matcher.cpp revision 2612:f1c12354c3f7
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/addnode.hpp"
28#include "opto/callnode.hpp"
29#include "opto/connode.hpp"
30#include "opto/idealGraphPrinter.hpp"
31#include "opto/matcher.hpp"
32#include "opto/memnode.hpp"
33#include "opto/opcodes.hpp"
34#include "opto/regmask.hpp"
35#include "opto/rootnode.hpp"
36#include "opto/runtime.hpp"
37#include "opto/type.hpp"
38#include "runtime/atomic.hpp"
39#include "runtime/os.hpp"
40#ifdef TARGET_ARCH_MODEL_x86_32
41# include "adfiles/ad_x86_32.hpp"
42#endif
43#ifdef TARGET_ARCH_MODEL_x86_64
44# include "adfiles/ad_x86_64.hpp"
45#endif
46#ifdef TARGET_ARCH_MODEL_sparc
47# include "adfiles/ad_sparc.hpp"
48#endif
49#ifdef TARGET_ARCH_MODEL_zero
50# include "adfiles/ad_zero.hpp"
51#endif
52#ifdef TARGET_ARCH_MODEL_arm
53# include "adfiles/ad_arm.hpp"
54#endif
55#ifdef TARGET_ARCH_MODEL_ppc
56# include "adfiles/ad_ppc.hpp"
57#endif
58
59OptoReg::Name OptoReg::c_frame_pointer;
60
61
62
63const int Matcher::base2reg[Type::lastype] = {
64  Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
65  Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
66  Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
67  0, 0/*abio*/,
68  Op_RegP /* Return address */, 0, /* the memories */
69  Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
70  0  /*bottom*/
71};
72
73const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
74RegMask Matcher::mreg2regmask[_last_Mach_Reg];
75RegMask Matcher::STACK_ONLY_mask;
76RegMask Matcher::c_frame_ptr_mask;
77const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
78const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
79
80//---------------------------Matcher-------------------------------------------
81Matcher::Matcher( Node_List &proj_list ) :
82  PhaseTransform( Phase::Ins_Select ),
83#ifdef ASSERT
84  _old2new_map(C->comp_arena()),
85  _new2old_map(C->comp_arena()),
86#endif
87  _shared_nodes(C->comp_arena()),
88  _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
89  _swallowed(swallowed),
90  _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
91  _end_inst_chain_rule(_END_INST_CHAIN_RULE),
92  _must_clone(must_clone), _proj_list(proj_list),
93  _register_save_policy(register_save_policy),
94  _c_reg_save_policy(c_reg_save_policy),
95  _register_save_type(register_save_type),
96  _ruleName(ruleName),
97  _allocation_started(false),
98  _states_arena(Chunk::medium_size),
99  _visited(&_states_arena),
100  _shared(&_states_arena),
101  _dontcare(&_states_arena) {
102  C->set_matcher(this);
103
104  idealreg2spillmask  [Op_RegI] = NULL;
105  idealreg2spillmask  [Op_RegN] = NULL;
106  idealreg2spillmask  [Op_RegL] = NULL;
107  idealreg2spillmask  [Op_RegF] = NULL;
108  idealreg2spillmask  [Op_RegD] = NULL;
109  idealreg2spillmask  [Op_RegP] = NULL;
110
111  idealreg2debugmask  [Op_RegI] = NULL;
112  idealreg2debugmask  [Op_RegN] = NULL;
113  idealreg2debugmask  [Op_RegL] = NULL;
114  idealreg2debugmask  [Op_RegF] = NULL;
115  idealreg2debugmask  [Op_RegD] = NULL;
116  idealreg2debugmask  [Op_RegP] = NULL;
117
118  idealreg2mhdebugmask[Op_RegI] = NULL;
119  idealreg2mhdebugmask[Op_RegN] = NULL;
120  idealreg2mhdebugmask[Op_RegL] = NULL;
121  idealreg2mhdebugmask[Op_RegF] = NULL;
122  idealreg2mhdebugmask[Op_RegD] = NULL;
123  idealreg2mhdebugmask[Op_RegP] = NULL;
124
125  debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
126}
127
128//------------------------------warp_incoming_stk_arg------------------------
129// This warps a VMReg into an OptoReg::Name
130OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
131  OptoReg::Name warped;
132  if( reg->is_stack() ) {  // Stack slot argument?
133    warped = OptoReg::add(_old_SP, reg->reg2stack() );
134    warped = OptoReg::add(warped, C->out_preserve_stack_slots());
135    if( warped >= _in_arg_limit )
136      _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
137    if (!RegMask::can_represent(warped)) {
138      // the compiler cannot represent this method's calling sequence
139      C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
140      return OptoReg::Bad;
141    }
142    return warped;
143  }
144  return OptoReg::as_OptoReg(reg);
145}
146
147//---------------------------compute_old_SP------------------------------------
148OptoReg::Name Compile::compute_old_SP() {
149  int fixed    = fixed_slots();
150  int preserve = in_preserve_stack_slots();
151  return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
152}
153
154
155
156#ifdef ASSERT
157void Matcher::verify_new_nodes_only(Node* xroot) {
158  // Make sure that the new graph only references new nodes
159  ResourceMark rm;
160  Unique_Node_List worklist;
161  VectorSet visited(Thread::current()->resource_area());
162  worklist.push(xroot);
163  while (worklist.size() > 0) {
164    Node* n = worklist.pop();
165    visited <<= n->_idx;
166    assert(C->node_arena()->contains(n), "dead node");
167    for (uint j = 0; j < n->req(); j++) {
168      Node* in = n->in(j);
169      if (in != NULL) {
170        assert(C->node_arena()->contains(in), "dead node");
171        if (!visited.test(in->_idx)) {
172          worklist.push(in);
173        }
174      }
175    }
176  }
177}
178#endif
179
180
181//---------------------------match---------------------------------------------
182void Matcher::match( ) {
183  if( MaxLabelRootDepth < 100 ) { // Too small?
184    assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
185    MaxLabelRootDepth = 100;
186  }
187  // One-time initialization of some register masks.
188  init_spill_mask( C->root()->in(1) );
189  _return_addr_mask = return_addr();
190#ifdef _LP64
191  // Pointers take 2 slots in 64-bit land
192  _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
193#endif
194
195  // Map a Java-signature return type into return register-value
196  // machine registers for 0, 1 and 2 returned values.
197  const TypeTuple *range = C->tf()->range();
198  if( range->cnt() > TypeFunc::Parms ) { // If not a void function
199    // Get ideal-register return type
200    int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
201    // Get machine return register
202    uint sop = C->start()->Opcode();
203    OptoRegPair regs = return_value(ireg, false);
204
205    // And mask for same
206    _return_value_mask = RegMask(regs.first());
207    if( OptoReg::is_valid(regs.second()) )
208      _return_value_mask.Insert(regs.second());
209  }
210
211  // ---------------
212  // Frame Layout
213
214  // Need the method signature to determine the incoming argument types,
215  // because the types determine which registers the incoming arguments are
216  // in, and this affects the matched code.
217  const TypeTuple *domain = C->tf()->domain();
218  uint             argcnt = domain->cnt() - TypeFunc::Parms;
219  BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
220  VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
221  _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
222  _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
223  uint i;
224  for( i = 0; i<argcnt; i++ ) {
225    sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
226  }
227
228  // Pass array of ideal registers and length to USER code (from the AD file)
229  // that will convert this to an array of register numbers.
230  const StartNode *start = C->start();
231  start->calling_convention( sig_bt, vm_parm_regs, argcnt );
232#ifdef ASSERT
233  // Sanity check users' calling convention.  Real handy while trying to
234  // get the initial port correct.
235  { for (uint i = 0; i<argcnt; i++) {
236      if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
237        assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
238        _parm_regs[i].set_bad();
239        continue;
240      }
241      VMReg parm_reg = vm_parm_regs[i].first();
242      assert(parm_reg->is_valid(), "invalid arg?");
243      if (parm_reg->is_reg()) {
244        OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
245        assert(can_be_java_arg(opto_parm_reg) ||
246               C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
247               opto_parm_reg == inline_cache_reg(),
248               "parameters in register must be preserved by runtime stubs");
249      }
250      for (uint j = 0; j < i; j++) {
251        assert(parm_reg != vm_parm_regs[j].first(),
252               "calling conv. must produce distinct regs");
253      }
254    }
255  }
256#endif
257
258  // Do some initial frame layout.
259
260  // Compute the old incoming SP (may be called FP) as
261  //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
262  _old_SP = C->compute_old_SP();
263  assert( is_even(_old_SP), "must be even" );
264
265  // Compute highest incoming stack argument as
266  //   _old_SP + out_preserve_stack_slots + incoming argument size.
267  _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
268  assert( is_even(_in_arg_limit), "out_preserve must be even" );
269  for( i = 0; i < argcnt; i++ ) {
270    // Permit args to have no register
271    _calling_convention_mask[i].Clear();
272    if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
273      continue;
274    }
275    // calling_convention returns stack arguments as a count of
276    // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
277    // the allocators point of view, taking into account all the
278    // preserve area, locks & pad2.
279
280    OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
281    if( OptoReg::is_valid(reg1))
282      _calling_convention_mask[i].Insert(reg1);
283
284    OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
285    if( OptoReg::is_valid(reg2))
286      _calling_convention_mask[i].Insert(reg2);
287
288    // Saved biased stack-slot register number
289    _parm_regs[i].set_pair(reg2, reg1);
290  }
291
292  // Finally, make sure the incoming arguments take up an even number of
293  // words, in case the arguments or locals need to contain doubleword stack
294  // slots.  The rest of the system assumes that stack slot pairs (in
295  // particular, in the spill area) which look aligned will in fact be
296  // aligned relative to the stack pointer in the target machine.  Double
297  // stack slots will always be allocated aligned.
298  _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
299
300  // Compute highest outgoing stack argument as
301  //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
302  _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
303  assert( is_even(_out_arg_limit), "out_preserve must be even" );
304
305  if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
306    // the compiler cannot represent this method's calling sequence
307    C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
308  }
309
310  if (C->failing())  return;  // bailed out on incoming arg failure
311
312  // ---------------
313  // Collect roots of matcher trees.  Every node for which
314  // _shared[_idx] is cleared is guaranteed to not be shared, and thus
315  // can be a valid interior of some tree.
316  find_shared( C->root() );
317  find_shared( C->top() );
318
319  C->print_method("Before Matching");
320
321  // Create new ideal node ConP #NULL even if it does exist in old space
322  // to avoid false sharing if the corresponding mach node is not used.
323  // The corresponding mach node is only used in rare cases for derived
324  // pointers.
325  Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
326
327  // Swap out to old-space; emptying new-space
328  Arena *old = C->node_arena()->move_contents(C->old_arena());
329
330  // Save debug and profile information for nodes in old space:
331  _old_node_note_array = C->node_note_array();
332  if (_old_node_note_array != NULL) {
333    C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
334                           (C->comp_arena(), _old_node_note_array->length(),
335                            0, NULL));
336  }
337
338  // Pre-size the new_node table to avoid the need for range checks.
339  grow_new_node_array(C->unique());
340
341  // Reset node counter so MachNodes start with _idx at 0
342  int nodes = C->unique(); // save value
343  C->set_unique(0);
344
345  // Recursively match trees from old space into new space.
346  // Correct leaves of new-space Nodes; they point to old-space.
347  _visited.Clear();             // Clear visit bits for xform call
348  C->set_cached_top_node(xform( C->top(), nodes ));
349  if (!C->failing()) {
350    Node* xroot =        xform( C->root(), 1 );
351    if (xroot == NULL) {
352      Matcher::soft_match_failure();  // recursive matching process failed
353      C->record_method_not_compilable("instruction match failed");
354    } else {
355      // During matching shared constants were attached to C->root()
356      // because xroot wasn't available yet, so transfer the uses to
357      // the xroot.
358      for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
359        Node* n = C->root()->fast_out(j);
360        if (C->node_arena()->contains(n)) {
361          assert(n->in(0) == C->root(), "should be control user");
362          n->set_req(0, xroot);
363          --j;
364          --jmax;
365        }
366      }
367
368      // Generate new mach node for ConP #NULL
369      assert(new_ideal_null != NULL, "sanity");
370      _mach_null = match_tree(new_ideal_null);
371      // Don't set control, it will confuse GCM since there are no uses.
372      // The control will be set when this node is used first time
373      // in find_base_for_derived().
374      assert(_mach_null != NULL, "");
375
376      C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
377
378#ifdef ASSERT
379      verify_new_nodes_only(xroot);
380#endif
381    }
382  }
383  if (C->top() == NULL || C->root() == NULL) {
384    C->record_method_not_compilable("graph lost"); // %%% cannot happen?
385  }
386  if (C->failing()) {
387    // delete old;
388    old->destruct_contents();
389    return;
390  }
391  assert( C->top(), "" );
392  assert( C->root(), "" );
393  validate_null_checks();
394
395  // Now smoke old-space
396  NOT_DEBUG( old->destruct_contents() );
397
398  // ------------------------
399  // Set up save-on-entry registers
400  Fixup_Save_On_Entry( );
401}
402
403
404//------------------------------Fixup_Save_On_Entry----------------------------
405// The stated purpose of this routine is to take care of save-on-entry
406// registers.  However, the overall goal of the Match phase is to convert into
407// machine-specific instructions which have RegMasks to guide allocation.
408// So what this procedure really does is put a valid RegMask on each input
409// to the machine-specific variations of all Return, TailCall and Halt
410// instructions.  It also adds edgs to define the save-on-entry values (and of
411// course gives them a mask).
412
413static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
414  RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
415  // Do all the pre-defined register masks
416  rms[TypeFunc::Control  ] = RegMask::Empty;
417  rms[TypeFunc::I_O      ] = RegMask::Empty;
418  rms[TypeFunc::Memory   ] = RegMask::Empty;
419  rms[TypeFunc::ReturnAdr] = ret_adr;
420  rms[TypeFunc::FramePtr ] = fp;
421  return rms;
422}
423
424//---------------------------init_first_stack_mask-----------------------------
425// Create the initial stack mask used by values spilling to the stack.
426// Disallow any debug info in outgoing argument areas by setting the
427// initial mask accordingly.
428void Matcher::init_first_stack_mask() {
429
430  // Allocate storage for spill masks as masks for the appropriate load type.
431  RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
432
433  idealreg2spillmask  [Op_RegN] = &rms[0];
434  idealreg2spillmask  [Op_RegI] = &rms[1];
435  idealreg2spillmask  [Op_RegL] = &rms[2];
436  idealreg2spillmask  [Op_RegF] = &rms[3];
437  idealreg2spillmask  [Op_RegD] = &rms[4];
438  idealreg2spillmask  [Op_RegP] = &rms[5];
439
440  idealreg2debugmask  [Op_RegN] = &rms[6];
441  idealreg2debugmask  [Op_RegI] = &rms[7];
442  idealreg2debugmask  [Op_RegL] = &rms[8];
443  idealreg2debugmask  [Op_RegF] = &rms[9];
444  idealreg2debugmask  [Op_RegD] = &rms[10];
445  idealreg2debugmask  [Op_RegP] = &rms[11];
446
447  idealreg2mhdebugmask[Op_RegN] = &rms[12];
448  idealreg2mhdebugmask[Op_RegI] = &rms[13];
449  idealreg2mhdebugmask[Op_RegL] = &rms[14];
450  idealreg2mhdebugmask[Op_RegF] = &rms[15];
451  idealreg2mhdebugmask[Op_RegD] = &rms[16];
452  idealreg2mhdebugmask[Op_RegP] = &rms[17];
453
454  OptoReg::Name i;
455
456  // At first, start with the empty mask
457  C->FIRST_STACK_mask().Clear();
458
459  // Add in the incoming argument area
460  OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
461  for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
462    C->FIRST_STACK_mask().Insert(i);
463
464  // Add in all bits past the outgoing argument area
465  guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
466            "must be able to represent all call arguments in reg mask");
467  init = _out_arg_limit;
468  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
469    C->FIRST_STACK_mask().Insert(i);
470
471  // Finally, set the "infinite stack" bit.
472  C->FIRST_STACK_mask().set_AllStack();
473
474  // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
475#ifdef _LP64
476  *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
477   idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
478#endif
479  *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
480   idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
481  *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
482   idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
483  *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
484   idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
485  *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
486   idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
487  *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
488   idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
489
490   if (UseFPUForSpilling) {
491     // This mask logic assumes that the spill operations are
492     // symmetric and that the registers involved are the same size.
493     // On sparc for instance we may have to use 64 bit moves will
494     // kill 2 registers when used with F0-F31.
495     idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
496     idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
497#ifdef _LP64
498     idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
499     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
500     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
501     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
502#else
503     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
504#endif
505   }
506
507  // Make up debug masks.  Any spill slot plus callee-save registers.
508  // Caller-save registers are assumed to be trashable by the various
509  // inline-cache fixup routines.
510  *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
511  *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
512  *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
513  *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
514  *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
515  *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
516
517  *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
518  *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
519  *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
520  *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
521  *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
522  *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
523
524  // Prevent stub compilations from attempting to reference
525  // callee-saved registers from debug info
526  bool exclude_soe = !Compile::current()->is_method_compilation();
527
528  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
529    // registers the caller has to save do not work
530    if( _register_save_policy[i] == 'C' ||
531        _register_save_policy[i] == 'A' ||
532        (_register_save_policy[i] == 'E' && exclude_soe) ) {
533      idealreg2debugmask  [Op_RegN]->Remove(i);
534      idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
535      idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
536      idealreg2debugmask  [Op_RegF]->Remove(i); // masks
537      idealreg2debugmask  [Op_RegD]->Remove(i);
538      idealreg2debugmask  [Op_RegP]->Remove(i);
539
540      idealreg2mhdebugmask[Op_RegN]->Remove(i);
541      idealreg2mhdebugmask[Op_RegI]->Remove(i);
542      idealreg2mhdebugmask[Op_RegL]->Remove(i);
543      idealreg2mhdebugmask[Op_RegF]->Remove(i);
544      idealreg2mhdebugmask[Op_RegD]->Remove(i);
545      idealreg2mhdebugmask[Op_RegP]->Remove(i);
546    }
547  }
548
549  // Subtract the register we use to save the SP for MethodHandle
550  // invokes to from the debug mask.
551  const RegMask save_mask = method_handle_invoke_SP_save_mask();
552  idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
553  idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
554  idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
555  idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
556  idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
557  idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
558}
559
560//---------------------------is_save_on_entry----------------------------------
561bool Matcher::is_save_on_entry( int reg ) {
562  return
563    _register_save_policy[reg] == 'E' ||
564    _register_save_policy[reg] == 'A' || // Save-on-entry register?
565    // Also save argument registers in the trampolining stubs
566    (C->save_argument_registers() && is_spillable_arg(reg));
567}
568
569//---------------------------Fixup_Save_On_Entry-------------------------------
570void Matcher::Fixup_Save_On_Entry( ) {
571  init_first_stack_mask();
572
573  Node *root = C->root();       // Short name for root
574  // Count number of save-on-entry registers.
575  uint soe_cnt = number_of_saved_registers();
576  uint i;
577
578  // Find the procedure Start Node
579  StartNode *start = C->start();
580  assert( start, "Expect a start node" );
581
582  // Save argument registers in the trampolining stubs
583  if( C->save_argument_registers() )
584    for( i = 0; i < _last_Mach_Reg; i++ )
585      if( is_spillable_arg(i) )
586        soe_cnt++;
587
588  // Input RegMask array shared by all Returns.
589  // The type for doubles and longs has a count of 2, but
590  // there is only 1 returned value
591  uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
592  RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
593  // Returns have 0 or 1 returned values depending on call signature.
594  // Return register is specified by return_value in the AD file.
595  if (ret_edge_cnt > TypeFunc::Parms)
596    ret_rms[TypeFunc::Parms+0] = _return_value_mask;
597
598  // Input RegMask array shared by all Rethrows.
599  uint reth_edge_cnt = TypeFunc::Parms+1;
600  RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
601  // Rethrow takes exception oop only, but in the argument 0 slot.
602  reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
603#ifdef _LP64
604  // Need two slots for ptrs in 64-bit land
605  reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
606#endif
607
608  // Input RegMask array shared by all TailCalls
609  uint tail_call_edge_cnt = TypeFunc::Parms+2;
610  RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
611
612  // Input RegMask array shared by all TailJumps
613  uint tail_jump_edge_cnt = TypeFunc::Parms+2;
614  RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
615
616  // TailCalls have 2 returned values (target & moop), whose masks come
617  // from the usual MachNode/MachOper mechanism.  Find a sample
618  // TailCall to extract these masks and put the correct masks into
619  // the tail_call_rms array.
620  for( i=1; i < root->req(); i++ ) {
621    MachReturnNode *m = root->in(i)->as_MachReturn();
622    if( m->ideal_Opcode() == Op_TailCall ) {
623      tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
624      tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
625      break;
626    }
627  }
628
629  // TailJumps have 2 returned values (target & ex_oop), whose masks come
630  // from the usual MachNode/MachOper mechanism.  Find a sample
631  // TailJump to extract these masks and put the correct masks into
632  // the tail_jump_rms array.
633  for( i=1; i < root->req(); i++ ) {
634    MachReturnNode *m = root->in(i)->as_MachReturn();
635    if( m->ideal_Opcode() == Op_TailJump ) {
636      tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
637      tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
638      break;
639    }
640  }
641
642  // Input RegMask array shared by all Halts
643  uint halt_edge_cnt = TypeFunc::Parms;
644  RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
645
646  // Capture the return input masks into each exit flavor
647  for( i=1; i < root->req(); i++ ) {
648    MachReturnNode *exit = root->in(i)->as_MachReturn();
649    switch( exit->ideal_Opcode() ) {
650      case Op_Return   : exit->_in_rms = ret_rms;  break;
651      case Op_Rethrow  : exit->_in_rms = reth_rms; break;
652      case Op_TailCall : exit->_in_rms = tail_call_rms; break;
653      case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
654      case Op_Halt     : exit->_in_rms = halt_rms; break;
655      default          : ShouldNotReachHere();
656    }
657  }
658
659  // Next unused projection number from Start.
660  int proj_cnt = C->tf()->domain()->cnt();
661
662  // Do all the save-on-entry registers.  Make projections from Start for
663  // them, and give them a use at the exit points.  To the allocator, they
664  // look like incoming register arguments.
665  for( i = 0; i < _last_Mach_Reg; i++ ) {
666    if( is_save_on_entry(i) ) {
667
668      // Add the save-on-entry to the mask array
669      ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
670      reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
671      tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
672      tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
673      // Halts need the SOE registers, but only in the stack as debug info.
674      // A just-prior uncommon-trap or deoptimization will use the SOE regs.
675      halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
676
677      Node *mproj;
678
679      // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
680      // into a single RegD.
681      if( (i&1) == 0 &&
682          _register_save_type[i  ] == Op_RegF &&
683          _register_save_type[i+1] == Op_RegF &&
684          is_save_on_entry(i+1) ) {
685        // Add other bit for double
686        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
687        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
688        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
689        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
690        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
691        mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
692        proj_cnt += 2;          // Skip 2 for doubles
693      }
694      else if( (i&1) == 1 &&    // Else check for high half of double
695               _register_save_type[i-1] == Op_RegF &&
696               _register_save_type[i  ] == Op_RegF &&
697               is_save_on_entry(i-1) ) {
698        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
699        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
700        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
701        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
702        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
703        mproj = C->top();
704      }
705      // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
706      // into a single RegL.
707      else if( (i&1) == 0 &&
708          _register_save_type[i  ] == Op_RegI &&
709          _register_save_type[i+1] == Op_RegI &&
710        is_save_on_entry(i+1) ) {
711        // Add other bit for long
712        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
713        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
714        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
715        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
716        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
717        mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
718        proj_cnt += 2;          // Skip 2 for longs
719      }
720      else if( (i&1) == 1 &&    // Else check for high half of long
721               _register_save_type[i-1] == Op_RegI &&
722               _register_save_type[i  ] == Op_RegI &&
723               is_save_on_entry(i-1) ) {
724        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
725        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
726        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
727        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
728        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
729        mproj = C->top();
730      } else {
731        // Make a projection for it off the Start
732        mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
733      }
734
735      ret_edge_cnt ++;
736      reth_edge_cnt ++;
737      tail_call_edge_cnt ++;
738      tail_jump_edge_cnt ++;
739      halt_edge_cnt ++;
740
741      // Add a use of the SOE register to all exit paths
742      for( uint j=1; j < root->req(); j++ )
743        root->in(j)->add_req(mproj);
744    } // End of if a save-on-entry register
745  } // End of for all machine registers
746}
747
748//------------------------------init_spill_mask--------------------------------
749void Matcher::init_spill_mask( Node *ret ) {
750  if( idealreg2regmask[Op_RegI] ) return; // One time only init
751
752  OptoReg::c_frame_pointer = c_frame_pointer();
753  c_frame_ptr_mask = c_frame_pointer();
754#ifdef _LP64
755  // pointers are twice as big
756  c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
757#endif
758
759  // Start at OptoReg::stack0()
760  STACK_ONLY_mask.Clear();
761  OptoReg::Name init = OptoReg::stack2reg(0);
762  // STACK_ONLY_mask is all stack bits
763  OptoReg::Name i;
764  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
765    STACK_ONLY_mask.Insert(i);
766  // Also set the "infinite stack" bit.
767  STACK_ONLY_mask.set_AllStack();
768
769  // Copy the register names over into the shared world
770  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
771    // SharedInfo::regName[i] = regName[i];
772    // Handy RegMasks per machine register
773    mreg2regmask[i].Insert(i);
774  }
775
776  // Grab the Frame Pointer
777  Node *fp  = ret->in(TypeFunc::FramePtr);
778  Node *mem = ret->in(TypeFunc::Memory);
779  const TypePtr* atp = TypePtr::BOTTOM;
780  // Share frame pointer while making spill ops
781  set_shared(fp);
782
783  // Compute generic short-offset Loads
784#ifdef _LP64
785  MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
786#endif
787  MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
788  MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
789  MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
790  MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
791  MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
792  assert(spillI != NULL && spillL != NULL && spillF != NULL &&
793         spillD != NULL && spillP != NULL, "");
794
795  // Get the ADLC notion of the right regmask, for each basic type.
796#ifdef _LP64
797  idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
798#endif
799  idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
800  idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
801  idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
802  idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
803  idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
804}
805
806#ifdef ASSERT
807static void match_alias_type(Compile* C, Node* n, Node* m) {
808  if (!VerifyAliases)  return;  // do not go looking for trouble by default
809  const TypePtr* nat = n->adr_type();
810  const TypePtr* mat = m->adr_type();
811  int nidx = C->get_alias_index(nat);
812  int midx = C->get_alias_index(mat);
813  // Detune the assert for cases like (AndI 0xFF (LoadB p)).
814  if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
815    for (uint i = 1; i < n->req(); i++) {
816      Node* n1 = n->in(i);
817      const TypePtr* n1at = n1->adr_type();
818      if (n1at != NULL) {
819        nat = n1at;
820        nidx = C->get_alias_index(n1at);
821      }
822    }
823  }
824  // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
825  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
826    switch (n->Opcode()) {
827    case Op_PrefetchRead:
828    case Op_PrefetchWrite:
829      nidx = Compile::AliasIdxRaw;
830      nat = TypeRawPtr::BOTTOM;
831      break;
832    }
833  }
834  if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
835    switch (n->Opcode()) {
836    case Op_ClearArray:
837      midx = Compile::AliasIdxRaw;
838      mat = TypeRawPtr::BOTTOM;
839      break;
840    }
841  }
842  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
843    switch (n->Opcode()) {
844    case Op_Return:
845    case Op_Rethrow:
846    case Op_Halt:
847    case Op_TailCall:
848    case Op_TailJump:
849      nidx = Compile::AliasIdxBot;
850      nat = TypePtr::BOTTOM;
851      break;
852    }
853  }
854  if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
855    switch (n->Opcode()) {
856    case Op_StrComp:
857    case Op_StrEquals:
858    case Op_StrIndexOf:
859    case Op_AryEq:
860    case Op_MemBarVolatile:
861    case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
862      nidx = Compile::AliasIdxTop;
863      nat = NULL;
864      break;
865    }
866  }
867  if (nidx != midx) {
868    if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
869      tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
870      n->dump();
871      m->dump();
872    }
873    assert(C->subsume_loads() && C->must_alias(nat, midx),
874           "must not lose alias info when matching");
875  }
876}
877#endif
878
879
880//------------------------------MStack-----------------------------------------
881// State and MStack class used in xform() and find_shared() iterative methods.
882enum Node_State { Pre_Visit,  // node has to be pre-visited
883                      Visit,  // visit node
884                 Post_Visit,  // post-visit node
885             Alt_Post_Visit   // alternative post-visit path
886                };
887
888class MStack: public Node_Stack {
889  public:
890    MStack(int size) : Node_Stack(size) { }
891
892    void push(Node *n, Node_State ns) {
893      Node_Stack::push(n, (uint)ns);
894    }
895    void push(Node *n, Node_State ns, Node *parent, int indx) {
896      ++_inode_top;
897      if ((_inode_top + 1) >= _inode_max) grow();
898      _inode_top->node = parent;
899      _inode_top->indx = (uint)indx;
900      ++_inode_top;
901      _inode_top->node = n;
902      _inode_top->indx = (uint)ns;
903    }
904    Node *parent() {
905      pop();
906      return node();
907    }
908    Node_State state() const {
909      return (Node_State)index();
910    }
911    void set_state(Node_State ns) {
912      set_index((uint)ns);
913    }
914};
915
916
917//------------------------------xform------------------------------------------
918// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
919// Node in new-space.  Given a new-space Node, recursively walk his children.
920Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
921Node *Matcher::xform( Node *n, int max_stack ) {
922  // Use one stack to keep both: child's node/state and parent's node/index
923  MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
924  mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
925
926  while (mstack.is_nonempty()) {
927    n = mstack.node();          // Leave node on stack
928    Node_State nstate = mstack.state();
929    if (nstate == Visit) {
930      mstack.set_state(Post_Visit);
931      Node *oldn = n;
932      // Old-space or new-space check
933      if (!C->node_arena()->contains(n)) {
934        // Old space!
935        Node* m;
936        if (has_new_node(n)) {  // Not yet Label/Reduced
937          m = new_node(n);
938        } else {
939          if (!is_dontcare(n)) { // Matcher can match this guy
940            // Calls match special.  They match alone with no children.
941            // Their children, the incoming arguments, match normally.
942            m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
943            if (C->failing())  return NULL;
944            if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
945          } else {                  // Nothing the matcher cares about
946            if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
947              // Convert to machine-dependent projection
948              m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
949#ifdef ASSERT
950              _new2old_map.map(m->_idx, n);
951#endif
952              if (m->in(0) != NULL) // m might be top
953                collect_null_checks(m, n);
954            } else {                // Else just a regular 'ol guy
955              m = n->clone();       // So just clone into new-space
956#ifdef ASSERT
957              _new2old_map.map(m->_idx, n);
958#endif
959              // Def-Use edges will be added incrementally as Uses
960              // of this node are matched.
961              assert(m->outcnt() == 0, "no Uses of this clone yet");
962            }
963          }
964
965          set_new_node(n, m);       // Map old to new
966          if (_old_node_note_array != NULL) {
967            Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
968                                                  n->_idx);
969            C->set_node_notes_at(m->_idx, nn);
970          }
971          debug_only(match_alias_type(C, n, m));
972        }
973        n = m;    // n is now a new-space node
974        mstack.set_node(n);
975      }
976
977      // New space!
978      if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
979
980      int i;
981      // Put precedence edges on stack first (match them last).
982      for (i = oldn->req(); (uint)i < oldn->len(); i++) {
983        Node *m = oldn->in(i);
984        if (m == NULL) break;
985        // set -1 to call add_prec() instead of set_req() during Step1
986        mstack.push(m, Visit, n, -1);
987      }
988
989      // For constant debug info, I'd rather have unmatched constants.
990      int cnt = n->req();
991      JVMState* jvms = n->jvms();
992      int debug_cnt = jvms ? jvms->debug_start() : cnt;
993
994      // Now do only debug info.  Clone constants rather than matching.
995      // Constants are represented directly in the debug info without
996      // the need for executable machine instructions.
997      // Monitor boxes are also represented directly.
998      for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
999        Node *m = n->in(i);          // Get input
1000        int op = m->Opcode();
1001        assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1002        if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
1003            op == Op_ConF || op == Op_ConD || op == Op_ConL
1004            // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1005            ) {
1006          m = m->clone();
1007#ifdef ASSERT
1008          _new2old_map.map(m->_idx, n);
1009#endif
1010          mstack.push(m, Post_Visit, n, i); // Don't need to visit
1011          mstack.push(m->in(0), Visit, m, 0);
1012        } else {
1013          mstack.push(m, Visit, n, i);
1014        }
1015      }
1016
1017      // And now walk his children, and convert his inputs to new-space.
1018      for( ; i >= 0; --i ) { // For all normal inputs do
1019        Node *m = n->in(i);  // Get input
1020        if(m != NULL)
1021          mstack.push(m, Visit, n, i);
1022      }
1023
1024    }
1025    else if (nstate == Post_Visit) {
1026      // Set xformed input
1027      Node *p = mstack.parent();
1028      if (p != NULL) { // root doesn't have parent
1029        int i = (int)mstack.index();
1030        if (i >= 0)
1031          p->set_req(i, n); // required input
1032        else if (i == -1)
1033          p->add_prec(n);   // precedence input
1034        else
1035          ShouldNotReachHere();
1036      }
1037      mstack.pop(); // remove processed node from stack
1038    }
1039    else {
1040      ShouldNotReachHere();
1041    }
1042  } // while (mstack.is_nonempty())
1043  return n; // Return new-space Node
1044}
1045
1046//------------------------------warp_outgoing_stk_arg------------------------
1047OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1048  // Convert outgoing argument location to a pre-biased stack offset
1049  if (reg->is_stack()) {
1050    OptoReg::Name warped = reg->reg2stack();
1051    // Adjust the stack slot offset to be the register number used
1052    // by the allocator.
1053    warped = OptoReg::add(begin_out_arg_area, warped);
1054    // Keep track of the largest numbered stack slot used for an arg.
1055    // Largest used slot per call-site indicates the amount of stack
1056    // that is killed by the call.
1057    if( warped >= out_arg_limit_per_call )
1058      out_arg_limit_per_call = OptoReg::add(warped,1);
1059    if (!RegMask::can_represent(warped)) {
1060      C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1061      return OptoReg::Bad;
1062    }
1063    return warped;
1064  }
1065  return OptoReg::as_OptoReg(reg);
1066}
1067
1068
1069//------------------------------match_sfpt-------------------------------------
1070// Helper function to match call instructions.  Calls match special.
1071// They match alone with no children.  Their children, the incoming
1072// arguments, match normally.
1073MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1074  MachSafePointNode *msfpt = NULL;
1075  MachCallNode      *mcall = NULL;
1076  uint               cnt;
1077  // Split out case for SafePoint vs Call
1078  CallNode *call;
1079  const TypeTuple *domain;
1080  ciMethod*        method = NULL;
1081  bool             is_method_handle_invoke = false;  // for special kill effects
1082  if( sfpt->is_Call() ) {
1083    call = sfpt->as_Call();
1084    domain = call->tf()->domain();
1085    cnt = domain->cnt();
1086
1087    // Match just the call, nothing else
1088    MachNode *m = match_tree(call);
1089    if (C->failing())  return NULL;
1090    if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1091
1092    // Copy data from the Ideal SafePoint to the machine version
1093    mcall = m->as_MachCall();
1094
1095    mcall->set_tf(         call->tf());
1096    mcall->set_entry_point(call->entry_point());
1097    mcall->set_cnt(        call->cnt());
1098
1099    if( mcall->is_MachCallJava() ) {
1100      MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1101      const CallJavaNode *call_java =  call->as_CallJava();
1102      method = call_java->method();
1103      mcall_java->_method = method;
1104      mcall_java->_bci = call_java->_bci;
1105      mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1106      is_method_handle_invoke = call_java->is_method_handle_invoke();
1107      mcall_java->_method_handle_invoke = is_method_handle_invoke;
1108      if( mcall_java->is_MachCallStaticJava() )
1109        mcall_java->as_MachCallStaticJava()->_name =
1110         call_java->as_CallStaticJava()->_name;
1111      if( mcall_java->is_MachCallDynamicJava() )
1112        mcall_java->as_MachCallDynamicJava()->_vtable_index =
1113         call_java->as_CallDynamicJava()->_vtable_index;
1114    }
1115    else if( mcall->is_MachCallRuntime() ) {
1116      mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1117    }
1118    msfpt = mcall;
1119  }
1120  // This is a non-call safepoint
1121  else {
1122    call = NULL;
1123    domain = NULL;
1124    MachNode *mn = match_tree(sfpt);
1125    if (C->failing())  return NULL;
1126    msfpt = mn->as_MachSafePoint();
1127    cnt = TypeFunc::Parms;
1128  }
1129
1130  // Advertise the correct memory effects (for anti-dependence computation).
1131  msfpt->set_adr_type(sfpt->adr_type());
1132
1133  // Allocate a private array of RegMasks.  These RegMasks are not shared.
1134  msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1135  // Empty them all.
1136  memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1137
1138  // Do all the pre-defined non-Empty register masks
1139  msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1140  msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1141
1142  // Place first outgoing argument can possibly be put.
1143  OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1144  assert( is_even(begin_out_arg_area), "" );
1145  // Compute max outgoing register number per call site.
1146  OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1147  // Calls to C may hammer extra stack slots above and beyond any arguments.
1148  // These are usually backing store for register arguments for varargs.
1149  if( call != NULL && call->is_CallRuntime() )
1150    out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1151
1152
1153  // Do the normal argument list (parameters) register masks
1154  int argcnt = cnt - TypeFunc::Parms;
1155  if( argcnt > 0 ) {          // Skip it all if we have no args
1156    BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1157    VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1158    int i;
1159    for( i = 0; i < argcnt; i++ ) {
1160      sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1161    }
1162    // V-call to pick proper calling convention
1163    call->calling_convention( sig_bt, parm_regs, argcnt );
1164
1165#ifdef ASSERT
1166    // Sanity check users' calling convention.  Really handy during
1167    // the initial porting effort.  Fairly expensive otherwise.
1168    { for (int i = 0; i<argcnt; i++) {
1169      if( !parm_regs[i].first()->is_valid() &&
1170          !parm_regs[i].second()->is_valid() ) continue;
1171      VMReg reg1 = parm_regs[i].first();
1172      VMReg reg2 = parm_regs[i].second();
1173      for (int j = 0; j < i; j++) {
1174        if( !parm_regs[j].first()->is_valid() &&
1175            !parm_regs[j].second()->is_valid() ) continue;
1176        VMReg reg3 = parm_regs[j].first();
1177        VMReg reg4 = parm_regs[j].second();
1178        if( !reg1->is_valid() ) {
1179          assert( !reg2->is_valid(), "valid halvsies" );
1180        } else if( !reg3->is_valid() ) {
1181          assert( !reg4->is_valid(), "valid halvsies" );
1182        } else {
1183          assert( reg1 != reg2, "calling conv. must produce distinct regs");
1184          assert( reg1 != reg3, "calling conv. must produce distinct regs");
1185          assert( reg1 != reg4, "calling conv. must produce distinct regs");
1186          assert( reg2 != reg3, "calling conv. must produce distinct regs");
1187          assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1188          assert( reg3 != reg4, "calling conv. must produce distinct regs");
1189        }
1190      }
1191    }
1192    }
1193#endif
1194
1195    // Visit each argument.  Compute its outgoing register mask.
1196    // Return results now can have 2 bits returned.
1197    // Compute max over all outgoing arguments both per call-site
1198    // and over the entire method.
1199    for( i = 0; i < argcnt; i++ ) {
1200      // Address of incoming argument mask to fill in
1201      RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1202      if( !parm_regs[i].first()->is_valid() &&
1203          !parm_regs[i].second()->is_valid() ) {
1204        continue;               // Avoid Halves
1205      }
1206      // Grab first register, adjust stack slots and insert in mask.
1207      OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1208      if (OptoReg::is_valid(reg1))
1209        rm->Insert( reg1 );
1210      // Grab second register (if any), adjust stack slots and insert in mask.
1211      OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1212      if (OptoReg::is_valid(reg2))
1213        rm->Insert( reg2 );
1214    } // End of for all arguments
1215
1216    // Compute number of stack slots needed to restore stack in case of
1217    // Pascal-style argument popping.
1218    mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1219  }
1220
1221  if (is_method_handle_invoke) {
1222    // Kill some extra stack space in case method handles want to do
1223    // a little in-place argument insertion.
1224    int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
1225    out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
1226    // Do not update mcall->_argsize because (a) the extra space is not
1227    // pushed as arguments and (b) _argsize is dead (not used anywhere).
1228  }
1229
1230  // Compute the max stack slot killed by any call.  These will not be
1231  // available for debug info, and will be used to adjust FIRST_STACK_mask
1232  // after all call sites have been visited.
1233  if( _out_arg_limit < out_arg_limit_per_call)
1234    _out_arg_limit = out_arg_limit_per_call;
1235
1236  if (mcall) {
1237    // Kill the outgoing argument area, including any non-argument holes and
1238    // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1239    // Since the max-per-method covers the max-per-call-site and debug info
1240    // is excluded on the max-per-method basis, debug info cannot land in
1241    // this killed area.
1242    uint r_cnt = mcall->tf()->range()->cnt();
1243    MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1244    if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1245      C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1246    } else {
1247      for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1248        proj->_rout.Insert(OptoReg::Name(i));
1249    }
1250    if( proj->_rout.is_NotEmpty() )
1251      _proj_list.push(proj);
1252  }
1253  // Transfer the safepoint information from the call to the mcall
1254  // Move the JVMState list
1255  msfpt->set_jvms(sfpt->jvms());
1256  for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1257    jvms->set_map(sfpt);
1258  }
1259
1260  // Debug inputs begin just after the last incoming parameter
1261  assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1262          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1263
1264  // Move the OopMap
1265  msfpt->_oop_map = sfpt->_oop_map;
1266
1267  // Registers killed by the call are set in the local scheduling pass
1268  // of Global Code Motion.
1269  return msfpt;
1270}
1271
1272//---------------------------match_tree----------------------------------------
1273// Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1274// of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1275// making GotoNodes while building the CFG and in init_spill_mask() to identify
1276// a Load's result RegMask for memoization in idealreg2regmask[]
1277MachNode *Matcher::match_tree( const Node *n ) {
1278  assert( n->Opcode() != Op_Phi, "cannot match" );
1279  assert( !n->is_block_start(), "cannot match" );
1280  // Set the mark for all locally allocated State objects.
1281  // When this call returns, the _states_arena arena will be reset
1282  // freeing all State objects.
1283  ResourceMark rm( &_states_arena );
1284
1285  LabelRootDepth = 0;
1286
1287  // StoreNodes require their Memory input to match any LoadNodes
1288  Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1289#ifdef ASSERT
1290  Node* save_mem_node = _mem_node;
1291  _mem_node = n->is_Store() ? (Node*)n : NULL;
1292#endif
1293  // State object for root node of match tree
1294  // Allocate it on _states_arena - stack allocation can cause stack overflow.
1295  State *s = new (&_states_arena) State;
1296  s->_kids[0] = NULL;
1297  s->_kids[1] = NULL;
1298  s->_leaf = (Node*)n;
1299  // Label the input tree, allocating labels from top-level arena
1300  Label_Root( n, s, n->in(0), mem );
1301  if (C->failing())  return NULL;
1302
1303  // The minimum cost match for the whole tree is found at the root State
1304  uint mincost = max_juint;
1305  uint cost = max_juint;
1306  uint i;
1307  for( i = 0; i < NUM_OPERANDS; i++ ) {
1308    if( s->valid(i) &&                // valid entry and
1309        s->_cost[i] < cost &&         // low cost and
1310        s->_rule[i] >= NUM_OPERANDS ) // not an operand
1311      cost = s->_cost[mincost=i];
1312  }
1313  if (mincost == max_juint) {
1314#ifndef PRODUCT
1315    tty->print("No matching rule for:");
1316    s->dump();
1317#endif
1318    Matcher::soft_match_failure();
1319    return NULL;
1320  }
1321  // Reduce input tree based upon the state labels to machine Nodes
1322  MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1323#ifdef ASSERT
1324  _old2new_map.map(n->_idx, m);
1325  _new2old_map.map(m->_idx, (Node*)n);
1326#endif
1327
1328  // Add any Matcher-ignored edges
1329  uint cnt = n->req();
1330  uint start = 1;
1331  if( mem != (Node*)1 ) start = MemNode::Memory+1;
1332  if( n->is_AddP() ) {
1333    assert( mem == (Node*)1, "" );
1334    start = AddPNode::Base+1;
1335  }
1336  for( i = start; i < cnt; i++ ) {
1337    if( !n->match_edge(i) ) {
1338      if( i < m->req() )
1339        m->ins_req( i, n->in(i) );
1340      else
1341        m->add_req( n->in(i) );
1342    }
1343  }
1344
1345  debug_only( _mem_node = save_mem_node; )
1346  return m;
1347}
1348
1349
1350//------------------------------match_into_reg---------------------------------
1351// Choose to either match this Node in a register or part of the current
1352// match tree.  Return true for requiring a register and false for matching
1353// as part of the current match tree.
1354static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1355
1356  const Type *t = m->bottom_type();
1357
1358  if( t->singleton() ) {
1359    // Never force constants into registers.  Allow them to match as
1360    // constants or registers.  Copies of the same value will share
1361    // the same register.  See find_shared_node.
1362    return false;
1363  } else {                      // Not a constant
1364    // Stop recursion if they have different Controls.
1365    // Slot 0 of constants is not really a Control.
1366    if( control && m->in(0) && control != m->in(0) ) {
1367
1368      // Actually, we can live with the most conservative control we
1369      // find, if it post-dominates the others.  This allows us to
1370      // pick up load/op/store trees where the load can float a little
1371      // above the store.
1372      Node *x = control;
1373      const uint max_scan = 6;   // Arbitrary scan cutoff
1374      uint j;
1375      for( j=0; j<max_scan; j++ ) {
1376        if( x->is_Region() )    // Bail out at merge points
1377          return true;
1378        x = x->in(0);
1379        if( x == m->in(0) )     // Does 'control' post-dominate
1380          break;                // m->in(0)?  If so, we can use it
1381      }
1382      if( j == max_scan )       // No post-domination before scan end?
1383        return true;            // Then break the match tree up
1384    }
1385    if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
1386      // These are commonly used in address expressions and can
1387      // efficiently fold into them on X64 in some cases.
1388      return false;
1389    }
1390  }
1391
1392  // Not forceable cloning.  If shared, put it into a register.
1393  return shared;
1394}
1395
1396
1397//------------------------------Instruction Selection--------------------------
1398// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1399// ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1400// things the Matcher does not match (e.g., Memory), and things with different
1401// Controls (hence forced into different blocks).  We pass in the Control
1402// selected for this entire State tree.
1403
1404// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1405// Store and the Load must have identical Memories (as well as identical
1406// pointers).  Since the Matcher does not have anything for Memory (and
1407// does not handle DAGs), I have to match the Memory input myself.  If the
1408// Tree root is a Store, I require all Loads to have the identical memory.
1409Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1410  // Since Label_Root is a recursive function, its possible that we might run
1411  // out of stack space.  See bugs 6272980 & 6227033 for more info.
1412  LabelRootDepth++;
1413  if (LabelRootDepth > MaxLabelRootDepth) {
1414    C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1415    return NULL;
1416  }
1417  uint care = 0;                // Edges matcher cares about
1418  uint cnt = n->req();
1419  uint i = 0;
1420
1421  // Examine children for memory state
1422  // Can only subsume a child into your match-tree if that child's memory state
1423  // is not modified along the path to another input.
1424  // It is unsafe even if the other inputs are separate roots.
1425  Node *input_mem = NULL;
1426  for( i = 1; i < cnt; i++ ) {
1427    if( !n->match_edge(i) ) continue;
1428    Node *m = n->in(i);         // Get ith input
1429    assert( m, "expect non-null children" );
1430    if( m->is_Load() ) {
1431      if( input_mem == NULL ) {
1432        input_mem = m->in(MemNode::Memory);
1433      } else if( input_mem != m->in(MemNode::Memory) ) {
1434        input_mem = NodeSentinel;
1435      }
1436    }
1437  }
1438
1439  for( i = 1; i < cnt; i++ ){// For my children
1440    if( !n->match_edge(i) ) continue;
1441    Node *m = n->in(i);         // Get ith input
1442    // Allocate states out of a private arena
1443    State *s = new (&_states_arena) State;
1444    svec->_kids[care++] = s;
1445    assert( care <= 2, "binary only for now" );
1446
1447    // Recursively label the State tree.
1448    s->_kids[0] = NULL;
1449    s->_kids[1] = NULL;
1450    s->_leaf = m;
1451
1452    // Check for leaves of the State Tree; things that cannot be a part of
1453    // the current tree.  If it finds any, that value is matched as a
1454    // register operand.  If not, then the normal matching is used.
1455    if( match_into_reg(n, m, control, i, is_shared(m)) ||
1456        //
1457        // Stop recursion if this is LoadNode and the root of this tree is a
1458        // StoreNode and the load & store have different memories.
1459        ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1460        // Can NOT include the match of a subtree when its memory state
1461        // is used by any of the other subtrees
1462        (input_mem == NodeSentinel) ) {
1463#ifndef PRODUCT
1464      // Print when we exclude matching due to different memory states at input-loads
1465      if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1466        && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1467        tty->print_cr("invalid input_mem");
1468      }
1469#endif
1470      // Switch to a register-only opcode; this value must be in a register
1471      // and cannot be subsumed as part of a larger instruction.
1472      s->DFA( m->ideal_reg(), m );
1473
1474    } else {
1475      // If match tree has no control and we do, adopt it for entire tree
1476      if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1477        control = m->in(0);         // Pick up control
1478      // Else match as a normal part of the match tree.
1479      control = Label_Root(m,s,control,mem);
1480      if (C->failing()) return NULL;
1481    }
1482  }
1483
1484
1485  // Call DFA to match this node, and return
1486  svec->DFA( n->Opcode(), n );
1487
1488#ifdef ASSERT
1489  uint x;
1490  for( x = 0; x < _LAST_MACH_OPER; x++ )
1491    if( svec->valid(x) )
1492      break;
1493
1494  if (x >= _LAST_MACH_OPER) {
1495    n->dump();
1496    svec->dump();
1497    assert( false, "bad AD file" );
1498  }
1499#endif
1500  return control;
1501}
1502
1503
1504// Con nodes reduced using the same rule can share their MachNode
1505// which reduces the number of copies of a constant in the final
1506// program.  The register allocator is free to split uses later to
1507// split live ranges.
1508MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1509  if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1510
1511  // See if this Con has already been reduced using this rule.
1512  if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1513  MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1514  if (last != NULL && rule == last->rule()) {
1515    // Don't expect control change for DecodeN
1516    if (leaf->is_DecodeN())
1517      return last;
1518    // Get the new space root.
1519    Node* xroot = new_node(C->root());
1520    if (xroot == NULL) {
1521      // This shouldn't happen give the order of matching.
1522      return NULL;
1523    }
1524
1525    // Shared constants need to have their control be root so they
1526    // can be scheduled properly.
1527    Node* control = last->in(0);
1528    if (control != xroot) {
1529      if (control == NULL || control == C->root()) {
1530        last->set_req(0, xroot);
1531      } else {
1532        assert(false, "unexpected control");
1533        return NULL;
1534      }
1535    }
1536    return last;
1537  }
1538  return NULL;
1539}
1540
1541
1542//------------------------------ReduceInst-------------------------------------
1543// Reduce a State tree (with given Control) into a tree of MachNodes.
1544// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1545// complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1546// Each MachNode has a number of complicated MachOper operands; each
1547// MachOper also covers a further tree of Ideal Nodes.
1548
1549// The root of the Ideal match tree is always an instruction, so we enter
1550// the recursion here.  After building the MachNode, we need to recurse
1551// the tree checking for these cases:
1552// (1) Child is an instruction -
1553//     Build the instruction (recursively), add it as an edge.
1554//     Build a simple operand (register) to hold the result of the instruction.
1555// (2) Child is an interior part of an instruction -
1556//     Skip over it (do nothing)
1557// (3) Child is the start of a operand -
1558//     Build the operand, place it inside the instruction
1559//     Call ReduceOper.
1560MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1561  assert( rule >= NUM_OPERANDS, "called with operand rule" );
1562
1563  MachNode* shared_node = find_shared_node(s->_leaf, rule);
1564  if (shared_node != NULL) {
1565    return shared_node;
1566  }
1567
1568  // Build the object to represent this state & prepare for recursive calls
1569  MachNode *mach = s->MachNodeGenerator( rule, C );
1570  mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1571  assert( mach->_opnds[0] != NULL, "Missing result operand" );
1572  Node *leaf = s->_leaf;
1573  // Check for instruction or instruction chain rule
1574  if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1575    assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1576           "duplicating node that's already been matched");
1577    // Instruction
1578    mach->add_req( leaf->in(0) ); // Set initial control
1579    // Reduce interior of complex instruction
1580    ReduceInst_Interior( s, rule, mem, mach, 1 );
1581  } else {
1582    // Instruction chain rules are data-dependent on their inputs
1583    mach->add_req(0);             // Set initial control to none
1584    ReduceInst_Chain_Rule( s, rule, mem, mach );
1585  }
1586
1587  // If a Memory was used, insert a Memory edge
1588  if( mem != (Node*)1 ) {
1589    mach->ins_req(MemNode::Memory,mem);
1590#ifdef ASSERT
1591    // Verify adr type after matching memory operation
1592    const MachOper* oper = mach->memory_operand();
1593    if (oper != NULL && oper != (MachOper*)-1) {
1594      // It has a unique memory operand.  Find corresponding ideal mem node.
1595      Node* m = NULL;
1596      if (leaf->is_Mem()) {
1597        m = leaf;
1598      } else {
1599        m = _mem_node;
1600        assert(m != NULL && m->is_Mem(), "expecting memory node");
1601      }
1602      const Type* mach_at = mach->adr_type();
1603      // DecodeN node consumed by an address may have different type
1604      // then its input. Don't compare types for such case.
1605      if (m->adr_type() != mach_at &&
1606          (m->in(MemNode::Address)->is_DecodeN() ||
1607           m->in(MemNode::Address)->is_AddP() &&
1608           m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1609           m->in(MemNode::Address)->is_AddP() &&
1610           m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1611           m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1612        mach_at = m->adr_type();
1613      }
1614      if (m->adr_type() != mach_at) {
1615        m->dump();
1616        tty->print_cr("mach:");
1617        mach->dump(1);
1618      }
1619      assert(m->adr_type() == mach_at, "matcher should not change adr type");
1620    }
1621#endif
1622  }
1623
1624  // If the _leaf is an AddP, insert the base edge
1625  if( leaf->is_AddP() )
1626    mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1627
1628  uint num_proj = _proj_list.size();
1629
1630  // Perform any 1-to-many expansions required
1631  MachNode *ex = mach->Expand(s,_proj_list, mem);
1632  if( ex != mach ) {
1633    assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1634    if( ex->in(1)->is_Con() )
1635      ex->in(1)->set_req(0, C->root());
1636    // Remove old node from the graph
1637    for( uint i=0; i<mach->req(); i++ ) {
1638      mach->set_req(i,NULL);
1639    }
1640#ifdef ASSERT
1641    _new2old_map.map(ex->_idx, s->_leaf);
1642#endif
1643  }
1644
1645  // PhaseChaitin::fixup_spills will sometimes generate spill code
1646  // via the matcher.  By the time, nodes have been wired into the CFG,
1647  // and any further nodes generated by expand rules will be left hanging
1648  // in space, and will not get emitted as output code.  Catch this.
1649  // Also, catch any new register allocation constraints ("projections")
1650  // generated belatedly during spill code generation.
1651  if (_allocation_started) {
1652    guarantee(ex == mach, "no expand rules during spill generation");
1653    guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1654  }
1655
1656  if (leaf->is_Con() || leaf->is_DecodeN()) {
1657    // Record the con for sharing
1658    _shared_nodes.map(leaf->_idx, ex);
1659  }
1660
1661  return ex;
1662}
1663
1664void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1665  // 'op' is what I am expecting to receive
1666  int op = _leftOp[rule];
1667  // Operand type to catch childs result
1668  // This is what my child will give me.
1669  int opnd_class_instance = s->_rule[op];
1670  // Choose between operand class or not.
1671  // This is what I will receive.
1672  int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1673  // New rule for child.  Chase operand classes to get the actual rule.
1674  int newrule = s->_rule[catch_op];
1675
1676  if( newrule < NUM_OPERANDS ) {
1677    // Chain from operand or operand class, may be output of shared node
1678    assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1679            "Bad AD file: Instruction chain rule must chain from operand");
1680    // Insert operand into array of operands for this instruction
1681    mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1682
1683    ReduceOper( s, newrule, mem, mach );
1684  } else {
1685    // Chain from the result of an instruction
1686    assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1687    mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1688    Node *mem1 = (Node*)1;
1689    debug_only(Node *save_mem_node = _mem_node;)
1690    mach->add_req( ReduceInst(s, newrule, mem1) );
1691    debug_only(_mem_node = save_mem_node;)
1692  }
1693  return;
1694}
1695
1696
1697uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1698  if( s->_leaf->is_Load() ) {
1699    Node *mem2 = s->_leaf->in(MemNode::Memory);
1700    assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1701    debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1702    mem = mem2;
1703  }
1704  if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1705    if( mach->in(0) == NULL )
1706      mach->set_req(0, s->_leaf->in(0));
1707  }
1708
1709  // Now recursively walk the state tree & add operand list.
1710  for( uint i=0; i<2; i++ ) {   // binary tree
1711    State *newstate = s->_kids[i];
1712    if( newstate == NULL ) break;      // Might only have 1 child
1713    // 'op' is what I am expecting to receive
1714    int op;
1715    if( i == 0 ) {
1716      op = _leftOp[rule];
1717    } else {
1718      op = _rightOp[rule];
1719    }
1720    // Operand type to catch childs result
1721    // This is what my child will give me.
1722    int opnd_class_instance = newstate->_rule[op];
1723    // Choose between operand class or not.
1724    // This is what I will receive.
1725    int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1726    // New rule for child.  Chase operand classes to get the actual rule.
1727    int newrule = newstate->_rule[catch_op];
1728
1729    if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1730      // Operand/operandClass
1731      // Insert operand into array of operands for this instruction
1732      mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1733      ReduceOper( newstate, newrule, mem, mach );
1734
1735    } else {                    // Child is internal operand or new instruction
1736      if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1737        // internal operand --> call ReduceInst_Interior
1738        // Interior of complex instruction.  Do nothing but recurse.
1739        num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1740      } else {
1741        // instruction --> call build operand(  ) to catch result
1742        //             --> ReduceInst( newrule )
1743        mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1744        Node *mem1 = (Node*)1;
1745        debug_only(Node *save_mem_node = _mem_node;)
1746        mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1747        debug_only(_mem_node = save_mem_node;)
1748      }
1749    }
1750    assert( mach->_opnds[num_opnds-1], "" );
1751  }
1752  return num_opnds;
1753}
1754
1755// This routine walks the interior of possible complex operands.
1756// At each point we check our children in the match tree:
1757// (1) No children -
1758//     We are a leaf; add _leaf field as an input to the MachNode
1759// (2) Child is an internal operand -
1760//     Skip over it ( do nothing )
1761// (3) Child is an instruction -
1762//     Call ReduceInst recursively and
1763//     and instruction as an input to the MachNode
1764void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1765  assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1766  State *kid = s->_kids[0];
1767  assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1768
1769  // Leaf?  And not subsumed?
1770  if( kid == NULL && !_swallowed[rule] ) {
1771    mach->add_req( s->_leaf );  // Add leaf pointer
1772    return;                     // Bail out
1773  }
1774
1775  if( s->_leaf->is_Load() ) {
1776    assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1777    mem = s->_leaf->in(MemNode::Memory);
1778    debug_only(_mem_node = s->_leaf;)
1779  }
1780  if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1781    if( !mach->in(0) )
1782      mach->set_req(0,s->_leaf->in(0));
1783    else {
1784      assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1785    }
1786  }
1787
1788  for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1789    int newrule;
1790    if( i == 0 )
1791      newrule = kid->_rule[_leftOp[rule]];
1792    else
1793      newrule = kid->_rule[_rightOp[rule]];
1794
1795    if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1796      // Internal operand; recurse but do nothing else
1797      ReduceOper( kid, newrule, mem, mach );
1798
1799    } else {                    // Child is a new instruction
1800      // Reduce the instruction, and add a direct pointer from this
1801      // machine instruction to the newly reduced one.
1802      Node *mem1 = (Node*)1;
1803      debug_only(Node *save_mem_node = _mem_node;)
1804      mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1805      debug_only(_mem_node = save_mem_node;)
1806    }
1807  }
1808}
1809
1810
1811// -------------------------------------------------------------------------
1812// Java-Java calling convention
1813// (what you use when Java calls Java)
1814
1815//------------------------------find_receiver----------------------------------
1816// For a given signature, return the OptoReg for parameter 0.
1817OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1818  VMRegPair regs;
1819  BasicType sig_bt = T_OBJECT;
1820  calling_convention(&sig_bt, &regs, 1, is_outgoing);
1821  // Return argument 0 register.  In the LP64 build pointers
1822  // take 2 registers, but the VM wants only the 'main' name.
1823  return OptoReg::as_OptoReg(regs.first());
1824}
1825
1826// A method-klass-holder may be passed in the inline_cache_reg
1827// and then expanded into the inline_cache_reg and a method_oop register
1828//   defined in ad_<arch>.cpp
1829
1830
1831//------------------------------find_shared------------------------------------
1832// Set bits if Node is shared or otherwise a root
1833void Matcher::find_shared( Node *n ) {
1834  // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1835  MStack mstack(C->unique() * 2);
1836  // Mark nodes as address_visited if they are inputs to an address expression
1837  VectorSet address_visited(Thread::current()->resource_area());
1838  mstack.push(n, Visit);     // Don't need to pre-visit root node
1839  while (mstack.is_nonempty()) {
1840    n = mstack.node();       // Leave node on stack
1841    Node_State nstate = mstack.state();
1842    uint nop = n->Opcode();
1843    if (nstate == Pre_Visit) {
1844      if (address_visited.test(n->_idx)) { // Visited in address already?
1845        // Flag as visited and shared now.
1846        set_visited(n);
1847      }
1848      if (is_visited(n)) {   // Visited already?
1849        // Node is shared and has no reason to clone.  Flag it as shared.
1850        // This causes it to match into a register for the sharing.
1851        set_shared(n);       // Flag as shared and
1852        mstack.pop();        // remove node from stack
1853        continue;
1854      }
1855      nstate = Visit; // Not already visited; so visit now
1856    }
1857    if (nstate == Visit) {
1858      mstack.set_state(Post_Visit);
1859      set_visited(n);   // Flag as visited now
1860      bool mem_op = false;
1861
1862      switch( nop ) {  // Handle some opcodes special
1863      case Op_Phi:             // Treat Phis as shared roots
1864      case Op_Parm:
1865      case Op_Proj:            // All handled specially during matching
1866      case Op_SafePointScalarObject:
1867        set_shared(n);
1868        set_dontcare(n);
1869        break;
1870      case Op_If:
1871      case Op_CountedLoopEnd:
1872        mstack.set_state(Alt_Post_Visit); // Alternative way
1873        // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1874        // with matching cmp/branch in 1 instruction.  The Matcher needs the
1875        // Bool and CmpX side-by-side, because it can only get at constants
1876        // that are at the leaves of Match trees, and the Bool's condition acts
1877        // as a constant here.
1878        mstack.push(n->in(1), Visit);         // Clone the Bool
1879        mstack.push(n->in(0), Pre_Visit);     // Visit control input
1880        continue; // while (mstack.is_nonempty())
1881      case Op_ConvI2D:         // These forms efficiently match with a prior
1882      case Op_ConvI2F:         //   Load but not a following Store
1883        if( n->in(1)->is_Load() &&        // Prior load
1884            n->outcnt() == 1 &&           // Not already shared
1885            n->unique_out()->is_Store() ) // Following store
1886          set_shared(n);       // Force it to be a root
1887        break;
1888      case Op_ReverseBytesI:
1889      case Op_ReverseBytesL:
1890        if( n->in(1)->is_Load() &&        // Prior load
1891            n->outcnt() == 1 )            // Not already shared
1892          set_shared(n);                  // Force it to be a root
1893        break;
1894      case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1895      case Op_IfFalse:
1896      case Op_IfTrue:
1897      case Op_MachProj:
1898      case Op_MergeMem:
1899      case Op_Catch:
1900      case Op_CatchProj:
1901      case Op_CProj:
1902      case Op_JumpProj:
1903      case Op_JProj:
1904      case Op_NeverBranch:
1905        set_dontcare(n);
1906        break;
1907      case Op_Jump:
1908        mstack.push(n->in(1), Visit);         // Switch Value
1909        mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1910        continue;                             // while (mstack.is_nonempty())
1911      case Op_StrComp:
1912      case Op_StrEquals:
1913      case Op_StrIndexOf:
1914      case Op_AryEq:
1915        set_shared(n); // Force result into register (it will be anyways)
1916        break;
1917      case Op_ConP: {  // Convert pointers above the centerline to NUL
1918        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1919        const TypePtr* tp = tn->type()->is_ptr();
1920        if (tp->_ptr == TypePtr::AnyNull) {
1921          tn->set_type(TypePtr::NULL_PTR);
1922        }
1923        break;
1924      }
1925      case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1926        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1927        const TypePtr* tp = tn->type()->make_ptr();
1928        if (tp && tp->_ptr == TypePtr::AnyNull) {
1929          tn->set_type(TypeNarrowOop::NULL_PTR);
1930        }
1931        break;
1932      }
1933      case Op_Binary:         // These are introduced in the Post_Visit state.
1934        ShouldNotReachHere();
1935        break;
1936      case Op_ClearArray:
1937      case Op_SafePoint:
1938        mem_op = true;
1939        break;
1940      default:
1941        if( n->is_Store() ) {
1942          // Do match stores, despite no ideal reg
1943          mem_op = true;
1944          break;
1945        }
1946        if( n->is_Mem() ) { // Loads and LoadStores
1947          mem_op = true;
1948          // Loads must be root of match tree due to prior load conflict
1949          if( C->subsume_loads() == false )
1950            set_shared(n);
1951        }
1952        // Fall into default case
1953        if( !n->ideal_reg() )
1954          set_dontcare(n);  // Unmatchable Nodes
1955      } // end_switch
1956
1957      for(int i = n->req() - 1; i >= 0; --i) { // For my children
1958        Node *m = n->in(i); // Get ith input
1959        if (m == NULL) continue;  // Ignore NULLs
1960        uint mop = m->Opcode();
1961
1962        // Must clone all producers of flags, or we will not match correctly.
1963        // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1964        // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1965        // are also there, so we may match a float-branch to int-flags and
1966        // expect the allocator to haul the flags from the int-side to the
1967        // fp-side.  No can do.
1968        if( _must_clone[mop] ) {
1969          mstack.push(m, Visit);
1970          continue; // for(int i = ...)
1971        }
1972
1973        if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
1974          // Bases used in addresses must be shared but since
1975          // they are shared through a DecodeN they may appear
1976          // to have a single use so force sharing here.
1977          set_shared(m->in(AddPNode::Base)->in(1));
1978        }
1979
1980        // Clone addressing expressions as they are "free" in memory access instructions
1981        if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1982          // Some inputs for address expression are not put on stack
1983          // to avoid marking them as shared and forcing them into register
1984          // if they are used only in address expressions.
1985          // But they should be marked as shared if there are other uses
1986          // besides address expressions.
1987
1988          Node *off = m->in(AddPNode::Offset);
1989          if( off->is_Con() &&
1990              // When there are other uses besides address expressions
1991              // put it on stack and mark as shared.
1992              !is_visited(m) ) {
1993            address_visited.test_set(m->_idx); // Flag as address_visited
1994            Node *adr = m->in(AddPNode::Address);
1995
1996            // Intel, ARM and friends can handle 2 adds in addressing mode
1997            if( clone_shift_expressions && adr->is_AddP() &&
1998                // AtomicAdd is not an addressing expression.
1999                // Cheap to find it by looking for screwy base.
2000                !adr->in(AddPNode::Base)->is_top() &&
2001                // Are there other uses besides address expressions?
2002                !is_visited(adr) ) {
2003              address_visited.set(adr->_idx); // Flag as address_visited
2004              Node *shift = adr->in(AddPNode::Offset);
2005              // Check for shift by small constant as well
2006              if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2007                  shift->in(2)->get_int() <= 3 &&
2008                  // Are there other uses besides address expressions?
2009                  !is_visited(shift) ) {
2010                address_visited.set(shift->_idx); // Flag as address_visited
2011                mstack.push(shift->in(2), Visit);
2012                Node *conv = shift->in(1);
2013#ifdef _LP64
2014                // Allow Matcher to match the rule which bypass
2015                // ConvI2L operation for an array index on LP64
2016                // if the index value is positive.
2017                if( conv->Opcode() == Op_ConvI2L &&
2018                    conv->as_Type()->type()->is_long()->_lo >= 0 &&
2019                    // Are there other uses besides address expressions?
2020                    !is_visited(conv) ) {
2021                  address_visited.set(conv->_idx); // Flag as address_visited
2022                  mstack.push(conv->in(1), Pre_Visit);
2023                } else
2024#endif
2025                mstack.push(conv, Pre_Visit);
2026              } else {
2027                mstack.push(shift, Pre_Visit);
2028              }
2029              mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2030              mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2031            } else {  // Sparc, Alpha, PPC and friends
2032              mstack.push(adr, Pre_Visit);
2033            }
2034
2035            // Clone X+offset as it also folds into most addressing expressions
2036            mstack.push(off, Visit);
2037            mstack.push(m->in(AddPNode::Base), Pre_Visit);
2038            continue; // for(int i = ...)
2039          } // if( off->is_Con() )
2040        }   // if( mem_op &&
2041        mstack.push(m, Pre_Visit);
2042      }     // for(int i = ...)
2043    }
2044    else if (nstate == Alt_Post_Visit) {
2045      mstack.pop(); // Remove node from stack
2046      // We cannot remove the Cmp input from the Bool here, as the Bool may be
2047      // shared and all users of the Bool need to move the Cmp in parallel.
2048      // This leaves both the Bool and the If pointing at the Cmp.  To
2049      // prevent the Matcher from trying to Match the Cmp along both paths
2050      // BoolNode::match_edge always returns a zero.
2051
2052      // We reorder the Op_If in a pre-order manner, so we can visit without
2053      // accidentally sharing the Cmp (the Bool and the If make 2 users).
2054      n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2055    }
2056    else if (nstate == Post_Visit) {
2057      mstack.pop(); // Remove node from stack
2058
2059      // Now hack a few special opcodes
2060      switch( n->Opcode() ) {       // Handle some opcodes special
2061      case Op_StorePConditional:
2062      case Op_StoreIConditional:
2063      case Op_StoreLConditional:
2064      case Op_CompareAndSwapI:
2065      case Op_CompareAndSwapL:
2066      case Op_CompareAndSwapP:
2067      case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2068        Node *newval = n->in(MemNode::ValueIn );
2069        Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
2070        Node *pair = new (C, 3) BinaryNode( oldval, newval );
2071        n->set_req(MemNode::ValueIn,pair);
2072        n->del_req(LoadStoreNode::ExpectedIn);
2073        break;
2074      }
2075      case Op_CMoveD:              // Convert trinary to binary-tree
2076      case Op_CMoveF:
2077      case Op_CMoveI:
2078      case Op_CMoveL:
2079      case Op_CMoveN:
2080      case Op_CMoveP: {
2081        // Restructure into a binary tree for Matching.  It's possible that
2082        // we could move this code up next to the graph reshaping for IfNodes
2083        // or vice-versa, but I do not want to debug this for Ladybird.
2084        // 10/2/2000 CNC.
2085        Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2086        n->set_req(1,pair1);
2087        Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2088        n->set_req(2,pair2);
2089        n->del_req(3);
2090        break;
2091      }
2092      case Op_LoopLimit: {
2093        Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(2));
2094        n->set_req(1,pair1);
2095        n->set_req(2,n->in(3));
2096        n->del_req(3);
2097        break;
2098      }
2099      case Op_StrEquals: {
2100        Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2101        n->set_req(2,pair1);
2102        n->set_req(3,n->in(4));
2103        n->del_req(4);
2104        break;
2105      }
2106      case Op_StrComp:
2107      case Op_StrIndexOf: {
2108        Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2109        n->set_req(2,pair1);
2110        Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
2111        n->set_req(3,pair2);
2112        n->del_req(5);
2113        n->del_req(4);
2114        break;
2115      }
2116      default:
2117        break;
2118      }
2119    }
2120    else {
2121      ShouldNotReachHere();
2122    }
2123  } // end of while (mstack.is_nonempty())
2124}
2125
2126#ifdef ASSERT
2127// machine-independent root to machine-dependent root
2128void Matcher::dump_old2new_map() {
2129  _old2new_map.dump();
2130}
2131#endif
2132
2133//---------------------------collect_null_checks-------------------------------
2134// Find null checks in the ideal graph; write a machine-specific node for
2135// it.  Used by later implicit-null-check handling.  Actually collects
2136// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2137// value being tested.
2138void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2139  Node *iff = proj->in(0);
2140  if( iff->Opcode() == Op_If ) {
2141    // During matching If's have Bool & Cmp side-by-side
2142    BoolNode *b = iff->in(1)->as_Bool();
2143    Node *cmp = iff->in(2);
2144    int opc = cmp->Opcode();
2145    if (opc != Op_CmpP && opc != Op_CmpN) return;
2146
2147    const Type* ct = cmp->in(2)->bottom_type();
2148    if (ct == TypePtr::NULL_PTR ||
2149        (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2150
2151      bool push_it = false;
2152      if( proj->Opcode() == Op_IfTrue ) {
2153        extern int all_null_checks_found;
2154        all_null_checks_found++;
2155        if( b->_test._test == BoolTest::ne ) {
2156          push_it = true;
2157        }
2158      } else {
2159        assert( proj->Opcode() == Op_IfFalse, "" );
2160        if( b->_test._test == BoolTest::eq ) {
2161          push_it = true;
2162        }
2163      }
2164      if( push_it ) {
2165        _null_check_tests.push(proj);
2166        Node* val = cmp->in(1);
2167#ifdef _LP64
2168        if (val->bottom_type()->isa_narrowoop() &&
2169            !Matcher::narrow_oop_use_complex_address()) {
2170          //
2171          // Look for DecodeN node which should be pinned to orig_proj.
2172          // On platforms (Sparc) which can not handle 2 adds
2173          // in addressing mode we have to keep a DecodeN node and
2174          // use it to do implicit NULL check in address.
2175          //
2176          // DecodeN node was pinned to non-null path (orig_proj) during
2177          // CastPP transformation in final_graph_reshaping_impl().
2178          //
2179          uint cnt = orig_proj->outcnt();
2180          for (uint i = 0; i < orig_proj->outcnt(); i++) {
2181            Node* d = orig_proj->raw_out(i);
2182            if (d->is_DecodeN() && d->in(1) == val) {
2183              val = d;
2184              val->set_req(0, NULL); // Unpin now.
2185              // Mark this as special case to distinguish from
2186              // a regular case: CmpP(DecodeN, NULL).
2187              val = (Node*)(((intptr_t)val) | 1);
2188              break;
2189            }
2190          }
2191        }
2192#endif
2193        _null_check_tests.push(val);
2194      }
2195    }
2196  }
2197}
2198
2199//---------------------------validate_null_checks------------------------------
2200// Its possible that the value being NULL checked is not the root of a match
2201// tree.  If so, I cannot use the value in an implicit null check.
2202void Matcher::validate_null_checks( ) {
2203  uint cnt = _null_check_tests.size();
2204  for( uint i=0; i < cnt; i+=2 ) {
2205    Node *test = _null_check_tests[i];
2206    Node *val = _null_check_tests[i+1];
2207    bool is_decoden = ((intptr_t)val) & 1;
2208    val = (Node*)(((intptr_t)val) & ~1);
2209    if (has_new_node(val)) {
2210      Node* new_val = new_node(val);
2211      if (is_decoden) {
2212        assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
2213        // Note: new_val may have a control edge if
2214        // the original ideal node DecodeN was matched before
2215        // it was unpinned in Matcher::collect_null_checks().
2216        // Unpin the mach node and mark it.
2217        new_val->set_req(0, NULL);
2218        new_val = (Node*)(((intptr_t)new_val) | 1);
2219      }
2220      // Is a match-tree root, so replace with the matched value
2221      _null_check_tests.map(i+1, new_val);
2222    } else {
2223      // Yank from candidate list
2224      _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2225      _null_check_tests.map(i,_null_check_tests[--cnt]);
2226      _null_check_tests.pop();
2227      _null_check_tests.pop();
2228      i-=2;
2229    }
2230  }
2231}
2232
2233// Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2234// atomic instruction acting as a store_load barrier without any
2235// intervening volatile load, and thus we don't need a barrier here.
2236// We retain the Node to act as a compiler ordering barrier.
2237bool Matcher::post_store_load_barrier(const Node *vmb) {
2238  Compile *C = Compile::current();
2239  assert( vmb->is_MemBar(), "" );
2240  assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2241  const MemBarNode *mem = (const MemBarNode*)vmb;
2242
2243  // Get the Proj node, ctrl, that can be used to iterate forward
2244  Node *ctrl = NULL;
2245  DUIterator_Fast imax, i = mem->fast_outs(imax);
2246  while( true ) {
2247    ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2248    assert( ctrl->is_Proj(), "only projections here" );
2249    ProjNode *proj = (ProjNode*)ctrl;
2250    if( proj->_con == TypeFunc::Control &&
2251        !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2252      break;
2253    i++;
2254  }
2255
2256  for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2257    Node *x = ctrl->fast_out(j);
2258    int xop = x->Opcode();
2259
2260    // We don't need current barrier if we see another or a lock
2261    // before seeing volatile load.
2262    //
2263    // Op_Fastunlock previously appeared in the Op_* list below.
2264    // With the advent of 1-0 lock operations we're no longer guaranteed
2265    // that a monitor exit operation contains a serializing instruction.
2266
2267    if (xop == Op_MemBarVolatile ||
2268        xop == Op_FastLock ||
2269        xop == Op_CompareAndSwapL ||
2270        xop == Op_CompareAndSwapP ||
2271        xop == Op_CompareAndSwapN ||
2272        xop == Op_CompareAndSwapI)
2273      return true;
2274
2275    if (x->is_MemBar()) {
2276      // We must retain this membar if there is an upcoming volatile
2277      // load, which will be preceded by acquire membar.
2278      if (xop == Op_MemBarAcquire)
2279        return false;
2280      // For other kinds of barriers, check by pretending we
2281      // are them, and seeing if we can be removed.
2282      else
2283        return post_store_load_barrier((const MemBarNode*)x);
2284    }
2285
2286    // Delicate code to detect case of an upcoming fastlock block
2287    if( x->is_If() && x->req() > 1 &&
2288        !C->node_arena()->contains(x) ) { // Unmatched old-space only
2289      Node *iff = x;
2290      Node *bol = iff->in(1);
2291      // The iff might be some random subclass of If or bol might be Con-Top
2292      if (!bol->is_Bool())  return false;
2293      assert( bol->req() > 1, "" );
2294      return (bol->in(1)->Opcode() == Op_FastUnlock);
2295    }
2296    // probably not necessary to check for these
2297    if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2298      return false;
2299  }
2300  return false;
2301}
2302
2303//=============================================================================
2304//---------------------------State---------------------------------------------
2305State::State(void) {
2306#ifdef ASSERT
2307  _id = 0;
2308  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2309  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2310  //memset(_cost, -1, sizeof(_cost));
2311  //memset(_rule, -1, sizeof(_rule));
2312#endif
2313  memset(_valid, 0, sizeof(_valid));
2314}
2315
2316#ifdef ASSERT
2317State::~State() {
2318  _id = 99;
2319  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2320  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2321  memset(_cost, -3, sizeof(_cost));
2322  memset(_rule, -3, sizeof(_rule));
2323}
2324#endif
2325
2326#ifndef PRODUCT
2327//---------------------------dump----------------------------------------------
2328void State::dump() {
2329  tty->print("\n");
2330  dump(0);
2331}
2332
2333void State::dump(int depth) {
2334  for( int j = 0; j < depth; j++ )
2335    tty->print("   ");
2336  tty->print("--N: ");
2337  _leaf->dump();
2338  uint i;
2339  for( i = 0; i < _LAST_MACH_OPER; i++ )
2340    // Check for valid entry
2341    if( valid(i) ) {
2342      for( int j = 0; j < depth; j++ )
2343        tty->print("   ");
2344        assert(_cost[i] != max_juint, "cost must be a valid value");
2345        assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2346        tty->print_cr("%s  %d  %s",
2347                      ruleName[i], _cost[i], ruleName[_rule[i]] );
2348      }
2349  tty->print_cr("");
2350
2351  for( i=0; i<2; i++ )
2352    if( _kids[i] )
2353      _kids[i]->dump(depth+1);
2354}
2355#endif
2356