node.hpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2008, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29
30class AbstractLockNode;
31class AddNode;
32class AddPNode;
33class AliasInfo;
34class AllocateArrayNode;
35class AllocateNode;
36class Block;
37class Block_Array;
38class BoolNode;
39class BoxLockNode;
40class CMoveNode;
41class CallDynamicJavaNode;
42class CallJavaNode;
43class CallLeafNode;
44class CallNode;
45class CallRuntimeNode;
46class CallStaticJavaNode;
47class CatchNode;
48class CatchProjNode;
49class CheckCastPPNode;
50class ClearArrayNode;
51class CmpNode;
52class CodeBuffer;
53class ConstraintCastNode;
54class ConNode;
55class CountedLoopNode;
56class CountedLoopEndNode;
57class DecodeNNode;
58class EncodePNode;
59class FastLockNode;
60class FastUnlockNode;
61class IfNode;
62class InitializeNode;
63class JVMState;
64class JumpNode;
65class JumpProjNode;
66class LoadNode;
67class LoadStoreNode;
68class LockNode;
69class LoopNode;
70class MachCallDynamicJavaNode;
71class MachCallJavaNode;
72class MachCallLeafNode;
73class MachCallNode;
74class MachCallRuntimeNode;
75class MachCallStaticJavaNode;
76class MachIfNode;
77class MachNode;
78class MachNullCheckNode;
79class MachReturnNode;
80class MachSafePointNode;
81class MachSpillCopyNode;
82class MachTempNode;
83class Matcher;
84class MemBarNode;
85class MemNode;
86class MergeMemNode;
87class MulNode;
88class MultiNode;
89class MultiBranchNode;
90class NeverBranchNode;
91class Node;
92class Node_Array;
93class Node_List;
94class Node_Stack;
95class NullCheckNode;
96class OopMap;
97class ParmNode;
98class PCTableNode;
99class PhaseCCP;
100class PhaseGVN;
101class PhaseIterGVN;
102class PhaseRegAlloc;
103class PhaseTransform;
104class PhaseValues;
105class PhiNode;
106class Pipeline;
107class ProjNode;
108class RegMask;
109class RegionNode;
110class RootNode;
111class SafePointNode;
112class SafePointScalarObjectNode;
113class StartNode;
114class State;
115class StoreNode;
116class SubNode;
117class Type;
118class TypeNode;
119class UnlockNode;
120class VectorSet;
121class IfTrueNode;
122class IfFalseNode;
123typedef void (*NFunc)(Node&,void*);
124extern "C" {
125  typedef int (*C_sort_func_t)(const void *, const void *);
126}
127
128// The type of all node counts and indexes.
129// It must hold at least 16 bits, but must also be fast to load and store.
130// This type, if less than 32 bits, could limit the number of possible nodes.
131// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
132typedef unsigned int node_idx_t;
133
134
135#ifndef OPTO_DU_ITERATOR_ASSERT
136#ifdef ASSERT
137#define OPTO_DU_ITERATOR_ASSERT 1
138#else
139#define OPTO_DU_ITERATOR_ASSERT 0
140#endif
141#endif //OPTO_DU_ITERATOR_ASSERT
142
143#if OPTO_DU_ITERATOR_ASSERT
144class DUIterator;
145class DUIterator_Fast;
146class DUIterator_Last;
147#else
148typedef uint   DUIterator;
149typedef Node** DUIterator_Fast;
150typedef Node** DUIterator_Last;
151#endif
152
153// Node Sentinel
154#define NodeSentinel (Node*)-1
155
156// Unknown count frequency
157#define COUNT_UNKNOWN (-1.0f)
158
159//------------------------------Node-------------------------------------------
160// Nodes define actions in the program.  They create values, which have types.
161// They are both vertices in a directed graph and program primitives.  Nodes
162// are labeled; the label is the "opcode", the primitive function in the lambda
163// calculus sense that gives meaning to the Node.  Node inputs are ordered (so
164// that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
165// the Node's function.  These inputs also define a Type equation for the Node.
166// Solving these Type equations amounts to doing dataflow analysis.
167// Control and data are uniformly represented in the graph.  Finally, Nodes
168// have a unique dense integer index which is used to index into side arrays
169// whenever I have phase-specific information.
170
171class Node {
172  // Lots of restrictions on cloning Nodes
173  Node(const Node&);            // not defined; linker error to use these
174  Node &operator=(const Node &rhs);
175
176public:
177  friend class Compile;
178  #if OPTO_DU_ITERATOR_ASSERT
179  friend class DUIterator_Common;
180  friend class DUIterator;
181  friend class DUIterator_Fast;
182  friend class DUIterator_Last;
183  #endif
184
185  // Because Nodes come and go, I define an Arena of Node structures to pull
186  // from.  This should allow fast access to node creation & deletion.  This
187  // field is a local cache of a value defined in some "program fragment" for
188  // which these Nodes are just a part of.
189
190  // New Operator that takes a Compile pointer, this will eventually
191  // be the "new" New operator.
192  inline void* operator new( size_t x, Compile* C) {
193    Node* n = (Node*)C->node_arena()->Amalloc_D(x);
194#ifdef ASSERT
195    n->_in = (Node**)n; // magic cookie for assertion check
196#endif
197    n->_out = (Node**)C;
198    return (void*)n;
199  }
200
201  // New Operator that takes a Compile pointer, this will eventually
202  // be the "new" New operator.
203  inline void* operator new( size_t x, Compile* C, int y) {
204    Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
205    n->_in = (Node**)(((char*)n) + x);
206#ifdef ASSERT
207    n->_in[y-1] = n; // magic cookie for assertion check
208#endif
209    n->_out = (Node**)C;
210    return (void*)n;
211  }
212
213  // Delete is a NOP
214  void operator delete( void *ptr ) {}
215  // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
216  void destruct();
217
218  // Create a new Node.  Required is the number is of inputs required for
219  // semantic correctness.
220  Node( uint required );
221
222  // Create a new Node with given input edges.
223  // This version requires use of the "edge-count" new.
224  // E.g.  new (C,3) FooNode( C, NULL, left, right );
225  Node( Node *n0 );
226  Node( Node *n0, Node *n1 );
227  Node( Node *n0, Node *n1, Node *n2 );
228  Node( Node *n0, Node *n1, Node *n2, Node *n3 );
229  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
230  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
231  Node( Node *n0, Node *n1, Node *n2, Node *n3,
232            Node *n4, Node *n5, Node *n6 );
233
234  // Clone an inherited Node given only the base Node type.
235  Node* clone() const;
236
237  // Clone a Node, immediately supplying one or two new edges.
238  // The first and second arguments, if non-null, replace in(1) and in(2),
239  // respectively.
240  Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
241    Node* nn = clone();
242    if (in1 != NULL)  nn->set_req(1, in1);
243    if (in2 != NULL)  nn->set_req(2, in2);
244    return nn;
245  }
246
247private:
248  // Shared setup for the above constructors.
249  // Handles all interactions with Compile::current.
250  // Puts initial values in all Node fields except _idx.
251  // Returns the initial value for _idx, which cannot
252  // be initialized by assignment.
253  inline int Init(int req, Compile* C);
254
255//----------------- input edge handling
256protected:
257  friend class PhaseCFG;        // Access to address of _in array elements
258  Node **_in;                   // Array of use-def references to Nodes
259  Node **_out;                  // Array of def-use references to Nodes
260
261  // Input edges are split into two categories.  Required edges are required
262  // for semantic correctness; order is important and NULLs are allowed.
263  // Precedence edges are used to help determine execution order and are
264  // added, e.g., for scheduling purposes.  They are unordered and not
265  // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
266  // are required, from _cnt to _max-1 are precedence edges.
267  node_idx_t _cnt;              // Total number of required Node inputs.
268
269  node_idx_t _max;              // Actual length of input array.
270
271  // Output edges are an unordered list of def-use edges which exactly
272  // correspond to required input edges which point from other nodes
273  // to this one.  Thus the count of the output edges is the number of
274  // users of this node.
275  node_idx_t _outcnt;           // Total number of Node outputs.
276
277  node_idx_t _outmax;           // Actual length of output array.
278
279  // Grow the actual input array to the next larger power-of-2 bigger than len.
280  void grow( uint len );
281  // Grow the output array to the next larger power-of-2 bigger than len.
282  void out_grow( uint len );
283
284 public:
285  // Each Node is assigned a unique small/dense number.  This number is used
286  // to index into auxiliary arrays of data and bitvectors.
287  // It is declared const to defend against inadvertant assignment,
288  // since it is used by clients as a naked field.
289  const node_idx_t _idx;
290
291  // Get the (read-only) number of input edges
292  uint req() const { return _cnt; }
293  uint len() const { return _max; }
294  // Get the (read-only) number of output edges
295  uint outcnt() const { return _outcnt; }
296
297#if OPTO_DU_ITERATOR_ASSERT
298  // Iterate over the out-edges of this node.  Deletions are illegal.
299  inline DUIterator outs() const;
300  // Use this when the out array might have changed to suppress asserts.
301  inline DUIterator& refresh_out_pos(DUIterator& i) const;
302  // Does the node have an out at this position?  (Used for iteration.)
303  inline bool has_out(DUIterator& i) const;
304  inline Node*    out(DUIterator& i) const;
305  // Iterate over the out-edges of this node.  All changes are illegal.
306  inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
307  inline Node*    fast_out(DUIterator_Fast& i) const;
308  // Iterate over the out-edges of this node, deleting one at a time.
309  inline DUIterator_Last last_outs(DUIterator_Last& min) const;
310  inline Node*    last_out(DUIterator_Last& i) const;
311  // The inline bodies of all these methods are after the iterator definitions.
312#else
313  // Iterate over the out-edges of this node.  Deletions are illegal.
314  // This iteration uses integral indexes, to decouple from array reallocations.
315  DUIterator outs() const  { return 0; }
316  // Use this when the out array might have changed to suppress asserts.
317  DUIterator refresh_out_pos(DUIterator i) const { return i; }
318
319  // Reference to the i'th output Node.  Error if out of bounds.
320  Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
321  // Does the node have an out at this position?  (Used for iteration.)
322  bool has_out(DUIterator i) const { return i < _outcnt; }
323
324  // Iterate over the out-edges of this node.  All changes are illegal.
325  // This iteration uses a pointer internal to the out array.
326  DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
327    Node** out = _out;
328    // Assign a limit pointer to the reference argument:
329    max = out + (ptrdiff_t)_outcnt;
330    // Return the base pointer:
331    return out;
332  }
333  Node*    fast_out(DUIterator_Fast i) const  { return *i; }
334  // Iterate over the out-edges of this node, deleting one at a time.
335  // This iteration uses a pointer internal to the out array.
336  DUIterator_Last last_outs(DUIterator_Last& min) const {
337    Node** out = _out;
338    // Assign a limit pointer to the reference argument:
339    min = out;
340    // Return the pointer to the start of the iteration:
341    return out + (ptrdiff_t)_outcnt - 1;
342  }
343  Node*    last_out(DUIterator_Last i) const  { return *i; }
344#endif
345
346  // Reference to the i'th input Node.  Error if out of bounds.
347  Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
348  // Reference to the i'th output Node.  Error if out of bounds.
349  // Use this accessor sparingly.  We are going trying to use iterators instead.
350  Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
351  // Return the unique out edge.
352  Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
353  // Delete out edge at position 'i' by moving last out edge to position 'i'
354  void  raw_del_out(uint i) {
355    assert(i < _outcnt,"oob");
356    assert(_outcnt > 0,"oob");
357    #if OPTO_DU_ITERATOR_ASSERT
358    // Record that a change happened here.
359    debug_only(_last_del = _out[i]; ++_del_tick);
360    #endif
361    _out[i] = _out[--_outcnt];
362    // Smash the old edge so it can't be used accidentally.
363    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
364  }
365
366#ifdef ASSERT
367  bool is_dead() const;
368#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
369#endif
370
371  // Set a required input edge, also updates corresponding output edge
372  void add_req( Node *n ); // Append a NEW required input
373  void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
374  void del_req( uint idx ); // Delete required edge & compact
375  void ins_req( uint i, Node *n ); // Insert a NEW required input
376  void set_req( uint i, Node *n ) {
377    assert( is_not_dead(n), "can not use dead node");
378    assert( i < _cnt, "oob");
379    assert( !VerifyHashTableKeys || _hash_lock == 0,
380            "remove node from hash table before modifying it");
381    Node** p = &_in[i];    // cache this._in, across the del_out call
382    if (*p != NULL)  (*p)->del_out((Node *)this);
383    (*p) = n;
384    if (n != NULL)      n->add_out((Node *)this);
385  }
386  // Light version of set_req() to init inputs after node creation.
387  void init_req( uint i, Node *n ) {
388    assert( i == 0 && this == n ||
389            is_not_dead(n), "can not use dead node");
390    assert( i < _cnt, "oob");
391    assert( !VerifyHashTableKeys || _hash_lock == 0,
392            "remove node from hash table before modifying it");
393    assert( _in[i] == NULL, "sanity");
394    _in[i] = n;
395    if (n != NULL)      n->add_out((Node *)this);
396  }
397  // Find first occurrence of n among my edges:
398  int find_edge(Node* n);
399  int replace_edge(Node* old, Node* neww);
400  // NULL out all inputs to eliminate incoming Def-Use edges.
401  // Return the number of edges between 'n' and 'this'
402  int  disconnect_inputs(Node *n);
403
404  // Quickly, return true if and only if I am Compile::current()->top().
405  bool is_top() const {
406    assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
407    return (_out == NULL);
408  }
409  // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
410  void setup_is_top();
411
412  // Strip away casting.  (It is depth-limited.)
413  Node* uncast() const;
414
415private:
416  static Node* uncast_helper(const Node* n);
417
418  // Add an output edge to the end of the list
419  void add_out( Node *n ) {
420    if (is_top())  return;
421    if( _outcnt == _outmax ) out_grow(_outcnt);
422    _out[_outcnt++] = n;
423  }
424  // Delete an output edge
425  void del_out( Node *n ) {
426    if (is_top())  return;
427    Node** outp = &_out[_outcnt];
428    // Find and remove n
429    do {
430      assert(outp > _out, "Missing Def-Use edge");
431    } while (*--outp != n);
432    *outp = _out[--_outcnt];
433    // Smash the old edge so it can't be used accidentally.
434    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
435    // Record that a change happened here.
436    #if OPTO_DU_ITERATOR_ASSERT
437    debug_only(_last_del = n; ++_del_tick);
438    #endif
439  }
440
441public:
442  // Globally replace this node by a given new node, updating all uses.
443  void replace_by(Node* new_node);
444  // Globally replace this node by a given new node, updating all uses
445  // and cutting input edges of old node.
446  void subsume_by(Node* new_node) {
447    replace_by(new_node);
448    disconnect_inputs(NULL);
449  }
450  void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
451  // Find the one non-null required input.  RegionNode only
452  Node *nonnull_req() const;
453  // Add or remove precedence edges
454  void add_prec( Node *n );
455  void rm_prec( uint i );
456  void set_prec( uint i, Node *n ) {
457    assert( is_not_dead(n), "can not use dead node");
458    assert( i >= _cnt, "not a precedence edge");
459    if (_in[i] != NULL) _in[i]->del_out((Node *)this);
460    _in[i] = n;
461    if (n != NULL) n->add_out((Node *)this);
462  }
463  // Set this node's index, used by cisc_version to replace current node
464  void set_idx(uint new_idx) {
465    const node_idx_t* ref = &_idx;
466    *(node_idx_t*)ref = new_idx;
467  }
468  // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
469  void swap_edges(uint i1, uint i2) {
470    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
471    // Def-Use info is unchanged
472    Node* n1 = in(i1);
473    Node* n2 = in(i2);
474    _in[i1] = n2;
475    _in[i2] = n1;
476    // If this node is in the hash table, make sure it doesn't need a rehash.
477    assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
478  }
479
480  // Iterators over input Nodes for a Node X are written as:
481  // for( i = 0; i < X.req(); i++ ) ... X[i] ...
482  // NOTE: Required edges can contain embedded NULL pointers.
483
484//----------------- Other Node Properties
485
486  // Generate class id for some ideal nodes to avoid virtual query
487  // methods is_<Node>().
488  // Class id is the set of bits corresponded to the node class and all its
489  // super classes so that queries for super classes are also valid.
490  // Subclasses of the same super class have different assigned bit
491  // (the third parameter in the macro DEFINE_CLASS_ID).
492  // Classes with deeper hierarchy are declared first.
493  // Classes with the same hierarchy depth are sorted by usage frequency.
494  //
495  // The query method masks the bits to cut off bits of subclasses
496  // and then compare the result with the class id
497  // (see the macro DEFINE_CLASS_QUERY below).
498  //
499  //  Class_MachCall=30, ClassMask_MachCall=31
500  // 12               8               4               0
501  //  0   0   0   0   0   0   0   0   1   1   1   1   0
502  //                                  |   |   |   |
503  //                                  |   |   |   Bit_Mach=2
504  //                                  |   |   Bit_MachReturn=4
505  //                                  |   Bit_MachSafePoint=8
506  //                                  Bit_MachCall=16
507  //
508  //  Class_CountedLoop=56, ClassMask_CountedLoop=63
509  // 12               8               4               0
510  //  0   0   0   0   0   0   0   1   1   1   0   0   0
511  //                              |   |   |
512  //                              |   |   Bit_Region=8
513  //                              |   Bit_Loop=16
514  //                              Bit_CountedLoop=32
515
516  #define DEFINE_CLASS_ID(cl, supcl, subn) \
517  Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
518  Class_##cl = Class_##supcl + Bit_##cl , \
519  ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
520
521  // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
522  // so that it's values fits into 16 bits.
523  enum NodeClasses {
524    Bit_Node   = 0x0000,
525    Class_Node = 0x0000,
526    ClassMask_Node = 0xFFFF,
527
528    DEFINE_CLASS_ID(Multi, Node, 0)
529      DEFINE_CLASS_ID(SafePoint, Multi, 0)
530        DEFINE_CLASS_ID(Call,      SafePoint, 0)
531          DEFINE_CLASS_ID(CallJava,         Call, 0)
532            DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
533            DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
534          DEFINE_CLASS_ID(CallRuntime,      Call, 1)
535            DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
536          DEFINE_CLASS_ID(Allocate,         Call, 2)
537            DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
538          DEFINE_CLASS_ID(AbstractLock,     Call, 3)
539            DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
540            DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
541      DEFINE_CLASS_ID(MultiBranch, Multi, 1)
542        DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
543          DEFINE_CLASS_ID(Catch,       PCTable, 0)
544          DEFINE_CLASS_ID(Jump,        PCTable, 1)
545        DEFINE_CLASS_ID(If,          MultiBranch, 1)
546          DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
547        DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
548      DEFINE_CLASS_ID(Start,       Multi, 2)
549      DEFINE_CLASS_ID(MemBar,      Multi, 3)
550        DEFINE_CLASS_ID(Initialize,    MemBar, 0)
551
552    DEFINE_CLASS_ID(Mach,  Node, 1)
553      DEFINE_CLASS_ID(MachReturn, Mach, 0)
554        DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
555          DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
556            DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
557              DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
558              DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
559            DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
560              DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
561      DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
562      DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
563      DEFINE_CLASS_ID(MachIf,        Mach, 3)
564      DEFINE_CLASS_ID(MachTemp,      Mach, 4)
565
566    DEFINE_CLASS_ID(Proj,  Node, 2)
567      DEFINE_CLASS_ID(CatchProj, Proj, 0)
568      DEFINE_CLASS_ID(JumpProj,  Proj, 1)
569      DEFINE_CLASS_ID(IfTrue,    Proj, 2)
570      DEFINE_CLASS_ID(IfFalse,   Proj, 3)
571      DEFINE_CLASS_ID(Parm,      Proj, 4)
572
573    DEFINE_CLASS_ID(Region, Node, 3)
574      DEFINE_CLASS_ID(Loop, Region, 0)
575        DEFINE_CLASS_ID(Root,        Loop, 0)
576        DEFINE_CLASS_ID(CountedLoop, Loop, 1)
577
578    DEFINE_CLASS_ID(Sub,   Node, 4)
579      DEFINE_CLASS_ID(Cmp,   Sub, 0)
580        DEFINE_CLASS_ID(FastLock,   Cmp, 0)
581        DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
582
583    DEFINE_CLASS_ID(Type,  Node, 5)
584      DEFINE_CLASS_ID(Phi,   Type, 0)
585      DEFINE_CLASS_ID(ConstraintCast, Type, 1)
586      DEFINE_CLASS_ID(CheckCastPP, Type, 2)
587      DEFINE_CLASS_ID(CMove, Type, 3)
588      DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
589      DEFINE_CLASS_ID(DecodeN, Type, 5)
590      DEFINE_CLASS_ID(EncodeP, Type, 6)
591
592    DEFINE_CLASS_ID(Mem,   Node, 6)
593      DEFINE_CLASS_ID(Load,  Mem, 0)
594      DEFINE_CLASS_ID(Store, Mem, 1)
595      DEFINE_CLASS_ID(LoadStore, Mem, 2)
596
597    DEFINE_CLASS_ID(MergeMem, Node, 7)
598    DEFINE_CLASS_ID(Bool,     Node, 8)
599    DEFINE_CLASS_ID(AddP,     Node, 9)
600    DEFINE_CLASS_ID(BoxLock,  Node, 10)
601    DEFINE_CLASS_ID(Add,      Node, 11)
602    DEFINE_CLASS_ID(Mul,      Node, 12)
603    DEFINE_CLASS_ID(ClearArray, Node, 13)
604
605    _max_classes  = ClassMask_ClearArray
606  };
607  #undef DEFINE_CLASS_ID
608
609  // Flags are sorted by usage frequency.
610  enum NodeFlags {
611    Flag_is_Copy             = 0x01, // should be first bit to avoid shift
612    Flag_is_Call             = Flag_is_Copy << 1,
613    Flag_rematerialize       = Flag_is_Call << 1,
614    Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
615    Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
616    Flag_is_Con              = Flag_is_macro << 1,
617    Flag_is_cisc_alternate   = Flag_is_Con << 1,
618    Flag_is_Branch           = Flag_is_cisc_alternate << 1,
619    Flag_is_block_start      = Flag_is_Branch << 1,
620    Flag_is_Goto             = Flag_is_block_start << 1,
621    Flag_is_dead_loop_safe   = Flag_is_Goto << 1,
622    Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
623    Flag_is_safepoint_node   = Flag_may_be_short_branch << 1,
624    Flag_is_pc_relative      = Flag_is_safepoint_node << 1,
625    Flag_is_Vector           = Flag_is_pc_relative << 1,
626    _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
627  };
628
629private:
630  jushort _class_id;
631  jushort _flags;
632
633protected:
634  // These methods should be called from constructors only.
635  void init_class_id(jushort c) {
636    assert(c <= _max_classes, "invalid node class");
637    _class_id = c; // cast out const
638  }
639  void init_flags(jushort fl) {
640    assert(fl <= _max_flags, "invalid node flag");
641    _flags |= fl;
642  }
643  void clear_flag(jushort fl) {
644    assert(fl <= _max_flags, "invalid node flag");
645    _flags &= ~fl;
646  }
647
648public:
649  const jushort class_id() const { return _class_id; }
650
651  const jushort flags() const { return _flags; }
652
653  // Return a dense integer opcode number
654  virtual int Opcode() const;
655
656  // Virtual inherited Node size
657  virtual uint size_of() const;
658
659  // Other interesting Node properties
660
661  // Special case: is_Call() returns true for both CallNode and MachCallNode.
662  bool is_Call() const {
663    return (_flags & Flag_is_Call) != 0;
664  }
665
666  CallNode* isa_Call() const {
667    return is_Call() ? as_Call() : NULL;
668  }
669
670  CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
671    assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
672    return (CallNode*)this;
673  }
674
675  #define DEFINE_CLASS_QUERY(type)                           \
676  bool is_##type() const {                                   \
677    return ((_class_id & ClassMask_##type) == Class_##type); \
678  }                                                          \
679  type##Node *as_##type() const {                            \
680    assert(is_##type(), "invalid node class");               \
681    return (type##Node*)this;                                \
682  }                                                          \
683  type##Node* isa_##type() const {                           \
684    return (is_##type()) ? as_##type() : NULL;               \
685  }
686
687  DEFINE_CLASS_QUERY(AbstractLock)
688  DEFINE_CLASS_QUERY(Add)
689  DEFINE_CLASS_QUERY(AddP)
690  DEFINE_CLASS_QUERY(Allocate)
691  DEFINE_CLASS_QUERY(AllocateArray)
692  DEFINE_CLASS_QUERY(Bool)
693  DEFINE_CLASS_QUERY(BoxLock)
694  DEFINE_CLASS_QUERY(CallDynamicJava)
695  DEFINE_CLASS_QUERY(CallJava)
696  DEFINE_CLASS_QUERY(CallLeaf)
697  DEFINE_CLASS_QUERY(CallRuntime)
698  DEFINE_CLASS_QUERY(CallStaticJava)
699  DEFINE_CLASS_QUERY(Catch)
700  DEFINE_CLASS_QUERY(CatchProj)
701  DEFINE_CLASS_QUERY(CheckCastPP)
702  DEFINE_CLASS_QUERY(ConstraintCast)
703  DEFINE_CLASS_QUERY(ClearArray)
704  DEFINE_CLASS_QUERY(CMove)
705  DEFINE_CLASS_QUERY(Cmp)
706  DEFINE_CLASS_QUERY(CountedLoop)
707  DEFINE_CLASS_QUERY(CountedLoopEnd)
708  DEFINE_CLASS_QUERY(DecodeN)
709  DEFINE_CLASS_QUERY(EncodeP)
710  DEFINE_CLASS_QUERY(FastLock)
711  DEFINE_CLASS_QUERY(FastUnlock)
712  DEFINE_CLASS_QUERY(If)
713  DEFINE_CLASS_QUERY(IfFalse)
714  DEFINE_CLASS_QUERY(IfTrue)
715  DEFINE_CLASS_QUERY(Initialize)
716  DEFINE_CLASS_QUERY(Jump)
717  DEFINE_CLASS_QUERY(JumpProj)
718  DEFINE_CLASS_QUERY(Load)
719  DEFINE_CLASS_QUERY(LoadStore)
720  DEFINE_CLASS_QUERY(Lock)
721  DEFINE_CLASS_QUERY(Loop)
722  DEFINE_CLASS_QUERY(Mach)
723  DEFINE_CLASS_QUERY(MachCall)
724  DEFINE_CLASS_QUERY(MachCallDynamicJava)
725  DEFINE_CLASS_QUERY(MachCallJava)
726  DEFINE_CLASS_QUERY(MachCallLeaf)
727  DEFINE_CLASS_QUERY(MachCallRuntime)
728  DEFINE_CLASS_QUERY(MachCallStaticJava)
729  DEFINE_CLASS_QUERY(MachIf)
730  DEFINE_CLASS_QUERY(MachNullCheck)
731  DEFINE_CLASS_QUERY(MachReturn)
732  DEFINE_CLASS_QUERY(MachSafePoint)
733  DEFINE_CLASS_QUERY(MachSpillCopy)
734  DEFINE_CLASS_QUERY(MachTemp)
735  DEFINE_CLASS_QUERY(Mem)
736  DEFINE_CLASS_QUERY(MemBar)
737  DEFINE_CLASS_QUERY(MergeMem)
738  DEFINE_CLASS_QUERY(Mul)
739  DEFINE_CLASS_QUERY(Multi)
740  DEFINE_CLASS_QUERY(MultiBranch)
741  DEFINE_CLASS_QUERY(Parm)
742  DEFINE_CLASS_QUERY(PCTable)
743  DEFINE_CLASS_QUERY(Phi)
744  DEFINE_CLASS_QUERY(Proj)
745  DEFINE_CLASS_QUERY(Region)
746  DEFINE_CLASS_QUERY(Root)
747  DEFINE_CLASS_QUERY(SafePoint)
748  DEFINE_CLASS_QUERY(SafePointScalarObject)
749  DEFINE_CLASS_QUERY(Start)
750  DEFINE_CLASS_QUERY(Store)
751  DEFINE_CLASS_QUERY(Sub)
752  DEFINE_CLASS_QUERY(Type)
753  DEFINE_CLASS_QUERY(Unlock)
754
755  #undef DEFINE_CLASS_QUERY
756
757  // duplicate of is_MachSpillCopy()
758  bool is_SpillCopy () const {
759    return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
760  }
761
762  bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
763  bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
764  // The data node which is safe to leave in dead loop during IGVN optimization.
765  bool is_dead_loop_safe() const {
766    return is_Phi() || (is_Proj() && in(0) == NULL) ||
767           ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
768            (!is_Proj() || !in(0)->is_Allocate()));
769  }
770
771  // is_Copy() returns copied edge index (0 or 1)
772  uint is_Copy() const { return (_flags & Flag_is_Copy); }
773
774  virtual bool is_CFG() const { return false; }
775
776  // If this node is control-dependent on a test, can it be
777  // rerouted to a dominating equivalent test?  This is usually
778  // true of non-CFG nodes, but can be false for operations which
779  // depend for their correct sequencing on more than one test.
780  // (In that case, hoisting to a dominating test may silently
781  // skip some other important test.)
782  virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
783
784  // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
785  bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
786
787  // When building basic blocks, I need to have a notion of block beginning
788  // Nodes, next block selector Nodes (block enders), and next block
789  // projections.  These calls need to work on their machine equivalents.  The
790  // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
791  bool is_block_start() const {
792    if ( is_Region() )
793      return this == (const Node*)in(0);
794    else
795      return (_flags & Flag_is_block_start) != 0;
796  }
797
798  // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
799  // Goto and Return.  This call also returns the block ending Node.
800  virtual const Node *is_block_proj() const;
801
802  // The node is a "macro" node which needs to be expanded before matching
803  bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
804
805  // Value is a vector of primitive values
806  bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
807
808//----------------- Optimization
809
810  // Get the worst-case Type output for this Node.
811  virtual const class Type *bottom_type() const;
812
813  // If we find a better type for a node, try to record it permanently.
814  // Return true if this node actually changed.
815  // Be sure to do the hash_delete game in the "rehash" variant.
816  void raise_bottom_type(const Type* new_type);
817
818  // Get the address type with which this node uses and/or defs memory,
819  // or NULL if none.  The address type is conservatively wide.
820  // Returns non-null for calls, membars, loads, stores, etc.
821  // Returns TypePtr::BOTTOM if the node touches memory "broadly".
822  virtual const class TypePtr *adr_type() const { return NULL; }
823
824  // Return an existing node which computes the same function as this node.
825  // The optimistic combined algorithm requires this to return a Node which
826  // is a small number of steps away (e.g., one of my inputs).
827  virtual Node *Identity( PhaseTransform *phase );
828
829  // Return the set of values this Node can take on at runtime.
830  virtual const Type *Value( PhaseTransform *phase ) const;
831
832  // Return a node which is more "ideal" than the current node.
833  // The invariants on this call are subtle.  If in doubt, read the
834  // treatise in node.cpp above the default implemention AND TEST WITH
835  // +VerifyIterativeGVN!
836  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
837
838  // Some nodes have specific Ideal subgraph transformations only if they are
839  // unique users of specific nodes. Such nodes should be put on IGVN worklist
840  // for the transformations to happen.
841  bool has_special_unique_user() const;
842
843  // Skip Proj and CatchProj nodes chains. Check for Null and Top.
844  Node* find_exact_control(Node* ctrl);
845
846  // Check if 'this' node dominates or equal to 'sub'.
847  bool dominates(Node* sub, Node_List &nlist);
848
849protected:
850  bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
851public:
852
853  // Idealize graph, using DU info.  Done after constant propagation
854  virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
855
856  // See if there is valid pipeline info
857  static  const Pipeline *pipeline_class();
858  virtual const Pipeline *pipeline() const;
859
860  // Compute the latency from the def to this instruction of the ith input node
861  uint latency(uint i);
862
863  // Hash & compare functions, for pessimistic value numbering
864
865  // If the hash function returns the special sentinel value NO_HASH,
866  // the node is guaranteed never to compare equal to any other node.
867  // If we accidentally generate a hash with value NO_HASH the node
868  // won't go into the table and we'll lose a little optimization.
869  enum { NO_HASH = 0 };
870  virtual uint hash() const;
871  virtual uint cmp( const Node &n ) const;
872
873  // Operation appears to be iteratively computed (such as an induction variable)
874  // It is possible for this operation to return false for a loop-varying
875  // value, if it appears (by local graph inspection) to be computed by a simple conditional.
876  bool is_iteratively_computed();
877
878  // Determine if a node is Counted loop induction variable.
879  // The method is defined in loopnode.cpp.
880  const Node* is_loop_iv() const;
881
882  // Return a node with opcode "opc" and same inputs as "this" if one can
883  // be found; Otherwise return NULL;
884  Node* find_similar(int opc);
885
886  // Return the unique control out if only one. Null if none or more than one.
887  Node* unique_ctrl_out();
888
889//----------------- Code Generation
890
891  // Ideal register class for Matching.  Zero means unmatched instruction
892  // (these are cloned instead of converted to machine nodes).
893  virtual uint ideal_reg() const;
894
895  static const uint NotAMachineReg;   // must be > max. machine register
896
897  // Do we Match on this edge index or not?  Generally false for Control
898  // and true for everything else.  Weird for calls & returns.
899  virtual uint match_edge(uint idx) const;
900
901  // Register class output is returned in
902  virtual const RegMask &out_RegMask() const;
903  // Register class input is expected in
904  virtual const RegMask &in_RegMask(uint) const;
905  // Should we clone rather than spill this instruction?
906  bool rematerialize() const;
907
908  // Return JVM State Object if this Node carries debug info, or NULL otherwise
909  virtual JVMState* jvms() const;
910
911  // Print as assembly
912  virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
913  // Emit bytes starting at parameter 'ptr'
914  // Bump 'ptr' by the number of output bytes
915  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
916  // Size of instruction in bytes
917  virtual uint size(PhaseRegAlloc *ra_) const;
918
919  // Convenience function to extract an integer constant from a node.
920  // If it is not an integer constant (either Con, CastII, or Mach),
921  // return value_if_unknown.
922  jint find_int_con(jint value_if_unknown) const {
923    const TypeInt* t = find_int_type();
924    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
925  }
926  // Return the constant, knowing it is an integer constant already
927  jint get_int() const {
928    const TypeInt* t = find_int_type();
929    guarantee(t != NULL, "must be con");
930    return t->get_con();
931  }
932  // Here's where the work is done.  Can produce non-constant int types too.
933  const TypeInt* find_int_type() const;
934
935  // Same thing for long (and intptr_t, via type.hpp):
936  jlong get_long() const {
937    const TypeLong* t = find_long_type();
938    guarantee(t != NULL, "must be con");
939    return t->get_con();
940  }
941  jlong find_long_con(jint value_if_unknown) const {
942    const TypeLong* t = find_long_type();
943    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
944  }
945  const TypeLong* find_long_type() const;
946
947  // These guys are called by code generated by ADLC:
948  intptr_t get_ptr() const;
949  intptr_t get_narrowcon() const;
950  jdouble getd() const;
951  jfloat getf() const;
952
953  // Nodes which are pinned into basic blocks
954  virtual bool pinned() const { return false; }
955
956  // Nodes which use memory without consuming it, hence need antidependences
957  // More specifically, needs_anti_dependence_check returns true iff the node
958  // (a) does a load, and (b) does not perform a store (except perhaps to a
959  // stack slot or some other unaliased location).
960  bool needs_anti_dependence_check() const;
961
962  // Return which operand this instruction may cisc-spill. In other words,
963  // return operand position that can convert from reg to memory access
964  virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
965  bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
966
967//----------------- Graph walking
968public:
969  // Walk and apply member functions recursively.
970  // Supplied (this) pointer is root.
971  void walk(NFunc pre, NFunc post, void *env);
972  static void nop(Node &, void*); // Dummy empty function
973  static void packregion( Node &n, void* );
974private:
975  void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
976
977//----------------- Printing, etc
978public:
979#ifndef PRODUCT
980  Node* find(int idx) const;         // Search the graph for the given idx.
981  Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
982  void dump() const;                 // Print this node,
983  void dump(int depth) const;        // Print this node, recursively to depth d
984  void dump_ctrl(int depth) const;   // Print control nodes, to depth d
985  virtual void dump_req() const;     // Print required-edge info
986  virtual void dump_prec() const;    // Print precedence-edge info
987  virtual void dump_out() const;     // Print the output edge info
988  virtual void dump_spec(outputStream *st) const {}; // Print per-node info
989  void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
990  void verify() const;               // Check Def-Use info for my subgraph
991  static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
992
993  // This call defines a class-unique string used to identify class instances
994  virtual const char *Name() const;
995
996  void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
997  // RegMask Print Functions
998  void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
999  void dump_out_regmask() { out_RegMask().dump(); }
1000  static int _in_dump_cnt;
1001  static bool in_dump() { return _in_dump_cnt > 0; }
1002  void fast_dump() const {
1003    tty->print("%4d: %-17s", _idx, Name());
1004    for (uint i = 0; i < len(); i++)
1005      if (in(i))
1006        tty->print(" %4d", in(i)->_idx);
1007      else
1008        tty->print(" NULL");
1009    tty->print("\n");
1010  }
1011#endif
1012#ifdef ASSERT
1013  void verify_construction();
1014  bool verify_jvms(const JVMState* jvms) const;
1015  int  _debug_idx;                     // Unique value assigned to every node.
1016  int   debug_idx() const              { return _debug_idx; }
1017  void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1018
1019  Node* _debug_orig;                   // Original version of this, if any.
1020  Node*  debug_orig() const            { return _debug_orig; }
1021  void   set_debug_orig(Node* orig);   // _debug_orig = orig
1022
1023  int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1024  void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1025  void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1026
1027  static void init_NodeProperty();
1028
1029  #if OPTO_DU_ITERATOR_ASSERT
1030  const Node* _last_del;               // The last deleted node.
1031  uint        _del_tick;               // Bumped when a deletion happens..
1032  #endif
1033#endif
1034};
1035
1036//-----------------------------------------------------------------------------
1037// Iterators over DU info, and associated Node functions.
1038
1039#if OPTO_DU_ITERATOR_ASSERT
1040
1041// Common code for assertion checking on DU iterators.
1042class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1043#ifdef ASSERT
1044 protected:
1045  bool         _vdui;               // cached value of VerifyDUIterators
1046  const Node*  _node;               // the node containing the _out array
1047  uint         _outcnt;             // cached node->_outcnt
1048  uint         _del_tick;           // cached node->_del_tick
1049  Node*        _last;               // last value produced by the iterator
1050
1051  void sample(const Node* node);    // used by c'tor to set up for verifies
1052  void verify(const Node* node, bool at_end_ok = false);
1053  void verify_resync();
1054  void reset(const DUIterator_Common& that);
1055
1056// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1057  #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1058#else
1059  #define I_VDUI_ONLY(i,x) { }
1060#endif //ASSERT
1061};
1062
1063#define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1064
1065// Default DU iterator.  Allows appends onto the out array.
1066// Allows deletion from the out array only at the current point.
1067// Usage:
1068//  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1069//    Node* y = x->out(i);
1070//    ...
1071//  }
1072// Compiles in product mode to a unsigned integer index, which indexes
1073// onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1074// also reloads x->_outcnt.  If you delete, you must perform "--i" just
1075// before continuing the loop.  You must delete only the last-produced
1076// edge.  You must delete only a single copy of the last-produced edge,
1077// or else you must delete all copies at once (the first time the edge
1078// is produced by the iterator).
1079class DUIterator : public DUIterator_Common {
1080  friend class Node;
1081
1082  // This is the index which provides the product-mode behavior.
1083  // Whatever the product-mode version of the system does to the
1084  // DUI index is done to this index.  All other fields in
1085  // this class are used only for assertion checking.
1086  uint         _idx;
1087
1088  #ifdef ASSERT
1089  uint         _refresh_tick;    // Records the refresh activity.
1090
1091  void sample(const Node* node); // Initialize _refresh_tick etc.
1092  void verify(const Node* node, bool at_end_ok = false);
1093  void verify_increment();       // Verify an increment operation.
1094  void verify_resync();          // Verify that we can back up over a deletion.
1095  void verify_finish();          // Verify that the loop terminated properly.
1096  void refresh();                // Resample verification info.
1097  void reset(const DUIterator& that);  // Resample after assignment.
1098  #endif
1099
1100  DUIterator(const Node* node, int dummy_to_avoid_conversion)
1101    { _idx = 0;                         debug_only(sample(node)); }
1102
1103 public:
1104  // initialize to garbage; clear _vdui to disable asserts
1105  DUIterator()
1106    { /*initialize to garbage*/         debug_only(_vdui = false); }
1107
1108  void operator++(int dummy_to_specify_postfix_op)
1109    { _idx++;                           VDUI_ONLY(verify_increment()); }
1110
1111  void operator--()
1112    { VDUI_ONLY(verify_resync());       --_idx; }
1113
1114  ~DUIterator()
1115    { VDUI_ONLY(verify_finish()); }
1116
1117  void operator=(const DUIterator& that)
1118    { _idx = that._idx;                 debug_only(reset(that)); }
1119};
1120
1121DUIterator Node::outs() const
1122  { return DUIterator(this, 0); }
1123DUIterator& Node::refresh_out_pos(DUIterator& i) const
1124  { I_VDUI_ONLY(i, i.refresh());        return i; }
1125bool Node::has_out(DUIterator& i) const
1126  { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1127Node*    Node::out(DUIterator& i) const
1128  { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1129
1130
1131// Faster DU iterator.  Disallows insertions into the out array.
1132// Allows deletion from the out array only at the current point.
1133// Usage:
1134//  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1135//    Node* y = x->fast_out(i);
1136//    ...
1137//  }
1138// Compiles in product mode to raw Node** pointer arithmetic, with
1139// no reloading of pointers from the original node x.  If you delete,
1140// you must perform "--i; --imax" just before continuing the loop.
1141// If you delete multiple copies of the same edge, you must decrement
1142// imax, but not i, multiple times:  "--i, imax -= num_edges".
1143class DUIterator_Fast : public DUIterator_Common {
1144  friend class Node;
1145  friend class DUIterator_Last;
1146
1147  // This is the pointer which provides the product-mode behavior.
1148  // Whatever the product-mode version of the system does to the
1149  // DUI pointer is done to this pointer.  All other fields in
1150  // this class are used only for assertion checking.
1151  Node**       _outp;
1152
1153  #ifdef ASSERT
1154  void verify(const Node* node, bool at_end_ok = false);
1155  void verify_limit();
1156  void verify_resync();
1157  void verify_relimit(uint n);
1158  void reset(const DUIterator_Fast& that);
1159  #endif
1160
1161  // Note:  offset must be signed, since -1 is sometimes passed
1162  DUIterator_Fast(const Node* node, ptrdiff_t offset)
1163    { _outp = node->_out + offset;      debug_only(sample(node)); }
1164
1165 public:
1166  // initialize to garbage; clear _vdui to disable asserts
1167  DUIterator_Fast()
1168    { /*initialize to garbage*/         debug_only(_vdui = false); }
1169
1170  void operator++(int dummy_to_specify_postfix_op)
1171    { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1172
1173  void operator--()
1174    { VDUI_ONLY(verify_resync());       --_outp; }
1175
1176  void operator-=(uint n)   // applied to the limit only
1177    { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1178
1179  bool operator<(DUIterator_Fast& limit) {
1180    I_VDUI_ONLY(*this, this->verify(_node, true));
1181    I_VDUI_ONLY(limit, limit.verify_limit());
1182    return _outp < limit._outp;
1183  }
1184
1185  void operator=(const DUIterator_Fast& that)
1186    { _outp = that._outp;               debug_only(reset(that)); }
1187};
1188
1189DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1190  // Assign a limit pointer to the reference argument:
1191  imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1192  // Return the base pointer:
1193  return DUIterator_Fast(this, 0);
1194}
1195Node* Node::fast_out(DUIterator_Fast& i) const {
1196  I_VDUI_ONLY(i, i.verify(this));
1197  return debug_only(i._last=) *i._outp;
1198}
1199
1200
1201// Faster DU iterator.  Requires each successive edge to be removed.
1202// Does not allow insertion of any edges.
1203// Usage:
1204//  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1205//    Node* y = x->last_out(i);
1206//    ...
1207//  }
1208// Compiles in product mode to raw Node** pointer arithmetic, with
1209// no reloading of pointers from the original node x.
1210class DUIterator_Last : private DUIterator_Fast {
1211  friend class Node;
1212
1213  #ifdef ASSERT
1214  void verify(const Node* node, bool at_end_ok = false);
1215  void verify_limit();
1216  void verify_step(uint num_edges);
1217  #endif
1218
1219  // Note:  offset must be signed, since -1 is sometimes passed
1220  DUIterator_Last(const Node* node, ptrdiff_t offset)
1221    : DUIterator_Fast(node, offset) { }
1222
1223  void operator++(int dummy_to_specify_postfix_op) {} // do not use
1224  void operator<(int)                              {} // do not use
1225
1226 public:
1227  DUIterator_Last() { }
1228  // initialize to garbage
1229
1230  void operator--()
1231    { _outp--;              VDUI_ONLY(verify_step(1));  }
1232
1233  void operator-=(uint n)
1234    { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1235
1236  bool operator>=(DUIterator_Last& limit) {
1237    I_VDUI_ONLY(*this, this->verify(_node, true));
1238    I_VDUI_ONLY(limit, limit.verify_limit());
1239    return _outp >= limit._outp;
1240  }
1241
1242  void operator=(const DUIterator_Last& that)
1243    { DUIterator_Fast::operator=(that); }
1244};
1245
1246DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1247  // Assign a limit pointer to the reference argument:
1248  imin = DUIterator_Last(this, 0);
1249  // Return the initial pointer:
1250  return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1251}
1252Node* Node::last_out(DUIterator_Last& i) const {
1253  I_VDUI_ONLY(i, i.verify(this));
1254  return debug_only(i._last=) *i._outp;
1255}
1256
1257#endif //OPTO_DU_ITERATOR_ASSERT
1258
1259#undef I_VDUI_ONLY
1260#undef VDUI_ONLY
1261
1262// An Iterator that truly follows the iterator pattern.  Doesn't
1263// support deletion but could be made to.
1264//
1265//   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1266//     Node* m = i.get();
1267//
1268class SimpleDUIterator : public StackObj {
1269 private:
1270  Node* node;
1271  DUIterator_Fast i;
1272  DUIterator_Fast imax;
1273 public:
1274  SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1275  bool has_next() { return i < imax; }
1276  void next() { i++; }
1277  Node* get() { return node->fast_out(i); }
1278};
1279
1280
1281//-----------------------------------------------------------------------------
1282// Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1283// Abstractly provides an infinite array of Node*'s, initialized to NULL.
1284// Note that the constructor just zeros things, and since I use Arena
1285// allocation I do not need a destructor to reclaim storage.
1286class Node_Array : public ResourceObj {
1287protected:
1288  Arena *_a;                    // Arena to allocate in
1289  uint   _max;
1290  Node **_nodes;
1291  void   grow( uint i );        // Grow array node to fit
1292public:
1293  Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1294    _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1295    for( int i = 0; i < OptoNodeListSize; i++ ) {
1296      _nodes[i] = NULL;
1297    }
1298  }
1299
1300  Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1301  Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1302  { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1303  Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1304  Node **adr() { return _nodes; }
1305  // Extend the mapping: index i maps to Node *n.
1306  void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1307  void insert( uint i, Node *n );
1308  void remove( uint i );        // Remove, preserving order
1309  void sort( C_sort_func_t func);
1310  void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1311  void clear();                 // Set all entries to NULL, keep storage
1312  uint Size() const { return _max; }
1313  void dump() const;
1314};
1315
1316class Node_List : public Node_Array {
1317  uint _cnt;
1318public:
1319  Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1320  Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1321  bool contains(Node* n) {
1322    for (uint e = 0; e < size(); e++) {
1323      if (at(e) == n) return true;
1324    }
1325    return false;
1326  }
1327  void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1328  void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1329  void push( Node *b ) { map(_cnt++,b); }
1330  void yank( Node *n );         // Find and remove
1331  Node *pop() { return _nodes[--_cnt]; }
1332  Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1333  void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1334  uint size() const { return _cnt; }
1335  void dump() const;
1336};
1337
1338//------------------------------Unique_Node_List-------------------------------
1339class Unique_Node_List : public Node_List {
1340  VectorSet _in_worklist;
1341  uint _clock_index;            // Index in list where to pop from next
1342public:
1343  Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1344  Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1345
1346  void remove( Node *n );
1347  bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1348  VectorSet &member_set(){ return _in_worklist; }
1349
1350  void push( Node *b ) {
1351    if( !_in_worklist.test_set(b->_idx) )
1352      Node_List::push(b);
1353  }
1354  Node *pop() {
1355    if( _clock_index >= size() ) _clock_index = 0;
1356    Node *b = at(_clock_index);
1357    map( _clock_index, Node_List::pop());
1358    if (size() != 0) _clock_index++; // Always start from 0
1359    _in_worklist >>= b->_idx;
1360    return b;
1361  }
1362  Node *remove( uint i ) {
1363    Node *b = Node_List::at(i);
1364    _in_worklist >>= b->_idx;
1365    map(i,Node_List::pop());
1366    return b;
1367  }
1368  void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1369  void  clear() {
1370    _in_worklist.Clear();        // Discards storage but grows automatically
1371    Node_List::clear();
1372    _clock_index = 0;
1373  }
1374
1375  // Used after parsing to remove useless nodes before Iterative GVN
1376  void remove_useless_nodes(VectorSet &useful);
1377
1378#ifndef PRODUCT
1379  void print_set() const { _in_worklist.print(); }
1380#endif
1381};
1382
1383// Inline definition of Compile::record_for_igvn must be deferred to this point.
1384inline void Compile::record_for_igvn(Node* n) {
1385  _for_igvn->push(n);
1386}
1387
1388//------------------------------Node_Stack-------------------------------------
1389class Node_Stack {
1390protected:
1391  struct INode {
1392    Node *node; // Processed node
1393    uint  indx; // Index of next node's child
1394  };
1395  INode *_inode_top; // tos, stack grows up
1396  INode *_inode_max; // End of _inodes == _inodes + _max
1397  INode *_inodes;    // Array storage for the stack
1398  Arena *_a;         // Arena to allocate in
1399  void grow();
1400public:
1401  Node_Stack(int size) {
1402    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1403    _a = Thread::current()->resource_area();
1404    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1405    _inode_max = _inodes + max;
1406    _inode_top = _inodes - 1; // stack is empty
1407  }
1408
1409  Node_Stack(Arena *a, int size) : _a(a) {
1410    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1411    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1412    _inode_max = _inodes + max;
1413    _inode_top = _inodes - 1; // stack is empty
1414  }
1415
1416  void pop() {
1417    assert(_inode_top >= _inodes, "node stack underflow");
1418    --_inode_top;
1419  }
1420  void push(Node *n, uint i) {
1421    ++_inode_top;
1422    if (_inode_top >= _inode_max) grow();
1423    INode *top = _inode_top; // optimization
1424    top->node = n;
1425    top->indx = i;
1426  }
1427  Node *node() const {
1428    return _inode_top->node;
1429  }
1430  Node* node_at(uint i) const {
1431    assert(_inodes + i <= _inode_top, "in range");
1432    return _inodes[i].node;
1433  }
1434  uint index() const {
1435    return _inode_top->indx;
1436  }
1437  uint index_at(uint i) const {
1438    assert(_inodes + i <= _inode_top, "in range");
1439    return _inodes[i].indx;
1440  }
1441  void set_node(Node *n) {
1442    _inode_top->node = n;
1443  }
1444  void set_index(uint i) {
1445    _inode_top->indx = i;
1446  }
1447  uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1448  uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1449  bool is_nonempty() const { return (_inode_top >= _inodes); }
1450  bool is_empty() const { return (_inode_top < _inodes); }
1451  void clear() { _inode_top = _inodes - 1; } // retain storage
1452};
1453
1454
1455//-----------------------------Node_Notes--------------------------------------
1456// Debugging or profiling annotations loosely and sparsely associated
1457// with some nodes.  See Compile::node_notes_at for the accessor.
1458class Node_Notes VALUE_OBJ_CLASS_SPEC {
1459  JVMState* _jvms;
1460
1461public:
1462  Node_Notes(JVMState* jvms = NULL) {
1463    _jvms = jvms;
1464  }
1465
1466  JVMState* jvms()            { return _jvms; }
1467  void  set_jvms(JVMState* x) {        _jvms = x; }
1468
1469  // True if there is nothing here.
1470  bool is_clear() {
1471    return (_jvms == NULL);
1472  }
1473
1474  // Make there be nothing here.
1475  void clear() {
1476    _jvms = NULL;
1477  }
1478
1479  // Make a new, clean node notes.
1480  static Node_Notes* make(Compile* C) {
1481    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1482    nn->clear();
1483    return nn;
1484  }
1485
1486  Node_Notes* clone(Compile* C) {
1487    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1488    (*nn) = (*this);
1489    return nn;
1490  }
1491
1492  // Absorb any information from source.
1493  bool update_from(Node_Notes* source) {
1494    bool changed = false;
1495    if (source != NULL) {
1496      if (source->jvms() != NULL) {
1497        set_jvms(source->jvms());
1498        changed = true;
1499      }
1500    }
1501    return changed;
1502  }
1503};
1504
1505// Inlined accessors for Compile::node_nodes that require the preceding class:
1506inline Node_Notes*
1507Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1508                           int idx, bool can_grow) {
1509  assert(idx >= 0, "oob");
1510  int block_idx = (idx >> _log2_node_notes_block_size);
1511  int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1512  if (grow_by >= 0) {
1513    if (!can_grow)  return NULL;
1514    grow_node_notes(arr, grow_by + 1);
1515  }
1516  // (Every element of arr is a sub-array of length _node_notes_block_size.)
1517  return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1518}
1519
1520inline bool
1521Compile::set_node_notes_at(int idx, Node_Notes* value) {
1522  if (value == NULL || value->is_clear())
1523    return false;  // nothing to write => write nothing
1524  Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1525  assert(loc != NULL, "");
1526  return loc->update_from(value);
1527}
1528
1529
1530//------------------------------TypeNode---------------------------------------
1531// Node with a Type constant.
1532class TypeNode : public Node {
1533protected:
1534  virtual uint hash() const;    // Check the type
1535  virtual uint cmp( const Node &n ) const;
1536  virtual uint size_of() const; // Size is bigger
1537  const Type* const _type;
1538public:
1539  void set_type(const Type* t) {
1540    assert(t != NULL, "sanity");
1541    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1542    *(const Type**)&_type = t;   // cast away const-ness
1543    // If this node is in the hash table, make sure it doesn't need a rehash.
1544    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1545  }
1546  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1547  TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1548    init_class_id(Class_Type);
1549  }
1550  virtual const Type *Value( PhaseTransform *phase ) const;
1551  virtual const Type *bottom_type() const;
1552  virtual       uint  ideal_reg() const;
1553#ifndef PRODUCT
1554  virtual void dump_spec(outputStream *st) const;
1555#endif
1556};
1557