sharedRuntime.cpp revision 116:018d5b58dd4f
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_sharedRuntime.cpp.incl"
27#include <math.h>
28
29HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
30HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
31                      char*, int, char*, int, char*, int);
32HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
33                      char*, int, char*, int, char*, int);
34
35// Implementation of SharedRuntime
36
37#ifndef PRODUCT
38// For statistics
39int SharedRuntime::_ic_miss_ctr = 0;
40int SharedRuntime::_wrong_method_ctr = 0;
41int SharedRuntime::_resolve_static_ctr = 0;
42int SharedRuntime::_resolve_virtual_ctr = 0;
43int SharedRuntime::_resolve_opt_virtual_ctr = 0;
44int SharedRuntime::_implicit_null_throws = 0;
45int SharedRuntime::_implicit_div0_throws = 0;
46int SharedRuntime::_throw_null_ctr = 0;
47
48int SharedRuntime::_nof_normal_calls = 0;
49int SharedRuntime::_nof_optimized_calls = 0;
50int SharedRuntime::_nof_inlined_calls = 0;
51int SharedRuntime::_nof_megamorphic_calls = 0;
52int SharedRuntime::_nof_static_calls = 0;
53int SharedRuntime::_nof_inlined_static_calls = 0;
54int SharedRuntime::_nof_interface_calls = 0;
55int SharedRuntime::_nof_optimized_interface_calls = 0;
56int SharedRuntime::_nof_inlined_interface_calls = 0;
57int SharedRuntime::_nof_megamorphic_interface_calls = 0;
58int SharedRuntime::_nof_removable_exceptions = 0;
59
60int SharedRuntime::_new_instance_ctr=0;
61int SharedRuntime::_new_array_ctr=0;
62int SharedRuntime::_multi1_ctr=0;
63int SharedRuntime::_multi2_ctr=0;
64int SharedRuntime::_multi3_ctr=0;
65int SharedRuntime::_multi4_ctr=0;
66int SharedRuntime::_multi5_ctr=0;
67int SharedRuntime::_mon_enter_stub_ctr=0;
68int SharedRuntime::_mon_exit_stub_ctr=0;
69int SharedRuntime::_mon_enter_ctr=0;
70int SharedRuntime::_mon_exit_ctr=0;
71int SharedRuntime::_partial_subtype_ctr=0;
72int SharedRuntime::_jbyte_array_copy_ctr=0;
73int SharedRuntime::_jshort_array_copy_ctr=0;
74int SharedRuntime::_jint_array_copy_ctr=0;
75int SharedRuntime::_jlong_array_copy_ctr=0;
76int SharedRuntime::_oop_array_copy_ctr=0;
77int SharedRuntime::_checkcast_array_copy_ctr=0;
78int SharedRuntime::_unsafe_array_copy_ctr=0;
79int SharedRuntime::_generic_array_copy_ctr=0;
80int SharedRuntime::_slow_array_copy_ctr=0;
81int SharedRuntime::_find_handler_ctr=0;
82int SharedRuntime::_rethrow_ctr=0;
83
84int     SharedRuntime::_ICmiss_index                    = 0;
85int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
86address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
87
88void SharedRuntime::trace_ic_miss(address at) {
89  for (int i = 0; i < _ICmiss_index; i++) {
90    if (_ICmiss_at[i] == at) {
91      _ICmiss_count[i]++;
92      return;
93    }
94  }
95  int index = _ICmiss_index++;
96  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
97  _ICmiss_at[index] = at;
98  _ICmiss_count[index] = 1;
99}
100
101void SharedRuntime::print_ic_miss_histogram() {
102  if (ICMissHistogram) {
103    tty->print_cr ("IC Miss Histogram:");
104    int tot_misses = 0;
105    for (int i = 0; i < _ICmiss_index; i++) {
106      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
107      tot_misses += _ICmiss_count[i];
108    }
109    tty->print_cr ("Total IC misses: %7d", tot_misses);
110  }
111}
112#endif // PRODUCT
113
114
115JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
116  return x * y;
117JRT_END
118
119
120JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
121  if (x == min_jlong && y == CONST64(-1)) {
122    return x;
123  } else {
124    return x / y;
125  }
126JRT_END
127
128
129JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
130  if (x == min_jlong && y == CONST64(-1)) {
131    return 0;
132  } else {
133    return x % y;
134  }
135JRT_END
136
137
138const juint  float_sign_mask  = 0x7FFFFFFF;
139const juint  float_infinity   = 0x7F800000;
140const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
141const julong double_infinity  = CONST64(0x7FF0000000000000);
142
143JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
144#ifdef _WIN64
145  // 64-bit Windows on amd64 returns the wrong values for
146  // infinity operands.
147  union { jfloat f; juint i; } xbits, ybits;
148  xbits.f = x;
149  ybits.f = y;
150  // x Mod Infinity == x unless x is infinity
151  if ( ((xbits.i & float_sign_mask) != float_infinity) &&
152       ((ybits.i & float_sign_mask) == float_infinity) ) {
153    return x;
154  }
155#endif
156  return ((jfloat)fmod((double)x,(double)y));
157JRT_END
158
159
160JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
161#ifdef _WIN64
162  union { jdouble d; julong l; } xbits, ybits;
163  xbits.d = x;
164  ybits.d = y;
165  // x Mod Infinity == x unless x is infinity
166  if ( ((xbits.l & double_sign_mask) != double_infinity) &&
167       ((ybits.l & double_sign_mask) == double_infinity) ) {
168    return x;
169  }
170#endif
171  return ((jdouble)fmod((double)x,(double)y));
172JRT_END
173
174
175JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
176  if (g_isnan(x)) {return 0;}
177  jlong lltmp = (jlong)x;
178  jint ltmp   = (jint)lltmp;
179  if (ltmp == lltmp) {
180    return ltmp;
181  } else {
182    if (x < 0) {
183      return min_jint;
184    } else {
185      return max_jint;
186    }
187  }
188JRT_END
189
190
191JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
192  if (g_isnan(x)) {return 0;}
193  jlong lltmp = (jlong)x;
194  if (lltmp != min_jlong) {
195    return lltmp;
196  } else {
197    if (x < 0) {
198      return min_jlong;
199    } else {
200      return max_jlong;
201    }
202  }
203JRT_END
204
205
206JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
207  if (g_isnan(x)) {return 0;}
208  jlong lltmp = (jlong)x;
209  jint ltmp   = (jint)lltmp;
210  if (ltmp == lltmp) {
211    return ltmp;
212  } else {
213    if (x < 0) {
214      return min_jint;
215    } else {
216      return max_jint;
217    }
218  }
219JRT_END
220
221
222JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
223  if (g_isnan(x)) {return 0;}
224  jlong lltmp = (jlong)x;
225  if (lltmp != min_jlong) {
226    return lltmp;
227  } else {
228    if (x < 0) {
229      return min_jlong;
230    } else {
231      return max_jlong;
232    }
233  }
234JRT_END
235
236
237JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
238  return (jfloat)x;
239JRT_END
240
241
242JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
243  return (jfloat)x;
244JRT_END
245
246
247JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
248  return (jdouble)x;
249JRT_END
250
251// Exception handling accross interpreter/compiler boundaries
252//
253// exception_handler_for_return_address(...) returns the continuation address.
254// The continuation address is the entry point of the exception handler of the
255// previous frame depending on the return address.
256
257address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
258  assert(frame::verify_return_pc(return_address), "must be a return pc");
259
260  // the fastest case first
261  CodeBlob* blob = CodeCache::find_blob(return_address);
262  if (blob != NULL && blob->is_nmethod()) {
263    nmethod* code = (nmethod*)blob;
264    assert(code != NULL, "nmethod must be present");
265    // native nmethods don't have exception handlers
266    assert(!code->is_native_method(), "no exception handler");
267    assert(code->header_begin() != code->exception_begin(), "no exception handler");
268    if (code->is_deopt_pc(return_address)) {
269      return SharedRuntime::deopt_blob()->unpack_with_exception();
270    } else {
271      return code->exception_begin();
272    }
273  }
274
275  // Entry code
276  if (StubRoutines::returns_to_call_stub(return_address)) {
277    return StubRoutines::catch_exception_entry();
278  }
279  // Interpreted code
280  if (Interpreter::contains(return_address)) {
281    return Interpreter::rethrow_exception_entry();
282  }
283
284  // Compiled code
285  if (CodeCache::contains(return_address)) {
286    CodeBlob* blob = CodeCache::find_blob(return_address);
287    if (blob->is_nmethod()) {
288      nmethod* code = (nmethod*)blob;
289      assert(code != NULL, "nmethod must be present");
290      assert(code->header_begin() != code->exception_begin(), "no exception handler");
291      return code->exception_begin();
292    }
293    if (blob->is_runtime_stub()) {
294      ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
295    }
296  }
297  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
298#ifndef PRODUCT
299  { ResourceMark rm;
300    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
301    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
302    tty->print_cr("b) other problem");
303  }
304#endif // PRODUCT
305  ShouldNotReachHere();
306  return NULL;
307}
308
309
310JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
311  return raw_exception_handler_for_return_address(return_address);
312JRT_END
313
314address SharedRuntime::get_poll_stub(address pc) {
315  address stub;
316  // Look up the code blob
317  CodeBlob *cb = CodeCache::find_blob(pc);
318
319  // Should be an nmethod
320  assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
321
322  // Look up the relocation information
323  assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
324    "safepoint polling: type must be poll" );
325
326  assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
327    "Only polling locations are used for safepoint");
328
329  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
330  if (at_poll_return) {
331    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
332           "polling page return stub not created yet");
333    stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
334  } else {
335    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
336           "polling page safepoint stub not created yet");
337    stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
338  }
339#ifndef PRODUCT
340  if( TraceSafepoint ) {
341    char buf[256];
342    jio_snprintf(buf, sizeof(buf),
343                 "... found polling page %s exception at pc = "
344                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
345                 at_poll_return ? "return" : "loop",
346                 (intptr_t)pc, (intptr_t)stub);
347    tty->print_raw_cr(buf);
348  }
349#endif // PRODUCT
350  return stub;
351}
352
353
354oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
355  assert(caller.is_interpreted_frame(), "");
356  int args_size = ArgumentSizeComputer(sig).size() + 1;
357  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
358  oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
359  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
360  return result;
361}
362
363
364void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
365  if (JvmtiExport::can_post_exceptions()) {
366    vframeStream vfst(thread, true);
367    methodHandle method = methodHandle(thread, vfst.method());
368    address bcp = method()->bcp_from(vfst.bci());
369    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
370  }
371  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
372}
373
374void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
375  Handle h_exception = Exceptions::new_exception(thread, name, message);
376  throw_and_post_jvmti_exception(thread, h_exception);
377}
378
379// ret_pc points into caller; we are returning caller's exception handler
380// for given exception
381address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
382                                                    bool force_unwind, bool top_frame_only) {
383  assert(nm != NULL, "must exist");
384  ResourceMark rm;
385
386  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
387  // determine handler bci, if any
388  EXCEPTION_MARK;
389
390  int handler_bci = -1;
391  int scope_depth = 0;
392  if (!force_unwind) {
393    int bci = sd->bci();
394    do {
395      bool skip_scope_increment = false;
396      // exception handler lookup
397      KlassHandle ek (THREAD, exception->klass());
398      handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
399      if (HAS_PENDING_EXCEPTION) {
400        // We threw an exception while trying to find the exception handler.
401        // Transfer the new exception to the exception handle which will
402        // be set into thread local storage, and do another lookup for an
403        // exception handler for this exception, this time starting at the
404        // BCI of the exception handler which caused the exception to be
405        // thrown (bugs 4307310 and 4546590). Set "exception" reference
406        // argument to ensure that the correct exception is thrown (4870175).
407        exception = Handle(THREAD, PENDING_EXCEPTION);
408        CLEAR_PENDING_EXCEPTION;
409        if (handler_bci >= 0) {
410          bci = handler_bci;
411          handler_bci = -1;
412          skip_scope_increment = true;
413        }
414      }
415      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
416        sd = sd->sender();
417        if (sd != NULL) {
418          bci = sd->bci();
419        }
420        ++scope_depth;
421      }
422    } while (!top_frame_only && handler_bci < 0 && sd != NULL);
423  }
424
425  // found handling method => lookup exception handler
426  int catch_pco = ret_pc - nm->instructions_begin();
427
428  ExceptionHandlerTable table(nm);
429  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
430  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
431    // Allow abbreviated catch tables.  The idea is to allow a method
432    // to materialize its exceptions without committing to the exact
433    // routing of exceptions.  In particular this is needed for adding
434    // a synthethic handler to unlock monitors when inlining
435    // synchonized methods since the unlock path isn't represented in
436    // the bytecodes.
437    t = table.entry_for(catch_pco, -1, 0);
438  }
439
440#ifdef COMPILER1
441  if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
442    // Exception is not handled by this frame so unwind.  Note that
443    // this is not the same as how C2 does this.  C2 emits a table
444    // entry that dispatches to the unwind code in the nmethod.
445    return NULL;
446  }
447#endif /* COMPILER1 */
448
449
450  if (t == NULL) {
451    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
452    tty->print_cr("   Exception:");
453    exception->print();
454    tty->cr();
455    tty->print_cr(" Compiled exception table :");
456    table.print();
457    nm->print_code();
458    guarantee(false, "missing exception handler");
459    return NULL;
460  }
461
462  return nm->instructions_begin() + t->pco();
463}
464
465JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
466  // These errors occur only at call sites
467  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
468JRT_END
469
470JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
471  // These errors occur only at call sites
472  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
473JRT_END
474
475JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
476  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
477JRT_END
478
479JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
480  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
481JRT_END
482
483JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
484  // This entry point is effectively only used for NullPointerExceptions which occur at inline
485  // cache sites (when the callee activation is not yet set up) so we are at a call site
486  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
487JRT_END
488
489JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
490  // We avoid using the normal exception construction in this case because
491  // it performs an upcall to Java, and we're already out of stack space.
492  klassOop k = SystemDictionary::StackOverflowError_klass();
493  oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
494  Handle exception (thread, exception_oop);
495  if (StackTraceInThrowable) {
496    java_lang_Throwable::fill_in_stack_trace(exception);
497  }
498  throw_and_post_jvmti_exception(thread, exception);
499JRT_END
500
501address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
502                                                           address pc,
503                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
504{
505  address target_pc = NULL;
506
507  if (Interpreter::contains(pc)) {
508#ifdef CC_INTERP
509    // C++ interpreter doesn't throw implicit exceptions
510    ShouldNotReachHere();
511#else
512    switch (exception_kind) {
513      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
514      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
515      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
516      default:                      ShouldNotReachHere();
517    }
518#endif // !CC_INTERP
519  } else {
520    switch (exception_kind) {
521      case STACK_OVERFLOW: {
522        // Stack overflow only occurs upon frame setup; the callee is
523        // going to be unwound. Dispatch to a shared runtime stub
524        // which will cause the StackOverflowError to be fabricated
525        // and processed.
526        // For stack overflow in deoptimization blob, cleanup thread.
527        if (thread->deopt_mark() != NULL) {
528          Deoptimization::cleanup_deopt_info(thread, NULL);
529        }
530        return StubRoutines::throw_StackOverflowError_entry();
531      }
532
533      case IMPLICIT_NULL: {
534        if (VtableStubs::contains(pc)) {
535          // We haven't yet entered the callee frame. Fabricate an
536          // exception and begin dispatching it in the caller. Since
537          // the caller was at a call site, it's safe to destroy all
538          // caller-saved registers, as these entry points do.
539          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
540          guarantee(vt_stub != NULL, "unable to find SEGVing vtable stub");
541          if (vt_stub->is_abstract_method_error(pc)) {
542            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
543            return StubRoutines::throw_AbstractMethodError_entry();
544          } else {
545            return StubRoutines::throw_NullPointerException_at_call_entry();
546          }
547        } else {
548          CodeBlob* cb = CodeCache::find_blob(pc);
549          guarantee(cb != NULL, "exception happened outside interpreter, nmethods and vtable stubs (1)");
550
551          // Exception happened in CodeCache. Must be either:
552          // 1. Inline-cache check in C2I handler blob,
553          // 2. Inline-cache check in nmethod, or
554          // 3. Implict null exception in nmethod
555
556          if (!cb->is_nmethod()) {
557            guarantee(cb->is_adapter_blob(),
558                      "exception happened outside interpreter, nmethods and vtable stubs (2)");
559            // There is no handler here, so we will simply unwind.
560            return StubRoutines::throw_NullPointerException_at_call_entry();
561          }
562
563          // Otherwise, it's an nmethod.  Consult its exception handlers.
564          nmethod* nm = (nmethod*)cb;
565          if (nm->inlinecache_check_contains(pc)) {
566            // exception happened inside inline-cache check code
567            // => the nmethod is not yet active (i.e., the frame
568            // is not set up yet) => use return address pushed by
569            // caller => don't push another return address
570            return StubRoutines::throw_NullPointerException_at_call_entry();
571          }
572
573#ifndef PRODUCT
574          _implicit_null_throws++;
575#endif
576          target_pc = nm->continuation_for_implicit_exception(pc);
577          guarantee(target_pc != 0, "must have a continuation point");
578        }
579
580        break; // fall through
581      }
582
583
584      case IMPLICIT_DIVIDE_BY_ZERO: {
585        nmethod* nm = CodeCache::find_nmethod(pc);
586        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
587#ifndef PRODUCT
588        _implicit_div0_throws++;
589#endif
590        target_pc = nm->continuation_for_implicit_exception(pc);
591        guarantee(target_pc != 0, "must have a continuation point");
592        break; // fall through
593      }
594
595      default: ShouldNotReachHere();
596    }
597
598    guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
599    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
600
601    // for AbortVMOnException flag
602    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
603    if (exception_kind == IMPLICIT_NULL) {
604      Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
605    } else {
606      Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
607    }
608    return target_pc;
609  }
610
611  ShouldNotReachHere();
612  return NULL;
613}
614
615
616JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
617{
618  THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
619}
620JNI_END
621
622
623address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
624  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
625}
626
627
628#ifndef PRODUCT
629JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
630  const frame f = thread->last_frame();
631  assert(f.is_interpreted_frame(), "must be an interpreted frame");
632#ifndef PRODUCT
633  methodHandle mh(THREAD, f.interpreter_frame_method());
634  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
635#endif // !PRODUCT
636  return preserve_this_value;
637JRT_END
638#endif // !PRODUCT
639
640
641JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
642  os::yield_all(attempts);
643JRT_END
644
645
646// ---------------------------------------------------------------------------------------------------------
647// Non-product code
648#ifndef PRODUCT
649
650void SharedRuntime::verify_caller_frame(frame caller_frame, methodHandle callee_method) {
651  ResourceMark rm;
652  assert (caller_frame.is_interpreted_frame(), "sanity check");
653  assert (callee_method->has_compiled_code(), "callee must be compiled");
654  methodHandle caller_method (Thread::current(), caller_frame.interpreter_frame_method());
655  jint bci = caller_frame.interpreter_frame_bci();
656  methodHandle method = find_callee_method_inside_interpreter(caller_frame, caller_method, bci);
657  assert (callee_method == method, "incorrect method");
658}
659
660methodHandle SharedRuntime::find_callee_method_inside_interpreter(frame caller_frame, methodHandle caller_method, int bci) {
661  EXCEPTION_MARK;
662  Bytecode_invoke* bytecode = Bytecode_invoke_at(caller_method, bci);
663  methodHandle staticCallee = bytecode->static_target(CATCH); // Non-product code
664
665  bytecode = Bytecode_invoke_at(caller_method, bci);
666  int bytecode_index = bytecode->index();
667  Bytecodes::Code bc = bytecode->adjusted_invoke_code();
668
669  Handle receiver;
670  if (bc == Bytecodes::_invokeinterface ||
671      bc == Bytecodes::_invokevirtual ||
672      bc == Bytecodes::_invokespecial) {
673    symbolHandle signature (THREAD, staticCallee->signature());
674    receiver = Handle(THREAD, retrieve_receiver(signature, caller_frame));
675  } else {
676    receiver = Handle();
677  }
678  CallInfo result;
679  constantPoolHandle constants (THREAD, caller_method->constants());
680  LinkResolver::resolve_invoke(result, receiver, constants, bytecode_index, bc, CATCH); // Non-product code
681  methodHandle calleeMethod = result.selected_method();
682  return calleeMethod;
683}
684
685#endif  // PRODUCT
686
687
688JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
689  assert(obj->is_oop(), "must be a valid oop");
690  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
691  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
692JRT_END
693
694
695jlong SharedRuntime::get_java_tid(Thread* thread) {
696  if (thread != NULL) {
697    if (thread->is_Java_thread()) {
698      oop obj = ((JavaThread*)thread)->threadObj();
699      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
700    }
701  }
702  return 0;
703}
704
705/**
706 * This function ought to be a void function, but cannot be because
707 * it gets turned into a tail-call on sparc, which runs into dtrace bug
708 * 6254741.  Once that is fixed we can remove the dummy return value.
709 */
710int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
711  return dtrace_object_alloc_base(Thread::current(), o);
712}
713
714int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
715  assert(DTraceAllocProbes, "wrong call");
716  Klass* klass = o->blueprint();
717  int size = o->size();
718  symbolOop name = klass->name();
719  HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
720                   name->bytes(), name->utf8_length(), size * HeapWordSize);
721  return 0;
722}
723
724JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
725    JavaThread* thread, methodOopDesc* method))
726  assert(DTraceMethodProbes, "wrong call");
727  symbolOop kname = method->klass_name();
728  symbolOop name = method->name();
729  symbolOop sig = method->signature();
730  HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
731      kname->bytes(), kname->utf8_length(),
732      name->bytes(), name->utf8_length(),
733      sig->bytes(), sig->utf8_length());
734  return 0;
735JRT_END
736
737JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
738    JavaThread* thread, methodOopDesc* method))
739  assert(DTraceMethodProbes, "wrong call");
740  symbolOop kname = method->klass_name();
741  symbolOop name = method->name();
742  symbolOop sig = method->signature();
743  HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
744      kname->bytes(), kname->utf8_length(),
745      name->bytes(), name->utf8_length(),
746      sig->bytes(), sig->utf8_length());
747  return 0;
748JRT_END
749
750
751// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
752// for a call current in progress, i.e., arguments has been pushed on stack
753// put callee has not been invoked yet.  Used by: resolve virtual/static,
754// vtable updates, etc.  Caller frame must be compiled.
755Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
756  ResourceMark rm(THREAD);
757
758  // last java frame on stack (which includes native call frames)
759  vframeStream vfst(thread, true);  // Do not skip and javaCalls
760
761  return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
762}
763
764
765// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
766// for a call current in progress, i.e., arguments has been pushed on stack
767// but callee has not been invoked yet.  Caller frame must be compiled.
768Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
769                                              vframeStream& vfst,
770                                              Bytecodes::Code& bc,
771                                              CallInfo& callinfo, TRAPS) {
772  Handle receiver;
773  Handle nullHandle;  //create a handy null handle for exception returns
774
775  assert(!vfst.at_end(), "Java frame must exist");
776
777  // Find caller and bci from vframe
778  methodHandle caller (THREAD, vfst.method());
779  int          bci    = vfst.bci();
780
781  // Find bytecode
782  Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
783  bc = bytecode->adjusted_invoke_code();
784  int bytecode_index = bytecode->index();
785
786  // Find receiver for non-static call
787  if (bc != Bytecodes::_invokestatic) {
788    // This register map must be update since we need to find the receiver for
789    // compiled frames. The receiver might be in a register.
790    RegisterMap reg_map2(thread);
791    frame stubFrame   = thread->last_frame();
792    // Caller-frame is a compiled frame
793    frame callerFrame = stubFrame.sender(&reg_map2);
794
795    methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
796    if (callee.is_null()) {
797      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
798    }
799    // Retrieve from a compiled argument list
800    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
801
802    if (receiver.is_null()) {
803      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
804    }
805  }
806
807  // Resolve method. This is parameterized by bytecode.
808  constantPoolHandle constants (THREAD, caller->constants());
809  assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
810  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
811
812#ifdef ASSERT
813  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
814  if (bc != Bytecodes::_invokestatic) {
815    assert(receiver.not_null(), "should have thrown exception");
816    KlassHandle receiver_klass (THREAD, receiver->klass());
817    klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
818                            // klass is already loaded
819    KlassHandle static_receiver_klass (THREAD, rk);
820    assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
821    if (receiver_klass->oop_is_instance()) {
822      if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
823        tty->print_cr("ERROR: Klass not yet initialized!!");
824        receiver_klass.print();
825      }
826      assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
827    }
828  }
829#endif
830
831  return receiver;
832}
833
834methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
835  ResourceMark rm(THREAD);
836  // We need first to check if any Java activations (compiled, interpreted)
837  // exist on the stack since last JavaCall.  If not, we need
838  // to get the target method from the JavaCall wrapper.
839  vframeStream vfst(thread, true);  // Do not skip any javaCalls
840  methodHandle callee_method;
841  if (vfst.at_end()) {
842    // No Java frames were found on stack since we did the JavaCall.
843    // Hence the stack can only contain an entry_frame.  We need to
844    // find the target method from the stub frame.
845    RegisterMap reg_map(thread, false);
846    frame fr = thread->last_frame();
847    assert(fr.is_runtime_frame(), "must be a runtimeStub");
848    fr = fr.sender(&reg_map);
849    assert(fr.is_entry_frame(), "must be");
850    // fr is now pointing to the entry frame.
851    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
852    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
853  } else {
854    Bytecodes::Code bc;
855    CallInfo callinfo;
856    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
857    callee_method = callinfo.selected_method();
858  }
859  assert(callee_method()->is_method(), "must be");
860  return callee_method;
861}
862
863// Resolves a call.
864methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
865                                           bool is_virtual,
866                                           bool is_optimized, TRAPS) {
867  methodHandle callee_method;
868  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
869  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
870    int retry_count = 0;
871    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
872           callee_method->method_holder() != SystemDictionary::object_klass()) {
873      // If has a pending exception then there is no need to re-try to
874      // resolve this method.
875      // If the method has been redefined, we need to try again.
876      // Hack: we have no way to update the vtables of arrays, so don't
877      // require that java.lang.Object has been updated.
878
879      // It is very unlikely that method is redefined more than 100 times
880      // in the middle of resolve. If it is looping here more than 100 times
881      // means then there could be a bug here.
882      guarantee((retry_count++ < 100),
883                "Could not resolve to latest version of redefined method");
884      // method is redefined in the middle of resolve so re-try.
885      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
886    }
887  }
888  return callee_method;
889}
890
891// Resolves a call.  The compilers generate code for calls that go here
892// and are patched with the real destination of the call.
893methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
894                                           bool is_virtual,
895                                           bool is_optimized, TRAPS) {
896
897  ResourceMark rm(thread);
898  RegisterMap cbl_map(thread, false);
899  frame caller_frame = thread->last_frame().sender(&cbl_map);
900
901  CodeBlob* cb = caller_frame.cb();
902  guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
903  // make sure caller is not getting deoptimized
904  // and removed before we are done with it.
905  // CLEANUP - with lazy deopt shouldn't need this lock
906  nmethodLocker caller_lock((nmethod*)cb);
907
908
909  // determine call info & receiver
910  // note: a) receiver is NULL for static calls
911  //       b) an exception is thrown if receiver is NULL for non-static calls
912  CallInfo call_info;
913  Bytecodes::Code invoke_code = Bytecodes::_illegal;
914  Handle receiver = find_callee_info(thread, invoke_code,
915                                     call_info, CHECK_(methodHandle()));
916  methodHandle callee_method = call_info.selected_method();
917
918  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
919         ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
920
921#ifndef PRODUCT
922  // tracing/debugging/statistics
923  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
924                (is_virtual) ? (&_resolve_virtual_ctr) :
925                               (&_resolve_static_ctr);
926  Atomic::inc(addr);
927
928  if (TraceCallFixup) {
929    ResourceMark rm(thread);
930    tty->print("resolving %s%s (%s) call to",
931      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
932      Bytecodes::name(invoke_code));
933    callee_method->print_short_name(tty);
934    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
935  }
936#endif
937
938  // Compute entry points. This might require generation of C2I converter
939  // frames, so we cannot be holding any locks here. Furthermore, the
940  // computation of the entry points is independent of patching the call.  We
941  // always return the entry-point, but we only patch the stub if the call has
942  // not been deoptimized.  Return values: For a virtual call this is an
943  // (cached_oop, destination address) pair. For a static call/optimized
944  // virtual this is just a destination address.
945
946  StaticCallInfo static_call_info;
947  CompiledICInfo virtual_call_info;
948
949
950  // Make sure the callee nmethod does not get deoptimized and removed before
951  // we are done patching the code.
952  nmethod* nm = callee_method->code();
953  nmethodLocker nl_callee(nm);
954#ifdef ASSERT
955  address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
956#endif
957
958  if (is_virtual) {
959    assert(receiver.not_null(), "sanity check");
960    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
961    KlassHandle h_klass(THREAD, receiver->klass());
962    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
963                     is_optimized, static_bound, virtual_call_info,
964                     CHECK_(methodHandle()));
965  } else {
966    // static call
967    CompiledStaticCall::compute_entry(callee_method, static_call_info);
968  }
969
970  // grab lock, check for deoptimization and potentially patch caller
971  {
972    MutexLocker ml_patch(CompiledIC_lock);
973
974    // Now that we are ready to patch if the methodOop was redefined then
975    // don't update call site and let the caller retry.
976
977    if (!callee_method->is_old()) {
978#ifdef ASSERT
979      // We must not try to patch to jump to an already unloaded method.
980      if (dest_entry_point != 0) {
981        assert(CodeCache::find_blob(dest_entry_point) != NULL,
982               "should not unload nmethod while locked");
983      }
984#endif
985      if (is_virtual) {
986        CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
987        if (inline_cache->is_clean()) {
988          inline_cache->set_to_monomorphic(virtual_call_info);
989        }
990      } else {
991        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
992        if (ssc->is_clean()) ssc->set(static_call_info);
993      }
994    }
995
996  } // unlock CompiledIC_lock
997
998  return callee_method;
999}
1000
1001
1002// Inline caches exist only in compiled code
1003JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1004#ifdef ASSERT
1005  RegisterMap reg_map(thread, false);
1006  frame stub_frame = thread->last_frame();
1007  assert(stub_frame.is_runtime_frame(), "sanity check");
1008  frame caller_frame = stub_frame.sender(&reg_map);
1009  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1010#endif /* ASSERT */
1011
1012  methodHandle callee_method;
1013  JRT_BLOCK
1014    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1015    // Return methodOop through TLS
1016    thread->set_vm_result(callee_method());
1017  JRT_BLOCK_END
1018  // return compiled code entry point after potential safepoints
1019  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1020  return callee_method->verified_code_entry();
1021JRT_END
1022
1023
1024// Handle call site that has been made non-entrant
1025JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1026  // 6243940 We might end up in here if the callee is deoptimized
1027  // as we race to call it.  We don't want to take a safepoint if
1028  // the caller was interpreted because the caller frame will look
1029  // interpreted to the stack walkers and arguments are now
1030  // "compiled" so it is much better to make this transition
1031  // invisible to the stack walking code. The i2c path will
1032  // place the callee method in the callee_target. It is stashed
1033  // there because if we try and find the callee by normal means a
1034  // safepoint is possible and have trouble gc'ing the compiled args.
1035  RegisterMap reg_map(thread, false);
1036  frame stub_frame = thread->last_frame();
1037  assert(stub_frame.is_runtime_frame(), "sanity check");
1038  frame caller_frame = stub_frame.sender(&reg_map);
1039  if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
1040    methodOop callee = thread->callee_target();
1041    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1042    thread->set_vm_result(callee);
1043    thread->set_callee_target(NULL);
1044    return callee->get_c2i_entry();
1045  }
1046
1047  // Must be compiled to compiled path which is safe to stackwalk
1048  methodHandle callee_method;
1049  JRT_BLOCK
1050    // Force resolving of caller (if we called from compiled frame)
1051    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1052    thread->set_vm_result(callee_method());
1053  JRT_BLOCK_END
1054  // return compiled code entry point after potential safepoints
1055  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1056  return callee_method->verified_code_entry();
1057JRT_END
1058
1059
1060// resolve a static call and patch code
1061JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1062  methodHandle callee_method;
1063  JRT_BLOCK
1064    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1065    thread->set_vm_result(callee_method());
1066  JRT_BLOCK_END
1067  // return compiled code entry point after potential safepoints
1068  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1069  return callee_method->verified_code_entry();
1070JRT_END
1071
1072
1073// resolve virtual call and update inline cache to monomorphic
1074JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1075  methodHandle callee_method;
1076  JRT_BLOCK
1077    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1078    thread->set_vm_result(callee_method());
1079  JRT_BLOCK_END
1080  // return compiled code entry point after potential safepoints
1081  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1082  return callee_method->verified_code_entry();
1083JRT_END
1084
1085
1086// Resolve a virtual call that can be statically bound (e.g., always
1087// monomorphic, so it has no inline cache).  Patch code to resolved target.
1088JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1089  methodHandle callee_method;
1090  JRT_BLOCK
1091    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1092    thread->set_vm_result(callee_method());
1093  JRT_BLOCK_END
1094  // return compiled code entry point after potential safepoints
1095  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1096  return callee_method->verified_code_entry();
1097JRT_END
1098
1099
1100
1101
1102
1103methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1104  ResourceMark rm(thread);
1105  CallInfo call_info;
1106  Bytecodes::Code bc;
1107
1108  // receiver is NULL for static calls. An exception is thrown for NULL
1109  // receivers for non-static calls
1110  Handle receiver = find_callee_info(thread, bc, call_info,
1111                                     CHECK_(methodHandle()));
1112  // Compiler1 can produce virtual call sites that can actually be statically bound
1113  // If we fell thru to below we would think that the site was going megamorphic
1114  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1115  // we'd try and do a vtable dispatch however methods that can be statically bound
1116  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1117  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1118  // plain ic_miss) and the site will be converted to an optimized virtual call site
1119  // never to miss again. I don't believe C2 will produce code like this but if it
1120  // did this would still be the correct thing to do for it too, hence no ifdef.
1121  //
1122  if (call_info.resolved_method()->can_be_statically_bound()) {
1123    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1124    if (TraceCallFixup) {
1125      RegisterMap reg_map(thread, false);
1126      frame caller_frame = thread->last_frame().sender(&reg_map);
1127      ResourceMark rm(thread);
1128      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1129      callee_method->print_short_name(tty);
1130      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1131      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1132    }
1133    return callee_method;
1134  }
1135
1136  methodHandle callee_method = call_info.selected_method();
1137
1138  bool should_be_mono = false;
1139
1140#ifndef PRODUCT
1141  Atomic::inc(&_ic_miss_ctr);
1142
1143  // Statistics & Tracing
1144  if (TraceCallFixup) {
1145    ResourceMark rm(thread);
1146    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1147    callee_method->print_short_name(tty);
1148    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1149  }
1150
1151  if (ICMissHistogram) {
1152    MutexLocker m(VMStatistic_lock);
1153    RegisterMap reg_map(thread, false);
1154    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1155    // produce statistics under the lock
1156    trace_ic_miss(f.pc());
1157  }
1158#endif
1159
1160  // install an event collector so that when a vtable stub is created the
1161  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1162  // event can't be posted when the stub is created as locks are held
1163  // - instead the event will be deferred until the event collector goes
1164  // out of scope.
1165  JvmtiDynamicCodeEventCollector event_collector;
1166
1167  // Update inline cache to megamorphic. Skip update if caller has been
1168  // made non-entrant or we are called from interpreted.
1169  { MutexLocker ml_patch (CompiledIC_lock);
1170    RegisterMap reg_map(thread, false);
1171    frame caller_frame = thread->last_frame().sender(&reg_map);
1172    CodeBlob* cb = caller_frame.cb();
1173    if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1174      // Not a non-entrant nmethod, so find inline_cache
1175      CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1176      bool should_be_mono = false;
1177      if (inline_cache->is_optimized()) {
1178        if (TraceCallFixup) {
1179          ResourceMark rm(thread);
1180          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1181          callee_method->print_short_name(tty);
1182          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1183        }
1184        should_be_mono = true;
1185      } else {
1186        compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1187        if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1188
1189          if (receiver()->klass() == ic_oop->holder_klass()) {
1190            // This isn't a real miss. We must have seen that compiled code
1191            // is now available and we want the call site converted to a
1192            // monomorphic compiled call site.
1193            // We can't assert for callee_method->code() != NULL because it
1194            // could have been deoptimized in the meantime
1195            if (TraceCallFixup) {
1196              ResourceMark rm(thread);
1197              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1198              callee_method->print_short_name(tty);
1199              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1200            }
1201            should_be_mono = true;
1202          }
1203        }
1204      }
1205
1206      if (should_be_mono) {
1207
1208        // We have a path that was monomorphic but was going interpreted
1209        // and now we have (or had) a compiled entry. We correct the IC
1210        // by using a new icBuffer.
1211        CompiledICInfo info;
1212        KlassHandle receiver_klass(THREAD, receiver()->klass());
1213        inline_cache->compute_monomorphic_entry(callee_method,
1214                                                receiver_klass,
1215                                                inline_cache->is_optimized(),
1216                                                false,
1217                                                info, CHECK_(methodHandle()));
1218        inline_cache->set_to_monomorphic(info);
1219      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1220        // Change to megamorphic
1221        inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1222      } else {
1223        // Either clean or megamorphic
1224      }
1225    }
1226  } // Release CompiledIC_lock
1227
1228  return callee_method;
1229}
1230
1231//
1232// Resets a call-site in compiled code so it will get resolved again.
1233// This routines handles both virtual call sites, optimized virtual call
1234// sites, and static call sites. Typically used to change a call sites
1235// destination from compiled to interpreted.
1236//
1237methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1238  ResourceMark rm(thread);
1239  RegisterMap reg_map(thread, false);
1240  frame stub_frame = thread->last_frame();
1241  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1242  frame caller = stub_frame.sender(&reg_map);
1243
1244  // Do nothing if the frame isn't a live compiled frame.
1245  // nmethod could be deoptimized by the time we get here
1246  // so no update to the caller is needed.
1247
1248  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1249
1250    address pc = caller.pc();
1251    Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1252
1253    // Default call_addr is the location of the "basic" call.
1254    // Determine the address of the call we a reresolving. With
1255    // Inline Caches we will always find a recognizable call.
1256    // With Inline Caches disabled we may or may not find a
1257    // recognizable call. We will always find a call for static
1258    // calls and for optimized virtual calls. For vanilla virtual
1259    // calls it depends on the state of the UseInlineCaches switch.
1260    //
1261    // With Inline Caches disabled we can get here for a virtual call
1262    // for two reasons:
1263    //   1 - calling an abstract method. The vtable for abstract methods
1264    //       will run us thru handle_wrong_method and we will eventually
1265    //       end up in the interpreter to throw the ame.
1266    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1267    //       call and between the time we fetch the entry address and
1268    //       we jump to it the target gets deoptimized. Similar to 1
1269    //       we will wind up in the interprter (thru a c2i with c2).
1270    //
1271    address call_addr = NULL;
1272    {
1273      // Get call instruction under lock because another thread may be
1274      // busy patching it.
1275      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1276      // Location of call instruction
1277      if (NativeCall::is_call_before(pc)) {
1278        NativeCall *ncall = nativeCall_before(pc);
1279        call_addr = ncall->instruction_address();
1280      }
1281    }
1282
1283    // Check for static or virtual call
1284    bool is_static_call = false;
1285    nmethod* caller_nm = CodeCache::find_nmethod(pc);
1286    // Make sure nmethod doesn't get deoptimized and removed until
1287    // this is done with it.
1288    // CLEANUP - with lazy deopt shouldn't need this lock
1289    nmethodLocker nmlock(caller_nm);
1290
1291    if (call_addr != NULL) {
1292      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1293      int ret = iter.next(); // Get item
1294      if (ret) {
1295        assert(iter.addr() == call_addr, "must find call");
1296        if (iter.type() == relocInfo::static_call_type) {
1297          is_static_call = true;
1298        } else {
1299          assert(iter.type() == relocInfo::virtual_call_type ||
1300                 iter.type() == relocInfo::opt_virtual_call_type
1301                , "unexpected relocInfo. type");
1302        }
1303      } else {
1304        assert(!UseInlineCaches, "relocation info. must exist for this address");
1305      }
1306
1307      // Cleaning the inline cache will force a new resolve. This is more robust
1308      // than directly setting it to the new destination, since resolving of calls
1309      // is always done through the same code path. (experience shows that it
1310      // leads to very hard to track down bugs, if an inline cache gets updated
1311      // to a wrong method). It should not be performance critical, since the
1312      // resolve is only done once.
1313
1314      MutexLocker ml(CompiledIC_lock);
1315      //
1316      // We do not patch the call site if the nmethod has been made non-entrant
1317      // as it is a waste of time
1318      //
1319      if (caller_nm->is_in_use()) {
1320        if (is_static_call) {
1321          CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1322          ssc->set_to_clean();
1323        } else {
1324          // compiled, dispatched call (which used to call an interpreted method)
1325          CompiledIC* inline_cache = CompiledIC_at(call_addr);
1326          inline_cache->set_to_clean();
1327        }
1328      }
1329    }
1330
1331  }
1332
1333  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1334
1335
1336#ifndef PRODUCT
1337  Atomic::inc(&_wrong_method_ctr);
1338
1339  if (TraceCallFixup) {
1340    ResourceMark rm(thread);
1341    tty->print("handle_wrong_method reresolving call to");
1342    callee_method->print_short_name(tty);
1343    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1344  }
1345#endif
1346
1347  return callee_method;
1348}
1349
1350// ---------------------------------------------------------------------------
1351// We are calling the interpreter via a c2i. Normally this would mean that
1352// we were called by a compiled method. However we could have lost a race
1353// where we went int -> i2c -> c2i and so the caller could in fact be
1354// interpreted. If the caller is compiled we attampt to patch the caller
1355// so he no longer calls into the interpreter.
1356IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1357  methodOop moop(method);
1358
1359  address entry_point = moop->from_compiled_entry();
1360
1361  // It's possible that deoptimization can occur at a call site which hasn't
1362  // been resolved yet, in which case this function will be called from
1363  // an nmethod that has been patched for deopt and we can ignore the
1364  // request for a fixup.
1365  // Also it is possible that we lost a race in that from_compiled_entry
1366  // is now back to the i2c in that case we don't need to patch and if
1367  // we did we'd leap into space because the callsite needs to use
1368  // "to interpreter" stub in order to load up the methodOop. Don't
1369  // ask me how I know this...
1370  //
1371
1372  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1373  if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1374    return;
1375  }
1376
1377  // There is a benign race here. We could be attempting to patch to a compiled
1378  // entry point at the same time the callee is being deoptimized. If that is
1379  // the case then entry_point may in fact point to a c2i and we'd patch the
1380  // call site with the same old data. clear_code will set code() to NULL
1381  // at the end of it. If we happen to see that NULL then we can skip trying
1382  // to patch. If we hit the window where the callee has a c2i in the
1383  // from_compiled_entry and the NULL isn't present yet then we lose the race
1384  // and patch the code with the same old data. Asi es la vida.
1385
1386  if (moop->code() == NULL) return;
1387
1388  if (((nmethod*)cb)->is_in_use()) {
1389
1390    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1391    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1392    if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1393      NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1394      //
1395      // bug 6281185. We might get here after resolving a call site to a vanilla
1396      // virtual call. Because the resolvee uses the verified entry it may then
1397      // see compiled code and attempt to patch the site by calling us. This would
1398      // then incorrectly convert the call site to optimized and its downhill from
1399      // there. If you're lucky you'll get the assert in the bugid, if not you've
1400      // just made a call site that could be megamorphic into a monomorphic site
1401      // for the rest of its life! Just another racing bug in the life of
1402      // fixup_callers_callsite ...
1403      //
1404      RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
1405      iter.next();
1406      assert(iter.has_current(), "must have a reloc at java call site");
1407      relocInfo::relocType typ = iter.reloc()->type();
1408      if ( typ != relocInfo::static_call_type &&
1409           typ != relocInfo::opt_virtual_call_type &&
1410           typ != relocInfo::static_stub_type) {
1411        return;
1412      }
1413      address destination = call->destination();
1414      if (destination != entry_point) {
1415        CodeBlob* callee = CodeCache::find_blob(destination);
1416        // callee == cb seems weird. It means calling interpreter thru stub.
1417        if (callee == cb || callee->is_adapter_blob()) {
1418          // static call or optimized virtual
1419          if (TraceCallFixup) {
1420            tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1421            moop->print_short_name(tty);
1422            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1423          }
1424          call->set_destination_mt_safe(entry_point);
1425        } else {
1426          if (TraceCallFixup) {
1427            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1428            moop->print_short_name(tty);
1429            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1430          }
1431          // assert is too strong could also be resolve destinations.
1432          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1433        }
1434      } else {
1435          if (TraceCallFixup) {
1436            tty->print("already patched  callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1437            moop->print_short_name(tty);
1438            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1439          }
1440      }
1441    }
1442  }
1443
1444IRT_END
1445
1446
1447// same as JVM_Arraycopy, but called directly from compiled code
1448JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1449                                                oopDesc* dest, jint dest_pos,
1450                                                jint length,
1451                                                JavaThread* thread)) {
1452#ifndef PRODUCT
1453  _slow_array_copy_ctr++;
1454#endif
1455  // Check if we have null pointers
1456  if (src == NULL || dest == NULL) {
1457    THROW(vmSymbols::java_lang_NullPointerException());
1458  }
1459  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1460  // even though the copy_array API also performs dynamic checks to ensure
1461  // that src and dest are truly arrays (and are conformable).
1462  // The copy_array mechanism is awkward and could be removed, but
1463  // the compilers don't call this function except as a last resort,
1464  // so it probably doesn't matter.
1465  Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1466                                        (arrayOopDesc*)dest, dest_pos,
1467                                        length, thread);
1468}
1469JRT_END
1470
1471char* SharedRuntime::generate_class_cast_message(
1472    JavaThread* thread, const char* objName) {
1473
1474  // Get target class name from the checkcast instruction
1475  vframeStream vfst(thread, true);
1476  assert(!vfst.at_end(), "Java frame must exist");
1477  Bytecode_checkcast* cc = Bytecode_checkcast_at(
1478    vfst.method()->bcp_from(vfst.bci()));
1479  Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1480    cc->index(), thread));
1481  return generate_class_cast_message(objName, targetKlass->external_name());
1482}
1483
1484char* SharedRuntime::generate_class_cast_message(
1485    const char* objName, const char* targetKlassName) {
1486  const char* desc = " cannot be cast to ";
1487  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1488
1489  char* message = NEW_RESOURCE_ARRAY(char, msglen);
1490  if (NULL == message) {
1491    // Shouldn't happen, but don't cause even more problems if it does
1492    message = const_cast<char*>(objName);
1493  } else {
1494    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1495  }
1496  return message;
1497}
1498
1499JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1500  (void) JavaThread::current()->reguard_stack();
1501JRT_END
1502
1503
1504// Handles the uncommon case in locking, i.e., contention or an inflated lock.
1505#ifndef PRODUCT
1506int SharedRuntime::_monitor_enter_ctr=0;
1507#endif
1508JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1509  oop obj(_obj);
1510#ifndef PRODUCT
1511  _monitor_enter_ctr++;             // monitor enter slow
1512#endif
1513  if (PrintBiasedLockingStatistics) {
1514    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1515  }
1516  Handle h_obj(THREAD, obj);
1517  if (UseBiasedLocking) {
1518    // Retry fast entry if bias is revoked to avoid unnecessary inflation
1519    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1520  } else {
1521    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1522  }
1523  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1524JRT_END
1525
1526#ifndef PRODUCT
1527int SharedRuntime::_monitor_exit_ctr=0;
1528#endif
1529// Handles the uncommon cases of monitor unlocking in compiled code
1530JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1531   oop obj(_obj);
1532#ifndef PRODUCT
1533  _monitor_exit_ctr++;              // monitor exit slow
1534#endif
1535  Thread* THREAD = JavaThread::current();
1536  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1537  // testing was unable to ever fire the assert that guarded it so I have removed it.
1538  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1539#undef MIGHT_HAVE_PENDING
1540#ifdef MIGHT_HAVE_PENDING
1541  // Save and restore any pending_exception around the exception mark.
1542  // While the slow_exit must not throw an exception, we could come into
1543  // this routine with one set.
1544  oop pending_excep = NULL;
1545  const char* pending_file;
1546  int pending_line;
1547  if (HAS_PENDING_EXCEPTION) {
1548    pending_excep = PENDING_EXCEPTION;
1549    pending_file  = THREAD->exception_file();
1550    pending_line  = THREAD->exception_line();
1551    CLEAR_PENDING_EXCEPTION;
1552  }
1553#endif /* MIGHT_HAVE_PENDING */
1554
1555  {
1556    // Exit must be non-blocking, and therefore no exceptions can be thrown.
1557    EXCEPTION_MARK;
1558    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1559  }
1560
1561#ifdef MIGHT_HAVE_PENDING
1562  if (pending_excep != NULL) {
1563    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1564  }
1565#endif /* MIGHT_HAVE_PENDING */
1566JRT_END
1567
1568#ifndef PRODUCT
1569
1570void SharedRuntime::print_statistics() {
1571  ttyLocker ttyl;
1572  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1573
1574  if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1575  if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1576  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1577
1578  SharedRuntime::print_ic_miss_histogram();
1579
1580  if (CountRemovableExceptions) {
1581    if (_nof_removable_exceptions > 0) {
1582      Unimplemented(); // this counter is not yet incremented
1583      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1584    }
1585  }
1586
1587  // Dump the JRT_ENTRY counters
1588  if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1589  if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1590  if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1591  if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1592  if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1593  if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1594  if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1595
1596  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1597  tty->print_cr("%5d wrong method", _wrong_method_ctr );
1598  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1599  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1600  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1601
1602  if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1603  if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1604  if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1605  if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1606  if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1607  if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1608  if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1609  if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1610  if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1611  if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1612  if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1613  if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1614  if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1615  if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1616  if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1617  if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1618
1619  if (xtty != NULL)  xtty->tail("statistics");
1620}
1621
1622inline double percent(int x, int y) {
1623  return 100.0 * x / MAX2(y, 1);
1624}
1625
1626class MethodArityHistogram {
1627 public:
1628  enum { MAX_ARITY = 256 };
1629 private:
1630  static int _arity_histogram[MAX_ARITY];     // histogram of #args
1631  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1632  static int _max_arity;                      // max. arity seen
1633  static int _max_size;                       // max. arg size seen
1634
1635  static void add_method_to_histogram(nmethod* nm) {
1636    methodOop m = nm->method();
1637    ArgumentCount args(m->signature());
1638    int arity   = args.size() + (m->is_static() ? 0 : 1);
1639    int argsize = m->size_of_parameters();
1640    arity   = MIN2(arity, MAX_ARITY-1);
1641    argsize = MIN2(argsize, MAX_ARITY-1);
1642    int count = nm->method()->compiled_invocation_count();
1643    _arity_histogram[arity]  += count;
1644    _size_histogram[argsize] += count;
1645    _max_arity = MAX2(_max_arity, arity);
1646    _max_size  = MAX2(_max_size, argsize);
1647  }
1648
1649  void print_histogram_helper(int n, int* histo, const char* name) {
1650    const int N = MIN2(5, n);
1651    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1652    double sum = 0;
1653    double weighted_sum = 0;
1654    int i;
1655    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1656    double rest = sum;
1657    double percent = sum / 100;
1658    for (i = 0; i <= N; i++) {
1659      rest -= histo[i];
1660      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1661    }
1662    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1663    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1664  }
1665
1666  void print_histogram() {
1667    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1668    print_histogram_helper(_max_arity, _arity_histogram, "arity");
1669    tty->print_cr("\nSame for parameter size (in words):");
1670    print_histogram_helper(_max_size, _size_histogram, "size");
1671    tty->cr();
1672  }
1673
1674 public:
1675  MethodArityHistogram() {
1676    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1677    _max_arity = _max_size = 0;
1678    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1679    CodeCache::nmethods_do(add_method_to_histogram);
1680    print_histogram();
1681  }
1682};
1683
1684int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1685int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1686int MethodArityHistogram::_max_arity;
1687int MethodArityHistogram::_max_size;
1688
1689void SharedRuntime::print_call_statistics(int comp_total) {
1690  tty->print_cr("Calls from compiled code:");
1691  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1692  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1693  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1694  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1695  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1696  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1697  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1698  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1699  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1700  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1701  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1702  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1703  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1704  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1705  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1706  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1707  tty->cr();
1708  tty->print_cr("Note 1: counter updates are not MT-safe.");
1709  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1710  tty->print_cr("        %% in nested categories are relative to their category");
1711  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1712  tty->cr();
1713
1714  MethodArityHistogram h;
1715}
1716#endif
1717
1718
1719// ---------------------------------------------------------------------------
1720// Implementation of AdapterHandlerLibrary
1721const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
1722GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
1723GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
1724const int AdapterHandlerLibrary_size = 16*K;
1725u_char                   AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
1726
1727void AdapterHandlerLibrary::initialize() {
1728  if (_fingerprints != NULL) return;
1729  _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
1730  _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
1731  // Index 0 reserved for the slow path handler
1732  _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
1733  _handlers->append(NULL);
1734
1735  // Create a special handler for abstract methods.  Abstract methods
1736  // are never compiled so an i2c entry is somewhat meaningless, but
1737  // fill it in with something appropriate just in case.  Pass handle
1738  // wrong method for the c2i transitions.
1739  address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
1740  _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
1741  assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
1742  _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
1743                                            wrong_method, wrong_method));
1744}
1745
1746int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
1747  // Use customized signature handler.  Need to lock around updates to the
1748  // _fingerprints array (it is not safe for concurrent readers and a single
1749  // writer: this can be fixed if it becomes a problem).
1750
1751  // Get the address of the ic_miss handlers before we grab the
1752  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
1753  // was caused by the initialization of the stubs happening
1754  // while we held the lock and then notifying jvmti while
1755  // holding it. This just forces the initialization to be a little
1756  // earlier.
1757  address ic_miss = SharedRuntime::get_ic_miss_stub();
1758  assert(ic_miss != NULL, "must have handler");
1759
1760  int result;
1761  BufferBlob *B = NULL;
1762  uint64_t fingerprint;
1763  {
1764    MutexLocker mu(AdapterHandlerLibrary_lock);
1765    // make sure data structure is initialized
1766    initialize();
1767
1768    if (method->is_abstract()) {
1769      return AbstractMethodHandler;
1770    }
1771
1772    // Lookup method signature's fingerprint
1773    fingerprint = Fingerprinter(method).fingerprint();
1774    assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
1775    // Fingerprints are small fixed-size condensed representations of
1776    // signatures.  If the signature is too large, it won't fit in a
1777    // fingerprint.  Signatures which cannot support a fingerprint get a new i2c
1778    // adapter gen'd each time, instead of searching the cache for one.  This -1
1779    // game can be avoided if I compared signatures instead of using
1780    // fingerprints.  However, -1 fingerprints are very rare.
1781    if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
1782      // Turns out i2c adapters do not care what the return value is.  Mask it
1783      // out so signatures that only differ in return type will share the same
1784      // adapter.
1785      fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
1786      // Search for a prior existing i2c/c2i adapter
1787      int index = _fingerprints->find(fingerprint);
1788      if( index >= 0 ) return index; // Found existing handlers?
1789    } else {
1790      // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
1791      // because I need a unique handler index.  It cannot be scanned for
1792      // because all -1's look alike.  Instead, the matching index is passed out
1793      // and immediately used to collect the 2 return values (the c2i and i2c
1794      // adapters).
1795    }
1796
1797    // Create I2C & C2I handlers
1798    ResourceMark rm;
1799    // Improve alignment slightly
1800    u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
1801    CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
1802    short buffer_locs[20];
1803    buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
1804                                           sizeof(buffer_locs)/sizeof(relocInfo));
1805    MacroAssembler _masm(&buffer);
1806
1807    // Fill in the signature array, for the calling-convention call.
1808    int total_args_passed = method->size_of_parameters(); // All args on stack
1809
1810    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
1811    VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
1812    int i=0;
1813    if( !method->is_static() )  // Pass in receiver first
1814      sig_bt[i++] = T_OBJECT;
1815    for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
1816      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
1817      if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
1818        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1819    }
1820    assert( i==total_args_passed, "" );
1821
1822    // Now get the re-packed compiled-Java layout.
1823    int comp_args_on_stack;
1824
1825    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
1826    comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
1827
1828    AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
1829                                                                        total_args_passed,
1830                                                                        comp_args_on_stack,
1831                                                                        sig_bt,
1832                                                                        regs);
1833
1834    B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
1835    if (B == NULL) {
1836      // CodeCache is full, disable compilation
1837      // Ought to log this but compile log is only per compile thread
1838      // and we're some non descript Java thread.
1839      UseInterpreter = true;
1840      if (UseCompiler || AlwaysCompileLoopMethods ) {
1841#ifndef PRODUCT
1842        warning("CodeCache is full. Compiler has been disabled");
1843        if (CompileTheWorld || ExitOnFullCodeCache) {
1844          before_exit(JavaThread::current());
1845          exit_globals(); // will delete tty
1846          vm_direct_exit(CompileTheWorld ? 0 : 1);
1847        }
1848#endif
1849        UseCompiler               = false;
1850        AlwaysCompileLoopMethods  = false;
1851      }
1852      return 0; // Out of CodeCache space (_handlers[0] == NULL)
1853    }
1854    entry->relocate(B->instructions_begin());
1855#ifndef PRODUCT
1856    // debugging suppport
1857    if (PrintAdapterHandlers) {
1858      tty->cr();
1859      tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
1860                    _handlers->length(), (method->is_static() ? "static" : "receiver"),
1861                    method->signature()->as_C_string(), fingerprint, buffer.code_size() );
1862      tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
1863      Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
1864    }
1865#endif
1866
1867    // add handlers to library
1868    _fingerprints->append(fingerprint);
1869    _handlers->append(entry);
1870    // set handler index
1871    assert(_fingerprints->length() == _handlers->length(), "sanity check");
1872    result = _fingerprints->length() - 1;
1873  }
1874  // Outside of the lock
1875  if (B != NULL) {
1876    char blob_id[256];
1877    jio_snprintf(blob_id,
1878                 sizeof(blob_id),
1879                 "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
1880                 AdapterHandlerEntry::name,
1881                 fingerprint,
1882                 B->instructions_begin());
1883    VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
1884    Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
1885
1886    if (JvmtiExport::should_post_dynamic_code_generated()) {
1887      JvmtiExport::post_dynamic_code_generated(blob_id,
1888                                               B->instructions_begin(),
1889                                               B->instructions_end());
1890    }
1891  }
1892  return result;
1893}
1894
1895void AdapterHandlerEntry::relocate(address new_base) {
1896    ptrdiff_t delta = new_base - _i2c_entry;
1897    _i2c_entry += delta;
1898    _c2i_entry += delta;
1899    _c2i_unverified_entry += delta;
1900}
1901
1902// Create a native wrapper for this native method.  The wrapper converts the
1903// java compiled calling convention to the native convention, handlizes
1904// arguments, and transitions to native.  On return from the native we transition
1905// back to java blocking if a safepoint is in progress.
1906nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
1907  ResourceMark rm;
1908  nmethod* nm = NULL;
1909
1910  if (PrintCompilation) {
1911    ttyLocker ttyl;
1912    tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
1913    method->print_short_name(tty);
1914    if (method->is_static()) {
1915      tty->print(" (static)");
1916    }
1917    tty->cr();
1918  }
1919
1920  assert(method->has_native_function(), "must have something valid to call!");
1921
1922  {
1923    // perform the work while holding the lock, but perform any printing outside the lock
1924    MutexLocker mu(AdapterHandlerLibrary_lock);
1925    // See if somebody beat us to it
1926    nm = method->code();
1927    if (nm) {
1928      return nm;
1929    }
1930
1931    // Improve alignment slightly
1932    u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
1933    CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
1934    // Need a few relocation entries
1935    double locs_buf[20];
1936    buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
1937    MacroAssembler _masm(&buffer);
1938
1939    // Fill in the signature array, for the calling-convention call.
1940    int total_args_passed = method->size_of_parameters();
1941
1942    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
1943    VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
1944    int i=0;
1945    if( !method->is_static() )  // Pass in receiver first
1946      sig_bt[i++] = T_OBJECT;
1947    SignatureStream ss(method->signature());
1948    for( ; !ss.at_return_type(); ss.next()) {
1949      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
1950      if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
1951        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1952    }
1953    assert( i==total_args_passed, "" );
1954    BasicType ret_type = ss.type();
1955
1956    // Now get the compiled-Java layout as input arguments
1957    int comp_args_on_stack;
1958    comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
1959
1960    // Generate the compiled-to-native wrapper code
1961    nm = SharedRuntime::generate_native_wrapper(&_masm,
1962                                                method,
1963                                                total_args_passed,
1964                                                comp_args_on_stack,
1965                                                sig_bt,regs,
1966                                                ret_type);
1967  }
1968
1969  // Must unlock before calling set_code
1970  // Install the generated code.
1971  if (nm != NULL) {
1972    method->set_code(method, nm);
1973    nm->post_compiled_method_load_event();
1974  } else {
1975    // CodeCache is full, disable compilation
1976    // Ought to log this but compile log is only per compile thread
1977    // and we're some non descript Java thread.
1978    UseInterpreter = true;
1979    if (UseCompiler || AlwaysCompileLoopMethods ) {
1980#ifndef PRODUCT
1981      warning("CodeCache is full. Compiler has been disabled");
1982      if (CompileTheWorld || ExitOnFullCodeCache) {
1983        before_exit(JavaThread::current());
1984        exit_globals(); // will delete tty
1985        vm_direct_exit(CompileTheWorld ? 0 : 1);
1986      }
1987#endif
1988      UseCompiler               = false;
1989      AlwaysCompileLoopMethods  = false;
1990    }
1991  }
1992  return nm;
1993}
1994
1995#ifdef HAVE_DTRACE_H
1996// Create a dtrace nmethod for this method.  The wrapper converts the
1997// java compiled calling convention to the native convention, makes a dummy call
1998// (actually nops for the size of the call instruction, which become a trap if
1999// probe is enabled). The returns to the caller. Since this all looks like a
2000// leaf no thread transition is needed.
2001
2002nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2003  ResourceMark rm;
2004  nmethod* nm = NULL;
2005
2006  if (PrintCompilation) {
2007    ttyLocker ttyl;
2008    tty->print("---   n%s  ");
2009    method->print_short_name(tty);
2010    if (method->is_static()) {
2011      tty->print(" (static)");
2012    }
2013    tty->cr();
2014  }
2015
2016  {
2017    // perform the work while holding the lock, but perform any printing
2018    // outside the lock
2019    MutexLocker mu(AdapterHandlerLibrary_lock);
2020    // See if somebody beat us to it
2021    nm = method->code();
2022    if (nm) {
2023      return nm;
2024    }
2025
2026    // Improve alignment slightly
2027    u_char* buf = (u_char*)
2028        (((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
2029    CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
2030    // Need a few relocation entries
2031    double locs_buf[20];
2032    buffer.insts()->initialize_shared_locs(
2033        (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2034    MacroAssembler _masm(&buffer);
2035
2036    // Generate the compiled-to-native wrapper code
2037    nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2038  }
2039  return nm;
2040}
2041
2042// the dtrace method needs to convert java lang string to utf8 string.
2043void SharedRuntime::get_utf(oopDesc* src, address dst) {
2044  typeArrayOop jlsValue  = java_lang_String::value(src);
2045  int          jlsOffset = java_lang_String::offset(src);
2046  int          jlsLen    = java_lang_String::length(src);
2047  jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2048                                           jlsValue->char_at_addr(jlsOffset);
2049  (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2050}
2051#endif // ndef HAVE_DTRACE_H
2052
2053// -------------------------------------------------------------------------
2054// Java-Java calling convention
2055// (what you use when Java calls Java)
2056
2057//------------------------------name_for_receiver----------------------------------
2058// For a given signature, return the VMReg for parameter 0.
2059VMReg SharedRuntime::name_for_receiver() {
2060  VMRegPair regs;
2061  BasicType sig_bt = T_OBJECT;
2062  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2063  // Return argument 0 register.  In the LP64 build pointers
2064  // take 2 registers, but the VM wants only the 'main' name.
2065  return regs.first();
2066}
2067
2068VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
2069  // This method is returning a data structure allocating as a
2070  // ResourceObject, so do not put any ResourceMarks in here.
2071  char *s = sig->as_C_string();
2072  int len = (int)strlen(s);
2073  *s++; len--;                  // Skip opening paren
2074  char *t = s+len;
2075  while( *(--t) != ')' ) ;      // Find close paren
2076
2077  BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2078  VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2079  int cnt = 0;
2080  if (!is_static) {
2081    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2082  }
2083
2084  while( s < t ) {
2085    switch( *s++ ) {            // Switch on signature character
2086    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2087    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2088    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2089    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2090    case 'I': sig_bt[cnt++] = T_INT;     break;
2091    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2092    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2093    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2094    case 'V': sig_bt[cnt++] = T_VOID;    break;
2095    case 'L':                   // Oop
2096      while( *s++ != ';'  ) ;   // Skip signature
2097      sig_bt[cnt++] = T_OBJECT;
2098      break;
2099    case '[': {                 // Array
2100      do {                      // Skip optional size
2101        while( *s >= '0' && *s <= '9' ) s++;
2102      } while( *s++ == '[' );   // Nested arrays?
2103      // Skip element type
2104      if( s[-1] == 'L' )
2105        while( *s++ != ';'  ) ; // Skip signature
2106      sig_bt[cnt++] = T_ARRAY;
2107      break;
2108    }
2109    default : ShouldNotReachHere();
2110    }
2111  }
2112  assert( cnt < 256, "grow table size" );
2113
2114  int comp_args_on_stack;
2115  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2116
2117  // the calling convention doesn't count out_preserve_stack_slots so
2118  // we must add that in to get "true" stack offsets.
2119
2120  if (comp_args_on_stack) {
2121    for (int i = 0; i < cnt; i++) {
2122      VMReg reg1 = regs[i].first();
2123      if( reg1->is_stack()) {
2124        // Yuck
2125        reg1 = reg1->bias(out_preserve_stack_slots());
2126      }
2127      VMReg reg2 = regs[i].second();
2128      if( reg2->is_stack()) {
2129        // Yuck
2130        reg2 = reg2->bias(out_preserve_stack_slots());
2131      }
2132      regs[i].set_pair(reg2, reg1);
2133    }
2134  }
2135
2136  // results
2137  *arg_size = cnt;
2138  return regs;
2139}
2140
2141// OSR Migration Code
2142//
2143// This code is used convert interpreter frames into compiled frames.  It is
2144// called from very start of a compiled OSR nmethod.  A temp array is
2145// allocated to hold the interesting bits of the interpreter frame.  All
2146// active locks are inflated to allow them to move.  The displaced headers and
2147// active interpeter locals are copied into the temp buffer.  Then we return
2148// back to the compiled code.  The compiled code then pops the current
2149// interpreter frame off the stack and pushes a new compiled frame.  Then it
2150// copies the interpreter locals and displaced headers where it wants.
2151// Finally it calls back to free the temp buffer.
2152//
2153// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2154
2155JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2156
2157#ifdef IA64
2158  ShouldNotReachHere(); // NYI
2159#endif /* IA64 */
2160
2161  //
2162  // This code is dependent on the memory layout of the interpreter local
2163  // array and the monitors. On all of our platforms the layout is identical
2164  // so this code is shared. If some platform lays the their arrays out
2165  // differently then this code could move to platform specific code or
2166  // the code here could be modified to copy items one at a time using
2167  // frame accessor methods and be platform independent.
2168
2169  frame fr = thread->last_frame();
2170  assert( fr.is_interpreted_frame(), "" );
2171  assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2172
2173  // Figure out how many monitors are active.
2174  int active_monitor_count = 0;
2175  for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2176       kptr < fr.interpreter_frame_monitor_begin();
2177       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2178    if( kptr->obj() != NULL ) active_monitor_count++;
2179  }
2180
2181  // QQQ we could place number of active monitors in the array so that compiled code
2182  // could double check it.
2183
2184  methodOop moop = fr.interpreter_frame_method();
2185  int max_locals = moop->max_locals();
2186  // Allocate temp buffer, 1 word per local & 2 per active monitor
2187  int buf_size_words = max_locals + active_monitor_count*2;
2188  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2189
2190  // Copy the locals.  Order is preserved so that loading of longs works.
2191  // Since there's no GC I can copy the oops blindly.
2192  assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2193  if (TaggedStackInterpreter) {
2194    for (int i = 0; i < max_locals; i++) {
2195      // copy only each local separately to the buffer avoiding the tag
2196      buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
2197    }
2198  } else {
2199    Copy::disjoint_words(
2200                       (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2201                       (HeapWord*)&buf[0],
2202                       max_locals);
2203  }
2204
2205  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2206  int i = max_locals;
2207  for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2208       kptr2 < fr.interpreter_frame_monitor_begin();
2209       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2210    if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2211      BasicLock *lock = kptr2->lock();
2212      // Inflate so the displaced header becomes position-independent
2213      if (lock->displaced_header()->is_unlocked())
2214        ObjectSynchronizer::inflate_helper(kptr2->obj());
2215      // Now the displaced header is free to move
2216      buf[i++] = (intptr_t)lock->displaced_header();
2217      buf[i++] = (intptr_t)kptr2->obj();
2218    }
2219  }
2220  assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2221
2222  return buf;
2223JRT_END
2224
2225JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2226  FREE_C_HEAP_ARRAY(intptr_t,buf);
2227JRT_END
2228
2229#ifndef PRODUCT
2230bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2231
2232  for (int i = 0 ; i < _handlers->length() ; i++) {
2233    AdapterHandlerEntry* a = get_entry(i);
2234    if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2235  }
2236  return false;
2237}
2238
2239void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
2240
2241  for (int i = 0 ; i < _handlers->length() ; i++) {
2242    AdapterHandlerEntry* a = get_entry(i);
2243    if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2244      tty->print("Adapter for signature: ");
2245      // Fingerprinter::print(_fingerprints->at(i));
2246      tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
2247      tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2248                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2249
2250      return;
2251    }
2252  }
2253  assert(false, "Should have found handler");
2254}
2255#endif /* PRODUCT */
2256