parse2.cpp revision 10885:4b425192636c
1/*
2 * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "compiler/compileLog.hpp"
30#include "interpreter/linkResolver.hpp"
31#include "memory/resourceArea.hpp"
32#include "memory/universe.inline.hpp"
33#include "oops/oop.inline.hpp"
34#include "opto/addnode.hpp"
35#include "opto/castnode.hpp"
36#include "opto/convertnode.hpp"
37#include "opto/divnode.hpp"
38#include "opto/idealGraphPrinter.hpp"
39#include "opto/matcher.hpp"
40#include "opto/memnode.hpp"
41#include "opto/mulnode.hpp"
42#include "opto/opaquenode.hpp"
43#include "opto/parse.hpp"
44#include "opto/runtime.hpp"
45#include "runtime/deoptimization.hpp"
46#include "runtime/sharedRuntime.hpp"
47
48#ifndef PRODUCT
49extern int explicit_null_checks_inserted,
50           explicit_null_checks_elided;
51#endif
52
53//---------------------------------array_load----------------------------------
54void Parse::array_load(BasicType elem_type) {
55  const Type* elem = Type::TOP;
56  Node* adr = array_addressing(elem_type, 0, &elem);
57  if (stopped())  return;     // guaranteed null or range check
58  dec_sp(2);                  // Pop array and index
59  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
60  Node* ld = make_load(control(), adr, elem, elem_type, adr_type, MemNode::unordered);
61  push(ld);
62}
63
64
65//--------------------------------array_store----------------------------------
66void Parse::array_store(BasicType elem_type) {
67  const Type* elem = Type::TOP;
68  Node* adr = array_addressing(elem_type, 1, &elem);
69  if (stopped())  return;     // guaranteed null or range check
70  Node* val = pop();
71  dec_sp(2);                  // Pop array and index
72  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
73  if (elem == TypeInt::BOOL) {
74    elem_type = T_BOOLEAN;
75  }
76  store_to_memory(control(), adr, val, elem_type, adr_type, StoreNode::release_if_reference(elem_type));
77}
78
79
80//------------------------------array_addressing-------------------------------
81// Pull array and index from the stack.  Compute pointer-to-element.
82Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
83  Node *idx   = peek(0+vals);   // Get from stack without popping
84  Node *ary   = peek(1+vals);   // in case of exception
85
86  // Null check the array base, with correct stack contents
87  ary = null_check(ary, T_ARRAY);
88  // Compile-time detect of null-exception?
89  if (stopped())  return top();
90
91  const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
92  const TypeInt*    sizetype = arytype->size();
93  const Type*       elemtype = arytype->elem();
94
95  if (UseUniqueSubclasses && result2 != NULL) {
96    const Type* el = elemtype->make_ptr();
97    if (el && el->isa_instptr()) {
98      const TypeInstPtr* toop = el->is_instptr();
99      if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
100        // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
101        const Type* subklass = Type::get_const_type(toop->klass());
102        elemtype = subklass->join_speculative(el);
103      }
104    }
105  }
106
107  // Check for big class initializers with all constant offsets
108  // feeding into a known-size array.
109  const TypeInt* idxtype = _gvn.type(idx)->is_int();
110  // See if the highest idx value is less than the lowest array bound,
111  // and if the idx value cannot be negative:
112  bool need_range_check = true;
113  if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
114    need_range_check = false;
115    if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
116  }
117
118  ciKlass * arytype_klass = arytype->klass();
119  if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
120    // Only fails for some -Xcomp runs
121    // The class is unloaded.  We have to run this bytecode in the interpreter.
122    uncommon_trap(Deoptimization::Reason_unloaded,
123                  Deoptimization::Action_reinterpret,
124                  arytype->klass(), "!loaded array");
125    return top();
126  }
127
128  // Do the range check
129  if (GenerateRangeChecks && need_range_check) {
130    Node* tst;
131    if (sizetype->_hi <= 0) {
132      // The greatest array bound is negative, so we can conclude that we're
133      // compiling unreachable code, but the unsigned compare trick used below
134      // only works with non-negative lengths.  Instead, hack "tst" to be zero so
135      // the uncommon_trap path will always be taken.
136      tst = _gvn.intcon(0);
137    } else {
138      // Range is constant in array-oop, so we can use the original state of mem
139      Node* len = load_array_length(ary);
140
141      // Test length vs index (standard trick using unsigned compare)
142      Node* chk = _gvn.transform( new CmpUNode(idx, len) );
143      BoolTest::mask btest = BoolTest::lt;
144      tst = _gvn.transform( new BoolNode(chk, btest) );
145    }
146    RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
147    _gvn.set_type(rc, rc->Value(&_gvn));
148    if (!tst->is_Con()) {
149      record_for_igvn(rc);
150    }
151    set_control(_gvn.transform(new IfTrueNode(rc)));
152    // Branch to failure if out of bounds
153    {
154      PreserveJVMState pjvms(this);
155      set_control(_gvn.transform(new IfFalseNode(rc)));
156      if (C->allow_range_check_smearing()) {
157        // Do not use builtin_throw, since range checks are sometimes
158        // made more stringent by an optimistic transformation.
159        // This creates "tentative" range checks at this point,
160        // which are not guaranteed to throw exceptions.
161        // See IfNode::Ideal, is_range_check, adjust_check.
162        uncommon_trap(Deoptimization::Reason_range_check,
163                      Deoptimization::Action_make_not_entrant,
164                      NULL, "range_check");
165      } else {
166        // If we have already recompiled with the range-check-widening
167        // heroic optimization turned off, then we must really be throwing
168        // range check exceptions.
169        builtin_throw(Deoptimization::Reason_range_check, idx);
170      }
171    }
172  }
173  // Check for always knowing you are throwing a range-check exception
174  if (stopped())  return top();
175
176  // Make array address computation control dependent to prevent it
177  // from floating above the range check during loop optimizations.
178  Node* ptr = array_element_address(ary, idx, type, sizetype, control());
179
180  if (result2 != NULL)  *result2 = elemtype;
181
182  assert(ptr != top(), "top should go hand-in-hand with stopped");
183
184  return ptr;
185}
186
187
188// returns IfNode
189IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
190  Node   *cmp = _gvn.transform( new CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
191  Node   *tst = _gvn.transform( new BoolNode( cmp, mask));
192  IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
193  return iff;
194}
195
196// return Region node
197Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
198  Node *region  = new RegionNode(3); // 2 results
199  record_for_igvn(region);
200  region->init_req(1, iffalse);
201  region->init_req(2, iftrue );
202  _gvn.set_type(region, Type::CONTROL);
203  region = _gvn.transform(region);
204  set_control (region);
205  return region;
206}
207
208
209//------------------------------helper for tableswitch-------------------------
210void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
211  // True branch, use existing map info
212  { PreserveJVMState pjvms(this);
213    Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
214    set_control( iftrue );
215    profile_switch_case(prof_table_index);
216    merge_new_path(dest_bci_if_true);
217  }
218
219  // False branch
220  Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
221  set_control( iffalse );
222}
223
224void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
225  // True branch, use existing map info
226  { PreserveJVMState pjvms(this);
227    Node *iffalse  = _gvn.transform( new IfFalseNode (iff) );
228    set_control( iffalse );
229    profile_switch_case(prof_table_index);
230    merge_new_path(dest_bci_if_true);
231  }
232
233  // False branch
234  Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
235  set_control( iftrue );
236}
237
238void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
239  // False branch, use existing map and control()
240  profile_switch_case(prof_table_index);
241  merge_new_path(dest_bci);
242}
243
244
245extern "C" {
246  static int jint_cmp(const void *i, const void *j) {
247    int a = *(jint *)i;
248    int b = *(jint *)j;
249    return a > b ? 1 : a < b ? -1 : 0;
250  }
251}
252
253
254// Default value for methodData switch indexing. Must be a negative value to avoid
255// conflict with any legal switch index.
256#define NullTableIndex -1
257
258class SwitchRange : public StackObj {
259  // a range of integers coupled with a bci destination
260  jint _lo;                     // inclusive lower limit
261  jint _hi;                     // inclusive upper limit
262  int _dest;
263  int _table_index;             // index into method data table
264
265public:
266  jint lo() const              { return _lo;   }
267  jint hi() const              { return _hi;   }
268  int  dest() const            { return _dest; }
269  int  table_index() const     { return _table_index; }
270  bool is_singleton() const    { return _lo == _hi; }
271
272  void setRange(jint lo, jint hi, int dest, int table_index) {
273    assert(lo <= hi, "must be a non-empty range");
274    _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
275  }
276  bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
277    assert(lo <= hi, "must be a non-empty range");
278    if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
279      _hi = hi;
280      return true;
281    }
282    return false;
283  }
284
285  void set (jint value, int dest, int table_index) {
286    setRange(value, value, dest, table_index);
287  }
288  bool adjoin(jint value, int dest, int table_index) {
289    return adjoinRange(value, value, dest, table_index);
290  }
291
292  void print() {
293    if (is_singleton())
294      tty->print(" {%d}=>%d", lo(), dest());
295    else if (lo() == min_jint)
296      tty->print(" {..%d}=>%d", hi(), dest());
297    else if (hi() == max_jint)
298      tty->print(" {%d..}=>%d", lo(), dest());
299    else
300      tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
301  }
302};
303
304
305//-------------------------------do_tableswitch--------------------------------
306void Parse::do_tableswitch() {
307  Node* lookup = pop();
308
309  // Get information about tableswitch
310  int default_dest = iter().get_dest_table(0);
311  int lo_index     = iter().get_int_table(1);
312  int hi_index     = iter().get_int_table(2);
313  int len          = hi_index - lo_index + 1;
314
315  if (len < 1) {
316    // If this is a backward branch, add safepoint
317    maybe_add_safepoint(default_dest);
318    merge(default_dest);
319    return;
320  }
321
322  // generate decision tree, using trichotomy when possible
323  int rnum = len+2;
324  bool makes_backward_branch = false;
325  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
326  int rp = -1;
327  if (lo_index != min_jint) {
328    ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
329  }
330  for (int j = 0; j < len; j++) {
331    jint match_int = lo_index+j;
332    int  dest      = iter().get_dest_table(j+3);
333    makes_backward_branch |= (dest <= bci());
334    int  table_index = method_data_update() ? j : NullTableIndex;
335    if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
336      ranges[++rp].set(match_int, dest, table_index);
337    }
338  }
339  jint highest = lo_index+(len-1);
340  assert(ranges[rp].hi() == highest, "");
341  if (highest != max_jint
342      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
343    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
344  }
345  assert(rp < len+2, "not too many ranges");
346
347  // Safepoint in case if backward branch observed
348  if( makes_backward_branch && UseLoopSafepoints )
349    add_safepoint();
350
351  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
352}
353
354
355//------------------------------do_lookupswitch--------------------------------
356void Parse::do_lookupswitch() {
357  Node *lookup = pop();         // lookup value
358  // Get information about lookupswitch
359  int default_dest = iter().get_dest_table(0);
360  int len          = iter().get_int_table(1);
361
362  if (len < 1) {    // If this is a backward branch, add safepoint
363    maybe_add_safepoint(default_dest);
364    merge(default_dest);
365    return;
366  }
367
368  // generate decision tree, using trichotomy when possible
369  jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
370  {
371    for( int j = 0; j < len; j++ ) {
372      table[j+j+0] = iter().get_int_table(2+j+j);
373      table[j+j+1] = iter().get_dest_table(2+j+j+1);
374    }
375    qsort( table, len, 2*sizeof(table[0]), jint_cmp );
376  }
377
378  int rnum = len*2+1;
379  bool makes_backward_branch = false;
380  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
381  int rp = -1;
382  for( int j = 0; j < len; j++ ) {
383    jint match_int   = table[j+j+0];
384    int  dest        = table[j+j+1];
385    int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
386    int  table_index = method_data_update() ? j : NullTableIndex;
387    makes_backward_branch |= (dest <= bci());
388    if( match_int != next_lo ) {
389      ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
390    }
391    if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
392      ranges[++rp].set(match_int, dest, table_index);
393    }
394  }
395  jint highest = table[2*(len-1)];
396  assert(ranges[rp].hi() == highest, "");
397  if( highest != max_jint
398      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
399    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
400  }
401  assert(rp < rnum, "not too many ranges");
402
403  // Safepoint in case backward branch observed
404  if( makes_backward_branch && UseLoopSafepoints )
405    add_safepoint();
406
407  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
408}
409
410//----------------------------create_jump_tables-------------------------------
411bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
412  // Are jumptables enabled
413  if (!UseJumpTables)  return false;
414
415  // Are jumptables supported
416  if (!Matcher::has_match_rule(Op_Jump))  return false;
417
418  // Don't make jump table if profiling
419  if (method_data_update())  return false;
420
421  // Decide if a guard is needed to lop off big ranges at either (or
422  // both) end(s) of the input set. We'll call this the default target
423  // even though we can't be sure that it is the true "default".
424
425  bool needs_guard = false;
426  int default_dest;
427  int64_t total_outlier_size = 0;
428  int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
429  int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
430
431  if (lo->dest() == hi->dest()) {
432    total_outlier_size = hi_size + lo_size;
433    default_dest = lo->dest();
434  } else if (lo_size > hi_size) {
435    total_outlier_size = lo_size;
436    default_dest = lo->dest();
437  } else {
438    total_outlier_size = hi_size;
439    default_dest = hi->dest();
440  }
441
442  // If a guard test will eliminate very sparse end ranges, then
443  // it is worth the cost of an extra jump.
444  if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
445    needs_guard = true;
446    if (default_dest == lo->dest()) lo++;
447    if (default_dest == hi->dest()) hi--;
448  }
449
450  // Find the total number of cases and ranges
451  int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
452  int num_range = hi - lo + 1;
453
454  // Don't create table if: too large, too small, or too sparse.
455  if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
456    return false;
457  if (num_cases > (MaxJumpTableSparseness * num_range))
458    return false;
459
460  // Normalize table lookups to zero
461  int lowval = lo->lo();
462  key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
463
464  // Generate a guard to protect against input keyvals that aren't
465  // in the switch domain.
466  if (needs_guard) {
467    Node*   size = _gvn.intcon(num_cases);
468    Node*   cmp = _gvn.transform( new CmpUNode(key_val, size) );
469    Node*   tst = _gvn.transform( new BoolNode(cmp, BoolTest::ge) );
470    IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
471    jump_if_true_fork(iff, default_dest, NullTableIndex);
472  }
473
474  // Create an ideal node JumpTable that has projections
475  // of all possible ranges for a switch statement
476  // The key_val input must be converted to a pointer offset and scaled.
477  // Compare Parse::array_addressing above.
478
479  // Clean the 32-bit int into a real 64-bit offset.
480  // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
481  const TypeInt* ikeytype = TypeInt::make(0, num_cases, Type::WidenMin);
482  // Make I2L conversion control dependent to prevent it from
483  // floating above the range check during loop optimizations.
484  key_val = C->conv_I2X_index(&_gvn, key_val, ikeytype, control());
485
486  // Shift the value by wordsize so we have an index into the table, rather
487  // than a switch value
488  Node *shiftWord = _gvn.MakeConX(wordSize);
489  key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
490
491  // Create the JumpNode
492  Node* jtn = _gvn.transform( new JumpNode(control(), key_val, num_cases) );
493
494  // These are the switch destinations hanging off the jumpnode
495  int i = 0;
496  for (SwitchRange* r = lo; r <= hi; r++) {
497    for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
498      Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
499      {
500        PreserveJVMState pjvms(this);
501        set_control(input);
502        jump_if_always_fork(r->dest(), r->table_index());
503      }
504    }
505  }
506  assert(i == num_cases, "miscount of cases");
507  stop_and_kill_map();  // no more uses for this JVMS
508  return true;
509}
510
511//----------------------------jump_switch_ranges-------------------------------
512void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
513  Block* switch_block = block();
514
515  if (switch_depth == 0) {
516    // Do special processing for the top-level call.
517    assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
518    assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
519
520    // Decrement pred-numbers for the unique set of nodes.
521#ifdef ASSERT
522    // Ensure that the block's successors are a (duplicate-free) set.
523    int successors_counted = 0;  // block occurrences in [hi..lo]
524    int unique_successors = switch_block->num_successors();
525    for (int i = 0; i < unique_successors; i++) {
526      Block* target = switch_block->successor_at(i);
527
528      // Check that the set of successors is the same in both places.
529      int successors_found = 0;
530      for (SwitchRange* p = lo; p <= hi; p++) {
531        if (p->dest() == target->start())  successors_found++;
532      }
533      assert(successors_found > 0, "successor must be known");
534      successors_counted += successors_found;
535    }
536    assert(successors_counted == (hi-lo)+1, "no unexpected successors");
537#endif
538
539    // Maybe prune the inputs, based on the type of key_val.
540    jint min_val = min_jint;
541    jint max_val = max_jint;
542    const TypeInt* ti = key_val->bottom_type()->isa_int();
543    if (ti != NULL) {
544      min_val = ti->_lo;
545      max_val = ti->_hi;
546      assert(min_val <= max_val, "invalid int type");
547    }
548    while (lo->hi() < min_val)  lo++;
549    if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
550    while (hi->lo() > max_val)  hi--;
551    if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
552  }
553
554#ifndef PRODUCT
555  if (switch_depth == 0) {
556    _max_switch_depth = 0;
557    _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
558  }
559#endif
560
561  assert(lo <= hi, "must be a non-empty set of ranges");
562  if (lo == hi) {
563    jump_if_always_fork(lo->dest(), lo->table_index());
564  } else {
565    assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
566    assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
567
568    if (create_jump_tables(key_val, lo, hi)) return;
569
570    int nr = hi - lo + 1;
571
572    SwitchRange* mid = lo + nr/2;
573    // if there is an easy choice, pivot at a singleton:
574    if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
575
576    assert(lo < mid && mid <= hi, "good pivot choice");
577    assert(nr != 2 || mid == hi,   "should pick higher of 2");
578    assert(nr != 3 || mid == hi-1, "should pick middle of 3");
579
580    Node *test_val = _gvn.intcon(mid->lo());
581
582    if (mid->is_singleton()) {
583      IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
584      jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
585
586      // Special Case:  If there are exactly three ranges, and the high
587      // and low range each go to the same place, omit the "gt" test,
588      // since it will not discriminate anything.
589      bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
590      if (eq_test_only) {
591        assert(mid == hi-1, "");
592      }
593
594      // if there is a higher range, test for it and process it:
595      if (mid < hi && !eq_test_only) {
596        // two comparisons of same values--should enable 1 test for 2 branches
597        // Use BoolTest::le instead of BoolTest::gt
598        IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
599        Node   *iftrue  = _gvn.transform( new IfTrueNode(iff_le) );
600        Node   *iffalse = _gvn.transform( new IfFalseNode(iff_le) );
601        { PreserveJVMState pjvms(this);
602          set_control(iffalse);
603          jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
604        }
605        set_control(iftrue);
606      }
607
608    } else {
609      // mid is a range, not a singleton, so treat mid..hi as a unit
610      IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
611
612      // if there is a higher range, test for it and process it:
613      if (mid == hi) {
614        jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
615      } else {
616        Node *iftrue  = _gvn.transform( new IfTrueNode(iff_ge) );
617        Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
618        { PreserveJVMState pjvms(this);
619          set_control(iftrue);
620          jump_switch_ranges(key_val, mid, hi, switch_depth+1);
621        }
622        set_control(iffalse);
623      }
624    }
625
626    // in any case, process the lower range
627    jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
628  }
629
630  // Decrease pred_count for each successor after all is done.
631  if (switch_depth == 0) {
632    int unique_successors = switch_block->num_successors();
633    for (int i = 0; i < unique_successors; i++) {
634      Block* target = switch_block->successor_at(i);
635      // Throw away the pre-allocated path for each unique successor.
636      target->next_path_num();
637    }
638  }
639
640#ifndef PRODUCT
641  _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
642  if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
643    SwitchRange* r;
644    int nsing = 0;
645    for( r = lo; r <= hi; r++ ) {
646      if( r->is_singleton() )  nsing++;
647    }
648    tty->print(">>> ");
649    _method->print_short_name();
650    tty->print_cr(" switch decision tree");
651    tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
652                  (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
653    if (_max_switch_depth > _est_switch_depth) {
654      tty->print_cr("******** BAD SWITCH DEPTH ********");
655    }
656    tty->print("   ");
657    for( r = lo; r <= hi; r++ ) {
658      r->print();
659    }
660    tty->cr();
661  }
662#endif
663}
664
665void Parse::modf() {
666  Node *f2 = pop();
667  Node *f1 = pop();
668  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
669                              CAST_FROM_FN_PTR(address, SharedRuntime::frem),
670                              "frem", NULL, //no memory effects
671                              f1, f2);
672  Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
673
674  push(res);
675}
676
677void Parse::modd() {
678  Node *d2 = pop_pair();
679  Node *d1 = pop_pair();
680  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
681                              CAST_FROM_FN_PTR(address, SharedRuntime::drem),
682                              "drem", NULL, //no memory effects
683                              d1, top(), d2, top());
684  Node* res_d   = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
685
686#ifdef ASSERT
687  Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1));
688  assert(res_top == top(), "second value must be top");
689#endif
690
691  push_pair(res_d);
692}
693
694void Parse::l2f() {
695  Node* f2 = pop();
696  Node* f1 = pop();
697  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
698                              CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
699                              "l2f", NULL, //no memory effects
700                              f1, f2);
701  Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
702
703  push(res);
704}
705
706void Parse::do_irem() {
707  // Must keep both values on the expression-stack during null-check
708  zero_check_int(peek());
709  // Compile-time detect of null-exception?
710  if (stopped())  return;
711
712  Node* b = pop();
713  Node* a = pop();
714
715  const Type *t = _gvn.type(b);
716  if (t != Type::TOP) {
717    const TypeInt *ti = t->is_int();
718    if (ti->is_con()) {
719      int divisor = ti->get_con();
720      // check for positive power of 2
721      if (divisor > 0 &&
722          (divisor & ~(divisor-1)) == divisor) {
723        // yes !
724        Node *mask = _gvn.intcon((divisor - 1));
725        // Sigh, must handle negative dividends
726        Node *zero = _gvn.intcon(0);
727        IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
728        Node *iff = _gvn.transform( new IfFalseNode(ifff) );
729        Node *ift = _gvn.transform( new IfTrueNode (ifff) );
730        Node *reg = jump_if_join(ift, iff);
731        Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
732        // Negative path; negate/and/negate
733        Node *neg = _gvn.transform( new SubINode(zero, a) );
734        Node *andn= _gvn.transform( new AndINode(neg, mask) );
735        Node *negn= _gvn.transform( new SubINode(zero, andn) );
736        phi->init_req(1, negn);
737        // Fast positive case
738        Node *andx = _gvn.transform( new AndINode(a, mask) );
739        phi->init_req(2, andx);
740        // Push the merge
741        push( _gvn.transform(phi) );
742        return;
743      }
744    }
745  }
746  // Default case
747  push( _gvn.transform( new ModINode(control(),a,b) ) );
748}
749
750// Handle jsr and jsr_w bytecode
751void Parse::do_jsr() {
752  assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
753
754  // Store information about current state, tagged with new _jsr_bci
755  int return_bci = iter().next_bci();
756  int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
757
758  // Update method data
759  profile_taken_branch(jsr_bci);
760
761  // The way we do things now, there is only one successor block
762  // for the jsr, because the target code is cloned by ciTypeFlow.
763  Block* target = successor_for_bci(jsr_bci);
764
765  // What got pushed?
766  const Type* ret_addr = target->peek();
767  assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
768
769  // Effect on jsr on stack
770  push(_gvn.makecon(ret_addr));
771
772  // Flow to the jsr.
773  merge(jsr_bci);
774}
775
776// Handle ret bytecode
777void Parse::do_ret() {
778  // Find to whom we return.
779  assert(block()->num_successors() == 1, "a ret can only go one place now");
780  Block* target = block()->successor_at(0);
781  assert(!target->is_ready(), "our arrival must be expected");
782  profile_ret(target->flow()->start());
783  int pnum = target->next_path_num();
784  merge_common(target, pnum);
785}
786
787static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) {
788  if (btest != BoolTest::eq && btest != BoolTest::ne) {
789    // Only ::eq and ::ne are supported for profile injection.
790    return false;
791  }
792  if (test->is_Cmp() &&
793      test->in(1)->Opcode() == Op_ProfileBoolean) {
794    ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1);
795    int false_cnt = profile->false_count();
796    int  true_cnt = profile->true_count();
797
798    // Counts matching depends on the actual test operation (::eq or ::ne).
799    // No need to scale the counts because profile injection was designed
800    // to feed exact counts into VM.
801    taken     = (btest == BoolTest::eq) ? false_cnt :  true_cnt;
802    not_taken = (btest == BoolTest::eq) ?  true_cnt : false_cnt;
803
804    profile->consume();
805    return true;
806  }
807  return false;
808}
809//--------------------------dynamic_branch_prediction--------------------------
810// Try to gather dynamic branch prediction behavior.  Return a probability
811// of the branch being taken and set the "cnt" field.  Returns a -1.0
812// if we need to use static prediction for some reason.
813float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
814  ResourceMark rm;
815
816  cnt  = COUNT_UNKNOWN;
817
818  int     taken = 0;
819  int not_taken = 0;
820
821  bool use_mdo = !has_injected_profile(btest, test, taken, not_taken);
822
823  if (use_mdo) {
824    // Use MethodData information if it is available
825    // FIXME: free the ProfileData structure
826    ciMethodData* methodData = method()->method_data();
827    if (!methodData->is_mature())  return PROB_UNKNOWN;
828    ciProfileData* data = methodData->bci_to_data(bci());
829    if (!data->is_JumpData())  return PROB_UNKNOWN;
830
831    // get taken and not taken values
832    taken = data->as_JumpData()->taken();
833    not_taken = 0;
834    if (data->is_BranchData()) {
835      not_taken = data->as_BranchData()->not_taken();
836    }
837
838    // scale the counts to be commensurate with invocation counts:
839    taken = method()->scale_count(taken);
840    not_taken = method()->scale_count(not_taken);
841  }
842
843  // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
844  // We also check that individual counters are positive first, otherwise the sum can become positive.
845  if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
846    if (C->log() != NULL) {
847      C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
848    }
849    return PROB_UNKNOWN;
850  }
851
852  // Compute frequency that we arrive here
853  float sum = taken + not_taken;
854  // Adjust, if this block is a cloned private block but the
855  // Jump counts are shared.  Taken the private counts for
856  // just this path instead of the shared counts.
857  if( block()->count() > 0 )
858    sum = block()->count();
859  cnt = sum / FreqCountInvocations;
860
861  // Pin probability to sane limits
862  float prob;
863  if( !taken )
864    prob = (0+PROB_MIN) / 2;
865  else if( !not_taken )
866    prob = (1+PROB_MAX) / 2;
867  else {                         // Compute probability of true path
868    prob = (float)taken / (float)(taken + not_taken);
869    if (prob > PROB_MAX)  prob = PROB_MAX;
870    if (prob < PROB_MIN)   prob = PROB_MIN;
871  }
872
873  assert((cnt > 0.0f) && (prob > 0.0f),
874         "Bad frequency assignment in if");
875
876  if (C->log() != NULL) {
877    const char* prob_str = NULL;
878    if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
879    if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
880    char prob_str_buf[30];
881    if (prob_str == NULL) {
882      sprintf(prob_str_buf, "%g", prob);
883      prob_str = prob_str_buf;
884    }
885    C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'",
886                   iter().get_dest(), taken, not_taken, cnt, prob_str);
887  }
888  return prob;
889}
890
891//-----------------------------branch_prediction-------------------------------
892float Parse::branch_prediction(float& cnt,
893                               BoolTest::mask btest,
894                               int target_bci,
895                               Node* test) {
896  float prob = dynamic_branch_prediction(cnt, btest, test);
897  // If prob is unknown, switch to static prediction
898  if (prob != PROB_UNKNOWN)  return prob;
899
900  prob = PROB_FAIR;                   // Set default value
901  if (btest == BoolTest::eq)          // Exactly equal test?
902    prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
903  else if (btest == BoolTest::ne)
904    prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
905
906  // If this is a conditional test guarding a backwards branch,
907  // assume its a loop-back edge.  Make it a likely taken branch.
908  if (target_bci < bci()) {
909    if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
910      // Since it's an OSR, we probably have profile data, but since
911      // branch_prediction returned PROB_UNKNOWN, the counts are too small.
912      // Let's make a special check here for completely zero counts.
913      ciMethodData* methodData = method()->method_data();
914      if (!methodData->is_empty()) {
915        ciProfileData* data = methodData->bci_to_data(bci());
916        // Only stop for truly zero counts, which mean an unknown part
917        // of the OSR-ed method, and we want to deopt to gather more stats.
918        // If you have ANY counts, then this loop is simply 'cold' relative
919        // to the OSR loop.
920        if (data->as_BranchData()->taken() +
921            data->as_BranchData()->not_taken() == 0 ) {
922          // This is the only way to return PROB_UNKNOWN:
923          return PROB_UNKNOWN;
924        }
925      }
926    }
927    prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
928  }
929
930  assert(prob != PROB_UNKNOWN, "must have some guess at this point");
931  return prob;
932}
933
934// The magic constants are chosen so as to match the output of
935// branch_prediction() when the profile reports a zero taken count.
936// It is important to distinguish zero counts unambiguously, because
937// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
938// very small but nonzero probabilities, which if confused with zero
939// counts would keep the program recompiling indefinitely.
940bool Parse::seems_never_taken(float prob) const {
941  return prob < PROB_MIN;
942}
943
944// True if the comparison seems to be the kind that will not change its
945// statistics from true to false.  See comments in adjust_map_after_if.
946// This question is only asked along paths which are already
947// classifed as untaken (by seems_never_taken), so really,
948// if a path is never taken, its controlling comparison is
949// already acting in a stable fashion.  If the comparison
950// seems stable, we will put an expensive uncommon trap
951// on the untaken path.
952bool Parse::seems_stable_comparison() const {
953  if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
954    return false;
955  }
956  return true;
957}
958
959//-------------------------------repush_if_args--------------------------------
960// Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
961inline int Parse::repush_if_args() {
962  if (PrintOpto && WizardMode) {
963    tty->print("defending against excessive implicit null exceptions on %s @%d in ",
964               Bytecodes::name(iter().cur_bc()), iter().cur_bci());
965    method()->print_name(); tty->cr();
966  }
967  int bc_depth = - Bytecodes::depth(iter().cur_bc());
968  assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
969  DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
970  assert(argument(0) != NULL, "must exist");
971  assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
972  inc_sp(bc_depth);
973  return bc_depth;
974}
975
976//----------------------------------do_ifnull----------------------------------
977void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
978  int target_bci = iter().get_dest();
979
980  Block* branch_block = successor_for_bci(target_bci);
981  Block* next_block   = successor_for_bci(iter().next_bci());
982
983  float cnt;
984  float prob = branch_prediction(cnt, btest, target_bci, c);
985  if (prob == PROB_UNKNOWN) {
986    // (An earlier version of do_ifnull omitted this trap for OSR methods.)
987    if (PrintOpto && Verbose) {
988      tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
989    }
990    repush_if_args(); // to gather stats on loop
991    // We need to mark this branch as taken so that if we recompile we will
992    // see that it is possible. In the tiered system the interpreter doesn't
993    // do profiling and by the time we get to the lower tier from the interpreter
994    // the path may be cold again. Make sure it doesn't look untaken
995    profile_taken_branch(target_bci, !ProfileInterpreter);
996    uncommon_trap(Deoptimization::Reason_unreached,
997                  Deoptimization::Action_reinterpret,
998                  NULL, "cold");
999    if (C->eliminate_boxing()) {
1000      // Mark the successor blocks as parsed
1001      branch_block->next_path_num();
1002      next_block->next_path_num();
1003    }
1004    return;
1005  }
1006
1007  NOT_PRODUCT(explicit_null_checks_inserted++);
1008
1009  // Generate real control flow
1010  Node   *tst = _gvn.transform( new BoolNode( c, btest ) );
1011
1012  // Sanity check the probability value
1013  assert(prob > 0.0f,"Bad probability in Parser");
1014 // Need xform to put node in hash table
1015  IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1016  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1017  // True branch
1018  { PreserveJVMState pjvms(this);
1019    Node* iftrue  = _gvn.transform( new IfTrueNode (iff) );
1020    set_control(iftrue);
1021
1022    if (stopped()) {            // Path is dead?
1023      NOT_PRODUCT(explicit_null_checks_elided++);
1024      if (C->eliminate_boxing()) {
1025        // Mark the successor block as parsed
1026        branch_block->next_path_num();
1027      }
1028    } else {                    // Path is live.
1029      // Update method data
1030      profile_taken_branch(target_bci);
1031      adjust_map_after_if(btest, c, prob, branch_block, next_block);
1032      if (!stopped()) {
1033        merge(target_bci);
1034      }
1035    }
1036  }
1037
1038  // False branch
1039  Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1040  set_control(iffalse);
1041
1042  if (stopped()) {              // Path is dead?
1043    NOT_PRODUCT(explicit_null_checks_elided++);
1044    if (C->eliminate_boxing()) {
1045      // Mark the successor block as parsed
1046      next_block->next_path_num();
1047    }
1048  } else  {                     // Path is live.
1049    // Update method data
1050    profile_not_taken_branch();
1051    adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1052                        next_block, branch_block);
1053  }
1054}
1055
1056//------------------------------------do_if------------------------------------
1057void Parse::do_if(BoolTest::mask btest, Node* c) {
1058  int target_bci = iter().get_dest();
1059
1060  Block* branch_block = successor_for_bci(target_bci);
1061  Block* next_block   = successor_for_bci(iter().next_bci());
1062
1063  float cnt;
1064  float prob = branch_prediction(cnt, btest, target_bci, c);
1065  float untaken_prob = 1.0 - prob;
1066
1067  if (prob == PROB_UNKNOWN) {
1068    if (PrintOpto && Verbose) {
1069      tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1070    }
1071    repush_if_args(); // to gather stats on loop
1072    // We need to mark this branch as taken so that if we recompile we will
1073    // see that it is possible. In the tiered system the interpreter doesn't
1074    // do profiling and by the time we get to the lower tier from the interpreter
1075    // the path may be cold again. Make sure it doesn't look untaken
1076    profile_taken_branch(target_bci, !ProfileInterpreter);
1077    uncommon_trap(Deoptimization::Reason_unreached,
1078                  Deoptimization::Action_reinterpret,
1079                  NULL, "cold");
1080    if (C->eliminate_boxing()) {
1081      // Mark the successor blocks as parsed
1082      branch_block->next_path_num();
1083      next_block->next_path_num();
1084    }
1085    return;
1086  }
1087
1088  // Sanity check the probability value
1089  assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1090
1091  bool taken_if_true = true;
1092  // Convert BoolTest to canonical form:
1093  if (!BoolTest(btest).is_canonical()) {
1094    btest         = BoolTest(btest).negate();
1095    taken_if_true = false;
1096    // prob is NOT updated here; it remains the probability of the taken
1097    // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1098  }
1099  assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1100
1101  Node* tst0 = new BoolNode(c, btest);
1102  Node* tst = _gvn.transform(tst0);
1103  BoolTest::mask taken_btest   = BoolTest::illegal;
1104  BoolTest::mask untaken_btest = BoolTest::illegal;
1105
1106  if (tst->is_Bool()) {
1107    // Refresh c from the transformed bool node, since it may be
1108    // simpler than the original c.  Also re-canonicalize btest.
1109    // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1110    // That can arise from statements like: if (x instanceof C) ...
1111    if (tst != tst0) {
1112      // Canonicalize one more time since transform can change it.
1113      btest = tst->as_Bool()->_test._test;
1114      if (!BoolTest(btest).is_canonical()) {
1115        // Reverse edges one more time...
1116        tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1117        btest = tst->as_Bool()->_test._test;
1118        assert(BoolTest(btest).is_canonical(), "sanity");
1119        taken_if_true = !taken_if_true;
1120      }
1121      c = tst->in(1);
1122    }
1123    BoolTest::mask neg_btest = BoolTest(btest).negate();
1124    taken_btest   = taken_if_true ?     btest : neg_btest;
1125    untaken_btest = taken_if_true ? neg_btest :     btest;
1126  }
1127
1128  // Generate real control flow
1129  float true_prob = (taken_if_true ? prob : untaken_prob);
1130  IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1131  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1132  Node* taken_branch   = new IfTrueNode(iff);
1133  Node* untaken_branch = new IfFalseNode(iff);
1134  if (!taken_if_true) {  // Finish conversion to canonical form
1135    Node* tmp      = taken_branch;
1136    taken_branch   = untaken_branch;
1137    untaken_branch = tmp;
1138  }
1139
1140  // Branch is taken:
1141  { PreserveJVMState pjvms(this);
1142    taken_branch = _gvn.transform(taken_branch);
1143    set_control(taken_branch);
1144
1145    if (stopped()) {
1146      if (C->eliminate_boxing()) {
1147        // Mark the successor block as parsed
1148        branch_block->next_path_num();
1149      }
1150    } else {
1151      // Update method data
1152      profile_taken_branch(target_bci);
1153      adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1154      if (!stopped()) {
1155        merge(target_bci);
1156      }
1157    }
1158  }
1159
1160  untaken_branch = _gvn.transform(untaken_branch);
1161  set_control(untaken_branch);
1162
1163  // Branch not taken.
1164  if (stopped()) {
1165    if (C->eliminate_boxing()) {
1166      // Mark the successor block as parsed
1167      next_block->next_path_num();
1168    }
1169  } else {
1170    // Update method data
1171    profile_not_taken_branch();
1172    adjust_map_after_if(untaken_btest, c, untaken_prob,
1173                        next_block, branch_block);
1174  }
1175}
1176
1177bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
1178  // Don't want to speculate on uncommon traps when running with -Xcomp
1179  if (!UseInterpreter) {
1180    return false;
1181  }
1182  return (seems_never_taken(prob) && seems_stable_comparison());
1183}
1184
1185//----------------------------adjust_map_after_if------------------------------
1186// Adjust the JVM state to reflect the result of taking this path.
1187// Basically, it means inspecting the CmpNode controlling this
1188// branch, seeing how it constrains a tested value, and then
1189// deciding if it's worth our while to encode this constraint
1190// as graph nodes in the current abstract interpretation map.
1191void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1192                                Block* path, Block* other_path) {
1193  if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1194    return;                             // nothing to do
1195
1196  bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1197
1198  if (path_is_suitable_for_uncommon_trap(prob)) {
1199    repush_if_args();
1200    uncommon_trap(Deoptimization::Reason_unstable_if,
1201                  Deoptimization::Action_reinterpret,
1202                  NULL,
1203                  (is_fallthrough ? "taken always" : "taken never"));
1204    return;
1205  }
1206
1207  Node* val = c->in(1);
1208  Node* con = c->in(2);
1209  const Type* tcon = _gvn.type(con);
1210  const Type* tval = _gvn.type(val);
1211  bool have_con = tcon->singleton();
1212  if (tval->singleton()) {
1213    if (!have_con) {
1214      // Swap, so constant is in con.
1215      con  = val;
1216      tcon = tval;
1217      val  = c->in(2);
1218      tval = _gvn.type(val);
1219      btest = BoolTest(btest).commute();
1220      have_con = true;
1221    } else {
1222      // Do we have two constants?  Then leave well enough alone.
1223      have_con = false;
1224    }
1225  }
1226  if (!have_con)                        // remaining adjustments need a con
1227    return;
1228
1229  sharpen_type_after_if(btest, con, tcon, val, tval);
1230}
1231
1232
1233static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1234  Node* ldk;
1235  if (n->is_DecodeNKlass()) {
1236    if (n->in(1)->Opcode() != Op_LoadNKlass) {
1237      return NULL;
1238    } else {
1239      ldk = n->in(1);
1240    }
1241  } else if (n->Opcode() != Op_LoadKlass) {
1242    return NULL;
1243  } else {
1244    ldk = n;
1245  }
1246  assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1247
1248  Node* adr = ldk->in(MemNode::Address);
1249  intptr_t off = 0;
1250  Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1251  if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1252    return NULL;
1253  const TypePtr* tp = gvn->type(obj)->is_ptr();
1254  if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1255    return NULL;
1256
1257  return obj;
1258}
1259
1260void Parse::sharpen_type_after_if(BoolTest::mask btest,
1261                                  Node* con, const Type* tcon,
1262                                  Node* val, const Type* tval) {
1263  // Look for opportunities to sharpen the type of a node
1264  // whose klass is compared with a constant klass.
1265  if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1266    Node* obj = extract_obj_from_klass_load(&_gvn, val);
1267    const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1268    if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1269       // Found:
1270       //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1271       // or the narrowOop equivalent.
1272       const Type* obj_type = _gvn.type(obj);
1273       const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1274       if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1275           tboth->higher_equal(obj_type)) {
1276          // obj has to be of the exact type Foo if the CmpP succeeds.
1277          int obj_in_map = map()->find_edge(obj);
1278          JVMState* jvms = this->jvms();
1279          if (obj_in_map >= 0 &&
1280              (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1281            TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1282            const Type* tcc = ccast->as_Type()->type();
1283            assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1284            // Delay transform() call to allow recovery of pre-cast value
1285            // at the control merge.
1286            _gvn.set_type_bottom(ccast);
1287            record_for_igvn(ccast);
1288            // Here's the payoff.
1289            replace_in_map(obj, ccast);
1290          }
1291       }
1292    }
1293  }
1294
1295  int val_in_map = map()->find_edge(val);
1296  if (val_in_map < 0)  return;          // replace_in_map would be useless
1297  {
1298    JVMState* jvms = this->jvms();
1299    if (!(jvms->is_loc(val_in_map) ||
1300          jvms->is_stk(val_in_map)))
1301      return;                           // again, it would be useless
1302  }
1303
1304  // Check for a comparison to a constant, and "know" that the compared
1305  // value is constrained on this path.
1306  assert(tcon->singleton(), "");
1307  ConstraintCastNode* ccast = NULL;
1308  Node* cast = NULL;
1309
1310  switch (btest) {
1311  case BoolTest::eq:                    // Constant test?
1312    {
1313      const Type* tboth = tcon->join_speculative(tval);
1314      if (tboth == tval)  break;        // Nothing to gain.
1315      if (tcon->isa_int()) {
1316        ccast = new CastIINode(val, tboth);
1317      } else if (tcon == TypePtr::NULL_PTR) {
1318        // Cast to null, but keep the pointer identity temporarily live.
1319        ccast = new CastPPNode(val, tboth);
1320      } else {
1321        const TypeF* tf = tcon->isa_float_constant();
1322        const TypeD* td = tcon->isa_double_constant();
1323        // Exclude tests vs float/double 0 as these could be
1324        // either +0 or -0.  Just because you are equal to +0
1325        // doesn't mean you ARE +0!
1326        // Note, following code also replaces Long and Oop values.
1327        if ((!tf || tf->_f != 0.0) &&
1328            (!td || td->_d != 0.0))
1329          cast = con;                   // Replace non-constant val by con.
1330      }
1331    }
1332    break;
1333
1334  case BoolTest::ne:
1335    if (tcon == TypePtr::NULL_PTR) {
1336      cast = cast_not_null(val, false);
1337    }
1338    break;
1339
1340  default:
1341    // (At this point we could record int range types with CastII.)
1342    break;
1343  }
1344
1345  if (ccast != NULL) {
1346    const Type* tcc = ccast->as_Type()->type();
1347    assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1348    // Delay transform() call to allow recovery of pre-cast value
1349    // at the control merge.
1350    ccast->set_req(0, control());
1351    _gvn.set_type_bottom(ccast);
1352    record_for_igvn(ccast);
1353    cast = ccast;
1354  }
1355
1356  if (cast != NULL) {                   // Here's the payoff.
1357    replace_in_map(val, cast);
1358  }
1359}
1360
1361/**
1362 * Use speculative type to optimize CmpP node: if comparison is
1363 * against the low level class, cast the object to the speculative
1364 * type if any. CmpP should then go away.
1365 *
1366 * @param c  expected CmpP node
1367 * @return   result of CmpP on object casted to speculative type
1368 *
1369 */
1370Node* Parse::optimize_cmp_with_klass(Node* c) {
1371  // If this is transformed by the _gvn to a comparison with the low
1372  // level klass then we may be able to use speculation
1373  if (c->Opcode() == Op_CmpP &&
1374      (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1375      c->in(2)->is_Con()) {
1376    Node* load_klass = NULL;
1377    Node* decode = NULL;
1378    if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1379      decode = c->in(1);
1380      load_klass = c->in(1)->in(1);
1381    } else {
1382      load_klass = c->in(1);
1383    }
1384    if (load_klass->in(2)->is_AddP()) {
1385      Node* addp = load_klass->in(2);
1386      Node* obj = addp->in(AddPNode::Address);
1387      const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1388      if (obj_type->speculative_type_not_null() != NULL) {
1389        ciKlass* k = obj_type->speculative_type();
1390        inc_sp(2);
1391        obj = maybe_cast_profiled_obj(obj, k);
1392        dec_sp(2);
1393        // Make the CmpP use the casted obj
1394        addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1395        load_klass = load_klass->clone();
1396        load_klass->set_req(2, addp);
1397        load_klass = _gvn.transform(load_klass);
1398        if (decode != NULL) {
1399          decode = decode->clone();
1400          decode->set_req(1, load_klass);
1401          load_klass = _gvn.transform(decode);
1402        }
1403        c = c->clone();
1404        c->set_req(1, load_klass);
1405        c = _gvn.transform(c);
1406      }
1407    }
1408  }
1409  return c;
1410}
1411
1412//------------------------------do_one_bytecode--------------------------------
1413// Parse this bytecode, and alter the Parsers JVM->Node mapping
1414void Parse::do_one_bytecode() {
1415  Node *a, *b, *c, *d;          // Handy temps
1416  BoolTest::mask btest;
1417  int i;
1418
1419  assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1420
1421  if (C->check_node_count(NodeLimitFudgeFactor * 5,
1422                          "out of nodes parsing method")) {
1423    return;
1424  }
1425
1426#ifdef ASSERT
1427  // for setting breakpoints
1428  if (TraceOptoParse) {
1429    tty->print(" @");
1430    dump_bci(bci());
1431    tty->cr();
1432  }
1433#endif
1434
1435  switch (bc()) {
1436  case Bytecodes::_nop:
1437    // do nothing
1438    break;
1439  case Bytecodes::_lconst_0:
1440    push_pair(longcon(0));
1441    break;
1442
1443  case Bytecodes::_lconst_1:
1444    push_pair(longcon(1));
1445    break;
1446
1447  case Bytecodes::_fconst_0:
1448    push(zerocon(T_FLOAT));
1449    break;
1450
1451  case Bytecodes::_fconst_1:
1452    push(makecon(TypeF::ONE));
1453    break;
1454
1455  case Bytecodes::_fconst_2:
1456    push(makecon(TypeF::make(2.0f)));
1457    break;
1458
1459  case Bytecodes::_dconst_0:
1460    push_pair(zerocon(T_DOUBLE));
1461    break;
1462
1463  case Bytecodes::_dconst_1:
1464    push_pair(makecon(TypeD::ONE));
1465    break;
1466
1467  case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1468  case Bytecodes::_iconst_0: push(intcon( 0)); break;
1469  case Bytecodes::_iconst_1: push(intcon( 1)); break;
1470  case Bytecodes::_iconst_2: push(intcon( 2)); break;
1471  case Bytecodes::_iconst_3: push(intcon( 3)); break;
1472  case Bytecodes::_iconst_4: push(intcon( 4)); break;
1473  case Bytecodes::_iconst_5: push(intcon( 5)); break;
1474  case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1475  case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1476  case Bytecodes::_aconst_null: push(null());  break;
1477  case Bytecodes::_ldc:
1478  case Bytecodes::_ldc_w:
1479  case Bytecodes::_ldc2_w:
1480    // If the constant is unresolved, run this BC once in the interpreter.
1481    {
1482      ciConstant constant = iter().get_constant();
1483      if (constant.basic_type() == T_OBJECT &&
1484          !constant.as_object()->is_loaded()) {
1485        int index = iter().get_constant_pool_index();
1486        constantTag tag = iter().get_constant_pool_tag(index);
1487        uncommon_trap(Deoptimization::make_trap_request
1488                      (Deoptimization::Reason_unloaded,
1489                       Deoptimization::Action_reinterpret,
1490                       index),
1491                      NULL, tag.internal_name());
1492        break;
1493      }
1494      assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1495             "must be java_mirror of klass");
1496      const Type* con_type = Type::make_from_constant(constant);
1497      if (con_type != NULL) {
1498        push_node(con_type->basic_type(), makecon(con_type));
1499      }
1500    }
1501
1502    break;
1503
1504  case Bytecodes::_aload_0:
1505    push( local(0) );
1506    break;
1507  case Bytecodes::_aload_1:
1508    push( local(1) );
1509    break;
1510  case Bytecodes::_aload_2:
1511    push( local(2) );
1512    break;
1513  case Bytecodes::_aload_3:
1514    push( local(3) );
1515    break;
1516  case Bytecodes::_aload:
1517    push( local(iter().get_index()) );
1518    break;
1519
1520  case Bytecodes::_fload_0:
1521  case Bytecodes::_iload_0:
1522    push( local(0) );
1523    break;
1524  case Bytecodes::_fload_1:
1525  case Bytecodes::_iload_1:
1526    push( local(1) );
1527    break;
1528  case Bytecodes::_fload_2:
1529  case Bytecodes::_iload_2:
1530    push( local(2) );
1531    break;
1532  case Bytecodes::_fload_3:
1533  case Bytecodes::_iload_3:
1534    push( local(3) );
1535    break;
1536  case Bytecodes::_fload:
1537  case Bytecodes::_iload:
1538    push( local(iter().get_index()) );
1539    break;
1540  case Bytecodes::_lload_0:
1541    push_pair_local( 0 );
1542    break;
1543  case Bytecodes::_lload_1:
1544    push_pair_local( 1 );
1545    break;
1546  case Bytecodes::_lload_2:
1547    push_pair_local( 2 );
1548    break;
1549  case Bytecodes::_lload_3:
1550    push_pair_local( 3 );
1551    break;
1552  case Bytecodes::_lload:
1553    push_pair_local( iter().get_index() );
1554    break;
1555
1556  case Bytecodes::_dload_0:
1557    push_pair_local(0);
1558    break;
1559  case Bytecodes::_dload_1:
1560    push_pair_local(1);
1561    break;
1562  case Bytecodes::_dload_2:
1563    push_pair_local(2);
1564    break;
1565  case Bytecodes::_dload_3:
1566    push_pair_local(3);
1567    break;
1568  case Bytecodes::_dload:
1569    push_pair_local(iter().get_index());
1570    break;
1571  case Bytecodes::_fstore_0:
1572  case Bytecodes::_istore_0:
1573  case Bytecodes::_astore_0:
1574    set_local( 0, pop() );
1575    break;
1576  case Bytecodes::_fstore_1:
1577  case Bytecodes::_istore_1:
1578  case Bytecodes::_astore_1:
1579    set_local( 1, pop() );
1580    break;
1581  case Bytecodes::_fstore_2:
1582  case Bytecodes::_istore_2:
1583  case Bytecodes::_astore_2:
1584    set_local( 2, pop() );
1585    break;
1586  case Bytecodes::_fstore_3:
1587  case Bytecodes::_istore_3:
1588  case Bytecodes::_astore_3:
1589    set_local( 3, pop() );
1590    break;
1591  case Bytecodes::_fstore:
1592  case Bytecodes::_istore:
1593  case Bytecodes::_astore:
1594    set_local( iter().get_index(), pop() );
1595    break;
1596  // long stores
1597  case Bytecodes::_lstore_0:
1598    set_pair_local( 0, pop_pair() );
1599    break;
1600  case Bytecodes::_lstore_1:
1601    set_pair_local( 1, pop_pair() );
1602    break;
1603  case Bytecodes::_lstore_2:
1604    set_pair_local( 2, pop_pair() );
1605    break;
1606  case Bytecodes::_lstore_3:
1607    set_pair_local( 3, pop_pair() );
1608    break;
1609  case Bytecodes::_lstore:
1610    set_pair_local( iter().get_index(), pop_pair() );
1611    break;
1612
1613  // double stores
1614  case Bytecodes::_dstore_0:
1615    set_pair_local( 0, dstore_rounding(pop_pair()) );
1616    break;
1617  case Bytecodes::_dstore_1:
1618    set_pair_local( 1, dstore_rounding(pop_pair()) );
1619    break;
1620  case Bytecodes::_dstore_2:
1621    set_pair_local( 2, dstore_rounding(pop_pair()) );
1622    break;
1623  case Bytecodes::_dstore_3:
1624    set_pair_local( 3, dstore_rounding(pop_pair()) );
1625    break;
1626  case Bytecodes::_dstore:
1627    set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1628    break;
1629
1630  case Bytecodes::_pop:  dec_sp(1);   break;
1631  case Bytecodes::_pop2: dec_sp(2);   break;
1632  case Bytecodes::_swap:
1633    a = pop();
1634    b = pop();
1635    push(a);
1636    push(b);
1637    break;
1638  case Bytecodes::_dup:
1639    a = pop();
1640    push(a);
1641    push(a);
1642    break;
1643  case Bytecodes::_dup_x1:
1644    a = pop();
1645    b = pop();
1646    push( a );
1647    push( b );
1648    push( a );
1649    break;
1650  case Bytecodes::_dup_x2:
1651    a = pop();
1652    b = pop();
1653    c = pop();
1654    push( a );
1655    push( c );
1656    push( b );
1657    push( a );
1658    break;
1659  case Bytecodes::_dup2:
1660    a = pop();
1661    b = pop();
1662    push( b );
1663    push( a );
1664    push( b );
1665    push( a );
1666    break;
1667
1668  case Bytecodes::_dup2_x1:
1669    // before: .. c, b, a
1670    // after:  .. b, a, c, b, a
1671    // not tested
1672    a = pop();
1673    b = pop();
1674    c = pop();
1675    push( b );
1676    push( a );
1677    push( c );
1678    push( b );
1679    push( a );
1680    break;
1681  case Bytecodes::_dup2_x2:
1682    // before: .. d, c, b, a
1683    // after:  .. b, a, d, c, b, a
1684    // not tested
1685    a = pop();
1686    b = pop();
1687    c = pop();
1688    d = pop();
1689    push( b );
1690    push( a );
1691    push( d );
1692    push( c );
1693    push( b );
1694    push( a );
1695    break;
1696
1697  case Bytecodes::_arraylength: {
1698    // Must do null-check with value on expression stack
1699    Node *ary = null_check(peek(), T_ARRAY);
1700    // Compile-time detect of null-exception?
1701    if (stopped())  return;
1702    a = pop();
1703    push(load_array_length(a));
1704    break;
1705  }
1706
1707  case Bytecodes::_baload: array_load(T_BYTE);   break;
1708  case Bytecodes::_caload: array_load(T_CHAR);   break;
1709  case Bytecodes::_iaload: array_load(T_INT);    break;
1710  case Bytecodes::_saload: array_load(T_SHORT);  break;
1711  case Bytecodes::_faload: array_load(T_FLOAT);  break;
1712  case Bytecodes::_aaload: array_load(T_OBJECT); break;
1713  case Bytecodes::_laload: {
1714    a = array_addressing(T_LONG, 0);
1715    if (stopped())  return;     // guaranteed null or range check
1716    dec_sp(2);                  // Pop array and index
1717    push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS, MemNode::unordered));
1718    break;
1719  }
1720  case Bytecodes::_daload: {
1721    a = array_addressing(T_DOUBLE, 0);
1722    if (stopped())  return;     // guaranteed null or range check
1723    dec_sp(2);                  // Pop array and index
1724    push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered));
1725    break;
1726  }
1727  case Bytecodes::_bastore: array_store(T_BYTE);  break;
1728  case Bytecodes::_castore: array_store(T_CHAR);  break;
1729  case Bytecodes::_iastore: array_store(T_INT);   break;
1730  case Bytecodes::_sastore: array_store(T_SHORT); break;
1731  case Bytecodes::_fastore: array_store(T_FLOAT); break;
1732  case Bytecodes::_aastore: {
1733    d = array_addressing(T_OBJECT, 1);
1734    if (stopped())  return;     // guaranteed null or range check
1735    array_store_check();
1736    c = pop();                  // Oop to store
1737    b = pop();                  // index (already used)
1738    a = pop();                  // the array itself
1739    const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1740    const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1741    Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT,
1742                                     StoreNode::release_if_reference(T_OBJECT));
1743    break;
1744  }
1745  case Bytecodes::_lastore: {
1746    a = array_addressing(T_LONG, 2);
1747    if (stopped())  return;     // guaranteed null or range check
1748    c = pop_pair();
1749    dec_sp(2);                  // Pop array and index
1750    store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS, MemNode::unordered);
1751    break;
1752  }
1753  case Bytecodes::_dastore: {
1754    a = array_addressing(T_DOUBLE, 2);
1755    if (stopped())  return;     // guaranteed null or range check
1756    c = pop_pair();
1757    dec_sp(2);                  // Pop array and index
1758    c = dstore_rounding(c);
1759    store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered);
1760    break;
1761  }
1762  case Bytecodes::_getfield:
1763    do_getfield();
1764    break;
1765
1766  case Bytecodes::_getstatic:
1767    do_getstatic();
1768    break;
1769
1770  case Bytecodes::_putfield:
1771    do_putfield();
1772    break;
1773
1774  case Bytecodes::_putstatic:
1775    do_putstatic();
1776    break;
1777
1778  case Bytecodes::_irem:
1779    do_irem();
1780    break;
1781  case Bytecodes::_idiv:
1782    // Must keep both values on the expression-stack during null-check
1783    zero_check_int(peek());
1784    // Compile-time detect of null-exception?
1785    if (stopped())  return;
1786    b = pop();
1787    a = pop();
1788    push( _gvn.transform( new DivINode(control(),a,b) ) );
1789    break;
1790  case Bytecodes::_imul:
1791    b = pop(); a = pop();
1792    push( _gvn.transform( new MulINode(a,b) ) );
1793    break;
1794  case Bytecodes::_iadd:
1795    b = pop(); a = pop();
1796    push( _gvn.transform( new AddINode(a,b) ) );
1797    break;
1798  case Bytecodes::_ineg:
1799    a = pop();
1800    push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
1801    break;
1802  case Bytecodes::_isub:
1803    b = pop(); a = pop();
1804    push( _gvn.transform( new SubINode(a,b) ) );
1805    break;
1806  case Bytecodes::_iand:
1807    b = pop(); a = pop();
1808    push( _gvn.transform( new AndINode(a,b) ) );
1809    break;
1810  case Bytecodes::_ior:
1811    b = pop(); a = pop();
1812    push( _gvn.transform( new OrINode(a,b) ) );
1813    break;
1814  case Bytecodes::_ixor:
1815    b = pop(); a = pop();
1816    push( _gvn.transform( new XorINode(a,b) ) );
1817    break;
1818  case Bytecodes::_ishl:
1819    b = pop(); a = pop();
1820    push( _gvn.transform( new LShiftINode(a,b) ) );
1821    break;
1822  case Bytecodes::_ishr:
1823    b = pop(); a = pop();
1824    push( _gvn.transform( new RShiftINode(a,b) ) );
1825    break;
1826  case Bytecodes::_iushr:
1827    b = pop(); a = pop();
1828    push( _gvn.transform( new URShiftINode(a,b) ) );
1829    break;
1830
1831  case Bytecodes::_fneg:
1832    a = pop();
1833    b = _gvn.transform(new NegFNode (a));
1834    push(b);
1835    break;
1836
1837  case Bytecodes::_fsub:
1838    b = pop();
1839    a = pop();
1840    c = _gvn.transform( new SubFNode(a,b) );
1841    d = precision_rounding(c);
1842    push( d );
1843    break;
1844
1845  case Bytecodes::_fadd:
1846    b = pop();
1847    a = pop();
1848    c = _gvn.transform( new AddFNode(a,b) );
1849    d = precision_rounding(c);
1850    push( d );
1851    break;
1852
1853  case Bytecodes::_fmul:
1854    b = pop();
1855    a = pop();
1856    c = _gvn.transform( new MulFNode(a,b) );
1857    d = precision_rounding(c);
1858    push( d );
1859    break;
1860
1861  case Bytecodes::_fdiv:
1862    b = pop();
1863    a = pop();
1864    c = _gvn.transform( new DivFNode(0,a,b) );
1865    d = precision_rounding(c);
1866    push( d );
1867    break;
1868
1869  case Bytecodes::_frem:
1870    if (Matcher::has_match_rule(Op_ModF)) {
1871      // Generate a ModF node.
1872      b = pop();
1873      a = pop();
1874      c = _gvn.transform( new ModFNode(0,a,b) );
1875      d = precision_rounding(c);
1876      push( d );
1877    }
1878    else {
1879      // Generate a call.
1880      modf();
1881    }
1882    break;
1883
1884  case Bytecodes::_fcmpl:
1885    b = pop();
1886    a = pop();
1887    c = _gvn.transform( new CmpF3Node( a, b));
1888    push(c);
1889    break;
1890  case Bytecodes::_fcmpg:
1891    b = pop();
1892    a = pop();
1893
1894    // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1895    // which negates the result sign except for unordered.  Flip the unordered
1896    // as well by using CmpF3 which implements unordered-lesser instead of
1897    // unordered-greater semantics.  Finally, commute the result bits.  Result
1898    // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1899    c = _gvn.transform( new CmpF3Node( b, a));
1900    c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
1901    push(c);
1902    break;
1903
1904  case Bytecodes::_f2i:
1905    a = pop();
1906    push(_gvn.transform(new ConvF2INode(a)));
1907    break;
1908
1909  case Bytecodes::_d2i:
1910    a = pop_pair();
1911    b = _gvn.transform(new ConvD2INode(a));
1912    push( b );
1913    break;
1914
1915  case Bytecodes::_f2d:
1916    a = pop();
1917    b = _gvn.transform( new ConvF2DNode(a));
1918    push_pair( b );
1919    break;
1920
1921  case Bytecodes::_d2f:
1922    a = pop_pair();
1923    b = _gvn.transform( new ConvD2FNode(a));
1924    // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1925    //b = _gvn.transform(new RoundFloatNode(0, b) );
1926    push( b );
1927    break;
1928
1929  case Bytecodes::_l2f:
1930    if (Matcher::convL2FSupported()) {
1931      a = pop_pair();
1932      b = _gvn.transform( new ConvL2FNode(a));
1933      // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1934      // Rather than storing the result into an FP register then pushing
1935      // out to memory to round, the machine instruction that implements
1936      // ConvL2D is responsible for rounding.
1937      // c = precision_rounding(b);
1938      c = _gvn.transform(b);
1939      push(c);
1940    } else {
1941      l2f();
1942    }
1943    break;
1944
1945  case Bytecodes::_l2d:
1946    a = pop_pair();
1947    b = _gvn.transform( new ConvL2DNode(a));
1948    // For i486.ad, rounding is always necessary (see _l2f above).
1949    // c = dprecision_rounding(b);
1950    c = _gvn.transform(b);
1951    push_pair(c);
1952    break;
1953
1954  case Bytecodes::_f2l:
1955    a = pop();
1956    b = _gvn.transform( new ConvF2LNode(a));
1957    push_pair(b);
1958    break;
1959
1960  case Bytecodes::_d2l:
1961    a = pop_pair();
1962    b = _gvn.transform( new ConvD2LNode(a));
1963    push_pair(b);
1964    break;
1965
1966  case Bytecodes::_dsub:
1967    b = pop_pair();
1968    a = pop_pair();
1969    c = _gvn.transform( new SubDNode(a,b) );
1970    d = dprecision_rounding(c);
1971    push_pair( d );
1972    break;
1973
1974  case Bytecodes::_dadd:
1975    b = pop_pair();
1976    a = pop_pair();
1977    c = _gvn.transform( new AddDNode(a,b) );
1978    d = dprecision_rounding(c);
1979    push_pair( d );
1980    break;
1981
1982  case Bytecodes::_dmul:
1983    b = pop_pair();
1984    a = pop_pair();
1985    c = _gvn.transform( new MulDNode(a,b) );
1986    d = dprecision_rounding(c);
1987    push_pair( d );
1988    break;
1989
1990  case Bytecodes::_ddiv:
1991    b = pop_pair();
1992    a = pop_pair();
1993    c = _gvn.transform( new DivDNode(0,a,b) );
1994    d = dprecision_rounding(c);
1995    push_pair( d );
1996    break;
1997
1998  case Bytecodes::_dneg:
1999    a = pop_pair();
2000    b = _gvn.transform(new NegDNode (a));
2001    push_pair(b);
2002    break;
2003
2004  case Bytecodes::_drem:
2005    if (Matcher::has_match_rule(Op_ModD)) {
2006      // Generate a ModD node.
2007      b = pop_pair();
2008      a = pop_pair();
2009      // a % b
2010
2011      c = _gvn.transform( new ModDNode(0,a,b) );
2012      d = dprecision_rounding(c);
2013      push_pair( d );
2014    }
2015    else {
2016      // Generate a call.
2017      modd();
2018    }
2019    break;
2020
2021  case Bytecodes::_dcmpl:
2022    b = pop_pair();
2023    a = pop_pair();
2024    c = _gvn.transform( new CmpD3Node( a, b));
2025    push(c);
2026    break;
2027
2028  case Bytecodes::_dcmpg:
2029    b = pop_pair();
2030    a = pop_pair();
2031    // Same as dcmpl but need to flip the unordered case.
2032    // Commute the inputs, which negates the result sign except for unordered.
2033    // Flip the unordered as well by using CmpD3 which implements
2034    // unordered-lesser instead of unordered-greater semantics.
2035    // Finally, negate the result bits.  Result is same as using a
2036    // CmpD3Greater except we did it with CmpD3 alone.
2037    c = _gvn.transform( new CmpD3Node( b, a));
2038    c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2039    push(c);
2040    break;
2041
2042
2043    // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2044  case Bytecodes::_land:
2045    b = pop_pair();
2046    a = pop_pair();
2047    c = _gvn.transform( new AndLNode(a,b) );
2048    push_pair(c);
2049    break;
2050  case Bytecodes::_lor:
2051    b = pop_pair();
2052    a = pop_pair();
2053    c = _gvn.transform( new OrLNode(a,b) );
2054    push_pair(c);
2055    break;
2056  case Bytecodes::_lxor:
2057    b = pop_pair();
2058    a = pop_pair();
2059    c = _gvn.transform( new XorLNode(a,b) );
2060    push_pair(c);
2061    break;
2062
2063  case Bytecodes::_lshl:
2064    b = pop();                  // the shift count
2065    a = pop_pair();             // value to be shifted
2066    c = _gvn.transform( new LShiftLNode(a,b) );
2067    push_pair(c);
2068    break;
2069  case Bytecodes::_lshr:
2070    b = pop();                  // the shift count
2071    a = pop_pair();             // value to be shifted
2072    c = _gvn.transform( new RShiftLNode(a,b) );
2073    push_pair(c);
2074    break;
2075  case Bytecodes::_lushr:
2076    b = pop();                  // the shift count
2077    a = pop_pair();             // value to be shifted
2078    c = _gvn.transform( new URShiftLNode(a,b) );
2079    push_pair(c);
2080    break;
2081  case Bytecodes::_lmul:
2082    b = pop_pair();
2083    a = pop_pair();
2084    c = _gvn.transform( new MulLNode(a,b) );
2085    push_pair(c);
2086    break;
2087
2088  case Bytecodes::_lrem:
2089    // Must keep both values on the expression-stack during null-check
2090    assert(peek(0) == top(), "long word order");
2091    zero_check_long(peek(1));
2092    // Compile-time detect of null-exception?
2093    if (stopped())  return;
2094    b = pop_pair();
2095    a = pop_pair();
2096    c = _gvn.transform( new ModLNode(control(),a,b) );
2097    push_pair(c);
2098    break;
2099
2100  case Bytecodes::_ldiv:
2101    // Must keep both values on the expression-stack during null-check
2102    assert(peek(0) == top(), "long word order");
2103    zero_check_long(peek(1));
2104    // Compile-time detect of null-exception?
2105    if (stopped())  return;
2106    b = pop_pair();
2107    a = pop_pair();
2108    c = _gvn.transform( new DivLNode(control(),a,b) );
2109    push_pair(c);
2110    break;
2111
2112  case Bytecodes::_ladd:
2113    b = pop_pair();
2114    a = pop_pair();
2115    c = _gvn.transform( new AddLNode(a,b) );
2116    push_pair(c);
2117    break;
2118  case Bytecodes::_lsub:
2119    b = pop_pair();
2120    a = pop_pair();
2121    c = _gvn.transform( new SubLNode(a,b) );
2122    push_pair(c);
2123    break;
2124  case Bytecodes::_lcmp:
2125    // Safepoints are now inserted _before_ branches.  The long-compare
2126    // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2127    // slew of control flow.  These are usually followed by a CmpI vs zero and
2128    // a branch; this pattern then optimizes to the obvious long-compare and
2129    // branch.  However, if the branch is backwards there's a Safepoint
2130    // inserted.  The inserted Safepoint captures the JVM state at the
2131    // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2132    // long-compare is used to control a loop the debug info will force
2133    // computation of the 3-way value, even though the generated code uses a
2134    // long-compare and branch.  We try to rectify the situation by inserting
2135    // a SafePoint here and have it dominate and kill the safepoint added at a
2136    // following backwards branch.  At this point the JVM state merely holds 2
2137    // longs but not the 3-way value.
2138    if( UseLoopSafepoints ) {
2139      switch( iter().next_bc() ) {
2140      case Bytecodes::_ifgt:
2141      case Bytecodes::_iflt:
2142      case Bytecodes::_ifge:
2143      case Bytecodes::_ifle:
2144      case Bytecodes::_ifne:
2145      case Bytecodes::_ifeq:
2146        // If this is a backwards branch in the bytecodes, add Safepoint
2147        maybe_add_safepoint(iter().next_get_dest());
2148      }
2149    }
2150    b = pop_pair();
2151    a = pop_pair();
2152    c = _gvn.transform( new CmpL3Node( a, b ));
2153    push(c);
2154    break;
2155
2156  case Bytecodes::_lneg:
2157    a = pop_pair();
2158    b = _gvn.transform( new SubLNode(longcon(0),a));
2159    push_pair(b);
2160    break;
2161  case Bytecodes::_l2i:
2162    a = pop_pair();
2163    push( _gvn.transform( new ConvL2INode(a)));
2164    break;
2165  case Bytecodes::_i2l:
2166    a = pop();
2167    b = _gvn.transform( new ConvI2LNode(a));
2168    push_pair(b);
2169    break;
2170  case Bytecodes::_i2b:
2171    // Sign extend
2172    a = pop();
2173    a = _gvn.transform( new LShiftINode(a,_gvn.intcon(24)) );
2174    a = _gvn.transform( new RShiftINode(a,_gvn.intcon(24)) );
2175    push( a );
2176    break;
2177  case Bytecodes::_i2s:
2178    a = pop();
2179    a = _gvn.transform( new LShiftINode(a,_gvn.intcon(16)) );
2180    a = _gvn.transform( new RShiftINode(a,_gvn.intcon(16)) );
2181    push( a );
2182    break;
2183  case Bytecodes::_i2c:
2184    a = pop();
2185    push( _gvn.transform( new AndINode(a,_gvn.intcon(0xFFFF)) ) );
2186    break;
2187
2188  case Bytecodes::_i2f:
2189    a = pop();
2190    b = _gvn.transform( new ConvI2FNode(a) ) ;
2191    c = precision_rounding(b);
2192    push (b);
2193    break;
2194
2195  case Bytecodes::_i2d:
2196    a = pop();
2197    b = _gvn.transform( new ConvI2DNode(a));
2198    push_pair(b);
2199    break;
2200
2201  case Bytecodes::_iinc:        // Increment local
2202    i = iter().get_index();     // Get local index
2203    set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2204    break;
2205
2206  // Exit points of synchronized methods must have an unlock node
2207  case Bytecodes::_return:
2208    return_current(NULL);
2209    break;
2210
2211  case Bytecodes::_ireturn:
2212  case Bytecodes::_areturn:
2213  case Bytecodes::_freturn:
2214    return_current(pop());
2215    break;
2216  case Bytecodes::_lreturn:
2217    return_current(pop_pair());
2218    break;
2219  case Bytecodes::_dreturn:
2220    return_current(pop_pair());
2221    break;
2222
2223  case Bytecodes::_athrow:
2224    // null exception oop throws NULL pointer exception
2225    null_check(peek());
2226    if (stopped())  return;
2227    // Hook the thrown exception directly to subsequent handlers.
2228    if (BailoutToInterpreterForThrows) {
2229      // Keep method interpreted from now on.
2230      uncommon_trap(Deoptimization::Reason_unhandled,
2231                    Deoptimization::Action_make_not_compilable);
2232      return;
2233    }
2234    if (env()->jvmti_can_post_on_exceptions()) {
2235      // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2236      uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2237    }
2238    // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2239    add_exception_state(make_exception_state(peek()));
2240    break;
2241
2242  case Bytecodes::_goto:   // fall through
2243  case Bytecodes::_goto_w: {
2244    int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2245
2246    // If this is a backwards branch in the bytecodes, add Safepoint
2247    maybe_add_safepoint(target_bci);
2248
2249    // Update method data
2250    profile_taken_branch(target_bci);
2251
2252    // Merge the current control into the target basic block
2253    merge(target_bci);
2254
2255    // See if we can get some profile data and hand it off to the next block
2256    Block *target_block = block()->successor_for_bci(target_bci);
2257    if (target_block->pred_count() != 1)  break;
2258    ciMethodData* methodData = method()->method_data();
2259    if (!methodData->is_mature())  break;
2260    ciProfileData* data = methodData->bci_to_data(bci());
2261    assert( data->is_JumpData(), "" );
2262    int taken = ((ciJumpData*)data)->taken();
2263    taken = method()->scale_count(taken);
2264    target_block->set_count(taken);
2265    break;
2266  }
2267
2268  case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2269  case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2270  handle_if_null:
2271    // If this is a backwards branch in the bytecodes, add Safepoint
2272    maybe_add_safepoint(iter().get_dest());
2273    a = null();
2274    b = pop();
2275    if (!_gvn.type(b)->speculative_maybe_null() &&
2276        !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2277      inc_sp(1);
2278      Node* null_ctl = top();
2279      b = null_check_oop(b, &null_ctl, true, true, true);
2280      assert(null_ctl->is_top(), "no null control here");
2281      dec_sp(1);
2282    }
2283    c = _gvn.transform( new CmpPNode(b, a) );
2284    do_ifnull(btest, c);
2285    break;
2286
2287  case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2288  case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2289  handle_if_acmp:
2290    // If this is a backwards branch in the bytecodes, add Safepoint
2291    maybe_add_safepoint(iter().get_dest());
2292    a = pop();
2293    b = pop();
2294    c = _gvn.transform( new CmpPNode(b, a) );
2295    c = optimize_cmp_with_klass(c);
2296    do_if(btest, c);
2297    break;
2298
2299  case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2300  case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2301  case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2302  case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2303  case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2304  case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2305  handle_ifxx:
2306    // If this is a backwards branch in the bytecodes, add Safepoint
2307    maybe_add_safepoint(iter().get_dest());
2308    a = _gvn.intcon(0);
2309    b = pop();
2310    c = _gvn.transform( new CmpINode(b, a) );
2311    do_if(btest, c);
2312    break;
2313
2314  case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2315  case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2316  case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2317  case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2318  case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2319  case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2320  handle_if_icmp:
2321    // If this is a backwards branch in the bytecodes, add Safepoint
2322    maybe_add_safepoint(iter().get_dest());
2323    a = pop();
2324    b = pop();
2325    c = _gvn.transform( new CmpINode( b, a ) );
2326    do_if(btest, c);
2327    break;
2328
2329  case Bytecodes::_tableswitch:
2330    do_tableswitch();
2331    break;
2332
2333  case Bytecodes::_lookupswitch:
2334    do_lookupswitch();
2335    break;
2336
2337  case Bytecodes::_invokestatic:
2338  case Bytecodes::_invokedynamic:
2339  case Bytecodes::_invokespecial:
2340  case Bytecodes::_invokevirtual:
2341  case Bytecodes::_invokeinterface:
2342    do_call();
2343    break;
2344  case Bytecodes::_checkcast:
2345    do_checkcast();
2346    break;
2347  case Bytecodes::_instanceof:
2348    do_instanceof();
2349    break;
2350  case Bytecodes::_anewarray:
2351    do_anewarray();
2352    break;
2353  case Bytecodes::_newarray:
2354    do_newarray((BasicType)iter().get_index());
2355    break;
2356  case Bytecodes::_multianewarray:
2357    do_multianewarray();
2358    break;
2359  case Bytecodes::_new:
2360    do_new();
2361    break;
2362
2363  case Bytecodes::_jsr:
2364  case Bytecodes::_jsr_w:
2365    do_jsr();
2366    break;
2367
2368  case Bytecodes::_ret:
2369    do_ret();
2370    break;
2371
2372
2373  case Bytecodes::_monitorenter:
2374    do_monitor_enter();
2375    break;
2376
2377  case Bytecodes::_monitorexit:
2378    do_monitor_exit();
2379    break;
2380
2381  case Bytecodes::_breakpoint:
2382    // Breakpoint set concurrently to compile
2383    // %%% use an uncommon trap?
2384    C->record_failure("breakpoint in method");
2385    return;
2386
2387  default:
2388#ifndef PRODUCT
2389    map()->dump(99);
2390#endif
2391    tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2392    ShouldNotReachHere();
2393  }
2394
2395#ifndef PRODUCT
2396  IdealGraphPrinter *printer = C->printer();
2397  if (printer && printer->should_print(1)) {
2398    char buffer[256];
2399    sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2400    bool old = printer->traverse_outs();
2401    printer->set_traverse_outs(true);
2402    printer->print_method(buffer, 4);
2403    printer->set_traverse_outs(old);
2404  }
2405#endif
2406}
2407