phaseX.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_phaseX.cpp.incl"
27
28//=============================================================================
29#define NODE_HASH_MINIMUM_SIZE    255
30//------------------------------NodeHash---------------------------------------
31NodeHash::NodeHash(uint est_max_size) :
32  _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
33  _a(Thread::current()->resource_area()),
34  _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
35  _inserts(0), _insert_limit( insert_limit() ),
36  _look_probes(0), _lookup_hits(0), _lookup_misses(0),
37  _total_insert_probes(0), _total_inserts(0),
38  _insert_probes(0), _grows(0) {
39  // _sentinel must be in the current node space
40  _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
41  memset(_table,0,sizeof(Node*)*_max);
42}
43
44//------------------------------NodeHash---------------------------------------
45NodeHash::NodeHash(Arena *arena, uint est_max_size) :
46  _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
47  _a(arena),
48  _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
49  _inserts(0), _insert_limit( insert_limit() ),
50  _look_probes(0), _lookup_hits(0), _lookup_misses(0),
51  _delete_probes(0), _delete_hits(0), _delete_misses(0),
52  _total_insert_probes(0), _total_inserts(0),
53  _insert_probes(0), _grows(0) {
54  // _sentinel must be in the current node space
55  _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
56  memset(_table,0,sizeof(Node*)*_max);
57}
58
59//------------------------------NodeHash---------------------------------------
60NodeHash::NodeHash(NodeHash *nh) {
61  debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
62  // just copy in all the fields
63  *this = *nh;
64  // nh->_sentinel must be in the current node space
65}
66
67//------------------------------hash_find--------------------------------------
68// Find in hash table
69Node *NodeHash::hash_find( const Node *n ) {
70  // ((Node*)n)->set_hash( n->hash() );
71  uint hash = n->hash();
72  if (hash == Node::NO_HASH) {
73    debug_only( _lookup_misses++ );
74    return NULL;
75  }
76  uint key = hash & (_max-1);
77  uint stride = key | 0x01;
78  debug_only( _look_probes++ );
79  Node *k = _table[key];        // Get hashed value
80  if( !k ) {                    // ?Miss?
81    debug_only( _lookup_misses++ );
82    return NULL;                // Miss!
83  }
84
85  int op = n->Opcode();
86  uint req = n->req();
87  while( 1 ) {                  // While probing hash table
88    if( k->req() == req &&      // Same count of inputs
89        k->Opcode() == op ) {   // Same Opcode
90      for( uint i=0; i<req; i++ )
91        if( n->in(i)!=k->in(i)) // Different inputs?
92          goto collision;       // "goto" is a speed hack...
93      if( n->cmp(*k) ) {        // Check for any special bits
94        debug_only( _lookup_hits++ );
95        return k;               // Hit!
96      }
97    }
98  collision:
99    debug_only( _look_probes++ );
100    key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
101    k = _table[key];            // Get hashed value
102    if( !k ) {                  // ?Miss?
103      debug_only( _lookup_misses++ );
104      return NULL;              // Miss!
105    }
106  }
107  ShouldNotReachHere();
108  return NULL;
109}
110
111//------------------------------hash_find_insert-------------------------------
112// Find in hash table, insert if not already present
113// Used to preserve unique entries in hash table
114Node *NodeHash::hash_find_insert( Node *n ) {
115  // n->set_hash( );
116  uint hash = n->hash();
117  if (hash == Node::NO_HASH) {
118    debug_only( _lookup_misses++ );
119    return NULL;
120  }
121  uint key = hash & (_max-1);
122  uint stride = key | 0x01;     // stride must be relatively prime to table siz
123  uint first_sentinel = 0;      // replace a sentinel if seen.
124  debug_only( _look_probes++ );
125  Node *k = _table[key];        // Get hashed value
126  if( !k ) {                    // ?Miss?
127    debug_only( _lookup_misses++ );
128    _table[key] = n;            // Insert into table!
129    debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
130    check_grow();               // Grow table if insert hit limit
131    return NULL;                // Miss!
132  }
133  else if( k == _sentinel ) {
134    first_sentinel = key;      // Can insert here
135  }
136
137  int op = n->Opcode();
138  uint req = n->req();
139  while( 1 ) {                  // While probing hash table
140    if( k->req() == req &&      // Same count of inputs
141        k->Opcode() == op ) {   // Same Opcode
142      for( uint i=0; i<req; i++ )
143        if( n->in(i)!=k->in(i)) // Different inputs?
144          goto collision;       // "goto" is a speed hack...
145      if( n->cmp(*k) ) {        // Check for any special bits
146        debug_only( _lookup_hits++ );
147        return k;               // Hit!
148      }
149    }
150  collision:
151    debug_only( _look_probes++ );
152    key = (key + stride) & (_max-1); // Stride through table w/ relative prime
153    k = _table[key];            // Get hashed value
154    if( !k ) {                  // ?Miss?
155      debug_only( _lookup_misses++ );
156      key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
157      _table[key] = n;          // Insert into table!
158      debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
159      check_grow();             // Grow table if insert hit limit
160      return NULL;              // Miss!
161    }
162    else if( first_sentinel == 0 && k == _sentinel ) {
163      first_sentinel = key;    // Can insert here
164    }
165
166  }
167  ShouldNotReachHere();
168  return NULL;
169}
170
171//------------------------------hash_insert------------------------------------
172// Insert into hash table
173void NodeHash::hash_insert( Node *n ) {
174  // // "conflict" comments -- print nodes that conflict
175  // bool conflict = false;
176  // n->set_hash();
177  uint hash = n->hash();
178  if (hash == Node::NO_HASH) {
179    return;
180  }
181  check_grow();
182  uint key = hash & (_max-1);
183  uint stride = key | 0x01;
184
185  while( 1 ) {                  // While probing hash table
186    debug_only( _insert_probes++ );
187    Node *k = _table[key];      // Get hashed value
188    if( !k || (k == _sentinel) ) break;       // Found a slot
189    assert( k != n, "already inserted" );
190    // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
191    key = (key + stride) & (_max-1); // Stride through table w/ relative prime
192  }
193  _table[key] = n;              // Insert into table!
194  debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
195  // if( conflict ) { n->dump(); }
196}
197
198//------------------------------hash_delete------------------------------------
199// Replace in hash table with sentinel
200bool NodeHash::hash_delete( const Node *n ) {
201  Node *k;
202  uint hash = n->hash();
203  if (hash == Node::NO_HASH) {
204    debug_only( _delete_misses++ );
205    return false;
206  }
207  uint key = hash & (_max-1);
208  uint stride = key | 0x01;
209  debug_only( uint counter = 0; );
210  for( ; /* (k != NULL) && (k != _sentinel) */; ) {
211    debug_only( counter++ );
212    debug_only( _delete_probes++ );
213    k = _table[key];            // Get hashed value
214    if( !k ) {                  // Miss?
215      debug_only( _delete_misses++ );
216#ifdef ASSERT
217      if( VerifyOpto ) {
218        for( uint i=0; i < _max; i++ )
219          assert( _table[i] != n, "changed edges with rehashing" );
220      }
221#endif
222      return false;             // Miss! Not in chain
223    }
224    else if( n == k ) {
225      debug_only( _delete_hits++ );
226      _table[key] = _sentinel;  // Hit! Label as deleted entry
227      debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
228      return true;
229    }
230    else {
231      // collision: move through table with prime offset
232      key = (key + stride/*7*/) & (_max-1);
233      assert( counter <= _insert_limit, "Cycle in hash-table");
234    }
235  }
236  ShouldNotReachHere();
237  return false;
238}
239
240//------------------------------round_up---------------------------------------
241// Round up to nearest power of 2
242uint NodeHash::round_up( uint x ) {
243  x += (x>>2);                  // Add 25% slop
244  if( x <16 ) return 16;        // Small stuff
245  uint i=16;
246  while( i < x ) i <<= 1;       // Double to fit
247  return i;                     // Return hash table size
248}
249
250//------------------------------grow-------------------------------------------
251// Grow _table to next power of 2 and insert old entries
252void  NodeHash::grow() {
253  // Record old state
254  uint   old_max   = _max;
255  Node **old_table = _table;
256  // Construct new table with twice the space
257  _grows++;
258  _total_inserts       += _inserts;
259  _total_insert_probes += _insert_probes;
260  _inserts         = 0;
261  _insert_probes   = 0;
262  _max     = _max << 1;
263  _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
264  memset(_table,0,sizeof(Node*)*_max);
265  _insert_limit = insert_limit();
266  // Insert old entries into the new table
267  for( uint i = 0; i < old_max; i++ ) {
268    Node *m = *old_table++;
269    if( !m || m == _sentinel ) continue;
270    debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
271    hash_insert(m);
272  }
273}
274
275//------------------------------clear------------------------------------------
276// Clear all entries in _table to NULL but keep storage
277void  NodeHash::clear() {
278#ifdef ASSERT
279  // Unlock all nodes upon removal from table.
280  for (uint i = 0; i < _max; i++) {
281    Node* n = _table[i];
282    if (!n || n == _sentinel)  continue;
283    n->exit_hash_lock();
284  }
285#endif
286
287  memset( _table, 0, _max * sizeof(Node*) );
288}
289
290//-----------------------remove_useless_nodes----------------------------------
291// Remove useless nodes from value table,
292// implementation does not depend on hash function
293void NodeHash::remove_useless_nodes(VectorSet &useful) {
294
295  // Dead nodes in the hash table inherited from GVN should not replace
296  // existing nodes, remove dead nodes.
297  uint max = size();
298  Node *sentinel_node = sentinel();
299  for( uint i = 0; i < max; ++i ) {
300    Node *n = at(i);
301    if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
302      debug_only(n->exit_hash_lock()); // Unlock the node when removed
303      _table[i] = sentinel_node;       // Replace with placeholder
304    }
305  }
306}
307
308#ifndef PRODUCT
309//------------------------------dump-------------------------------------------
310// Dump statistics for the hash table
311void NodeHash::dump() {
312  _total_inserts       += _inserts;
313  _total_insert_probes += _insert_probes;
314  if( PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0) ) { // PrintOptoGVN
315    if( PrintCompilation2 ) {
316      for( uint i=0; i<_max; i++ )
317      if( _table[i] )
318        tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
319    }
320    tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
321    tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
322    tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
323    tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
324    // sentinels increase lookup cost, but not insert cost
325    assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
326    assert( _inserts+(_inserts>>3) < _max, "table too full" );
327    assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
328  }
329}
330
331Node *NodeHash::find_index(uint idx) { // For debugging
332  // Find an entry by its index value
333  for( uint i = 0; i < _max; i++ ) {
334    Node *m = _table[i];
335    if( !m || m == _sentinel ) continue;
336    if( m->_idx == (uint)idx ) return m;
337  }
338  return NULL;
339}
340#endif
341
342#ifdef ASSERT
343NodeHash::~NodeHash() {
344  // Unlock all nodes upon destruction of table.
345  if (_table != (Node**)badAddress)  clear();
346}
347
348void NodeHash::operator=(const NodeHash& nh) {
349  // Unlock all nodes upon replacement of table.
350  if (&nh == this)  return;
351  if (_table != (Node**)badAddress)  clear();
352  memcpy(this, &nh, sizeof(*this));
353  // Do not increment hash_lock counts again.
354  // Instead, be sure we never again use the source table.
355  ((NodeHash*)&nh)->_table = (Node**)badAddress;
356}
357
358
359#endif
360
361
362//=============================================================================
363//------------------------------PhaseRemoveUseless-----------------------------
364// 1) Use a breadthfirst walk to collect useful nodes reachable from root.
365PhaseRemoveUseless::PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ) : Phase(Remove_Useless),
366  _useful(Thread::current()->resource_area()) {
367
368  // Implementation requires 'UseLoopSafepoints == true' and an edge from root
369  // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
370  if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
371
372  // Identify nodes that are reachable from below, useful.
373  C->identify_useful_nodes(_useful);
374
375  // Remove all useless nodes from PhaseValues' recorded types
376  // Must be done before disconnecting nodes to preserve hash-table-invariant
377  gvn->remove_useless_nodes(_useful.member_set());
378
379  // Remove all useless nodes from future worklist
380  worklist->remove_useless_nodes(_useful.member_set());
381
382  // Disconnect 'useless' nodes that are adjacent to useful nodes
383  C->remove_useless_nodes(_useful);
384
385  // Remove edges from "root" to each SafePoint at a backward branch.
386  // They were inserted during parsing (see add_safepoint()) to make infinite
387  // loops without calls or exceptions visible to root, i.e., useful.
388  Node *root = C->root();
389  if( root != NULL ) {
390    for( uint i = root->req(); i < root->len(); ++i ) {
391      Node *n = root->in(i);
392      if( n != NULL && n->is_SafePoint() ) {
393        root->rm_prec(i);
394        --i;
395      }
396    }
397  }
398}
399
400
401//=============================================================================
402//------------------------------PhaseTransform---------------------------------
403PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
404  _arena(Thread::current()->resource_area()),
405  _nodes(_arena),
406  _types(_arena)
407{
408  init_con_caches();
409#ifndef PRODUCT
410  clear_progress();
411  clear_transforms();
412  set_allow_progress(true);
413#endif
414  // Force allocation for currently existing nodes
415  _types.map(C->unique(), NULL);
416}
417
418//------------------------------PhaseTransform---------------------------------
419PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
420  _arena(arena),
421  _nodes(arena),
422  _types(arena)
423{
424  init_con_caches();
425#ifndef PRODUCT
426  clear_progress();
427  clear_transforms();
428  set_allow_progress(true);
429#endif
430  // Force allocation for currently existing nodes
431  _types.map(C->unique(), NULL);
432}
433
434//------------------------------PhaseTransform---------------------------------
435// Initialize with previously generated type information
436PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
437  _arena(pt->_arena),
438  _nodes(pt->_nodes),
439  _types(pt->_types)
440{
441  init_con_caches();
442#ifndef PRODUCT
443  clear_progress();
444  clear_transforms();
445  set_allow_progress(true);
446#endif
447}
448
449void PhaseTransform::init_con_caches() {
450  memset(_icons,0,sizeof(_icons));
451  memset(_lcons,0,sizeof(_lcons));
452  memset(_zcons,0,sizeof(_zcons));
453}
454
455
456//--------------------------------find_int_type--------------------------------
457const TypeInt* PhaseTransform::find_int_type(Node* n) {
458  if (n == NULL)  return NULL;
459  // Call type_or_null(n) to determine node's type since we might be in
460  // parse phase and call n->Value() may return wrong type.
461  // (For example, a phi node at the beginning of loop parsing is not ready.)
462  const Type* t = type_or_null(n);
463  if (t == NULL)  return NULL;
464  return t->isa_int();
465}
466
467
468//-------------------------------find_long_type--------------------------------
469const TypeLong* PhaseTransform::find_long_type(Node* n) {
470  if (n == NULL)  return NULL;
471  // (See comment above on type_or_null.)
472  const Type* t = type_or_null(n);
473  if (t == NULL)  return NULL;
474  return t->isa_long();
475}
476
477
478#ifndef PRODUCT
479void PhaseTransform::dump_old2new_map() const {
480  _nodes.dump();
481}
482
483void PhaseTransform::dump_new( uint nidx ) const {
484  for( uint i=0; i<_nodes.Size(); i++ )
485    if( _nodes[i] && _nodes[i]->_idx == nidx ) {
486      _nodes[i]->dump();
487      tty->cr();
488      tty->print_cr("Old index= %d",i);
489      return;
490    }
491  tty->print_cr("Node %d not found in the new indices", nidx);
492}
493
494//------------------------------dump_types-------------------------------------
495void PhaseTransform::dump_types( ) const {
496  _types.dump();
497}
498
499//------------------------------dump_nodes_and_types---------------------------
500void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
501  VectorSet visited(Thread::current()->resource_area());
502  dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
503}
504
505//------------------------------dump_nodes_and_types_recur---------------------
506void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
507  if( !n ) return;
508  if( depth == 0 ) return;
509  if( visited.test_set(n->_idx) ) return;
510  for( uint i=0; i<n->len(); i++ ) {
511    if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
512    dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
513  }
514  n->dump();
515  if (type_or_null(n) != NULL) {
516    tty->print("      "); type(n)->dump(); tty->cr();
517  }
518}
519
520#endif
521
522
523//=============================================================================
524//------------------------------PhaseValues------------------------------------
525// Set minimum table size to "255"
526PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
527  NOT_PRODUCT( clear_new_values(); )
528}
529
530//------------------------------PhaseValues------------------------------------
531// Set minimum table size to "255"
532PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
533  _table(&ptv->_table) {
534  NOT_PRODUCT( clear_new_values(); )
535}
536
537//------------------------------PhaseValues------------------------------------
538// Used by +VerifyOpto.  Clear out hash table but copy _types array.
539PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
540  _table(ptv->arena(),ptv->_table.size()) {
541  NOT_PRODUCT( clear_new_values(); )
542}
543
544//------------------------------~PhaseValues-----------------------------------
545#ifndef PRODUCT
546PhaseValues::~PhaseValues() {
547  _table.dump();
548
549  // Statistics for value progress and efficiency
550  if( PrintCompilation && Verbose && WizardMode ) {
551    tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
552      is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
553    if( made_transforms() != 0 ) {
554      tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
555    } else {
556      tty->cr();
557    }
558  }
559}
560#endif
561
562//------------------------------makecon----------------------------------------
563ConNode* PhaseTransform::makecon(const Type *t) {
564  assert(t->singleton(), "must be a constant");
565  assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
566  switch (t->base()) {  // fast paths
567  case Type::Half:
568  case Type::Top:  return (ConNode*) C->top();
569  case Type::Int:  return intcon( t->is_int()->get_con() );
570  case Type::Long: return longcon( t->is_long()->get_con() );
571  }
572  if (t->is_zero_type())
573    return zerocon(t->basic_type());
574  return uncached_makecon(t);
575}
576
577//--------------------------uncached_makecon-----------------------------------
578// Make an idealized constant - one of ConINode, ConPNode, etc.
579ConNode* PhaseValues::uncached_makecon(const Type *t) {
580  assert(t->singleton(), "must be a constant");
581  ConNode* x = ConNode::make(C, t);
582  ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
583  if (k == NULL) {
584    set_type(x, t);             // Missed, provide type mapping
585    GrowableArray<Node_Notes*>* nna = C->node_note_array();
586    if (nna != NULL) {
587      Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
588      loc->clear(); // do not put debug info on constants
589    }
590  } else {
591    x->destruct();              // Hit, destroy duplicate constant
592    x = k;                      // use existing constant
593  }
594  return x;
595}
596
597//------------------------------intcon-----------------------------------------
598// Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
599ConINode* PhaseTransform::intcon(int i) {
600  // Small integer?  Check cache! Check that cached node is not dead
601  if (i >= _icon_min && i <= _icon_max) {
602    ConINode* icon = _icons[i-_icon_min];
603    if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
604      return icon;
605  }
606  ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
607  assert(icon->is_Con(), "");
608  if (i >= _icon_min && i <= _icon_max)
609    _icons[i-_icon_min] = icon;   // Cache small integers
610  return icon;
611}
612
613//------------------------------longcon----------------------------------------
614// Fast long constant.
615ConLNode* PhaseTransform::longcon(jlong l) {
616  // Small integer?  Check cache! Check that cached node is not dead
617  if (l >= _lcon_min && l <= _lcon_max) {
618    ConLNode* lcon = _lcons[l-_lcon_min];
619    if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
620      return lcon;
621  }
622  ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
623  assert(lcon->is_Con(), "");
624  if (l >= _lcon_min && l <= _lcon_max)
625    _lcons[l-_lcon_min] = lcon;      // Cache small integers
626  return lcon;
627}
628
629//------------------------------zerocon-----------------------------------------
630// Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
631ConNode* PhaseTransform::zerocon(BasicType bt) {
632  assert((uint)bt <= _zcon_max, "domain check");
633  ConNode* zcon = _zcons[bt];
634  if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
635    return zcon;
636  zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
637  _zcons[bt] = zcon;
638  return zcon;
639}
640
641
642
643//=============================================================================
644//------------------------------transform--------------------------------------
645// Return a node which computes the same function as this node, but in a
646// faster or cheaper fashion.
647Node *PhaseGVN::transform( Node *n ) {
648  return transform_no_reclaim(n);
649}
650
651//------------------------------transform--------------------------------------
652// Return a node which computes the same function as this node, but
653// in a faster or cheaper fashion.
654Node *PhaseGVN::transform_no_reclaim( Node *n ) {
655  NOT_PRODUCT( set_transforms(); )
656
657  // Apply the Ideal call in a loop until it no longer applies
658  Node *k = n;
659  NOT_PRODUCT( uint loop_count = 0; )
660  while( 1 ) {
661    Node *i = k->Ideal(this, /*can_reshape=*/false);
662    if( !i ) break;
663    assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
664    k = i;
665    assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
666  }
667  NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
668
669
670  // If brand new node, make space in type array.
671  ensure_type_or_null(k);
672
673  // Since I just called 'Value' to compute the set of run-time values
674  // for this Node, and 'Value' is non-local (and therefore expensive) I'll
675  // cache Value.  Later requests for the local phase->type of this Node can
676  // use the cached Value instead of suffering with 'bottom_type'.
677  const Type *t = k->Value(this); // Get runtime Value set
678  assert(t != NULL, "value sanity");
679  if (type_or_null(k) != t) {
680#ifndef PRODUCT
681    // Do not count initial visit to node as a transformation
682    if (type_or_null(k) == NULL) {
683      inc_new_values();
684      set_progress();
685    }
686#endif
687    set_type(k, t);
688    // If k is a TypeNode, capture any more-precise type permanently into Node
689    k->raise_bottom_type(t);
690  }
691
692  if( t->singleton() && !k->is_Con() ) {
693    NOT_PRODUCT( set_progress(); )
694    return makecon(t);          // Turn into a constant
695  }
696
697  // Now check for Identities
698  Node *i = k->Identity(this);  // Look for a nearby replacement
699  if( i != k ) {                // Found? Return replacement!
700    NOT_PRODUCT( set_progress(); )
701    return i;
702  }
703
704  // Global Value Numbering
705  i = hash_find_insert(k);      // Insert if new
706  if( i && (i != k) ) {
707    // Return the pre-existing node
708    NOT_PRODUCT( set_progress(); )
709    return i;
710  }
711
712  // Return Idealized original
713  return k;
714}
715
716#ifdef ASSERT
717//------------------------------dead_loop_check--------------------------------
718// Check for a simple dead loop when a data node references itself directly
719// or through an other data node excluding cons and phis.
720void PhaseGVN::dead_loop_check( Node *n ) {
721  // Phi may reference itself in a loop
722  if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
723    // Do 2 levels check and only data inputs.
724    bool no_dead_loop = true;
725    uint cnt = n->req();
726    for (uint i = 1; i < cnt && no_dead_loop; i++) {
727      Node *in = n->in(i);
728      if (in == n) {
729        no_dead_loop = false;
730      } else if (in != NULL && !in->is_dead_loop_safe()) {
731        uint icnt = in->req();
732        for (uint j = 1; j < icnt && no_dead_loop; j++) {
733          if (in->in(j) == n || in->in(j) == in)
734            no_dead_loop = false;
735        }
736      }
737    }
738    if (!no_dead_loop) n->dump(3);
739    assert(no_dead_loop, "dead loop detected");
740  }
741}
742#endif
743
744//=============================================================================
745//------------------------------PhaseIterGVN-----------------------------------
746// Initialize hash table to fresh and clean for +VerifyOpto
747PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
748                                                                      _delay_transform(false) {
749}
750
751//------------------------------PhaseIterGVN-----------------------------------
752// Initialize with previous PhaseIterGVN info; used by PhaseCCP
753PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
754                                                   _worklist( igvn->_worklist ),
755                                                   _delay_transform(igvn->_delay_transform)
756{
757}
758
759//------------------------------PhaseIterGVN-----------------------------------
760// Initialize with previous PhaseGVN info from Parser
761PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
762                                              _worklist(*C->for_igvn()),
763                                              _delay_transform(false)
764{
765  uint max;
766
767  // Dead nodes in the hash table inherited from GVN were not treated as
768  // roots during def-use info creation; hence they represent an invisible
769  // use.  Clear them out.
770  max = _table.size();
771  for( uint i = 0; i < max; ++i ) {
772    Node *n = _table.at(i);
773    if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
774      if( n->is_top() ) continue;
775      assert( false, "Parse::remove_useless_nodes missed this node");
776      hash_delete(n);
777    }
778  }
779
780  // Any Phis or Regions on the worklist probably had uses that could not
781  // make more progress because the uses were made while the Phis and Regions
782  // were in half-built states.  Put all uses of Phis and Regions on worklist.
783  max = _worklist.size();
784  for( uint j = 0; j < max; j++ ) {
785    Node *n = _worklist.at(j);
786    uint uop = n->Opcode();
787    if( uop == Op_Phi || uop == Op_Region ||
788        n->is_Type() ||
789        n->is_Mem() )
790      add_users_to_worklist(n);
791  }
792}
793
794
795#ifndef PRODUCT
796void PhaseIterGVN::verify_step(Node* n) {
797  _verify_window[_verify_counter % _verify_window_size] = n;
798  ++_verify_counter;
799  ResourceMark rm;
800  ResourceArea *area = Thread::current()->resource_area();
801  VectorSet old_space(area), new_space(area);
802  if (C->unique() < 1000 ||
803      0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
804    ++_verify_full_passes;
805    Node::verify_recur(C->root(), -1, old_space, new_space);
806  }
807  const int verify_depth = 4;
808  for ( int i = 0; i < _verify_window_size; i++ ) {
809    Node* n = _verify_window[i];
810    if ( n == NULL )  continue;
811    if( n->in(0) == NodeSentinel ) {  // xform_idom
812      _verify_window[i] = n->in(1);
813      --i; continue;
814    }
815    // Typical fanout is 1-2, so this call visits about 6 nodes.
816    Node::verify_recur(n, verify_depth, old_space, new_space);
817  }
818}
819#endif
820
821
822//------------------------------init_worklist----------------------------------
823// Initialize worklist for each node.
824void PhaseIterGVN::init_worklist( Node *n ) {
825  if( _worklist.member(n) ) return;
826  _worklist.push(n);
827  uint cnt = n->req();
828  for( uint i =0 ; i < cnt; i++ ) {
829    Node *m = n->in(i);
830    if( m ) init_worklist(m);
831  }
832}
833
834//------------------------------optimize---------------------------------------
835void PhaseIterGVN::optimize() {
836  debug_only(uint num_processed  = 0;);
837#ifndef PRODUCT
838  {
839    _verify_counter = 0;
840    _verify_full_passes = 0;
841    for ( int i = 0; i < _verify_window_size; i++ ) {
842      _verify_window[i] = NULL;
843    }
844  }
845#endif
846
847  // Pull from worklist; transform node;
848  // If node has changed: update edge info and put uses on worklist.
849  while( _worklist.size() ) {
850    Node *n  = _worklist.pop();
851    if (TraceIterativeGVN && Verbose) {
852      tty->print("  Pop ");
853      NOT_PRODUCT( n->dump(); )
854      debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
855    }
856
857    if (n->outcnt() != 0) {
858
859#ifndef PRODUCT
860      uint wlsize = _worklist.size();
861      const Type* oldtype = type_or_null(n);
862#endif //PRODUCT
863
864      Node *nn = transform_old(n);
865
866#ifndef PRODUCT
867      if (TraceIterativeGVN) {
868        const Type* newtype = type_or_null(n);
869        if (nn != n) {
870          // print old node
871          tty->print("< ");
872          if (oldtype != newtype && oldtype != NULL) {
873            oldtype->dump();
874          }
875          do { tty->print("\t"); } while (tty->position() < 16);
876          tty->print("<");
877          n->dump();
878        }
879        if (oldtype != newtype || nn != n) {
880          // print new node and/or new type
881          if (oldtype == NULL) {
882            tty->print("* ");
883          } else if (nn != n) {
884            tty->print("> ");
885          } else {
886            tty->print("= ");
887          }
888          if (newtype == NULL) {
889            tty->print("null");
890          } else {
891            newtype->dump();
892          }
893          do { tty->print("\t"); } while (tty->position() < 16);
894          nn->dump();
895        }
896        if (Verbose && wlsize < _worklist.size()) {
897          tty->print("  Push {");
898          while (wlsize != _worklist.size()) {
899            Node* pushed = _worklist.at(wlsize++);
900            tty->print(" %d", pushed->_idx);
901          }
902          tty->print_cr(" }");
903        }
904      }
905      if( VerifyIterativeGVN && nn != n ) {
906        verify_step((Node*) NULL);  // ignore n, it might be subsumed
907      }
908#endif
909    } else if (!n->is_top()) {
910      remove_dead_node(n);
911    }
912  }
913
914#ifndef PRODUCT
915  C->verify_graph_edges();
916  if( VerifyOpto && allow_progress() ) {
917    // Must turn off allow_progress to enable assert and break recursion
918    C->root()->verify();
919    { // Check if any progress was missed using IterGVN
920      // Def-Use info enables transformations not attempted in wash-pass
921      // e.g. Region/Phi cleanup, ...
922      // Null-check elision -- may not have reached fixpoint
923      //                       do not propagate to dominated nodes
924      ResourceMark rm;
925      PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
926      // Fill worklist completely
927      igvn2.init_worklist(C->root());
928
929      igvn2.set_allow_progress(false);
930      igvn2.optimize();
931      igvn2.set_allow_progress(true);
932    }
933  }
934  if ( VerifyIterativeGVN && PrintOpto ) {
935    if ( _verify_counter == _verify_full_passes )
936      tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
937                    _verify_full_passes);
938    else
939      tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
940                  _verify_counter, _verify_full_passes);
941  }
942#endif
943}
944
945
946//------------------register_new_node_with_optimizer---------------------------
947// Register a new node with the optimizer.  Update the types array, the def-use
948// info.  Put on worklist.
949Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
950  set_type_bottom(n);
951  _worklist.push(n);
952  if (orig != NULL)  C->copy_node_notes_to(n, orig);
953  return n;
954}
955
956//------------------------------transform--------------------------------------
957// Non-recursive: idealize Node 'n' with respect to its inputs and its value
958Node *PhaseIterGVN::transform( Node *n ) {
959  if (_delay_transform) {
960    // Register the node but don't optimize for now
961    register_new_node_with_optimizer(n);
962    return n;
963  }
964
965  // If brand new node, make space in type array, and give it a type.
966  ensure_type_or_null(n);
967  if (type_or_null(n) == NULL) {
968    set_type_bottom(n);
969  }
970
971  return transform_old(n);
972}
973
974//------------------------------transform_old----------------------------------
975Node *PhaseIterGVN::transform_old( Node *n ) {
976#ifndef PRODUCT
977  debug_only(uint loop_count = 0;);
978  set_transforms();
979#endif
980  // Remove 'n' from hash table in case it gets modified
981  _table.hash_delete(n);
982  if( VerifyIterativeGVN ) {
983   assert( !_table.find_index(n->_idx), "found duplicate entry in table");
984  }
985
986  // Apply the Ideal call in a loop until it no longer applies
987  Node *k = n;
988  DEBUG_ONLY(dead_loop_check(k);)
989  DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
990  Node *i = k->Ideal(this, /*can_reshape=*/true);
991  assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
992#ifndef PRODUCT
993  if( VerifyIterativeGVN )
994    verify_step(k);
995  if( i && VerifyOpto ) {
996    if( !allow_progress() ) {
997      if (i->is_Add() && i->outcnt() == 1) {
998        // Switched input to left side because this is the only use
999      } else if( i->is_If() && (i->in(0) == NULL) ) {
1000        // This IF is dead because it is dominated by an equivalent IF When
1001        // dominating if changed, info is not propagated sparsely to 'this'
1002        // Propagating this info further will spuriously identify other
1003        // progress.
1004        return i;
1005      } else
1006        set_progress();
1007    } else
1008      set_progress();
1009  }
1010#endif
1011
1012  while( i ) {
1013#ifndef PRODUCT
1014    debug_only( if( loop_count >= K ) i->dump(4); )
1015    assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
1016    debug_only( loop_count++; )
1017#endif
1018    assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1019    // Made a change; put users of original Node on worklist
1020    add_users_to_worklist( k );
1021    // Replacing root of transform tree?
1022    if( k != i ) {
1023      // Make users of old Node now use new.
1024      subsume_node( k, i );
1025      k = i;
1026    }
1027    DEBUG_ONLY(dead_loop_check(k);)
1028    // Try idealizing again
1029    DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1030    i = k->Ideal(this, /*can_reshape=*/true);
1031    assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1032#ifndef PRODUCT
1033    if( VerifyIterativeGVN )
1034      verify_step(k);
1035    if( i && VerifyOpto ) set_progress();
1036#endif
1037  }
1038
1039  // If brand new node, make space in type array.
1040  ensure_type_or_null(k);
1041
1042  // See what kind of values 'k' takes on at runtime
1043  const Type *t = k->Value(this);
1044  assert(t != NULL, "value sanity");
1045
1046  // Since I just called 'Value' to compute the set of run-time values
1047  // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1048  // cache Value.  Later requests for the local phase->type of this Node can
1049  // use the cached Value instead of suffering with 'bottom_type'.
1050  if (t != type_or_null(k)) {
1051    NOT_PRODUCT( set_progress(); )
1052    NOT_PRODUCT( inc_new_values();)
1053    set_type(k, t);
1054    // If k is a TypeNode, capture any more-precise type permanently into Node
1055    k->raise_bottom_type(t);
1056    // Move users of node to worklist
1057    add_users_to_worklist( k );
1058  }
1059
1060  // If 'k' computes a constant, replace it with a constant
1061  if( t->singleton() && !k->is_Con() ) {
1062    NOT_PRODUCT( set_progress(); )
1063    Node *con = makecon(t);     // Make a constant
1064    add_users_to_worklist( k );
1065    subsume_node( k, con );     // Everybody using k now uses con
1066    return con;
1067  }
1068
1069  // Now check for Identities
1070  i = k->Identity(this);        // Look for a nearby replacement
1071  if( i != k ) {                // Found? Return replacement!
1072    NOT_PRODUCT( set_progress(); )
1073    add_users_to_worklist( k );
1074    subsume_node( k, i );       // Everybody using k now uses i
1075    return i;
1076  }
1077
1078  // Global Value Numbering
1079  i = hash_find_insert(k);      // Check for pre-existing node
1080  if( i && (i != k) ) {
1081    // Return the pre-existing node if it isn't dead
1082    NOT_PRODUCT( set_progress(); )
1083    add_users_to_worklist( k );
1084    subsume_node( k, i );       // Everybody using k now uses i
1085    return i;
1086  }
1087
1088  // Return Idealized original
1089  return k;
1090}
1091
1092//---------------------------------saturate------------------------------------
1093const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1094                                   const Type* limit_type) const {
1095  return new_type->narrow(old_type);
1096}
1097
1098//------------------------------remove_globally_dead_node----------------------
1099// Kill a globally dead Node.  All uses are also globally dead and are
1100// aggressively trimmed.
1101void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1102  assert(dead != C->root(), "killing root, eh?");
1103  if (dead->is_top())  return;
1104  NOT_PRODUCT( set_progress(); )
1105  // Remove from iterative worklist
1106  _worklist.remove(dead);
1107  if (!dead->is_Con()) { // Don't kill cons but uses
1108    // Remove from hash table
1109    _table.hash_delete( dead );
1110    // Smash all inputs to 'dead', isolating him completely
1111    for( uint i = 0; i < dead->req(); i++ ) {
1112      Node *in = dead->in(i);
1113      if( in ) {                 // Points to something?
1114        dead->set_req(i,NULL);  // Kill the edge
1115        if (in->outcnt() == 0 && in != C->top()) {// Made input go dead?
1116          remove_dead_node(in); // Recursively remove
1117        } else if (in->outcnt() == 1 &&
1118                   in->has_special_unique_user()) {
1119          _worklist.push(in->unique_out());
1120        } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1121          if( in->Opcode() == Op_Region )
1122            _worklist.push(in);
1123          else if( in->is_Store() ) {
1124            DUIterator_Fast imax, i = in->fast_outs(imax);
1125            _worklist.push(in->fast_out(i));
1126            i++;
1127            if(in->outcnt() == 2) {
1128              _worklist.push(in->fast_out(i));
1129              i++;
1130            }
1131            assert(!(i < imax), "sanity");
1132          }
1133        }
1134      }
1135    }
1136
1137    if (dead->is_macro()) {
1138      C->remove_macro_node(dead);
1139    }
1140  }
1141  // Aggressively kill globally dead uses
1142  // (Cannot use DUIterator_Last because of the indefinite number
1143  // of edge deletions per loop trip.)
1144  while (dead->outcnt() > 0) {
1145    remove_globally_dead_node(dead->raw_out(0));
1146  }
1147}
1148
1149//------------------------------subsume_node-----------------------------------
1150// Remove users from node 'old' and add them to node 'nn'.
1151void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1152  assert( old != hash_find(old), "should already been removed" );
1153  assert( old != C->top(), "cannot subsume top node");
1154  // Copy debug or profile information to the new version:
1155  C->copy_node_notes_to(nn, old);
1156  // Move users of node 'old' to node 'nn'
1157  for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1158    Node* use = old->last_out(i);  // for each use...
1159    // use might need re-hashing (but it won't if it's a new node)
1160    bool is_in_table = _table.hash_delete( use );
1161    // Update use-def info as well
1162    // We remove all occurrences of old within use->in,
1163    // so as to avoid rehashing any node more than once.
1164    // The hash table probe swamps any outer loop overhead.
1165    uint num_edges = 0;
1166    for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1167      if (use->in(j) == old) {
1168        use->set_req(j, nn);
1169        ++num_edges;
1170      }
1171    }
1172    // Insert into GVN hash table if unique
1173    // If a duplicate, 'use' will be cleaned up when pulled off worklist
1174    if( is_in_table ) {
1175      hash_find_insert(use);
1176    }
1177    i -= num_edges;    // we deleted 1 or more copies of this edge
1178  }
1179
1180  // Smash all inputs to 'old', isolating him completely
1181  Node *temp = new (C, 1) Node(1);
1182  temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1183  remove_dead_node( old );
1184  temp->del_req(0);         // Yank bogus edge
1185#ifndef PRODUCT
1186  if( VerifyIterativeGVN ) {
1187    for ( int i = 0; i < _verify_window_size; i++ ) {
1188      if ( _verify_window[i] == old )
1189        _verify_window[i] = nn;
1190    }
1191  }
1192#endif
1193  _worklist.remove(temp);   // this can be necessary
1194  temp->destruct();         // reuse the _idx of this little guy
1195}
1196
1197//------------------------------add_users_to_worklist--------------------------
1198void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1199  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1200    _worklist.push(n->fast_out(i));  // Push on worklist
1201  }
1202}
1203
1204void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1205  add_users_to_worklist0(n);
1206
1207  // Move users of node to worklist
1208  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1209    Node* use = n->fast_out(i); // Get use
1210
1211    if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1212        use->is_Store() )       // Enable store/load same address
1213      add_users_to_worklist0(use);
1214
1215    // If we changed the receiver type to a call, we need to revisit
1216    // the Catch following the call.  It's looking for a non-NULL
1217    // receiver to know when to enable the regular fall-through path
1218    // in addition to the NullPtrException path.
1219    if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1220      Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
1221      if (p != NULL) {
1222        add_users_to_worklist0(p);
1223      }
1224    }
1225
1226    if( use->is_Cmp() ) {       // Enable CMP/BOOL optimization
1227      add_users_to_worklist(use); // Put Bool on worklist
1228      // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1229      // phi merging either 0 or 1 onto the worklist
1230      if (use->outcnt() > 0) {
1231        Node* bol = use->raw_out(0);
1232        if (bol->outcnt() > 0) {
1233          Node* iff = bol->raw_out(0);
1234          if (iff->outcnt() == 2) {
1235            Node* ifproj0 = iff->raw_out(0);
1236            Node* ifproj1 = iff->raw_out(1);
1237            if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1238              Node* region0 = ifproj0->raw_out(0);
1239              Node* region1 = ifproj1->raw_out(0);
1240              if( region0 == region1 )
1241                add_users_to_worklist0(region0);
1242            }
1243          }
1244        }
1245      }
1246    }
1247
1248    uint use_op = use->Opcode();
1249    // If changed Cast input, check Phi users for simple cycles
1250    if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
1251      for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1252        Node* u = use->fast_out(i2);
1253        if (u->is_Phi())
1254          _worklist.push(u);
1255      }
1256    }
1257    // If changed LShift inputs, check RShift users for useless sign-ext
1258    if( use_op == Op_LShiftI ) {
1259      for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1260        Node* u = use->fast_out(i2);
1261        if (u->Opcode() == Op_RShiftI)
1262          _worklist.push(u);
1263      }
1264    }
1265    // If changed AddP inputs, check Stores for loop invariant
1266    if( use_op == Op_AddP ) {
1267      for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1268        Node* u = use->fast_out(i2);
1269        if (u->is_Mem())
1270          _worklist.push(u);
1271      }
1272    }
1273    // If changed initialization activity, check dependent Stores
1274    if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1275      InitializeNode* init = use->as_Allocate()->initialization();
1276      if (init != NULL) {
1277        Node* imem = init->proj_out(TypeFunc::Memory);
1278        if (imem != NULL)  add_users_to_worklist0(imem);
1279      }
1280    }
1281    if (use_op == Op_Initialize) {
1282      Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
1283      if (imem != NULL)  add_users_to_worklist0(imem);
1284    }
1285  }
1286}
1287
1288//=============================================================================
1289#ifndef PRODUCT
1290uint PhaseCCP::_total_invokes   = 0;
1291uint PhaseCCP::_total_constants = 0;
1292#endif
1293//------------------------------PhaseCCP---------------------------------------
1294// Conditional Constant Propagation, ala Wegman & Zadeck
1295PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1296  NOT_PRODUCT( clear_constants(); )
1297  assert( _worklist.size() == 0, "" );
1298  // Clear out _nodes from IterGVN.  Must be clear to transform call.
1299  _nodes.clear();               // Clear out from IterGVN
1300  analyze();
1301}
1302
1303#ifndef PRODUCT
1304//------------------------------~PhaseCCP--------------------------------------
1305PhaseCCP::~PhaseCCP() {
1306  inc_invokes();
1307  _total_constants += count_constants();
1308}
1309#endif
1310
1311
1312#ifdef ASSERT
1313static bool ccp_type_widens(const Type* t, const Type* t0) {
1314  assert(t->meet(t0) == t, "Not monotonic");
1315  switch (t->base() == t0->base() ? t->base() : Type::Top) {
1316  case Type::Int:
1317    assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1318    break;
1319  case Type::Long:
1320    assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1321    break;
1322  }
1323  return true;
1324}
1325#endif //ASSERT
1326
1327//------------------------------analyze----------------------------------------
1328void PhaseCCP::analyze() {
1329  // Initialize all types to TOP, optimistic analysis
1330  for (int i = C->unique() - 1; i >= 0; i--)  {
1331    _types.map(i,Type::TOP);
1332  }
1333
1334  // Push root onto worklist
1335  Unique_Node_List worklist;
1336  worklist.push(C->root());
1337
1338  // Pull from worklist; compute new value; push changes out.
1339  // This loop is the meat of CCP.
1340  while( worklist.size() ) {
1341    Node *n = worklist.pop();
1342    const Type *t = n->Value(this);
1343    if (t != type(n)) {
1344      assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1345#ifndef PRODUCT
1346      if( TracePhaseCCP ) {
1347        t->dump();
1348        do { tty->print("\t"); } while (tty->position() < 16);
1349        n->dump();
1350      }
1351#endif
1352      set_type(n, t);
1353      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1354        Node* m = n->fast_out(i);   // Get user
1355        if( m->is_Region() ) {  // New path to Region?  Must recheck Phis too
1356          for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1357            Node* p = m->fast_out(i2); // Propagate changes to uses
1358            if( p->bottom_type() != type(p) ) // If not already bottomed out
1359              worklist.push(p); // Propagate change to user
1360          }
1361        }
1362        // If we changed the receiver type to a call, we need to revisit
1363        // the Catch following the call.  It's looking for a non-NULL
1364        // receiver to know when to enable the regular fall-through path
1365        // in addition to the NullPtrException path
1366        if (m->is_Call()) {
1367          for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1368            Node* p = m->fast_out(i2);  // Propagate changes to uses
1369            if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1)
1370              worklist.push(p->unique_out());
1371          }
1372        }
1373        if( m->bottom_type() != type(m) ) // If not already bottomed out
1374          worklist.push(m);     // Propagate change to user
1375      }
1376    }
1377  }
1378}
1379
1380//------------------------------do_transform-----------------------------------
1381// Top level driver for the recursive transformer
1382void PhaseCCP::do_transform() {
1383  // Correct leaves of new-space Nodes; they point to old-space.
1384  C->set_root( transform(C->root())->as_Root() );
1385  assert( C->top(),  "missing TOP node" );
1386  assert( C->root(), "missing root" );
1387}
1388
1389//------------------------------transform--------------------------------------
1390// Given a Node in old-space, clone him into new-space.
1391// Convert any of his old-space children into new-space children.
1392Node *PhaseCCP::transform( Node *n ) {
1393  Node *new_node = _nodes[n->_idx]; // Check for transformed node
1394  if( new_node != NULL )
1395    return new_node;                // Been there, done that, return old answer
1396  new_node = transform_once(n);     // Check for constant
1397  _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1398
1399  // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1400  GrowableArray <Node *> trstack(C->unique() >> 1);
1401
1402  trstack.push(new_node);           // Process children of cloned node
1403  while ( trstack.is_nonempty() ) {
1404    Node *clone = trstack.pop();
1405    uint cnt = clone->req();
1406    for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1407      Node *input = clone->in(i);
1408      if( input != NULL ) {                    // Ignore NULLs
1409        Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1410        if( new_input == NULL ) {
1411          new_input = transform_once(input);   // Check for constant
1412          _nodes.map( input->_idx, new_input );// Flag as having been cloned
1413          trstack.push(new_input);
1414        }
1415        assert( new_input == clone->in(i), "insanity check");
1416      }
1417    }
1418  }
1419  return new_node;
1420}
1421
1422
1423//------------------------------transform_once---------------------------------
1424// For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1425Node *PhaseCCP::transform_once( Node *n ) {
1426  const Type *t = type(n);
1427  // Constant?  Use constant Node instead
1428  if( t->singleton() ) {
1429    Node *nn = n;               // Default is to return the original constant
1430    if( t == Type::TOP ) {
1431      // cache my top node on the Compile instance
1432      if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1433        C->set_cached_top_node( ConNode::make(C, Type::TOP) );
1434        set_type(C->top(), Type::TOP);
1435      }
1436      nn = C->top();
1437    }
1438    if( !n->is_Con() ) {
1439      if( t != Type::TOP ) {
1440        nn = makecon(t);        // ConNode::make(t);
1441        NOT_PRODUCT( inc_constants(); )
1442      } else if( n->is_Region() ) { // Unreachable region
1443        // Note: nn == C->top()
1444        n->set_req(0, NULL);        // Cut selfreference
1445        // Eagerly remove dead phis to avoid phis copies creation.
1446        for (DUIterator i = n->outs(); n->has_out(i); i++) {
1447          Node* m = n->out(i);
1448          if( m->is_Phi() ) {
1449            assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1450            add_users_to_worklist(m);
1451            hash_delete(m); // Yank from hash before hacking edges
1452            subsume_node(m, nn);
1453            --i; // deleted this phi; rescan starting with next position
1454          }
1455        }
1456      }
1457      add_users_to_worklist(n); // Users of about-to-be-constant 'n'
1458      hash_delete(n);           // Removed 'n' from table before subsuming it
1459      subsume_node(n,nn);       // Update DefUse edges for new constant
1460    }
1461    return nn;
1462  }
1463
1464  // If x is a TypeNode, capture any more-precise type permanently into Node
1465  if (t != n->bottom_type()) {
1466    hash_delete(n);             // changing bottom type may force a rehash
1467    n->raise_bottom_type(t);
1468    _worklist.push(n);          // n re-enters the hash table via the worklist
1469  }
1470
1471  // Idealize graph using DU info.  Must clone() into new-space.
1472  // DU info is generally used to show profitability, progress or safety
1473  // (but generally not needed for correctness).
1474  Node *nn = n->Ideal_DU_postCCP(this);
1475
1476  // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1477  switch( n->Opcode() ) {
1478  case Op_FastLock:      // Revisit FastLocks for lock coarsening
1479  case Op_If:
1480  case Op_CountedLoopEnd:
1481  case Op_Region:
1482  case Op_Loop:
1483  case Op_CountedLoop:
1484  case Op_Conv2B:
1485  case Op_Opaque1:
1486  case Op_Opaque2:
1487    _worklist.push(n);
1488    break;
1489  default:
1490    break;
1491  }
1492  if( nn ) {
1493    _worklist.push(n);
1494    // Put users of 'n' onto worklist for second igvn transform
1495    add_users_to_worklist(n);
1496    return nn;
1497  }
1498
1499  return  n;
1500}
1501
1502//---------------------------------saturate------------------------------------
1503const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1504                               const Type* limit_type) const {
1505  const Type* wide_type = new_type->widen(old_type, limit_type);
1506  if (wide_type != new_type) {          // did we widen?
1507    // If so, we may have widened beyond the limit type.  Clip it back down.
1508    new_type = wide_type->filter(limit_type);
1509  }
1510  return new_type;
1511}
1512
1513//------------------------------print_statistics-------------------------------
1514#ifndef PRODUCT
1515void PhaseCCP::print_statistics() {
1516  tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1517}
1518#endif
1519
1520
1521//=============================================================================
1522#ifndef PRODUCT
1523uint PhasePeephole::_total_peepholes = 0;
1524#endif
1525//------------------------------PhasePeephole----------------------------------
1526// Conditional Constant Propagation, ala Wegman & Zadeck
1527PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1528  : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1529  NOT_PRODUCT( clear_peepholes(); )
1530}
1531
1532#ifndef PRODUCT
1533//------------------------------~PhasePeephole---------------------------------
1534PhasePeephole::~PhasePeephole() {
1535  _total_peepholes += count_peepholes();
1536}
1537#endif
1538
1539//------------------------------transform--------------------------------------
1540Node *PhasePeephole::transform( Node *n ) {
1541  ShouldNotCallThis();
1542  return NULL;
1543}
1544
1545//------------------------------do_transform-----------------------------------
1546void PhasePeephole::do_transform() {
1547  bool method_name_not_printed = true;
1548
1549  // Examine each basic block
1550  for( uint block_number = 1; block_number < _cfg._num_blocks; ++block_number ) {
1551    Block *block = _cfg._blocks[block_number];
1552    bool block_not_printed = true;
1553
1554    // and each instruction within a block
1555    uint end_index = block->_nodes.size();
1556    // block->end_idx() not valid after PhaseRegAlloc
1557    for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
1558      Node     *n = block->_nodes.at(instruction_index);
1559      if( n->is_Mach() ) {
1560        MachNode *m = n->as_Mach();
1561        int deleted_count = 0;
1562        // check for peephole opportunities
1563        MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
1564        if( m2 != NULL ) {
1565#ifndef PRODUCT
1566          if( PrintOptoPeephole ) {
1567            // Print method, first time only
1568            if( C->method() && method_name_not_printed ) {
1569              C->method()->print_short_name(); tty->cr();
1570              method_name_not_printed = false;
1571            }
1572            // Print this block
1573            if( Verbose && block_not_printed) {
1574              tty->print_cr("in block");
1575              block->dump();
1576              block_not_printed = false;
1577            }
1578            // Print instructions being deleted
1579            for( int i = (deleted_count - 1); i >= 0; --i ) {
1580              block->_nodes.at(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
1581            }
1582            tty->print_cr("replaced with");
1583            // Print new instruction
1584            m2->format(_regalloc);
1585            tty->print("\n\n");
1586          }
1587#endif
1588          // Remove old nodes from basic block and update instruction_index
1589          // (old nodes still exist and may have edges pointing to them
1590          //  as register allocation info is stored in the allocator using
1591          //  the node index to live range mappings.)
1592          uint safe_instruction_index = (instruction_index - deleted_count);
1593          for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
1594            block->_nodes.remove( instruction_index );
1595          }
1596          // install new node after safe_instruction_index
1597          block->_nodes.insert( safe_instruction_index + 1, m2 );
1598          end_index = block->_nodes.size() - 1; // Recompute new block size
1599          NOT_PRODUCT( inc_peepholes(); )
1600        }
1601      }
1602    }
1603  }
1604}
1605
1606//------------------------------print_statistics-------------------------------
1607#ifndef PRODUCT
1608void PhasePeephole::print_statistics() {
1609  tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
1610}
1611#endif
1612
1613
1614//=============================================================================
1615//------------------------------set_req_X--------------------------------------
1616void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
1617  assert( is_not_dead(n), "can not use dead node");
1618  assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
1619  Node *old = in(i);
1620  set_req(i, n);
1621
1622  // old goes dead?
1623  if( old ) {
1624    switch (old->outcnt()) {
1625    case 0:
1626      // Put into the worklist to kill later. We do not kill it now because the
1627      // recursive kill will delete the current node (this) if dead-loop exists
1628      if (!old->is_top())
1629        igvn->_worklist.push( old );
1630      break;
1631    case 1:
1632      if( old->is_Store() || old->has_special_unique_user() )
1633        igvn->add_users_to_worklist( old );
1634      break;
1635    case 2:
1636      if( old->is_Store() )
1637        igvn->add_users_to_worklist( old );
1638      if( old->Opcode() == Op_Region )
1639        igvn->_worklist.push(old);
1640      break;
1641    case 3:
1642      if( old->Opcode() == Op_Region ) {
1643        igvn->_worklist.push(old);
1644        igvn->add_users_to_worklist( old );
1645      }
1646      break;
1647    default:
1648      break;
1649    }
1650  }
1651
1652}
1653
1654//-------------------------------replace_by-----------------------------------
1655// Using def-use info, replace one node for another.  Follow the def-use info
1656// to all users of the OLD node.  Then make all uses point to the NEW node.
1657void Node::replace_by(Node *new_node) {
1658  assert(!is_top(), "top node has no DU info");
1659  for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
1660    Node* use = last_out(i);
1661    uint uses_found = 0;
1662    for (uint j = 0; j < use->len(); j++) {
1663      if (use->in(j) == this) {
1664        if (j < use->req())
1665              use->set_req(j, new_node);
1666        else  use->set_prec(j, new_node);
1667        uses_found++;
1668      }
1669    }
1670    i -= uses_found;    // we deleted 1 or more copies of this edge
1671  }
1672}
1673
1674//=============================================================================
1675//-----------------------------------------------------------------------------
1676void Type_Array::grow( uint i ) {
1677  if( !_max ) {
1678    _max = 1;
1679    _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
1680    _types[0] = NULL;
1681  }
1682  uint old = _max;
1683  while( i >= _max ) _max <<= 1;        // Double to fit
1684  _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
1685  memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
1686}
1687
1688//------------------------------dump-------------------------------------------
1689#ifndef PRODUCT
1690void Type_Array::dump() const {
1691  uint max = Size();
1692  for( uint i = 0; i < max; i++ ) {
1693    if( _types[i] != NULL ) {
1694      tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
1695    }
1696  }
1697}
1698#endif
1699