matcher.cpp revision 579:0fbdb4381b99
1/*
2 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_matcher.cpp.incl"
27
28OptoReg::Name OptoReg::c_frame_pointer;
29
30
31
32const int Matcher::base2reg[Type::lastype] = {
33  Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
34  Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
35  Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
36  0, 0/*abio*/,
37  Op_RegP /* Return address */, 0, /* the memories */
38  Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
39  0  /*bottom*/
40};
41
42const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
43RegMask Matcher::mreg2regmask[_last_Mach_Reg];
44RegMask Matcher::STACK_ONLY_mask;
45RegMask Matcher::c_frame_ptr_mask;
46const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
47const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
48
49//---------------------------Matcher-------------------------------------------
50Matcher::Matcher( Node_List &proj_list ) :
51  PhaseTransform( Phase::Ins_Select ),
52#ifdef ASSERT
53  _old2new_map(C->comp_arena()),
54  _new2old_map(C->comp_arena()),
55#endif
56  _shared_nodes(C->comp_arena()),
57  _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
58  _swallowed(swallowed),
59  _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
60  _end_inst_chain_rule(_END_INST_CHAIN_RULE),
61  _must_clone(must_clone), _proj_list(proj_list),
62  _register_save_policy(register_save_policy),
63  _c_reg_save_policy(c_reg_save_policy),
64  _register_save_type(register_save_type),
65  _ruleName(ruleName),
66  _allocation_started(false),
67  _states_arena(Chunk::medium_size),
68  _visited(&_states_arena),
69  _shared(&_states_arena),
70  _dontcare(&_states_arena) {
71  C->set_matcher(this);
72
73  idealreg2spillmask[Op_RegI] = NULL;
74  idealreg2spillmask[Op_RegN] = NULL;
75  idealreg2spillmask[Op_RegL] = NULL;
76  idealreg2spillmask[Op_RegF] = NULL;
77  idealreg2spillmask[Op_RegD] = NULL;
78  idealreg2spillmask[Op_RegP] = NULL;
79
80  idealreg2debugmask[Op_RegI] = NULL;
81  idealreg2debugmask[Op_RegN] = NULL;
82  idealreg2debugmask[Op_RegL] = NULL;
83  idealreg2debugmask[Op_RegF] = NULL;
84  idealreg2debugmask[Op_RegD] = NULL;
85  idealreg2debugmask[Op_RegP] = NULL;
86  debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
87}
88
89//------------------------------warp_incoming_stk_arg------------------------
90// This warps a VMReg into an OptoReg::Name
91OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
92  OptoReg::Name warped;
93  if( reg->is_stack() ) {  // Stack slot argument?
94    warped = OptoReg::add(_old_SP, reg->reg2stack() );
95    warped = OptoReg::add(warped, C->out_preserve_stack_slots());
96    if( warped >= _in_arg_limit )
97      _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
98    if (!RegMask::can_represent(warped)) {
99      // the compiler cannot represent this method's calling sequence
100      C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
101      return OptoReg::Bad;
102    }
103    return warped;
104  }
105  return OptoReg::as_OptoReg(reg);
106}
107
108//---------------------------compute_old_SP------------------------------------
109OptoReg::Name Compile::compute_old_SP() {
110  int fixed    = fixed_slots();
111  int preserve = in_preserve_stack_slots();
112  return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
113}
114
115
116
117#ifdef ASSERT
118void Matcher::verify_new_nodes_only(Node* xroot) {
119  // Make sure that the new graph only references new nodes
120  ResourceMark rm;
121  Unique_Node_List worklist;
122  VectorSet visited(Thread::current()->resource_area());
123  worklist.push(xroot);
124  while (worklist.size() > 0) {
125    Node* n = worklist.pop();
126    visited <<= n->_idx;
127    assert(C->node_arena()->contains(n), "dead node");
128    for (uint j = 0; j < n->req(); j++) {
129      Node* in = n->in(j);
130      if (in != NULL) {
131        assert(C->node_arena()->contains(in), "dead node");
132        if (!visited.test(in->_idx)) {
133          worklist.push(in);
134        }
135      }
136    }
137  }
138}
139#endif
140
141
142//---------------------------match---------------------------------------------
143void Matcher::match( ) {
144  // One-time initialization of some register masks.
145  init_spill_mask( C->root()->in(1) );
146  _return_addr_mask = return_addr();
147#ifdef _LP64
148  // Pointers take 2 slots in 64-bit land
149  _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
150#endif
151
152  // Map a Java-signature return type into return register-value
153  // machine registers for 0, 1 and 2 returned values.
154  const TypeTuple *range = C->tf()->range();
155  if( range->cnt() > TypeFunc::Parms ) { // If not a void function
156    // Get ideal-register return type
157    int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
158    // Get machine return register
159    uint sop = C->start()->Opcode();
160    OptoRegPair regs = return_value(ireg, false);
161
162    // And mask for same
163    _return_value_mask = RegMask(regs.first());
164    if( OptoReg::is_valid(regs.second()) )
165      _return_value_mask.Insert(regs.second());
166  }
167
168  // ---------------
169  // Frame Layout
170
171  // Need the method signature to determine the incoming argument types,
172  // because the types determine which registers the incoming arguments are
173  // in, and this affects the matched code.
174  const TypeTuple *domain = C->tf()->domain();
175  uint             argcnt = domain->cnt() - TypeFunc::Parms;
176  BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
177  VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
178  _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
179  _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
180  uint i;
181  for( i = 0; i<argcnt; i++ ) {
182    sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
183  }
184
185  // Pass array of ideal registers and length to USER code (from the AD file)
186  // that will convert this to an array of register numbers.
187  const StartNode *start = C->start();
188  start->calling_convention( sig_bt, vm_parm_regs, argcnt );
189#ifdef ASSERT
190  // Sanity check users' calling convention.  Real handy while trying to
191  // get the initial port correct.
192  { for (uint i = 0; i<argcnt; i++) {
193      if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
194        assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
195        _parm_regs[i].set_bad();
196        continue;
197      }
198      VMReg parm_reg = vm_parm_regs[i].first();
199      assert(parm_reg->is_valid(), "invalid arg?");
200      if (parm_reg->is_reg()) {
201        OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
202        assert(can_be_java_arg(opto_parm_reg) ||
203               C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
204               opto_parm_reg == inline_cache_reg(),
205               "parameters in register must be preserved by runtime stubs");
206      }
207      for (uint j = 0; j < i; j++) {
208        assert(parm_reg != vm_parm_regs[j].first(),
209               "calling conv. must produce distinct regs");
210      }
211    }
212  }
213#endif
214
215  // Do some initial frame layout.
216
217  // Compute the old incoming SP (may be called FP) as
218  //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
219  _old_SP = C->compute_old_SP();
220  assert( is_even(_old_SP), "must be even" );
221
222  // Compute highest incoming stack argument as
223  //   _old_SP + out_preserve_stack_slots + incoming argument size.
224  _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
225  assert( is_even(_in_arg_limit), "out_preserve must be even" );
226  for( i = 0; i < argcnt; i++ ) {
227    // Permit args to have no register
228    _calling_convention_mask[i].Clear();
229    if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
230      continue;
231    }
232    // calling_convention returns stack arguments as a count of
233    // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
234    // the allocators point of view, taking into account all the
235    // preserve area, locks & pad2.
236
237    OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
238    if( OptoReg::is_valid(reg1))
239      _calling_convention_mask[i].Insert(reg1);
240
241    OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
242    if( OptoReg::is_valid(reg2))
243      _calling_convention_mask[i].Insert(reg2);
244
245    // Saved biased stack-slot register number
246    _parm_regs[i].set_pair(reg2, reg1);
247  }
248
249  // Finally, make sure the incoming arguments take up an even number of
250  // words, in case the arguments or locals need to contain doubleword stack
251  // slots.  The rest of the system assumes that stack slot pairs (in
252  // particular, in the spill area) which look aligned will in fact be
253  // aligned relative to the stack pointer in the target machine.  Double
254  // stack slots will always be allocated aligned.
255  _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
256
257  // Compute highest outgoing stack argument as
258  //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
259  _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
260  assert( is_even(_out_arg_limit), "out_preserve must be even" );
261
262  if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
263    // the compiler cannot represent this method's calling sequence
264    C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
265  }
266
267  if (C->failing())  return;  // bailed out on incoming arg failure
268
269  // ---------------
270  // Collect roots of matcher trees.  Every node for which
271  // _shared[_idx] is cleared is guaranteed to not be shared, and thus
272  // can be a valid interior of some tree.
273  find_shared( C->root() );
274  find_shared( C->top() );
275
276  C->print_method("Before Matching");
277
278  // Swap out to old-space; emptying new-space
279  Arena *old = C->node_arena()->move_contents(C->old_arena());
280
281  // Save debug and profile information for nodes in old space:
282  _old_node_note_array = C->node_note_array();
283  if (_old_node_note_array != NULL) {
284    C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
285                           (C->comp_arena(), _old_node_note_array->length(),
286                            0, NULL));
287  }
288
289  // Pre-size the new_node table to avoid the need for range checks.
290  grow_new_node_array(C->unique());
291
292  // Reset node counter so MachNodes start with _idx at 0
293  int nodes = C->unique(); // save value
294  C->set_unique(0);
295
296  // Recursively match trees from old space into new space.
297  // Correct leaves of new-space Nodes; they point to old-space.
298  _visited.Clear();             // Clear visit bits for xform call
299  C->set_cached_top_node(xform( C->top(), nodes ));
300  if (!C->failing()) {
301    Node* xroot =        xform( C->root(), 1 );
302    if (xroot == NULL) {
303      Matcher::soft_match_failure();  // recursive matching process failed
304      C->record_method_not_compilable("instruction match failed");
305    } else {
306      // During matching shared constants were attached to C->root()
307      // because xroot wasn't available yet, so transfer the uses to
308      // the xroot.
309      for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
310        Node* n = C->root()->fast_out(j);
311        if (C->node_arena()->contains(n)) {
312          assert(n->in(0) == C->root(), "should be control user");
313          n->set_req(0, xroot);
314          --j;
315          --jmax;
316        }
317      }
318
319      C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
320#ifdef ASSERT
321      verify_new_nodes_only(xroot);
322#endif
323    }
324  }
325  if (C->top() == NULL || C->root() == NULL) {
326    C->record_method_not_compilable("graph lost"); // %%% cannot happen?
327  }
328  if (C->failing()) {
329    // delete old;
330    old->destruct_contents();
331    return;
332  }
333  assert( C->top(), "" );
334  assert( C->root(), "" );
335  validate_null_checks();
336
337  // Now smoke old-space
338  NOT_DEBUG( old->destruct_contents() );
339
340  // ------------------------
341  // Set up save-on-entry registers
342  Fixup_Save_On_Entry( );
343}
344
345
346//------------------------------Fixup_Save_On_Entry----------------------------
347// The stated purpose of this routine is to take care of save-on-entry
348// registers.  However, the overall goal of the Match phase is to convert into
349// machine-specific instructions which have RegMasks to guide allocation.
350// So what this procedure really does is put a valid RegMask on each input
351// to the machine-specific variations of all Return, TailCall and Halt
352// instructions.  It also adds edgs to define the save-on-entry values (and of
353// course gives them a mask).
354
355static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
356  RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
357  // Do all the pre-defined register masks
358  rms[TypeFunc::Control  ] = RegMask::Empty;
359  rms[TypeFunc::I_O      ] = RegMask::Empty;
360  rms[TypeFunc::Memory   ] = RegMask::Empty;
361  rms[TypeFunc::ReturnAdr] = ret_adr;
362  rms[TypeFunc::FramePtr ] = fp;
363  return rms;
364}
365
366//---------------------------init_first_stack_mask-----------------------------
367// Create the initial stack mask used by values spilling to the stack.
368// Disallow any debug info in outgoing argument areas by setting the
369// initial mask accordingly.
370void Matcher::init_first_stack_mask() {
371
372  // Allocate storage for spill masks as masks for the appropriate load type.
373  RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*12);
374  idealreg2spillmask[Op_RegN] = &rms[0];
375  idealreg2spillmask[Op_RegI] = &rms[1];
376  idealreg2spillmask[Op_RegL] = &rms[2];
377  idealreg2spillmask[Op_RegF] = &rms[3];
378  idealreg2spillmask[Op_RegD] = &rms[4];
379  idealreg2spillmask[Op_RegP] = &rms[5];
380  idealreg2debugmask[Op_RegN] = &rms[6];
381  idealreg2debugmask[Op_RegI] = &rms[7];
382  idealreg2debugmask[Op_RegL] = &rms[8];
383  idealreg2debugmask[Op_RegF] = &rms[9];
384  idealreg2debugmask[Op_RegD] = &rms[10];
385  idealreg2debugmask[Op_RegP] = &rms[11];
386
387  OptoReg::Name i;
388
389  // At first, start with the empty mask
390  C->FIRST_STACK_mask().Clear();
391
392  // Add in the incoming argument area
393  OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
394  for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
395    C->FIRST_STACK_mask().Insert(i);
396
397  // Add in all bits past the outgoing argument area
398  guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
399            "must be able to represent all call arguments in reg mask");
400  init = _out_arg_limit;
401  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
402    C->FIRST_STACK_mask().Insert(i);
403
404  // Finally, set the "infinite stack" bit.
405  C->FIRST_STACK_mask().set_AllStack();
406
407  // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
408#ifdef _LP64
409  *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
410   idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
411#endif
412  *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
413   idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
414  *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
415   idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
416  *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
417   idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
418  *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
419   idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
420  *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
421   idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
422
423  // Make up debug masks.  Any spill slot plus callee-save registers.
424  // Caller-save registers are assumed to be trashable by the various
425  // inline-cache fixup routines.
426  *idealreg2debugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
427  *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
428  *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
429  *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
430  *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
431  *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
432
433  // Prevent stub compilations from attempting to reference
434  // callee-saved registers from debug info
435  bool exclude_soe = !Compile::current()->is_method_compilation();
436
437  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
438    // registers the caller has to save do not work
439    if( _register_save_policy[i] == 'C' ||
440        _register_save_policy[i] == 'A' ||
441        (_register_save_policy[i] == 'E' && exclude_soe) ) {
442      idealreg2debugmask[Op_RegN]->Remove(i);
443      idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
444      idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
445      idealreg2debugmask[Op_RegF]->Remove(i); // masks
446      idealreg2debugmask[Op_RegD]->Remove(i);
447      idealreg2debugmask[Op_RegP]->Remove(i);
448    }
449  }
450}
451
452//---------------------------is_save_on_entry----------------------------------
453bool Matcher::is_save_on_entry( int reg ) {
454  return
455    _register_save_policy[reg] == 'E' ||
456    _register_save_policy[reg] == 'A' || // Save-on-entry register?
457    // Also save argument registers in the trampolining stubs
458    (C->save_argument_registers() && is_spillable_arg(reg));
459}
460
461//---------------------------Fixup_Save_On_Entry-------------------------------
462void Matcher::Fixup_Save_On_Entry( ) {
463  init_first_stack_mask();
464
465  Node *root = C->root();       // Short name for root
466  // Count number of save-on-entry registers.
467  uint soe_cnt = number_of_saved_registers();
468  uint i;
469
470  // Find the procedure Start Node
471  StartNode *start = C->start();
472  assert( start, "Expect a start node" );
473
474  // Save argument registers in the trampolining stubs
475  if( C->save_argument_registers() )
476    for( i = 0; i < _last_Mach_Reg; i++ )
477      if( is_spillable_arg(i) )
478        soe_cnt++;
479
480  // Input RegMask array shared by all Returns.
481  // The type for doubles and longs has a count of 2, but
482  // there is only 1 returned value
483  uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
484  RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
485  // Returns have 0 or 1 returned values depending on call signature.
486  // Return register is specified by return_value in the AD file.
487  if (ret_edge_cnt > TypeFunc::Parms)
488    ret_rms[TypeFunc::Parms+0] = _return_value_mask;
489
490  // Input RegMask array shared by all Rethrows.
491  uint reth_edge_cnt = TypeFunc::Parms+1;
492  RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
493  // Rethrow takes exception oop only, but in the argument 0 slot.
494  reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
495#ifdef _LP64
496  // Need two slots for ptrs in 64-bit land
497  reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
498#endif
499
500  // Input RegMask array shared by all TailCalls
501  uint tail_call_edge_cnt = TypeFunc::Parms+2;
502  RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
503
504  // Input RegMask array shared by all TailJumps
505  uint tail_jump_edge_cnt = TypeFunc::Parms+2;
506  RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
507
508  // TailCalls have 2 returned values (target & moop), whose masks come
509  // from the usual MachNode/MachOper mechanism.  Find a sample
510  // TailCall to extract these masks and put the correct masks into
511  // the tail_call_rms array.
512  for( i=1; i < root->req(); i++ ) {
513    MachReturnNode *m = root->in(i)->as_MachReturn();
514    if( m->ideal_Opcode() == Op_TailCall ) {
515      tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
516      tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
517      break;
518    }
519  }
520
521  // TailJumps have 2 returned values (target & ex_oop), whose masks come
522  // from the usual MachNode/MachOper mechanism.  Find a sample
523  // TailJump to extract these masks and put the correct masks into
524  // the tail_jump_rms array.
525  for( i=1; i < root->req(); i++ ) {
526    MachReturnNode *m = root->in(i)->as_MachReturn();
527    if( m->ideal_Opcode() == Op_TailJump ) {
528      tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
529      tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
530      break;
531    }
532  }
533
534  // Input RegMask array shared by all Halts
535  uint halt_edge_cnt = TypeFunc::Parms;
536  RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
537
538  // Capture the return input masks into each exit flavor
539  for( i=1; i < root->req(); i++ ) {
540    MachReturnNode *exit = root->in(i)->as_MachReturn();
541    switch( exit->ideal_Opcode() ) {
542      case Op_Return   : exit->_in_rms = ret_rms;  break;
543      case Op_Rethrow  : exit->_in_rms = reth_rms; break;
544      case Op_TailCall : exit->_in_rms = tail_call_rms; break;
545      case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
546      case Op_Halt     : exit->_in_rms = halt_rms; break;
547      default          : ShouldNotReachHere();
548    }
549  }
550
551  // Next unused projection number from Start.
552  int proj_cnt = C->tf()->domain()->cnt();
553
554  // Do all the save-on-entry registers.  Make projections from Start for
555  // them, and give them a use at the exit points.  To the allocator, they
556  // look like incoming register arguments.
557  for( i = 0; i < _last_Mach_Reg; i++ ) {
558    if( is_save_on_entry(i) ) {
559
560      // Add the save-on-entry to the mask array
561      ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
562      reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
563      tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
564      tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
565      // Halts need the SOE registers, but only in the stack as debug info.
566      // A just-prior uncommon-trap or deoptimization will use the SOE regs.
567      halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
568
569      Node *mproj;
570
571      // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
572      // into a single RegD.
573      if( (i&1) == 0 &&
574          _register_save_type[i  ] == Op_RegF &&
575          _register_save_type[i+1] == Op_RegF &&
576          is_save_on_entry(i+1) ) {
577        // Add other bit for double
578        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
579        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
580        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
581        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
582        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
583        mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
584        proj_cnt += 2;          // Skip 2 for doubles
585      }
586      else if( (i&1) == 1 &&    // Else check for high half of double
587               _register_save_type[i-1] == Op_RegF &&
588               _register_save_type[i  ] == Op_RegF &&
589               is_save_on_entry(i-1) ) {
590        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
591        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
592        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
593        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
594        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
595        mproj = C->top();
596      }
597      // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
598      // into a single RegL.
599      else if( (i&1) == 0 &&
600          _register_save_type[i  ] == Op_RegI &&
601          _register_save_type[i+1] == Op_RegI &&
602        is_save_on_entry(i+1) ) {
603        // Add other bit for long
604        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
605        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
606        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
607        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
608        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
609        mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
610        proj_cnt += 2;          // Skip 2 for longs
611      }
612      else if( (i&1) == 1 &&    // Else check for high half of long
613               _register_save_type[i-1] == Op_RegI &&
614               _register_save_type[i  ] == Op_RegI &&
615               is_save_on_entry(i-1) ) {
616        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
617        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
618        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
619        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
620        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
621        mproj = C->top();
622      } else {
623        // Make a projection for it off the Start
624        mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
625      }
626
627      ret_edge_cnt ++;
628      reth_edge_cnt ++;
629      tail_call_edge_cnt ++;
630      tail_jump_edge_cnt ++;
631      halt_edge_cnt ++;
632
633      // Add a use of the SOE register to all exit paths
634      for( uint j=1; j < root->req(); j++ )
635        root->in(j)->add_req(mproj);
636    } // End of if a save-on-entry register
637  } // End of for all machine registers
638}
639
640//------------------------------init_spill_mask--------------------------------
641void Matcher::init_spill_mask( Node *ret ) {
642  if( idealreg2regmask[Op_RegI] ) return; // One time only init
643
644  OptoReg::c_frame_pointer = c_frame_pointer();
645  c_frame_ptr_mask = c_frame_pointer();
646#ifdef _LP64
647  // pointers are twice as big
648  c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
649#endif
650
651  // Start at OptoReg::stack0()
652  STACK_ONLY_mask.Clear();
653  OptoReg::Name init = OptoReg::stack2reg(0);
654  // STACK_ONLY_mask is all stack bits
655  OptoReg::Name i;
656  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
657    STACK_ONLY_mask.Insert(i);
658  // Also set the "infinite stack" bit.
659  STACK_ONLY_mask.set_AllStack();
660
661  // Copy the register names over into the shared world
662  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
663    // SharedInfo::regName[i] = regName[i];
664    // Handy RegMasks per machine register
665    mreg2regmask[i].Insert(i);
666  }
667
668  // Grab the Frame Pointer
669  Node *fp  = ret->in(TypeFunc::FramePtr);
670  Node *mem = ret->in(TypeFunc::Memory);
671  const TypePtr* atp = TypePtr::BOTTOM;
672  // Share frame pointer while making spill ops
673  set_shared(fp);
674
675  // Compute generic short-offset Loads
676#ifdef _LP64
677  MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
678#endif
679  MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
680  MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
681  MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
682  MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
683  MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
684  assert(spillI != NULL && spillL != NULL && spillF != NULL &&
685         spillD != NULL && spillP != NULL, "");
686
687  // Get the ADLC notion of the right regmask, for each basic type.
688#ifdef _LP64
689  idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
690#endif
691  idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
692  idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
693  idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
694  idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
695  idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
696}
697
698#ifdef ASSERT
699static void match_alias_type(Compile* C, Node* n, Node* m) {
700  if (!VerifyAliases)  return;  // do not go looking for trouble by default
701  const TypePtr* nat = n->adr_type();
702  const TypePtr* mat = m->adr_type();
703  int nidx = C->get_alias_index(nat);
704  int midx = C->get_alias_index(mat);
705  // Detune the assert for cases like (AndI 0xFF (LoadB p)).
706  if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
707    for (uint i = 1; i < n->req(); i++) {
708      Node* n1 = n->in(i);
709      const TypePtr* n1at = n1->adr_type();
710      if (n1at != NULL) {
711        nat = n1at;
712        nidx = C->get_alias_index(n1at);
713      }
714    }
715  }
716  // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
717  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
718    switch (n->Opcode()) {
719    case Op_PrefetchRead:
720    case Op_PrefetchWrite:
721      nidx = Compile::AliasIdxRaw;
722      nat = TypeRawPtr::BOTTOM;
723      break;
724    }
725  }
726  if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
727    switch (n->Opcode()) {
728    case Op_ClearArray:
729      midx = Compile::AliasIdxRaw;
730      mat = TypeRawPtr::BOTTOM;
731      break;
732    }
733  }
734  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
735    switch (n->Opcode()) {
736    case Op_Return:
737    case Op_Rethrow:
738    case Op_Halt:
739    case Op_TailCall:
740    case Op_TailJump:
741      nidx = Compile::AliasIdxBot;
742      nat = TypePtr::BOTTOM;
743      break;
744    }
745  }
746  if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
747    switch (n->Opcode()) {
748    case Op_StrComp:
749    case Op_AryEq:
750    case Op_MemBarVolatile:
751    case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
752      nidx = Compile::AliasIdxTop;
753      nat = NULL;
754      break;
755    }
756  }
757  if (nidx != midx) {
758    if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
759      tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
760      n->dump();
761      m->dump();
762    }
763    assert(C->subsume_loads() && C->must_alias(nat, midx),
764           "must not lose alias info when matching");
765  }
766}
767#endif
768
769
770//------------------------------MStack-----------------------------------------
771// State and MStack class used in xform() and find_shared() iterative methods.
772enum Node_State { Pre_Visit,  // node has to be pre-visited
773                      Visit,  // visit node
774                 Post_Visit,  // post-visit node
775             Alt_Post_Visit   // alternative post-visit path
776                };
777
778class MStack: public Node_Stack {
779  public:
780    MStack(int size) : Node_Stack(size) { }
781
782    void push(Node *n, Node_State ns) {
783      Node_Stack::push(n, (uint)ns);
784    }
785    void push(Node *n, Node_State ns, Node *parent, int indx) {
786      ++_inode_top;
787      if ((_inode_top + 1) >= _inode_max) grow();
788      _inode_top->node = parent;
789      _inode_top->indx = (uint)indx;
790      ++_inode_top;
791      _inode_top->node = n;
792      _inode_top->indx = (uint)ns;
793    }
794    Node *parent() {
795      pop();
796      return node();
797    }
798    Node_State state() const {
799      return (Node_State)index();
800    }
801    void set_state(Node_State ns) {
802      set_index((uint)ns);
803    }
804};
805
806
807//------------------------------xform------------------------------------------
808// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
809// Node in new-space.  Given a new-space Node, recursively walk his children.
810Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
811Node *Matcher::xform( Node *n, int max_stack ) {
812  // Use one stack to keep both: child's node/state and parent's node/index
813  MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
814  mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
815
816  while (mstack.is_nonempty()) {
817    n = mstack.node();          // Leave node on stack
818    Node_State nstate = mstack.state();
819    if (nstate == Visit) {
820      mstack.set_state(Post_Visit);
821      Node *oldn = n;
822      // Old-space or new-space check
823      if (!C->node_arena()->contains(n)) {
824        // Old space!
825        Node* m;
826        if (has_new_node(n)) {  // Not yet Label/Reduced
827          m = new_node(n);
828        } else {
829          if (!is_dontcare(n)) { // Matcher can match this guy
830            // Calls match special.  They match alone with no children.
831            // Their children, the incoming arguments, match normally.
832            m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
833            if (C->failing())  return NULL;
834            if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
835          } else {                  // Nothing the matcher cares about
836            if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
837              // Convert to machine-dependent projection
838              m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
839#ifdef ASSERT
840              _new2old_map.map(m->_idx, n);
841#endif
842              if (m->in(0) != NULL) // m might be top
843                collect_null_checks(m, n);
844            } else {                // Else just a regular 'ol guy
845              m = n->clone();       // So just clone into new-space
846#ifdef ASSERT
847              _new2old_map.map(m->_idx, n);
848#endif
849              // Def-Use edges will be added incrementally as Uses
850              // of this node are matched.
851              assert(m->outcnt() == 0, "no Uses of this clone yet");
852            }
853          }
854
855          set_new_node(n, m);       // Map old to new
856          if (_old_node_note_array != NULL) {
857            Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
858                                                  n->_idx);
859            C->set_node_notes_at(m->_idx, nn);
860          }
861          debug_only(match_alias_type(C, n, m));
862        }
863        n = m;    // n is now a new-space node
864        mstack.set_node(n);
865      }
866
867      // New space!
868      if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
869
870      int i;
871      // Put precedence edges on stack first (match them last).
872      for (i = oldn->req(); (uint)i < oldn->len(); i++) {
873        Node *m = oldn->in(i);
874        if (m == NULL) break;
875        // set -1 to call add_prec() instead of set_req() during Step1
876        mstack.push(m, Visit, n, -1);
877      }
878
879      // For constant debug info, I'd rather have unmatched constants.
880      int cnt = n->req();
881      JVMState* jvms = n->jvms();
882      int debug_cnt = jvms ? jvms->debug_start() : cnt;
883
884      // Now do only debug info.  Clone constants rather than matching.
885      // Constants are represented directly in the debug info without
886      // the need for executable machine instructions.
887      // Monitor boxes are also represented directly.
888      for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
889        Node *m = n->in(i);          // Get input
890        int op = m->Opcode();
891        assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
892        if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
893            op == Op_ConF || op == Op_ConD || op == Op_ConL
894            // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
895            ) {
896          m = m->clone();
897#ifdef ASSERT
898          _new2old_map.map(m->_idx, n);
899#endif
900          mstack.push(m, Post_Visit, n, i); // Don't neet to visit
901          mstack.push(m->in(0), Visit, m, 0);
902        } else {
903          mstack.push(m, Visit, n, i);
904        }
905      }
906
907      // And now walk his children, and convert his inputs to new-space.
908      for( ; i >= 0; --i ) { // For all normal inputs do
909        Node *m = n->in(i);  // Get input
910        if(m != NULL)
911          mstack.push(m, Visit, n, i);
912      }
913
914    }
915    else if (nstate == Post_Visit) {
916      // Set xformed input
917      Node *p = mstack.parent();
918      if (p != NULL) { // root doesn't have parent
919        int i = (int)mstack.index();
920        if (i >= 0)
921          p->set_req(i, n); // required input
922        else if (i == -1)
923          p->add_prec(n);   // precedence input
924        else
925          ShouldNotReachHere();
926      }
927      mstack.pop(); // remove processed node from stack
928    }
929    else {
930      ShouldNotReachHere();
931    }
932  } // while (mstack.is_nonempty())
933  return n; // Return new-space Node
934}
935
936//------------------------------warp_outgoing_stk_arg------------------------
937OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
938  // Convert outgoing argument location to a pre-biased stack offset
939  if (reg->is_stack()) {
940    OptoReg::Name warped = reg->reg2stack();
941    // Adjust the stack slot offset to be the register number used
942    // by the allocator.
943    warped = OptoReg::add(begin_out_arg_area, warped);
944    // Keep track of the largest numbered stack slot used for an arg.
945    // Largest used slot per call-site indicates the amount of stack
946    // that is killed by the call.
947    if( warped >= out_arg_limit_per_call )
948      out_arg_limit_per_call = OptoReg::add(warped,1);
949    if (!RegMask::can_represent(warped)) {
950      C->record_method_not_compilable_all_tiers("unsupported calling sequence");
951      return OptoReg::Bad;
952    }
953    return warped;
954  }
955  return OptoReg::as_OptoReg(reg);
956}
957
958
959//------------------------------match_sfpt-------------------------------------
960// Helper function to match call instructions.  Calls match special.
961// They match alone with no children.  Their children, the incoming
962// arguments, match normally.
963MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
964  MachSafePointNode *msfpt = NULL;
965  MachCallNode      *mcall = NULL;
966  uint               cnt;
967  // Split out case for SafePoint vs Call
968  CallNode *call;
969  const TypeTuple *domain;
970  ciMethod*        method = NULL;
971  if( sfpt->is_Call() ) {
972    call = sfpt->as_Call();
973    domain = call->tf()->domain();
974    cnt = domain->cnt();
975
976    // Match just the call, nothing else
977    MachNode *m = match_tree(call);
978    if (C->failing())  return NULL;
979    if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
980
981    // Copy data from the Ideal SafePoint to the machine version
982    mcall = m->as_MachCall();
983
984    mcall->set_tf(         call->tf());
985    mcall->set_entry_point(call->entry_point());
986    mcall->set_cnt(        call->cnt());
987
988    if( mcall->is_MachCallJava() ) {
989      MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
990      const CallJavaNode *call_java =  call->as_CallJava();
991      method = call_java->method();
992      mcall_java->_method = method;
993      mcall_java->_bci = call_java->_bci;
994      mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
995      if( mcall_java->is_MachCallStaticJava() )
996        mcall_java->as_MachCallStaticJava()->_name =
997         call_java->as_CallStaticJava()->_name;
998      if( mcall_java->is_MachCallDynamicJava() )
999        mcall_java->as_MachCallDynamicJava()->_vtable_index =
1000         call_java->as_CallDynamicJava()->_vtable_index;
1001    }
1002    else if( mcall->is_MachCallRuntime() ) {
1003      mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1004    }
1005    msfpt = mcall;
1006  }
1007  // This is a non-call safepoint
1008  else {
1009    call = NULL;
1010    domain = NULL;
1011    MachNode *mn = match_tree(sfpt);
1012    if (C->failing())  return NULL;
1013    msfpt = mn->as_MachSafePoint();
1014    cnt = TypeFunc::Parms;
1015  }
1016
1017  // Advertise the correct memory effects (for anti-dependence computation).
1018  msfpt->set_adr_type(sfpt->adr_type());
1019
1020  // Allocate a private array of RegMasks.  These RegMasks are not shared.
1021  msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1022  // Empty them all.
1023  memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1024
1025  // Do all the pre-defined non-Empty register masks
1026  msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1027  msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1028
1029  // Place first outgoing argument can possibly be put.
1030  OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1031  assert( is_even(begin_out_arg_area), "" );
1032  // Compute max outgoing register number per call site.
1033  OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1034  // Calls to C may hammer extra stack slots above and beyond any arguments.
1035  // These are usually backing store for register arguments for varargs.
1036  if( call != NULL && call->is_CallRuntime() )
1037    out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1038
1039
1040  // Do the normal argument list (parameters) register masks
1041  int argcnt = cnt - TypeFunc::Parms;
1042  if( argcnt > 0 ) {          // Skip it all if we have no args
1043    BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1044    VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1045    int i;
1046    for( i = 0; i < argcnt; i++ ) {
1047      sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1048    }
1049    // V-call to pick proper calling convention
1050    call->calling_convention( sig_bt, parm_regs, argcnt );
1051
1052#ifdef ASSERT
1053    // Sanity check users' calling convention.  Really handy during
1054    // the initial porting effort.  Fairly expensive otherwise.
1055    { for (int i = 0; i<argcnt; i++) {
1056      if( !parm_regs[i].first()->is_valid() &&
1057          !parm_regs[i].second()->is_valid() ) continue;
1058      VMReg reg1 = parm_regs[i].first();
1059      VMReg reg2 = parm_regs[i].second();
1060      for (int j = 0; j < i; j++) {
1061        if( !parm_regs[j].first()->is_valid() &&
1062            !parm_regs[j].second()->is_valid() ) continue;
1063        VMReg reg3 = parm_regs[j].first();
1064        VMReg reg4 = parm_regs[j].second();
1065        if( !reg1->is_valid() ) {
1066          assert( !reg2->is_valid(), "valid halvsies" );
1067        } else if( !reg3->is_valid() ) {
1068          assert( !reg4->is_valid(), "valid halvsies" );
1069        } else {
1070          assert( reg1 != reg2, "calling conv. must produce distinct regs");
1071          assert( reg1 != reg3, "calling conv. must produce distinct regs");
1072          assert( reg1 != reg4, "calling conv. must produce distinct regs");
1073          assert( reg2 != reg3, "calling conv. must produce distinct regs");
1074          assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1075          assert( reg3 != reg4, "calling conv. must produce distinct regs");
1076        }
1077      }
1078    }
1079    }
1080#endif
1081
1082    // Visit each argument.  Compute its outgoing register mask.
1083    // Return results now can have 2 bits returned.
1084    // Compute max over all outgoing arguments both per call-site
1085    // and over the entire method.
1086    for( i = 0; i < argcnt; i++ ) {
1087      // Address of incoming argument mask to fill in
1088      RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1089      if( !parm_regs[i].first()->is_valid() &&
1090          !parm_regs[i].second()->is_valid() ) {
1091        continue;               // Avoid Halves
1092      }
1093      // Grab first register, adjust stack slots and insert in mask.
1094      OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1095      if (OptoReg::is_valid(reg1))
1096        rm->Insert( reg1 );
1097      // Grab second register (if any), adjust stack slots and insert in mask.
1098      OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1099      if (OptoReg::is_valid(reg2))
1100        rm->Insert( reg2 );
1101    } // End of for all arguments
1102
1103    // Compute number of stack slots needed to restore stack in case of
1104    // Pascal-style argument popping.
1105    mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1106  }
1107
1108  // Compute the max stack slot killed by any call.  These will not be
1109  // available for debug info, and will be used to adjust FIRST_STACK_mask
1110  // after all call sites have been visited.
1111  if( _out_arg_limit < out_arg_limit_per_call)
1112    _out_arg_limit = out_arg_limit_per_call;
1113
1114  if (mcall) {
1115    // Kill the outgoing argument area, including any non-argument holes and
1116    // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1117    // Since the max-per-method covers the max-per-call-site and debug info
1118    // is excluded on the max-per-method basis, debug info cannot land in
1119    // this killed area.
1120    uint r_cnt = mcall->tf()->range()->cnt();
1121    MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1122    if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1123      C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1124    } else {
1125      for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1126        proj->_rout.Insert(OptoReg::Name(i));
1127    }
1128    if( proj->_rout.is_NotEmpty() )
1129      _proj_list.push(proj);
1130  }
1131  // Transfer the safepoint information from the call to the mcall
1132  // Move the JVMState list
1133  msfpt->set_jvms(sfpt->jvms());
1134  for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1135    jvms->set_map(sfpt);
1136  }
1137
1138  // Debug inputs begin just after the last incoming parameter
1139  assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1140          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1141
1142  // Move the OopMap
1143  msfpt->_oop_map = sfpt->_oop_map;
1144
1145  // Registers killed by the call are set in the local scheduling pass
1146  // of Global Code Motion.
1147  return msfpt;
1148}
1149
1150//---------------------------match_tree----------------------------------------
1151// Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1152// of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1153// making GotoNodes while building the CFG and in init_spill_mask() to identify
1154// a Load's result RegMask for memoization in idealreg2regmask[]
1155MachNode *Matcher::match_tree( const Node *n ) {
1156  assert( n->Opcode() != Op_Phi, "cannot match" );
1157  assert( !n->is_block_start(), "cannot match" );
1158  // Set the mark for all locally allocated State objects.
1159  // When this call returns, the _states_arena arena will be reset
1160  // freeing all State objects.
1161  ResourceMark rm( &_states_arena );
1162
1163  LabelRootDepth = 0;
1164
1165  // StoreNodes require their Memory input to match any LoadNodes
1166  Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1167#ifdef ASSERT
1168  Node* save_mem_node = _mem_node;
1169  _mem_node = n->is_Store() ? (Node*)n : NULL;
1170#endif
1171  // State object for root node of match tree
1172  // Allocate it on _states_arena - stack allocation can cause stack overflow.
1173  State *s = new (&_states_arena) State;
1174  s->_kids[0] = NULL;
1175  s->_kids[1] = NULL;
1176  s->_leaf = (Node*)n;
1177  // Label the input tree, allocating labels from top-level arena
1178  Label_Root( n, s, n->in(0), mem );
1179  if (C->failing())  return NULL;
1180
1181  // The minimum cost match for the whole tree is found at the root State
1182  uint mincost = max_juint;
1183  uint cost = max_juint;
1184  uint i;
1185  for( i = 0; i < NUM_OPERANDS; i++ ) {
1186    if( s->valid(i) &&                // valid entry and
1187        s->_cost[i] < cost &&         // low cost and
1188        s->_rule[i] >= NUM_OPERANDS ) // not an operand
1189      cost = s->_cost[mincost=i];
1190  }
1191  if (mincost == max_juint) {
1192#ifndef PRODUCT
1193    tty->print("No matching rule for:");
1194    s->dump();
1195#endif
1196    Matcher::soft_match_failure();
1197    return NULL;
1198  }
1199  // Reduce input tree based upon the state labels to machine Nodes
1200  MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1201#ifdef ASSERT
1202  _old2new_map.map(n->_idx, m);
1203  _new2old_map.map(m->_idx, (Node*)n);
1204#endif
1205
1206  // Add any Matcher-ignored edges
1207  uint cnt = n->req();
1208  uint start = 1;
1209  if( mem != (Node*)1 ) start = MemNode::Memory+1;
1210  if( n->is_AddP() ) {
1211    assert( mem == (Node*)1, "" );
1212    start = AddPNode::Base+1;
1213  }
1214  for( i = start; i < cnt; i++ ) {
1215    if( !n->match_edge(i) ) {
1216      if( i < m->req() )
1217        m->ins_req( i, n->in(i) );
1218      else
1219        m->add_req( n->in(i) );
1220    }
1221  }
1222
1223  debug_only( _mem_node = save_mem_node; )
1224  return m;
1225}
1226
1227
1228//------------------------------match_into_reg---------------------------------
1229// Choose to either match this Node in a register or part of the current
1230// match tree.  Return true for requiring a register and false for matching
1231// as part of the current match tree.
1232static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1233
1234  const Type *t = m->bottom_type();
1235
1236  if( t->singleton() ) {
1237    // Never force constants into registers.  Allow them to match as
1238    // constants or registers.  Copies of the same value will share
1239    // the same register.  See find_shared_node.
1240    return false;
1241  } else {                      // Not a constant
1242    // Stop recursion if they have different Controls.
1243    // Slot 0 of constants is not really a Control.
1244    if( control && m->in(0) && control != m->in(0) ) {
1245
1246      // Actually, we can live with the most conservative control we
1247      // find, if it post-dominates the others.  This allows us to
1248      // pick up load/op/store trees where the load can float a little
1249      // above the store.
1250      Node *x = control;
1251      const uint max_scan = 6;   // Arbitrary scan cutoff
1252      uint j;
1253      for( j=0; j<max_scan; j++ ) {
1254        if( x->is_Region() )    // Bail out at merge points
1255          return true;
1256        x = x->in(0);
1257        if( x == m->in(0) )     // Does 'control' post-dominate
1258          break;                // m->in(0)?  If so, we can use it
1259      }
1260      if( j == max_scan )       // No post-domination before scan end?
1261        return true;            // Then break the match tree up
1262    }
1263    if (m->is_DecodeN() && Matcher::clone_shift_expressions) {
1264      // These are commonly used in address expressions and can
1265      // efficiently fold into them on X64 in some cases.
1266      return false;
1267    }
1268  }
1269
1270  // Not forceably cloning.  If shared, put it into a register.
1271  return shared;
1272}
1273
1274
1275//------------------------------Instruction Selection--------------------------
1276// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1277// ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1278// things the Matcher does not match (e.g., Memory), and things with different
1279// Controls (hence forced into different blocks).  We pass in the Control
1280// selected for this entire State tree.
1281
1282// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1283// Store and the Load must have identical Memories (as well as identical
1284// pointers).  Since the Matcher does not have anything for Memory (and
1285// does not handle DAGs), I have to match the Memory input myself.  If the
1286// Tree root is a Store, I require all Loads to have the identical memory.
1287Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1288  // Since Label_Root is a recursive function, its possible that we might run
1289  // out of stack space.  See bugs 6272980 & 6227033 for more info.
1290  LabelRootDepth++;
1291  if (LabelRootDepth > MaxLabelRootDepth) {
1292    C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1293    return NULL;
1294  }
1295  uint care = 0;                // Edges matcher cares about
1296  uint cnt = n->req();
1297  uint i = 0;
1298
1299  // Examine children for memory state
1300  // Can only subsume a child into your match-tree if that child's memory state
1301  // is not modified along the path to another input.
1302  // It is unsafe even if the other inputs are separate roots.
1303  Node *input_mem = NULL;
1304  for( i = 1; i < cnt; i++ ) {
1305    if( !n->match_edge(i) ) continue;
1306    Node *m = n->in(i);         // Get ith input
1307    assert( m, "expect non-null children" );
1308    if( m->is_Load() ) {
1309      if( input_mem == NULL ) {
1310        input_mem = m->in(MemNode::Memory);
1311      } else if( input_mem != m->in(MemNode::Memory) ) {
1312        input_mem = NodeSentinel;
1313      }
1314    }
1315  }
1316
1317  for( i = 1; i < cnt; i++ ){// For my children
1318    if( !n->match_edge(i) ) continue;
1319    Node *m = n->in(i);         // Get ith input
1320    // Allocate states out of a private arena
1321    State *s = new (&_states_arena) State;
1322    svec->_kids[care++] = s;
1323    assert( care <= 2, "binary only for now" );
1324
1325    // Recursively label the State tree.
1326    s->_kids[0] = NULL;
1327    s->_kids[1] = NULL;
1328    s->_leaf = m;
1329
1330    // Check for leaves of the State Tree; things that cannot be a part of
1331    // the current tree.  If it finds any, that value is matched as a
1332    // register operand.  If not, then the normal matching is used.
1333    if( match_into_reg(n, m, control, i, is_shared(m)) ||
1334        //
1335        // Stop recursion if this is LoadNode and the root of this tree is a
1336        // StoreNode and the load & store have different memories.
1337        ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1338        // Can NOT include the match of a subtree when its memory state
1339        // is used by any of the other subtrees
1340        (input_mem == NodeSentinel) ) {
1341#ifndef PRODUCT
1342      // Print when we exclude matching due to different memory states at input-loads
1343      if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1344        && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1345        tty->print_cr("invalid input_mem");
1346      }
1347#endif
1348      // Switch to a register-only opcode; this value must be in a register
1349      // and cannot be subsumed as part of a larger instruction.
1350      s->DFA( m->ideal_reg(), m );
1351
1352    } else {
1353      // If match tree has no control and we do, adopt it for entire tree
1354      if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1355        control = m->in(0);         // Pick up control
1356      // Else match as a normal part of the match tree.
1357      control = Label_Root(m,s,control,mem);
1358      if (C->failing()) return NULL;
1359    }
1360  }
1361
1362
1363  // Call DFA to match this node, and return
1364  svec->DFA( n->Opcode(), n );
1365
1366#ifdef ASSERT
1367  uint x;
1368  for( x = 0; x < _LAST_MACH_OPER; x++ )
1369    if( svec->valid(x) )
1370      break;
1371
1372  if (x >= _LAST_MACH_OPER) {
1373    n->dump();
1374    svec->dump();
1375    assert( false, "bad AD file" );
1376  }
1377#endif
1378  return control;
1379}
1380
1381
1382// Con nodes reduced using the same rule can share their MachNode
1383// which reduces the number of copies of a constant in the final
1384// program.  The register allocator is free to split uses later to
1385// split live ranges.
1386MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1387  if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1388
1389  // See if this Con has already been reduced using this rule.
1390  if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1391  MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1392  if (last != NULL && rule == last->rule()) {
1393    // Don't expect control change for DecodeN
1394    if (leaf->is_DecodeN())
1395      return last;
1396    // Get the new space root.
1397    Node* xroot = new_node(C->root());
1398    if (xroot == NULL) {
1399      // This shouldn't happen give the order of matching.
1400      return NULL;
1401    }
1402
1403    // Shared constants need to have their control be root so they
1404    // can be scheduled properly.
1405    Node* control = last->in(0);
1406    if (control != xroot) {
1407      if (control == NULL || control == C->root()) {
1408        last->set_req(0, xroot);
1409      } else {
1410        assert(false, "unexpected control");
1411        return NULL;
1412      }
1413    }
1414    return last;
1415  }
1416  return NULL;
1417}
1418
1419
1420//------------------------------ReduceInst-------------------------------------
1421// Reduce a State tree (with given Control) into a tree of MachNodes.
1422// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1423// complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1424// Each MachNode has a number of complicated MachOper operands; each
1425// MachOper also covers a further tree of Ideal Nodes.
1426
1427// The root of the Ideal match tree is always an instruction, so we enter
1428// the recursion here.  After building the MachNode, we need to recurse
1429// the tree checking for these cases:
1430// (1) Child is an instruction -
1431//     Build the instruction (recursively), add it as an edge.
1432//     Build a simple operand (register) to hold the result of the instruction.
1433// (2) Child is an interior part of an instruction -
1434//     Skip over it (do nothing)
1435// (3) Child is the start of a operand -
1436//     Build the operand, place it inside the instruction
1437//     Call ReduceOper.
1438MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1439  assert( rule >= NUM_OPERANDS, "called with operand rule" );
1440
1441  MachNode* shared_node = find_shared_node(s->_leaf, rule);
1442  if (shared_node != NULL) {
1443    return shared_node;
1444  }
1445
1446  // Build the object to represent this state & prepare for recursive calls
1447  MachNode *mach = s->MachNodeGenerator( rule, C );
1448  mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1449  assert( mach->_opnds[0] != NULL, "Missing result operand" );
1450  Node *leaf = s->_leaf;
1451  // Check for instruction or instruction chain rule
1452  if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1453    assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1454           "duplicating node that's already been matched");
1455    // Instruction
1456    mach->add_req( leaf->in(0) ); // Set initial control
1457    // Reduce interior of complex instruction
1458    ReduceInst_Interior( s, rule, mem, mach, 1 );
1459  } else {
1460    // Instruction chain rules are data-dependent on their inputs
1461    mach->add_req(0);             // Set initial control to none
1462    ReduceInst_Chain_Rule( s, rule, mem, mach );
1463  }
1464
1465  // If a Memory was used, insert a Memory edge
1466  if( mem != (Node*)1 ) {
1467    mach->ins_req(MemNode::Memory,mem);
1468#ifdef ASSERT
1469    // Verify adr type after matching memory operation
1470    const MachOper* oper = mach->memory_operand();
1471    if (oper != NULL && oper != (MachOper*)-1 &&
1472        mach->adr_type() != TypeRawPtr::BOTTOM) { // non-direct addressing mode
1473      // It has a unique memory operand.  Find corresponding ideal mem node.
1474      Node* m = NULL;
1475      if (leaf->is_Mem()) {
1476        m = leaf;
1477      } else {
1478        m = _mem_node;
1479        assert(m != NULL && m->is_Mem(), "expecting memory node");
1480      }
1481      const Type* mach_at = mach->adr_type();
1482      // DecodeN node consumed by an address may have different type
1483      // then its input. Don't compare types for such case.
1484      if (m->adr_type() != mach_at && m->in(MemNode::Address)->is_AddP() &&
1485          m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN()) {
1486        mach_at = m->adr_type();
1487      }
1488      if (m->adr_type() != mach_at) {
1489        m->dump();
1490        tty->print_cr("mach:");
1491        mach->dump(1);
1492      }
1493      assert(m->adr_type() == mach_at, "matcher should not change adr type");
1494    }
1495#endif
1496  }
1497
1498  // If the _leaf is an AddP, insert the base edge
1499  if( leaf->is_AddP() )
1500    mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1501
1502  uint num_proj = _proj_list.size();
1503
1504  // Perform any 1-to-many expansions required
1505  MachNode *ex = mach->Expand(s,_proj_list);
1506  if( ex != mach ) {
1507    assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1508    if( ex->in(1)->is_Con() )
1509      ex->in(1)->set_req(0, C->root());
1510    // Remove old node from the graph
1511    for( uint i=0; i<mach->req(); i++ ) {
1512      mach->set_req(i,NULL);
1513    }
1514#ifdef ASSERT
1515    _new2old_map.map(ex->_idx, s->_leaf);
1516#endif
1517  }
1518
1519  // PhaseChaitin::fixup_spills will sometimes generate spill code
1520  // via the matcher.  By the time, nodes have been wired into the CFG,
1521  // and any further nodes generated by expand rules will be left hanging
1522  // in space, and will not get emitted as output code.  Catch this.
1523  // Also, catch any new register allocation constraints ("projections")
1524  // generated belatedly during spill code generation.
1525  if (_allocation_started) {
1526    guarantee(ex == mach, "no expand rules during spill generation");
1527    guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1528  }
1529
1530  if (leaf->is_Con() || leaf->is_DecodeN()) {
1531    // Record the con for sharing
1532    _shared_nodes.map(leaf->_idx, ex);
1533  }
1534
1535  return ex;
1536}
1537
1538void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1539  // 'op' is what I am expecting to receive
1540  int op = _leftOp[rule];
1541  // Operand type to catch childs result
1542  // This is what my child will give me.
1543  int opnd_class_instance = s->_rule[op];
1544  // Choose between operand class or not.
1545  // This is what I will recieve.
1546  int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1547  // New rule for child.  Chase operand classes to get the actual rule.
1548  int newrule = s->_rule[catch_op];
1549
1550  if( newrule < NUM_OPERANDS ) {
1551    // Chain from operand or operand class, may be output of shared node
1552    assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1553            "Bad AD file: Instruction chain rule must chain from operand");
1554    // Insert operand into array of operands for this instruction
1555    mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1556
1557    ReduceOper( s, newrule, mem, mach );
1558  } else {
1559    // Chain from the result of an instruction
1560    assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1561    mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1562    Node *mem1 = (Node*)1;
1563    debug_only(Node *save_mem_node = _mem_node;)
1564    mach->add_req( ReduceInst(s, newrule, mem1) );
1565    debug_only(_mem_node = save_mem_node;)
1566  }
1567  return;
1568}
1569
1570
1571uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1572  if( s->_leaf->is_Load() ) {
1573    Node *mem2 = s->_leaf->in(MemNode::Memory);
1574    assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1575    debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1576    mem = mem2;
1577  }
1578  if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1579    if( mach->in(0) == NULL )
1580      mach->set_req(0, s->_leaf->in(0));
1581  }
1582
1583  // Now recursively walk the state tree & add operand list.
1584  for( uint i=0; i<2; i++ ) {   // binary tree
1585    State *newstate = s->_kids[i];
1586    if( newstate == NULL ) break;      // Might only have 1 child
1587    // 'op' is what I am expecting to receive
1588    int op;
1589    if( i == 0 ) {
1590      op = _leftOp[rule];
1591    } else {
1592      op = _rightOp[rule];
1593    }
1594    // Operand type to catch childs result
1595    // This is what my child will give me.
1596    int opnd_class_instance = newstate->_rule[op];
1597    // Choose between operand class or not.
1598    // This is what I will receive.
1599    int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1600    // New rule for child.  Chase operand classes to get the actual rule.
1601    int newrule = newstate->_rule[catch_op];
1602
1603    if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1604      // Operand/operandClass
1605      // Insert operand into array of operands for this instruction
1606      mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1607      ReduceOper( newstate, newrule, mem, mach );
1608
1609    } else {                    // Child is internal operand or new instruction
1610      if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1611        // internal operand --> call ReduceInst_Interior
1612        // Interior of complex instruction.  Do nothing but recurse.
1613        num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1614      } else {
1615        // instruction --> call build operand(  ) to catch result
1616        //             --> ReduceInst( newrule )
1617        mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1618        Node *mem1 = (Node*)1;
1619        debug_only(Node *save_mem_node = _mem_node;)
1620        mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1621        debug_only(_mem_node = save_mem_node;)
1622      }
1623    }
1624    assert( mach->_opnds[num_opnds-1], "" );
1625  }
1626  return num_opnds;
1627}
1628
1629// This routine walks the interior of possible complex operands.
1630// At each point we check our children in the match tree:
1631// (1) No children -
1632//     We are a leaf; add _leaf field as an input to the MachNode
1633// (2) Child is an internal operand -
1634//     Skip over it ( do nothing )
1635// (3) Child is an instruction -
1636//     Call ReduceInst recursively and
1637//     and instruction as an input to the MachNode
1638void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1639  assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1640  State *kid = s->_kids[0];
1641  assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1642
1643  // Leaf?  And not subsumed?
1644  if( kid == NULL && !_swallowed[rule] ) {
1645    mach->add_req( s->_leaf );  // Add leaf pointer
1646    return;                     // Bail out
1647  }
1648
1649  if( s->_leaf->is_Load() ) {
1650    assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1651    mem = s->_leaf->in(MemNode::Memory);
1652    debug_only(_mem_node = s->_leaf;)
1653  }
1654  if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1655    if( !mach->in(0) )
1656      mach->set_req(0,s->_leaf->in(0));
1657    else {
1658      assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1659    }
1660  }
1661
1662  for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1663    int newrule;
1664    if( i == 0 )
1665      newrule = kid->_rule[_leftOp[rule]];
1666    else
1667      newrule = kid->_rule[_rightOp[rule]];
1668
1669    if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1670      // Internal operand; recurse but do nothing else
1671      ReduceOper( kid, newrule, mem, mach );
1672
1673    } else {                    // Child is a new instruction
1674      // Reduce the instruction, and add a direct pointer from this
1675      // machine instruction to the newly reduced one.
1676      Node *mem1 = (Node*)1;
1677      debug_only(Node *save_mem_node = _mem_node;)
1678      mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1679      debug_only(_mem_node = save_mem_node;)
1680    }
1681  }
1682}
1683
1684
1685// -------------------------------------------------------------------------
1686// Java-Java calling convention
1687// (what you use when Java calls Java)
1688
1689//------------------------------find_receiver----------------------------------
1690// For a given signature, return the OptoReg for parameter 0.
1691OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1692  VMRegPair regs;
1693  BasicType sig_bt = T_OBJECT;
1694  calling_convention(&sig_bt, &regs, 1, is_outgoing);
1695  // Return argument 0 register.  In the LP64 build pointers
1696  // take 2 registers, but the VM wants only the 'main' name.
1697  return OptoReg::as_OptoReg(regs.first());
1698}
1699
1700// A method-klass-holder may be passed in the inline_cache_reg
1701// and then expanded into the inline_cache_reg and a method_oop register
1702//   defined in ad_<arch>.cpp
1703
1704
1705//------------------------------find_shared------------------------------------
1706// Set bits if Node is shared or otherwise a root
1707void Matcher::find_shared( Node *n ) {
1708  // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1709  MStack mstack(C->unique() * 2);
1710  mstack.push(n, Visit);     // Don't need to pre-visit root node
1711  while (mstack.is_nonempty()) {
1712    n = mstack.node();       // Leave node on stack
1713    Node_State nstate = mstack.state();
1714    if (nstate == Pre_Visit) {
1715      if (is_visited(n)) {   // Visited already?
1716        // Node is shared and has no reason to clone.  Flag it as shared.
1717        // This causes it to match into a register for the sharing.
1718        set_shared(n);       // Flag as shared and
1719        mstack.pop();        // remove node from stack
1720        continue;
1721      }
1722      nstate = Visit; // Not already visited; so visit now
1723    }
1724    if (nstate == Visit) {
1725      mstack.set_state(Post_Visit);
1726      set_visited(n);   // Flag as visited now
1727      bool mem_op = false;
1728
1729      switch( n->Opcode() ) {  // Handle some opcodes special
1730      case Op_Phi:             // Treat Phis as shared roots
1731      case Op_Parm:
1732      case Op_Proj:            // All handled specially during matching
1733      case Op_SafePointScalarObject:
1734        set_shared(n);
1735        set_dontcare(n);
1736        break;
1737      case Op_If:
1738      case Op_CountedLoopEnd:
1739        mstack.set_state(Alt_Post_Visit); // Alternative way
1740        // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1741        // with matching cmp/branch in 1 instruction.  The Matcher needs the
1742        // Bool and CmpX side-by-side, because it can only get at constants
1743        // that are at the leaves of Match trees, and the Bool's condition acts
1744        // as a constant here.
1745        mstack.push(n->in(1), Visit);         // Clone the Bool
1746        mstack.push(n->in(0), Pre_Visit);     // Visit control input
1747        continue; // while (mstack.is_nonempty())
1748      case Op_ConvI2D:         // These forms efficiently match with a prior
1749      case Op_ConvI2F:         //   Load but not a following Store
1750        if( n->in(1)->is_Load() &&        // Prior load
1751            n->outcnt() == 1 &&           // Not already shared
1752            n->unique_out()->is_Store() ) // Following store
1753          set_shared(n);       // Force it to be a root
1754        break;
1755      case Op_ReverseBytesI:
1756      case Op_ReverseBytesL:
1757        if( n->in(1)->is_Load() &&        // Prior load
1758            n->outcnt() == 1 )            // Not already shared
1759          set_shared(n);                  // Force it to be a root
1760        break;
1761      case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1762      case Op_IfFalse:
1763      case Op_IfTrue:
1764      case Op_MachProj:
1765      case Op_MergeMem:
1766      case Op_Catch:
1767      case Op_CatchProj:
1768      case Op_CProj:
1769      case Op_JumpProj:
1770      case Op_JProj:
1771      case Op_NeverBranch:
1772        set_dontcare(n);
1773        break;
1774      case Op_Jump:
1775        mstack.push(n->in(1), Visit);         // Switch Value
1776        mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1777        continue;                             // while (mstack.is_nonempty())
1778      case Op_StrComp:
1779      case Op_AryEq:
1780        set_shared(n); // Force result into register (it will be anyways)
1781        break;
1782      case Op_ConP: {  // Convert pointers above the centerline to NUL
1783        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1784        const TypePtr* tp = tn->type()->is_ptr();
1785        if (tp->_ptr == TypePtr::AnyNull) {
1786          tn->set_type(TypePtr::NULL_PTR);
1787        }
1788        break;
1789      }
1790      case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1791        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1792        const TypePtr* tp = tn->type()->make_ptr();
1793        if (tp && tp->_ptr == TypePtr::AnyNull) {
1794          tn->set_type(TypeNarrowOop::NULL_PTR);
1795        }
1796        break;
1797      }
1798      case Op_Binary:         // These are introduced in the Post_Visit state.
1799        ShouldNotReachHere();
1800        break;
1801      case Op_StoreB:         // Do match these, despite no ideal reg
1802      case Op_StoreC:
1803      case Op_StoreCM:
1804      case Op_StoreD:
1805      case Op_StoreF:
1806      case Op_StoreI:
1807      case Op_StoreL:
1808      case Op_StoreP:
1809      case Op_StoreN:
1810      case Op_Store16B:
1811      case Op_Store8B:
1812      case Op_Store4B:
1813      case Op_Store8C:
1814      case Op_Store4C:
1815      case Op_Store2C:
1816      case Op_Store4I:
1817      case Op_Store2I:
1818      case Op_Store2L:
1819      case Op_Store4F:
1820      case Op_Store2F:
1821      case Op_Store2D:
1822      case Op_ClearArray:
1823      case Op_SafePoint:
1824        mem_op = true;
1825        break;
1826      case Op_LoadB:
1827      case Op_LoadUS:
1828      case Op_LoadD:
1829      case Op_LoadF:
1830      case Op_LoadI:
1831      case Op_LoadKlass:
1832      case Op_LoadNKlass:
1833      case Op_LoadL:
1834      case Op_LoadS:
1835      case Op_LoadP:
1836      case Op_LoadN:
1837      case Op_LoadRange:
1838      case Op_LoadD_unaligned:
1839      case Op_LoadL_unaligned:
1840      case Op_Load16B:
1841      case Op_Load8B:
1842      case Op_Load4B:
1843      case Op_Load4C:
1844      case Op_Load2C:
1845      case Op_Load8C:
1846      case Op_Load8S:
1847      case Op_Load4S:
1848      case Op_Load2S:
1849      case Op_Load4I:
1850      case Op_Load2I:
1851      case Op_Load2L:
1852      case Op_Load4F:
1853      case Op_Load2F:
1854      case Op_Load2D:
1855        mem_op = true;
1856        // Must be root of match tree due to prior load conflict
1857        if( C->subsume_loads() == false ) {
1858          set_shared(n);
1859        }
1860        // Fall into default case
1861      default:
1862        if( !n->ideal_reg() )
1863          set_dontcare(n);  // Unmatchable Nodes
1864      } // end_switch
1865
1866      for(int i = n->req() - 1; i >= 0; --i) { // For my children
1867        Node *m = n->in(i); // Get ith input
1868        if (m == NULL) continue;  // Ignore NULLs
1869        uint mop = m->Opcode();
1870
1871        // Must clone all producers of flags, or we will not match correctly.
1872        // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1873        // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1874        // are also there, so we may match a float-branch to int-flags and
1875        // expect the allocator to haul the flags from the int-side to the
1876        // fp-side.  No can do.
1877        if( _must_clone[mop] ) {
1878          mstack.push(m, Visit);
1879          continue; // for(int i = ...)
1880        }
1881
1882        // Clone addressing expressions as they are "free" in most instructions
1883        if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1884          if (m->in(AddPNode::Base)->Opcode() == Op_DecodeN) {
1885            // Bases used in addresses must be shared but since
1886            // they are shared through a DecodeN they may appear
1887            // to have a single use so force sharing here.
1888            set_shared(m->in(AddPNode::Base)->in(1));
1889          }
1890          Node *off = m->in(AddPNode::Offset);
1891          if( off->is_Con() ) {
1892            set_visited(m);  // Flag as visited now
1893            Node *adr = m->in(AddPNode::Address);
1894
1895            // Intel, ARM and friends can handle 2 adds in addressing mode
1896            if( clone_shift_expressions && adr->is_AddP() &&
1897                // AtomicAdd is not an addressing expression.
1898                // Cheap to find it by looking for screwy base.
1899                !adr->in(AddPNode::Base)->is_top() ) {
1900              set_visited(adr);  // Flag as visited now
1901              Node *shift = adr->in(AddPNode::Offset);
1902              // Check for shift by small constant as well
1903              if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
1904                  shift->in(2)->get_int() <= 3 ) {
1905                set_visited(shift);  // Flag as visited now
1906                mstack.push(shift->in(2), Visit);
1907#ifdef _LP64
1908                // Allow Matcher to match the rule which bypass
1909                // ConvI2L operation for an array index on LP64
1910                // if the index value is positive.
1911                if( shift->in(1)->Opcode() == Op_ConvI2L &&
1912                    shift->in(1)->as_Type()->type()->is_long()->_lo >= 0 ) {
1913                  set_visited(shift->in(1));  // Flag as visited now
1914                  mstack.push(shift->in(1)->in(1), Pre_Visit);
1915                } else
1916#endif
1917                mstack.push(shift->in(1), Pre_Visit);
1918              } else {
1919                mstack.push(shift, Pre_Visit);
1920              }
1921              mstack.push(adr->in(AddPNode::Address), Pre_Visit);
1922              mstack.push(adr->in(AddPNode::Base), Pre_Visit);
1923            } else {  // Sparc, Alpha, PPC and friends
1924              mstack.push(adr, Pre_Visit);
1925            }
1926
1927            // Clone X+offset as it also folds into most addressing expressions
1928            mstack.push(off, Visit);
1929            mstack.push(m->in(AddPNode::Base), Pre_Visit);
1930            continue; // for(int i = ...)
1931          } // if( off->is_Con() )
1932        }   // if( mem_op &&
1933        mstack.push(m, Pre_Visit);
1934      }     // for(int i = ...)
1935    }
1936    else if (nstate == Alt_Post_Visit) {
1937      mstack.pop(); // Remove node from stack
1938      // We cannot remove the Cmp input from the Bool here, as the Bool may be
1939      // shared and all users of the Bool need to move the Cmp in parallel.
1940      // This leaves both the Bool and the If pointing at the Cmp.  To
1941      // prevent the Matcher from trying to Match the Cmp along both paths
1942      // BoolNode::match_edge always returns a zero.
1943
1944      // We reorder the Op_If in a pre-order manner, so we can visit without
1945      // accidently sharing the Cmp (the Bool and the If make 2 users).
1946      n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
1947    }
1948    else if (nstate == Post_Visit) {
1949      mstack.pop(); // Remove node from stack
1950
1951      // Now hack a few special opcodes
1952      switch( n->Opcode() ) {       // Handle some opcodes special
1953      case Op_StorePConditional:
1954      case Op_StoreIConditional:
1955      case Op_StoreLConditional:
1956      case Op_CompareAndSwapI:
1957      case Op_CompareAndSwapL:
1958      case Op_CompareAndSwapP:
1959      case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
1960        Node *newval = n->in(MemNode::ValueIn );
1961        Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
1962        Node *pair = new (C, 3) BinaryNode( oldval, newval );
1963        n->set_req(MemNode::ValueIn,pair);
1964        n->del_req(LoadStoreNode::ExpectedIn);
1965        break;
1966      }
1967      case Op_CMoveD:              // Convert trinary to binary-tree
1968      case Op_CMoveF:
1969      case Op_CMoveI:
1970      case Op_CMoveL:
1971      case Op_CMoveN:
1972      case Op_CMoveP: {
1973        // Restructure into a binary tree for Matching.  It's possible that
1974        // we could move this code up next to the graph reshaping for IfNodes
1975        // or vice-versa, but I do not want to debug this for Ladybird.
1976        // 10/2/2000 CNC.
1977        Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
1978        n->set_req(1,pair1);
1979        Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
1980        n->set_req(2,pair2);
1981        n->del_req(3);
1982        break;
1983      }
1984      default:
1985        break;
1986      }
1987    }
1988    else {
1989      ShouldNotReachHere();
1990    }
1991  } // end of while (mstack.is_nonempty())
1992}
1993
1994#ifdef ASSERT
1995// machine-independent root to machine-dependent root
1996void Matcher::dump_old2new_map() {
1997  _old2new_map.dump();
1998}
1999#endif
2000
2001//---------------------------collect_null_checks-------------------------------
2002// Find null checks in the ideal graph; write a machine-specific node for
2003// it.  Used by later implicit-null-check handling.  Actually collects
2004// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2005// value being tested.
2006void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2007  Node *iff = proj->in(0);
2008  if( iff->Opcode() == Op_If ) {
2009    // During matching If's have Bool & Cmp side-by-side
2010    BoolNode *b = iff->in(1)->as_Bool();
2011    Node *cmp = iff->in(2);
2012    int opc = cmp->Opcode();
2013    if (opc != Op_CmpP && opc != Op_CmpN) return;
2014
2015    const Type* ct = cmp->in(2)->bottom_type();
2016    if (ct == TypePtr::NULL_PTR ||
2017        (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2018
2019      bool push_it = false;
2020      if( proj->Opcode() == Op_IfTrue ) {
2021        extern int all_null_checks_found;
2022        all_null_checks_found++;
2023        if( b->_test._test == BoolTest::ne ) {
2024          push_it = true;
2025        }
2026      } else {
2027        assert( proj->Opcode() == Op_IfFalse, "" );
2028        if( b->_test._test == BoolTest::eq ) {
2029          push_it = true;
2030        }
2031      }
2032      if( push_it ) {
2033        _null_check_tests.push(proj);
2034        Node* val = cmp->in(1);
2035#ifdef _LP64
2036        if (UseCompressedOops && !Matcher::clone_shift_expressions &&
2037            val->bottom_type()->isa_narrowoop()) {
2038          //
2039          // Look for DecodeN node which should be pinned to orig_proj.
2040          // On platforms (Sparc) which can not handle 2 adds
2041          // in addressing mode we have to keep a DecodeN node and
2042          // use it to do implicit NULL check in address.
2043          //
2044          // DecodeN node was pinned to non-null path (orig_proj) during
2045          // CastPP transformation in final_graph_reshaping_impl().
2046          //
2047          uint cnt = orig_proj->outcnt();
2048          for (uint i = 0; i < orig_proj->outcnt(); i++) {
2049            Node* d = orig_proj->raw_out(i);
2050            if (d->is_DecodeN() && d->in(1) == val) {
2051              val = d;
2052              val->set_req(0, NULL); // Unpin now.
2053              break;
2054            }
2055          }
2056        }
2057#endif
2058        _null_check_tests.push(val);
2059      }
2060    }
2061  }
2062}
2063
2064//---------------------------validate_null_checks------------------------------
2065// Its possible that the value being NULL checked is not the root of a match
2066// tree.  If so, I cannot use the value in an implicit null check.
2067void Matcher::validate_null_checks( ) {
2068  uint cnt = _null_check_tests.size();
2069  for( uint i=0; i < cnt; i+=2 ) {
2070    Node *test = _null_check_tests[i];
2071    Node *val = _null_check_tests[i+1];
2072    if (has_new_node(val)) {
2073      // Is a match-tree root, so replace with the matched value
2074      _null_check_tests.map(i+1, new_node(val));
2075    } else {
2076      // Yank from candidate list
2077      _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2078      _null_check_tests.map(i,_null_check_tests[--cnt]);
2079      _null_check_tests.pop();
2080      _null_check_tests.pop();
2081      i-=2;
2082    }
2083  }
2084}
2085
2086
2087// Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
2088// acting as an Acquire and thus we don't need an Acquire here.  We
2089// retain the Node to act as a compiler ordering barrier.
2090bool Matcher::prior_fast_lock( const Node *acq ) {
2091  Node *r = acq->in(0);
2092  if( !r->is_Region() || r->req() <= 1 ) return false;
2093  Node *proj = r->in(1);
2094  if( !proj->is_Proj() ) return false;
2095  Node *call = proj->in(0);
2096  if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
2097    return false;
2098
2099  return true;
2100}
2101
2102// Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
2103// acting as a Release and thus we don't need a Release here.  We
2104// retain the Node to act as a compiler ordering barrier.
2105bool Matcher::post_fast_unlock( const Node *rel ) {
2106  Compile *C = Compile::current();
2107  assert( rel->Opcode() == Op_MemBarRelease, "" );
2108  const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
2109  DUIterator_Fast imax, i = mem->fast_outs(imax);
2110  Node *ctrl = NULL;
2111  while( true ) {
2112    ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2113    assert( ctrl->is_Proj(), "only projections here" );
2114    ProjNode *proj = (ProjNode*)ctrl;
2115    if( proj->_con == TypeFunc::Control &&
2116        !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2117      break;
2118    i++;
2119  }
2120  Node *iff = NULL;
2121  for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2122    Node *x = ctrl->fast_out(j);
2123    if( x->is_If() && x->req() > 1 &&
2124        !C->node_arena()->contains(x) ) { // Unmatched old-space only
2125      iff = x;
2126      break;
2127    }
2128  }
2129  if( !iff ) return false;
2130  Node *bol = iff->in(1);
2131  // The iff might be some random subclass of If or bol might be Con-Top
2132  if (!bol->is_Bool())  return false;
2133  assert( bol->req() > 1, "" );
2134  return (bol->in(1)->Opcode() == Op_FastUnlock);
2135}
2136
2137// Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2138// atomic instruction acting as a store_load barrier without any
2139// intervening volatile load, and thus we don't need a barrier here.
2140// We retain the Node to act as a compiler ordering barrier.
2141bool Matcher::post_store_load_barrier(const Node *vmb) {
2142  Compile *C = Compile::current();
2143  assert( vmb->is_MemBar(), "" );
2144  assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2145  const MemBarNode *mem = (const MemBarNode*)vmb;
2146
2147  // Get the Proj node, ctrl, that can be used to iterate forward
2148  Node *ctrl = NULL;
2149  DUIterator_Fast imax, i = mem->fast_outs(imax);
2150  while( true ) {
2151    ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2152    assert( ctrl->is_Proj(), "only projections here" );
2153    ProjNode *proj = (ProjNode*)ctrl;
2154    if( proj->_con == TypeFunc::Control &&
2155        !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2156      break;
2157    i++;
2158  }
2159
2160  for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2161    Node *x = ctrl->fast_out(j);
2162    int xop = x->Opcode();
2163
2164    // We don't need current barrier if we see another or a lock
2165    // before seeing volatile load.
2166    //
2167    // Op_Fastunlock previously appeared in the Op_* list below.
2168    // With the advent of 1-0 lock operations we're no longer guaranteed
2169    // that a monitor exit operation contains a serializing instruction.
2170
2171    if (xop == Op_MemBarVolatile ||
2172        xop == Op_FastLock ||
2173        xop == Op_CompareAndSwapL ||
2174        xop == Op_CompareAndSwapP ||
2175        xop == Op_CompareAndSwapN ||
2176        xop == Op_CompareAndSwapI)
2177      return true;
2178
2179    if (x->is_MemBar()) {
2180      // We must retain this membar if there is an upcoming volatile
2181      // load, which will be preceded by acquire membar.
2182      if (xop == Op_MemBarAcquire)
2183        return false;
2184      // For other kinds of barriers, check by pretending we
2185      // are them, and seeing if we can be removed.
2186      else
2187        return post_store_load_barrier((const MemBarNode*)x);
2188    }
2189
2190    // Delicate code to detect case of an upcoming fastlock block
2191    if( x->is_If() && x->req() > 1 &&
2192        !C->node_arena()->contains(x) ) { // Unmatched old-space only
2193      Node *iff = x;
2194      Node *bol = iff->in(1);
2195      // The iff might be some random subclass of If or bol might be Con-Top
2196      if (!bol->is_Bool())  return false;
2197      assert( bol->req() > 1, "" );
2198      return (bol->in(1)->Opcode() == Op_FastUnlock);
2199    }
2200    // probably not necessary to check for these
2201    if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2202      return false;
2203  }
2204  return false;
2205}
2206
2207//=============================================================================
2208//---------------------------State---------------------------------------------
2209State::State(void) {
2210#ifdef ASSERT
2211  _id = 0;
2212  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2213  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2214  //memset(_cost, -1, sizeof(_cost));
2215  //memset(_rule, -1, sizeof(_rule));
2216#endif
2217  memset(_valid, 0, sizeof(_valid));
2218}
2219
2220#ifdef ASSERT
2221State::~State() {
2222  _id = 99;
2223  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2224  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2225  memset(_cost, -3, sizeof(_cost));
2226  memset(_rule, -3, sizeof(_rule));
2227}
2228#endif
2229
2230#ifndef PRODUCT
2231//---------------------------dump----------------------------------------------
2232void State::dump() {
2233  tty->print("\n");
2234  dump(0);
2235}
2236
2237void State::dump(int depth) {
2238  for( int j = 0; j < depth; j++ )
2239    tty->print("   ");
2240  tty->print("--N: ");
2241  _leaf->dump();
2242  uint i;
2243  for( i = 0; i < _LAST_MACH_OPER; i++ )
2244    // Check for valid entry
2245    if( valid(i) ) {
2246      for( int j = 0; j < depth; j++ )
2247        tty->print("   ");
2248        assert(_cost[i] != max_juint, "cost must be a valid value");
2249        assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2250        tty->print_cr("%s  %d  %s",
2251                      ruleName[i], _cost[i], ruleName[_rule[i]] );
2252      }
2253  tty->print_cr("");
2254
2255  for( i=0; i<2; i++ )
2256    if( _kids[i] )
2257      _kids[i]->dump(depth+1);
2258}
2259#endif
2260