parse2.cpp revision 10348:e3dbb1e46e26
1/*
2 * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "compiler/compileLog.hpp"
30#include "interpreter/linkResolver.hpp"
31#include "memory/universe.inline.hpp"
32#include "oops/oop.inline.hpp"
33#include "opto/addnode.hpp"
34#include "opto/castnode.hpp"
35#include "opto/convertnode.hpp"
36#include "opto/divnode.hpp"
37#include "opto/idealGraphPrinter.hpp"
38#include "opto/matcher.hpp"
39#include "opto/memnode.hpp"
40#include "opto/mulnode.hpp"
41#include "opto/opaquenode.hpp"
42#include "opto/parse.hpp"
43#include "opto/runtime.hpp"
44#include "runtime/deoptimization.hpp"
45#include "runtime/sharedRuntime.hpp"
46
47#ifndef PRODUCT
48extern int explicit_null_checks_inserted,
49           explicit_null_checks_elided;
50#endif
51
52//---------------------------------array_load----------------------------------
53void Parse::array_load(BasicType elem_type) {
54  const Type* elem = Type::TOP;
55  Node* adr = array_addressing(elem_type, 0, &elem);
56  if (stopped())  return;     // guaranteed null or range check
57  dec_sp(2);                  // Pop array and index
58  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
59  Node* ld = make_load(control(), adr, elem, elem_type, adr_type, MemNode::unordered);
60  push(ld);
61}
62
63
64//--------------------------------array_store----------------------------------
65void Parse::array_store(BasicType elem_type) {
66  Node* adr = array_addressing(elem_type, 1);
67  if (stopped())  return;     // guaranteed null or range check
68  Node* val = pop();
69  dec_sp(2);                  // Pop array and index
70  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
71  store_to_memory(control(), adr, val, elem_type, adr_type, StoreNode::release_if_reference(elem_type));
72}
73
74
75//------------------------------array_addressing-------------------------------
76// Pull array and index from the stack.  Compute pointer-to-element.
77Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
78  Node *idx   = peek(0+vals);   // Get from stack without popping
79  Node *ary   = peek(1+vals);   // in case of exception
80
81  // Null check the array base, with correct stack contents
82  ary = null_check(ary, T_ARRAY);
83  // Compile-time detect of null-exception?
84  if (stopped())  return top();
85
86  const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
87  const TypeInt*    sizetype = arytype->size();
88  const Type*       elemtype = arytype->elem();
89
90  if (UseUniqueSubclasses && result2 != NULL) {
91    const Type* el = elemtype->make_ptr();
92    if (el && el->isa_instptr()) {
93      const TypeInstPtr* toop = el->is_instptr();
94      if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
95        // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
96        const Type* subklass = Type::get_const_type(toop->klass());
97        elemtype = subklass->join_speculative(el);
98      }
99    }
100  }
101
102  // Check for big class initializers with all constant offsets
103  // feeding into a known-size array.
104  const TypeInt* idxtype = _gvn.type(idx)->is_int();
105  // See if the highest idx value is less than the lowest array bound,
106  // and if the idx value cannot be negative:
107  bool need_range_check = true;
108  if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
109    need_range_check = false;
110    if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
111  }
112
113  ciKlass * arytype_klass = arytype->klass();
114  if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
115    // Only fails for some -Xcomp runs
116    // The class is unloaded.  We have to run this bytecode in the interpreter.
117    uncommon_trap(Deoptimization::Reason_unloaded,
118                  Deoptimization::Action_reinterpret,
119                  arytype->klass(), "!loaded array");
120    return top();
121  }
122
123  // Do the range check
124  if (GenerateRangeChecks && need_range_check) {
125    Node* tst;
126    if (sizetype->_hi <= 0) {
127      // The greatest array bound is negative, so we can conclude that we're
128      // compiling unreachable code, but the unsigned compare trick used below
129      // only works with non-negative lengths.  Instead, hack "tst" to be zero so
130      // the uncommon_trap path will always be taken.
131      tst = _gvn.intcon(0);
132    } else {
133      // Range is constant in array-oop, so we can use the original state of mem
134      Node* len = load_array_length(ary);
135
136      // Test length vs index (standard trick using unsigned compare)
137      Node* chk = _gvn.transform( new CmpUNode(idx, len) );
138      BoolTest::mask btest = BoolTest::lt;
139      tst = _gvn.transform( new BoolNode(chk, btest) );
140    }
141    RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
142    _gvn.set_type(rc, rc->Value(&_gvn));
143    if (!tst->is_Con()) {
144      record_for_igvn(rc);
145    }
146    set_control(_gvn.transform(new IfTrueNode(rc)));
147    // Branch to failure if out of bounds
148    {
149      PreserveJVMState pjvms(this);
150      set_control(_gvn.transform(new IfFalseNode(rc)));
151      if (C->allow_range_check_smearing()) {
152        // Do not use builtin_throw, since range checks are sometimes
153        // made more stringent by an optimistic transformation.
154        // This creates "tentative" range checks at this point,
155        // which are not guaranteed to throw exceptions.
156        // See IfNode::Ideal, is_range_check, adjust_check.
157        uncommon_trap(Deoptimization::Reason_range_check,
158                      Deoptimization::Action_make_not_entrant,
159                      NULL, "range_check");
160      } else {
161        // If we have already recompiled with the range-check-widening
162        // heroic optimization turned off, then we must really be throwing
163        // range check exceptions.
164        builtin_throw(Deoptimization::Reason_range_check, idx);
165      }
166    }
167  }
168  // Check for always knowing you are throwing a range-check exception
169  if (stopped())  return top();
170
171  // Make array address computation control dependent to prevent it
172  // from floating above the range check during loop optimizations.
173  Node* ptr = array_element_address(ary, idx, type, sizetype, control());
174
175  if (result2 != NULL)  *result2 = elemtype;
176
177  assert(ptr != top(), "top should go hand-in-hand with stopped");
178
179  return ptr;
180}
181
182
183// returns IfNode
184IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
185  Node   *cmp = _gvn.transform( new CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
186  Node   *tst = _gvn.transform( new BoolNode( cmp, mask));
187  IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
188  return iff;
189}
190
191// return Region node
192Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
193  Node *region  = new RegionNode(3); // 2 results
194  record_for_igvn(region);
195  region->init_req(1, iffalse);
196  region->init_req(2, iftrue );
197  _gvn.set_type(region, Type::CONTROL);
198  region = _gvn.transform(region);
199  set_control (region);
200  return region;
201}
202
203
204//------------------------------helper for tableswitch-------------------------
205void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
206  // True branch, use existing map info
207  { PreserveJVMState pjvms(this);
208    Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
209    set_control( iftrue );
210    profile_switch_case(prof_table_index);
211    merge_new_path(dest_bci_if_true);
212  }
213
214  // False branch
215  Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
216  set_control( iffalse );
217}
218
219void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
220  // True branch, use existing map info
221  { PreserveJVMState pjvms(this);
222    Node *iffalse  = _gvn.transform( new IfFalseNode (iff) );
223    set_control( iffalse );
224    profile_switch_case(prof_table_index);
225    merge_new_path(dest_bci_if_true);
226  }
227
228  // False branch
229  Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
230  set_control( iftrue );
231}
232
233void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
234  // False branch, use existing map and control()
235  profile_switch_case(prof_table_index);
236  merge_new_path(dest_bci);
237}
238
239
240extern "C" {
241  static int jint_cmp(const void *i, const void *j) {
242    int a = *(jint *)i;
243    int b = *(jint *)j;
244    return a > b ? 1 : a < b ? -1 : 0;
245  }
246}
247
248
249// Default value for methodData switch indexing. Must be a negative value to avoid
250// conflict with any legal switch index.
251#define NullTableIndex -1
252
253class SwitchRange : public StackObj {
254  // a range of integers coupled with a bci destination
255  jint _lo;                     // inclusive lower limit
256  jint _hi;                     // inclusive upper limit
257  int _dest;
258  int _table_index;             // index into method data table
259
260public:
261  jint lo() const              { return _lo;   }
262  jint hi() const              { return _hi;   }
263  int  dest() const            { return _dest; }
264  int  table_index() const     { return _table_index; }
265  bool is_singleton() const    { return _lo == _hi; }
266
267  void setRange(jint lo, jint hi, int dest, int table_index) {
268    assert(lo <= hi, "must be a non-empty range");
269    _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
270  }
271  bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
272    assert(lo <= hi, "must be a non-empty range");
273    if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
274      _hi = hi;
275      return true;
276    }
277    return false;
278  }
279
280  void set (jint value, int dest, int table_index) {
281    setRange(value, value, dest, table_index);
282  }
283  bool adjoin(jint value, int dest, int table_index) {
284    return adjoinRange(value, value, dest, table_index);
285  }
286
287  void print() {
288    if (is_singleton())
289      tty->print(" {%d}=>%d", lo(), dest());
290    else if (lo() == min_jint)
291      tty->print(" {..%d}=>%d", hi(), dest());
292    else if (hi() == max_jint)
293      tty->print(" {%d..}=>%d", lo(), dest());
294    else
295      tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
296  }
297};
298
299
300//-------------------------------do_tableswitch--------------------------------
301void Parse::do_tableswitch() {
302  Node* lookup = pop();
303
304  // Get information about tableswitch
305  int default_dest = iter().get_dest_table(0);
306  int lo_index     = iter().get_int_table(1);
307  int hi_index     = iter().get_int_table(2);
308  int len          = hi_index - lo_index + 1;
309
310  if (len < 1) {
311    // If this is a backward branch, add safepoint
312    maybe_add_safepoint(default_dest);
313    merge(default_dest);
314    return;
315  }
316
317  // generate decision tree, using trichotomy when possible
318  int rnum = len+2;
319  bool makes_backward_branch = false;
320  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
321  int rp = -1;
322  if (lo_index != min_jint) {
323    ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
324  }
325  for (int j = 0; j < len; j++) {
326    jint match_int = lo_index+j;
327    int  dest      = iter().get_dest_table(j+3);
328    makes_backward_branch |= (dest <= bci());
329    int  table_index = method_data_update() ? j : NullTableIndex;
330    if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
331      ranges[++rp].set(match_int, dest, table_index);
332    }
333  }
334  jint highest = lo_index+(len-1);
335  assert(ranges[rp].hi() == highest, "");
336  if (highest != max_jint
337      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
338    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
339  }
340  assert(rp < len+2, "not too many ranges");
341
342  // Safepoint in case if backward branch observed
343  if( makes_backward_branch && UseLoopSafepoints )
344    add_safepoint();
345
346  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
347}
348
349
350//------------------------------do_lookupswitch--------------------------------
351void Parse::do_lookupswitch() {
352  Node *lookup = pop();         // lookup value
353  // Get information about lookupswitch
354  int default_dest = iter().get_dest_table(0);
355  int len          = iter().get_int_table(1);
356
357  if (len < 1) {    // If this is a backward branch, add safepoint
358    maybe_add_safepoint(default_dest);
359    merge(default_dest);
360    return;
361  }
362
363  // generate decision tree, using trichotomy when possible
364  jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
365  {
366    for( int j = 0; j < len; j++ ) {
367      table[j+j+0] = iter().get_int_table(2+j+j);
368      table[j+j+1] = iter().get_dest_table(2+j+j+1);
369    }
370    qsort( table, len, 2*sizeof(table[0]), jint_cmp );
371  }
372
373  int rnum = len*2+1;
374  bool makes_backward_branch = false;
375  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
376  int rp = -1;
377  for( int j = 0; j < len; j++ ) {
378    jint match_int   = table[j+j+0];
379    int  dest        = table[j+j+1];
380    int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
381    int  table_index = method_data_update() ? j : NullTableIndex;
382    makes_backward_branch |= (dest <= bci());
383    if( match_int != next_lo ) {
384      ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
385    }
386    if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
387      ranges[++rp].set(match_int, dest, table_index);
388    }
389  }
390  jint highest = table[2*(len-1)];
391  assert(ranges[rp].hi() == highest, "");
392  if( highest != max_jint
393      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
394    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
395  }
396  assert(rp < rnum, "not too many ranges");
397
398  // Safepoint in case backward branch observed
399  if( makes_backward_branch && UseLoopSafepoints )
400    add_safepoint();
401
402  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
403}
404
405//----------------------------create_jump_tables-------------------------------
406bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
407  // Are jumptables enabled
408  if (!UseJumpTables)  return false;
409
410  // Are jumptables supported
411  if (!Matcher::has_match_rule(Op_Jump))  return false;
412
413  // Don't make jump table if profiling
414  if (method_data_update())  return false;
415
416  // Decide if a guard is needed to lop off big ranges at either (or
417  // both) end(s) of the input set. We'll call this the default target
418  // even though we can't be sure that it is the true "default".
419
420  bool needs_guard = false;
421  int default_dest;
422  int64_t total_outlier_size = 0;
423  int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
424  int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
425
426  if (lo->dest() == hi->dest()) {
427    total_outlier_size = hi_size + lo_size;
428    default_dest = lo->dest();
429  } else if (lo_size > hi_size) {
430    total_outlier_size = lo_size;
431    default_dest = lo->dest();
432  } else {
433    total_outlier_size = hi_size;
434    default_dest = hi->dest();
435  }
436
437  // If a guard test will eliminate very sparse end ranges, then
438  // it is worth the cost of an extra jump.
439  if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
440    needs_guard = true;
441    if (default_dest == lo->dest()) lo++;
442    if (default_dest == hi->dest()) hi--;
443  }
444
445  // Find the total number of cases and ranges
446  int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
447  int num_range = hi - lo + 1;
448
449  // Don't create table if: too large, too small, or too sparse.
450  if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
451    return false;
452  if (num_cases > (MaxJumpTableSparseness * num_range))
453    return false;
454
455  // Normalize table lookups to zero
456  int lowval = lo->lo();
457  key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
458
459  // Generate a guard to protect against input keyvals that aren't
460  // in the switch domain.
461  if (needs_guard) {
462    Node*   size = _gvn.intcon(num_cases);
463    Node*   cmp = _gvn.transform( new CmpUNode(key_val, size) );
464    Node*   tst = _gvn.transform( new BoolNode(cmp, BoolTest::ge) );
465    IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
466    jump_if_true_fork(iff, default_dest, NullTableIndex);
467  }
468
469  // Create an ideal node JumpTable that has projections
470  // of all possible ranges for a switch statement
471  // The key_val input must be converted to a pointer offset and scaled.
472  // Compare Parse::array_addressing above.
473
474  // Clean the 32-bit int into a real 64-bit offset.
475  // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
476  const TypeInt* ikeytype = TypeInt::make(0, num_cases, Type::WidenMin);
477  // Make I2L conversion control dependent to prevent it from
478  // floating above the range check during loop optimizations.
479  key_val = C->conv_I2X_index(&_gvn, key_val, ikeytype, control());
480
481  // Shift the value by wordsize so we have an index into the table, rather
482  // than a switch value
483  Node *shiftWord = _gvn.MakeConX(wordSize);
484  key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
485
486  // Create the JumpNode
487  Node* jtn = _gvn.transform( new JumpNode(control(), key_val, num_cases) );
488
489  // These are the switch destinations hanging off the jumpnode
490  int i = 0;
491  for (SwitchRange* r = lo; r <= hi; r++) {
492    for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
493      Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
494      {
495        PreserveJVMState pjvms(this);
496        set_control(input);
497        jump_if_always_fork(r->dest(), r->table_index());
498      }
499    }
500  }
501  assert(i == num_cases, "miscount of cases");
502  stop_and_kill_map();  // no more uses for this JVMS
503  return true;
504}
505
506//----------------------------jump_switch_ranges-------------------------------
507void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
508  Block* switch_block = block();
509
510  if (switch_depth == 0) {
511    // Do special processing for the top-level call.
512    assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
513    assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
514
515    // Decrement pred-numbers for the unique set of nodes.
516#ifdef ASSERT
517    // Ensure that the block's successors are a (duplicate-free) set.
518    int successors_counted = 0;  // block occurrences in [hi..lo]
519    int unique_successors = switch_block->num_successors();
520    for (int i = 0; i < unique_successors; i++) {
521      Block* target = switch_block->successor_at(i);
522
523      // Check that the set of successors is the same in both places.
524      int successors_found = 0;
525      for (SwitchRange* p = lo; p <= hi; p++) {
526        if (p->dest() == target->start())  successors_found++;
527      }
528      assert(successors_found > 0, "successor must be known");
529      successors_counted += successors_found;
530    }
531    assert(successors_counted == (hi-lo)+1, "no unexpected successors");
532#endif
533
534    // Maybe prune the inputs, based on the type of key_val.
535    jint min_val = min_jint;
536    jint max_val = max_jint;
537    const TypeInt* ti = key_val->bottom_type()->isa_int();
538    if (ti != NULL) {
539      min_val = ti->_lo;
540      max_val = ti->_hi;
541      assert(min_val <= max_val, "invalid int type");
542    }
543    while (lo->hi() < min_val)  lo++;
544    if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
545    while (hi->lo() > max_val)  hi--;
546    if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
547  }
548
549#ifndef PRODUCT
550  if (switch_depth == 0) {
551    _max_switch_depth = 0;
552    _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
553  }
554#endif
555
556  assert(lo <= hi, "must be a non-empty set of ranges");
557  if (lo == hi) {
558    jump_if_always_fork(lo->dest(), lo->table_index());
559  } else {
560    assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
561    assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
562
563    if (create_jump_tables(key_val, lo, hi)) return;
564
565    int nr = hi - lo + 1;
566
567    SwitchRange* mid = lo + nr/2;
568    // if there is an easy choice, pivot at a singleton:
569    if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
570
571    assert(lo < mid && mid <= hi, "good pivot choice");
572    assert(nr != 2 || mid == hi,   "should pick higher of 2");
573    assert(nr != 3 || mid == hi-1, "should pick middle of 3");
574
575    Node *test_val = _gvn.intcon(mid->lo());
576
577    if (mid->is_singleton()) {
578      IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
579      jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
580
581      // Special Case:  If there are exactly three ranges, and the high
582      // and low range each go to the same place, omit the "gt" test,
583      // since it will not discriminate anything.
584      bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
585      if (eq_test_only) {
586        assert(mid == hi-1, "");
587      }
588
589      // if there is a higher range, test for it and process it:
590      if (mid < hi && !eq_test_only) {
591        // two comparisons of same values--should enable 1 test for 2 branches
592        // Use BoolTest::le instead of BoolTest::gt
593        IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
594        Node   *iftrue  = _gvn.transform( new IfTrueNode(iff_le) );
595        Node   *iffalse = _gvn.transform( new IfFalseNode(iff_le) );
596        { PreserveJVMState pjvms(this);
597          set_control(iffalse);
598          jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
599        }
600        set_control(iftrue);
601      }
602
603    } else {
604      // mid is a range, not a singleton, so treat mid..hi as a unit
605      IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
606
607      // if there is a higher range, test for it and process it:
608      if (mid == hi) {
609        jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
610      } else {
611        Node *iftrue  = _gvn.transform( new IfTrueNode(iff_ge) );
612        Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
613        { PreserveJVMState pjvms(this);
614          set_control(iftrue);
615          jump_switch_ranges(key_val, mid, hi, switch_depth+1);
616        }
617        set_control(iffalse);
618      }
619    }
620
621    // in any case, process the lower range
622    jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
623  }
624
625  // Decrease pred_count for each successor after all is done.
626  if (switch_depth == 0) {
627    int unique_successors = switch_block->num_successors();
628    for (int i = 0; i < unique_successors; i++) {
629      Block* target = switch_block->successor_at(i);
630      // Throw away the pre-allocated path for each unique successor.
631      target->next_path_num();
632    }
633  }
634
635#ifndef PRODUCT
636  _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
637  if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
638    SwitchRange* r;
639    int nsing = 0;
640    for( r = lo; r <= hi; r++ ) {
641      if( r->is_singleton() )  nsing++;
642    }
643    tty->print(">>> ");
644    _method->print_short_name();
645    tty->print_cr(" switch decision tree");
646    tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
647                  (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
648    if (_max_switch_depth > _est_switch_depth) {
649      tty->print_cr("******** BAD SWITCH DEPTH ********");
650    }
651    tty->print("   ");
652    for( r = lo; r <= hi; r++ ) {
653      r->print();
654    }
655    tty->cr();
656  }
657#endif
658}
659
660void Parse::modf() {
661  Node *f2 = pop();
662  Node *f1 = pop();
663  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
664                              CAST_FROM_FN_PTR(address, SharedRuntime::frem),
665                              "frem", NULL, //no memory effects
666                              f1, f2);
667  Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
668
669  push(res);
670}
671
672void Parse::modd() {
673  Node *d2 = pop_pair();
674  Node *d1 = pop_pair();
675  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
676                              CAST_FROM_FN_PTR(address, SharedRuntime::drem),
677                              "drem", NULL, //no memory effects
678                              d1, top(), d2, top());
679  Node* res_d   = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
680
681#ifdef ASSERT
682  Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1));
683  assert(res_top == top(), "second value must be top");
684#endif
685
686  push_pair(res_d);
687}
688
689void Parse::l2f() {
690  Node* f2 = pop();
691  Node* f1 = pop();
692  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
693                              CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
694                              "l2f", NULL, //no memory effects
695                              f1, f2);
696  Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
697
698  push(res);
699}
700
701void Parse::do_irem() {
702  // Must keep both values on the expression-stack during null-check
703  zero_check_int(peek());
704  // Compile-time detect of null-exception?
705  if (stopped())  return;
706
707  Node* b = pop();
708  Node* a = pop();
709
710  const Type *t = _gvn.type(b);
711  if (t != Type::TOP) {
712    const TypeInt *ti = t->is_int();
713    if (ti->is_con()) {
714      int divisor = ti->get_con();
715      // check for positive power of 2
716      if (divisor > 0 &&
717          (divisor & ~(divisor-1)) == divisor) {
718        // yes !
719        Node *mask = _gvn.intcon((divisor - 1));
720        // Sigh, must handle negative dividends
721        Node *zero = _gvn.intcon(0);
722        IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
723        Node *iff = _gvn.transform( new IfFalseNode(ifff) );
724        Node *ift = _gvn.transform( new IfTrueNode (ifff) );
725        Node *reg = jump_if_join(ift, iff);
726        Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
727        // Negative path; negate/and/negate
728        Node *neg = _gvn.transform( new SubINode(zero, a) );
729        Node *andn= _gvn.transform( new AndINode(neg, mask) );
730        Node *negn= _gvn.transform( new SubINode(zero, andn) );
731        phi->init_req(1, negn);
732        // Fast positive case
733        Node *andx = _gvn.transform( new AndINode(a, mask) );
734        phi->init_req(2, andx);
735        // Push the merge
736        push( _gvn.transform(phi) );
737        return;
738      }
739    }
740  }
741  // Default case
742  push( _gvn.transform( new ModINode(control(),a,b) ) );
743}
744
745// Handle jsr and jsr_w bytecode
746void Parse::do_jsr() {
747  assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
748
749  // Store information about current state, tagged with new _jsr_bci
750  int return_bci = iter().next_bci();
751  int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
752
753  // Update method data
754  profile_taken_branch(jsr_bci);
755
756  // The way we do things now, there is only one successor block
757  // for the jsr, because the target code is cloned by ciTypeFlow.
758  Block* target = successor_for_bci(jsr_bci);
759
760  // What got pushed?
761  const Type* ret_addr = target->peek();
762  assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
763
764  // Effect on jsr on stack
765  push(_gvn.makecon(ret_addr));
766
767  // Flow to the jsr.
768  merge(jsr_bci);
769}
770
771// Handle ret bytecode
772void Parse::do_ret() {
773  // Find to whom we return.
774  assert(block()->num_successors() == 1, "a ret can only go one place now");
775  Block* target = block()->successor_at(0);
776  assert(!target->is_ready(), "our arrival must be expected");
777  profile_ret(target->flow()->start());
778  int pnum = target->next_path_num();
779  merge_common(target, pnum);
780}
781
782static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) {
783  if (btest != BoolTest::eq && btest != BoolTest::ne) {
784    // Only ::eq and ::ne are supported for profile injection.
785    return false;
786  }
787  if (test->is_Cmp() &&
788      test->in(1)->Opcode() == Op_ProfileBoolean) {
789    ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1);
790    int false_cnt = profile->false_count();
791    int  true_cnt = profile->true_count();
792
793    // Counts matching depends on the actual test operation (::eq or ::ne).
794    // No need to scale the counts because profile injection was designed
795    // to feed exact counts into VM.
796    taken     = (btest == BoolTest::eq) ? false_cnt :  true_cnt;
797    not_taken = (btest == BoolTest::eq) ?  true_cnt : false_cnt;
798
799    profile->consume();
800    return true;
801  }
802  return false;
803}
804//--------------------------dynamic_branch_prediction--------------------------
805// Try to gather dynamic branch prediction behavior.  Return a probability
806// of the branch being taken and set the "cnt" field.  Returns a -1.0
807// if we need to use static prediction for some reason.
808float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
809  ResourceMark rm;
810
811  cnt  = COUNT_UNKNOWN;
812
813  int     taken = 0;
814  int not_taken = 0;
815
816  bool use_mdo = !has_injected_profile(btest, test, taken, not_taken);
817
818  if (use_mdo) {
819    // Use MethodData information if it is available
820    // FIXME: free the ProfileData structure
821    ciMethodData* methodData = method()->method_data();
822    if (!methodData->is_mature())  return PROB_UNKNOWN;
823    ciProfileData* data = methodData->bci_to_data(bci());
824    if (!data->is_JumpData())  return PROB_UNKNOWN;
825
826    // get taken and not taken values
827    taken = data->as_JumpData()->taken();
828    not_taken = 0;
829    if (data->is_BranchData()) {
830      not_taken = data->as_BranchData()->not_taken();
831    }
832
833    // scale the counts to be commensurate with invocation counts:
834    taken = method()->scale_count(taken);
835    not_taken = method()->scale_count(not_taken);
836  }
837
838  // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
839  // We also check that individual counters are positive first, otherwise the sum can become positive.
840  if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
841    if (C->log() != NULL) {
842      C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
843    }
844    return PROB_UNKNOWN;
845  }
846
847  // Compute frequency that we arrive here
848  float sum = taken + not_taken;
849  // Adjust, if this block is a cloned private block but the
850  // Jump counts are shared.  Taken the private counts for
851  // just this path instead of the shared counts.
852  if( block()->count() > 0 )
853    sum = block()->count();
854  cnt = sum / FreqCountInvocations;
855
856  // Pin probability to sane limits
857  float prob;
858  if( !taken )
859    prob = (0+PROB_MIN) / 2;
860  else if( !not_taken )
861    prob = (1+PROB_MAX) / 2;
862  else {                         // Compute probability of true path
863    prob = (float)taken / (float)(taken + not_taken);
864    if (prob > PROB_MAX)  prob = PROB_MAX;
865    if (prob < PROB_MIN)   prob = PROB_MIN;
866  }
867
868  assert((cnt > 0.0f) && (prob > 0.0f),
869         "Bad frequency assignment in if");
870
871  if (C->log() != NULL) {
872    const char* prob_str = NULL;
873    if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
874    if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
875    char prob_str_buf[30];
876    if (prob_str == NULL) {
877      sprintf(prob_str_buf, "%g", prob);
878      prob_str = prob_str_buf;
879    }
880    C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'",
881                   iter().get_dest(), taken, not_taken, cnt, prob_str);
882  }
883  return prob;
884}
885
886//-----------------------------branch_prediction-------------------------------
887float Parse::branch_prediction(float& cnt,
888                               BoolTest::mask btest,
889                               int target_bci,
890                               Node* test) {
891  float prob = dynamic_branch_prediction(cnt, btest, test);
892  // If prob is unknown, switch to static prediction
893  if (prob != PROB_UNKNOWN)  return prob;
894
895  prob = PROB_FAIR;                   // Set default value
896  if (btest == BoolTest::eq)          // Exactly equal test?
897    prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
898  else if (btest == BoolTest::ne)
899    prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
900
901  // If this is a conditional test guarding a backwards branch,
902  // assume its a loop-back edge.  Make it a likely taken branch.
903  if (target_bci < bci()) {
904    if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
905      // Since it's an OSR, we probably have profile data, but since
906      // branch_prediction returned PROB_UNKNOWN, the counts are too small.
907      // Let's make a special check here for completely zero counts.
908      ciMethodData* methodData = method()->method_data();
909      if (!methodData->is_empty()) {
910        ciProfileData* data = methodData->bci_to_data(bci());
911        // Only stop for truly zero counts, which mean an unknown part
912        // of the OSR-ed method, and we want to deopt to gather more stats.
913        // If you have ANY counts, then this loop is simply 'cold' relative
914        // to the OSR loop.
915        if (data->as_BranchData()->taken() +
916            data->as_BranchData()->not_taken() == 0 ) {
917          // This is the only way to return PROB_UNKNOWN:
918          return PROB_UNKNOWN;
919        }
920      }
921    }
922    prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
923  }
924
925  assert(prob != PROB_UNKNOWN, "must have some guess at this point");
926  return prob;
927}
928
929// The magic constants are chosen so as to match the output of
930// branch_prediction() when the profile reports a zero taken count.
931// It is important to distinguish zero counts unambiguously, because
932// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
933// very small but nonzero probabilities, which if confused with zero
934// counts would keep the program recompiling indefinitely.
935bool Parse::seems_never_taken(float prob) const {
936  return prob < PROB_MIN;
937}
938
939// True if the comparison seems to be the kind that will not change its
940// statistics from true to false.  See comments in adjust_map_after_if.
941// This question is only asked along paths which are already
942// classifed as untaken (by seems_never_taken), so really,
943// if a path is never taken, its controlling comparison is
944// already acting in a stable fashion.  If the comparison
945// seems stable, we will put an expensive uncommon trap
946// on the untaken path.
947bool Parse::seems_stable_comparison() const {
948  if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
949    return false;
950  }
951  return true;
952}
953
954//-------------------------------repush_if_args--------------------------------
955// Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
956inline int Parse::repush_if_args() {
957  if (PrintOpto && WizardMode) {
958    tty->print("defending against excessive implicit null exceptions on %s @%d in ",
959               Bytecodes::name(iter().cur_bc()), iter().cur_bci());
960    method()->print_name(); tty->cr();
961  }
962  int bc_depth = - Bytecodes::depth(iter().cur_bc());
963  assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
964  DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
965  assert(argument(0) != NULL, "must exist");
966  assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
967  inc_sp(bc_depth);
968  return bc_depth;
969}
970
971//----------------------------------do_ifnull----------------------------------
972void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
973  int target_bci = iter().get_dest();
974
975  Block* branch_block = successor_for_bci(target_bci);
976  Block* next_block   = successor_for_bci(iter().next_bci());
977
978  float cnt;
979  float prob = branch_prediction(cnt, btest, target_bci, c);
980  if (prob == PROB_UNKNOWN) {
981    // (An earlier version of do_ifnull omitted this trap for OSR methods.)
982    if (PrintOpto && Verbose) {
983      tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
984    }
985    repush_if_args(); // to gather stats on loop
986    // We need to mark this branch as taken so that if we recompile we will
987    // see that it is possible. In the tiered system the interpreter doesn't
988    // do profiling and by the time we get to the lower tier from the interpreter
989    // the path may be cold again. Make sure it doesn't look untaken
990    profile_taken_branch(target_bci, !ProfileInterpreter);
991    uncommon_trap(Deoptimization::Reason_unreached,
992                  Deoptimization::Action_reinterpret,
993                  NULL, "cold");
994    if (C->eliminate_boxing()) {
995      // Mark the successor blocks as parsed
996      branch_block->next_path_num();
997      next_block->next_path_num();
998    }
999    return;
1000  }
1001
1002  NOT_PRODUCT(explicit_null_checks_inserted++);
1003
1004  // Generate real control flow
1005  Node   *tst = _gvn.transform( new BoolNode( c, btest ) );
1006
1007  // Sanity check the probability value
1008  assert(prob > 0.0f,"Bad probability in Parser");
1009 // Need xform to put node in hash table
1010  IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1011  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1012  // True branch
1013  { PreserveJVMState pjvms(this);
1014    Node* iftrue  = _gvn.transform( new IfTrueNode (iff) );
1015    set_control(iftrue);
1016
1017    if (stopped()) {            // Path is dead?
1018      NOT_PRODUCT(explicit_null_checks_elided++);
1019      if (C->eliminate_boxing()) {
1020        // Mark the successor block as parsed
1021        branch_block->next_path_num();
1022      }
1023    } else {                    // Path is live.
1024      // Update method data
1025      profile_taken_branch(target_bci);
1026      adjust_map_after_if(btest, c, prob, branch_block, next_block);
1027      if (!stopped()) {
1028        merge(target_bci);
1029      }
1030    }
1031  }
1032
1033  // False branch
1034  Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1035  set_control(iffalse);
1036
1037  if (stopped()) {              // Path is dead?
1038    NOT_PRODUCT(explicit_null_checks_elided++);
1039    if (C->eliminate_boxing()) {
1040      // Mark the successor block as parsed
1041      next_block->next_path_num();
1042    }
1043  } else  {                     // Path is live.
1044    // Update method data
1045    profile_not_taken_branch();
1046    adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1047                        next_block, branch_block);
1048  }
1049}
1050
1051//------------------------------------do_if------------------------------------
1052void Parse::do_if(BoolTest::mask btest, Node* c) {
1053  int target_bci = iter().get_dest();
1054
1055  Block* branch_block = successor_for_bci(target_bci);
1056  Block* next_block   = successor_for_bci(iter().next_bci());
1057
1058  float cnt;
1059  float prob = branch_prediction(cnt, btest, target_bci, c);
1060  float untaken_prob = 1.0 - prob;
1061
1062  if (prob == PROB_UNKNOWN) {
1063    if (PrintOpto && Verbose) {
1064      tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1065    }
1066    repush_if_args(); // to gather stats on loop
1067    // We need to mark this branch as taken so that if we recompile we will
1068    // see that it is possible. In the tiered system the interpreter doesn't
1069    // do profiling and by the time we get to the lower tier from the interpreter
1070    // the path may be cold again. Make sure it doesn't look untaken
1071    profile_taken_branch(target_bci, !ProfileInterpreter);
1072    uncommon_trap(Deoptimization::Reason_unreached,
1073                  Deoptimization::Action_reinterpret,
1074                  NULL, "cold");
1075    if (C->eliminate_boxing()) {
1076      // Mark the successor blocks as parsed
1077      branch_block->next_path_num();
1078      next_block->next_path_num();
1079    }
1080    return;
1081  }
1082
1083  // Sanity check the probability value
1084  assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1085
1086  bool taken_if_true = true;
1087  // Convert BoolTest to canonical form:
1088  if (!BoolTest(btest).is_canonical()) {
1089    btest         = BoolTest(btest).negate();
1090    taken_if_true = false;
1091    // prob is NOT updated here; it remains the probability of the taken
1092    // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1093  }
1094  assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1095
1096  Node* tst0 = new BoolNode(c, btest);
1097  Node* tst = _gvn.transform(tst0);
1098  BoolTest::mask taken_btest   = BoolTest::illegal;
1099  BoolTest::mask untaken_btest = BoolTest::illegal;
1100
1101  if (tst->is_Bool()) {
1102    // Refresh c from the transformed bool node, since it may be
1103    // simpler than the original c.  Also re-canonicalize btest.
1104    // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1105    // That can arise from statements like: if (x instanceof C) ...
1106    if (tst != tst0) {
1107      // Canonicalize one more time since transform can change it.
1108      btest = tst->as_Bool()->_test._test;
1109      if (!BoolTest(btest).is_canonical()) {
1110        // Reverse edges one more time...
1111        tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1112        btest = tst->as_Bool()->_test._test;
1113        assert(BoolTest(btest).is_canonical(), "sanity");
1114        taken_if_true = !taken_if_true;
1115      }
1116      c = tst->in(1);
1117    }
1118    BoolTest::mask neg_btest = BoolTest(btest).negate();
1119    taken_btest   = taken_if_true ?     btest : neg_btest;
1120    untaken_btest = taken_if_true ? neg_btest :     btest;
1121  }
1122
1123  // Generate real control flow
1124  float true_prob = (taken_if_true ? prob : untaken_prob);
1125  IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1126  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1127  Node* taken_branch   = new IfTrueNode(iff);
1128  Node* untaken_branch = new IfFalseNode(iff);
1129  if (!taken_if_true) {  // Finish conversion to canonical form
1130    Node* tmp      = taken_branch;
1131    taken_branch   = untaken_branch;
1132    untaken_branch = tmp;
1133  }
1134
1135  // Branch is taken:
1136  { PreserveJVMState pjvms(this);
1137    taken_branch = _gvn.transform(taken_branch);
1138    set_control(taken_branch);
1139
1140    if (stopped()) {
1141      if (C->eliminate_boxing()) {
1142        // Mark the successor block as parsed
1143        branch_block->next_path_num();
1144      }
1145    } else {
1146      // Update method data
1147      profile_taken_branch(target_bci);
1148      adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1149      if (!stopped()) {
1150        merge(target_bci);
1151      }
1152    }
1153  }
1154
1155  untaken_branch = _gvn.transform(untaken_branch);
1156  set_control(untaken_branch);
1157
1158  // Branch not taken.
1159  if (stopped()) {
1160    if (C->eliminate_boxing()) {
1161      // Mark the successor block as parsed
1162      next_block->next_path_num();
1163    }
1164  } else {
1165    // Update method data
1166    profile_not_taken_branch();
1167    adjust_map_after_if(untaken_btest, c, untaken_prob,
1168                        next_block, branch_block);
1169  }
1170}
1171
1172bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
1173  // Don't want to speculate on uncommon traps when running with -Xcomp
1174  if (!UseInterpreter) {
1175    return false;
1176  }
1177  return (seems_never_taken(prob) && seems_stable_comparison());
1178}
1179
1180//----------------------------adjust_map_after_if------------------------------
1181// Adjust the JVM state to reflect the result of taking this path.
1182// Basically, it means inspecting the CmpNode controlling this
1183// branch, seeing how it constrains a tested value, and then
1184// deciding if it's worth our while to encode this constraint
1185// as graph nodes in the current abstract interpretation map.
1186void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1187                                Block* path, Block* other_path) {
1188  if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1189    return;                             // nothing to do
1190
1191  bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1192
1193  if (path_is_suitable_for_uncommon_trap(prob)) {
1194    repush_if_args();
1195    uncommon_trap(Deoptimization::Reason_unstable_if,
1196                  Deoptimization::Action_reinterpret,
1197                  NULL,
1198                  (is_fallthrough ? "taken always" : "taken never"));
1199    return;
1200  }
1201
1202  Node* val = c->in(1);
1203  Node* con = c->in(2);
1204  const Type* tcon = _gvn.type(con);
1205  const Type* tval = _gvn.type(val);
1206  bool have_con = tcon->singleton();
1207  if (tval->singleton()) {
1208    if (!have_con) {
1209      // Swap, so constant is in con.
1210      con  = val;
1211      tcon = tval;
1212      val  = c->in(2);
1213      tval = _gvn.type(val);
1214      btest = BoolTest(btest).commute();
1215      have_con = true;
1216    } else {
1217      // Do we have two constants?  Then leave well enough alone.
1218      have_con = false;
1219    }
1220  }
1221  if (!have_con)                        // remaining adjustments need a con
1222    return;
1223
1224  sharpen_type_after_if(btest, con, tcon, val, tval);
1225}
1226
1227
1228static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1229  Node* ldk;
1230  if (n->is_DecodeNKlass()) {
1231    if (n->in(1)->Opcode() != Op_LoadNKlass) {
1232      return NULL;
1233    } else {
1234      ldk = n->in(1);
1235    }
1236  } else if (n->Opcode() != Op_LoadKlass) {
1237    return NULL;
1238  } else {
1239    ldk = n;
1240  }
1241  assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1242
1243  Node* adr = ldk->in(MemNode::Address);
1244  intptr_t off = 0;
1245  Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1246  if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1247    return NULL;
1248  const TypePtr* tp = gvn->type(obj)->is_ptr();
1249  if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1250    return NULL;
1251
1252  return obj;
1253}
1254
1255void Parse::sharpen_type_after_if(BoolTest::mask btest,
1256                                  Node* con, const Type* tcon,
1257                                  Node* val, const Type* tval) {
1258  // Look for opportunities to sharpen the type of a node
1259  // whose klass is compared with a constant klass.
1260  if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1261    Node* obj = extract_obj_from_klass_load(&_gvn, val);
1262    const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1263    if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1264       // Found:
1265       //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1266       // or the narrowOop equivalent.
1267       const Type* obj_type = _gvn.type(obj);
1268       const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1269       if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1270           tboth->higher_equal(obj_type)) {
1271          // obj has to be of the exact type Foo if the CmpP succeeds.
1272          int obj_in_map = map()->find_edge(obj);
1273          JVMState* jvms = this->jvms();
1274          if (obj_in_map >= 0 &&
1275              (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1276            TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1277            const Type* tcc = ccast->as_Type()->type();
1278            assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1279            // Delay transform() call to allow recovery of pre-cast value
1280            // at the control merge.
1281            _gvn.set_type_bottom(ccast);
1282            record_for_igvn(ccast);
1283            // Here's the payoff.
1284            replace_in_map(obj, ccast);
1285          }
1286       }
1287    }
1288  }
1289
1290  int val_in_map = map()->find_edge(val);
1291  if (val_in_map < 0)  return;          // replace_in_map would be useless
1292  {
1293    JVMState* jvms = this->jvms();
1294    if (!(jvms->is_loc(val_in_map) ||
1295          jvms->is_stk(val_in_map)))
1296      return;                           // again, it would be useless
1297  }
1298
1299  // Check for a comparison to a constant, and "know" that the compared
1300  // value is constrained on this path.
1301  assert(tcon->singleton(), "");
1302  ConstraintCastNode* ccast = NULL;
1303  Node* cast = NULL;
1304
1305  switch (btest) {
1306  case BoolTest::eq:                    // Constant test?
1307    {
1308      const Type* tboth = tcon->join_speculative(tval);
1309      if (tboth == tval)  break;        // Nothing to gain.
1310      if (tcon->isa_int()) {
1311        ccast = new CastIINode(val, tboth);
1312      } else if (tcon == TypePtr::NULL_PTR) {
1313        // Cast to null, but keep the pointer identity temporarily live.
1314        ccast = new CastPPNode(val, tboth);
1315      } else {
1316        const TypeF* tf = tcon->isa_float_constant();
1317        const TypeD* td = tcon->isa_double_constant();
1318        // Exclude tests vs float/double 0 as these could be
1319        // either +0 or -0.  Just because you are equal to +0
1320        // doesn't mean you ARE +0!
1321        // Note, following code also replaces Long and Oop values.
1322        if ((!tf || tf->_f != 0.0) &&
1323            (!td || td->_d != 0.0))
1324          cast = con;                   // Replace non-constant val by con.
1325      }
1326    }
1327    break;
1328
1329  case BoolTest::ne:
1330    if (tcon == TypePtr::NULL_PTR) {
1331      cast = cast_not_null(val, false);
1332    }
1333    break;
1334
1335  default:
1336    // (At this point we could record int range types with CastII.)
1337    break;
1338  }
1339
1340  if (ccast != NULL) {
1341    const Type* tcc = ccast->as_Type()->type();
1342    assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1343    // Delay transform() call to allow recovery of pre-cast value
1344    // at the control merge.
1345    ccast->set_req(0, control());
1346    _gvn.set_type_bottom(ccast);
1347    record_for_igvn(ccast);
1348    cast = ccast;
1349  }
1350
1351  if (cast != NULL) {                   // Here's the payoff.
1352    replace_in_map(val, cast);
1353  }
1354}
1355
1356/**
1357 * Use speculative type to optimize CmpP node: if comparison is
1358 * against the low level class, cast the object to the speculative
1359 * type if any. CmpP should then go away.
1360 *
1361 * @param c  expected CmpP node
1362 * @return   result of CmpP on object casted to speculative type
1363 *
1364 */
1365Node* Parse::optimize_cmp_with_klass(Node* c) {
1366  // If this is transformed by the _gvn to a comparison with the low
1367  // level klass then we may be able to use speculation
1368  if (c->Opcode() == Op_CmpP &&
1369      (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1370      c->in(2)->is_Con()) {
1371    Node* load_klass = NULL;
1372    Node* decode = NULL;
1373    if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1374      decode = c->in(1);
1375      load_klass = c->in(1)->in(1);
1376    } else {
1377      load_klass = c->in(1);
1378    }
1379    if (load_klass->in(2)->is_AddP()) {
1380      Node* addp = load_klass->in(2);
1381      Node* obj = addp->in(AddPNode::Address);
1382      const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1383      if (obj_type->speculative_type_not_null() != NULL) {
1384        ciKlass* k = obj_type->speculative_type();
1385        inc_sp(2);
1386        obj = maybe_cast_profiled_obj(obj, k);
1387        dec_sp(2);
1388        // Make the CmpP use the casted obj
1389        addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1390        load_klass = load_klass->clone();
1391        load_klass->set_req(2, addp);
1392        load_klass = _gvn.transform(load_klass);
1393        if (decode != NULL) {
1394          decode = decode->clone();
1395          decode->set_req(1, load_klass);
1396          load_klass = _gvn.transform(decode);
1397        }
1398        c = c->clone();
1399        c->set_req(1, load_klass);
1400        c = _gvn.transform(c);
1401      }
1402    }
1403  }
1404  return c;
1405}
1406
1407//------------------------------do_one_bytecode--------------------------------
1408// Parse this bytecode, and alter the Parsers JVM->Node mapping
1409void Parse::do_one_bytecode() {
1410  Node *a, *b, *c, *d;          // Handy temps
1411  BoolTest::mask btest;
1412  int i;
1413
1414  assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1415
1416  if (C->check_node_count(NodeLimitFudgeFactor * 5,
1417                          "out of nodes parsing method")) {
1418    return;
1419  }
1420
1421#ifdef ASSERT
1422  // for setting breakpoints
1423  if (TraceOptoParse) {
1424    tty->print(" @");
1425    dump_bci(bci());
1426    tty->cr();
1427  }
1428#endif
1429
1430  switch (bc()) {
1431  case Bytecodes::_nop:
1432    // do nothing
1433    break;
1434  case Bytecodes::_lconst_0:
1435    push_pair(longcon(0));
1436    break;
1437
1438  case Bytecodes::_lconst_1:
1439    push_pair(longcon(1));
1440    break;
1441
1442  case Bytecodes::_fconst_0:
1443    push(zerocon(T_FLOAT));
1444    break;
1445
1446  case Bytecodes::_fconst_1:
1447    push(makecon(TypeF::ONE));
1448    break;
1449
1450  case Bytecodes::_fconst_2:
1451    push(makecon(TypeF::make(2.0f)));
1452    break;
1453
1454  case Bytecodes::_dconst_0:
1455    push_pair(zerocon(T_DOUBLE));
1456    break;
1457
1458  case Bytecodes::_dconst_1:
1459    push_pair(makecon(TypeD::ONE));
1460    break;
1461
1462  case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1463  case Bytecodes::_iconst_0: push(intcon( 0)); break;
1464  case Bytecodes::_iconst_1: push(intcon( 1)); break;
1465  case Bytecodes::_iconst_2: push(intcon( 2)); break;
1466  case Bytecodes::_iconst_3: push(intcon( 3)); break;
1467  case Bytecodes::_iconst_4: push(intcon( 4)); break;
1468  case Bytecodes::_iconst_5: push(intcon( 5)); break;
1469  case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1470  case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1471  case Bytecodes::_aconst_null: push(null());  break;
1472  case Bytecodes::_ldc:
1473  case Bytecodes::_ldc_w:
1474  case Bytecodes::_ldc2_w:
1475    // If the constant is unresolved, run this BC once in the interpreter.
1476    {
1477      ciConstant constant = iter().get_constant();
1478      if (constant.basic_type() == T_OBJECT &&
1479          !constant.as_object()->is_loaded()) {
1480        int index = iter().get_constant_pool_index();
1481        constantTag tag = iter().get_constant_pool_tag(index);
1482        uncommon_trap(Deoptimization::make_trap_request
1483                      (Deoptimization::Reason_unloaded,
1484                       Deoptimization::Action_reinterpret,
1485                       index),
1486                      NULL, tag.internal_name());
1487        break;
1488      }
1489      assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1490             "must be java_mirror of klass");
1491      const Type* con_type = Type::make_from_constant(constant);
1492      if (con_type != NULL) {
1493        push_node(con_type->basic_type(), makecon(con_type));
1494      }
1495    }
1496
1497    break;
1498
1499  case Bytecodes::_aload_0:
1500    push( local(0) );
1501    break;
1502  case Bytecodes::_aload_1:
1503    push( local(1) );
1504    break;
1505  case Bytecodes::_aload_2:
1506    push( local(2) );
1507    break;
1508  case Bytecodes::_aload_3:
1509    push( local(3) );
1510    break;
1511  case Bytecodes::_aload:
1512    push( local(iter().get_index()) );
1513    break;
1514
1515  case Bytecodes::_fload_0:
1516  case Bytecodes::_iload_0:
1517    push( local(0) );
1518    break;
1519  case Bytecodes::_fload_1:
1520  case Bytecodes::_iload_1:
1521    push( local(1) );
1522    break;
1523  case Bytecodes::_fload_2:
1524  case Bytecodes::_iload_2:
1525    push( local(2) );
1526    break;
1527  case Bytecodes::_fload_3:
1528  case Bytecodes::_iload_3:
1529    push( local(3) );
1530    break;
1531  case Bytecodes::_fload:
1532  case Bytecodes::_iload:
1533    push( local(iter().get_index()) );
1534    break;
1535  case Bytecodes::_lload_0:
1536    push_pair_local( 0 );
1537    break;
1538  case Bytecodes::_lload_1:
1539    push_pair_local( 1 );
1540    break;
1541  case Bytecodes::_lload_2:
1542    push_pair_local( 2 );
1543    break;
1544  case Bytecodes::_lload_3:
1545    push_pair_local( 3 );
1546    break;
1547  case Bytecodes::_lload:
1548    push_pair_local( iter().get_index() );
1549    break;
1550
1551  case Bytecodes::_dload_0:
1552    push_pair_local(0);
1553    break;
1554  case Bytecodes::_dload_1:
1555    push_pair_local(1);
1556    break;
1557  case Bytecodes::_dload_2:
1558    push_pair_local(2);
1559    break;
1560  case Bytecodes::_dload_3:
1561    push_pair_local(3);
1562    break;
1563  case Bytecodes::_dload:
1564    push_pair_local(iter().get_index());
1565    break;
1566  case Bytecodes::_fstore_0:
1567  case Bytecodes::_istore_0:
1568  case Bytecodes::_astore_0:
1569    set_local( 0, pop() );
1570    break;
1571  case Bytecodes::_fstore_1:
1572  case Bytecodes::_istore_1:
1573  case Bytecodes::_astore_1:
1574    set_local( 1, pop() );
1575    break;
1576  case Bytecodes::_fstore_2:
1577  case Bytecodes::_istore_2:
1578  case Bytecodes::_astore_2:
1579    set_local( 2, pop() );
1580    break;
1581  case Bytecodes::_fstore_3:
1582  case Bytecodes::_istore_3:
1583  case Bytecodes::_astore_3:
1584    set_local( 3, pop() );
1585    break;
1586  case Bytecodes::_fstore:
1587  case Bytecodes::_istore:
1588  case Bytecodes::_astore:
1589    set_local( iter().get_index(), pop() );
1590    break;
1591  // long stores
1592  case Bytecodes::_lstore_0:
1593    set_pair_local( 0, pop_pair() );
1594    break;
1595  case Bytecodes::_lstore_1:
1596    set_pair_local( 1, pop_pair() );
1597    break;
1598  case Bytecodes::_lstore_2:
1599    set_pair_local( 2, pop_pair() );
1600    break;
1601  case Bytecodes::_lstore_3:
1602    set_pair_local( 3, pop_pair() );
1603    break;
1604  case Bytecodes::_lstore:
1605    set_pair_local( iter().get_index(), pop_pair() );
1606    break;
1607
1608  // double stores
1609  case Bytecodes::_dstore_0:
1610    set_pair_local( 0, dstore_rounding(pop_pair()) );
1611    break;
1612  case Bytecodes::_dstore_1:
1613    set_pair_local( 1, dstore_rounding(pop_pair()) );
1614    break;
1615  case Bytecodes::_dstore_2:
1616    set_pair_local( 2, dstore_rounding(pop_pair()) );
1617    break;
1618  case Bytecodes::_dstore_3:
1619    set_pair_local( 3, dstore_rounding(pop_pair()) );
1620    break;
1621  case Bytecodes::_dstore:
1622    set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1623    break;
1624
1625  case Bytecodes::_pop:  dec_sp(1);   break;
1626  case Bytecodes::_pop2: dec_sp(2);   break;
1627  case Bytecodes::_swap:
1628    a = pop();
1629    b = pop();
1630    push(a);
1631    push(b);
1632    break;
1633  case Bytecodes::_dup:
1634    a = pop();
1635    push(a);
1636    push(a);
1637    break;
1638  case Bytecodes::_dup_x1:
1639    a = pop();
1640    b = pop();
1641    push( a );
1642    push( b );
1643    push( a );
1644    break;
1645  case Bytecodes::_dup_x2:
1646    a = pop();
1647    b = pop();
1648    c = pop();
1649    push( a );
1650    push( c );
1651    push( b );
1652    push( a );
1653    break;
1654  case Bytecodes::_dup2:
1655    a = pop();
1656    b = pop();
1657    push( b );
1658    push( a );
1659    push( b );
1660    push( a );
1661    break;
1662
1663  case Bytecodes::_dup2_x1:
1664    // before: .. c, b, a
1665    // after:  .. b, a, c, b, a
1666    // not tested
1667    a = pop();
1668    b = pop();
1669    c = pop();
1670    push( b );
1671    push( a );
1672    push( c );
1673    push( b );
1674    push( a );
1675    break;
1676  case Bytecodes::_dup2_x2:
1677    // before: .. d, c, b, a
1678    // after:  .. b, a, d, c, b, a
1679    // not tested
1680    a = pop();
1681    b = pop();
1682    c = pop();
1683    d = pop();
1684    push( b );
1685    push( a );
1686    push( d );
1687    push( c );
1688    push( b );
1689    push( a );
1690    break;
1691
1692  case Bytecodes::_arraylength: {
1693    // Must do null-check with value on expression stack
1694    Node *ary = null_check(peek(), T_ARRAY);
1695    // Compile-time detect of null-exception?
1696    if (stopped())  return;
1697    a = pop();
1698    push(load_array_length(a));
1699    break;
1700  }
1701
1702  case Bytecodes::_baload: array_load(T_BYTE);   break;
1703  case Bytecodes::_caload: array_load(T_CHAR);   break;
1704  case Bytecodes::_iaload: array_load(T_INT);    break;
1705  case Bytecodes::_saload: array_load(T_SHORT);  break;
1706  case Bytecodes::_faload: array_load(T_FLOAT);  break;
1707  case Bytecodes::_aaload: array_load(T_OBJECT); break;
1708  case Bytecodes::_laload: {
1709    a = array_addressing(T_LONG, 0);
1710    if (stopped())  return;     // guaranteed null or range check
1711    dec_sp(2);                  // Pop array and index
1712    push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS, MemNode::unordered));
1713    break;
1714  }
1715  case Bytecodes::_daload: {
1716    a = array_addressing(T_DOUBLE, 0);
1717    if (stopped())  return;     // guaranteed null or range check
1718    dec_sp(2);                  // Pop array and index
1719    push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered));
1720    break;
1721  }
1722  case Bytecodes::_bastore: array_store(T_BYTE);  break;
1723  case Bytecodes::_castore: array_store(T_CHAR);  break;
1724  case Bytecodes::_iastore: array_store(T_INT);   break;
1725  case Bytecodes::_sastore: array_store(T_SHORT); break;
1726  case Bytecodes::_fastore: array_store(T_FLOAT); break;
1727  case Bytecodes::_aastore: {
1728    d = array_addressing(T_OBJECT, 1);
1729    if (stopped())  return;     // guaranteed null or range check
1730    array_store_check();
1731    c = pop();                  // Oop to store
1732    b = pop();                  // index (already used)
1733    a = pop();                  // the array itself
1734    const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1735    const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1736    Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT,
1737                                     StoreNode::release_if_reference(T_OBJECT));
1738    break;
1739  }
1740  case Bytecodes::_lastore: {
1741    a = array_addressing(T_LONG, 2);
1742    if (stopped())  return;     // guaranteed null or range check
1743    c = pop_pair();
1744    dec_sp(2);                  // Pop array and index
1745    store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS, MemNode::unordered);
1746    break;
1747  }
1748  case Bytecodes::_dastore: {
1749    a = array_addressing(T_DOUBLE, 2);
1750    if (stopped())  return;     // guaranteed null or range check
1751    c = pop_pair();
1752    dec_sp(2);                  // Pop array and index
1753    c = dstore_rounding(c);
1754    store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered);
1755    break;
1756  }
1757  case Bytecodes::_getfield:
1758    do_getfield();
1759    break;
1760
1761  case Bytecodes::_getstatic:
1762    do_getstatic();
1763    break;
1764
1765  case Bytecodes::_putfield:
1766    do_putfield();
1767    break;
1768
1769  case Bytecodes::_putstatic:
1770    do_putstatic();
1771    break;
1772
1773  case Bytecodes::_irem:
1774    do_irem();
1775    break;
1776  case Bytecodes::_idiv:
1777    // Must keep both values on the expression-stack during null-check
1778    zero_check_int(peek());
1779    // Compile-time detect of null-exception?
1780    if (stopped())  return;
1781    b = pop();
1782    a = pop();
1783    push( _gvn.transform( new DivINode(control(),a,b) ) );
1784    break;
1785  case Bytecodes::_imul:
1786    b = pop(); a = pop();
1787    push( _gvn.transform( new MulINode(a,b) ) );
1788    break;
1789  case Bytecodes::_iadd:
1790    b = pop(); a = pop();
1791    push( _gvn.transform( new AddINode(a,b) ) );
1792    break;
1793  case Bytecodes::_ineg:
1794    a = pop();
1795    push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
1796    break;
1797  case Bytecodes::_isub:
1798    b = pop(); a = pop();
1799    push( _gvn.transform( new SubINode(a,b) ) );
1800    break;
1801  case Bytecodes::_iand:
1802    b = pop(); a = pop();
1803    push( _gvn.transform( new AndINode(a,b) ) );
1804    break;
1805  case Bytecodes::_ior:
1806    b = pop(); a = pop();
1807    push( _gvn.transform( new OrINode(a,b) ) );
1808    break;
1809  case Bytecodes::_ixor:
1810    b = pop(); a = pop();
1811    push( _gvn.transform( new XorINode(a,b) ) );
1812    break;
1813  case Bytecodes::_ishl:
1814    b = pop(); a = pop();
1815    push( _gvn.transform( new LShiftINode(a,b) ) );
1816    break;
1817  case Bytecodes::_ishr:
1818    b = pop(); a = pop();
1819    push( _gvn.transform( new RShiftINode(a,b) ) );
1820    break;
1821  case Bytecodes::_iushr:
1822    b = pop(); a = pop();
1823    push( _gvn.transform( new URShiftINode(a,b) ) );
1824    break;
1825
1826  case Bytecodes::_fneg:
1827    a = pop();
1828    b = _gvn.transform(new NegFNode (a));
1829    push(b);
1830    break;
1831
1832  case Bytecodes::_fsub:
1833    b = pop();
1834    a = pop();
1835    c = _gvn.transform( new SubFNode(a,b) );
1836    d = precision_rounding(c);
1837    push( d );
1838    break;
1839
1840  case Bytecodes::_fadd:
1841    b = pop();
1842    a = pop();
1843    c = _gvn.transform( new AddFNode(a,b) );
1844    d = precision_rounding(c);
1845    push( d );
1846    break;
1847
1848  case Bytecodes::_fmul:
1849    b = pop();
1850    a = pop();
1851    c = _gvn.transform( new MulFNode(a,b) );
1852    d = precision_rounding(c);
1853    push( d );
1854    break;
1855
1856  case Bytecodes::_fdiv:
1857    b = pop();
1858    a = pop();
1859    c = _gvn.transform( new DivFNode(0,a,b) );
1860    d = precision_rounding(c);
1861    push( d );
1862    break;
1863
1864  case Bytecodes::_frem:
1865    if (Matcher::has_match_rule(Op_ModF)) {
1866      // Generate a ModF node.
1867      b = pop();
1868      a = pop();
1869      c = _gvn.transform( new ModFNode(0,a,b) );
1870      d = precision_rounding(c);
1871      push( d );
1872    }
1873    else {
1874      // Generate a call.
1875      modf();
1876    }
1877    break;
1878
1879  case Bytecodes::_fcmpl:
1880    b = pop();
1881    a = pop();
1882    c = _gvn.transform( new CmpF3Node( a, b));
1883    push(c);
1884    break;
1885  case Bytecodes::_fcmpg:
1886    b = pop();
1887    a = pop();
1888
1889    // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1890    // which negates the result sign except for unordered.  Flip the unordered
1891    // as well by using CmpF3 which implements unordered-lesser instead of
1892    // unordered-greater semantics.  Finally, commute the result bits.  Result
1893    // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1894    c = _gvn.transform( new CmpF3Node( b, a));
1895    c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
1896    push(c);
1897    break;
1898
1899  case Bytecodes::_f2i:
1900    a = pop();
1901    push(_gvn.transform(new ConvF2INode(a)));
1902    break;
1903
1904  case Bytecodes::_d2i:
1905    a = pop_pair();
1906    b = _gvn.transform(new ConvD2INode(a));
1907    push( b );
1908    break;
1909
1910  case Bytecodes::_f2d:
1911    a = pop();
1912    b = _gvn.transform( new ConvF2DNode(a));
1913    push_pair( b );
1914    break;
1915
1916  case Bytecodes::_d2f:
1917    a = pop_pair();
1918    b = _gvn.transform( new ConvD2FNode(a));
1919    // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1920    //b = _gvn.transform(new RoundFloatNode(0, b) );
1921    push( b );
1922    break;
1923
1924  case Bytecodes::_l2f:
1925    if (Matcher::convL2FSupported()) {
1926      a = pop_pair();
1927      b = _gvn.transform( new ConvL2FNode(a));
1928      // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1929      // Rather than storing the result into an FP register then pushing
1930      // out to memory to round, the machine instruction that implements
1931      // ConvL2D is responsible for rounding.
1932      // c = precision_rounding(b);
1933      c = _gvn.transform(b);
1934      push(c);
1935    } else {
1936      l2f();
1937    }
1938    break;
1939
1940  case Bytecodes::_l2d:
1941    a = pop_pair();
1942    b = _gvn.transform( new ConvL2DNode(a));
1943    // For i486.ad, rounding is always necessary (see _l2f above).
1944    // c = dprecision_rounding(b);
1945    c = _gvn.transform(b);
1946    push_pair(c);
1947    break;
1948
1949  case Bytecodes::_f2l:
1950    a = pop();
1951    b = _gvn.transform( new ConvF2LNode(a));
1952    push_pair(b);
1953    break;
1954
1955  case Bytecodes::_d2l:
1956    a = pop_pair();
1957    b = _gvn.transform( new ConvD2LNode(a));
1958    push_pair(b);
1959    break;
1960
1961  case Bytecodes::_dsub:
1962    b = pop_pair();
1963    a = pop_pair();
1964    c = _gvn.transform( new SubDNode(a,b) );
1965    d = dprecision_rounding(c);
1966    push_pair( d );
1967    break;
1968
1969  case Bytecodes::_dadd:
1970    b = pop_pair();
1971    a = pop_pair();
1972    c = _gvn.transform( new AddDNode(a,b) );
1973    d = dprecision_rounding(c);
1974    push_pair( d );
1975    break;
1976
1977  case Bytecodes::_dmul:
1978    b = pop_pair();
1979    a = pop_pair();
1980    c = _gvn.transform( new MulDNode(a,b) );
1981    d = dprecision_rounding(c);
1982    push_pair( d );
1983    break;
1984
1985  case Bytecodes::_ddiv:
1986    b = pop_pair();
1987    a = pop_pair();
1988    c = _gvn.transform( new DivDNode(0,a,b) );
1989    d = dprecision_rounding(c);
1990    push_pair( d );
1991    break;
1992
1993  case Bytecodes::_dneg:
1994    a = pop_pair();
1995    b = _gvn.transform(new NegDNode (a));
1996    push_pair(b);
1997    break;
1998
1999  case Bytecodes::_drem:
2000    if (Matcher::has_match_rule(Op_ModD)) {
2001      // Generate a ModD node.
2002      b = pop_pair();
2003      a = pop_pair();
2004      // a % b
2005
2006      c = _gvn.transform( new ModDNode(0,a,b) );
2007      d = dprecision_rounding(c);
2008      push_pair( d );
2009    }
2010    else {
2011      // Generate a call.
2012      modd();
2013    }
2014    break;
2015
2016  case Bytecodes::_dcmpl:
2017    b = pop_pair();
2018    a = pop_pair();
2019    c = _gvn.transform( new CmpD3Node( a, b));
2020    push(c);
2021    break;
2022
2023  case Bytecodes::_dcmpg:
2024    b = pop_pair();
2025    a = pop_pair();
2026    // Same as dcmpl but need to flip the unordered case.
2027    // Commute the inputs, which negates the result sign except for unordered.
2028    // Flip the unordered as well by using CmpD3 which implements
2029    // unordered-lesser instead of unordered-greater semantics.
2030    // Finally, negate the result bits.  Result is same as using a
2031    // CmpD3Greater except we did it with CmpD3 alone.
2032    c = _gvn.transform( new CmpD3Node( b, a));
2033    c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2034    push(c);
2035    break;
2036
2037
2038    // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2039  case Bytecodes::_land:
2040    b = pop_pair();
2041    a = pop_pair();
2042    c = _gvn.transform( new AndLNode(a,b) );
2043    push_pair(c);
2044    break;
2045  case Bytecodes::_lor:
2046    b = pop_pair();
2047    a = pop_pair();
2048    c = _gvn.transform( new OrLNode(a,b) );
2049    push_pair(c);
2050    break;
2051  case Bytecodes::_lxor:
2052    b = pop_pair();
2053    a = pop_pair();
2054    c = _gvn.transform( new XorLNode(a,b) );
2055    push_pair(c);
2056    break;
2057
2058  case Bytecodes::_lshl:
2059    b = pop();                  // the shift count
2060    a = pop_pair();             // value to be shifted
2061    c = _gvn.transform( new LShiftLNode(a,b) );
2062    push_pair(c);
2063    break;
2064  case Bytecodes::_lshr:
2065    b = pop();                  // the shift count
2066    a = pop_pair();             // value to be shifted
2067    c = _gvn.transform( new RShiftLNode(a,b) );
2068    push_pair(c);
2069    break;
2070  case Bytecodes::_lushr:
2071    b = pop();                  // the shift count
2072    a = pop_pair();             // value to be shifted
2073    c = _gvn.transform( new URShiftLNode(a,b) );
2074    push_pair(c);
2075    break;
2076  case Bytecodes::_lmul:
2077    b = pop_pair();
2078    a = pop_pair();
2079    c = _gvn.transform( new MulLNode(a,b) );
2080    push_pair(c);
2081    break;
2082
2083  case Bytecodes::_lrem:
2084    // Must keep both values on the expression-stack during null-check
2085    assert(peek(0) == top(), "long word order");
2086    zero_check_long(peek(1));
2087    // Compile-time detect of null-exception?
2088    if (stopped())  return;
2089    b = pop_pair();
2090    a = pop_pair();
2091    c = _gvn.transform( new ModLNode(control(),a,b) );
2092    push_pair(c);
2093    break;
2094
2095  case Bytecodes::_ldiv:
2096    // Must keep both values on the expression-stack during null-check
2097    assert(peek(0) == top(), "long word order");
2098    zero_check_long(peek(1));
2099    // Compile-time detect of null-exception?
2100    if (stopped())  return;
2101    b = pop_pair();
2102    a = pop_pair();
2103    c = _gvn.transform( new DivLNode(control(),a,b) );
2104    push_pair(c);
2105    break;
2106
2107  case Bytecodes::_ladd:
2108    b = pop_pair();
2109    a = pop_pair();
2110    c = _gvn.transform( new AddLNode(a,b) );
2111    push_pair(c);
2112    break;
2113  case Bytecodes::_lsub:
2114    b = pop_pair();
2115    a = pop_pair();
2116    c = _gvn.transform( new SubLNode(a,b) );
2117    push_pair(c);
2118    break;
2119  case Bytecodes::_lcmp:
2120    // Safepoints are now inserted _before_ branches.  The long-compare
2121    // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2122    // slew of control flow.  These are usually followed by a CmpI vs zero and
2123    // a branch; this pattern then optimizes to the obvious long-compare and
2124    // branch.  However, if the branch is backwards there's a Safepoint
2125    // inserted.  The inserted Safepoint captures the JVM state at the
2126    // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2127    // long-compare is used to control a loop the debug info will force
2128    // computation of the 3-way value, even though the generated code uses a
2129    // long-compare and branch.  We try to rectify the situation by inserting
2130    // a SafePoint here and have it dominate and kill the safepoint added at a
2131    // following backwards branch.  At this point the JVM state merely holds 2
2132    // longs but not the 3-way value.
2133    if( UseLoopSafepoints ) {
2134      switch( iter().next_bc() ) {
2135      case Bytecodes::_ifgt:
2136      case Bytecodes::_iflt:
2137      case Bytecodes::_ifge:
2138      case Bytecodes::_ifle:
2139      case Bytecodes::_ifne:
2140      case Bytecodes::_ifeq:
2141        // If this is a backwards branch in the bytecodes, add Safepoint
2142        maybe_add_safepoint(iter().next_get_dest());
2143      }
2144    }
2145    b = pop_pair();
2146    a = pop_pair();
2147    c = _gvn.transform( new CmpL3Node( a, b ));
2148    push(c);
2149    break;
2150
2151  case Bytecodes::_lneg:
2152    a = pop_pair();
2153    b = _gvn.transform( new SubLNode(longcon(0),a));
2154    push_pair(b);
2155    break;
2156  case Bytecodes::_l2i:
2157    a = pop_pair();
2158    push( _gvn.transform( new ConvL2INode(a)));
2159    break;
2160  case Bytecodes::_i2l:
2161    a = pop();
2162    b = _gvn.transform( new ConvI2LNode(a));
2163    push_pair(b);
2164    break;
2165  case Bytecodes::_i2b:
2166    // Sign extend
2167    a = pop();
2168    a = _gvn.transform( new LShiftINode(a,_gvn.intcon(24)) );
2169    a = _gvn.transform( new RShiftINode(a,_gvn.intcon(24)) );
2170    push( a );
2171    break;
2172  case Bytecodes::_i2s:
2173    a = pop();
2174    a = _gvn.transform( new LShiftINode(a,_gvn.intcon(16)) );
2175    a = _gvn.transform( new RShiftINode(a,_gvn.intcon(16)) );
2176    push( a );
2177    break;
2178  case Bytecodes::_i2c:
2179    a = pop();
2180    push( _gvn.transform( new AndINode(a,_gvn.intcon(0xFFFF)) ) );
2181    break;
2182
2183  case Bytecodes::_i2f:
2184    a = pop();
2185    b = _gvn.transform( new ConvI2FNode(a) ) ;
2186    c = precision_rounding(b);
2187    push (b);
2188    break;
2189
2190  case Bytecodes::_i2d:
2191    a = pop();
2192    b = _gvn.transform( new ConvI2DNode(a));
2193    push_pair(b);
2194    break;
2195
2196  case Bytecodes::_iinc:        // Increment local
2197    i = iter().get_index();     // Get local index
2198    set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2199    break;
2200
2201  // Exit points of synchronized methods must have an unlock node
2202  case Bytecodes::_return:
2203    return_current(NULL);
2204    break;
2205
2206  case Bytecodes::_ireturn:
2207  case Bytecodes::_areturn:
2208  case Bytecodes::_freturn:
2209    return_current(pop());
2210    break;
2211  case Bytecodes::_lreturn:
2212    return_current(pop_pair());
2213    break;
2214  case Bytecodes::_dreturn:
2215    return_current(pop_pair());
2216    break;
2217
2218  case Bytecodes::_athrow:
2219    // null exception oop throws NULL pointer exception
2220    null_check(peek());
2221    if (stopped())  return;
2222    // Hook the thrown exception directly to subsequent handlers.
2223    if (BailoutToInterpreterForThrows) {
2224      // Keep method interpreted from now on.
2225      uncommon_trap(Deoptimization::Reason_unhandled,
2226                    Deoptimization::Action_make_not_compilable);
2227      return;
2228    }
2229    if (env()->jvmti_can_post_on_exceptions()) {
2230      // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2231      uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2232    }
2233    // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2234    add_exception_state(make_exception_state(peek()));
2235    break;
2236
2237  case Bytecodes::_goto:   // fall through
2238  case Bytecodes::_goto_w: {
2239    int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2240
2241    // If this is a backwards branch in the bytecodes, add Safepoint
2242    maybe_add_safepoint(target_bci);
2243
2244    // Update method data
2245    profile_taken_branch(target_bci);
2246
2247    // Merge the current control into the target basic block
2248    merge(target_bci);
2249
2250    // See if we can get some profile data and hand it off to the next block
2251    Block *target_block = block()->successor_for_bci(target_bci);
2252    if (target_block->pred_count() != 1)  break;
2253    ciMethodData* methodData = method()->method_data();
2254    if (!methodData->is_mature())  break;
2255    ciProfileData* data = methodData->bci_to_data(bci());
2256    assert( data->is_JumpData(), "" );
2257    int taken = ((ciJumpData*)data)->taken();
2258    taken = method()->scale_count(taken);
2259    target_block->set_count(taken);
2260    break;
2261  }
2262
2263  case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2264  case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2265  handle_if_null:
2266    // If this is a backwards branch in the bytecodes, add Safepoint
2267    maybe_add_safepoint(iter().get_dest());
2268    a = null();
2269    b = pop();
2270    if (!_gvn.type(b)->speculative_maybe_null() &&
2271        !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2272      inc_sp(1);
2273      Node* null_ctl = top();
2274      b = null_check_oop(b, &null_ctl, true, true, true);
2275      assert(null_ctl->is_top(), "no null control here");
2276      dec_sp(1);
2277    }
2278    c = _gvn.transform( new CmpPNode(b, a) );
2279    do_ifnull(btest, c);
2280    break;
2281
2282  case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2283  case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2284  handle_if_acmp:
2285    // If this is a backwards branch in the bytecodes, add Safepoint
2286    maybe_add_safepoint(iter().get_dest());
2287    a = pop();
2288    b = pop();
2289    c = _gvn.transform( new CmpPNode(b, a) );
2290    c = optimize_cmp_with_klass(c);
2291    do_if(btest, c);
2292    break;
2293
2294  case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2295  case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2296  case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2297  case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2298  case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2299  case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2300  handle_ifxx:
2301    // If this is a backwards branch in the bytecodes, add Safepoint
2302    maybe_add_safepoint(iter().get_dest());
2303    a = _gvn.intcon(0);
2304    b = pop();
2305    c = _gvn.transform( new CmpINode(b, a) );
2306    do_if(btest, c);
2307    break;
2308
2309  case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2310  case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2311  case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2312  case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2313  case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2314  case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2315  handle_if_icmp:
2316    // If this is a backwards branch in the bytecodes, add Safepoint
2317    maybe_add_safepoint(iter().get_dest());
2318    a = pop();
2319    b = pop();
2320    c = _gvn.transform( new CmpINode( b, a ) );
2321    do_if(btest, c);
2322    break;
2323
2324  case Bytecodes::_tableswitch:
2325    do_tableswitch();
2326    break;
2327
2328  case Bytecodes::_lookupswitch:
2329    do_lookupswitch();
2330    break;
2331
2332  case Bytecodes::_invokestatic:
2333  case Bytecodes::_invokedynamic:
2334  case Bytecodes::_invokespecial:
2335  case Bytecodes::_invokevirtual:
2336  case Bytecodes::_invokeinterface:
2337    do_call();
2338    break;
2339  case Bytecodes::_checkcast:
2340    do_checkcast();
2341    break;
2342  case Bytecodes::_instanceof:
2343    do_instanceof();
2344    break;
2345  case Bytecodes::_anewarray:
2346    do_anewarray();
2347    break;
2348  case Bytecodes::_newarray:
2349    do_newarray((BasicType)iter().get_index());
2350    break;
2351  case Bytecodes::_multianewarray:
2352    do_multianewarray();
2353    break;
2354  case Bytecodes::_new:
2355    do_new();
2356    break;
2357
2358  case Bytecodes::_jsr:
2359  case Bytecodes::_jsr_w:
2360    do_jsr();
2361    break;
2362
2363  case Bytecodes::_ret:
2364    do_ret();
2365    break;
2366
2367
2368  case Bytecodes::_monitorenter:
2369    do_monitor_enter();
2370    break;
2371
2372  case Bytecodes::_monitorexit:
2373    do_monitor_exit();
2374    break;
2375
2376  case Bytecodes::_breakpoint:
2377    // Breakpoint set concurrently to compile
2378    // %%% use an uncommon trap?
2379    C->record_failure("breakpoint in method");
2380    return;
2381
2382  default:
2383#ifndef PRODUCT
2384    map()->dump(99);
2385#endif
2386    tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2387    ShouldNotReachHere();
2388  }
2389
2390#ifndef PRODUCT
2391  IdealGraphPrinter *printer = C->printer();
2392  if (printer && printer->should_print(1)) {
2393    char buffer[256];
2394    sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2395    bool old = printer->traverse_outs();
2396    printer->set_traverse_outs(true);
2397    printer->print_method(buffer, 4);
2398    printer->set_traverse_outs(old);
2399  }
2400#endif
2401}
2402