
2584  // could double check it.
2585
2586  methodOop moop = fr.interpreter_frame_method();
2587  int max_locals = moop->max_locals();
2588  // Allocate temp buffer, 1 word per local & 2 per active monitor
2589  int buf_size_words = max_locals + active_monitor_count*2;
2590  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2591
2592  // Copy the locals.  Order is preserved so that loading of longs works.
2593  // Since there's no GC I can copy the oops blindly.
2594  assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2595  Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2596                       (HeapWord*)&buf[0],
2597                       max_locals);
2598
2599  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2600  int i = max_locals;
2601  for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2602       kptr2 < fr.interpreter_frame_monitor_begin();
2603       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2604    if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2605      BasicLock *lock = kptr2->lock();
2606      // Inflate so the displaced header becomes position-independent
2607      if (lock->displaced_header()->is_unlocked())
2608        ObjectSynchronizer::inflate_helper(kptr2->obj());
2609      // Now the displaced header is free to move
2610      buf[i++] = (intptr_t)lock->displaced_header();
2611      buf[i++] = (intptr_t)kptr2->obj();
2612    }
2613  }
2614  assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2615
2616  return buf;
2617JRT_END
2618
2619JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2620  FREE_C_HEAP_ARRAY(intptr_t,buf);
2621JRT_END
2622
2623#ifndef PRODUCT
2624bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2625  AdapterHandlerTableIterator iter(_adapters);
2626  while (iter.has_next()) {
2627    AdapterHandlerEntry* a = iter.next();
2628    if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2629  }
2630  return false;
2631}
2632
2633void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
2634  AdapterHandlerTableIterator iter(_adapters);
2635  while (iter.has_next()) {
2636    AdapterHandlerEntry* a = iter.next();
2637    if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2638      tty->print("Adapter for signature: ");
2639      tty->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2640                    a->fingerprint()->as_string(),
2641                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2642      return;
2643    }
2644  }
2645  assert(false, "Should have found handler");
2646}
2647
2648void AdapterHandlerLibrary::print_statistics() {
2649  _adapters->print_statistics();
2650}
2651
2652#endif /* PRODUCT */
2653