parse1.cpp revision 9244:825cee2cd7a6
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "interpreter/linkResolver.hpp"
28#include "oops/method.hpp"
29#include "opto/addnode.hpp"
30#include "opto/c2compiler.hpp"
31#include "opto/castnode.hpp"
32#include "opto/idealGraphPrinter.hpp"
33#include "opto/locknode.hpp"
34#include "opto/memnode.hpp"
35#include "opto/opaquenode.hpp"
36#include "opto/parse.hpp"
37#include "opto/rootnode.hpp"
38#include "opto/runtime.hpp"
39#include "runtime/arguments.hpp"
40#include "runtime/handles.inline.hpp"
41#include "runtime/sharedRuntime.hpp"
42#include "utilities/copy.hpp"
43
44// Static array so we can figure out which bytecodes stop us from compiling
45// the most. Some of the non-static variables are needed in bytecodeInfo.cpp
46// and eventually should be encapsulated in a proper class (gri 8/18/98).
47
48int nodes_created              = 0;
49int methods_parsed             = 0;
50int methods_seen               = 0;
51int blocks_parsed              = 0;
52int blocks_seen                = 0;
53
54int explicit_null_checks_inserted = 0;
55int explicit_null_checks_elided   = 0;
56int all_null_checks_found         = 0, implicit_null_checks              = 0;
57int implicit_null_throws          = 0;
58
59int reclaim_idx  = 0;
60int reclaim_in   = 0;
61int reclaim_node = 0;
62
63#ifndef PRODUCT
64bool Parse::BytecodeParseHistogram::_initialized = false;
65uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
66uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
67uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
68uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
69#endif
70
71//------------------------------print_statistics-------------------------------
72#ifndef PRODUCT
73void Parse::print_statistics() {
74  tty->print_cr("--- Compiler Statistics ---");
75  tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
76  tty->print("  Nodes created: %d", nodes_created);
77  tty->cr();
78  if (methods_seen != methods_parsed)
79    tty->print_cr("Reasons for parse failures (NOT cumulative):");
80  tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
81
82  if( explicit_null_checks_inserted )
83    tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
84  if( all_null_checks_found )
85    tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
86                  (100*implicit_null_checks)/all_null_checks_found);
87  if( implicit_null_throws )
88    tty->print_cr("%d implicit null exceptions at runtime",
89                  implicit_null_throws);
90
91  if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
92    BytecodeParseHistogram::print();
93  }
94}
95#endif
96
97//------------------------------ON STACK REPLACEMENT---------------------------
98
99// Construct a node which can be used to get incoming state for
100// on stack replacement.
101Node *Parse::fetch_interpreter_state(int index,
102                                     BasicType bt,
103                                     Node *local_addrs,
104                                     Node *local_addrs_base) {
105  Node *mem = memory(Compile::AliasIdxRaw);
106  Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
107  Node *ctl = control();
108
109  // Very similar to LoadNode::make, except we handle un-aligned longs and
110  // doubles on Sparc.  Intel can handle them just fine directly.
111  Node *l = NULL;
112  switch (bt) {                // Signature is flattened
113  case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
114  case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
115  case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
116  case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
117  case T_LONG:
118  case T_DOUBLE: {
119    // Since arguments are in reverse order, the argument address 'adr'
120    // refers to the back half of the long/double.  Recompute adr.
121    adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
122    if (Matcher::misaligned_doubles_ok) {
123      l = (bt == T_DOUBLE)
124        ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
125        : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
126    } else {
127      l = (bt == T_DOUBLE)
128        ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
129        : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
130    }
131    break;
132  }
133  default: ShouldNotReachHere();
134  }
135  return _gvn.transform(l);
136}
137
138// Helper routine to prevent the interpreter from handing
139// unexpected typestate to an OSR method.
140// The Node l is a value newly dug out of the interpreter frame.
141// The type is the type predicted by ciTypeFlow.  Note that it is
142// not a general type, but can only come from Type::get_typeflow_type.
143// The safepoint is a map which will feed an uncommon trap.
144Node* Parse::check_interpreter_type(Node* l, const Type* type,
145                                    SafePointNode* &bad_type_exit) {
146
147  const TypeOopPtr* tp = type->isa_oopptr();
148
149  // TypeFlow may assert null-ness if a type appears unloaded.
150  if (type == TypePtr::NULL_PTR ||
151      (tp != NULL && !tp->klass()->is_loaded())) {
152    // Value must be null, not a real oop.
153    Node* chk = _gvn.transform( new CmpPNode(l, null()) );
154    Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
155    IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
156    set_control(_gvn.transform( new IfTrueNode(iff) ));
157    Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
158    bad_type_exit->control()->add_req(bad_type);
159    l = null();
160  }
161
162  // Typeflow can also cut off paths from the CFG, based on
163  // types which appear unloaded, or call sites which appear unlinked.
164  // When paths are cut off, values at later merge points can rise
165  // toward more specific classes.  Make sure these specific classes
166  // are still in effect.
167  if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
168    // TypeFlow asserted a specific object type.  Value must have that type.
169    Node* bad_type_ctrl = NULL;
170    l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
171    bad_type_exit->control()->add_req(bad_type_ctrl);
172  }
173
174  BasicType bt_l = _gvn.type(l)->basic_type();
175  BasicType bt_t = type->basic_type();
176  assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
177  return l;
178}
179
180// Helper routine which sets up elements of the initial parser map when
181// performing a parse for on stack replacement.  Add values into map.
182// The only parameter contains the address of a interpreter arguments.
183void Parse::load_interpreter_state(Node* osr_buf) {
184  int index;
185  int max_locals = jvms()->loc_size();
186  int max_stack  = jvms()->stk_size();
187
188
189  // Mismatch between method and jvms can occur since map briefly held
190  // an OSR entry state (which takes up one RawPtr word).
191  assert(max_locals == method()->max_locals(), "sanity");
192  assert(max_stack  >= method()->max_stack(),  "sanity");
193  assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
194  assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
195
196  // Find the start block.
197  Block* osr_block = start_block();
198  assert(osr_block->start() == osr_bci(), "sanity");
199
200  // Set initial BCI.
201  set_parse_bci(osr_block->start());
202
203  // Set initial stack depth.
204  set_sp(osr_block->start_sp());
205
206  // Check bailouts.  We currently do not perform on stack replacement
207  // of loops in catch blocks or loops which branch with a non-empty stack.
208  if (sp() != 0) {
209    C->record_method_not_compilable("OSR starts with non-empty stack");
210    return;
211  }
212  // Do not OSR inside finally clauses:
213  if (osr_block->has_trap_at(osr_block->start())) {
214    C->record_method_not_compilable("OSR starts with an immediate trap");
215    return;
216  }
217
218  // Commute monitors from interpreter frame to compiler frame.
219  assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
220  int mcnt = osr_block->flow()->monitor_count();
221  Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
222  for (index = 0; index < mcnt; index++) {
223    // Make a BoxLockNode for the monitor.
224    Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
225
226
227    // Displaced headers and locked objects are interleaved in the
228    // temp OSR buffer.  We only copy the locked objects out here.
229    // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
230    Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
231    // Try and copy the displaced header to the BoxNode
232    Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
233
234
235    store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
236
237    // Build a bogus FastLockNode (no code will be generated) and push the
238    // monitor into our debug info.
239    const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
240    map()->push_monitor(flock);
241
242    // If the lock is our method synchronization lock, tuck it away in
243    // _sync_lock for return and rethrow exit paths.
244    if (index == 0 && method()->is_synchronized()) {
245      _synch_lock = flock;
246    }
247  }
248
249  // Use the raw liveness computation to make sure that unexpected
250  // values don't propagate into the OSR frame.
251  MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
252  if (!live_locals.is_valid()) {
253    // Degenerate or breakpointed method.
254    C->record_method_not_compilable("OSR in empty or breakpointed method");
255    return;
256  }
257
258  // Extract the needed locals from the interpreter frame.
259  Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
260
261  // find all the locals that the interpreter thinks contain live oops
262  const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
263  for (index = 0; index < max_locals; index++) {
264
265    if (!live_locals.at(index)) {
266      continue;
267    }
268
269    const Type *type = osr_block->local_type_at(index);
270
271    if (type->isa_oopptr() != NULL) {
272
273      // 6403625: Verify that the interpreter oopMap thinks that the oop is live
274      // else we might load a stale oop if the MethodLiveness disagrees with the
275      // result of the interpreter. If the interpreter says it is dead we agree
276      // by making the value go to top.
277      //
278
279      if (!live_oops.at(index)) {
280        if (C->log() != NULL) {
281          C->log()->elem("OSR_mismatch local_index='%d'",index);
282        }
283        set_local(index, null());
284        // and ignore it for the loads
285        continue;
286      }
287    }
288
289    // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
290    if (type == Type::TOP || type == Type::HALF) {
291      continue;
292    }
293    // If the type falls to bottom, then this must be a local that
294    // is mixing ints and oops or some such.  Forcing it to top
295    // makes it go dead.
296    if (type == Type::BOTTOM) {
297      continue;
298    }
299    // Construct code to access the appropriate local.
300    BasicType bt = type->basic_type();
301    if (type == TypePtr::NULL_PTR) {
302      // Ptr types are mixed together with T_ADDRESS but NULL is
303      // really for T_OBJECT types so correct it.
304      bt = T_OBJECT;
305    }
306    Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
307    set_local(index, value);
308  }
309
310  // Extract the needed stack entries from the interpreter frame.
311  for (index = 0; index < sp(); index++) {
312    const Type *type = osr_block->stack_type_at(index);
313    if (type != Type::TOP) {
314      // Currently the compiler bails out when attempting to on stack replace
315      // at a bci with a non-empty stack.  We should not reach here.
316      ShouldNotReachHere();
317    }
318  }
319
320  // End the OSR migration
321  make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
322                    CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
323                    "OSR_migration_end", TypeRawPtr::BOTTOM,
324                    osr_buf);
325
326  // Now that the interpreter state is loaded, make sure it will match
327  // at execution time what the compiler is expecting now:
328  SafePointNode* bad_type_exit = clone_map();
329  bad_type_exit->set_control(new RegionNode(1));
330
331  assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
332  for (index = 0; index < max_locals; index++) {
333    if (stopped())  break;
334    Node* l = local(index);
335    if (l->is_top())  continue;  // nothing here
336    const Type *type = osr_block->local_type_at(index);
337    if (type->isa_oopptr() != NULL) {
338      if (!live_oops.at(index)) {
339        // skip type check for dead oops
340        continue;
341      }
342    }
343    if (osr_block->flow()->local_type_at(index)->is_return_address()) {
344      // In our current system it's illegal for jsr addresses to be
345      // live into an OSR entry point because the compiler performs
346      // inlining of jsrs.  ciTypeFlow has a bailout that detect this
347      // case and aborts the compile if addresses are live into an OSR
348      // entry point.  Because of that we can assume that any address
349      // locals at the OSR entry point are dead.  Method liveness
350      // isn't precise enought to figure out that they are dead in all
351      // cases so simply skip checking address locals all
352      // together. Any type check is guaranteed to fail since the
353      // interpreter type is the result of a load which might have any
354      // value and the expected type is a constant.
355      continue;
356    }
357    set_local(index, check_interpreter_type(l, type, bad_type_exit));
358  }
359
360  for (index = 0; index < sp(); index++) {
361    if (stopped())  break;
362    Node* l = stack(index);
363    if (l->is_top())  continue;  // nothing here
364    const Type *type = osr_block->stack_type_at(index);
365    set_stack(index, check_interpreter_type(l, type, bad_type_exit));
366  }
367
368  if (bad_type_exit->control()->req() > 1) {
369    // Build an uncommon trap here, if any inputs can be unexpected.
370    bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
371    record_for_igvn(bad_type_exit->control());
372    SafePointNode* types_are_good = map();
373    set_map(bad_type_exit);
374    // The unexpected type happens because a new edge is active
375    // in the CFG, which typeflow had previously ignored.
376    // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
377    // This x will be typed as Integer if notReached is not yet linked.
378    // It could also happen due to a problem in ciTypeFlow analysis.
379    uncommon_trap(Deoptimization::Reason_constraint,
380                  Deoptimization::Action_reinterpret);
381    set_map(types_are_good);
382  }
383}
384
385//------------------------------Parse------------------------------------------
386// Main parser constructor.
387Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
388  : _exits(caller)
389{
390  // Init some variables
391  _caller = caller;
392  _method = parse_method;
393  _expected_uses = expected_uses;
394  _depth = 1 + (caller->has_method() ? caller->depth() : 0);
395  _wrote_final = false;
396  _wrote_volatile = false;
397  _wrote_stable = false;
398  _wrote_fields = false;
399  _alloc_with_final = NULL;
400  _entry_bci = InvocationEntryBci;
401  _tf = NULL;
402  _block = NULL;
403  _first_return = true;
404  _replaced_nodes_for_exceptions = false;
405  _new_idx = C->unique();
406  debug_only(_block_count = -1);
407  debug_only(_blocks = (Block*)-1);
408#ifndef PRODUCT
409  if (PrintCompilation || PrintOpto) {
410    // Make sure I have an inline tree, so I can print messages about it.
411    JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
412    InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
413  }
414  _max_switch_depth = 0;
415  _est_switch_depth = 0;
416#endif
417
418  _tf = TypeFunc::make(method());
419  _iter.reset_to_method(method());
420  _flow = method()->get_flow_analysis();
421  if (_flow->failing()) {
422    C->record_method_not_compilable_all_tiers(_flow->failure_reason());
423  }
424
425#ifndef PRODUCT
426  if (_flow->has_irreducible_entry()) {
427    C->set_parsed_irreducible_loop(true);
428  }
429#endif
430
431  if (_expected_uses <= 0) {
432    _prof_factor = 1;
433  } else {
434    float prof_total = parse_method->interpreter_invocation_count();
435    if (prof_total <= _expected_uses) {
436      _prof_factor = 1;
437    } else {
438      _prof_factor = _expected_uses / prof_total;
439    }
440  }
441
442  CompileLog* log = C->log();
443  if (log != NULL) {
444    log->begin_head("parse method='%d' uses='%f'",
445                    log->identify(parse_method), expected_uses);
446    if (depth() == 1 && C->is_osr_compilation()) {
447      log->print(" osr_bci='%d'", C->entry_bci());
448    }
449    log->stamp();
450    log->end_head();
451  }
452
453  // Accumulate deoptimization counts.
454  // (The range_check and store_check counts are checked elsewhere.)
455  ciMethodData* md = method()->method_data();
456  for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
457    uint md_count = md->trap_count(reason);
458    if (md_count != 0) {
459      if (md_count == md->trap_count_limit())
460        md_count += md->overflow_trap_count();
461      uint total_count = C->trap_count(reason);
462      uint old_count   = total_count;
463      total_count += md_count;
464      // Saturate the add if it overflows.
465      if (total_count < old_count || total_count < md_count)
466        total_count = (uint)-1;
467      C->set_trap_count(reason, total_count);
468      if (log != NULL)
469        log->elem("observe trap='%s' count='%d' total='%d'",
470                  Deoptimization::trap_reason_name(reason),
471                  md_count, total_count);
472    }
473  }
474  // Accumulate total sum of decompilations, also.
475  C->set_decompile_count(C->decompile_count() + md->decompile_count());
476
477  _count_invocations = C->do_count_invocations();
478  _method_data_update = C->do_method_data_update();
479
480  if (log != NULL && method()->has_exception_handlers()) {
481    log->elem("observe that='has_exception_handlers'");
482  }
483
484  assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
485  assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
486
487  // Always register dependence if JVMTI is enabled, because
488  // either breakpoint setting or hotswapping of methods may
489  // cause deoptimization.
490  if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
491    C->dependencies()->assert_evol_method(method());
492  }
493
494  methods_seen++;
495
496  // Do some special top-level things.
497  if (depth() == 1 && C->is_osr_compilation()) {
498    _entry_bci = C->entry_bci();
499    _flow = method()->get_osr_flow_analysis(osr_bci());
500    if (_flow->failing()) {
501      C->record_method_not_compilable(_flow->failure_reason());
502#ifndef PRODUCT
503      if (PrintOpto && (Verbose || WizardMode)) {
504        tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
505        if (Verbose) {
506          method()->print();
507          method()->print_codes();
508          _flow->print();
509        }
510      }
511#endif
512    }
513    _tf = C->tf();     // the OSR entry type is different
514  }
515
516#ifdef ASSERT
517  if (depth() == 1) {
518    assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
519    if (C->tf() != tf()) {
520      MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
521      assert(C->env()->system_dictionary_modification_counter_changed(),
522             "Must invalidate if TypeFuncs differ");
523    }
524  } else {
525    assert(!this->is_osr_parse(), "no recursive OSR");
526  }
527#endif
528
529  methods_parsed++;
530#ifndef PRODUCT
531  // add method size here to guarantee that inlined methods are added too
532  if (CITime)
533    _total_bytes_compiled += method()->code_size();
534
535  show_parse_info();
536#endif
537
538  if (failing()) {
539    if (log)  log->done("parse");
540    return;
541  }
542
543  gvn().set_type(root(), root()->bottom_type());
544  gvn().transform(top());
545
546  // Import the results of the ciTypeFlow.
547  init_blocks();
548
549  // Merge point for all normal exits
550  build_exits();
551
552  // Setup the initial JVM state map.
553  SafePointNode* entry_map = create_entry_map();
554
555  // Check for bailouts during map initialization
556  if (failing() || entry_map == NULL) {
557    if (log)  log->done("parse");
558    return;
559  }
560
561  Node_Notes* caller_nn = C->default_node_notes();
562  // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
563  if (DebugInlinedCalls || depth() == 1) {
564    C->set_default_node_notes(make_node_notes(caller_nn));
565  }
566
567  if (is_osr_parse()) {
568    Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
569    entry_map->set_req(TypeFunc::Parms+0, top());
570    set_map(entry_map);
571    load_interpreter_state(osr_buf);
572  } else {
573    set_map(entry_map);
574    do_method_entry();
575    if (depth() == 1 && C->age_code()) {
576      decrement_age();
577    }
578  }
579
580  if (depth() == 1 && !failing()) {
581    // Add check to deoptimize the nmethod if RTM state was changed
582    rtm_deopt();
583  }
584
585  // Check for bailouts during method entry or RTM state check setup.
586  if (failing()) {
587    if (log)  log->done("parse");
588    C->set_default_node_notes(caller_nn);
589    return;
590  }
591
592  entry_map = map();  // capture any changes performed by method setup code
593  assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
594
595  // We begin parsing as if we have just encountered a jump to the
596  // method entry.
597  Block* entry_block = start_block();
598  assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
599  set_map_clone(entry_map);
600  merge_common(entry_block, entry_block->next_path_num());
601
602#ifndef PRODUCT
603  BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
604  set_parse_histogram( parse_histogram_obj );
605#endif
606
607  // Parse all the basic blocks.
608  do_all_blocks();
609
610  C->set_default_node_notes(caller_nn);
611
612  // Check for bailouts during conversion to graph
613  if (failing()) {
614    if (log)  log->done("parse");
615    return;
616  }
617
618  // Fix up all exiting control flow.
619  set_map(entry_map);
620  do_exits();
621
622  if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
623                      C->unique(), C->live_nodes(), C->node_arena()->used());
624}
625
626//---------------------------do_all_blocks-------------------------------------
627void Parse::do_all_blocks() {
628  bool has_irreducible = flow()->has_irreducible_entry();
629
630  // Walk over all blocks in Reverse Post-Order.
631  while (true) {
632    bool progress = false;
633    for (int rpo = 0; rpo < block_count(); rpo++) {
634      Block* block = rpo_at(rpo);
635
636      if (block->is_parsed()) continue;
637
638      if (!block->is_merged()) {
639        // Dead block, no state reaches this block
640        continue;
641      }
642
643      // Prepare to parse this block.
644      load_state_from(block);
645
646      if (stopped()) {
647        // Block is dead.
648        continue;
649      }
650
651      blocks_parsed++;
652
653      progress = true;
654      if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
655        // Not all preds have been parsed.  We must build phis everywhere.
656        // (Note that dead locals do not get phis built, ever.)
657        ensure_phis_everywhere();
658
659        if (block->is_SEL_head() &&
660            (UseLoopPredicate || LoopLimitCheck)) {
661          // Add predicate to single entry (not irreducible) loop head.
662          assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
663          // Need correct bci for predicate.
664          // It is fine to set it here since do_one_block() will set it anyway.
665          set_parse_bci(block->start());
666          add_predicate();
667          // Add new region for back branches.
668          int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
669          RegionNode *r = new RegionNode(edges+1);
670          _gvn.set_type(r, Type::CONTROL);
671          record_for_igvn(r);
672          r->init_req(edges, control());
673          set_control(r);
674          // Add new phis.
675          ensure_phis_everywhere();
676        }
677
678        // Leave behind an undisturbed copy of the map, for future merges.
679        set_map(clone_map());
680      }
681
682      if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
683        // In the absence of irreducible loops, the Region and Phis
684        // associated with a merge that doesn't involve a backedge can
685        // be simplified now since the RPO parsing order guarantees
686        // that any path which was supposed to reach here has already
687        // been parsed or must be dead.
688        Node* c = control();
689        Node* result = _gvn.transform_no_reclaim(control());
690        if (c != result && TraceOptoParse) {
691          tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
692        }
693        if (result != top()) {
694          record_for_igvn(result);
695        }
696      }
697
698      // Parse the block.
699      do_one_block();
700
701      // Check for bailouts.
702      if (failing())  return;
703    }
704
705    // with irreducible loops multiple passes might be necessary to parse everything
706    if (!has_irreducible || !progress) {
707      break;
708    }
709  }
710
711  blocks_seen += block_count();
712
713#ifndef PRODUCT
714  // Make sure there are no half-processed blocks remaining.
715  // Every remaining unprocessed block is dead and may be ignored now.
716  for (int rpo = 0; rpo < block_count(); rpo++) {
717    Block* block = rpo_at(rpo);
718    if (!block->is_parsed()) {
719      if (TraceOptoParse) {
720        tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
721      }
722      assert(!block->is_merged(), "no half-processed blocks");
723    }
724  }
725#endif
726}
727
728//-------------------------------build_exits----------------------------------
729// Build normal and exceptional exit merge points.
730void Parse::build_exits() {
731  // make a clone of caller to prevent sharing of side-effects
732  _exits.set_map(_exits.clone_map());
733  _exits.clean_stack(_exits.sp());
734  _exits.sync_jvms();
735
736  RegionNode* region = new RegionNode(1);
737  record_for_igvn(region);
738  gvn().set_type_bottom(region);
739  _exits.set_control(region);
740
741  // Note:  iophi and memphi are not transformed until do_exits.
742  Node* iophi  = new PhiNode(region, Type::ABIO);
743  Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
744  gvn().set_type_bottom(iophi);
745  gvn().set_type_bottom(memphi);
746  _exits.set_i_o(iophi);
747  _exits.set_all_memory(memphi);
748
749  // Add a return value to the exit state.  (Do not push it yet.)
750  if (tf()->range()->cnt() > TypeFunc::Parms) {
751    const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
752    // Don't "bind" an unloaded return klass to the ret_phi. If the klass
753    // becomes loaded during the subsequent parsing, the loaded and unloaded
754    // types will not join when we transform and push in do_exits().
755    const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
756    if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
757      ret_type = TypeOopPtr::BOTTOM;
758    }
759    int         ret_size = type2size[ret_type->basic_type()];
760    Node*       ret_phi  = new PhiNode(region, ret_type);
761    gvn().set_type_bottom(ret_phi);
762    _exits.ensure_stack(ret_size);
763    assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
764    assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
765    _exits.set_argument(0, ret_phi);  // here is where the parser finds it
766    // Note:  ret_phi is not yet pushed, until do_exits.
767  }
768}
769
770
771//----------------------------build_start_state-------------------------------
772// Construct a state which contains only the incoming arguments from an
773// unknown caller.  The method & bci will be NULL & InvocationEntryBci.
774JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
775  int        arg_size = tf->domain()->cnt();
776  int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
777  JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
778  SafePointNode* map  = new SafePointNode(max_size, NULL);
779  record_for_igvn(map);
780  assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
781  Node_Notes* old_nn = default_node_notes();
782  if (old_nn != NULL && has_method()) {
783    Node_Notes* entry_nn = old_nn->clone(this);
784    JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
785    entry_jvms->set_offsets(0);
786    entry_jvms->set_bci(entry_bci());
787    entry_nn->set_jvms(entry_jvms);
788    set_default_node_notes(entry_nn);
789  }
790  uint i;
791  for (i = 0; i < (uint)arg_size; i++) {
792    Node* parm = initial_gvn()->transform(new ParmNode(start, i));
793    map->init_req(i, parm);
794    // Record all these guys for later GVN.
795    record_for_igvn(parm);
796  }
797  for (; i < map->req(); i++) {
798    map->init_req(i, top());
799  }
800  assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
801  set_default_node_notes(old_nn);
802  map->set_jvms(jvms);
803  jvms->set_map(map);
804  return jvms;
805}
806
807//-----------------------------make_node_notes---------------------------------
808Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
809  if (caller_nn == NULL)  return NULL;
810  Node_Notes* nn = caller_nn->clone(C);
811  JVMState* caller_jvms = nn->jvms();
812  JVMState* jvms = new (C) JVMState(method(), caller_jvms);
813  jvms->set_offsets(0);
814  jvms->set_bci(_entry_bci);
815  nn->set_jvms(jvms);
816  return nn;
817}
818
819
820//--------------------------return_values--------------------------------------
821void Compile::return_values(JVMState* jvms) {
822  GraphKit kit(jvms);
823  Node* ret = new ReturnNode(TypeFunc::Parms,
824                             kit.control(),
825                             kit.i_o(),
826                             kit.reset_memory(),
827                             kit.frameptr(),
828                             kit.returnadr());
829  // Add zero or 1 return values
830  int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
831  if (ret_size > 0) {
832    kit.inc_sp(-ret_size);  // pop the return value(s)
833    kit.sync_jvms();
834    ret->add_req(kit.argument(0));
835    // Note:  The second dummy edge is not needed by a ReturnNode.
836  }
837  // bind it to root
838  root()->add_req(ret);
839  record_for_igvn(ret);
840  initial_gvn()->transform_no_reclaim(ret);
841}
842
843//------------------------rethrow_exceptions-----------------------------------
844// Bind all exception states in the list into a single RethrowNode.
845void Compile::rethrow_exceptions(JVMState* jvms) {
846  GraphKit kit(jvms);
847  if (!kit.has_exceptions())  return;  // nothing to generate
848  // Load my combined exception state into the kit, with all phis transformed:
849  SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
850  Node* ex_oop = kit.use_exception_state(ex_map);
851  RethrowNode* exit = new RethrowNode(kit.control(),
852                                      kit.i_o(), kit.reset_memory(),
853                                      kit.frameptr(), kit.returnadr(),
854                                      // like a return but with exception input
855                                      ex_oop);
856  // bind to root
857  root()->add_req(exit);
858  record_for_igvn(exit);
859  initial_gvn()->transform_no_reclaim(exit);
860}
861
862//---------------------------do_exceptions-------------------------------------
863// Process exceptions arising from the current bytecode.
864// Send caught exceptions to the proper handler within this method.
865// Unhandled exceptions feed into _exit.
866void Parse::do_exceptions() {
867  if (!has_exceptions())  return;
868
869  if (failing()) {
870    // Pop them all off and throw them away.
871    while (pop_exception_state() != NULL) ;
872    return;
873  }
874
875  PreserveJVMState pjvms(this, false);
876
877  SafePointNode* ex_map;
878  while ((ex_map = pop_exception_state()) != NULL) {
879    if (!method()->has_exception_handlers()) {
880      // Common case:  Transfer control outward.
881      // Doing it this early allows the exceptions to common up
882      // even between adjacent method calls.
883      throw_to_exit(ex_map);
884    } else {
885      // Have to look at the exception first.
886      assert(stopped(), "catch_inline_exceptions trashes the map");
887      catch_inline_exceptions(ex_map);
888      stop_and_kill_map();      // we used up this exception state; kill it
889    }
890  }
891
892  // We now return to our regularly scheduled program:
893}
894
895//---------------------------throw_to_exit-------------------------------------
896// Merge the given map into an exception exit from this method.
897// The exception exit will handle any unlocking of receiver.
898// The ex_oop must be saved within the ex_map, unlike merge_exception.
899void Parse::throw_to_exit(SafePointNode* ex_map) {
900  // Pop the JVMS to (a copy of) the caller.
901  GraphKit caller;
902  caller.set_map_clone(_caller->map());
903  caller.set_bci(_caller->bci());
904  caller.set_sp(_caller->sp());
905  // Copy out the standard machine state:
906  for (uint i = 0; i < TypeFunc::Parms; i++) {
907    caller.map()->set_req(i, ex_map->in(i));
908  }
909  if (ex_map->has_replaced_nodes()) {
910    _replaced_nodes_for_exceptions = true;
911  }
912  caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
913  // ...and the exception:
914  Node*          ex_oop        = saved_ex_oop(ex_map);
915  SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
916  // Finally, collect the new exception state in my exits:
917  _exits.add_exception_state(caller_ex_map);
918}
919
920//------------------------------do_exits---------------------------------------
921void Parse::do_exits() {
922  set_parse_bci(InvocationEntryBci);
923
924  // Now peephole on the return bits
925  Node* region = _exits.control();
926  _exits.set_control(gvn().transform(region));
927
928  Node* iophi = _exits.i_o();
929  _exits.set_i_o(gvn().transform(iophi));
930
931  // Figure out if we need to emit the trailing barrier. The barrier is only
932  // needed in the constructors, and only in three cases:
933  //
934  // 1. The constructor wrote a final. The effects of all initializations
935  //    must be committed to memory before any code after the constructor
936  //    publishes the reference to the newly constructed object. Rather
937  //    than wait for the publication, we simply block the writes here.
938  //    Rather than put a barrier on only those writes which are required
939  //    to complete, we force all writes to complete.
940  //
941  // 2. On PPC64, also add MemBarRelease for constructors which write
942  //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
943  //    is set on PPC64, no sync instruction is issued after volatile
944  //    stores. We want to guarantee the same behavior as on platforms
945  //    with total store order, although this is not required by the Java
946  //    memory model. So as with finals, we add a barrier here.
947  //
948  // 3. Experimental VM option is used to force the barrier if any field
949  //    was written out in the constructor.
950  //
951  // "All bets are off" unless the first publication occurs after a
952  // normal return from the constructor.  We do not attempt to detect
953  // such unusual early publications.  But no barrier is needed on
954  // exceptional returns, since they cannot publish normally.
955  //
956  if (method()->is_initializer() &&
957        (wrote_final() ||
958           PPC64_ONLY(wrote_volatile() ||)
959           (AlwaysSafeConstructors && wrote_fields()))) {
960    _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
961#ifndef PRODUCT
962    if (PrintOpto && (Verbose || WizardMode)) {
963      method()->print_name();
964      tty->print_cr(" writes finals and needs a memory barrier");
965    }
966#endif
967  }
968
969  // Any method can write a @Stable field; insert memory barriers after
970  // those also. If there is a predecessor allocation node, bind the
971  // barrier there.
972  if (wrote_stable()) {
973    _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
974#ifndef PRODUCT
975    if (PrintOpto && (Verbose || WizardMode)) {
976      method()->print_name();
977      tty->print_cr(" writes @Stable and needs a memory barrier");
978    }
979#endif
980  }
981
982  for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
983    // transform each slice of the original memphi:
984    mms.set_memory(_gvn.transform(mms.memory()));
985  }
986
987  if (tf()->range()->cnt() > TypeFunc::Parms) {
988    const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
989    Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
990    if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
991      // In case of concurrent class loading, the type we set for the
992      // ret_phi in build_exits() may have been too optimistic and the
993      // ret_phi may be top now.
994#ifdef ASSERT
995      {
996        MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
997        assert(ret_type->isa_ptr() && C->env()->system_dictionary_modification_counter_changed(), "return value must be well defined");
998      }
999#endif
1000      C->record_failure(C2Compiler::retry_class_loading_during_parsing());
1001    }
1002    _exits.push_node(ret_type->basic_type(), ret_phi);
1003  }
1004
1005  // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1006
1007  // Unlock along the exceptional paths.
1008  // This is done late so that we can common up equivalent exceptions
1009  // (e.g., null checks) arising from multiple points within this method.
1010  // See GraphKit::add_exception_state, which performs the commoning.
1011  bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1012
1013  // record exit from a method if compiled while Dtrace is turned on.
1014  if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1015    // First move the exception list out of _exits:
1016    GraphKit kit(_exits.transfer_exceptions_into_jvms());
1017    SafePointNode* normal_map = kit.map();  // keep this guy safe
1018    // Now re-collect the exceptions into _exits:
1019    SafePointNode* ex_map;
1020    while ((ex_map = kit.pop_exception_state()) != NULL) {
1021      Node* ex_oop = kit.use_exception_state(ex_map);
1022      // Force the exiting JVM state to have this method at InvocationEntryBci.
1023      // The exiting JVM state is otherwise a copy of the calling JVMS.
1024      JVMState* caller = kit.jvms();
1025      JVMState* ex_jvms = caller->clone_shallow(C);
1026      ex_jvms->set_map(kit.clone_map());
1027      ex_jvms->map()->set_jvms(ex_jvms);
1028      ex_jvms->set_bci(   InvocationEntryBci);
1029      kit.set_jvms(ex_jvms);
1030      if (do_synch) {
1031        // Add on the synchronized-method box/object combo
1032        kit.map()->push_monitor(_synch_lock);
1033        // Unlock!
1034        kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1035      }
1036      if (C->env()->dtrace_method_probes()) {
1037        kit.make_dtrace_method_exit(method());
1038      }
1039      if (_replaced_nodes_for_exceptions) {
1040        kit.map()->apply_replaced_nodes();
1041      }
1042      // Done with exception-path processing.
1043      ex_map = kit.make_exception_state(ex_oop);
1044      assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1045      // Pop the last vestige of this method:
1046      ex_map->set_jvms(caller->clone_shallow(C));
1047      ex_map->jvms()->set_map(ex_map);
1048      _exits.push_exception_state(ex_map);
1049    }
1050    assert(_exits.map() == normal_map, "keep the same return state");
1051  }
1052
1053  {
1054    // Capture very early exceptions (receiver null checks) from caller JVMS
1055    GraphKit caller(_caller);
1056    SafePointNode* ex_map;
1057    while ((ex_map = caller.pop_exception_state()) != NULL) {
1058      _exits.add_exception_state(ex_map);
1059    }
1060  }
1061  _exits.map()->apply_replaced_nodes();
1062}
1063
1064//-----------------------------create_entry_map-------------------------------
1065// Initialize our parser map to contain the types at method entry.
1066// For OSR, the map contains a single RawPtr parameter.
1067// Initial monitor locking for sync. methods is performed by do_method_entry.
1068SafePointNode* Parse::create_entry_map() {
1069  // Check for really stupid bail-out cases.
1070  uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1071  if (len >= 32760) {
1072    C->record_method_not_compilable_all_tiers("too many local variables");
1073    return NULL;
1074  }
1075
1076  // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1077  _caller->map()->delete_replaced_nodes();
1078
1079  // If this is an inlined method, we may have to do a receiver null check.
1080  if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1081    GraphKit kit(_caller);
1082    kit.null_check_receiver_before_call(method());
1083    _caller = kit.transfer_exceptions_into_jvms();
1084    if (kit.stopped()) {
1085      _exits.add_exception_states_from(_caller);
1086      _exits.set_jvms(_caller);
1087      return NULL;
1088    }
1089  }
1090
1091  assert(method() != NULL, "parser must have a method");
1092
1093  // Create an initial safepoint to hold JVM state during parsing
1094  JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1095  set_map(new SafePointNode(len, jvms));
1096  jvms->set_map(map());
1097  record_for_igvn(map());
1098  assert(jvms->endoff() == len, "correct jvms sizing");
1099
1100  SafePointNode* inmap = _caller->map();
1101  assert(inmap != NULL, "must have inmap");
1102  // In case of null check on receiver above
1103  map()->transfer_replaced_nodes_from(inmap, _new_idx);
1104
1105  uint i;
1106
1107  // Pass thru the predefined input parameters.
1108  for (i = 0; i < TypeFunc::Parms; i++) {
1109    map()->init_req(i, inmap->in(i));
1110  }
1111
1112  if (depth() == 1) {
1113    assert(map()->memory()->Opcode() == Op_Parm, "");
1114    // Insert the memory aliasing node
1115    set_all_memory(reset_memory());
1116  }
1117  assert(merged_memory(), "");
1118
1119  // Now add the locals which are initially bound to arguments:
1120  uint arg_size = tf()->domain()->cnt();
1121  ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1122  for (i = TypeFunc::Parms; i < arg_size; i++) {
1123    map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1124  }
1125
1126  // Clear out the rest of the map (locals and stack)
1127  for (i = arg_size; i < len; i++) {
1128    map()->init_req(i, top());
1129  }
1130
1131  SafePointNode* entry_map = stop();
1132  return entry_map;
1133}
1134
1135//-----------------------------do_method_entry--------------------------------
1136// Emit any code needed in the pseudo-block before BCI zero.
1137// The main thing to do is lock the receiver of a synchronized method.
1138void Parse::do_method_entry() {
1139  set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1140  set_sp(0);                      // Java Stack Pointer
1141
1142  NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1143
1144  if (C->env()->dtrace_method_probes()) {
1145    make_dtrace_method_entry(method());
1146  }
1147
1148  // If the method is synchronized, we need to construct a lock node, attach
1149  // it to the Start node, and pin it there.
1150  if (method()->is_synchronized()) {
1151    // Insert a FastLockNode right after the Start which takes as arguments
1152    // the current thread pointer, the "this" pointer & the address of the
1153    // stack slot pair used for the lock.  The "this" pointer is a projection
1154    // off the start node, but the locking spot has to be constructed by
1155    // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1156    // becomes the second argument to the FastLockNode call.  The
1157    // FastLockNode becomes the new control parent to pin it to the start.
1158
1159    // Setup Object Pointer
1160    Node *lock_obj = NULL;
1161    if(method()->is_static()) {
1162      ciInstance* mirror = _method->holder()->java_mirror();
1163      const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1164      lock_obj = makecon(t_lock);
1165    } else {                  // Else pass the "this" pointer,
1166      lock_obj = local(0);    // which is Parm0 from StartNode
1167    }
1168    // Clear out dead values from the debug info.
1169    kill_dead_locals();
1170    // Build the FastLockNode
1171    _synch_lock = shared_lock(lock_obj);
1172  }
1173
1174  // Feed profiling data for parameters to the type system so it can
1175  // propagate it as speculative types
1176  record_profiled_parameters_for_speculation();
1177
1178  if (depth() == 1) {
1179    increment_and_test_invocation_counter(Tier2CompileThreshold);
1180  }
1181}
1182
1183//------------------------------init_blocks------------------------------------
1184// Initialize our parser map to contain the types/monitors at method entry.
1185void Parse::init_blocks() {
1186  // Create the blocks.
1187  _block_count = flow()->block_count();
1188  _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1189  Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1190
1191  int rpo;
1192
1193  // Initialize the structs.
1194  for (rpo = 0; rpo < block_count(); rpo++) {
1195    Block* block = rpo_at(rpo);
1196    block->init_node(this, rpo);
1197  }
1198
1199  // Collect predecessor and successor information.
1200  for (rpo = 0; rpo < block_count(); rpo++) {
1201    Block* block = rpo_at(rpo);
1202    block->init_graph(this);
1203  }
1204}
1205
1206//-------------------------------init_node-------------------------------------
1207void Parse::Block::init_node(Parse* outer, int rpo) {
1208  _flow = outer->flow()->rpo_at(rpo);
1209  _pred_count = 0;
1210  _preds_parsed = 0;
1211  _count = 0;
1212  assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1213  assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1214  assert(_live_locals.size() == 0, "sanity");
1215
1216  // entry point has additional predecessor
1217  if (flow()->is_start())  _pred_count++;
1218  assert(flow()->is_start() == (this == outer->start_block()), "");
1219}
1220
1221//-------------------------------init_graph------------------------------------
1222void Parse::Block::init_graph(Parse* outer) {
1223  // Create the successor list for this parser block.
1224  GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1225  GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1226  int ns = tfs->length();
1227  int ne = tfe->length();
1228  _num_successors = ns;
1229  _all_successors = ns+ne;
1230  _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1231  int p = 0;
1232  for (int i = 0; i < ns+ne; i++) {
1233    ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1234    Block* block2 = outer->rpo_at(tf2->rpo());
1235    _successors[i] = block2;
1236
1237    // Accumulate pred info for the other block, too.
1238    if (i < ns) {
1239      block2->_pred_count++;
1240    } else {
1241      block2->_is_handler = true;
1242    }
1243
1244    #ifdef ASSERT
1245    // A block's successors must be distinguishable by BCI.
1246    // That is, no bytecode is allowed to branch to two different
1247    // clones of the same code location.
1248    for (int j = 0; j < i; j++) {
1249      Block* block1 = _successors[j];
1250      if (block1 == block2)  continue;  // duplicates are OK
1251      assert(block1->start() != block2->start(), "successors have unique bcis");
1252    }
1253    #endif
1254  }
1255
1256  // Note: We never call next_path_num along exception paths, so they
1257  // never get processed as "ready".  Also, the input phis of exception
1258  // handlers get specially processed, so that
1259}
1260
1261//---------------------------successor_for_bci---------------------------------
1262Parse::Block* Parse::Block::successor_for_bci(int bci) {
1263  for (int i = 0; i < all_successors(); i++) {
1264    Block* block2 = successor_at(i);
1265    if (block2->start() == bci)  return block2;
1266  }
1267  // We can actually reach here if ciTypeFlow traps out a block
1268  // due to an unloaded class, and concurrently with compilation the
1269  // class is then loaded, so that a later phase of the parser is
1270  // able to see more of the bytecode CFG.  Or, the flow pass and
1271  // the parser can have a minor difference of opinion about executability
1272  // of bytecodes.  For example, "obj.field = null" is executable even
1273  // if the field's type is an unloaded class; the flow pass used to
1274  // make a trap for such code.
1275  return NULL;
1276}
1277
1278
1279//-----------------------------stack_type_at-----------------------------------
1280const Type* Parse::Block::stack_type_at(int i) const {
1281  return get_type(flow()->stack_type_at(i));
1282}
1283
1284
1285//-----------------------------local_type_at-----------------------------------
1286const Type* Parse::Block::local_type_at(int i) const {
1287  // Make dead locals fall to bottom.
1288  if (_live_locals.size() == 0) {
1289    MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1290    // This bitmap can be zero length if we saw a breakpoint.
1291    // In such cases, pretend they are all live.
1292    ((Block*)this)->_live_locals = live_locals;
1293  }
1294  if (_live_locals.size() > 0 && !_live_locals.at(i))
1295    return Type::BOTTOM;
1296
1297  return get_type(flow()->local_type_at(i));
1298}
1299
1300
1301#ifndef PRODUCT
1302
1303//----------------------------name_for_bc--------------------------------------
1304// helper method for BytecodeParseHistogram
1305static const char* name_for_bc(int i) {
1306  return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1307}
1308
1309//----------------------------BytecodeParseHistogram------------------------------------
1310Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1311  _parser   = p;
1312  _compiler = c;
1313  if( ! _initialized ) { _initialized = true; reset(); }
1314}
1315
1316//----------------------------current_count------------------------------------
1317int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1318  switch( bph_type ) {
1319  case BPH_transforms: { return _parser->gvn().made_progress(); }
1320  case BPH_values:     { return _parser->gvn().made_new_values(); }
1321  default: { ShouldNotReachHere(); return 0; }
1322  }
1323}
1324
1325//----------------------------initialized--------------------------------------
1326bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1327
1328//----------------------------reset--------------------------------------------
1329void Parse::BytecodeParseHistogram::reset() {
1330  int i = Bytecodes::number_of_codes;
1331  while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1332}
1333
1334//----------------------------set_initial_state--------------------------------
1335// Record info when starting to parse one bytecode
1336void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1337  if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1338    _initial_bytecode    = bc;
1339    _initial_node_count  = _compiler->unique();
1340    _initial_transforms  = current_count(BPH_transforms);
1341    _initial_values      = current_count(BPH_values);
1342  }
1343}
1344
1345//----------------------------record_change--------------------------------
1346// Record results of parsing one bytecode
1347void Parse::BytecodeParseHistogram::record_change() {
1348  if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1349    ++_bytecodes_parsed[_initial_bytecode];
1350    _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1351    _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1352    _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1353  }
1354}
1355
1356
1357//----------------------------print--------------------------------------------
1358void Parse::BytecodeParseHistogram::print(float cutoff) {
1359  ResourceMark rm;
1360  // print profile
1361  int total  = 0;
1362  int i      = 0;
1363  for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1364  int abs_sum = 0;
1365  tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1366  tty->print_cr("Histogram of %d parsed bytecodes:", total);
1367  if( total == 0 ) { return; }
1368  tty->cr();
1369  tty->print_cr("absolute:  count of compiled bytecodes of this type");
1370  tty->print_cr("relative:  percentage contribution to compiled nodes");
1371  tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1372  tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1373  tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1374  tty->print_cr("values  :  Average number of node values improved per bytecode");
1375  tty->print_cr("name    :  Bytecode name");
1376  tty->cr();
1377  tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1378  tty->print_cr("----------------------------------------------------------------------");
1379  while (--i > 0) {
1380    int       abs = _bytecodes_parsed[i];
1381    float     rel = abs * 100.0F / total;
1382    float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1383    float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1384    float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1385    float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1386    if (cutoff <= rel) {
1387      tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1388      abs_sum += abs;
1389    }
1390  }
1391  tty->print_cr("----------------------------------------------------------------------");
1392  float rel_sum = abs_sum * 100.0F / total;
1393  tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1394  tty->print_cr("----------------------------------------------------------------------");
1395  tty->cr();
1396}
1397#endif
1398
1399//----------------------------load_state_from----------------------------------
1400// Load block/map/sp.  But not do not touch iter/bci.
1401void Parse::load_state_from(Block* block) {
1402  set_block(block);
1403  // load the block's JVM state:
1404  set_map(block->start_map());
1405  set_sp( block->start_sp());
1406}
1407
1408
1409//-----------------------------record_state------------------------------------
1410void Parse::Block::record_state(Parse* p) {
1411  assert(!is_merged(), "can only record state once, on 1st inflow");
1412  assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1413  set_start_map(p->stop());
1414}
1415
1416
1417//------------------------------do_one_block-----------------------------------
1418void Parse::do_one_block() {
1419  if (TraceOptoParse) {
1420    Block *b = block();
1421    int ns = b->num_successors();
1422    int nt = b->all_successors();
1423
1424    tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1425                  block()->rpo(), block()->start(), block()->limit());
1426    for (int i = 0; i < nt; i++) {
1427      tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1428    }
1429    if (b->is_loop_head()) tty->print("  lphd");
1430    tty->cr();
1431  }
1432
1433  assert(block()->is_merged(), "must be merged before being parsed");
1434  block()->mark_parsed();
1435  ++_blocks_parsed;
1436
1437  // Set iterator to start of block.
1438  iter().reset_to_bci(block()->start());
1439
1440  CompileLog* log = C->log();
1441
1442  // Parse bytecodes
1443  while (!stopped() && !failing()) {
1444    iter().next();
1445
1446    // Learn the current bci from the iterator:
1447    set_parse_bci(iter().cur_bci());
1448
1449    if (bci() == block()->limit()) {
1450      // Do not walk into the next block until directed by do_all_blocks.
1451      merge(bci());
1452      break;
1453    }
1454    assert(bci() < block()->limit(), "bci still in block");
1455
1456    if (log != NULL) {
1457      // Output an optional context marker, to help place actions
1458      // that occur during parsing of this BC.  If there is no log
1459      // output until the next context string, this context string
1460      // will be silently ignored.
1461      log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1462    }
1463
1464    if (block()->has_trap_at(bci())) {
1465      // We must respect the flow pass's traps, because it will refuse
1466      // to produce successors for trapping blocks.
1467      int trap_index = block()->flow()->trap_index();
1468      assert(trap_index != 0, "trap index must be valid");
1469      uncommon_trap(trap_index);
1470      break;
1471    }
1472
1473    NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1474
1475#ifdef ASSERT
1476    int pre_bc_sp = sp();
1477    int inputs, depth;
1478    bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1479    assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1480#endif //ASSERT
1481
1482    do_one_bytecode();
1483
1484    assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1485           "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1486
1487    do_exceptions();
1488
1489    NOT_PRODUCT( parse_histogram()->record_change(); );
1490
1491    if (log != NULL)
1492      log->clear_context();  // skip marker if nothing was printed
1493
1494    // Fall into next bytecode.  Each bytecode normally has 1 sequential
1495    // successor which is typically made ready by visiting this bytecode.
1496    // If the successor has several predecessors, then it is a merge
1497    // point, starts a new basic block, and is handled like other basic blocks.
1498  }
1499}
1500
1501
1502//------------------------------merge------------------------------------------
1503void Parse::set_parse_bci(int bci) {
1504  set_bci(bci);
1505  Node_Notes* nn = C->default_node_notes();
1506  if (nn == NULL)  return;
1507
1508  // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1509  if (!DebugInlinedCalls && depth() > 1) {
1510    return;
1511  }
1512
1513  // Update the JVMS annotation, if present.
1514  JVMState* jvms = nn->jvms();
1515  if (jvms != NULL && jvms->bci() != bci) {
1516    // Update the JVMS.
1517    jvms = jvms->clone_shallow(C);
1518    jvms->set_bci(bci);
1519    nn->set_jvms(jvms);
1520  }
1521}
1522
1523//------------------------------merge------------------------------------------
1524// Merge the current mapping into the basic block starting at bci
1525void Parse::merge(int target_bci) {
1526  Block* target = successor_for_bci(target_bci);
1527  if (target == NULL) { handle_missing_successor(target_bci); return; }
1528  assert(!target->is_ready(), "our arrival must be expected");
1529  int pnum = target->next_path_num();
1530  merge_common(target, pnum);
1531}
1532
1533//-------------------------merge_new_path--------------------------------------
1534// Merge the current mapping into the basic block, using a new path
1535void Parse::merge_new_path(int target_bci) {
1536  Block* target = successor_for_bci(target_bci);
1537  if (target == NULL) { handle_missing_successor(target_bci); return; }
1538  assert(!target->is_ready(), "new path into frozen graph");
1539  int pnum = target->add_new_path();
1540  merge_common(target, pnum);
1541}
1542
1543//-------------------------merge_exception-------------------------------------
1544// Merge the current mapping into the basic block starting at bci
1545// The ex_oop must be pushed on the stack, unlike throw_to_exit.
1546void Parse::merge_exception(int target_bci) {
1547  assert(sp() == 1, "must have only the throw exception on the stack");
1548  Block* target = successor_for_bci(target_bci);
1549  if (target == NULL) { handle_missing_successor(target_bci); return; }
1550  assert(target->is_handler(), "exceptions are handled by special blocks");
1551  int pnum = target->add_new_path();
1552  merge_common(target, pnum);
1553}
1554
1555//--------------------handle_missing_successor---------------------------------
1556void Parse::handle_missing_successor(int target_bci) {
1557#ifndef PRODUCT
1558  Block* b = block();
1559  int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1560  tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1561#endif
1562  ShouldNotReachHere();
1563}
1564
1565//--------------------------merge_common---------------------------------------
1566void Parse::merge_common(Parse::Block* target, int pnum) {
1567  if (TraceOptoParse) {
1568    tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1569  }
1570
1571  // Zap extra stack slots to top
1572  assert(sp() == target->start_sp(), "");
1573  clean_stack(sp());
1574
1575  if (!target->is_merged()) {   // No prior mapping at this bci
1576    if (TraceOptoParse) { tty->print(" with empty state");  }
1577
1578    // If this path is dead, do not bother capturing it as a merge.
1579    // It is "as if" we had 1 fewer predecessors from the beginning.
1580    if (stopped()) {
1581      if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1582      return;
1583    }
1584
1585    // Record that a new block has been merged.
1586    ++_blocks_merged;
1587
1588    // Make a region if we know there are multiple or unpredictable inputs.
1589    // (Also, if this is a plain fall-through, we might see another region,
1590    // which must not be allowed into this block's map.)
1591    if (pnum > PhiNode::Input         // Known multiple inputs.
1592        || target->is_handler()       // These have unpredictable inputs.
1593        || target->is_loop_head()     // Known multiple inputs
1594        || control()->is_Region()) {  // We must hide this guy.
1595
1596      int current_bci = bci();
1597      set_parse_bci(target->start()); // Set target bci
1598      if (target->is_SEL_head()) {
1599        DEBUG_ONLY( target->mark_merged_backedge(block()); )
1600        if (target->start() == 0) {
1601          // Add loop predicate for the special case when
1602          // there are backbranches to the method entry.
1603          add_predicate();
1604        }
1605      }
1606      // Add a Region to start the new basic block.  Phis will be added
1607      // later lazily.
1608      int edges = target->pred_count();
1609      if (edges < pnum)  edges = pnum;  // might be a new path!
1610      RegionNode *r = new RegionNode(edges+1);
1611      gvn().set_type(r, Type::CONTROL);
1612      record_for_igvn(r);
1613      // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1614      // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1615      r->init_req(pnum, control());
1616      set_control(r);
1617      set_parse_bci(current_bci); // Restore bci
1618    }
1619
1620    // Convert the existing Parser mapping into a mapping at this bci.
1621    store_state_to(target);
1622    assert(target->is_merged(), "do not come here twice");
1623
1624  } else {                      // Prior mapping at this bci
1625    if (TraceOptoParse) {  tty->print(" with previous state"); }
1626#ifdef ASSERT
1627    if (target->is_SEL_head()) {
1628      target->mark_merged_backedge(block());
1629    }
1630#endif
1631    // We must not manufacture more phis if the target is already parsed.
1632    bool nophi = target->is_parsed();
1633
1634    SafePointNode* newin = map();// Hang on to incoming mapping
1635    Block* save_block = block(); // Hang on to incoming block;
1636    load_state_from(target);    // Get prior mapping
1637
1638    assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1639    assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1640    assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1641    assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1642
1643    // Iterate over my current mapping and the old mapping.
1644    // Where different, insert Phi functions.
1645    // Use any existing Phi functions.
1646    assert(control()->is_Region(), "must be merging to a region");
1647    RegionNode* r = control()->as_Region();
1648
1649    // Compute where to merge into
1650    // Merge incoming control path
1651    r->init_req(pnum, newin->control());
1652
1653    if (pnum == 1) {            // Last merge for this Region?
1654      if (!block()->flow()->is_irreducible_entry()) {
1655        Node* result = _gvn.transform_no_reclaim(r);
1656        if (r != result && TraceOptoParse) {
1657          tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1658        }
1659      }
1660      record_for_igvn(r);
1661    }
1662
1663    // Update all the non-control inputs to map:
1664    assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1665    bool check_elide_phi = target->is_SEL_backedge(save_block);
1666    for (uint j = 1; j < newin->req(); j++) {
1667      Node* m = map()->in(j);   // Current state of target.
1668      Node* n = newin->in(j);   // Incoming change to target state.
1669      PhiNode* phi;
1670      if (m->is_Phi() && m->as_Phi()->region() == r)
1671        phi = m->as_Phi();
1672      else
1673        phi = NULL;
1674      if (m != n) {             // Different; must merge
1675        switch (j) {
1676        // Frame pointer and Return Address never changes
1677        case TypeFunc::FramePtr:// Drop m, use the original value
1678        case TypeFunc::ReturnAdr:
1679          break;
1680        case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1681          assert(phi == NULL, "the merge contains phis, not vice versa");
1682          merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1683          continue;
1684        default:                // All normal stuff
1685          if (phi == NULL) {
1686            const JVMState* jvms = map()->jvms();
1687            if (EliminateNestedLocks &&
1688                jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1689              // BoxLock nodes are not commoning.
1690              // Use old BoxLock node as merged box.
1691              assert(newin->jvms()->is_monitor_box(j), "sanity");
1692              // This assert also tests that nodes are BoxLock.
1693              assert(BoxLockNode::same_slot(n, m), "sanity");
1694              C->gvn_replace_by(n, m);
1695            } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1696              phi = ensure_phi(j, nophi);
1697            }
1698          }
1699          break;
1700        }
1701      }
1702      // At this point, n might be top if:
1703      //  - there is no phi (because TypeFlow detected a conflict), or
1704      //  - the corresponding control edges is top (a dead incoming path)
1705      // It is a bug if we create a phi which sees a garbage value on a live path.
1706
1707      if (phi != NULL) {
1708        assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1709        assert(phi->region() == r, "");
1710        phi->set_req(pnum, n);  // Then add 'n' to the merge
1711        if (pnum == PhiNode::Input) {
1712          // Last merge for this Phi.
1713          // So far, Phis have had a reasonable type from ciTypeFlow.
1714          // Now _gvn will join that with the meet of current inputs.
1715          // BOTTOM is never permissible here, 'cause pessimistically
1716          // Phis of pointers cannot lose the basic pointer type.
1717          debug_only(const Type* bt1 = phi->bottom_type());
1718          assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1719          map()->set_req(j, _gvn.transform_no_reclaim(phi));
1720          debug_only(const Type* bt2 = phi->bottom_type());
1721          assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1722          record_for_igvn(phi);
1723        }
1724      }
1725    } // End of for all values to be merged
1726
1727    if (pnum == PhiNode::Input &&
1728        !r->in(0)) {         // The occasional useless Region
1729      assert(control() == r, "");
1730      set_control(r->nonnull_req());
1731    }
1732
1733    map()->merge_replaced_nodes_with(newin);
1734
1735    // newin has been subsumed into the lazy merge, and is now dead.
1736    set_block(save_block);
1737
1738    stop();                     // done with this guy, for now
1739  }
1740
1741  if (TraceOptoParse) {
1742    tty->print_cr(" on path %d", pnum);
1743  }
1744
1745  // Done with this parser state.
1746  assert(stopped(), "");
1747}
1748
1749
1750//--------------------------merge_memory_edges---------------------------------
1751void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1752  // (nophi means we must not create phis, because we already parsed here)
1753  assert(n != NULL, "");
1754  // Merge the inputs to the MergeMems
1755  MergeMemNode* m = merged_memory();
1756
1757  assert(control()->is_Region(), "must be merging to a region");
1758  RegionNode* r = control()->as_Region();
1759
1760  PhiNode* base = NULL;
1761  MergeMemNode* remerge = NULL;
1762  for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1763    Node *p = mms.force_memory();
1764    Node *q = mms.memory2();
1765    if (mms.is_empty() && nophi) {
1766      // Trouble:  No new splits allowed after a loop body is parsed.
1767      // Instead, wire the new split into a MergeMem on the backedge.
1768      // The optimizer will sort it out, slicing the phi.
1769      if (remerge == NULL) {
1770        assert(base != NULL, "");
1771        assert(base->in(0) != NULL, "should not be xformed away");
1772        remerge = MergeMemNode::make(base->in(pnum));
1773        gvn().set_type(remerge, Type::MEMORY);
1774        base->set_req(pnum, remerge);
1775      }
1776      remerge->set_memory_at(mms.alias_idx(), q);
1777      continue;
1778    }
1779    assert(!q->is_MergeMem(), "");
1780    PhiNode* phi;
1781    if (p != q) {
1782      phi = ensure_memory_phi(mms.alias_idx(), nophi);
1783    } else {
1784      if (p->is_Phi() && p->as_Phi()->region() == r)
1785        phi = p->as_Phi();
1786      else
1787        phi = NULL;
1788    }
1789    // Insert q into local phi
1790    if (phi != NULL) {
1791      assert(phi->region() == r, "");
1792      p = phi;
1793      phi->set_req(pnum, q);
1794      if (mms.at_base_memory()) {
1795        base = phi;  // delay transforming it
1796      } else if (pnum == 1) {
1797        record_for_igvn(phi);
1798        p = _gvn.transform_no_reclaim(phi);
1799      }
1800      mms.set_memory(p);// store back through the iterator
1801    }
1802  }
1803  // Transform base last, in case we must fiddle with remerging.
1804  if (base != NULL && pnum == 1) {
1805    record_for_igvn(base);
1806    m->set_base_memory( _gvn.transform_no_reclaim(base) );
1807  }
1808}
1809
1810
1811//------------------------ensure_phis_everywhere-------------------------------
1812void Parse::ensure_phis_everywhere() {
1813  ensure_phi(TypeFunc::I_O);
1814
1815  // Ensure a phi on all currently known memories.
1816  for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1817    ensure_memory_phi(mms.alias_idx());
1818    debug_only(mms.set_memory());  // keep the iterator happy
1819  }
1820
1821  // Note:  This is our only chance to create phis for memory slices.
1822  // If we miss a slice that crops up later, it will have to be
1823  // merged into the base-memory phi that we are building here.
1824  // Later, the optimizer will comb out the knot, and build separate
1825  // phi-loops for each memory slice that matters.
1826
1827  // Monitors must nest nicely and not get confused amongst themselves.
1828  // Phi-ify everything up to the monitors, though.
1829  uint monoff = map()->jvms()->monoff();
1830  uint nof_monitors = map()->jvms()->nof_monitors();
1831
1832  assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1833  bool check_elide_phi = block()->is_SEL_head();
1834  for (uint i = TypeFunc::Parms; i < monoff; i++) {
1835    if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1836      ensure_phi(i);
1837    }
1838  }
1839
1840  // Even monitors need Phis, though they are well-structured.
1841  // This is true for OSR methods, and also for the rare cases where
1842  // a monitor object is the subject of a replace_in_map operation.
1843  // See bugs 4426707 and 5043395.
1844  for (uint m = 0; m < nof_monitors; m++) {
1845    ensure_phi(map()->jvms()->monitor_obj_offset(m));
1846  }
1847}
1848
1849
1850//-----------------------------add_new_path------------------------------------
1851// Add a previously unaccounted predecessor to this block.
1852int Parse::Block::add_new_path() {
1853  // If there is no map, return the lowest unused path number.
1854  if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1855
1856  SafePointNode* map = start_map();
1857  if (!map->control()->is_Region())
1858    return pred_count()+1;  // there may be a region some day
1859  RegionNode* r = map->control()->as_Region();
1860
1861  // Add new path to the region.
1862  uint pnum = r->req();
1863  r->add_req(NULL);
1864
1865  for (uint i = 1; i < map->req(); i++) {
1866    Node* n = map->in(i);
1867    if (i == TypeFunc::Memory) {
1868      // Ensure a phi on all currently known memories.
1869      for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1870        Node* phi = mms.memory();
1871        if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1872          assert(phi->req() == pnum, "must be same size as region");
1873          phi->add_req(NULL);
1874        }
1875      }
1876    } else {
1877      if (n->is_Phi() && n->as_Phi()->region() == r) {
1878        assert(n->req() == pnum, "must be same size as region");
1879        n->add_req(NULL);
1880      }
1881    }
1882  }
1883
1884  return pnum;
1885}
1886
1887//------------------------------ensure_phi-------------------------------------
1888// Turn the idx'th entry of the current map into a Phi
1889PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1890  SafePointNode* map = this->map();
1891  Node* region = map->control();
1892  assert(region->is_Region(), "");
1893
1894  Node* o = map->in(idx);
1895  assert(o != NULL, "");
1896
1897  if (o == top())  return NULL; // TOP always merges into TOP
1898
1899  if (o->is_Phi() && o->as_Phi()->region() == region) {
1900    return o->as_Phi();
1901  }
1902
1903  // Now use a Phi here for merging
1904  assert(!nocreate, "Cannot build a phi for a block already parsed.");
1905  const JVMState* jvms = map->jvms();
1906  const Type* t = NULL;
1907  if (jvms->is_loc(idx)) {
1908    t = block()->local_type_at(idx - jvms->locoff());
1909  } else if (jvms->is_stk(idx)) {
1910    t = block()->stack_type_at(idx - jvms->stkoff());
1911  } else if (jvms->is_mon(idx)) {
1912    assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1913    t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1914  } else if ((uint)idx < TypeFunc::Parms) {
1915    t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1916  } else {
1917    assert(false, "no type information for this phi");
1918  }
1919
1920  // If the type falls to bottom, then this must be a local that
1921  // is mixing ints and oops or some such.  Forcing it to top
1922  // makes it go dead.
1923  if (t == Type::BOTTOM) {
1924    map->set_req(idx, top());
1925    return NULL;
1926  }
1927
1928  // Do not create phis for top either.
1929  // A top on a non-null control flow must be an unused even after the.phi.
1930  if (t == Type::TOP || t == Type::HALF) {
1931    map->set_req(idx, top());
1932    return NULL;
1933  }
1934
1935  PhiNode* phi = PhiNode::make(region, o, t);
1936  gvn().set_type(phi, t);
1937  if (C->do_escape_analysis()) record_for_igvn(phi);
1938  map->set_req(idx, phi);
1939  return phi;
1940}
1941
1942//--------------------------ensure_memory_phi----------------------------------
1943// Turn the idx'th slice of the current memory into a Phi
1944PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1945  MergeMemNode* mem = merged_memory();
1946  Node* region = control();
1947  assert(region->is_Region(), "");
1948
1949  Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1950  assert(o != NULL && o != top(), "");
1951
1952  PhiNode* phi;
1953  if (o->is_Phi() && o->as_Phi()->region() == region) {
1954    phi = o->as_Phi();
1955    if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1956      // clone the shared base memory phi to make a new memory split
1957      assert(!nocreate, "Cannot build a phi for a block already parsed.");
1958      const Type* t = phi->bottom_type();
1959      const TypePtr* adr_type = C->get_adr_type(idx);
1960      phi = phi->slice_memory(adr_type);
1961      gvn().set_type(phi, t);
1962    }
1963    return phi;
1964  }
1965
1966  // Now use a Phi here for merging
1967  assert(!nocreate, "Cannot build a phi for a block already parsed.");
1968  const Type* t = o->bottom_type();
1969  const TypePtr* adr_type = C->get_adr_type(idx);
1970  phi = PhiNode::make(region, o, t, adr_type);
1971  gvn().set_type(phi, t);
1972  if (idx == Compile::AliasIdxBot)
1973    mem->set_base_memory(phi);
1974  else
1975    mem->set_memory_at(idx, phi);
1976  return phi;
1977}
1978
1979//------------------------------call_register_finalizer-----------------------
1980// Check the klass of the receiver and call register_finalizer if the
1981// class need finalization.
1982void Parse::call_register_finalizer() {
1983  Node* receiver = local(0);
1984  assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1985         "must have non-null instance type");
1986
1987  const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1988  if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1989    // The type isn't known exactly so see if CHA tells us anything.
1990    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1991    if (!Dependencies::has_finalizable_subclass(ik)) {
1992      // No finalizable subclasses so skip the dynamic check.
1993      C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1994      return;
1995    }
1996  }
1997
1998  // Insert a dynamic test for whether the instance needs
1999  // finalization.  In general this will fold up since the concrete
2000  // class is often visible so the access flags are constant.
2001  Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2002  Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2003
2004  Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
2005  Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
2006
2007  Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
2008  Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2009  Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
2010
2011  IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2012
2013  RegionNode* result_rgn = new RegionNode(3);
2014  record_for_igvn(result_rgn);
2015
2016  Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2017  result_rgn->init_req(1, skip_register);
2018
2019  Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2020  set_control(needs_register);
2021  if (stopped()) {
2022    // There is no slow path.
2023    result_rgn->init_req(2, top());
2024  } else {
2025    Node *call = make_runtime_call(RC_NO_LEAF,
2026                                   OptoRuntime::register_finalizer_Type(),
2027                                   OptoRuntime::register_finalizer_Java(),
2028                                   NULL, TypePtr::BOTTOM,
2029                                   receiver);
2030    make_slow_call_ex(call, env()->Throwable_klass(), true);
2031
2032    Node* fast_io  = call->in(TypeFunc::I_O);
2033    Node* fast_mem = call->in(TypeFunc::Memory);
2034    // These two phis are pre-filled with copies of of the fast IO and Memory
2035    Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2036    Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2037
2038    result_rgn->init_req(2, control());
2039    io_phi    ->init_req(2, i_o());
2040    mem_phi   ->init_req(2, reset_memory());
2041
2042    set_all_memory( _gvn.transform(mem_phi) );
2043    set_i_o(        _gvn.transform(io_phi) );
2044  }
2045
2046  set_control( _gvn.transform(result_rgn) );
2047}
2048
2049// Add check to deoptimize if RTM state is not ProfileRTM
2050void Parse::rtm_deopt() {
2051#if INCLUDE_RTM_OPT
2052  if (C->profile_rtm()) {
2053    assert(C->method() != NULL, "only for normal compilations");
2054    assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2055    assert(depth() == 1, "generate check only for main compiled method");
2056
2057    // Set starting bci for uncommon trap.
2058    set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2059
2060    // Load the rtm_state from the MethodData.
2061    const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2062    Node* mdo = makecon(adr_type);
2063    int offset = MethodData::rtm_state_offset_in_bytes();
2064    Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2065    Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2066
2067    // Separate Load from Cmp by Opaque.
2068    // In expand_macro_nodes() it will be replaced either
2069    // with this load when there are locks in the code
2070    // or with ProfileRTM (cmp->in(2)) otherwise so that
2071    // the check will fold.
2072    Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2073    Node* opq   = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2074    Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2075    Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2076    // Branch to failure if state was changed
2077    { BuildCutout unless(this, tst, PROB_ALWAYS);
2078      uncommon_trap(Deoptimization::Reason_rtm_state_change,
2079                    Deoptimization::Action_make_not_entrant);
2080    }
2081  }
2082#endif
2083}
2084
2085void Parse::decrement_age() {
2086  MethodCounters* mc = method()->ensure_method_counters();
2087  if (mc == NULL) {
2088    C->record_failure("Must have MCs");
2089    return;
2090  }
2091  assert(!is_osr_parse(), "Not doing this for OSRs");
2092
2093  // Set starting bci for uncommon trap.
2094  set_parse_bci(0);
2095
2096  const TypePtr* adr_type = TypeRawPtr::make((address)mc);
2097  Node* mc_adr = makecon(adr_type);
2098  Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset()));
2099  Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2100  Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2101  store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2102  Node *chk   = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2103  Node* tst   = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2104  { BuildCutout unless(this, tst, PROB_ALWAYS);
2105    uncommon_trap(Deoptimization::Reason_tenured,
2106                  Deoptimization::Action_make_not_entrant);
2107  }
2108}
2109
2110//------------------------------return_current---------------------------------
2111// Append current _map to _exit_return
2112void Parse::return_current(Node* value) {
2113  if (RegisterFinalizersAtInit &&
2114      method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2115    call_register_finalizer();
2116  }
2117
2118  // Do not set_parse_bci, so that return goo is credited to the return insn.
2119  set_bci(InvocationEntryBci);
2120  if (method()->is_synchronized() && GenerateSynchronizationCode) {
2121    shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2122  }
2123  if (C->env()->dtrace_method_probes()) {
2124    make_dtrace_method_exit(method());
2125  }
2126  SafePointNode* exit_return = _exits.map();
2127  exit_return->in( TypeFunc::Control  )->add_req( control() );
2128  exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2129  Node *mem = exit_return->in( TypeFunc::Memory   );
2130  for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2131    if (mms.is_empty()) {
2132      // get a copy of the base memory, and patch just this one input
2133      const TypePtr* adr_type = mms.adr_type(C);
2134      Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2135      assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2136      gvn().set_type_bottom(phi);
2137      phi->del_req(phi->req()-1);  // prepare to re-patch
2138      mms.set_memory(phi);
2139    }
2140    mms.memory()->add_req(mms.memory2());
2141  }
2142
2143  // frame pointer is always same, already captured
2144  if (value != NULL) {
2145    // If returning oops to an interface-return, there is a silent free
2146    // cast from oop to interface allowed by the Verifier.  Make it explicit
2147    // here.
2148    Node* phi = _exits.argument(0);
2149    const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2150    if( tr && tr->klass()->is_loaded() &&
2151        tr->klass()->is_interface() ) {
2152      const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2153      if (tp && tp->klass()->is_loaded() &&
2154          !tp->klass()->is_interface()) {
2155        // sharpen the type eagerly; this eases certain assert checking
2156        if (tp->higher_equal(TypeInstPtr::NOTNULL))
2157          tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2158        value = _gvn.transform(new CheckCastPPNode(0,value,tr));
2159      }
2160    }
2161    phi->add_req(value);
2162  }
2163
2164  if (_first_return) {
2165    _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2166    _first_return = false;
2167  } else {
2168    _exits.map()->merge_replaced_nodes_with(map());
2169  }
2170
2171  stop_and_kill_map();          // This CFG path dies here
2172}
2173
2174
2175//------------------------------add_safepoint----------------------------------
2176void Parse::add_safepoint() {
2177  // See if we can avoid this safepoint.  No need for a SafePoint immediately
2178  // after a Call (except Leaf Call) or another SafePoint.
2179  Node *proj = control();
2180  bool add_poll_param = SafePointNode::needs_polling_address_input();
2181  uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2182  if( proj->is_Proj() ) {
2183    Node *n0 = proj->in(0);
2184    if( n0->is_Catch() ) {
2185      n0 = n0->in(0)->in(0);
2186      assert( n0->is_Call(), "expect a call here" );
2187    }
2188    if( n0->is_Call() ) {
2189      if( n0->as_Call()->guaranteed_safepoint() )
2190        return;
2191    } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2192      return;
2193    }
2194  }
2195
2196  // Clear out dead values from the debug info.
2197  kill_dead_locals();
2198
2199  // Clone the JVM State
2200  SafePointNode *sfpnt = new SafePointNode(parms, NULL);
2201
2202  // Capture memory state BEFORE a SafePoint.  Since we can block at a
2203  // SafePoint we need our GC state to be safe; i.e. we need all our current
2204  // write barriers (card marks) to not float down after the SafePoint so we
2205  // must read raw memory.  Likewise we need all oop stores to match the card
2206  // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2207  // state on a deopt).
2208
2209  // We do not need to WRITE the memory state after a SafePoint.  The control
2210  // edge will keep card-marks and oop-stores from floating up from below a
2211  // SafePoint and our true dependency added here will keep them from floating
2212  // down below a SafePoint.
2213
2214  // Clone the current memory state
2215  Node* mem = MergeMemNode::make(map()->memory());
2216
2217  mem = _gvn.transform(mem);
2218
2219  // Pass control through the safepoint
2220  sfpnt->init_req(TypeFunc::Control  , control());
2221  // Fix edges normally used by a call
2222  sfpnt->init_req(TypeFunc::I_O      , top() );
2223  sfpnt->init_req(TypeFunc::Memory   , mem   );
2224  sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2225  sfpnt->init_req(TypeFunc::FramePtr , top() );
2226
2227  // Create a node for the polling address
2228  if( add_poll_param ) {
2229    Node *polladr = ConPNode::make((address)os::get_polling_page());
2230    sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2231  }
2232
2233  // Fix up the JVM State edges
2234  add_safepoint_edges(sfpnt);
2235  Node *transformed_sfpnt = _gvn.transform(sfpnt);
2236  set_control(transformed_sfpnt);
2237
2238  // Provide an edge from root to safepoint.  This makes the safepoint
2239  // appear useful until the parse has completed.
2240  if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2241    assert(C->root() != NULL, "Expect parse is still valid");
2242    C->root()->add_prec(transformed_sfpnt);
2243  }
2244}
2245
2246#ifndef PRODUCT
2247//------------------------show_parse_info--------------------------------------
2248void Parse::show_parse_info() {
2249  InlineTree* ilt = NULL;
2250  if (C->ilt() != NULL) {
2251    JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2252    ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2253  }
2254  if (PrintCompilation && Verbose) {
2255    if (depth() == 1) {
2256      if( ilt->count_inlines() ) {
2257        tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2258                     ilt->count_inline_bcs());
2259        tty->cr();
2260      }
2261    } else {
2262      if (method()->is_synchronized())         tty->print("s");
2263      if (method()->has_exception_handlers())  tty->print("!");
2264      // Check this is not the final compiled version
2265      if (C->trap_can_recompile()) {
2266        tty->print("-");
2267      } else {
2268        tty->print(" ");
2269      }
2270      method()->print_short_name();
2271      if (is_osr_parse()) {
2272        tty->print(" @ %d", osr_bci());
2273      }
2274      tty->print(" (%d bytes)",method()->code_size());
2275      if (ilt->count_inlines()) {
2276        tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2277                   ilt->count_inline_bcs());
2278      }
2279      tty->cr();
2280    }
2281  }
2282  if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2283    // Print that we succeeded; suppress this message on the first osr parse.
2284
2285    if (method()->is_synchronized())         tty->print("s");
2286    if (method()->has_exception_handlers())  tty->print("!");
2287    // Check this is not the final compiled version
2288    if (C->trap_can_recompile() && depth() == 1) {
2289      tty->print("-");
2290    } else {
2291      tty->print(" ");
2292    }
2293    if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2294    for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2295    method()->print_short_name();
2296    if (is_osr_parse()) {
2297      tty->print(" @ %d", osr_bci());
2298    }
2299    if (ilt->caller_bci() != -1) {
2300      tty->print(" @ %d", ilt->caller_bci());
2301    }
2302    tty->print(" (%d bytes)",method()->code_size());
2303    if (ilt->count_inlines()) {
2304      tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2305                 ilt->count_inline_bcs());
2306    }
2307    tty->cr();
2308  }
2309}
2310
2311
2312//------------------------------dump-------------------------------------------
2313// Dump information associated with the bytecodes of current _method
2314void Parse::dump() {
2315  if( method() != NULL ) {
2316    // Iterate over bytecodes
2317    ciBytecodeStream iter(method());
2318    for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2319      dump_bci( iter.cur_bci() );
2320      tty->cr();
2321    }
2322  }
2323}
2324
2325// Dump information associated with a byte code index, 'bci'
2326void Parse::dump_bci(int bci) {
2327  // Output info on merge-points, cloning, and within _jsr..._ret
2328  // NYI
2329  tty->print(" bci:%d", bci);
2330}
2331
2332#endif
2333