parse2.cpp revision 6219:12cd03f831d8
1/*
2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "compiler/compileLog.hpp"
30#include "interpreter/linkResolver.hpp"
31#include "memory/universe.inline.hpp"
32#include "opto/addnode.hpp"
33#include "opto/castnode.hpp"
34#include "opto/convertnode.hpp"
35#include "opto/divnode.hpp"
36#include "opto/idealGraphPrinter.hpp"
37#include "opto/matcher.hpp"
38#include "opto/memnode.hpp"
39#include "opto/mulnode.hpp"
40#include "opto/parse.hpp"
41#include "opto/runtime.hpp"
42#include "runtime/deoptimization.hpp"
43#include "runtime/sharedRuntime.hpp"
44
45extern int explicit_null_checks_inserted,
46           explicit_null_checks_elided;
47
48//---------------------------------array_load----------------------------------
49void Parse::array_load(BasicType elem_type) {
50  const Type* elem = Type::TOP;
51  Node* adr = array_addressing(elem_type, 0, &elem);
52  if (stopped())  return;     // guaranteed null or range check
53  dec_sp(2);                  // Pop array and index
54  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
55  Node* ld = make_load(control(), adr, elem, elem_type, adr_type, MemNode::unordered);
56  push(ld);
57}
58
59
60//--------------------------------array_store----------------------------------
61void Parse::array_store(BasicType elem_type) {
62  Node* adr = array_addressing(elem_type, 1);
63  if (stopped())  return;     // guaranteed null or range check
64  Node* val = pop();
65  dec_sp(2);                  // Pop array and index
66  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
67  store_to_memory(control(), adr, val, elem_type, adr_type, StoreNode::release_if_reference(elem_type));
68}
69
70
71//------------------------------array_addressing-------------------------------
72// Pull array and index from the stack.  Compute pointer-to-element.
73Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
74  Node *idx   = peek(0+vals);   // Get from stack without popping
75  Node *ary   = peek(1+vals);   // in case of exception
76
77  // Null check the array base, with correct stack contents
78  ary = null_check(ary, T_ARRAY);
79  // Compile-time detect of null-exception?
80  if (stopped())  return top();
81
82  const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
83  const TypeInt*    sizetype = arytype->size();
84  const Type*       elemtype = arytype->elem();
85
86  if (UseUniqueSubclasses && result2 != NULL) {
87    const Type* el = elemtype->make_ptr();
88    if (el && el->isa_instptr()) {
89      const TypeInstPtr* toop = el->is_instptr();
90      if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
91        // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
92        const Type* subklass = Type::get_const_type(toop->klass());
93        elemtype = subklass->join_speculative(el);
94      }
95    }
96  }
97
98  // Check for big class initializers with all constant offsets
99  // feeding into a known-size array.
100  const TypeInt* idxtype = _gvn.type(idx)->is_int();
101  // See if the highest idx value is less than the lowest array bound,
102  // and if the idx value cannot be negative:
103  bool need_range_check = true;
104  if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
105    need_range_check = false;
106    if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
107  }
108
109  ciKlass * arytype_klass = arytype->klass();
110  if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
111    // Only fails for some -Xcomp runs
112    // The class is unloaded.  We have to run this bytecode in the interpreter.
113    uncommon_trap(Deoptimization::Reason_unloaded,
114                  Deoptimization::Action_reinterpret,
115                  arytype->klass(), "!loaded array");
116    return top();
117  }
118
119  // Do the range check
120  if (GenerateRangeChecks && need_range_check) {
121    Node* tst;
122    if (sizetype->_hi <= 0) {
123      // The greatest array bound is negative, so we can conclude that we're
124      // compiling unreachable code, but the unsigned compare trick used below
125      // only works with non-negative lengths.  Instead, hack "tst" to be zero so
126      // the uncommon_trap path will always be taken.
127      tst = _gvn.intcon(0);
128    } else {
129      // Range is constant in array-oop, so we can use the original state of mem
130      Node* len = load_array_length(ary);
131
132      // Test length vs index (standard trick using unsigned compare)
133      Node* chk = _gvn.transform( new (C) CmpUNode(idx, len) );
134      BoolTest::mask btest = BoolTest::lt;
135      tst = _gvn.transform( new (C) BoolNode(chk, btest) );
136    }
137    // Branch to failure if out of bounds
138    { BuildCutout unless(this, tst, PROB_MAX);
139      if (C->allow_range_check_smearing()) {
140        // Do not use builtin_throw, since range checks are sometimes
141        // made more stringent by an optimistic transformation.
142        // This creates "tentative" range checks at this point,
143        // which are not guaranteed to throw exceptions.
144        // See IfNode::Ideal, is_range_check, adjust_check.
145        uncommon_trap(Deoptimization::Reason_range_check,
146                      Deoptimization::Action_make_not_entrant,
147                      NULL, "range_check");
148      } else {
149        // If we have already recompiled with the range-check-widening
150        // heroic optimization turned off, then we must really be throwing
151        // range check exceptions.
152        builtin_throw(Deoptimization::Reason_range_check, idx);
153      }
154    }
155  }
156  // Check for always knowing you are throwing a range-check exception
157  if (stopped())  return top();
158
159  Node* ptr = array_element_address(ary, idx, type, sizetype);
160
161  if (result2 != NULL)  *result2 = elemtype;
162
163  assert(ptr != top(), "top should go hand-in-hand with stopped");
164
165  return ptr;
166}
167
168
169// returns IfNode
170IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
171  Node   *cmp = _gvn.transform( new (C) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
172  Node   *tst = _gvn.transform( new (C) BoolNode( cmp, mask));
173  IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
174  return iff;
175}
176
177// return Region node
178Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
179  Node *region  = new (C) RegionNode(3); // 2 results
180  record_for_igvn(region);
181  region->init_req(1, iffalse);
182  region->init_req(2, iftrue );
183  _gvn.set_type(region, Type::CONTROL);
184  region = _gvn.transform(region);
185  set_control (region);
186  return region;
187}
188
189
190//------------------------------helper for tableswitch-------------------------
191void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
192  // True branch, use existing map info
193  { PreserveJVMState pjvms(this);
194    Node *iftrue  = _gvn.transform( new (C) IfTrueNode (iff) );
195    set_control( iftrue );
196    profile_switch_case(prof_table_index);
197    merge_new_path(dest_bci_if_true);
198  }
199
200  // False branch
201  Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff) );
202  set_control( iffalse );
203}
204
205void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
206  // True branch, use existing map info
207  { PreserveJVMState pjvms(this);
208    Node *iffalse  = _gvn.transform( new (C) IfFalseNode (iff) );
209    set_control( iffalse );
210    profile_switch_case(prof_table_index);
211    merge_new_path(dest_bci_if_true);
212  }
213
214  // False branch
215  Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff) );
216  set_control( iftrue );
217}
218
219void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
220  // False branch, use existing map and control()
221  profile_switch_case(prof_table_index);
222  merge_new_path(dest_bci);
223}
224
225
226extern "C" {
227  static int jint_cmp(const void *i, const void *j) {
228    int a = *(jint *)i;
229    int b = *(jint *)j;
230    return a > b ? 1 : a < b ? -1 : 0;
231  }
232}
233
234
235// Default value for methodData switch indexing. Must be a negative value to avoid
236// conflict with any legal switch index.
237#define NullTableIndex -1
238
239class SwitchRange : public StackObj {
240  // a range of integers coupled with a bci destination
241  jint _lo;                     // inclusive lower limit
242  jint _hi;                     // inclusive upper limit
243  int _dest;
244  int _table_index;             // index into method data table
245
246public:
247  jint lo() const              { return _lo;   }
248  jint hi() const              { return _hi;   }
249  int  dest() const            { return _dest; }
250  int  table_index() const     { return _table_index; }
251  bool is_singleton() const    { return _lo == _hi; }
252
253  void setRange(jint lo, jint hi, int dest, int table_index) {
254    assert(lo <= hi, "must be a non-empty range");
255    _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
256  }
257  bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
258    assert(lo <= hi, "must be a non-empty range");
259    if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
260      _hi = hi;
261      return true;
262    }
263    return false;
264  }
265
266  void set (jint value, int dest, int table_index) {
267    setRange(value, value, dest, table_index);
268  }
269  bool adjoin(jint value, int dest, int table_index) {
270    return adjoinRange(value, value, dest, table_index);
271  }
272
273  void print() {
274    if (is_singleton())
275      tty->print(" {%d}=>%d", lo(), dest());
276    else if (lo() == min_jint)
277      tty->print(" {..%d}=>%d", hi(), dest());
278    else if (hi() == max_jint)
279      tty->print(" {%d..}=>%d", lo(), dest());
280    else
281      tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
282  }
283};
284
285
286//-------------------------------do_tableswitch--------------------------------
287void Parse::do_tableswitch() {
288  Node* lookup = pop();
289
290  // Get information about tableswitch
291  int default_dest = iter().get_dest_table(0);
292  int lo_index     = iter().get_int_table(1);
293  int hi_index     = iter().get_int_table(2);
294  int len          = hi_index - lo_index + 1;
295
296  if (len < 1) {
297    // If this is a backward branch, add safepoint
298    maybe_add_safepoint(default_dest);
299    merge(default_dest);
300    return;
301  }
302
303  // generate decision tree, using trichotomy when possible
304  int rnum = len+2;
305  bool makes_backward_branch = false;
306  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
307  int rp = -1;
308  if (lo_index != min_jint) {
309    ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
310  }
311  for (int j = 0; j < len; j++) {
312    jint match_int = lo_index+j;
313    int  dest      = iter().get_dest_table(j+3);
314    makes_backward_branch |= (dest <= bci());
315    int  table_index = method_data_update() ? j : NullTableIndex;
316    if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
317      ranges[++rp].set(match_int, dest, table_index);
318    }
319  }
320  jint highest = lo_index+(len-1);
321  assert(ranges[rp].hi() == highest, "");
322  if (highest != max_jint
323      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
324    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
325  }
326  assert(rp < len+2, "not too many ranges");
327
328  // Safepoint in case if backward branch observed
329  if( makes_backward_branch && UseLoopSafepoints )
330    add_safepoint();
331
332  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
333}
334
335
336//------------------------------do_lookupswitch--------------------------------
337void Parse::do_lookupswitch() {
338  Node *lookup = pop();         // lookup value
339  // Get information about lookupswitch
340  int default_dest = iter().get_dest_table(0);
341  int len          = iter().get_int_table(1);
342
343  if (len < 1) {    // If this is a backward branch, add safepoint
344    maybe_add_safepoint(default_dest);
345    merge(default_dest);
346    return;
347  }
348
349  // generate decision tree, using trichotomy when possible
350  jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
351  {
352    for( int j = 0; j < len; j++ ) {
353      table[j+j+0] = iter().get_int_table(2+j+j);
354      table[j+j+1] = iter().get_dest_table(2+j+j+1);
355    }
356    qsort( table, len, 2*sizeof(table[0]), jint_cmp );
357  }
358
359  int rnum = len*2+1;
360  bool makes_backward_branch = false;
361  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
362  int rp = -1;
363  for( int j = 0; j < len; j++ ) {
364    jint match_int   = table[j+j+0];
365    int  dest        = table[j+j+1];
366    int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
367    int  table_index = method_data_update() ? j : NullTableIndex;
368    makes_backward_branch |= (dest <= bci());
369    if( match_int != next_lo ) {
370      ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
371    }
372    if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
373      ranges[++rp].set(match_int, dest, table_index);
374    }
375  }
376  jint highest = table[2*(len-1)];
377  assert(ranges[rp].hi() == highest, "");
378  if( highest != max_jint
379      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
380    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
381  }
382  assert(rp < rnum, "not too many ranges");
383
384  // Safepoint in case backward branch observed
385  if( makes_backward_branch && UseLoopSafepoints )
386    add_safepoint();
387
388  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
389}
390
391//----------------------------create_jump_tables-------------------------------
392bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
393  // Are jumptables enabled
394  if (!UseJumpTables)  return false;
395
396  // Are jumptables supported
397  if (!Matcher::has_match_rule(Op_Jump))  return false;
398
399  // Don't make jump table if profiling
400  if (method_data_update())  return false;
401
402  // Decide if a guard is needed to lop off big ranges at either (or
403  // both) end(s) of the input set. We'll call this the default target
404  // even though we can't be sure that it is the true "default".
405
406  bool needs_guard = false;
407  int default_dest;
408  int64 total_outlier_size = 0;
409  int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
410  int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
411
412  if (lo->dest() == hi->dest()) {
413    total_outlier_size = hi_size + lo_size;
414    default_dest = lo->dest();
415  } else if (lo_size > hi_size) {
416    total_outlier_size = lo_size;
417    default_dest = lo->dest();
418  } else {
419    total_outlier_size = hi_size;
420    default_dest = hi->dest();
421  }
422
423  // If a guard test will eliminate very sparse end ranges, then
424  // it is worth the cost of an extra jump.
425  if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
426    needs_guard = true;
427    if (default_dest == lo->dest()) lo++;
428    if (default_dest == hi->dest()) hi--;
429  }
430
431  // Find the total number of cases and ranges
432  int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
433  int num_range = hi - lo + 1;
434
435  // Don't create table if: too large, too small, or too sparse.
436  if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
437    return false;
438  if (num_cases > (MaxJumpTableSparseness * num_range))
439    return false;
440
441  // Normalize table lookups to zero
442  int lowval = lo->lo();
443  key_val = _gvn.transform( new (C) SubINode(key_val, _gvn.intcon(lowval)) );
444
445  // Generate a guard to protect against input keyvals that aren't
446  // in the switch domain.
447  if (needs_guard) {
448    Node*   size = _gvn.intcon(num_cases);
449    Node*   cmp = _gvn.transform( new (C) CmpUNode(key_val, size) );
450    Node*   tst = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ge) );
451    IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
452    jump_if_true_fork(iff, default_dest, NullTableIndex);
453  }
454
455  // Create an ideal node JumpTable that has projections
456  // of all possible ranges for a switch statement
457  // The key_val input must be converted to a pointer offset and scaled.
458  // Compare Parse::array_addressing above.
459#ifdef _LP64
460  // Clean the 32-bit int into a real 64-bit offset.
461  // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
462  const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
463  key_val       = _gvn.transform( new (C) ConvI2LNode(key_val, lkeytype) );
464#endif
465  // Shift the value by wordsize so we have an index into the table, rather
466  // than a switch value
467  Node *shiftWord = _gvn.MakeConX(wordSize);
468  key_val = _gvn.transform( new (C) MulXNode( key_val, shiftWord));
469
470  // Create the JumpNode
471  Node* jtn = _gvn.transform( new (C) JumpNode(control(), key_val, num_cases) );
472
473  // These are the switch destinations hanging off the jumpnode
474  int i = 0;
475  for (SwitchRange* r = lo; r <= hi; r++) {
476    for (int64 j = r->lo(); j <= r->hi(); j++, i++) {
477      Node* input = _gvn.transform(new (C) JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
478      {
479        PreserveJVMState pjvms(this);
480        set_control(input);
481        jump_if_always_fork(r->dest(), r->table_index());
482      }
483    }
484  }
485  assert(i == num_cases, "miscount of cases");
486  stop_and_kill_map();  // no more uses for this JVMS
487  return true;
488}
489
490//----------------------------jump_switch_ranges-------------------------------
491void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
492  Block* switch_block = block();
493
494  if (switch_depth == 0) {
495    // Do special processing for the top-level call.
496    assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
497    assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
498
499    // Decrement pred-numbers for the unique set of nodes.
500#ifdef ASSERT
501    // Ensure that the block's successors are a (duplicate-free) set.
502    int successors_counted = 0;  // block occurrences in [hi..lo]
503    int unique_successors = switch_block->num_successors();
504    for (int i = 0; i < unique_successors; i++) {
505      Block* target = switch_block->successor_at(i);
506
507      // Check that the set of successors is the same in both places.
508      int successors_found = 0;
509      for (SwitchRange* p = lo; p <= hi; p++) {
510        if (p->dest() == target->start())  successors_found++;
511      }
512      assert(successors_found > 0, "successor must be known");
513      successors_counted += successors_found;
514    }
515    assert(successors_counted == (hi-lo)+1, "no unexpected successors");
516#endif
517
518    // Maybe prune the inputs, based on the type of key_val.
519    jint min_val = min_jint;
520    jint max_val = max_jint;
521    const TypeInt* ti = key_val->bottom_type()->isa_int();
522    if (ti != NULL) {
523      min_val = ti->_lo;
524      max_val = ti->_hi;
525      assert(min_val <= max_val, "invalid int type");
526    }
527    while (lo->hi() < min_val)  lo++;
528    if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
529    while (hi->lo() > max_val)  hi--;
530    if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
531  }
532
533#ifndef PRODUCT
534  if (switch_depth == 0) {
535    _max_switch_depth = 0;
536    _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
537  }
538#endif
539
540  assert(lo <= hi, "must be a non-empty set of ranges");
541  if (lo == hi) {
542    jump_if_always_fork(lo->dest(), lo->table_index());
543  } else {
544    assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
545    assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
546
547    if (create_jump_tables(key_val, lo, hi)) return;
548
549    int nr = hi - lo + 1;
550
551    SwitchRange* mid = lo + nr/2;
552    // if there is an easy choice, pivot at a singleton:
553    if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
554
555    assert(lo < mid && mid <= hi, "good pivot choice");
556    assert(nr != 2 || mid == hi,   "should pick higher of 2");
557    assert(nr != 3 || mid == hi-1, "should pick middle of 3");
558
559    Node *test_val = _gvn.intcon(mid->lo());
560
561    if (mid->is_singleton()) {
562      IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
563      jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
564
565      // Special Case:  If there are exactly three ranges, and the high
566      // and low range each go to the same place, omit the "gt" test,
567      // since it will not discriminate anything.
568      bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
569      if (eq_test_only) {
570        assert(mid == hi-1, "");
571      }
572
573      // if there is a higher range, test for it and process it:
574      if (mid < hi && !eq_test_only) {
575        // two comparisons of same values--should enable 1 test for 2 branches
576        // Use BoolTest::le instead of BoolTest::gt
577        IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
578        Node   *iftrue  = _gvn.transform( new (C) IfTrueNode(iff_le) );
579        Node   *iffalse = _gvn.transform( new (C) IfFalseNode(iff_le) );
580        { PreserveJVMState pjvms(this);
581          set_control(iffalse);
582          jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
583        }
584        set_control(iftrue);
585      }
586
587    } else {
588      // mid is a range, not a singleton, so treat mid..hi as a unit
589      IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
590
591      // if there is a higher range, test for it and process it:
592      if (mid == hi) {
593        jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
594      } else {
595        Node *iftrue  = _gvn.transform( new (C) IfTrueNode(iff_ge) );
596        Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff_ge) );
597        { PreserveJVMState pjvms(this);
598          set_control(iftrue);
599          jump_switch_ranges(key_val, mid, hi, switch_depth+1);
600        }
601        set_control(iffalse);
602      }
603    }
604
605    // in any case, process the lower range
606    jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
607  }
608
609  // Decrease pred_count for each successor after all is done.
610  if (switch_depth == 0) {
611    int unique_successors = switch_block->num_successors();
612    for (int i = 0; i < unique_successors; i++) {
613      Block* target = switch_block->successor_at(i);
614      // Throw away the pre-allocated path for each unique successor.
615      target->next_path_num();
616    }
617  }
618
619#ifndef PRODUCT
620  _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
621  if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
622    SwitchRange* r;
623    int nsing = 0;
624    for( r = lo; r <= hi; r++ ) {
625      if( r->is_singleton() )  nsing++;
626    }
627    tty->print(">>> ");
628    _method->print_short_name();
629    tty->print_cr(" switch decision tree");
630    tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
631                  hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
632    if (_max_switch_depth > _est_switch_depth) {
633      tty->print_cr("******** BAD SWITCH DEPTH ********");
634    }
635    tty->print("   ");
636    for( r = lo; r <= hi; r++ ) {
637      r->print();
638    }
639    tty->print_cr("");
640  }
641#endif
642}
643
644void Parse::modf() {
645  Node *f2 = pop();
646  Node *f1 = pop();
647  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
648                              CAST_FROM_FN_PTR(address, SharedRuntime::frem),
649                              "frem", NULL, //no memory effects
650                              f1, f2);
651  Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
652
653  push(res);
654}
655
656void Parse::modd() {
657  Node *d2 = pop_pair();
658  Node *d1 = pop_pair();
659  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
660                              CAST_FROM_FN_PTR(address, SharedRuntime::drem),
661                              "drem", NULL, //no memory effects
662                              d1, top(), d2, top());
663  Node* res_d   = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
664
665#ifdef ASSERT
666  Node* res_top = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 1));
667  assert(res_top == top(), "second value must be top");
668#endif
669
670  push_pair(res_d);
671}
672
673void Parse::l2f() {
674  Node* f2 = pop();
675  Node* f1 = pop();
676  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
677                              CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
678                              "l2f", NULL, //no memory effects
679                              f1, f2);
680  Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
681
682  push(res);
683}
684
685void Parse::do_irem() {
686  // Must keep both values on the expression-stack during null-check
687  zero_check_int(peek());
688  // Compile-time detect of null-exception?
689  if (stopped())  return;
690
691  Node* b = pop();
692  Node* a = pop();
693
694  const Type *t = _gvn.type(b);
695  if (t != Type::TOP) {
696    const TypeInt *ti = t->is_int();
697    if (ti->is_con()) {
698      int divisor = ti->get_con();
699      // check for positive power of 2
700      if (divisor > 0 &&
701          (divisor & ~(divisor-1)) == divisor) {
702        // yes !
703        Node *mask = _gvn.intcon((divisor - 1));
704        // Sigh, must handle negative dividends
705        Node *zero = _gvn.intcon(0);
706        IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
707        Node *iff = _gvn.transform( new (C) IfFalseNode(ifff) );
708        Node *ift = _gvn.transform( new (C) IfTrueNode (ifff) );
709        Node *reg = jump_if_join(ift, iff);
710        Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
711        // Negative path; negate/and/negate
712        Node *neg = _gvn.transform( new (C) SubINode(zero, a) );
713        Node *andn= _gvn.transform( new (C) AndINode(neg, mask) );
714        Node *negn= _gvn.transform( new (C) SubINode(zero, andn) );
715        phi->init_req(1, negn);
716        // Fast positive case
717        Node *andx = _gvn.transform( new (C) AndINode(a, mask) );
718        phi->init_req(2, andx);
719        // Push the merge
720        push( _gvn.transform(phi) );
721        return;
722      }
723    }
724  }
725  // Default case
726  push( _gvn.transform( new (C) ModINode(control(),a,b) ) );
727}
728
729// Handle jsr and jsr_w bytecode
730void Parse::do_jsr() {
731  assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
732
733  // Store information about current state, tagged with new _jsr_bci
734  int return_bci = iter().next_bci();
735  int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
736
737  // Update method data
738  profile_taken_branch(jsr_bci);
739
740  // The way we do things now, there is only one successor block
741  // for the jsr, because the target code is cloned by ciTypeFlow.
742  Block* target = successor_for_bci(jsr_bci);
743
744  // What got pushed?
745  const Type* ret_addr = target->peek();
746  assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
747
748  // Effect on jsr on stack
749  push(_gvn.makecon(ret_addr));
750
751  // Flow to the jsr.
752  merge(jsr_bci);
753}
754
755// Handle ret bytecode
756void Parse::do_ret() {
757  // Find to whom we return.
758  assert(block()->num_successors() == 1, "a ret can only go one place now");
759  Block* target = block()->successor_at(0);
760  assert(!target->is_ready(), "our arrival must be expected");
761  profile_ret(target->flow()->start());
762  int pnum = target->next_path_num();
763  merge_common(target, pnum);
764}
765
766//--------------------------dynamic_branch_prediction--------------------------
767// Try to gather dynamic branch prediction behavior.  Return a probability
768// of the branch being taken and set the "cnt" field.  Returns a -1.0
769// if we need to use static prediction for some reason.
770float Parse::dynamic_branch_prediction(float &cnt) {
771  ResourceMark rm;
772
773  cnt  = COUNT_UNKNOWN;
774
775  // Use MethodData information if it is available
776  // FIXME: free the ProfileData structure
777  ciMethodData* methodData = method()->method_data();
778  if (!methodData->is_mature())  return PROB_UNKNOWN;
779  ciProfileData* data = methodData->bci_to_data(bci());
780  if (!data->is_JumpData())  return PROB_UNKNOWN;
781
782  // get taken and not taken values
783  int     taken = data->as_JumpData()->taken();
784  int not_taken = 0;
785  if (data->is_BranchData()) {
786    not_taken = data->as_BranchData()->not_taken();
787  }
788
789  // scale the counts to be commensurate with invocation counts:
790  taken = method()->scale_count(taken);
791  not_taken = method()->scale_count(not_taken);
792
793  // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
794  // We also check that individual counters are positive first, overwise the sum can become positive.
795  if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
796    if (C->log() != NULL) {
797      C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
798    }
799    return PROB_UNKNOWN;
800  }
801
802  // Compute frequency that we arrive here
803  float sum = taken + not_taken;
804  // Adjust, if this block is a cloned private block but the
805  // Jump counts are shared.  Taken the private counts for
806  // just this path instead of the shared counts.
807  if( block()->count() > 0 )
808    sum = block()->count();
809  cnt = sum / FreqCountInvocations;
810
811  // Pin probability to sane limits
812  float prob;
813  if( !taken )
814    prob = (0+PROB_MIN) / 2;
815  else if( !not_taken )
816    prob = (1+PROB_MAX) / 2;
817  else {                         // Compute probability of true path
818    prob = (float)taken / (float)(taken + not_taken);
819    if (prob > PROB_MAX)  prob = PROB_MAX;
820    if (prob < PROB_MIN)   prob = PROB_MIN;
821  }
822
823  assert((cnt > 0.0f) && (prob > 0.0f),
824         "Bad frequency assignment in if");
825
826  if (C->log() != NULL) {
827    const char* prob_str = NULL;
828    if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
829    if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
830    char prob_str_buf[30];
831    if (prob_str == NULL) {
832      sprintf(prob_str_buf, "%g", prob);
833      prob_str = prob_str_buf;
834    }
835    C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
836                   iter().get_dest(), taken, not_taken, cnt, prob_str);
837  }
838  return prob;
839}
840
841//-----------------------------branch_prediction-------------------------------
842float Parse::branch_prediction(float& cnt,
843                               BoolTest::mask btest,
844                               int target_bci) {
845  float prob = dynamic_branch_prediction(cnt);
846  // If prob is unknown, switch to static prediction
847  if (prob != PROB_UNKNOWN)  return prob;
848
849  prob = PROB_FAIR;                   // Set default value
850  if (btest == BoolTest::eq)          // Exactly equal test?
851    prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
852  else if (btest == BoolTest::ne)
853    prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
854
855  // If this is a conditional test guarding a backwards branch,
856  // assume its a loop-back edge.  Make it a likely taken branch.
857  if (target_bci < bci()) {
858    if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
859      // Since it's an OSR, we probably have profile data, but since
860      // branch_prediction returned PROB_UNKNOWN, the counts are too small.
861      // Let's make a special check here for completely zero counts.
862      ciMethodData* methodData = method()->method_data();
863      if (!methodData->is_empty()) {
864        ciProfileData* data = methodData->bci_to_data(bci());
865        // Only stop for truly zero counts, which mean an unknown part
866        // of the OSR-ed method, and we want to deopt to gather more stats.
867        // If you have ANY counts, then this loop is simply 'cold' relative
868        // to the OSR loop.
869        if (data->as_BranchData()->taken() +
870            data->as_BranchData()->not_taken() == 0 ) {
871          // This is the only way to return PROB_UNKNOWN:
872          return PROB_UNKNOWN;
873        }
874      }
875    }
876    prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
877  }
878
879  assert(prob != PROB_UNKNOWN, "must have some guess at this point");
880  return prob;
881}
882
883// The magic constants are chosen so as to match the output of
884// branch_prediction() when the profile reports a zero taken count.
885// It is important to distinguish zero counts unambiguously, because
886// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
887// very small but nonzero probabilities, which if confused with zero
888// counts would keep the program recompiling indefinitely.
889bool Parse::seems_never_taken(float prob) {
890  return prob < PROB_MIN;
891}
892
893// True if the comparison seems to be the kind that will not change its
894// statistics from true to false.  See comments in adjust_map_after_if.
895// This question is only asked along paths which are already
896// classifed as untaken (by seems_never_taken), so really,
897// if a path is never taken, its controlling comparison is
898// already acting in a stable fashion.  If the comparison
899// seems stable, we will put an expensive uncommon trap
900// on the untaken path.  To be conservative, and to allow
901// partially executed counted loops to be compiled fully,
902// we will plant uncommon traps only after pointer comparisons.
903bool Parse::seems_stable_comparison(BoolTest::mask btest, Node* cmp) {
904  for (int depth = 4; depth > 0; depth--) {
905    // The following switch can find CmpP here over half the time for
906    // dynamic language code rich with type tests.
907    // Code using counted loops or array manipulations (typical
908    // of benchmarks) will have many (>80%) CmpI instructions.
909    switch (cmp->Opcode()) {
910    case Op_CmpP:
911      // A never-taken null check looks like CmpP/BoolTest::eq.
912      // These certainly should be closed off as uncommon traps.
913      if (btest == BoolTest::eq)
914        return true;
915      // A never-failed type check looks like CmpP/BoolTest::ne.
916      // Let's put traps on those, too, so that we don't have to compile
917      // unused paths with indeterminate dynamic type information.
918      if (ProfileDynamicTypes)
919        return true;
920      return false;
921
922    case Op_CmpI:
923      // A small minority (< 10%) of CmpP are masked as CmpI,
924      // as if by boolean conversion ((p == q? 1: 0) != 0).
925      // Detect that here, even if it hasn't optimized away yet.
926      // Specifically, this covers the 'instanceof' operator.
927      if (btest == BoolTest::ne || btest == BoolTest::eq) {
928        if (_gvn.type(cmp->in(2))->singleton() &&
929            cmp->in(1)->is_Phi()) {
930          PhiNode* phi = cmp->in(1)->as_Phi();
931          int true_path = phi->is_diamond_phi();
932          if (true_path > 0 &&
933              _gvn.type(phi->in(1))->singleton() &&
934              _gvn.type(phi->in(2))->singleton()) {
935            // phi->region->if_proj->ifnode->bool->cmp
936            BoolNode* bol = phi->in(0)->in(1)->in(0)->in(1)->as_Bool();
937            btest = bol->_test._test;
938            cmp = bol->in(1);
939            continue;
940          }
941        }
942      }
943      return false;
944    }
945  }
946  return false;
947}
948
949//-------------------------------repush_if_args--------------------------------
950// Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
951inline int Parse::repush_if_args() {
952#ifndef PRODUCT
953  if (PrintOpto && WizardMode) {
954    tty->print("defending against excessive implicit null exceptions on %s @%d in ",
955               Bytecodes::name(iter().cur_bc()), iter().cur_bci());
956    method()->print_name(); tty->cr();
957  }
958#endif
959  int bc_depth = - Bytecodes::depth(iter().cur_bc());
960  assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
961  DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
962  assert(argument(0) != NULL, "must exist");
963  assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
964  inc_sp(bc_depth);
965  return bc_depth;
966}
967
968//----------------------------------do_ifnull----------------------------------
969void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
970  int target_bci = iter().get_dest();
971
972  Block* branch_block = successor_for_bci(target_bci);
973  Block* next_block   = successor_for_bci(iter().next_bci());
974
975  float cnt;
976  float prob = branch_prediction(cnt, btest, target_bci);
977  if (prob == PROB_UNKNOWN) {
978    // (An earlier version of do_ifnull omitted this trap for OSR methods.)
979#ifndef PRODUCT
980    if (PrintOpto && Verbose)
981      tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
982#endif
983    repush_if_args(); // to gather stats on loop
984    // We need to mark this branch as taken so that if we recompile we will
985    // see that it is possible. In the tiered system the interpreter doesn't
986    // do profiling and by the time we get to the lower tier from the interpreter
987    // the path may be cold again. Make sure it doesn't look untaken
988    profile_taken_branch(target_bci, !ProfileInterpreter);
989    uncommon_trap(Deoptimization::Reason_unreached,
990                  Deoptimization::Action_reinterpret,
991                  NULL, "cold");
992    if (C->eliminate_boxing()) {
993      // Mark the successor blocks as parsed
994      branch_block->next_path_num();
995      next_block->next_path_num();
996    }
997    return;
998  }
999
1000  explicit_null_checks_inserted++;
1001
1002  // Generate real control flow
1003  Node   *tst = _gvn.transform( new (C) BoolNode( c, btest ) );
1004
1005  // Sanity check the probability value
1006  assert(prob > 0.0f,"Bad probability in Parser");
1007 // Need xform to put node in hash table
1008  IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1009  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1010  // True branch
1011  { PreserveJVMState pjvms(this);
1012    Node* iftrue  = _gvn.transform( new (C) IfTrueNode (iff) );
1013    set_control(iftrue);
1014
1015    if (stopped()) {            // Path is dead?
1016      explicit_null_checks_elided++;
1017      if (C->eliminate_boxing()) {
1018        // Mark the successor block as parsed
1019        branch_block->next_path_num();
1020      }
1021    } else {                    // Path is live.
1022      // Update method data
1023      profile_taken_branch(target_bci);
1024      adjust_map_after_if(btest, c, prob, branch_block, next_block);
1025      if (!stopped()) {
1026        merge(target_bci);
1027      }
1028    }
1029  }
1030
1031  // False branch
1032  Node* iffalse = _gvn.transform( new (C) IfFalseNode(iff) );
1033  set_control(iffalse);
1034
1035  if (stopped()) {              // Path is dead?
1036    explicit_null_checks_elided++;
1037    if (C->eliminate_boxing()) {
1038      // Mark the successor block as parsed
1039      next_block->next_path_num();
1040    }
1041  } else  {                     // Path is live.
1042    // Update method data
1043    profile_not_taken_branch();
1044    adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1045                        next_block, branch_block);
1046  }
1047}
1048
1049//------------------------------------do_if------------------------------------
1050void Parse::do_if(BoolTest::mask btest, Node* c) {
1051  int target_bci = iter().get_dest();
1052
1053  Block* branch_block = successor_for_bci(target_bci);
1054  Block* next_block   = successor_for_bci(iter().next_bci());
1055
1056  float cnt;
1057  float prob = branch_prediction(cnt, btest, target_bci);
1058  float untaken_prob = 1.0 - prob;
1059
1060  if (prob == PROB_UNKNOWN) {
1061#ifndef PRODUCT
1062    if (PrintOpto && Verbose)
1063      tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
1064#endif
1065    repush_if_args(); // to gather stats on loop
1066    // We need to mark this branch as taken so that if we recompile we will
1067    // see that it is possible. In the tiered system the interpreter doesn't
1068    // do profiling and by the time we get to the lower tier from the interpreter
1069    // the path may be cold again. Make sure it doesn't look untaken
1070    profile_taken_branch(target_bci, !ProfileInterpreter);
1071    uncommon_trap(Deoptimization::Reason_unreached,
1072                  Deoptimization::Action_reinterpret,
1073                  NULL, "cold");
1074    if (C->eliminate_boxing()) {
1075      // Mark the successor blocks as parsed
1076      branch_block->next_path_num();
1077      next_block->next_path_num();
1078    }
1079    return;
1080  }
1081
1082  // Sanity check the probability value
1083  assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1084
1085  bool taken_if_true = true;
1086  // Convert BoolTest to canonical form:
1087  if (!BoolTest(btest).is_canonical()) {
1088    btest         = BoolTest(btest).negate();
1089    taken_if_true = false;
1090    // prob is NOT updated here; it remains the probability of the taken
1091    // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1092  }
1093  assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1094
1095  Node* tst0 = new (C) BoolNode(c, btest);
1096  Node* tst = _gvn.transform(tst0);
1097  BoolTest::mask taken_btest   = BoolTest::illegal;
1098  BoolTest::mask untaken_btest = BoolTest::illegal;
1099
1100  if (tst->is_Bool()) {
1101    // Refresh c from the transformed bool node, since it may be
1102    // simpler than the original c.  Also re-canonicalize btest.
1103    // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1104    // That can arise from statements like: if (x instanceof C) ...
1105    if (tst != tst0) {
1106      // Canonicalize one more time since transform can change it.
1107      btest = tst->as_Bool()->_test._test;
1108      if (!BoolTest(btest).is_canonical()) {
1109        // Reverse edges one more time...
1110        tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1111        btest = tst->as_Bool()->_test._test;
1112        assert(BoolTest(btest).is_canonical(), "sanity");
1113        taken_if_true = !taken_if_true;
1114      }
1115      c = tst->in(1);
1116    }
1117    BoolTest::mask neg_btest = BoolTest(btest).negate();
1118    taken_btest   = taken_if_true ?     btest : neg_btest;
1119    untaken_btest = taken_if_true ? neg_btest :     btest;
1120  }
1121
1122  // Generate real control flow
1123  float true_prob = (taken_if_true ? prob : untaken_prob);
1124  IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1125  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1126  Node* taken_branch   = new (C) IfTrueNode(iff);
1127  Node* untaken_branch = new (C) IfFalseNode(iff);
1128  if (!taken_if_true) {  // Finish conversion to canonical form
1129    Node* tmp      = taken_branch;
1130    taken_branch   = untaken_branch;
1131    untaken_branch = tmp;
1132  }
1133
1134  // Branch is taken:
1135  { PreserveJVMState pjvms(this);
1136    taken_branch = _gvn.transform(taken_branch);
1137    set_control(taken_branch);
1138
1139    if (stopped()) {
1140      if (C->eliminate_boxing()) {
1141        // Mark the successor block as parsed
1142        branch_block->next_path_num();
1143      }
1144    } else {
1145      // Update method data
1146      profile_taken_branch(target_bci);
1147      adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1148      if (!stopped()) {
1149        merge(target_bci);
1150      }
1151    }
1152  }
1153
1154  untaken_branch = _gvn.transform(untaken_branch);
1155  set_control(untaken_branch);
1156
1157  // Branch not taken.
1158  if (stopped()) {
1159    if (C->eliminate_boxing()) {
1160      // Mark the successor block as parsed
1161      next_block->next_path_num();
1162    }
1163  } else {
1164    // Update method data
1165    profile_not_taken_branch();
1166    adjust_map_after_if(untaken_btest, c, untaken_prob,
1167                        next_block, branch_block);
1168  }
1169}
1170
1171//----------------------------adjust_map_after_if------------------------------
1172// Adjust the JVM state to reflect the result of taking this path.
1173// Basically, it means inspecting the CmpNode controlling this
1174// branch, seeing how it constrains a tested value, and then
1175// deciding if it's worth our while to encode this constraint
1176// as graph nodes in the current abstract interpretation map.
1177void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1178                                Block* path, Block* other_path) {
1179  if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1180    return;                             // nothing to do
1181
1182  bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1183
1184  if (seems_never_taken(prob) && seems_stable_comparison(btest, c)) {
1185    // If this might possibly turn into an implicit null check,
1186    // and the null has never yet been seen, we need to generate
1187    // an uncommon trap, so as to recompile instead of suffering
1188    // with very slow branches.  (We'll get the slow branches if
1189    // the program ever changes phase and starts seeing nulls here.)
1190    //
1191    // We do not inspect for a null constant, since a node may
1192    // optimize to 'null' later on.
1193    //
1194    // Null checks, and other tests which expect inequality,
1195    // show btest == BoolTest::eq along the non-taken branch.
1196    // On the other hand, type tests, must-be-null tests,
1197    // and other tests which expect pointer equality,
1198    // show btest == BoolTest::ne along the non-taken branch.
1199    // We prune both types of branches if they look unused.
1200    repush_if_args();
1201    // We need to mark this branch as taken so that if we recompile we will
1202    // see that it is possible. In the tiered system the interpreter doesn't
1203    // do profiling and by the time we get to the lower tier from the interpreter
1204    // the path may be cold again. Make sure it doesn't look untaken
1205    if (is_fallthrough) {
1206      profile_not_taken_branch(!ProfileInterpreter);
1207    } else {
1208      profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
1209    }
1210    uncommon_trap(Deoptimization::Reason_unreached,
1211                  Deoptimization::Action_reinterpret,
1212                  NULL,
1213                  (is_fallthrough ? "taken always" : "taken never"));
1214    return;
1215  }
1216
1217  Node* val = c->in(1);
1218  Node* con = c->in(2);
1219  const Type* tcon = _gvn.type(con);
1220  const Type* tval = _gvn.type(val);
1221  bool have_con = tcon->singleton();
1222  if (tval->singleton()) {
1223    if (!have_con) {
1224      // Swap, so constant is in con.
1225      con  = val;
1226      tcon = tval;
1227      val  = c->in(2);
1228      tval = _gvn.type(val);
1229      btest = BoolTest(btest).commute();
1230      have_con = true;
1231    } else {
1232      // Do we have two constants?  Then leave well enough alone.
1233      have_con = false;
1234    }
1235  }
1236  if (!have_con)                        // remaining adjustments need a con
1237    return;
1238
1239  sharpen_type_after_if(btest, con, tcon, val, tval);
1240}
1241
1242
1243static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1244  Node* ldk;
1245  if (n->is_DecodeNKlass()) {
1246    if (n->in(1)->Opcode() != Op_LoadNKlass) {
1247      return NULL;
1248    } else {
1249      ldk = n->in(1);
1250    }
1251  } else if (n->Opcode() != Op_LoadKlass) {
1252    return NULL;
1253  } else {
1254    ldk = n;
1255  }
1256  assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1257
1258  Node* adr = ldk->in(MemNode::Address);
1259  intptr_t off = 0;
1260  Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1261  if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1262    return NULL;
1263  const TypePtr* tp = gvn->type(obj)->is_ptr();
1264  if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1265    return NULL;
1266
1267  return obj;
1268}
1269
1270void Parse::sharpen_type_after_if(BoolTest::mask btest,
1271                                  Node* con, const Type* tcon,
1272                                  Node* val, const Type* tval) {
1273  // Look for opportunities to sharpen the type of a node
1274  // whose klass is compared with a constant klass.
1275  if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1276    Node* obj = extract_obj_from_klass_load(&_gvn, val);
1277    const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1278    if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1279       // Found:
1280       //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1281       // or the narrowOop equivalent.
1282       const Type* obj_type = _gvn.type(obj);
1283       const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1284       if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1285           tboth->higher_equal(obj_type)) {
1286          // obj has to be of the exact type Foo if the CmpP succeeds.
1287          int obj_in_map = map()->find_edge(obj);
1288          JVMState* jvms = this->jvms();
1289          if (obj_in_map >= 0 &&
1290              (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1291            TypeNode* ccast = new (C) CheckCastPPNode(control(), obj, tboth);
1292            const Type* tcc = ccast->as_Type()->type();
1293            assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1294            // Delay transform() call to allow recovery of pre-cast value
1295            // at the control merge.
1296            _gvn.set_type_bottom(ccast);
1297            record_for_igvn(ccast);
1298            // Here's the payoff.
1299            replace_in_map(obj, ccast);
1300          }
1301       }
1302    }
1303  }
1304
1305  int val_in_map = map()->find_edge(val);
1306  if (val_in_map < 0)  return;          // replace_in_map would be useless
1307  {
1308    JVMState* jvms = this->jvms();
1309    if (!(jvms->is_loc(val_in_map) ||
1310          jvms->is_stk(val_in_map)))
1311      return;                           // again, it would be useless
1312  }
1313
1314  // Check for a comparison to a constant, and "know" that the compared
1315  // value is constrained on this path.
1316  assert(tcon->singleton(), "");
1317  ConstraintCastNode* ccast = NULL;
1318  Node* cast = NULL;
1319
1320  switch (btest) {
1321  case BoolTest::eq:                    // Constant test?
1322    {
1323      const Type* tboth = tcon->join_speculative(tval);
1324      if (tboth == tval)  break;        // Nothing to gain.
1325      if (tcon->isa_int()) {
1326        ccast = new (C) CastIINode(val, tboth);
1327      } else if (tcon == TypePtr::NULL_PTR) {
1328        // Cast to null, but keep the pointer identity temporarily live.
1329        ccast = new (C) CastPPNode(val, tboth);
1330      } else {
1331        const TypeF* tf = tcon->isa_float_constant();
1332        const TypeD* td = tcon->isa_double_constant();
1333        // Exclude tests vs float/double 0 as these could be
1334        // either +0 or -0.  Just because you are equal to +0
1335        // doesn't mean you ARE +0!
1336        // Note, following code also replaces Long and Oop values.
1337        if ((!tf || tf->_f != 0.0) &&
1338            (!td || td->_d != 0.0))
1339          cast = con;                   // Replace non-constant val by con.
1340      }
1341    }
1342    break;
1343
1344  case BoolTest::ne:
1345    if (tcon == TypePtr::NULL_PTR) {
1346      cast = cast_not_null(val, false);
1347    }
1348    break;
1349
1350  default:
1351    // (At this point we could record int range types with CastII.)
1352    break;
1353  }
1354
1355  if (ccast != NULL) {
1356    const Type* tcc = ccast->as_Type()->type();
1357    assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1358    // Delay transform() call to allow recovery of pre-cast value
1359    // at the control merge.
1360    ccast->set_req(0, control());
1361    _gvn.set_type_bottom(ccast);
1362    record_for_igvn(ccast);
1363    cast = ccast;
1364  }
1365
1366  if (cast != NULL) {                   // Here's the payoff.
1367    replace_in_map(val, cast);
1368  }
1369}
1370
1371/**
1372 * Use speculative type to optimize CmpP node: if comparison is
1373 * against the low level class, cast the object to the speculative
1374 * type if any. CmpP should then go away.
1375 *
1376 * @param c  expected CmpP node
1377 * @return   result of CmpP on object casted to speculative type
1378 *
1379 */
1380Node* Parse::optimize_cmp_with_klass(Node* c) {
1381  // If this is transformed by the _gvn to a comparison with the low
1382  // level klass then we may be able to use speculation
1383  if (c->Opcode() == Op_CmpP &&
1384      (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1385      c->in(2)->is_Con()) {
1386    Node* load_klass = NULL;
1387    Node* decode = NULL;
1388    if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1389      decode = c->in(1);
1390      load_klass = c->in(1)->in(1);
1391    } else {
1392      load_klass = c->in(1);
1393    }
1394    if (load_klass->in(2)->is_AddP()) {
1395      Node* addp = load_klass->in(2);
1396      Node* obj = addp->in(AddPNode::Address);
1397      const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1398      if (obj_type->speculative_type_not_null() != NULL) {
1399        ciKlass* k = obj_type->speculative_type();
1400        inc_sp(2);
1401        obj = maybe_cast_profiled_obj(obj, k);
1402        dec_sp(2);
1403        // Make the CmpP use the casted obj
1404        addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1405        load_klass = load_klass->clone();
1406        load_klass->set_req(2, addp);
1407        load_klass = _gvn.transform(load_klass);
1408        if (decode != NULL) {
1409          decode = decode->clone();
1410          decode->set_req(1, load_klass);
1411          load_klass = _gvn.transform(decode);
1412        }
1413        c = c->clone();
1414        c->set_req(1, load_klass);
1415        c = _gvn.transform(c);
1416      }
1417    }
1418  }
1419  return c;
1420}
1421
1422//------------------------------do_one_bytecode--------------------------------
1423// Parse this bytecode, and alter the Parsers JVM->Node mapping
1424void Parse::do_one_bytecode() {
1425  Node *a, *b, *c, *d;          // Handy temps
1426  BoolTest::mask btest;
1427  int i;
1428
1429  assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1430
1431  if (C->check_node_count(NodeLimitFudgeFactor * 5,
1432                          "out of nodes parsing method")) {
1433    return;
1434  }
1435
1436#ifdef ASSERT
1437  // for setting breakpoints
1438  if (TraceOptoParse) {
1439    tty->print(" @");
1440    dump_bci(bci());
1441    tty->cr();
1442  }
1443#endif
1444
1445  switch (bc()) {
1446  case Bytecodes::_nop:
1447    // do nothing
1448    break;
1449  case Bytecodes::_lconst_0:
1450    push_pair(longcon(0));
1451    break;
1452
1453  case Bytecodes::_lconst_1:
1454    push_pair(longcon(1));
1455    break;
1456
1457  case Bytecodes::_fconst_0:
1458    push(zerocon(T_FLOAT));
1459    break;
1460
1461  case Bytecodes::_fconst_1:
1462    push(makecon(TypeF::ONE));
1463    break;
1464
1465  case Bytecodes::_fconst_2:
1466    push(makecon(TypeF::make(2.0f)));
1467    break;
1468
1469  case Bytecodes::_dconst_0:
1470    push_pair(zerocon(T_DOUBLE));
1471    break;
1472
1473  case Bytecodes::_dconst_1:
1474    push_pair(makecon(TypeD::ONE));
1475    break;
1476
1477  case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1478  case Bytecodes::_iconst_0: push(intcon( 0)); break;
1479  case Bytecodes::_iconst_1: push(intcon( 1)); break;
1480  case Bytecodes::_iconst_2: push(intcon( 2)); break;
1481  case Bytecodes::_iconst_3: push(intcon( 3)); break;
1482  case Bytecodes::_iconst_4: push(intcon( 4)); break;
1483  case Bytecodes::_iconst_5: push(intcon( 5)); break;
1484  case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1485  case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1486  case Bytecodes::_aconst_null: push(null());  break;
1487  case Bytecodes::_ldc:
1488  case Bytecodes::_ldc_w:
1489  case Bytecodes::_ldc2_w:
1490    // If the constant is unresolved, run this BC once in the interpreter.
1491    {
1492      ciConstant constant = iter().get_constant();
1493      if (constant.basic_type() == T_OBJECT &&
1494          !constant.as_object()->is_loaded()) {
1495        int index = iter().get_constant_pool_index();
1496        constantTag tag = iter().get_constant_pool_tag(index);
1497        uncommon_trap(Deoptimization::make_trap_request
1498                      (Deoptimization::Reason_unloaded,
1499                       Deoptimization::Action_reinterpret,
1500                       index),
1501                      NULL, tag.internal_name());
1502        break;
1503      }
1504      assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1505             "must be java_mirror of klass");
1506      bool pushed = push_constant(constant, true);
1507      guarantee(pushed, "must be possible to push this constant");
1508    }
1509
1510    break;
1511
1512  case Bytecodes::_aload_0:
1513    push( local(0) );
1514    break;
1515  case Bytecodes::_aload_1:
1516    push( local(1) );
1517    break;
1518  case Bytecodes::_aload_2:
1519    push( local(2) );
1520    break;
1521  case Bytecodes::_aload_3:
1522    push( local(3) );
1523    break;
1524  case Bytecodes::_aload:
1525    push( local(iter().get_index()) );
1526    break;
1527
1528  case Bytecodes::_fload_0:
1529  case Bytecodes::_iload_0:
1530    push( local(0) );
1531    break;
1532  case Bytecodes::_fload_1:
1533  case Bytecodes::_iload_1:
1534    push( local(1) );
1535    break;
1536  case Bytecodes::_fload_2:
1537  case Bytecodes::_iload_2:
1538    push( local(2) );
1539    break;
1540  case Bytecodes::_fload_3:
1541  case Bytecodes::_iload_3:
1542    push( local(3) );
1543    break;
1544  case Bytecodes::_fload:
1545  case Bytecodes::_iload:
1546    push( local(iter().get_index()) );
1547    break;
1548  case Bytecodes::_lload_0:
1549    push_pair_local( 0 );
1550    break;
1551  case Bytecodes::_lload_1:
1552    push_pair_local( 1 );
1553    break;
1554  case Bytecodes::_lload_2:
1555    push_pair_local( 2 );
1556    break;
1557  case Bytecodes::_lload_3:
1558    push_pair_local( 3 );
1559    break;
1560  case Bytecodes::_lload:
1561    push_pair_local( iter().get_index() );
1562    break;
1563
1564  case Bytecodes::_dload_0:
1565    push_pair_local(0);
1566    break;
1567  case Bytecodes::_dload_1:
1568    push_pair_local(1);
1569    break;
1570  case Bytecodes::_dload_2:
1571    push_pair_local(2);
1572    break;
1573  case Bytecodes::_dload_3:
1574    push_pair_local(3);
1575    break;
1576  case Bytecodes::_dload:
1577    push_pair_local(iter().get_index());
1578    break;
1579  case Bytecodes::_fstore_0:
1580  case Bytecodes::_istore_0:
1581  case Bytecodes::_astore_0:
1582    set_local( 0, pop() );
1583    break;
1584  case Bytecodes::_fstore_1:
1585  case Bytecodes::_istore_1:
1586  case Bytecodes::_astore_1:
1587    set_local( 1, pop() );
1588    break;
1589  case Bytecodes::_fstore_2:
1590  case Bytecodes::_istore_2:
1591  case Bytecodes::_astore_2:
1592    set_local( 2, pop() );
1593    break;
1594  case Bytecodes::_fstore_3:
1595  case Bytecodes::_istore_3:
1596  case Bytecodes::_astore_3:
1597    set_local( 3, pop() );
1598    break;
1599  case Bytecodes::_fstore:
1600  case Bytecodes::_istore:
1601  case Bytecodes::_astore:
1602    set_local( iter().get_index(), pop() );
1603    break;
1604  // long stores
1605  case Bytecodes::_lstore_0:
1606    set_pair_local( 0, pop_pair() );
1607    break;
1608  case Bytecodes::_lstore_1:
1609    set_pair_local( 1, pop_pair() );
1610    break;
1611  case Bytecodes::_lstore_2:
1612    set_pair_local( 2, pop_pair() );
1613    break;
1614  case Bytecodes::_lstore_3:
1615    set_pair_local( 3, pop_pair() );
1616    break;
1617  case Bytecodes::_lstore:
1618    set_pair_local( iter().get_index(), pop_pair() );
1619    break;
1620
1621  // double stores
1622  case Bytecodes::_dstore_0:
1623    set_pair_local( 0, dstore_rounding(pop_pair()) );
1624    break;
1625  case Bytecodes::_dstore_1:
1626    set_pair_local( 1, dstore_rounding(pop_pair()) );
1627    break;
1628  case Bytecodes::_dstore_2:
1629    set_pair_local( 2, dstore_rounding(pop_pair()) );
1630    break;
1631  case Bytecodes::_dstore_3:
1632    set_pair_local( 3, dstore_rounding(pop_pair()) );
1633    break;
1634  case Bytecodes::_dstore:
1635    set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1636    break;
1637
1638  case Bytecodes::_pop:  dec_sp(1);   break;
1639  case Bytecodes::_pop2: dec_sp(2);   break;
1640  case Bytecodes::_swap:
1641    a = pop();
1642    b = pop();
1643    push(a);
1644    push(b);
1645    break;
1646  case Bytecodes::_dup:
1647    a = pop();
1648    push(a);
1649    push(a);
1650    break;
1651  case Bytecodes::_dup_x1:
1652    a = pop();
1653    b = pop();
1654    push( a );
1655    push( b );
1656    push( a );
1657    break;
1658  case Bytecodes::_dup_x2:
1659    a = pop();
1660    b = pop();
1661    c = pop();
1662    push( a );
1663    push( c );
1664    push( b );
1665    push( a );
1666    break;
1667  case Bytecodes::_dup2:
1668    a = pop();
1669    b = pop();
1670    push( b );
1671    push( a );
1672    push( b );
1673    push( a );
1674    break;
1675
1676  case Bytecodes::_dup2_x1:
1677    // before: .. c, b, a
1678    // after:  .. b, a, c, b, a
1679    // not tested
1680    a = pop();
1681    b = pop();
1682    c = pop();
1683    push( b );
1684    push( a );
1685    push( c );
1686    push( b );
1687    push( a );
1688    break;
1689  case Bytecodes::_dup2_x2:
1690    // before: .. d, c, b, a
1691    // after:  .. b, a, d, c, b, a
1692    // not tested
1693    a = pop();
1694    b = pop();
1695    c = pop();
1696    d = pop();
1697    push( b );
1698    push( a );
1699    push( d );
1700    push( c );
1701    push( b );
1702    push( a );
1703    break;
1704
1705  case Bytecodes::_arraylength: {
1706    // Must do null-check with value on expression stack
1707    Node *ary = null_check(peek(), T_ARRAY);
1708    // Compile-time detect of null-exception?
1709    if (stopped())  return;
1710    a = pop();
1711    push(load_array_length(a));
1712    break;
1713  }
1714
1715  case Bytecodes::_baload: array_load(T_BYTE);   break;
1716  case Bytecodes::_caload: array_load(T_CHAR);   break;
1717  case Bytecodes::_iaload: array_load(T_INT);    break;
1718  case Bytecodes::_saload: array_load(T_SHORT);  break;
1719  case Bytecodes::_faload: array_load(T_FLOAT);  break;
1720  case Bytecodes::_aaload: array_load(T_OBJECT); break;
1721  case Bytecodes::_laload: {
1722    a = array_addressing(T_LONG, 0);
1723    if (stopped())  return;     // guaranteed null or range check
1724    dec_sp(2);                  // Pop array and index
1725    push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS, MemNode::unordered));
1726    break;
1727  }
1728  case Bytecodes::_daload: {
1729    a = array_addressing(T_DOUBLE, 0);
1730    if (stopped())  return;     // guaranteed null or range check
1731    dec_sp(2);                  // Pop array and index
1732    push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered));
1733    break;
1734  }
1735  case Bytecodes::_bastore: array_store(T_BYTE);  break;
1736  case Bytecodes::_castore: array_store(T_CHAR);  break;
1737  case Bytecodes::_iastore: array_store(T_INT);   break;
1738  case Bytecodes::_sastore: array_store(T_SHORT); break;
1739  case Bytecodes::_fastore: array_store(T_FLOAT); break;
1740  case Bytecodes::_aastore: {
1741    d = array_addressing(T_OBJECT, 1);
1742    if (stopped())  return;     // guaranteed null or range check
1743    array_store_check();
1744    c = pop();                  // Oop to store
1745    b = pop();                  // index (already used)
1746    a = pop();                  // the array itself
1747    const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1748    const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1749    Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT, MemNode::release);
1750    break;
1751  }
1752  case Bytecodes::_lastore: {
1753    a = array_addressing(T_LONG, 2);
1754    if (stopped())  return;     // guaranteed null or range check
1755    c = pop_pair();
1756    dec_sp(2);                  // Pop array and index
1757    store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS, MemNode::unordered);
1758    break;
1759  }
1760  case Bytecodes::_dastore: {
1761    a = array_addressing(T_DOUBLE, 2);
1762    if (stopped())  return;     // guaranteed null or range check
1763    c = pop_pair();
1764    dec_sp(2);                  // Pop array and index
1765    c = dstore_rounding(c);
1766    store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered);
1767    break;
1768  }
1769  case Bytecodes::_getfield:
1770    do_getfield();
1771    break;
1772
1773  case Bytecodes::_getstatic:
1774    do_getstatic();
1775    break;
1776
1777  case Bytecodes::_putfield:
1778    do_putfield();
1779    break;
1780
1781  case Bytecodes::_putstatic:
1782    do_putstatic();
1783    break;
1784
1785  case Bytecodes::_irem:
1786    do_irem();
1787    break;
1788  case Bytecodes::_idiv:
1789    // Must keep both values on the expression-stack during null-check
1790    zero_check_int(peek());
1791    // Compile-time detect of null-exception?
1792    if (stopped())  return;
1793    b = pop();
1794    a = pop();
1795    push( _gvn.transform( new (C) DivINode(control(),a,b) ) );
1796    break;
1797  case Bytecodes::_imul:
1798    b = pop(); a = pop();
1799    push( _gvn.transform( new (C) MulINode(a,b) ) );
1800    break;
1801  case Bytecodes::_iadd:
1802    b = pop(); a = pop();
1803    push( _gvn.transform( new (C) AddINode(a,b) ) );
1804    break;
1805  case Bytecodes::_ineg:
1806    a = pop();
1807    push( _gvn.transform( new (C) SubINode(_gvn.intcon(0),a)) );
1808    break;
1809  case Bytecodes::_isub:
1810    b = pop(); a = pop();
1811    push( _gvn.transform( new (C) SubINode(a,b) ) );
1812    break;
1813  case Bytecodes::_iand:
1814    b = pop(); a = pop();
1815    push( _gvn.transform( new (C) AndINode(a,b) ) );
1816    break;
1817  case Bytecodes::_ior:
1818    b = pop(); a = pop();
1819    push( _gvn.transform( new (C) OrINode(a,b) ) );
1820    break;
1821  case Bytecodes::_ixor:
1822    b = pop(); a = pop();
1823    push( _gvn.transform( new (C) XorINode(a,b) ) );
1824    break;
1825  case Bytecodes::_ishl:
1826    b = pop(); a = pop();
1827    push( _gvn.transform( new (C) LShiftINode(a,b) ) );
1828    break;
1829  case Bytecodes::_ishr:
1830    b = pop(); a = pop();
1831    push( _gvn.transform( new (C) RShiftINode(a,b) ) );
1832    break;
1833  case Bytecodes::_iushr:
1834    b = pop(); a = pop();
1835    push( _gvn.transform( new (C) URShiftINode(a,b) ) );
1836    break;
1837
1838  case Bytecodes::_fneg:
1839    a = pop();
1840    b = _gvn.transform(new (C) NegFNode (a));
1841    push(b);
1842    break;
1843
1844  case Bytecodes::_fsub:
1845    b = pop();
1846    a = pop();
1847    c = _gvn.transform( new (C) SubFNode(a,b) );
1848    d = precision_rounding(c);
1849    push( d );
1850    break;
1851
1852  case Bytecodes::_fadd:
1853    b = pop();
1854    a = pop();
1855    c = _gvn.transform( new (C) AddFNode(a,b) );
1856    d = precision_rounding(c);
1857    push( d );
1858    break;
1859
1860  case Bytecodes::_fmul:
1861    b = pop();
1862    a = pop();
1863    c = _gvn.transform( new (C) MulFNode(a,b) );
1864    d = precision_rounding(c);
1865    push( d );
1866    break;
1867
1868  case Bytecodes::_fdiv:
1869    b = pop();
1870    a = pop();
1871    c = _gvn.transform( new (C) DivFNode(0,a,b) );
1872    d = precision_rounding(c);
1873    push( d );
1874    break;
1875
1876  case Bytecodes::_frem:
1877    if (Matcher::has_match_rule(Op_ModF)) {
1878      // Generate a ModF node.
1879      b = pop();
1880      a = pop();
1881      c = _gvn.transform( new (C) ModFNode(0,a,b) );
1882      d = precision_rounding(c);
1883      push( d );
1884    }
1885    else {
1886      // Generate a call.
1887      modf();
1888    }
1889    break;
1890
1891  case Bytecodes::_fcmpl:
1892    b = pop();
1893    a = pop();
1894    c = _gvn.transform( new (C) CmpF3Node( a, b));
1895    push(c);
1896    break;
1897  case Bytecodes::_fcmpg:
1898    b = pop();
1899    a = pop();
1900
1901    // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1902    // which negates the result sign except for unordered.  Flip the unordered
1903    // as well by using CmpF3 which implements unordered-lesser instead of
1904    // unordered-greater semantics.  Finally, commute the result bits.  Result
1905    // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1906    c = _gvn.transform( new (C) CmpF3Node( b, a));
1907    c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) );
1908    push(c);
1909    break;
1910
1911  case Bytecodes::_f2i:
1912    a = pop();
1913    push(_gvn.transform(new (C) ConvF2INode(a)));
1914    break;
1915
1916  case Bytecodes::_d2i:
1917    a = pop_pair();
1918    b = _gvn.transform(new (C) ConvD2INode(a));
1919    push( b );
1920    break;
1921
1922  case Bytecodes::_f2d:
1923    a = pop();
1924    b = _gvn.transform( new (C) ConvF2DNode(a));
1925    push_pair( b );
1926    break;
1927
1928  case Bytecodes::_d2f:
1929    a = pop_pair();
1930    b = _gvn.transform( new (C) ConvD2FNode(a));
1931    // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1932    //b = _gvn.transform(new (C) RoundFloatNode(0, b) );
1933    push( b );
1934    break;
1935
1936  case Bytecodes::_l2f:
1937    if (Matcher::convL2FSupported()) {
1938      a = pop_pair();
1939      b = _gvn.transform( new (C) ConvL2FNode(a));
1940      // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1941      // Rather than storing the result into an FP register then pushing
1942      // out to memory to round, the machine instruction that implements
1943      // ConvL2D is responsible for rounding.
1944      // c = precision_rounding(b);
1945      c = _gvn.transform(b);
1946      push(c);
1947    } else {
1948      l2f();
1949    }
1950    break;
1951
1952  case Bytecodes::_l2d:
1953    a = pop_pair();
1954    b = _gvn.transform( new (C) ConvL2DNode(a));
1955    // For i486.ad, rounding is always necessary (see _l2f above).
1956    // c = dprecision_rounding(b);
1957    c = _gvn.transform(b);
1958    push_pair(c);
1959    break;
1960
1961  case Bytecodes::_f2l:
1962    a = pop();
1963    b = _gvn.transform( new (C) ConvF2LNode(a));
1964    push_pair(b);
1965    break;
1966
1967  case Bytecodes::_d2l:
1968    a = pop_pair();
1969    b = _gvn.transform( new (C) ConvD2LNode(a));
1970    push_pair(b);
1971    break;
1972
1973  case Bytecodes::_dsub:
1974    b = pop_pair();
1975    a = pop_pair();
1976    c = _gvn.transform( new (C) SubDNode(a,b) );
1977    d = dprecision_rounding(c);
1978    push_pair( d );
1979    break;
1980
1981  case Bytecodes::_dadd:
1982    b = pop_pair();
1983    a = pop_pair();
1984    c = _gvn.transform( new (C) AddDNode(a,b) );
1985    d = dprecision_rounding(c);
1986    push_pair( d );
1987    break;
1988
1989  case Bytecodes::_dmul:
1990    b = pop_pair();
1991    a = pop_pair();
1992    c = _gvn.transform( new (C) MulDNode(a,b) );
1993    d = dprecision_rounding(c);
1994    push_pair( d );
1995    break;
1996
1997  case Bytecodes::_ddiv:
1998    b = pop_pair();
1999    a = pop_pair();
2000    c = _gvn.transform( new (C) DivDNode(0,a,b) );
2001    d = dprecision_rounding(c);
2002    push_pair( d );
2003    break;
2004
2005  case Bytecodes::_dneg:
2006    a = pop_pair();
2007    b = _gvn.transform(new (C) NegDNode (a));
2008    push_pair(b);
2009    break;
2010
2011  case Bytecodes::_drem:
2012    if (Matcher::has_match_rule(Op_ModD)) {
2013      // Generate a ModD node.
2014      b = pop_pair();
2015      a = pop_pair();
2016      // a % b
2017
2018      c = _gvn.transform( new (C) ModDNode(0,a,b) );
2019      d = dprecision_rounding(c);
2020      push_pair( d );
2021    }
2022    else {
2023      // Generate a call.
2024      modd();
2025    }
2026    break;
2027
2028  case Bytecodes::_dcmpl:
2029    b = pop_pair();
2030    a = pop_pair();
2031    c = _gvn.transform( new (C) CmpD3Node( a, b));
2032    push(c);
2033    break;
2034
2035  case Bytecodes::_dcmpg:
2036    b = pop_pair();
2037    a = pop_pair();
2038    // Same as dcmpl but need to flip the unordered case.
2039    // Commute the inputs, which negates the result sign except for unordered.
2040    // Flip the unordered as well by using CmpD3 which implements
2041    // unordered-lesser instead of unordered-greater semantics.
2042    // Finally, negate the result bits.  Result is same as using a
2043    // CmpD3Greater except we did it with CmpD3 alone.
2044    c = _gvn.transform( new (C) CmpD3Node( b, a));
2045    c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) );
2046    push(c);
2047    break;
2048
2049
2050    // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2051  case Bytecodes::_land:
2052    b = pop_pair();
2053    a = pop_pair();
2054    c = _gvn.transform( new (C) AndLNode(a,b) );
2055    push_pair(c);
2056    break;
2057  case Bytecodes::_lor:
2058    b = pop_pair();
2059    a = pop_pair();
2060    c = _gvn.transform( new (C) OrLNode(a,b) );
2061    push_pair(c);
2062    break;
2063  case Bytecodes::_lxor:
2064    b = pop_pair();
2065    a = pop_pair();
2066    c = _gvn.transform( new (C) XorLNode(a,b) );
2067    push_pair(c);
2068    break;
2069
2070  case Bytecodes::_lshl:
2071    b = pop();                  // the shift count
2072    a = pop_pair();             // value to be shifted
2073    c = _gvn.transform( new (C) LShiftLNode(a,b) );
2074    push_pair(c);
2075    break;
2076  case Bytecodes::_lshr:
2077    b = pop();                  // the shift count
2078    a = pop_pair();             // value to be shifted
2079    c = _gvn.transform( new (C) RShiftLNode(a,b) );
2080    push_pair(c);
2081    break;
2082  case Bytecodes::_lushr:
2083    b = pop();                  // the shift count
2084    a = pop_pair();             // value to be shifted
2085    c = _gvn.transform( new (C) URShiftLNode(a,b) );
2086    push_pair(c);
2087    break;
2088  case Bytecodes::_lmul:
2089    b = pop_pair();
2090    a = pop_pair();
2091    c = _gvn.transform( new (C) MulLNode(a,b) );
2092    push_pair(c);
2093    break;
2094
2095  case Bytecodes::_lrem:
2096    // Must keep both values on the expression-stack during null-check
2097    assert(peek(0) == top(), "long word order");
2098    zero_check_long(peek(1));
2099    // Compile-time detect of null-exception?
2100    if (stopped())  return;
2101    b = pop_pair();
2102    a = pop_pair();
2103    c = _gvn.transform( new (C) ModLNode(control(),a,b) );
2104    push_pair(c);
2105    break;
2106
2107  case Bytecodes::_ldiv:
2108    // Must keep both values on the expression-stack during null-check
2109    assert(peek(0) == top(), "long word order");
2110    zero_check_long(peek(1));
2111    // Compile-time detect of null-exception?
2112    if (stopped())  return;
2113    b = pop_pair();
2114    a = pop_pair();
2115    c = _gvn.transform( new (C) DivLNode(control(),a,b) );
2116    push_pair(c);
2117    break;
2118
2119  case Bytecodes::_ladd:
2120    b = pop_pair();
2121    a = pop_pair();
2122    c = _gvn.transform( new (C) AddLNode(a,b) );
2123    push_pair(c);
2124    break;
2125  case Bytecodes::_lsub:
2126    b = pop_pair();
2127    a = pop_pair();
2128    c = _gvn.transform( new (C) SubLNode(a,b) );
2129    push_pair(c);
2130    break;
2131  case Bytecodes::_lcmp:
2132    // Safepoints are now inserted _before_ branches.  The long-compare
2133    // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2134    // slew of control flow.  These are usually followed by a CmpI vs zero and
2135    // a branch; this pattern then optimizes to the obvious long-compare and
2136    // branch.  However, if the branch is backwards there's a Safepoint
2137    // inserted.  The inserted Safepoint captures the JVM state at the
2138    // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2139    // long-compare is used to control a loop the debug info will force
2140    // computation of the 3-way value, even though the generated code uses a
2141    // long-compare and branch.  We try to rectify the situation by inserting
2142    // a SafePoint here and have it dominate and kill the safepoint added at a
2143    // following backwards branch.  At this point the JVM state merely holds 2
2144    // longs but not the 3-way value.
2145    if( UseLoopSafepoints ) {
2146      switch( iter().next_bc() ) {
2147      case Bytecodes::_ifgt:
2148      case Bytecodes::_iflt:
2149      case Bytecodes::_ifge:
2150      case Bytecodes::_ifle:
2151      case Bytecodes::_ifne:
2152      case Bytecodes::_ifeq:
2153        // If this is a backwards branch in the bytecodes, add Safepoint
2154        maybe_add_safepoint(iter().next_get_dest());
2155      }
2156    }
2157    b = pop_pair();
2158    a = pop_pair();
2159    c = _gvn.transform( new (C) CmpL3Node( a, b ));
2160    push(c);
2161    break;
2162
2163  case Bytecodes::_lneg:
2164    a = pop_pair();
2165    b = _gvn.transform( new (C) SubLNode(longcon(0),a));
2166    push_pair(b);
2167    break;
2168  case Bytecodes::_l2i:
2169    a = pop_pair();
2170    push( _gvn.transform( new (C) ConvL2INode(a)));
2171    break;
2172  case Bytecodes::_i2l:
2173    a = pop();
2174    b = _gvn.transform( new (C) ConvI2LNode(a));
2175    push_pair(b);
2176    break;
2177  case Bytecodes::_i2b:
2178    // Sign extend
2179    a = pop();
2180    a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(24)) );
2181    a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(24)) );
2182    push( a );
2183    break;
2184  case Bytecodes::_i2s:
2185    a = pop();
2186    a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(16)) );
2187    a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(16)) );
2188    push( a );
2189    break;
2190  case Bytecodes::_i2c:
2191    a = pop();
2192    push( _gvn.transform( new (C) AndINode(a,_gvn.intcon(0xFFFF)) ) );
2193    break;
2194
2195  case Bytecodes::_i2f:
2196    a = pop();
2197    b = _gvn.transform( new (C) ConvI2FNode(a) ) ;
2198    c = precision_rounding(b);
2199    push (b);
2200    break;
2201
2202  case Bytecodes::_i2d:
2203    a = pop();
2204    b = _gvn.transform( new (C) ConvI2DNode(a));
2205    push_pair(b);
2206    break;
2207
2208  case Bytecodes::_iinc:        // Increment local
2209    i = iter().get_index();     // Get local index
2210    set_local( i, _gvn.transform( new (C) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2211    break;
2212
2213  // Exit points of synchronized methods must have an unlock node
2214  case Bytecodes::_return:
2215    return_current(NULL);
2216    break;
2217
2218  case Bytecodes::_ireturn:
2219  case Bytecodes::_areturn:
2220  case Bytecodes::_freturn:
2221    return_current(pop());
2222    break;
2223  case Bytecodes::_lreturn:
2224    return_current(pop_pair());
2225    break;
2226  case Bytecodes::_dreturn:
2227    return_current(pop_pair());
2228    break;
2229
2230  case Bytecodes::_athrow:
2231    // null exception oop throws NULL pointer exception
2232    null_check(peek());
2233    if (stopped())  return;
2234    // Hook the thrown exception directly to subsequent handlers.
2235    if (BailoutToInterpreterForThrows) {
2236      // Keep method interpreted from now on.
2237      uncommon_trap(Deoptimization::Reason_unhandled,
2238                    Deoptimization::Action_make_not_compilable);
2239      return;
2240    }
2241    if (env()->jvmti_can_post_on_exceptions()) {
2242      // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2243      uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2244    }
2245    // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2246    add_exception_state(make_exception_state(peek()));
2247    break;
2248
2249  case Bytecodes::_goto:   // fall through
2250  case Bytecodes::_goto_w: {
2251    int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2252
2253    // If this is a backwards branch in the bytecodes, add Safepoint
2254    maybe_add_safepoint(target_bci);
2255
2256    // Update method data
2257    profile_taken_branch(target_bci);
2258
2259    // Merge the current control into the target basic block
2260    merge(target_bci);
2261
2262    // See if we can get some profile data and hand it off to the next block
2263    Block *target_block = block()->successor_for_bci(target_bci);
2264    if (target_block->pred_count() != 1)  break;
2265    ciMethodData* methodData = method()->method_data();
2266    if (!methodData->is_mature())  break;
2267    ciProfileData* data = methodData->bci_to_data(bci());
2268    assert( data->is_JumpData(), "" );
2269    int taken = ((ciJumpData*)data)->taken();
2270    taken = method()->scale_count(taken);
2271    target_block->set_count(taken);
2272    break;
2273  }
2274
2275  case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2276  case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2277  handle_if_null:
2278    // If this is a backwards branch in the bytecodes, add Safepoint
2279    maybe_add_safepoint(iter().get_dest());
2280    a = null();
2281    b = pop();
2282    if (!_gvn.type(b)->speculative_maybe_null() &&
2283        !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2284      inc_sp(1);
2285      Node* null_ctl = top();
2286      b = null_check_oop(b, &null_ctl, true, true, true);
2287      assert(null_ctl->is_top(), "no null control here");
2288      dec_sp(1);
2289    }
2290    c = _gvn.transform( new (C) CmpPNode(b, a) );
2291    do_ifnull(btest, c);
2292    break;
2293
2294  case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2295  case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2296  handle_if_acmp:
2297    // If this is a backwards branch in the bytecodes, add Safepoint
2298    maybe_add_safepoint(iter().get_dest());
2299    a = pop();
2300    b = pop();
2301    c = _gvn.transform( new (C) CmpPNode(b, a) );
2302    c = optimize_cmp_with_klass(c);
2303    do_if(btest, c);
2304    break;
2305
2306  case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2307  case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2308  case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2309  case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2310  case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2311  case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2312  handle_ifxx:
2313    // If this is a backwards branch in the bytecodes, add Safepoint
2314    maybe_add_safepoint(iter().get_dest());
2315    a = _gvn.intcon(0);
2316    b = pop();
2317    c = _gvn.transform( new (C) CmpINode(b, a) );
2318    do_if(btest, c);
2319    break;
2320
2321  case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2322  case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2323  case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2324  case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2325  case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2326  case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2327  handle_if_icmp:
2328    // If this is a backwards branch in the bytecodes, add Safepoint
2329    maybe_add_safepoint(iter().get_dest());
2330    a = pop();
2331    b = pop();
2332    c = _gvn.transform( new (C) CmpINode( b, a ) );
2333    do_if(btest, c);
2334    break;
2335
2336  case Bytecodes::_tableswitch:
2337    do_tableswitch();
2338    break;
2339
2340  case Bytecodes::_lookupswitch:
2341    do_lookupswitch();
2342    break;
2343
2344  case Bytecodes::_invokestatic:
2345  case Bytecodes::_invokedynamic:
2346  case Bytecodes::_invokespecial:
2347  case Bytecodes::_invokevirtual:
2348  case Bytecodes::_invokeinterface:
2349    do_call();
2350    break;
2351  case Bytecodes::_checkcast:
2352    do_checkcast();
2353    break;
2354  case Bytecodes::_instanceof:
2355    do_instanceof();
2356    break;
2357  case Bytecodes::_anewarray:
2358    do_anewarray();
2359    break;
2360  case Bytecodes::_newarray:
2361    do_newarray((BasicType)iter().get_index());
2362    break;
2363  case Bytecodes::_multianewarray:
2364    do_multianewarray();
2365    break;
2366  case Bytecodes::_new:
2367    do_new();
2368    break;
2369
2370  case Bytecodes::_jsr:
2371  case Bytecodes::_jsr_w:
2372    do_jsr();
2373    break;
2374
2375  case Bytecodes::_ret:
2376    do_ret();
2377    break;
2378
2379
2380  case Bytecodes::_monitorenter:
2381    do_monitor_enter();
2382    break;
2383
2384  case Bytecodes::_monitorexit:
2385    do_monitor_exit();
2386    break;
2387
2388  case Bytecodes::_breakpoint:
2389    // Breakpoint set concurrently to compile
2390    // %%% use an uncommon trap?
2391    C->record_failure("breakpoint in method");
2392    return;
2393
2394  default:
2395#ifndef PRODUCT
2396    map()->dump(99);
2397#endif
2398    tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2399    ShouldNotReachHere();
2400  }
2401
2402#ifndef PRODUCT
2403  IdealGraphPrinter *printer = IdealGraphPrinter::printer();
2404  if(printer) {
2405    char buffer[256];
2406    sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2407    bool old = printer->traverse_outs();
2408    printer->set_traverse_outs(true);
2409    printer->print_method(C, buffer, 4);
2410    printer->set_traverse_outs(old);
2411  }
2412#endif
2413}
2414