matcher.cpp revision 1887:828eafbd85cc
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/addnode.hpp"
28#include "opto/callnode.hpp"
29#include "opto/connode.hpp"
30#include "opto/idealGraphPrinter.hpp"
31#include "opto/matcher.hpp"
32#include "opto/memnode.hpp"
33#include "opto/opcodes.hpp"
34#include "opto/regmask.hpp"
35#include "opto/rootnode.hpp"
36#include "opto/runtime.hpp"
37#include "opto/type.hpp"
38#include "runtime/atomic.hpp"
39#include "runtime/os.hpp"
40#ifdef TARGET_ARCH_MODEL_x86_32
41# include "adfiles/ad_x86_32.hpp"
42#endif
43#ifdef TARGET_ARCH_MODEL_x86_64
44# include "adfiles/ad_x86_64.hpp"
45#endif
46#ifdef TARGET_ARCH_MODEL_sparc
47# include "adfiles/ad_sparc.hpp"
48#endif
49#ifdef TARGET_ARCH_MODEL_zero
50# include "adfiles/ad_zero.hpp"
51#endif
52
53OptoReg::Name OptoReg::c_frame_pointer;
54
55
56
57const int Matcher::base2reg[Type::lastype] = {
58  Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
59  Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
60  Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
61  0, 0/*abio*/,
62  Op_RegP /* Return address */, 0, /* the memories */
63  Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
64  0  /*bottom*/
65};
66
67const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
68RegMask Matcher::mreg2regmask[_last_Mach_Reg];
69RegMask Matcher::STACK_ONLY_mask;
70RegMask Matcher::c_frame_ptr_mask;
71const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
72const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
73
74//---------------------------Matcher-------------------------------------------
75Matcher::Matcher( Node_List &proj_list ) :
76  PhaseTransform( Phase::Ins_Select ),
77#ifdef ASSERT
78  _old2new_map(C->comp_arena()),
79  _new2old_map(C->comp_arena()),
80#endif
81  _shared_nodes(C->comp_arena()),
82  _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
83  _swallowed(swallowed),
84  _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
85  _end_inst_chain_rule(_END_INST_CHAIN_RULE),
86  _must_clone(must_clone), _proj_list(proj_list),
87  _register_save_policy(register_save_policy),
88  _c_reg_save_policy(c_reg_save_policy),
89  _register_save_type(register_save_type),
90  _ruleName(ruleName),
91  _allocation_started(false),
92  _states_arena(Chunk::medium_size),
93  _visited(&_states_arena),
94  _shared(&_states_arena),
95  _dontcare(&_states_arena) {
96  C->set_matcher(this);
97
98  idealreg2spillmask  [Op_RegI] = NULL;
99  idealreg2spillmask  [Op_RegN] = NULL;
100  idealreg2spillmask  [Op_RegL] = NULL;
101  idealreg2spillmask  [Op_RegF] = NULL;
102  idealreg2spillmask  [Op_RegD] = NULL;
103  idealreg2spillmask  [Op_RegP] = NULL;
104
105  idealreg2debugmask  [Op_RegI] = NULL;
106  idealreg2debugmask  [Op_RegN] = NULL;
107  idealreg2debugmask  [Op_RegL] = NULL;
108  idealreg2debugmask  [Op_RegF] = NULL;
109  idealreg2debugmask  [Op_RegD] = NULL;
110  idealreg2debugmask  [Op_RegP] = NULL;
111
112  idealreg2mhdebugmask[Op_RegI] = NULL;
113  idealreg2mhdebugmask[Op_RegN] = NULL;
114  idealreg2mhdebugmask[Op_RegL] = NULL;
115  idealreg2mhdebugmask[Op_RegF] = NULL;
116  idealreg2mhdebugmask[Op_RegD] = NULL;
117  idealreg2mhdebugmask[Op_RegP] = NULL;
118
119  debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
120}
121
122//------------------------------warp_incoming_stk_arg------------------------
123// This warps a VMReg into an OptoReg::Name
124OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
125  OptoReg::Name warped;
126  if( reg->is_stack() ) {  // Stack slot argument?
127    warped = OptoReg::add(_old_SP, reg->reg2stack() );
128    warped = OptoReg::add(warped, C->out_preserve_stack_slots());
129    if( warped >= _in_arg_limit )
130      _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
131    if (!RegMask::can_represent(warped)) {
132      // the compiler cannot represent this method's calling sequence
133      C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
134      return OptoReg::Bad;
135    }
136    return warped;
137  }
138  return OptoReg::as_OptoReg(reg);
139}
140
141//---------------------------compute_old_SP------------------------------------
142OptoReg::Name Compile::compute_old_SP() {
143  int fixed    = fixed_slots();
144  int preserve = in_preserve_stack_slots();
145  return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
146}
147
148
149
150#ifdef ASSERT
151void Matcher::verify_new_nodes_only(Node* xroot) {
152  // Make sure that the new graph only references new nodes
153  ResourceMark rm;
154  Unique_Node_List worklist;
155  VectorSet visited(Thread::current()->resource_area());
156  worklist.push(xroot);
157  while (worklist.size() > 0) {
158    Node* n = worklist.pop();
159    visited <<= n->_idx;
160    assert(C->node_arena()->contains(n), "dead node");
161    for (uint j = 0; j < n->req(); j++) {
162      Node* in = n->in(j);
163      if (in != NULL) {
164        assert(C->node_arena()->contains(in), "dead node");
165        if (!visited.test(in->_idx)) {
166          worklist.push(in);
167        }
168      }
169    }
170  }
171}
172#endif
173
174
175//---------------------------match---------------------------------------------
176void Matcher::match( ) {
177  if( MaxLabelRootDepth < 100 ) { // Too small?
178    assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
179    MaxLabelRootDepth = 100;
180  }
181  // One-time initialization of some register masks.
182  init_spill_mask( C->root()->in(1) );
183  _return_addr_mask = return_addr();
184#ifdef _LP64
185  // Pointers take 2 slots in 64-bit land
186  _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
187#endif
188
189  // Map a Java-signature return type into return register-value
190  // machine registers for 0, 1 and 2 returned values.
191  const TypeTuple *range = C->tf()->range();
192  if( range->cnt() > TypeFunc::Parms ) { // If not a void function
193    // Get ideal-register return type
194    int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
195    // Get machine return register
196    uint sop = C->start()->Opcode();
197    OptoRegPair regs = return_value(ireg, false);
198
199    // And mask for same
200    _return_value_mask = RegMask(regs.first());
201    if( OptoReg::is_valid(regs.second()) )
202      _return_value_mask.Insert(regs.second());
203  }
204
205  // ---------------
206  // Frame Layout
207
208  // Need the method signature to determine the incoming argument types,
209  // because the types determine which registers the incoming arguments are
210  // in, and this affects the matched code.
211  const TypeTuple *domain = C->tf()->domain();
212  uint             argcnt = domain->cnt() - TypeFunc::Parms;
213  BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
214  VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
215  _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
216  _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
217  uint i;
218  for( i = 0; i<argcnt; i++ ) {
219    sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
220  }
221
222  // Pass array of ideal registers and length to USER code (from the AD file)
223  // that will convert this to an array of register numbers.
224  const StartNode *start = C->start();
225  start->calling_convention( sig_bt, vm_parm_regs, argcnt );
226#ifdef ASSERT
227  // Sanity check users' calling convention.  Real handy while trying to
228  // get the initial port correct.
229  { for (uint i = 0; i<argcnt; i++) {
230      if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
231        assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
232        _parm_regs[i].set_bad();
233        continue;
234      }
235      VMReg parm_reg = vm_parm_regs[i].first();
236      assert(parm_reg->is_valid(), "invalid arg?");
237      if (parm_reg->is_reg()) {
238        OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
239        assert(can_be_java_arg(opto_parm_reg) ||
240               C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
241               opto_parm_reg == inline_cache_reg(),
242               "parameters in register must be preserved by runtime stubs");
243      }
244      for (uint j = 0; j < i; j++) {
245        assert(parm_reg != vm_parm_regs[j].first(),
246               "calling conv. must produce distinct regs");
247      }
248    }
249  }
250#endif
251
252  // Do some initial frame layout.
253
254  // Compute the old incoming SP (may be called FP) as
255  //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
256  _old_SP = C->compute_old_SP();
257  assert( is_even(_old_SP), "must be even" );
258
259  // Compute highest incoming stack argument as
260  //   _old_SP + out_preserve_stack_slots + incoming argument size.
261  _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
262  assert( is_even(_in_arg_limit), "out_preserve must be even" );
263  for( i = 0; i < argcnt; i++ ) {
264    // Permit args to have no register
265    _calling_convention_mask[i].Clear();
266    if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
267      continue;
268    }
269    // calling_convention returns stack arguments as a count of
270    // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
271    // the allocators point of view, taking into account all the
272    // preserve area, locks & pad2.
273
274    OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
275    if( OptoReg::is_valid(reg1))
276      _calling_convention_mask[i].Insert(reg1);
277
278    OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
279    if( OptoReg::is_valid(reg2))
280      _calling_convention_mask[i].Insert(reg2);
281
282    // Saved biased stack-slot register number
283    _parm_regs[i].set_pair(reg2, reg1);
284  }
285
286  // Finally, make sure the incoming arguments take up an even number of
287  // words, in case the arguments or locals need to contain doubleword stack
288  // slots.  The rest of the system assumes that stack slot pairs (in
289  // particular, in the spill area) which look aligned will in fact be
290  // aligned relative to the stack pointer in the target machine.  Double
291  // stack slots will always be allocated aligned.
292  _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
293
294  // Compute highest outgoing stack argument as
295  //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
296  _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
297  assert( is_even(_out_arg_limit), "out_preserve must be even" );
298
299  if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
300    // the compiler cannot represent this method's calling sequence
301    C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
302  }
303
304  if (C->failing())  return;  // bailed out on incoming arg failure
305
306  // ---------------
307  // Collect roots of matcher trees.  Every node for which
308  // _shared[_idx] is cleared is guaranteed to not be shared, and thus
309  // can be a valid interior of some tree.
310  find_shared( C->root() );
311  find_shared( C->top() );
312
313  C->print_method("Before Matching");
314
315  // Create new ideal node ConP #NULL even if it does exist in old space
316  // to avoid false sharing if the corresponding mach node is not used.
317  // The corresponding mach node is only used in rare cases for derived
318  // pointers.
319  Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
320
321  // Swap out to old-space; emptying new-space
322  Arena *old = C->node_arena()->move_contents(C->old_arena());
323
324  // Save debug and profile information for nodes in old space:
325  _old_node_note_array = C->node_note_array();
326  if (_old_node_note_array != NULL) {
327    C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
328                           (C->comp_arena(), _old_node_note_array->length(),
329                            0, NULL));
330  }
331
332  // Pre-size the new_node table to avoid the need for range checks.
333  grow_new_node_array(C->unique());
334
335  // Reset node counter so MachNodes start with _idx at 0
336  int nodes = C->unique(); // save value
337  C->set_unique(0);
338
339  // Recursively match trees from old space into new space.
340  // Correct leaves of new-space Nodes; they point to old-space.
341  _visited.Clear();             // Clear visit bits for xform call
342  C->set_cached_top_node(xform( C->top(), nodes ));
343  if (!C->failing()) {
344    Node* xroot =        xform( C->root(), 1 );
345    if (xroot == NULL) {
346      Matcher::soft_match_failure();  // recursive matching process failed
347      C->record_method_not_compilable("instruction match failed");
348    } else {
349      // During matching shared constants were attached to C->root()
350      // because xroot wasn't available yet, so transfer the uses to
351      // the xroot.
352      for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
353        Node* n = C->root()->fast_out(j);
354        if (C->node_arena()->contains(n)) {
355          assert(n->in(0) == C->root(), "should be control user");
356          n->set_req(0, xroot);
357          --j;
358          --jmax;
359        }
360      }
361
362      // Generate new mach node for ConP #NULL
363      assert(new_ideal_null != NULL, "sanity");
364      _mach_null = match_tree(new_ideal_null);
365      // Don't set control, it will confuse GCM since there are no uses.
366      // The control will be set when this node is used first time
367      // in find_base_for_derived().
368      assert(_mach_null != NULL, "");
369
370      C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
371
372#ifdef ASSERT
373      verify_new_nodes_only(xroot);
374#endif
375    }
376  }
377  if (C->top() == NULL || C->root() == NULL) {
378    C->record_method_not_compilable("graph lost"); // %%% cannot happen?
379  }
380  if (C->failing()) {
381    // delete old;
382    old->destruct_contents();
383    return;
384  }
385  assert( C->top(), "" );
386  assert( C->root(), "" );
387  validate_null_checks();
388
389  // Now smoke old-space
390  NOT_DEBUG( old->destruct_contents() );
391
392  // ------------------------
393  // Set up save-on-entry registers
394  Fixup_Save_On_Entry( );
395}
396
397
398//------------------------------Fixup_Save_On_Entry----------------------------
399// The stated purpose of this routine is to take care of save-on-entry
400// registers.  However, the overall goal of the Match phase is to convert into
401// machine-specific instructions which have RegMasks to guide allocation.
402// So what this procedure really does is put a valid RegMask on each input
403// to the machine-specific variations of all Return, TailCall and Halt
404// instructions.  It also adds edgs to define the save-on-entry values (and of
405// course gives them a mask).
406
407static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
408  RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
409  // Do all the pre-defined register masks
410  rms[TypeFunc::Control  ] = RegMask::Empty;
411  rms[TypeFunc::I_O      ] = RegMask::Empty;
412  rms[TypeFunc::Memory   ] = RegMask::Empty;
413  rms[TypeFunc::ReturnAdr] = ret_adr;
414  rms[TypeFunc::FramePtr ] = fp;
415  return rms;
416}
417
418//---------------------------init_first_stack_mask-----------------------------
419// Create the initial stack mask used by values spilling to the stack.
420// Disallow any debug info in outgoing argument areas by setting the
421// initial mask accordingly.
422void Matcher::init_first_stack_mask() {
423
424  // Allocate storage for spill masks as masks for the appropriate load type.
425  RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
426
427  idealreg2spillmask  [Op_RegN] = &rms[0];
428  idealreg2spillmask  [Op_RegI] = &rms[1];
429  idealreg2spillmask  [Op_RegL] = &rms[2];
430  idealreg2spillmask  [Op_RegF] = &rms[3];
431  idealreg2spillmask  [Op_RegD] = &rms[4];
432  idealreg2spillmask  [Op_RegP] = &rms[5];
433
434  idealreg2debugmask  [Op_RegN] = &rms[6];
435  idealreg2debugmask  [Op_RegI] = &rms[7];
436  idealreg2debugmask  [Op_RegL] = &rms[8];
437  idealreg2debugmask  [Op_RegF] = &rms[9];
438  idealreg2debugmask  [Op_RegD] = &rms[10];
439  idealreg2debugmask  [Op_RegP] = &rms[11];
440
441  idealreg2mhdebugmask[Op_RegN] = &rms[12];
442  idealreg2mhdebugmask[Op_RegI] = &rms[13];
443  idealreg2mhdebugmask[Op_RegL] = &rms[14];
444  idealreg2mhdebugmask[Op_RegF] = &rms[15];
445  idealreg2mhdebugmask[Op_RegD] = &rms[16];
446  idealreg2mhdebugmask[Op_RegP] = &rms[17];
447
448  OptoReg::Name i;
449
450  // At first, start with the empty mask
451  C->FIRST_STACK_mask().Clear();
452
453  // Add in the incoming argument area
454  OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
455  for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
456    C->FIRST_STACK_mask().Insert(i);
457
458  // Add in all bits past the outgoing argument area
459  guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
460            "must be able to represent all call arguments in reg mask");
461  init = _out_arg_limit;
462  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
463    C->FIRST_STACK_mask().Insert(i);
464
465  // Finally, set the "infinite stack" bit.
466  C->FIRST_STACK_mask().set_AllStack();
467
468  // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
469#ifdef _LP64
470  *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
471   idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
472#endif
473  *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
474   idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
475  *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
476   idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
477  *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
478   idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
479  *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
480   idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
481  *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
482   idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
483
484   if (UseFPUForSpilling) {
485     // This mask logic assumes that the spill operations are
486     // symmetric and that the registers involved are the same size.
487     // On sparc for instance we may have to use 64 bit moves will
488     // kill 2 registers when used with F0-F31.
489     idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
490     idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
491#ifdef _LP64
492     idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
493     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
494     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
495     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
496#else
497     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
498#endif
499   }
500
501  // Make up debug masks.  Any spill slot plus callee-save registers.
502  // Caller-save registers are assumed to be trashable by the various
503  // inline-cache fixup routines.
504  *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
505  *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
506  *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
507  *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
508  *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
509  *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
510
511  *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
512  *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
513  *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
514  *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
515  *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
516  *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
517
518  // Prevent stub compilations from attempting to reference
519  // callee-saved registers from debug info
520  bool exclude_soe = !Compile::current()->is_method_compilation();
521
522  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
523    // registers the caller has to save do not work
524    if( _register_save_policy[i] == 'C' ||
525        _register_save_policy[i] == 'A' ||
526        (_register_save_policy[i] == 'E' && exclude_soe) ) {
527      idealreg2debugmask  [Op_RegN]->Remove(i);
528      idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
529      idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
530      idealreg2debugmask  [Op_RegF]->Remove(i); // masks
531      idealreg2debugmask  [Op_RegD]->Remove(i);
532      idealreg2debugmask  [Op_RegP]->Remove(i);
533
534      idealreg2mhdebugmask[Op_RegN]->Remove(i);
535      idealreg2mhdebugmask[Op_RegI]->Remove(i);
536      idealreg2mhdebugmask[Op_RegL]->Remove(i);
537      idealreg2mhdebugmask[Op_RegF]->Remove(i);
538      idealreg2mhdebugmask[Op_RegD]->Remove(i);
539      idealreg2mhdebugmask[Op_RegP]->Remove(i);
540    }
541  }
542
543  // Subtract the register we use to save the SP for MethodHandle
544  // invokes to from the debug mask.
545  const RegMask save_mask = method_handle_invoke_SP_save_mask();
546  idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
547  idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
548  idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
549  idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
550  idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
551  idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
552}
553
554//---------------------------is_save_on_entry----------------------------------
555bool Matcher::is_save_on_entry( int reg ) {
556  return
557    _register_save_policy[reg] == 'E' ||
558    _register_save_policy[reg] == 'A' || // Save-on-entry register?
559    // Also save argument registers in the trampolining stubs
560    (C->save_argument_registers() && is_spillable_arg(reg));
561}
562
563//---------------------------Fixup_Save_On_Entry-------------------------------
564void Matcher::Fixup_Save_On_Entry( ) {
565  init_first_stack_mask();
566
567  Node *root = C->root();       // Short name for root
568  // Count number of save-on-entry registers.
569  uint soe_cnt = number_of_saved_registers();
570  uint i;
571
572  // Find the procedure Start Node
573  StartNode *start = C->start();
574  assert( start, "Expect a start node" );
575
576  // Save argument registers in the trampolining stubs
577  if( C->save_argument_registers() )
578    for( i = 0; i < _last_Mach_Reg; i++ )
579      if( is_spillable_arg(i) )
580        soe_cnt++;
581
582  // Input RegMask array shared by all Returns.
583  // The type for doubles and longs has a count of 2, but
584  // there is only 1 returned value
585  uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
586  RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
587  // Returns have 0 or 1 returned values depending on call signature.
588  // Return register is specified by return_value in the AD file.
589  if (ret_edge_cnt > TypeFunc::Parms)
590    ret_rms[TypeFunc::Parms+0] = _return_value_mask;
591
592  // Input RegMask array shared by all Rethrows.
593  uint reth_edge_cnt = TypeFunc::Parms+1;
594  RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
595  // Rethrow takes exception oop only, but in the argument 0 slot.
596  reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
597#ifdef _LP64
598  // Need two slots for ptrs in 64-bit land
599  reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
600#endif
601
602  // Input RegMask array shared by all TailCalls
603  uint tail_call_edge_cnt = TypeFunc::Parms+2;
604  RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
605
606  // Input RegMask array shared by all TailJumps
607  uint tail_jump_edge_cnt = TypeFunc::Parms+2;
608  RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
609
610  // TailCalls have 2 returned values (target & moop), whose masks come
611  // from the usual MachNode/MachOper mechanism.  Find a sample
612  // TailCall to extract these masks and put the correct masks into
613  // the tail_call_rms array.
614  for( i=1; i < root->req(); i++ ) {
615    MachReturnNode *m = root->in(i)->as_MachReturn();
616    if( m->ideal_Opcode() == Op_TailCall ) {
617      tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
618      tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
619      break;
620    }
621  }
622
623  // TailJumps have 2 returned values (target & ex_oop), whose masks come
624  // from the usual MachNode/MachOper mechanism.  Find a sample
625  // TailJump to extract these masks and put the correct masks into
626  // the tail_jump_rms array.
627  for( i=1; i < root->req(); i++ ) {
628    MachReturnNode *m = root->in(i)->as_MachReturn();
629    if( m->ideal_Opcode() == Op_TailJump ) {
630      tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
631      tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
632      break;
633    }
634  }
635
636  // Input RegMask array shared by all Halts
637  uint halt_edge_cnt = TypeFunc::Parms;
638  RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
639
640  // Capture the return input masks into each exit flavor
641  for( i=1; i < root->req(); i++ ) {
642    MachReturnNode *exit = root->in(i)->as_MachReturn();
643    switch( exit->ideal_Opcode() ) {
644      case Op_Return   : exit->_in_rms = ret_rms;  break;
645      case Op_Rethrow  : exit->_in_rms = reth_rms; break;
646      case Op_TailCall : exit->_in_rms = tail_call_rms; break;
647      case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
648      case Op_Halt     : exit->_in_rms = halt_rms; break;
649      default          : ShouldNotReachHere();
650    }
651  }
652
653  // Next unused projection number from Start.
654  int proj_cnt = C->tf()->domain()->cnt();
655
656  // Do all the save-on-entry registers.  Make projections from Start for
657  // them, and give them a use at the exit points.  To the allocator, they
658  // look like incoming register arguments.
659  for( i = 0; i < _last_Mach_Reg; i++ ) {
660    if( is_save_on_entry(i) ) {
661
662      // Add the save-on-entry to the mask array
663      ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
664      reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
665      tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
666      tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
667      // Halts need the SOE registers, but only in the stack as debug info.
668      // A just-prior uncommon-trap or deoptimization will use the SOE regs.
669      halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
670
671      Node *mproj;
672
673      // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
674      // into a single RegD.
675      if( (i&1) == 0 &&
676          _register_save_type[i  ] == Op_RegF &&
677          _register_save_type[i+1] == Op_RegF &&
678          is_save_on_entry(i+1) ) {
679        // Add other bit for double
680        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
681        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
682        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
683        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
684        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
685        mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
686        proj_cnt += 2;          // Skip 2 for doubles
687      }
688      else if( (i&1) == 1 &&    // Else check for high half of double
689               _register_save_type[i-1] == Op_RegF &&
690               _register_save_type[i  ] == Op_RegF &&
691               is_save_on_entry(i-1) ) {
692        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
693        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
694        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
695        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
696        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
697        mproj = C->top();
698      }
699      // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
700      // into a single RegL.
701      else if( (i&1) == 0 &&
702          _register_save_type[i  ] == Op_RegI &&
703          _register_save_type[i+1] == Op_RegI &&
704        is_save_on_entry(i+1) ) {
705        // Add other bit for long
706        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
707        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
708        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
709        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
710        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
711        mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
712        proj_cnt += 2;          // Skip 2 for longs
713      }
714      else if( (i&1) == 1 &&    // Else check for high half of long
715               _register_save_type[i-1] == Op_RegI &&
716               _register_save_type[i  ] == Op_RegI &&
717               is_save_on_entry(i-1) ) {
718        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
719        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
720        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
721        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
722        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
723        mproj = C->top();
724      } else {
725        // Make a projection for it off the Start
726        mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
727      }
728
729      ret_edge_cnt ++;
730      reth_edge_cnt ++;
731      tail_call_edge_cnt ++;
732      tail_jump_edge_cnt ++;
733      halt_edge_cnt ++;
734
735      // Add a use of the SOE register to all exit paths
736      for( uint j=1; j < root->req(); j++ )
737        root->in(j)->add_req(mproj);
738    } // End of if a save-on-entry register
739  } // End of for all machine registers
740}
741
742//------------------------------init_spill_mask--------------------------------
743void Matcher::init_spill_mask( Node *ret ) {
744  if( idealreg2regmask[Op_RegI] ) return; // One time only init
745
746  OptoReg::c_frame_pointer = c_frame_pointer();
747  c_frame_ptr_mask = c_frame_pointer();
748#ifdef _LP64
749  // pointers are twice as big
750  c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
751#endif
752
753  // Start at OptoReg::stack0()
754  STACK_ONLY_mask.Clear();
755  OptoReg::Name init = OptoReg::stack2reg(0);
756  // STACK_ONLY_mask is all stack bits
757  OptoReg::Name i;
758  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
759    STACK_ONLY_mask.Insert(i);
760  // Also set the "infinite stack" bit.
761  STACK_ONLY_mask.set_AllStack();
762
763  // Copy the register names over into the shared world
764  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
765    // SharedInfo::regName[i] = regName[i];
766    // Handy RegMasks per machine register
767    mreg2regmask[i].Insert(i);
768  }
769
770  // Grab the Frame Pointer
771  Node *fp  = ret->in(TypeFunc::FramePtr);
772  Node *mem = ret->in(TypeFunc::Memory);
773  const TypePtr* atp = TypePtr::BOTTOM;
774  // Share frame pointer while making spill ops
775  set_shared(fp);
776
777  // Compute generic short-offset Loads
778#ifdef _LP64
779  MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
780#endif
781  MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
782  MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
783  MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
784  MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
785  MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
786  assert(spillI != NULL && spillL != NULL && spillF != NULL &&
787         spillD != NULL && spillP != NULL, "");
788
789  // Get the ADLC notion of the right regmask, for each basic type.
790#ifdef _LP64
791  idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
792#endif
793  idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
794  idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
795  idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
796  idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
797  idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
798}
799
800#ifdef ASSERT
801static void match_alias_type(Compile* C, Node* n, Node* m) {
802  if (!VerifyAliases)  return;  // do not go looking for trouble by default
803  const TypePtr* nat = n->adr_type();
804  const TypePtr* mat = m->adr_type();
805  int nidx = C->get_alias_index(nat);
806  int midx = C->get_alias_index(mat);
807  // Detune the assert for cases like (AndI 0xFF (LoadB p)).
808  if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
809    for (uint i = 1; i < n->req(); i++) {
810      Node* n1 = n->in(i);
811      const TypePtr* n1at = n1->adr_type();
812      if (n1at != NULL) {
813        nat = n1at;
814        nidx = C->get_alias_index(n1at);
815      }
816    }
817  }
818  // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
819  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
820    switch (n->Opcode()) {
821    case Op_PrefetchRead:
822    case Op_PrefetchWrite:
823      nidx = Compile::AliasIdxRaw;
824      nat = TypeRawPtr::BOTTOM;
825      break;
826    }
827  }
828  if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
829    switch (n->Opcode()) {
830    case Op_ClearArray:
831      midx = Compile::AliasIdxRaw;
832      mat = TypeRawPtr::BOTTOM;
833      break;
834    }
835  }
836  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
837    switch (n->Opcode()) {
838    case Op_Return:
839    case Op_Rethrow:
840    case Op_Halt:
841    case Op_TailCall:
842    case Op_TailJump:
843      nidx = Compile::AliasIdxBot;
844      nat = TypePtr::BOTTOM;
845      break;
846    }
847  }
848  if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
849    switch (n->Opcode()) {
850    case Op_StrComp:
851    case Op_StrEquals:
852    case Op_StrIndexOf:
853    case Op_AryEq:
854    case Op_MemBarVolatile:
855    case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
856      nidx = Compile::AliasIdxTop;
857      nat = NULL;
858      break;
859    }
860  }
861  if (nidx != midx) {
862    if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
863      tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
864      n->dump();
865      m->dump();
866    }
867    assert(C->subsume_loads() && C->must_alias(nat, midx),
868           "must not lose alias info when matching");
869  }
870}
871#endif
872
873
874//------------------------------MStack-----------------------------------------
875// State and MStack class used in xform() and find_shared() iterative methods.
876enum Node_State { Pre_Visit,  // node has to be pre-visited
877                      Visit,  // visit node
878                 Post_Visit,  // post-visit node
879             Alt_Post_Visit   // alternative post-visit path
880                };
881
882class MStack: public Node_Stack {
883  public:
884    MStack(int size) : Node_Stack(size) { }
885
886    void push(Node *n, Node_State ns) {
887      Node_Stack::push(n, (uint)ns);
888    }
889    void push(Node *n, Node_State ns, Node *parent, int indx) {
890      ++_inode_top;
891      if ((_inode_top + 1) >= _inode_max) grow();
892      _inode_top->node = parent;
893      _inode_top->indx = (uint)indx;
894      ++_inode_top;
895      _inode_top->node = n;
896      _inode_top->indx = (uint)ns;
897    }
898    Node *parent() {
899      pop();
900      return node();
901    }
902    Node_State state() const {
903      return (Node_State)index();
904    }
905    void set_state(Node_State ns) {
906      set_index((uint)ns);
907    }
908};
909
910
911//------------------------------xform------------------------------------------
912// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
913// Node in new-space.  Given a new-space Node, recursively walk his children.
914Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
915Node *Matcher::xform( Node *n, int max_stack ) {
916  // Use one stack to keep both: child's node/state and parent's node/index
917  MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
918  mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
919
920  while (mstack.is_nonempty()) {
921    n = mstack.node();          // Leave node on stack
922    Node_State nstate = mstack.state();
923    if (nstate == Visit) {
924      mstack.set_state(Post_Visit);
925      Node *oldn = n;
926      // Old-space or new-space check
927      if (!C->node_arena()->contains(n)) {
928        // Old space!
929        Node* m;
930        if (has_new_node(n)) {  // Not yet Label/Reduced
931          m = new_node(n);
932        } else {
933          if (!is_dontcare(n)) { // Matcher can match this guy
934            // Calls match special.  They match alone with no children.
935            // Their children, the incoming arguments, match normally.
936            m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
937            if (C->failing())  return NULL;
938            if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
939          } else {                  // Nothing the matcher cares about
940            if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
941              // Convert to machine-dependent projection
942              m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
943#ifdef ASSERT
944              _new2old_map.map(m->_idx, n);
945#endif
946              if (m->in(0) != NULL) // m might be top
947                collect_null_checks(m, n);
948            } else {                // Else just a regular 'ol guy
949              m = n->clone();       // So just clone into new-space
950#ifdef ASSERT
951              _new2old_map.map(m->_idx, n);
952#endif
953              // Def-Use edges will be added incrementally as Uses
954              // of this node are matched.
955              assert(m->outcnt() == 0, "no Uses of this clone yet");
956            }
957          }
958
959          set_new_node(n, m);       // Map old to new
960          if (_old_node_note_array != NULL) {
961            Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
962                                                  n->_idx);
963            C->set_node_notes_at(m->_idx, nn);
964          }
965          debug_only(match_alias_type(C, n, m));
966        }
967        n = m;    // n is now a new-space node
968        mstack.set_node(n);
969      }
970
971      // New space!
972      if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
973
974      int i;
975      // Put precedence edges on stack first (match them last).
976      for (i = oldn->req(); (uint)i < oldn->len(); i++) {
977        Node *m = oldn->in(i);
978        if (m == NULL) break;
979        // set -1 to call add_prec() instead of set_req() during Step1
980        mstack.push(m, Visit, n, -1);
981      }
982
983      // For constant debug info, I'd rather have unmatched constants.
984      int cnt = n->req();
985      JVMState* jvms = n->jvms();
986      int debug_cnt = jvms ? jvms->debug_start() : cnt;
987
988      // Now do only debug info.  Clone constants rather than matching.
989      // Constants are represented directly in the debug info without
990      // the need for executable machine instructions.
991      // Monitor boxes are also represented directly.
992      for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
993        Node *m = n->in(i);          // Get input
994        int op = m->Opcode();
995        assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
996        if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
997            op == Op_ConF || op == Op_ConD || op == Op_ConL
998            // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
999            ) {
1000          m = m->clone();
1001#ifdef ASSERT
1002          _new2old_map.map(m->_idx, n);
1003#endif
1004          mstack.push(m, Post_Visit, n, i); // Don't need to visit
1005          mstack.push(m->in(0), Visit, m, 0);
1006        } else {
1007          mstack.push(m, Visit, n, i);
1008        }
1009      }
1010
1011      // And now walk his children, and convert his inputs to new-space.
1012      for( ; i >= 0; --i ) { // For all normal inputs do
1013        Node *m = n->in(i);  // Get input
1014        if(m != NULL)
1015          mstack.push(m, Visit, n, i);
1016      }
1017
1018    }
1019    else if (nstate == Post_Visit) {
1020      // Set xformed input
1021      Node *p = mstack.parent();
1022      if (p != NULL) { // root doesn't have parent
1023        int i = (int)mstack.index();
1024        if (i >= 0)
1025          p->set_req(i, n); // required input
1026        else if (i == -1)
1027          p->add_prec(n);   // precedence input
1028        else
1029          ShouldNotReachHere();
1030      }
1031      mstack.pop(); // remove processed node from stack
1032    }
1033    else {
1034      ShouldNotReachHere();
1035    }
1036  } // while (mstack.is_nonempty())
1037  return n; // Return new-space Node
1038}
1039
1040//------------------------------warp_outgoing_stk_arg------------------------
1041OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1042  // Convert outgoing argument location to a pre-biased stack offset
1043  if (reg->is_stack()) {
1044    OptoReg::Name warped = reg->reg2stack();
1045    // Adjust the stack slot offset to be the register number used
1046    // by the allocator.
1047    warped = OptoReg::add(begin_out_arg_area, warped);
1048    // Keep track of the largest numbered stack slot used for an arg.
1049    // Largest used slot per call-site indicates the amount of stack
1050    // that is killed by the call.
1051    if( warped >= out_arg_limit_per_call )
1052      out_arg_limit_per_call = OptoReg::add(warped,1);
1053    if (!RegMask::can_represent(warped)) {
1054      C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1055      return OptoReg::Bad;
1056    }
1057    return warped;
1058  }
1059  return OptoReg::as_OptoReg(reg);
1060}
1061
1062
1063//------------------------------match_sfpt-------------------------------------
1064// Helper function to match call instructions.  Calls match special.
1065// They match alone with no children.  Their children, the incoming
1066// arguments, match normally.
1067MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1068  MachSafePointNode *msfpt = NULL;
1069  MachCallNode      *mcall = NULL;
1070  uint               cnt;
1071  // Split out case for SafePoint vs Call
1072  CallNode *call;
1073  const TypeTuple *domain;
1074  ciMethod*        method = NULL;
1075  bool             is_method_handle_invoke = false;  // for special kill effects
1076  if( sfpt->is_Call() ) {
1077    call = sfpt->as_Call();
1078    domain = call->tf()->domain();
1079    cnt = domain->cnt();
1080
1081    // Match just the call, nothing else
1082    MachNode *m = match_tree(call);
1083    if (C->failing())  return NULL;
1084    if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1085
1086    // Copy data from the Ideal SafePoint to the machine version
1087    mcall = m->as_MachCall();
1088
1089    mcall->set_tf(         call->tf());
1090    mcall->set_entry_point(call->entry_point());
1091    mcall->set_cnt(        call->cnt());
1092
1093    if( mcall->is_MachCallJava() ) {
1094      MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1095      const CallJavaNode *call_java =  call->as_CallJava();
1096      method = call_java->method();
1097      mcall_java->_method = method;
1098      mcall_java->_bci = call_java->_bci;
1099      mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1100      is_method_handle_invoke = call_java->is_method_handle_invoke();
1101      mcall_java->_method_handle_invoke = is_method_handle_invoke;
1102      if( mcall_java->is_MachCallStaticJava() )
1103        mcall_java->as_MachCallStaticJava()->_name =
1104         call_java->as_CallStaticJava()->_name;
1105      if( mcall_java->is_MachCallDynamicJava() )
1106        mcall_java->as_MachCallDynamicJava()->_vtable_index =
1107         call_java->as_CallDynamicJava()->_vtable_index;
1108    }
1109    else if( mcall->is_MachCallRuntime() ) {
1110      mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1111    }
1112    msfpt = mcall;
1113  }
1114  // This is a non-call safepoint
1115  else {
1116    call = NULL;
1117    domain = NULL;
1118    MachNode *mn = match_tree(sfpt);
1119    if (C->failing())  return NULL;
1120    msfpt = mn->as_MachSafePoint();
1121    cnt = TypeFunc::Parms;
1122  }
1123
1124  // Advertise the correct memory effects (for anti-dependence computation).
1125  msfpt->set_adr_type(sfpt->adr_type());
1126
1127  // Allocate a private array of RegMasks.  These RegMasks are not shared.
1128  msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1129  // Empty them all.
1130  memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1131
1132  // Do all the pre-defined non-Empty register masks
1133  msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1134  msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1135
1136  // Place first outgoing argument can possibly be put.
1137  OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1138  assert( is_even(begin_out_arg_area), "" );
1139  // Compute max outgoing register number per call site.
1140  OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1141  // Calls to C may hammer extra stack slots above and beyond any arguments.
1142  // These are usually backing store for register arguments for varargs.
1143  if( call != NULL && call->is_CallRuntime() )
1144    out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1145
1146
1147  // Do the normal argument list (parameters) register masks
1148  int argcnt = cnt - TypeFunc::Parms;
1149  if( argcnt > 0 ) {          // Skip it all if we have no args
1150    BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1151    VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1152    int i;
1153    for( i = 0; i < argcnt; i++ ) {
1154      sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1155    }
1156    // V-call to pick proper calling convention
1157    call->calling_convention( sig_bt, parm_regs, argcnt );
1158
1159#ifdef ASSERT
1160    // Sanity check users' calling convention.  Really handy during
1161    // the initial porting effort.  Fairly expensive otherwise.
1162    { for (int i = 0; i<argcnt; i++) {
1163      if( !parm_regs[i].first()->is_valid() &&
1164          !parm_regs[i].second()->is_valid() ) continue;
1165      VMReg reg1 = parm_regs[i].first();
1166      VMReg reg2 = parm_regs[i].second();
1167      for (int j = 0; j < i; j++) {
1168        if( !parm_regs[j].first()->is_valid() &&
1169            !parm_regs[j].second()->is_valid() ) continue;
1170        VMReg reg3 = parm_regs[j].first();
1171        VMReg reg4 = parm_regs[j].second();
1172        if( !reg1->is_valid() ) {
1173          assert( !reg2->is_valid(), "valid halvsies" );
1174        } else if( !reg3->is_valid() ) {
1175          assert( !reg4->is_valid(), "valid halvsies" );
1176        } else {
1177          assert( reg1 != reg2, "calling conv. must produce distinct regs");
1178          assert( reg1 != reg3, "calling conv. must produce distinct regs");
1179          assert( reg1 != reg4, "calling conv. must produce distinct regs");
1180          assert( reg2 != reg3, "calling conv. must produce distinct regs");
1181          assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1182          assert( reg3 != reg4, "calling conv. must produce distinct regs");
1183        }
1184      }
1185    }
1186    }
1187#endif
1188
1189    // Visit each argument.  Compute its outgoing register mask.
1190    // Return results now can have 2 bits returned.
1191    // Compute max over all outgoing arguments both per call-site
1192    // and over the entire method.
1193    for( i = 0; i < argcnt; i++ ) {
1194      // Address of incoming argument mask to fill in
1195      RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1196      if( !parm_regs[i].first()->is_valid() &&
1197          !parm_regs[i].second()->is_valid() ) {
1198        continue;               // Avoid Halves
1199      }
1200      // Grab first register, adjust stack slots and insert in mask.
1201      OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1202      if (OptoReg::is_valid(reg1))
1203        rm->Insert( reg1 );
1204      // Grab second register (if any), adjust stack slots and insert in mask.
1205      OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1206      if (OptoReg::is_valid(reg2))
1207        rm->Insert( reg2 );
1208    } // End of for all arguments
1209
1210    // Compute number of stack slots needed to restore stack in case of
1211    // Pascal-style argument popping.
1212    mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1213  }
1214
1215  if (is_method_handle_invoke) {
1216    // Kill some extra stack space in case method handles want to do
1217    // a little in-place argument insertion.
1218    int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
1219    out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
1220    // Do not update mcall->_argsize because (a) the extra space is not
1221    // pushed as arguments and (b) _argsize is dead (not used anywhere).
1222  }
1223
1224  // Compute the max stack slot killed by any call.  These will not be
1225  // available for debug info, and will be used to adjust FIRST_STACK_mask
1226  // after all call sites have been visited.
1227  if( _out_arg_limit < out_arg_limit_per_call)
1228    _out_arg_limit = out_arg_limit_per_call;
1229
1230  if (mcall) {
1231    // Kill the outgoing argument area, including any non-argument holes and
1232    // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1233    // Since the max-per-method covers the max-per-call-site and debug info
1234    // is excluded on the max-per-method basis, debug info cannot land in
1235    // this killed area.
1236    uint r_cnt = mcall->tf()->range()->cnt();
1237    MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1238    if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1239      C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1240    } else {
1241      for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1242        proj->_rout.Insert(OptoReg::Name(i));
1243    }
1244    if( proj->_rout.is_NotEmpty() )
1245      _proj_list.push(proj);
1246  }
1247  // Transfer the safepoint information from the call to the mcall
1248  // Move the JVMState list
1249  msfpt->set_jvms(sfpt->jvms());
1250  for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1251    jvms->set_map(sfpt);
1252  }
1253
1254  // Debug inputs begin just after the last incoming parameter
1255  assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1256          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1257
1258  // Move the OopMap
1259  msfpt->_oop_map = sfpt->_oop_map;
1260
1261  // Registers killed by the call are set in the local scheduling pass
1262  // of Global Code Motion.
1263  return msfpt;
1264}
1265
1266//---------------------------match_tree----------------------------------------
1267// Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1268// of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1269// making GotoNodes while building the CFG and in init_spill_mask() to identify
1270// a Load's result RegMask for memoization in idealreg2regmask[]
1271MachNode *Matcher::match_tree( const Node *n ) {
1272  assert( n->Opcode() != Op_Phi, "cannot match" );
1273  assert( !n->is_block_start(), "cannot match" );
1274  // Set the mark for all locally allocated State objects.
1275  // When this call returns, the _states_arena arena will be reset
1276  // freeing all State objects.
1277  ResourceMark rm( &_states_arena );
1278
1279  LabelRootDepth = 0;
1280
1281  // StoreNodes require their Memory input to match any LoadNodes
1282  Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1283#ifdef ASSERT
1284  Node* save_mem_node = _mem_node;
1285  _mem_node = n->is_Store() ? (Node*)n : NULL;
1286#endif
1287  // State object for root node of match tree
1288  // Allocate it on _states_arena - stack allocation can cause stack overflow.
1289  State *s = new (&_states_arena) State;
1290  s->_kids[0] = NULL;
1291  s->_kids[1] = NULL;
1292  s->_leaf = (Node*)n;
1293  // Label the input tree, allocating labels from top-level arena
1294  Label_Root( n, s, n->in(0), mem );
1295  if (C->failing())  return NULL;
1296
1297  // The minimum cost match for the whole tree is found at the root State
1298  uint mincost = max_juint;
1299  uint cost = max_juint;
1300  uint i;
1301  for( i = 0; i < NUM_OPERANDS; i++ ) {
1302    if( s->valid(i) &&                // valid entry and
1303        s->_cost[i] < cost &&         // low cost and
1304        s->_rule[i] >= NUM_OPERANDS ) // not an operand
1305      cost = s->_cost[mincost=i];
1306  }
1307  if (mincost == max_juint) {
1308#ifndef PRODUCT
1309    tty->print("No matching rule for:");
1310    s->dump();
1311#endif
1312    Matcher::soft_match_failure();
1313    return NULL;
1314  }
1315  // Reduce input tree based upon the state labels to machine Nodes
1316  MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1317#ifdef ASSERT
1318  _old2new_map.map(n->_idx, m);
1319  _new2old_map.map(m->_idx, (Node*)n);
1320#endif
1321
1322  // Add any Matcher-ignored edges
1323  uint cnt = n->req();
1324  uint start = 1;
1325  if( mem != (Node*)1 ) start = MemNode::Memory+1;
1326  if( n->is_AddP() ) {
1327    assert( mem == (Node*)1, "" );
1328    start = AddPNode::Base+1;
1329  }
1330  for( i = start; i < cnt; i++ ) {
1331    if( !n->match_edge(i) ) {
1332      if( i < m->req() )
1333        m->ins_req( i, n->in(i) );
1334      else
1335        m->add_req( n->in(i) );
1336    }
1337  }
1338
1339  debug_only( _mem_node = save_mem_node; )
1340  return m;
1341}
1342
1343
1344//------------------------------match_into_reg---------------------------------
1345// Choose to either match this Node in a register or part of the current
1346// match tree.  Return true for requiring a register and false for matching
1347// as part of the current match tree.
1348static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1349
1350  const Type *t = m->bottom_type();
1351
1352  if( t->singleton() ) {
1353    // Never force constants into registers.  Allow them to match as
1354    // constants or registers.  Copies of the same value will share
1355    // the same register.  See find_shared_node.
1356    return false;
1357  } else {                      // Not a constant
1358    // Stop recursion if they have different Controls.
1359    // Slot 0 of constants is not really a Control.
1360    if( control && m->in(0) && control != m->in(0) ) {
1361
1362      // Actually, we can live with the most conservative control we
1363      // find, if it post-dominates the others.  This allows us to
1364      // pick up load/op/store trees where the load can float a little
1365      // above the store.
1366      Node *x = control;
1367      const uint max_scan = 6;   // Arbitrary scan cutoff
1368      uint j;
1369      for( j=0; j<max_scan; j++ ) {
1370        if( x->is_Region() )    // Bail out at merge points
1371          return true;
1372        x = x->in(0);
1373        if( x == m->in(0) )     // Does 'control' post-dominate
1374          break;                // m->in(0)?  If so, we can use it
1375      }
1376      if( j == max_scan )       // No post-domination before scan end?
1377        return true;            // Then break the match tree up
1378    }
1379    if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
1380      // These are commonly used in address expressions and can
1381      // efficiently fold into them on X64 in some cases.
1382      return false;
1383    }
1384  }
1385
1386  // Not forceable cloning.  If shared, put it into a register.
1387  return shared;
1388}
1389
1390
1391//------------------------------Instruction Selection--------------------------
1392// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1393// ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1394// things the Matcher does not match (e.g., Memory), and things with different
1395// Controls (hence forced into different blocks).  We pass in the Control
1396// selected for this entire State tree.
1397
1398// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1399// Store and the Load must have identical Memories (as well as identical
1400// pointers).  Since the Matcher does not have anything for Memory (and
1401// does not handle DAGs), I have to match the Memory input myself.  If the
1402// Tree root is a Store, I require all Loads to have the identical memory.
1403Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1404  // Since Label_Root is a recursive function, its possible that we might run
1405  // out of stack space.  See bugs 6272980 & 6227033 for more info.
1406  LabelRootDepth++;
1407  if (LabelRootDepth > MaxLabelRootDepth) {
1408    C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1409    return NULL;
1410  }
1411  uint care = 0;                // Edges matcher cares about
1412  uint cnt = n->req();
1413  uint i = 0;
1414
1415  // Examine children for memory state
1416  // Can only subsume a child into your match-tree if that child's memory state
1417  // is not modified along the path to another input.
1418  // It is unsafe even if the other inputs are separate roots.
1419  Node *input_mem = NULL;
1420  for( i = 1; i < cnt; i++ ) {
1421    if( !n->match_edge(i) ) continue;
1422    Node *m = n->in(i);         // Get ith input
1423    assert( m, "expect non-null children" );
1424    if( m->is_Load() ) {
1425      if( input_mem == NULL ) {
1426        input_mem = m->in(MemNode::Memory);
1427      } else if( input_mem != m->in(MemNode::Memory) ) {
1428        input_mem = NodeSentinel;
1429      }
1430    }
1431  }
1432
1433  for( i = 1; i < cnt; i++ ){// For my children
1434    if( !n->match_edge(i) ) continue;
1435    Node *m = n->in(i);         // Get ith input
1436    // Allocate states out of a private arena
1437    State *s = new (&_states_arena) State;
1438    svec->_kids[care++] = s;
1439    assert( care <= 2, "binary only for now" );
1440
1441    // Recursively label the State tree.
1442    s->_kids[0] = NULL;
1443    s->_kids[1] = NULL;
1444    s->_leaf = m;
1445
1446    // Check for leaves of the State Tree; things that cannot be a part of
1447    // the current tree.  If it finds any, that value is matched as a
1448    // register operand.  If not, then the normal matching is used.
1449    if( match_into_reg(n, m, control, i, is_shared(m)) ||
1450        //
1451        // Stop recursion if this is LoadNode and the root of this tree is a
1452        // StoreNode and the load & store have different memories.
1453        ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1454        // Can NOT include the match of a subtree when its memory state
1455        // is used by any of the other subtrees
1456        (input_mem == NodeSentinel) ) {
1457#ifndef PRODUCT
1458      // Print when we exclude matching due to different memory states at input-loads
1459      if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1460        && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1461        tty->print_cr("invalid input_mem");
1462      }
1463#endif
1464      // Switch to a register-only opcode; this value must be in a register
1465      // and cannot be subsumed as part of a larger instruction.
1466      s->DFA( m->ideal_reg(), m );
1467
1468    } else {
1469      // If match tree has no control and we do, adopt it for entire tree
1470      if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1471        control = m->in(0);         // Pick up control
1472      // Else match as a normal part of the match tree.
1473      control = Label_Root(m,s,control,mem);
1474      if (C->failing()) return NULL;
1475    }
1476  }
1477
1478
1479  // Call DFA to match this node, and return
1480  svec->DFA( n->Opcode(), n );
1481
1482#ifdef ASSERT
1483  uint x;
1484  for( x = 0; x < _LAST_MACH_OPER; x++ )
1485    if( svec->valid(x) )
1486      break;
1487
1488  if (x >= _LAST_MACH_OPER) {
1489    n->dump();
1490    svec->dump();
1491    assert( false, "bad AD file" );
1492  }
1493#endif
1494  return control;
1495}
1496
1497
1498// Con nodes reduced using the same rule can share their MachNode
1499// which reduces the number of copies of a constant in the final
1500// program.  The register allocator is free to split uses later to
1501// split live ranges.
1502MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1503  if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1504
1505  // See if this Con has already been reduced using this rule.
1506  if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1507  MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1508  if (last != NULL && rule == last->rule()) {
1509    // Don't expect control change for DecodeN
1510    if (leaf->is_DecodeN())
1511      return last;
1512    // Get the new space root.
1513    Node* xroot = new_node(C->root());
1514    if (xroot == NULL) {
1515      // This shouldn't happen give the order of matching.
1516      return NULL;
1517    }
1518
1519    // Shared constants need to have their control be root so they
1520    // can be scheduled properly.
1521    Node* control = last->in(0);
1522    if (control != xroot) {
1523      if (control == NULL || control == C->root()) {
1524        last->set_req(0, xroot);
1525      } else {
1526        assert(false, "unexpected control");
1527        return NULL;
1528      }
1529    }
1530    return last;
1531  }
1532  return NULL;
1533}
1534
1535
1536//------------------------------ReduceInst-------------------------------------
1537// Reduce a State tree (with given Control) into a tree of MachNodes.
1538// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1539// complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1540// Each MachNode has a number of complicated MachOper operands; each
1541// MachOper also covers a further tree of Ideal Nodes.
1542
1543// The root of the Ideal match tree is always an instruction, so we enter
1544// the recursion here.  After building the MachNode, we need to recurse
1545// the tree checking for these cases:
1546// (1) Child is an instruction -
1547//     Build the instruction (recursively), add it as an edge.
1548//     Build a simple operand (register) to hold the result of the instruction.
1549// (2) Child is an interior part of an instruction -
1550//     Skip over it (do nothing)
1551// (3) Child is the start of a operand -
1552//     Build the operand, place it inside the instruction
1553//     Call ReduceOper.
1554MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1555  assert( rule >= NUM_OPERANDS, "called with operand rule" );
1556
1557  MachNode* shared_node = find_shared_node(s->_leaf, rule);
1558  if (shared_node != NULL) {
1559    return shared_node;
1560  }
1561
1562  // Build the object to represent this state & prepare for recursive calls
1563  MachNode *mach = s->MachNodeGenerator( rule, C );
1564  mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1565  assert( mach->_opnds[0] != NULL, "Missing result operand" );
1566  Node *leaf = s->_leaf;
1567  // Check for instruction or instruction chain rule
1568  if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1569    assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1570           "duplicating node that's already been matched");
1571    // Instruction
1572    mach->add_req( leaf->in(0) ); // Set initial control
1573    // Reduce interior of complex instruction
1574    ReduceInst_Interior( s, rule, mem, mach, 1 );
1575  } else {
1576    // Instruction chain rules are data-dependent on their inputs
1577    mach->add_req(0);             // Set initial control to none
1578    ReduceInst_Chain_Rule( s, rule, mem, mach );
1579  }
1580
1581  // If a Memory was used, insert a Memory edge
1582  if( mem != (Node*)1 ) {
1583    mach->ins_req(MemNode::Memory,mem);
1584#ifdef ASSERT
1585    // Verify adr type after matching memory operation
1586    const MachOper* oper = mach->memory_operand();
1587    if (oper != NULL && oper != (MachOper*)-1) {
1588      // It has a unique memory operand.  Find corresponding ideal mem node.
1589      Node* m = NULL;
1590      if (leaf->is_Mem()) {
1591        m = leaf;
1592      } else {
1593        m = _mem_node;
1594        assert(m != NULL && m->is_Mem(), "expecting memory node");
1595      }
1596      const Type* mach_at = mach->adr_type();
1597      // DecodeN node consumed by an address may have different type
1598      // then its input. Don't compare types for such case.
1599      if (m->adr_type() != mach_at &&
1600          (m->in(MemNode::Address)->is_DecodeN() ||
1601           m->in(MemNode::Address)->is_AddP() &&
1602           m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1603           m->in(MemNode::Address)->is_AddP() &&
1604           m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1605           m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1606        mach_at = m->adr_type();
1607      }
1608      if (m->adr_type() != mach_at) {
1609        m->dump();
1610        tty->print_cr("mach:");
1611        mach->dump(1);
1612      }
1613      assert(m->adr_type() == mach_at, "matcher should not change adr type");
1614    }
1615#endif
1616  }
1617
1618  // If the _leaf is an AddP, insert the base edge
1619  if( leaf->is_AddP() )
1620    mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1621
1622  uint num_proj = _proj_list.size();
1623
1624  // Perform any 1-to-many expansions required
1625  MachNode *ex = mach->Expand(s,_proj_list, mem);
1626  if( ex != mach ) {
1627    assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1628    if( ex->in(1)->is_Con() )
1629      ex->in(1)->set_req(0, C->root());
1630    // Remove old node from the graph
1631    for( uint i=0; i<mach->req(); i++ ) {
1632      mach->set_req(i,NULL);
1633    }
1634#ifdef ASSERT
1635    _new2old_map.map(ex->_idx, s->_leaf);
1636#endif
1637  }
1638
1639  // PhaseChaitin::fixup_spills will sometimes generate spill code
1640  // via the matcher.  By the time, nodes have been wired into the CFG,
1641  // and any further nodes generated by expand rules will be left hanging
1642  // in space, and will not get emitted as output code.  Catch this.
1643  // Also, catch any new register allocation constraints ("projections")
1644  // generated belatedly during spill code generation.
1645  if (_allocation_started) {
1646    guarantee(ex == mach, "no expand rules during spill generation");
1647    guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1648  }
1649
1650  if (leaf->is_Con() || leaf->is_DecodeN()) {
1651    // Record the con for sharing
1652    _shared_nodes.map(leaf->_idx, ex);
1653  }
1654
1655  return ex;
1656}
1657
1658void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1659  // 'op' is what I am expecting to receive
1660  int op = _leftOp[rule];
1661  // Operand type to catch childs result
1662  // This is what my child will give me.
1663  int opnd_class_instance = s->_rule[op];
1664  // Choose between operand class or not.
1665  // This is what I will receive.
1666  int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1667  // New rule for child.  Chase operand classes to get the actual rule.
1668  int newrule = s->_rule[catch_op];
1669
1670  if( newrule < NUM_OPERANDS ) {
1671    // Chain from operand or operand class, may be output of shared node
1672    assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1673            "Bad AD file: Instruction chain rule must chain from operand");
1674    // Insert operand into array of operands for this instruction
1675    mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1676
1677    ReduceOper( s, newrule, mem, mach );
1678  } else {
1679    // Chain from the result of an instruction
1680    assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1681    mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1682    Node *mem1 = (Node*)1;
1683    debug_only(Node *save_mem_node = _mem_node;)
1684    mach->add_req( ReduceInst(s, newrule, mem1) );
1685    debug_only(_mem_node = save_mem_node;)
1686  }
1687  return;
1688}
1689
1690
1691uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1692  if( s->_leaf->is_Load() ) {
1693    Node *mem2 = s->_leaf->in(MemNode::Memory);
1694    assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1695    debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1696    mem = mem2;
1697  }
1698  if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1699    if( mach->in(0) == NULL )
1700      mach->set_req(0, s->_leaf->in(0));
1701  }
1702
1703  // Now recursively walk the state tree & add operand list.
1704  for( uint i=0; i<2; i++ ) {   // binary tree
1705    State *newstate = s->_kids[i];
1706    if( newstate == NULL ) break;      // Might only have 1 child
1707    // 'op' is what I am expecting to receive
1708    int op;
1709    if( i == 0 ) {
1710      op = _leftOp[rule];
1711    } else {
1712      op = _rightOp[rule];
1713    }
1714    // Operand type to catch childs result
1715    // This is what my child will give me.
1716    int opnd_class_instance = newstate->_rule[op];
1717    // Choose between operand class or not.
1718    // This is what I will receive.
1719    int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1720    // New rule for child.  Chase operand classes to get the actual rule.
1721    int newrule = newstate->_rule[catch_op];
1722
1723    if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1724      // Operand/operandClass
1725      // Insert operand into array of operands for this instruction
1726      mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1727      ReduceOper( newstate, newrule, mem, mach );
1728
1729    } else {                    // Child is internal operand or new instruction
1730      if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1731        // internal operand --> call ReduceInst_Interior
1732        // Interior of complex instruction.  Do nothing but recurse.
1733        num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1734      } else {
1735        // instruction --> call build operand(  ) to catch result
1736        //             --> ReduceInst( newrule )
1737        mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1738        Node *mem1 = (Node*)1;
1739        debug_only(Node *save_mem_node = _mem_node;)
1740        mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1741        debug_only(_mem_node = save_mem_node;)
1742      }
1743    }
1744    assert( mach->_opnds[num_opnds-1], "" );
1745  }
1746  return num_opnds;
1747}
1748
1749// This routine walks the interior of possible complex operands.
1750// At each point we check our children in the match tree:
1751// (1) No children -
1752//     We are a leaf; add _leaf field as an input to the MachNode
1753// (2) Child is an internal operand -
1754//     Skip over it ( do nothing )
1755// (3) Child is an instruction -
1756//     Call ReduceInst recursively and
1757//     and instruction as an input to the MachNode
1758void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1759  assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1760  State *kid = s->_kids[0];
1761  assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1762
1763  // Leaf?  And not subsumed?
1764  if( kid == NULL && !_swallowed[rule] ) {
1765    mach->add_req( s->_leaf );  // Add leaf pointer
1766    return;                     // Bail out
1767  }
1768
1769  if( s->_leaf->is_Load() ) {
1770    assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1771    mem = s->_leaf->in(MemNode::Memory);
1772    debug_only(_mem_node = s->_leaf;)
1773  }
1774  if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1775    if( !mach->in(0) )
1776      mach->set_req(0,s->_leaf->in(0));
1777    else {
1778      assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1779    }
1780  }
1781
1782  for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1783    int newrule;
1784    if( i == 0 )
1785      newrule = kid->_rule[_leftOp[rule]];
1786    else
1787      newrule = kid->_rule[_rightOp[rule]];
1788
1789    if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1790      // Internal operand; recurse but do nothing else
1791      ReduceOper( kid, newrule, mem, mach );
1792
1793    } else {                    // Child is a new instruction
1794      // Reduce the instruction, and add a direct pointer from this
1795      // machine instruction to the newly reduced one.
1796      Node *mem1 = (Node*)1;
1797      debug_only(Node *save_mem_node = _mem_node;)
1798      mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1799      debug_only(_mem_node = save_mem_node;)
1800    }
1801  }
1802}
1803
1804
1805// -------------------------------------------------------------------------
1806// Java-Java calling convention
1807// (what you use when Java calls Java)
1808
1809//------------------------------find_receiver----------------------------------
1810// For a given signature, return the OptoReg for parameter 0.
1811OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1812  VMRegPair regs;
1813  BasicType sig_bt = T_OBJECT;
1814  calling_convention(&sig_bt, &regs, 1, is_outgoing);
1815  // Return argument 0 register.  In the LP64 build pointers
1816  // take 2 registers, but the VM wants only the 'main' name.
1817  return OptoReg::as_OptoReg(regs.first());
1818}
1819
1820// A method-klass-holder may be passed in the inline_cache_reg
1821// and then expanded into the inline_cache_reg and a method_oop register
1822//   defined in ad_<arch>.cpp
1823
1824
1825//------------------------------find_shared------------------------------------
1826// Set bits if Node is shared or otherwise a root
1827void Matcher::find_shared( Node *n ) {
1828  // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1829  MStack mstack(C->unique() * 2);
1830  // Mark nodes as address_visited if they are inputs to an address expression
1831  VectorSet address_visited(Thread::current()->resource_area());
1832  mstack.push(n, Visit);     // Don't need to pre-visit root node
1833  while (mstack.is_nonempty()) {
1834    n = mstack.node();       // Leave node on stack
1835    Node_State nstate = mstack.state();
1836    uint nop = n->Opcode();
1837    if (nstate == Pre_Visit) {
1838      if (address_visited.test(n->_idx)) { // Visited in address already?
1839        // Flag as visited and shared now.
1840        set_visited(n);
1841      }
1842      if (is_visited(n)) {   // Visited already?
1843        // Node is shared and has no reason to clone.  Flag it as shared.
1844        // This causes it to match into a register for the sharing.
1845        set_shared(n);       // Flag as shared and
1846        mstack.pop();        // remove node from stack
1847        continue;
1848      }
1849      nstate = Visit; // Not already visited; so visit now
1850    }
1851    if (nstate == Visit) {
1852      mstack.set_state(Post_Visit);
1853      set_visited(n);   // Flag as visited now
1854      bool mem_op = false;
1855
1856      switch( nop ) {  // Handle some opcodes special
1857      case Op_Phi:             // Treat Phis as shared roots
1858      case Op_Parm:
1859      case Op_Proj:            // All handled specially during matching
1860      case Op_SafePointScalarObject:
1861        set_shared(n);
1862        set_dontcare(n);
1863        break;
1864      case Op_If:
1865      case Op_CountedLoopEnd:
1866        mstack.set_state(Alt_Post_Visit); // Alternative way
1867        // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1868        // with matching cmp/branch in 1 instruction.  The Matcher needs the
1869        // Bool and CmpX side-by-side, because it can only get at constants
1870        // that are at the leaves of Match trees, and the Bool's condition acts
1871        // as a constant here.
1872        mstack.push(n->in(1), Visit);         // Clone the Bool
1873        mstack.push(n->in(0), Pre_Visit);     // Visit control input
1874        continue; // while (mstack.is_nonempty())
1875      case Op_ConvI2D:         // These forms efficiently match with a prior
1876      case Op_ConvI2F:         //   Load but not a following Store
1877        if( n->in(1)->is_Load() &&        // Prior load
1878            n->outcnt() == 1 &&           // Not already shared
1879            n->unique_out()->is_Store() ) // Following store
1880          set_shared(n);       // Force it to be a root
1881        break;
1882      case Op_ReverseBytesI:
1883      case Op_ReverseBytesL:
1884        if( n->in(1)->is_Load() &&        // Prior load
1885            n->outcnt() == 1 )            // Not already shared
1886          set_shared(n);                  // Force it to be a root
1887        break;
1888      case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1889      case Op_IfFalse:
1890      case Op_IfTrue:
1891      case Op_MachProj:
1892      case Op_MergeMem:
1893      case Op_Catch:
1894      case Op_CatchProj:
1895      case Op_CProj:
1896      case Op_JumpProj:
1897      case Op_JProj:
1898      case Op_NeverBranch:
1899        set_dontcare(n);
1900        break;
1901      case Op_Jump:
1902        mstack.push(n->in(1), Visit);         // Switch Value
1903        mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1904        continue;                             // while (mstack.is_nonempty())
1905      case Op_StrComp:
1906      case Op_StrEquals:
1907      case Op_StrIndexOf:
1908      case Op_AryEq:
1909        set_shared(n); // Force result into register (it will be anyways)
1910        break;
1911      case Op_ConP: {  // Convert pointers above the centerline to NUL
1912        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1913        const TypePtr* tp = tn->type()->is_ptr();
1914        if (tp->_ptr == TypePtr::AnyNull) {
1915          tn->set_type(TypePtr::NULL_PTR);
1916        }
1917        break;
1918      }
1919      case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1920        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1921        const TypePtr* tp = tn->type()->make_ptr();
1922        if (tp && tp->_ptr == TypePtr::AnyNull) {
1923          tn->set_type(TypeNarrowOop::NULL_PTR);
1924        }
1925        break;
1926      }
1927      case Op_Binary:         // These are introduced in the Post_Visit state.
1928        ShouldNotReachHere();
1929        break;
1930      case Op_ClearArray:
1931      case Op_SafePoint:
1932        mem_op = true;
1933        break;
1934      default:
1935        if( n->is_Store() ) {
1936          // Do match stores, despite no ideal reg
1937          mem_op = true;
1938          break;
1939        }
1940        if( n->is_Mem() ) { // Loads and LoadStores
1941          mem_op = true;
1942          // Loads must be root of match tree due to prior load conflict
1943          if( C->subsume_loads() == false )
1944            set_shared(n);
1945        }
1946        // Fall into default case
1947        if( !n->ideal_reg() )
1948          set_dontcare(n);  // Unmatchable Nodes
1949      } // end_switch
1950
1951      for(int i = n->req() - 1; i >= 0; --i) { // For my children
1952        Node *m = n->in(i); // Get ith input
1953        if (m == NULL) continue;  // Ignore NULLs
1954        uint mop = m->Opcode();
1955
1956        // Must clone all producers of flags, or we will not match correctly.
1957        // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1958        // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1959        // are also there, so we may match a float-branch to int-flags and
1960        // expect the allocator to haul the flags from the int-side to the
1961        // fp-side.  No can do.
1962        if( _must_clone[mop] ) {
1963          mstack.push(m, Visit);
1964          continue; // for(int i = ...)
1965        }
1966
1967        if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
1968          // Bases used in addresses must be shared but since
1969          // they are shared through a DecodeN they may appear
1970          // to have a single use so force sharing here.
1971          set_shared(m->in(AddPNode::Base)->in(1));
1972        }
1973
1974        // Clone addressing expressions as they are "free" in memory access instructions
1975        if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1976          // Some inputs for address expression are not put on stack
1977          // to avoid marking them as shared and forcing them into register
1978          // if they are used only in address expressions.
1979          // But they should be marked as shared if there are other uses
1980          // besides address expressions.
1981
1982          Node *off = m->in(AddPNode::Offset);
1983          if( off->is_Con() &&
1984              // When there are other uses besides address expressions
1985              // put it on stack and mark as shared.
1986              !is_visited(m) ) {
1987            address_visited.test_set(m->_idx); // Flag as address_visited
1988            Node *adr = m->in(AddPNode::Address);
1989
1990            // Intel, ARM and friends can handle 2 adds in addressing mode
1991            if( clone_shift_expressions && adr->is_AddP() &&
1992                // AtomicAdd is not an addressing expression.
1993                // Cheap to find it by looking for screwy base.
1994                !adr->in(AddPNode::Base)->is_top() &&
1995                // Are there other uses besides address expressions?
1996                !is_visited(adr) ) {
1997              address_visited.set(adr->_idx); // Flag as address_visited
1998              Node *shift = adr->in(AddPNode::Offset);
1999              // Check for shift by small constant as well
2000              if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2001                  shift->in(2)->get_int() <= 3 &&
2002                  // Are there other uses besides address expressions?
2003                  !is_visited(shift) ) {
2004                address_visited.set(shift->_idx); // Flag as address_visited
2005                mstack.push(shift->in(2), Visit);
2006                Node *conv = shift->in(1);
2007#ifdef _LP64
2008                // Allow Matcher to match the rule which bypass
2009                // ConvI2L operation for an array index on LP64
2010                // if the index value is positive.
2011                if( conv->Opcode() == Op_ConvI2L &&
2012                    conv->as_Type()->type()->is_long()->_lo >= 0 &&
2013                    // Are there other uses besides address expressions?
2014                    !is_visited(conv) ) {
2015                  address_visited.set(conv->_idx); // Flag as address_visited
2016                  mstack.push(conv->in(1), Pre_Visit);
2017                } else
2018#endif
2019                mstack.push(conv, Pre_Visit);
2020              } else {
2021                mstack.push(shift, Pre_Visit);
2022              }
2023              mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2024              mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2025            } else {  // Sparc, Alpha, PPC and friends
2026              mstack.push(adr, Pre_Visit);
2027            }
2028
2029            // Clone X+offset as it also folds into most addressing expressions
2030            mstack.push(off, Visit);
2031            mstack.push(m->in(AddPNode::Base), Pre_Visit);
2032            continue; // for(int i = ...)
2033          } // if( off->is_Con() )
2034        }   // if( mem_op &&
2035        mstack.push(m, Pre_Visit);
2036      }     // for(int i = ...)
2037    }
2038    else if (nstate == Alt_Post_Visit) {
2039      mstack.pop(); // Remove node from stack
2040      // We cannot remove the Cmp input from the Bool here, as the Bool may be
2041      // shared and all users of the Bool need to move the Cmp in parallel.
2042      // This leaves both the Bool and the If pointing at the Cmp.  To
2043      // prevent the Matcher from trying to Match the Cmp along both paths
2044      // BoolNode::match_edge always returns a zero.
2045
2046      // We reorder the Op_If in a pre-order manner, so we can visit without
2047      // accidentally sharing the Cmp (the Bool and the If make 2 users).
2048      n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2049    }
2050    else if (nstate == Post_Visit) {
2051      mstack.pop(); // Remove node from stack
2052
2053      // Now hack a few special opcodes
2054      switch( n->Opcode() ) {       // Handle some opcodes special
2055      case Op_StorePConditional:
2056      case Op_StoreIConditional:
2057      case Op_StoreLConditional:
2058      case Op_CompareAndSwapI:
2059      case Op_CompareAndSwapL:
2060      case Op_CompareAndSwapP:
2061      case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2062        Node *newval = n->in(MemNode::ValueIn );
2063        Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
2064        Node *pair = new (C, 3) BinaryNode( oldval, newval );
2065        n->set_req(MemNode::ValueIn,pair);
2066        n->del_req(LoadStoreNode::ExpectedIn);
2067        break;
2068      }
2069      case Op_CMoveD:              // Convert trinary to binary-tree
2070      case Op_CMoveF:
2071      case Op_CMoveI:
2072      case Op_CMoveL:
2073      case Op_CMoveN:
2074      case Op_CMoveP: {
2075        // Restructure into a binary tree for Matching.  It's possible that
2076        // we could move this code up next to the graph reshaping for IfNodes
2077        // or vice-versa, but I do not want to debug this for Ladybird.
2078        // 10/2/2000 CNC.
2079        Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2080        n->set_req(1,pair1);
2081        Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2082        n->set_req(2,pair2);
2083        n->del_req(3);
2084        break;
2085      }
2086      case Op_StrEquals: {
2087        Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2088        n->set_req(2,pair1);
2089        n->set_req(3,n->in(4));
2090        n->del_req(4);
2091        break;
2092      }
2093      case Op_StrComp:
2094      case Op_StrIndexOf: {
2095        Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2096        n->set_req(2,pair1);
2097        Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
2098        n->set_req(3,pair2);
2099        n->del_req(5);
2100        n->del_req(4);
2101        break;
2102      }
2103      default:
2104        break;
2105      }
2106    }
2107    else {
2108      ShouldNotReachHere();
2109    }
2110  } // end of while (mstack.is_nonempty())
2111}
2112
2113#ifdef ASSERT
2114// machine-independent root to machine-dependent root
2115void Matcher::dump_old2new_map() {
2116  _old2new_map.dump();
2117}
2118#endif
2119
2120//---------------------------collect_null_checks-------------------------------
2121// Find null checks in the ideal graph; write a machine-specific node for
2122// it.  Used by later implicit-null-check handling.  Actually collects
2123// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2124// value being tested.
2125void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2126  Node *iff = proj->in(0);
2127  if( iff->Opcode() == Op_If ) {
2128    // During matching If's have Bool & Cmp side-by-side
2129    BoolNode *b = iff->in(1)->as_Bool();
2130    Node *cmp = iff->in(2);
2131    int opc = cmp->Opcode();
2132    if (opc != Op_CmpP && opc != Op_CmpN) return;
2133
2134    const Type* ct = cmp->in(2)->bottom_type();
2135    if (ct == TypePtr::NULL_PTR ||
2136        (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2137
2138      bool push_it = false;
2139      if( proj->Opcode() == Op_IfTrue ) {
2140        extern int all_null_checks_found;
2141        all_null_checks_found++;
2142        if( b->_test._test == BoolTest::ne ) {
2143          push_it = true;
2144        }
2145      } else {
2146        assert( proj->Opcode() == Op_IfFalse, "" );
2147        if( b->_test._test == BoolTest::eq ) {
2148          push_it = true;
2149        }
2150      }
2151      if( push_it ) {
2152        _null_check_tests.push(proj);
2153        Node* val = cmp->in(1);
2154#ifdef _LP64
2155        if (val->bottom_type()->isa_narrowoop() &&
2156            !Matcher::narrow_oop_use_complex_address()) {
2157          //
2158          // Look for DecodeN node which should be pinned to orig_proj.
2159          // On platforms (Sparc) which can not handle 2 adds
2160          // in addressing mode we have to keep a DecodeN node and
2161          // use it to do implicit NULL check in address.
2162          //
2163          // DecodeN node was pinned to non-null path (orig_proj) during
2164          // CastPP transformation in final_graph_reshaping_impl().
2165          //
2166          uint cnt = orig_proj->outcnt();
2167          for (uint i = 0; i < orig_proj->outcnt(); i++) {
2168            Node* d = orig_proj->raw_out(i);
2169            if (d->is_DecodeN() && d->in(1) == val) {
2170              val = d;
2171              val->set_req(0, NULL); // Unpin now.
2172              // Mark this as special case to distinguish from
2173              // a regular case: CmpP(DecodeN, NULL).
2174              val = (Node*)(((intptr_t)val) | 1);
2175              break;
2176            }
2177          }
2178        }
2179#endif
2180        _null_check_tests.push(val);
2181      }
2182    }
2183  }
2184}
2185
2186//---------------------------validate_null_checks------------------------------
2187// Its possible that the value being NULL checked is not the root of a match
2188// tree.  If so, I cannot use the value in an implicit null check.
2189void Matcher::validate_null_checks( ) {
2190  uint cnt = _null_check_tests.size();
2191  for( uint i=0; i < cnt; i+=2 ) {
2192    Node *test = _null_check_tests[i];
2193    Node *val = _null_check_tests[i+1];
2194    bool is_decoden = ((intptr_t)val) & 1;
2195    val = (Node*)(((intptr_t)val) & ~1);
2196    if (has_new_node(val)) {
2197      Node* new_val = new_node(val);
2198      if (is_decoden) {
2199        assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
2200        // Note: new_val may have a control edge if
2201        // the original ideal node DecodeN was matched before
2202        // it was unpinned in Matcher::collect_null_checks().
2203        // Unpin the mach node and mark it.
2204        new_val->set_req(0, NULL);
2205        new_val = (Node*)(((intptr_t)new_val) | 1);
2206      }
2207      // Is a match-tree root, so replace with the matched value
2208      _null_check_tests.map(i+1, new_val);
2209    } else {
2210      // Yank from candidate list
2211      _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2212      _null_check_tests.map(i,_null_check_tests[--cnt]);
2213      _null_check_tests.pop();
2214      _null_check_tests.pop();
2215      i-=2;
2216    }
2217  }
2218}
2219
2220
2221// Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
2222// acting as an Acquire and thus we don't need an Acquire here.  We
2223// retain the Node to act as a compiler ordering barrier.
2224bool Matcher::prior_fast_lock( const Node *acq ) {
2225  Node *r = acq->in(0);
2226  if( !r->is_Region() || r->req() <= 1 ) return false;
2227  Node *proj = r->in(1);
2228  if( !proj->is_Proj() ) return false;
2229  Node *call = proj->in(0);
2230  if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
2231    return false;
2232
2233  return true;
2234}
2235
2236// Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
2237// acting as a Release and thus we don't need a Release here.  We
2238// retain the Node to act as a compiler ordering barrier.
2239bool Matcher::post_fast_unlock( const Node *rel ) {
2240  Compile *C = Compile::current();
2241  assert( rel->Opcode() == Op_MemBarRelease, "" );
2242  const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
2243  DUIterator_Fast imax, i = mem->fast_outs(imax);
2244  Node *ctrl = NULL;
2245  while( true ) {
2246    ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2247    assert( ctrl->is_Proj(), "only projections here" );
2248    ProjNode *proj = (ProjNode*)ctrl;
2249    if( proj->_con == TypeFunc::Control &&
2250        !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2251      break;
2252    i++;
2253  }
2254  Node *iff = NULL;
2255  for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2256    Node *x = ctrl->fast_out(j);
2257    if( x->is_If() && x->req() > 1 &&
2258        !C->node_arena()->contains(x) ) { // Unmatched old-space only
2259      iff = x;
2260      break;
2261    }
2262  }
2263  if( !iff ) return false;
2264  Node *bol = iff->in(1);
2265  // The iff might be some random subclass of If or bol might be Con-Top
2266  if (!bol->is_Bool())  return false;
2267  assert( bol->req() > 1, "" );
2268  return (bol->in(1)->Opcode() == Op_FastUnlock);
2269}
2270
2271// Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2272// atomic instruction acting as a store_load barrier without any
2273// intervening volatile load, and thus we don't need a barrier here.
2274// We retain the Node to act as a compiler ordering barrier.
2275bool Matcher::post_store_load_barrier(const Node *vmb) {
2276  Compile *C = Compile::current();
2277  assert( vmb->is_MemBar(), "" );
2278  assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2279  const MemBarNode *mem = (const MemBarNode*)vmb;
2280
2281  // Get the Proj node, ctrl, that can be used to iterate forward
2282  Node *ctrl = NULL;
2283  DUIterator_Fast imax, i = mem->fast_outs(imax);
2284  while( true ) {
2285    ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2286    assert( ctrl->is_Proj(), "only projections here" );
2287    ProjNode *proj = (ProjNode*)ctrl;
2288    if( proj->_con == TypeFunc::Control &&
2289        !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2290      break;
2291    i++;
2292  }
2293
2294  for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2295    Node *x = ctrl->fast_out(j);
2296    int xop = x->Opcode();
2297
2298    // We don't need current barrier if we see another or a lock
2299    // before seeing volatile load.
2300    //
2301    // Op_Fastunlock previously appeared in the Op_* list below.
2302    // With the advent of 1-0 lock operations we're no longer guaranteed
2303    // that a monitor exit operation contains a serializing instruction.
2304
2305    if (xop == Op_MemBarVolatile ||
2306        xop == Op_FastLock ||
2307        xop == Op_CompareAndSwapL ||
2308        xop == Op_CompareAndSwapP ||
2309        xop == Op_CompareAndSwapN ||
2310        xop == Op_CompareAndSwapI)
2311      return true;
2312
2313    if (x->is_MemBar()) {
2314      // We must retain this membar if there is an upcoming volatile
2315      // load, which will be preceded by acquire membar.
2316      if (xop == Op_MemBarAcquire)
2317        return false;
2318      // For other kinds of barriers, check by pretending we
2319      // are them, and seeing if we can be removed.
2320      else
2321        return post_store_load_barrier((const MemBarNode*)x);
2322    }
2323
2324    // Delicate code to detect case of an upcoming fastlock block
2325    if( x->is_If() && x->req() > 1 &&
2326        !C->node_arena()->contains(x) ) { // Unmatched old-space only
2327      Node *iff = x;
2328      Node *bol = iff->in(1);
2329      // The iff might be some random subclass of If or bol might be Con-Top
2330      if (!bol->is_Bool())  return false;
2331      assert( bol->req() > 1, "" );
2332      return (bol->in(1)->Opcode() == Op_FastUnlock);
2333    }
2334    // probably not necessary to check for these
2335    if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2336      return false;
2337  }
2338  return false;
2339}
2340
2341//=============================================================================
2342//---------------------------State---------------------------------------------
2343State::State(void) {
2344#ifdef ASSERT
2345  _id = 0;
2346  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2347  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2348  //memset(_cost, -1, sizeof(_cost));
2349  //memset(_rule, -1, sizeof(_rule));
2350#endif
2351  memset(_valid, 0, sizeof(_valid));
2352}
2353
2354#ifdef ASSERT
2355State::~State() {
2356  _id = 99;
2357  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2358  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2359  memset(_cost, -3, sizeof(_cost));
2360  memset(_rule, -3, sizeof(_rule));
2361}
2362#endif
2363
2364#ifndef PRODUCT
2365//---------------------------dump----------------------------------------------
2366void State::dump() {
2367  tty->print("\n");
2368  dump(0);
2369}
2370
2371void State::dump(int depth) {
2372  for( int j = 0; j < depth; j++ )
2373    tty->print("   ");
2374  tty->print("--N: ");
2375  _leaf->dump();
2376  uint i;
2377  for( i = 0; i < _LAST_MACH_OPER; i++ )
2378    // Check for valid entry
2379    if( valid(i) ) {
2380      for( int j = 0; j < depth; j++ )
2381        tty->print("   ");
2382        assert(_cost[i] != max_juint, "cost must be a valid value");
2383        assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2384        tty->print_cr("%s  %d  %s",
2385                      ruleName[i], _cost[i], ruleName[_rule[i]] );
2386      }
2387  tty->print_cr("");
2388
2389  for( i=0; i<2; i++ )
2390    if( _kids[i] )
2391      _kids[i]->dump(depth+1);
2392}
2393#endif
2394