macro.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_macro.cpp.incl"
27
28
29//
30// Replace any references to "oldref" in inputs to "use" with "newref".
31// Returns the number of replacements made.
32//
33int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
34  int nreplacements = 0;
35  uint req = use->req();
36  for (uint j = 0; j < use->len(); j++) {
37    Node *uin = use->in(j);
38    if (uin == oldref) {
39      if (j < req)
40        use->set_req(j, newref);
41      else
42        use->set_prec(j, newref);
43      nreplacements++;
44    } else if (j >= req && uin == NULL) {
45      break;
46    }
47  }
48  return nreplacements;
49}
50
51void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
52  // Copy debug information and adjust JVMState information
53  uint old_dbg_start = oldcall->tf()->domain()->cnt();
54  uint new_dbg_start = newcall->tf()->domain()->cnt();
55  int jvms_adj  = new_dbg_start - old_dbg_start;
56  assert (new_dbg_start == newcall->req(), "argument count mismatch");
57
58  Dict* sosn_map = new Dict(cmpkey,hashkey);
59  for (uint i = old_dbg_start; i < oldcall->req(); i++) {
60    Node* old_in = oldcall->in(i);
61    // Clone old SafePointScalarObjectNodes, adjusting their field contents.
62    if (old_in != NULL && old_in->is_SafePointScalarObject()) {
63      SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
64      uint old_unique = C->unique();
65      Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
66      if (old_unique != C->unique()) {
67        new_in->set_req(0, newcall->in(0)); // reset control edge
68        new_in = transform_later(new_in); // Register new node.
69      }
70      old_in = new_in;
71    }
72    newcall->add_req(old_in);
73  }
74
75  newcall->set_jvms(oldcall->jvms());
76  for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
77    jvms->set_map(newcall);
78    jvms->set_locoff(jvms->locoff()+jvms_adj);
79    jvms->set_stkoff(jvms->stkoff()+jvms_adj);
80    jvms->set_monoff(jvms->monoff()+jvms_adj);
81    jvms->set_scloff(jvms->scloff()+jvms_adj);
82    jvms->set_endoff(jvms->endoff()+jvms_adj);
83  }
84}
85
86Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
87  Node* cmp;
88  if (mask != 0) {
89    Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
90    cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
91  } else {
92    cmp = word;
93  }
94  Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
95  IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
96  transform_later(iff);
97
98  // Fast path taken.
99  Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
100
101  // Fast path not-taken, i.e. slow path
102  Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
103
104  if (return_fast_path) {
105    region->init_req(edge, slow_taken); // Capture slow-control
106    return fast_taken;
107  } else {
108    region->init_req(edge, fast_taken); // Capture fast-control
109    return slow_taken;
110  }
111}
112
113//--------------------copy_predefined_input_for_runtime_call--------------------
114void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
115  // Set fixed predefined input arguments
116  call->init_req( TypeFunc::Control, ctrl );
117  call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
118  call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
119  call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
120  call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
121}
122
123//------------------------------make_slow_call---------------------------------
124CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
125
126  // Slow-path call
127  int size = slow_call_type->domain()->cnt();
128 CallNode *call = leaf_name
129   ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
130   : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
131
132  // Slow path call has no side-effects, uses few values
133  copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
134  if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
135  if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
136  copy_call_debug_info(oldcall, call);
137  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
138  _igvn.hash_delete(oldcall);
139  _igvn.subsume_node(oldcall, call);
140  transform_later(call);
141
142  return call;
143}
144
145void PhaseMacroExpand::extract_call_projections(CallNode *call) {
146  _fallthroughproj = NULL;
147  _fallthroughcatchproj = NULL;
148  _ioproj_fallthrough = NULL;
149  _ioproj_catchall = NULL;
150  _catchallcatchproj = NULL;
151  _memproj_fallthrough = NULL;
152  _memproj_catchall = NULL;
153  _resproj = NULL;
154  for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
155    ProjNode *pn = call->fast_out(i)->as_Proj();
156    switch (pn->_con) {
157      case TypeFunc::Control:
158      {
159        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
160        _fallthroughproj = pn;
161        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
162        const Node *cn = pn->fast_out(j);
163        if (cn->is_Catch()) {
164          ProjNode *cpn = NULL;
165          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
166            cpn = cn->fast_out(k)->as_Proj();
167            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
168            if (cpn->_con == CatchProjNode::fall_through_index)
169              _fallthroughcatchproj = cpn;
170            else {
171              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
172              _catchallcatchproj = cpn;
173            }
174          }
175        }
176        break;
177      }
178      case TypeFunc::I_O:
179        if (pn->_is_io_use)
180          _ioproj_catchall = pn;
181        else
182          _ioproj_fallthrough = pn;
183        break;
184      case TypeFunc::Memory:
185        if (pn->_is_io_use)
186          _memproj_catchall = pn;
187        else
188          _memproj_fallthrough = pn;
189        break;
190      case TypeFunc::Parms:
191        _resproj = pn;
192        break;
193      default:
194        assert(false, "unexpected projection from allocation node.");
195    }
196  }
197
198}
199
200// Eliminate a card mark sequence.  p2x is a ConvP2XNode
201void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
202  assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
203  if (!UseG1GC) {
204    // vanilla/CMS post barrier
205    Node *shift = p2x->unique_out();
206    Node *addp = shift->unique_out();
207    for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
208      Node *st = addp->last_out(j);
209      assert(st->is_Store(), "store required");
210      _igvn.replace_node(st, st->in(MemNode::Memory));
211    }
212  } else {
213    // G1 pre/post barriers
214    assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
215    // It could be only one user, URShift node, in Object.clone() instrinsic
216    // but the new allocation is passed to arraycopy stub and it could not
217    // be scalar replaced. So we don't check the case.
218
219    // Remove G1 post barrier.
220
221    // Search for CastP2X->Xor->URShift->Cmp path which
222    // checks if the store done to a different from the value's region.
223    // And replace Cmp with #0 (false) to collapse G1 post barrier.
224    Node* xorx = NULL;
225    for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
226      Node* u = p2x->fast_out(i);
227      if (u->Opcode() == Op_XorX) {
228        xorx = u;
229        break;
230      }
231    }
232    assert(xorx != NULL, "missing G1 post barrier");
233    Node* shift = xorx->unique_out();
234    Node* cmpx = shift->unique_out();
235    assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
236    cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
237    "missing region check in G1 post barrier");
238    _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
239
240    // Remove G1 pre barrier.
241
242    // Search "if (marking != 0)" check and set it to "false".
243    Node* this_region = p2x->in(0);
244    assert(this_region != NULL, "");
245    // There is no G1 pre barrier if previous stored value is NULL
246    // (for example, after initialization).
247    if (this_region->is_Region() && this_region->req() == 3) {
248      int ind = 1;
249      if (!this_region->in(ind)->is_IfFalse()) {
250        ind = 2;
251      }
252      if (this_region->in(ind)->is_IfFalse()) {
253        Node* bol = this_region->in(ind)->in(0)->in(1);
254        assert(bol->is_Bool(), "");
255        cmpx = bol->in(1);
256        if (bol->as_Bool()->_test._test == BoolTest::ne &&
257            cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
258            cmpx->in(1)->is_Load()) {
259          Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
260          const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
261                                              PtrQueue::byte_offset_of_active());
262          if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
263              adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
264              adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
265            _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
266          }
267        }
268      }
269    }
270    // Now CastP2X can be removed since it is used only on dead path
271    // which currently still alive until igvn optimize it.
272    assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
273    _igvn.replace_node(p2x, top());
274  }
275}
276
277// Search for a memory operation for the specified memory slice.
278static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
279  Node *orig_mem = mem;
280  Node *alloc_mem = alloc->in(TypeFunc::Memory);
281  const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
282  while (true) {
283    if (mem == alloc_mem || mem == start_mem ) {
284      return mem;  // hit one of our sentinels
285    } else if (mem->is_MergeMem()) {
286      mem = mem->as_MergeMem()->memory_at(alias_idx);
287    } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
288      Node *in = mem->in(0);
289      // we can safely skip over safepoints, calls, locks and membars because we
290      // already know that the object is safe to eliminate.
291      if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
292        return in;
293      } else if (in->is_Call()) {
294        CallNode *call = in->as_Call();
295        if (!call->may_modify(tinst, phase)) {
296          mem = call->in(TypeFunc::Memory);
297        }
298        mem = in->in(TypeFunc::Memory);
299      } else if (in->is_MemBar()) {
300        mem = in->in(TypeFunc::Memory);
301      } else {
302        assert(false, "unexpected projection");
303      }
304    } else if (mem->is_Store()) {
305      const TypePtr* atype = mem->as_Store()->adr_type();
306      int adr_idx = Compile::current()->get_alias_index(atype);
307      if (adr_idx == alias_idx) {
308        assert(atype->isa_oopptr(), "address type must be oopptr");
309        int adr_offset = atype->offset();
310        uint adr_iid = atype->is_oopptr()->instance_id();
311        // Array elements references have the same alias_idx
312        // but different offset and different instance_id.
313        if (adr_offset == offset && adr_iid == alloc->_idx)
314          return mem;
315      } else {
316        assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
317      }
318      mem = mem->in(MemNode::Memory);
319    } else if (mem->is_ClearArray()) {
320      if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
321        // Can not bypass initialization of the instance
322        // we are looking.
323        debug_only(intptr_t offset;)
324        assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
325        InitializeNode* init = alloc->as_Allocate()->initialization();
326        // We are looking for stored value, return Initialize node
327        // or memory edge from Allocate node.
328        if (init != NULL)
329          return init;
330        else
331          return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
332      }
333      // Otherwise skip it (the call updated 'mem' value).
334    } else if (mem->Opcode() == Op_SCMemProj) {
335      assert(mem->in(0)->is_LoadStore(), "sanity");
336      const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
337      int adr_idx = Compile::current()->get_alias_index(atype);
338      if (adr_idx == alias_idx) {
339        assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
340        return NULL;
341      }
342      mem = mem->in(0)->in(MemNode::Memory);
343    } else {
344      return mem;
345    }
346    assert(mem != orig_mem, "dead memory loop");
347  }
348}
349
350//
351// Given a Memory Phi, compute a value Phi containing the values from stores
352// on the input paths.
353// Note: this function is recursive, its depth is limied by the "level" argument
354// Returns the computed Phi, or NULL if it cannot compute it.
355Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
356  assert(mem->is_Phi(), "sanity");
357  int alias_idx = C->get_alias_index(adr_t);
358  int offset = adr_t->offset();
359  int instance_id = adr_t->instance_id();
360
361  // Check if an appropriate value phi already exists.
362  Node* region = mem->in(0);
363  for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
364    Node* phi = region->fast_out(k);
365    if (phi->is_Phi() && phi != mem &&
366        phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
367      return phi;
368    }
369  }
370  // Check if an appropriate new value phi already exists.
371  Node* new_phi = NULL;
372  uint size = value_phis->size();
373  for (uint i=0; i < size; i++) {
374    if ( mem->_idx == value_phis->index_at(i) ) {
375      return value_phis->node_at(i);
376    }
377  }
378
379  if (level <= 0) {
380    return NULL; // Give up: phi tree too deep
381  }
382  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
383  Node *alloc_mem = alloc->in(TypeFunc::Memory);
384
385  uint length = mem->req();
386  GrowableArray <Node *> values(length, length, NULL);
387
388  // create a new Phi for the value
389  PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
390  transform_later(phi);
391  value_phis->push(phi, mem->_idx);
392
393  for (uint j = 1; j < length; j++) {
394    Node *in = mem->in(j);
395    if (in == NULL || in->is_top()) {
396      values.at_put(j, in);
397    } else  {
398      Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
399      if (val == start_mem || val == alloc_mem) {
400        // hit a sentinel, return appropriate 0 value
401        values.at_put(j, _igvn.zerocon(ft));
402        continue;
403      }
404      if (val->is_Initialize()) {
405        val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
406      }
407      if (val == NULL) {
408        return NULL;  // can't find a value on this path
409      }
410      if (val == mem) {
411        values.at_put(j, mem);
412      } else if (val->is_Store()) {
413        values.at_put(j, val->in(MemNode::ValueIn));
414      } else if(val->is_Proj() && val->in(0) == alloc) {
415        values.at_put(j, _igvn.zerocon(ft));
416      } else if (val->is_Phi()) {
417        val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
418        if (val == NULL) {
419          return NULL;
420        }
421        values.at_put(j, val);
422      } else if (val->Opcode() == Op_SCMemProj) {
423        assert(val->in(0)->is_LoadStore(), "sanity");
424        assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
425        return NULL;
426      } else {
427#ifdef ASSERT
428        val->dump();
429        assert(false, "unknown node on this path");
430#endif
431        return NULL;  // unknown node on this path
432      }
433    }
434  }
435  // Set Phi's inputs
436  for (uint j = 1; j < length; j++) {
437    if (values.at(j) == mem) {
438      phi->init_req(j, phi);
439    } else {
440      phi->init_req(j, values.at(j));
441    }
442  }
443  return phi;
444}
445
446// Search the last value stored into the object's field.
447Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
448  assert(adr_t->is_known_instance_field(), "instance required");
449  int instance_id = adr_t->instance_id();
450  assert((uint)instance_id == alloc->_idx, "wrong allocation");
451
452  int alias_idx = C->get_alias_index(adr_t);
453  int offset = adr_t->offset();
454  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
455  Node *alloc_ctrl = alloc->in(TypeFunc::Control);
456  Node *alloc_mem = alloc->in(TypeFunc::Memory);
457  Arena *a = Thread::current()->resource_area();
458  VectorSet visited(a);
459
460
461  bool done = sfpt_mem == alloc_mem;
462  Node *mem = sfpt_mem;
463  while (!done) {
464    if (visited.test_set(mem->_idx)) {
465      return NULL;  // found a loop, give up
466    }
467    mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
468    if (mem == start_mem || mem == alloc_mem) {
469      done = true;  // hit a sentinel, return appropriate 0 value
470    } else if (mem->is_Initialize()) {
471      mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
472      if (mem == NULL) {
473        done = true; // Something go wrong.
474      } else if (mem->is_Store()) {
475        const TypePtr* atype = mem->as_Store()->adr_type();
476        assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
477        done = true;
478      }
479    } else if (mem->is_Store()) {
480      const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
481      assert(atype != NULL, "address type must be oopptr");
482      assert(C->get_alias_index(atype) == alias_idx &&
483             atype->is_known_instance_field() && atype->offset() == offset &&
484             atype->instance_id() == instance_id, "store is correct memory slice");
485      done = true;
486    } else if (mem->is_Phi()) {
487      // try to find a phi's unique input
488      Node *unique_input = NULL;
489      Node *top = C->top();
490      for (uint i = 1; i < mem->req(); i++) {
491        Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
492        if (n == NULL || n == top || n == mem) {
493          continue;
494        } else if (unique_input == NULL) {
495          unique_input = n;
496        } else if (unique_input != n) {
497          unique_input = top;
498          break;
499        }
500      }
501      if (unique_input != NULL && unique_input != top) {
502        mem = unique_input;
503      } else {
504        done = true;
505      }
506    } else {
507      assert(false, "unexpected node");
508    }
509  }
510  if (mem != NULL) {
511    if (mem == start_mem || mem == alloc_mem) {
512      // hit a sentinel, return appropriate 0 value
513      return _igvn.zerocon(ft);
514    } else if (mem->is_Store()) {
515      return mem->in(MemNode::ValueIn);
516    } else if (mem->is_Phi()) {
517      // attempt to produce a Phi reflecting the values on the input paths of the Phi
518      Node_Stack value_phis(a, 8);
519      Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
520      if (phi != NULL) {
521        return phi;
522      } else {
523        // Kill all new Phis
524        while(value_phis.is_nonempty()) {
525          Node* n = value_phis.node();
526          _igvn.hash_delete(n);
527          _igvn.subsume_node(n, C->top());
528          value_phis.pop();
529        }
530      }
531    }
532  }
533  // Something go wrong.
534  return NULL;
535}
536
537// Check the possibility of scalar replacement.
538bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
539  //  Scan the uses of the allocation to check for anything that would
540  //  prevent us from eliminating it.
541  NOT_PRODUCT( const char* fail_eliminate = NULL; )
542  DEBUG_ONLY( Node* disq_node = NULL; )
543  bool  can_eliminate = true;
544
545  Node* res = alloc->result_cast();
546  const TypeOopPtr* res_type = NULL;
547  if (res == NULL) {
548    // All users were eliminated.
549  } else if (!res->is_CheckCastPP()) {
550    alloc->_is_scalar_replaceable = false;  // don't try again
551    NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
552    can_eliminate = false;
553  } else {
554    res_type = _igvn.type(res)->isa_oopptr();
555    if (res_type == NULL) {
556      NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
557      can_eliminate = false;
558    } else if (res_type->isa_aryptr()) {
559      int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
560      if (length < 0) {
561        NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
562        can_eliminate = false;
563      }
564    }
565  }
566
567  if (can_eliminate && res != NULL) {
568    for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
569                               j < jmax && can_eliminate; j++) {
570      Node* use = res->fast_out(j);
571
572      if (use->is_AddP()) {
573        const TypePtr* addp_type = _igvn.type(use)->is_ptr();
574        int offset = addp_type->offset();
575
576        if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
577          NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
578          can_eliminate = false;
579          break;
580        }
581        for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
582                                   k < kmax && can_eliminate; k++) {
583          Node* n = use->fast_out(k);
584          if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
585            DEBUG_ONLY(disq_node = n;)
586            if (n->is_Load() || n->is_LoadStore()) {
587              NOT_PRODUCT(fail_eliminate = "Field load";)
588            } else {
589              NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
590            }
591            can_eliminate = false;
592          }
593        }
594      } else if (use->is_SafePoint()) {
595        SafePointNode* sfpt = use->as_SafePoint();
596        if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
597          // Object is passed as argument.
598          DEBUG_ONLY(disq_node = use;)
599          NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
600          can_eliminate = false;
601        }
602        Node* sfptMem = sfpt->memory();
603        if (sfptMem == NULL || sfptMem->is_top()) {
604          DEBUG_ONLY(disq_node = use;)
605          NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
606          can_eliminate = false;
607        } else {
608          safepoints.append_if_missing(sfpt);
609        }
610      } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
611        if (use->is_Phi()) {
612          if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
613            NOT_PRODUCT(fail_eliminate = "Object is return value";)
614          } else {
615            NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
616          }
617          DEBUG_ONLY(disq_node = use;)
618        } else {
619          if (use->Opcode() == Op_Return) {
620            NOT_PRODUCT(fail_eliminate = "Object is return value";)
621          }else {
622            NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
623          }
624          DEBUG_ONLY(disq_node = use;)
625        }
626        can_eliminate = false;
627      }
628    }
629  }
630
631#ifndef PRODUCT
632  if (PrintEliminateAllocations) {
633    if (can_eliminate) {
634      tty->print("Scalar ");
635      if (res == NULL)
636        alloc->dump();
637      else
638        res->dump();
639    } else {
640      tty->print("NotScalar (%s)", fail_eliminate);
641      if (res == NULL)
642        alloc->dump();
643      else
644        res->dump();
645#ifdef ASSERT
646      if (disq_node != NULL) {
647          tty->print("  >>>> ");
648          disq_node->dump();
649      }
650#endif /*ASSERT*/
651    }
652  }
653#endif
654  return can_eliminate;
655}
656
657// Do scalar replacement.
658bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
659  GrowableArray <SafePointNode *> safepoints_done;
660
661  ciKlass* klass = NULL;
662  ciInstanceKlass* iklass = NULL;
663  int nfields = 0;
664  int array_base;
665  int element_size;
666  BasicType basic_elem_type;
667  ciType* elem_type;
668
669  Node* res = alloc->result_cast();
670  const TypeOopPtr* res_type = NULL;
671  if (res != NULL) { // Could be NULL when there are no users
672    res_type = _igvn.type(res)->isa_oopptr();
673  }
674
675  if (res != NULL) {
676    klass = res_type->klass();
677    if (res_type->isa_instptr()) {
678      // find the fields of the class which will be needed for safepoint debug information
679      assert(klass->is_instance_klass(), "must be an instance klass.");
680      iklass = klass->as_instance_klass();
681      nfields = iklass->nof_nonstatic_fields();
682    } else {
683      // find the array's elements which will be needed for safepoint debug information
684      nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
685      assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
686      elem_type = klass->as_array_klass()->element_type();
687      basic_elem_type = elem_type->basic_type();
688      array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
689      element_size = type2aelembytes(basic_elem_type);
690    }
691  }
692  //
693  // Process the safepoint uses
694  //
695  while (safepoints.length() > 0) {
696    SafePointNode* sfpt = safepoints.pop();
697    Node* mem = sfpt->memory();
698    uint first_ind = sfpt->req();
699    SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
700#ifdef ASSERT
701                                                 alloc,
702#endif
703                                                 first_ind, nfields);
704    sobj->init_req(0, sfpt->in(TypeFunc::Control));
705    transform_later(sobj);
706
707    // Scan object's fields adding an input to the safepoint for each field.
708    for (int j = 0; j < nfields; j++) {
709      intptr_t offset;
710      ciField* field = NULL;
711      if (iklass != NULL) {
712        field = iklass->nonstatic_field_at(j);
713        offset = field->offset();
714        elem_type = field->type();
715        basic_elem_type = field->layout_type();
716      } else {
717        offset = array_base + j * (intptr_t)element_size;
718      }
719
720      const Type *field_type;
721      // The next code is taken from Parse::do_get_xxx().
722      if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
723        if (!elem_type->is_loaded()) {
724          field_type = TypeInstPtr::BOTTOM;
725        } else if (field != NULL && field->is_constant()) {
726          // This can happen if the constant oop is non-perm.
727          ciObject* con = field->constant_value().as_object();
728          // Do not "join" in the previous type; it doesn't add value,
729          // and may yield a vacuous result if the field is of interface type.
730          field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
731          assert(field_type != NULL, "field singleton type must be consistent");
732        } else {
733          field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
734        }
735        if (UseCompressedOops) {
736          field_type = field_type->make_narrowoop();
737          basic_elem_type = T_NARROWOOP;
738        }
739      } else {
740        field_type = Type::get_const_basic_type(basic_elem_type);
741      }
742
743      const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
744
745      Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
746      if (field_val == NULL) {
747        // we weren't able to find a value for this field,
748        // give up on eliminating this allocation
749        alloc->_is_scalar_replaceable = false;  // don't try again
750        // remove any extra entries we added to the safepoint
751        uint last = sfpt->req() - 1;
752        for (int k = 0;  k < j; k++) {
753          sfpt->del_req(last--);
754        }
755        // rollback processed safepoints
756        while (safepoints_done.length() > 0) {
757          SafePointNode* sfpt_done = safepoints_done.pop();
758          // remove any extra entries we added to the safepoint
759          last = sfpt_done->req() - 1;
760          for (int k = 0;  k < nfields; k++) {
761            sfpt_done->del_req(last--);
762          }
763          JVMState *jvms = sfpt_done->jvms();
764          jvms->set_endoff(sfpt_done->req());
765          // Now make a pass over the debug information replacing any references
766          // to SafePointScalarObjectNode with the allocated object.
767          int start = jvms->debug_start();
768          int end   = jvms->debug_end();
769          for (int i = start; i < end; i++) {
770            if (sfpt_done->in(i)->is_SafePointScalarObject()) {
771              SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
772              if (scobj->first_index() == sfpt_done->req() &&
773                  scobj->n_fields() == (uint)nfields) {
774                assert(scobj->alloc() == alloc, "sanity");
775                sfpt_done->set_req(i, res);
776              }
777            }
778          }
779        }
780#ifndef PRODUCT
781        if (PrintEliminateAllocations) {
782          if (field != NULL) {
783            tty->print("=== At SafePoint node %d can't find value of Field: ",
784                       sfpt->_idx);
785            field->print();
786            int field_idx = C->get_alias_index(field_addr_type);
787            tty->print(" (alias_idx=%d)", field_idx);
788          } else { // Array's element
789            tty->print("=== At SafePoint node %d can't find value of array element [%d]",
790                       sfpt->_idx, j);
791          }
792          tty->print(", which prevents elimination of: ");
793          if (res == NULL)
794            alloc->dump();
795          else
796            res->dump();
797        }
798#endif
799        return false;
800      }
801      if (UseCompressedOops && field_type->isa_narrowoop()) {
802        // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
803        // to be able scalar replace the allocation.
804        if (field_val->is_EncodeP()) {
805          field_val = field_val->in(1);
806        } else {
807          field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
808        }
809      }
810      sfpt->add_req(field_val);
811    }
812    JVMState *jvms = sfpt->jvms();
813    jvms->set_endoff(sfpt->req());
814    // Now make a pass over the debug information replacing any references
815    // to the allocated object with "sobj"
816    int start = jvms->debug_start();
817    int end   = jvms->debug_end();
818    for (int i = start; i < end; i++) {
819      if (sfpt->in(i) == res) {
820        sfpt->set_req(i, sobj);
821      }
822    }
823    safepoints_done.append_if_missing(sfpt); // keep it for rollback
824  }
825  return true;
826}
827
828// Process users of eliminated allocation.
829void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
830  Node* res = alloc->result_cast();
831  if (res != NULL) {
832    for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
833      Node *use = res->last_out(j);
834      uint oc1 = res->outcnt();
835
836      if (use->is_AddP()) {
837        for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
838          Node *n = use->last_out(k);
839          uint oc2 = use->outcnt();
840          if (n->is_Store()) {
841#ifdef ASSERT
842            // Verify that there is no dependent MemBarVolatile nodes,
843            // they should be removed during IGVN, see MemBarNode::Ideal().
844            for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
845                                       p < pmax; p++) {
846              Node* mb = n->fast_out(p);
847              assert(mb->is_Initialize() || !mb->is_MemBar() ||
848                     mb->req() <= MemBarNode::Precedent ||
849                     mb->in(MemBarNode::Precedent) != n,
850                     "MemBarVolatile should be eliminated for non-escaping object");
851            }
852#endif
853            _igvn.replace_node(n, n->in(MemNode::Memory));
854          } else {
855            eliminate_card_mark(n);
856          }
857          k -= (oc2 - use->outcnt());
858        }
859      } else {
860        eliminate_card_mark(use);
861      }
862      j -= (oc1 - res->outcnt());
863    }
864    assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
865    _igvn.remove_dead_node(res);
866  }
867
868  //
869  // Process other users of allocation's projections
870  //
871  if (_resproj != NULL && _resproj->outcnt() != 0) {
872    for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
873      Node *use = _resproj->last_out(j);
874      uint oc1 = _resproj->outcnt();
875      if (use->is_Initialize()) {
876        // Eliminate Initialize node.
877        InitializeNode *init = use->as_Initialize();
878        assert(init->outcnt() <= 2, "only a control and memory projection expected");
879        Node *ctrl_proj = init->proj_out(TypeFunc::Control);
880        if (ctrl_proj != NULL) {
881           assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
882          _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
883        }
884        Node *mem_proj = init->proj_out(TypeFunc::Memory);
885        if (mem_proj != NULL) {
886          Node *mem = init->in(TypeFunc::Memory);
887#ifdef ASSERT
888          if (mem->is_MergeMem()) {
889            assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
890          } else {
891            assert(mem == _memproj_fallthrough, "allocation memory projection");
892          }
893#endif
894          _igvn.replace_node(mem_proj, mem);
895        }
896      } else if (use->is_AddP()) {
897        // raw memory addresses used only by the initialization
898        _igvn.replace_node(use, C->top());
899      } else  {
900        assert(false, "only Initialize or AddP expected");
901      }
902      j -= (oc1 - _resproj->outcnt());
903    }
904  }
905  if (_fallthroughcatchproj != NULL) {
906    _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
907  }
908  if (_memproj_fallthrough != NULL) {
909    _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
910  }
911  if (_memproj_catchall != NULL) {
912    _igvn.replace_node(_memproj_catchall, C->top());
913  }
914  if (_ioproj_fallthrough != NULL) {
915    _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
916  }
917  if (_ioproj_catchall != NULL) {
918    _igvn.replace_node(_ioproj_catchall, C->top());
919  }
920  if (_catchallcatchproj != NULL) {
921    _igvn.replace_node(_catchallcatchproj, C->top());
922  }
923}
924
925bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
926
927  if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
928    return false;
929  }
930
931  extract_call_projections(alloc);
932
933  GrowableArray <SafePointNode *> safepoints;
934  if (!can_eliminate_allocation(alloc, safepoints)) {
935    return false;
936  }
937
938  if (!scalar_replacement(alloc, safepoints)) {
939    return false;
940  }
941
942  CompileLog* log = C->log();
943  if (log != NULL) {
944    Node* klass = alloc->in(AllocateNode::KlassNode);
945    const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
946    log->head("eliminate_allocation type='%d'",
947              log->identify(tklass->klass()));
948    JVMState* p = alloc->jvms();
949    while (p != NULL) {
950      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
951      p = p->caller();
952    }
953    log->tail("eliminate_allocation");
954  }
955
956  process_users_of_allocation(alloc);
957
958#ifndef PRODUCT
959  if (PrintEliminateAllocations) {
960    if (alloc->is_AllocateArray())
961      tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
962    else
963      tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
964  }
965#endif
966
967  return true;
968}
969
970
971//---------------------------set_eden_pointers-------------------------
972void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
973  if (UseTLAB) {                // Private allocation: load from TLS
974    Node* thread = transform_later(new (C, 1) ThreadLocalNode());
975    int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
976    int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
977    eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
978    eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
979  } else {                      // Shared allocation: load from globals
980    CollectedHeap* ch = Universe::heap();
981    address top_adr = (address)ch->top_addr();
982    address end_adr = (address)ch->end_addr();
983    eden_top_adr = makecon(TypeRawPtr::make(top_adr));
984    eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
985  }
986}
987
988
989Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
990  Node* adr = basic_plus_adr(base, offset);
991  const TypePtr* adr_type = adr->bottom_type()->is_ptr();
992  Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
993  transform_later(value);
994  return value;
995}
996
997
998Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
999  Node* adr = basic_plus_adr(base, offset);
1000  mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
1001  transform_later(mem);
1002  return mem;
1003}
1004
1005//=============================================================================
1006//
1007//                              A L L O C A T I O N
1008//
1009// Allocation attempts to be fast in the case of frequent small objects.
1010// It breaks down like this:
1011//
1012// 1) Size in doublewords is computed.  This is a constant for objects and
1013// variable for most arrays.  Doubleword units are used to avoid size
1014// overflow of huge doubleword arrays.  We need doublewords in the end for
1015// rounding.
1016//
1017// 2) Size is checked for being 'too large'.  Too-large allocations will go
1018// the slow path into the VM.  The slow path can throw any required
1019// exceptions, and does all the special checks for very large arrays.  The
1020// size test can constant-fold away for objects.  For objects with
1021// finalizers it constant-folds the otherway: you always go slow with
1022// finalizers.
1023//
1024// 3) If NOT using TLABs, this is the contended loop-back point.
1025// Load-Locked the heap top.  If using TLABs normal-load the heap top.
1026//
1027// 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1028// NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1029// "size*8" we always enter the VM, where "largish" is a constant picked small
1030// enough that there's always space between the eden max and 4Gig (old space is
1031// there so it's quite large) and large enough that the cost of entering the VM
1032// is dwarfed by the cost to initialize the space.
1033//
1034// 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1035// down.  If contended, repeat at step 3.  If using TLABs normal-store
1036// adjusted heap top back down; there is no contention.
1037//
1038// 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1039// fields.
1040//
1041// 7) Merge with the slow-path; cast the raw memory pointer to the correct
1042// oop flavor.
1043//
1044//=============================================================================
1045// FastAllocateSizeLimit value is in DOUBLEWORDS.
1046// Allocations bigger than this always go the slow route.
1047// This value must be small enough that allocation attempts that need to
1048// trigger exceptions go the slow route.  Also, it must be small enough so
1049// that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1050//=============================================================================j//
1051// %%% Here is an old comment from parseHelper.cpp; is it outdated?
1052// The allocator will coalesce int->oop copies away.  See comment in
1053// coalesce.cpp about how this works.  It depends critically on the exact
1054// code shape produced here, so if you are changing this code shape
1055// make sure the GC info for the heap-top is correct in and around the
1056// slow-path call.
1057//
1058
1059void PhaseMacroExpand::expand_allocate_common(
1060            AllocateNode* alloc, // allocation node to be expanded
1061            Node* length,  // array length for an array allocation
1062            const TypeFunc* slow_call_type, // Type of slow call
1063            address slow_call_address  // Address of slow call
1064    )
1065{
1066
1067  Node* ctrl = alloc->in(TypeFunc::Control);
1068  Node* mem  = alloc->in(TypeFunc::Memory);
1069  Node* i_o  = alloc->in(TypeFunc::I_O);
1070  Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1071  Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1072  Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1073
1074  assert(ctrl != NULL, "must have control");
1075  // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1076  // they will not be used if "always_slow" is set
1077  enum { slow_result_path = 1, fast_result_path = 2 };
1078  Node *result_region;
1079  Node *result_phi_rawmem;
1080  Node *result_phi_rawoop;
1081  Node *result_phi_i_o;
1082
1083  // The initial slow comparison is a size check, the comparison
1084  // we want to do is a BoolTest::gt
1085  bool always_slow = false;
1086  int tv = _igvn.find_int_con(initial_slow_test, -1);
1087  if (tv >= 0) {
1088    always_slow = (tv == 1);
1089    initial_slow_test = NULL;
1090  } else {
1091    initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1092  }
1093
1094  if (C->env()->dtrace_alloc_probes() ||
1095      !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
1096                   (UseConcMarkSweepGC && CMSIncrementalMode))) {
1097    // Force slow-path allocation
1098    always_slow = true;
1099    initial_slow_test = NULL;
1100  }
1101
1102
1103  enum { too_big_or_final_path = 1, need_gc_path = 2 };
1104  Node *slow_region = NULL;
1105  Node *toobig_false = ctrl;
1106
1107  assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1108  // generate the initial test if necessary
1109  if (initial_slow_test != NULL ) {
1110    slow_region = new (C, 3) RegionNode(3);
1111
1112    // Now make the initial failure test.  Usually a too-big test but
1113    // might be a TRUE for finalizers or a fancy class check for
1114    // newInstance0.
1115    IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1116    transform_later(toobig_iff);
1117    // Plug the failing-too-big test into the slow-path region
1118    Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
1119    transform_later(toobig_true);
1120    slow_region    ->init_req( too_big_or_final_path, toobig_true );
1121    toobig_false = new (C, 1) IfFalseNode( toobig_iff );
1122    transform_later(toobig_false);
1123  } else {         // No initial test, just fall into next case
1124    toobig_false = ctrl;
1125    debug_only(slow_region = NodeSentinel);
1126  }
1127
1128  Node *slow_mem = mem;  // save the current memory state for slow path
1129  // generate the fast allocation code unless we know that the initial test will always go slow
1130  if (!always_slow) {
1131    // Fast path modifies only raw memory.
1132    if (mem->is_MergeMem()) {
1133      mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1134    }
1135
1136    Node* eden_top_adr;
1137    Node* eden_end_adr;
1138
1139    set_eden_pointers(eden_top_adr, eden_end_adr);
1140
1141    // Load Eden::end.  Loop invariant and hoisted.
1142    //
1143    // Note: We set the control input on "eden_end" and "old_eden_top" when using
1144    //       a TLAB to work around a bug where these values were being moved across
1145    //       a safepoint.  These are not oops, so they cannot be include in the oop
1146    //       map, but the can be changed by a GC.   The proper way to fix this would
1147    //       be to set the raw memory state when generating a  SafepointNode.  However
1148    //       this will require extensive changes to the loop optimization in order to
1149    //       prevent a degradation of the optimization.
1150    //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1151    Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1152
1153    // allocate the Region and Phi nodes for the result
1154    result_region = new (C, 3) RegionNode(3);
1155    result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
1156    result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
1157    result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
1158
1159    // We need a Region for the loop-back contended case.
1160    enum { fall_in_path = 1, contended_loopback_path = 2 };
1161    Node *contended_region;
1162    Node *contended_phi_rawmem;
1163    if( UseTLAB ) {
1164      contended_region = toobig_false;
1165      contended_phi_rawmem = mem;
1166    } else {
1167      contended_region = new (C, 3) RegionNode(3);
1168      contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1169      // Now handle the passing-too-big test.  We fall into the contended
1170      // loop-back merge point.
1171      contended_region    ->init_req( fall_in_path, toobig_false );
1172      contended_phi_rawmem->init_req( fall_in_path, mem );
1173      transform_later(contended_region);
1174      transform_later(contended_phi_rawmem);
1175    }
1176
1177    // Load(-locked) the heap top.
1178    // See note above concerning the control input when using a TLAB
1179    Node *old_eden_top = UseTLAB
1180      ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
1181      : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
1182
1183    transform_later(old_eden_top);
1184    // Add to heap top to get a new heap top
1185    Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
1186    transform_later(new_eden_top);
1187    // Check for needing a GC; compare against heap end
1188    Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
1189    transform_later(needgc_cmp);
1190    Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
1191    transform_later(needgc_bol);
1192    IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1193    transform_later(needgc_iff);
1194
1195    // Plug the failing-heap-space-need-gc test into the slow-path region
1196    Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
1197    transform_later(needgc_true);
1198    if( initial_slow_test ) {
1199      slow_region    ->init_req( need_gc_path, needgc_true );
1200      // This completes all paths into the slow merge point
1201      transform_later(slow_region);
1202    } else {                      // No initial slow path needed!
1203      // Just fall from the need-GC path straight into the VM call.
1204      slow_region    = needgc_true;
1205    }
1206    // No need for a GC.  Setup for the Store-Conditional
1207    Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
1208    transform_later(needgc_false);
1209
1210    // Grab regular I/O before optional prefetch may change it.
1211    // Slow-path does no I/O so just set it to the original I/O.
1212    result_phi_i_o->init_req( slow_result_path, i_o );
1213
1214    i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1215                              old_eden_top, new_eden_top, length);
1216
1217    // Store (-conditional) the modified eden top back down.
1218    // StorePConditional produces flags for a test PLUS a modified raw
1219    // memory state.
1220    Node *store_eden_top;
1221    Node *fast_oop_ctrl;
1222    if( UseTLAB ) {
1223      store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
1224      transform_later(store_eden_top);
1225      fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1226    } else {
1227      store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
1228      transform_later(store_eden_top);
1229      Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
1230      transform_later(contention_check);
1231      store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
1232      transform_later(store_eden_top);
1233
1234      // If not using TLABs, check to see if there was contention.
1235      IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
1236      transform_later(contention_iff);
1237      Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
1238      transform_later(contention_true);
1239      // If contention, loopback and try again.
1240      contended_region->init_req( contended_loopback_path, contention_true );
1241      contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
1242
1243      // Fast-path succeeded with no contention!
1244      Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
1245      transform_later(contention_false);
1246      fast_oop_ctrl = contention_false;
1247    }
1248
1249    // Rename successful fast-path variables to make meaning more obvious
1250    Node* fast_oop        = old_eden_top;
1251    Node* fast_oop_rawmem = store_eden_top;
1252    fast_oop_rawmem = initialize_object(alloc,
1253                                        fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1254                                        klass_node, length, size_in_bytes);
1255
1256    if (C->env()->dtrace_extended_probes()) {
1257      // Slow-path call
1258      int size = TypeFunc::Parms + 2;
1259      CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1260                                                      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1261                                                      "dtrace_object_alloc",
1262                                                      TypeRawPtr::BOTTOM);
1263
1264      // Get base of thread-local storage area
1265      Node* thread = new (C, 1) ThreadLocalNode();
1266      transform_later(thread);
1267
1268      call->init_req(TypeFunc::Parms+0, thread);
1269      call->init_req(TypeFunc::Parms+1, fast_oop);
1270      call->init_req( TypeFunc::Control, fast_oop_ctrl );
1271      call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
1272      call->init_req( TypeFunc::Memory , fast_oop_rawmem );
1273      call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1274      call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1275      transform_later(call);
1276      fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
1277      transform_later(fast_oop_ctrl);
1278      fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
1279      transform_later(fast_oop_rawmem);
1280    }
1281
1282    // Plug in the successful fast-path into the result merge point
1283    result_region    ->init_req( fast_result_path, fast_oop_ctrl );
1284    result_phi_rawoop->init_req( fast_result_path, fast_oop );
1285    result_phi_i_o   ->init_req( fast_result_path, i_o );
1286    result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
1287  } else {
1288    slow_region = ctrl;
1289  }
1290
1291  // Generate slow-path call
1292  CallNode *call = new (C, slow_call_type->domain()->cnt())
1293    CallStaticJavaNode(slow_call_type, slow_call_address,
1294                       OptoRuntime::stub_name(slow_call_address),
1295                       alloc->jvms()->bci(),
1296                       TypePtr::BOTTOM);
1297  call->init_req( TypeFunc::Control, slow_region );
1298  call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1299  call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1300  call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1301  call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1302
1303  call->init_req(TypeFunc::Parms+0, klass_node);
1304  if (length != NULL) {
1305    call->init_req(TypeFunc::Parms+1, length);
1306  }
1307
1308  // Copy debug information and adjust JVMState information, then replace
1309  // allocate node with the call
1310  copy_call_debug_info((CallNode *) alloc,  call);
1311  if (!always_slow) {
1312    call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1313  }
1314  _igvn.hash_delete(alloc);
1315  _igvn.subsume_node(alloc, call);
1316  transform_later(call);
1317
1318  // Identify the output projections from the allocate node and
1319  // adjust any references to them.
1320  // The control and io projections look like:
1321  //
1322  //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1323  //  Allocate                   Catch
1324  //        ^---Proj(io) <-------+   ^---CatchProj(io)
1325  //
1326  //  We are interested in the CatchProj nodes.
1327  //
1328  extract_call_projections(call);
1329
1330  // An allocate node has separate memory projections for the uses on the control and i_o paths
1331  // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
1332  if (!always_slow && _memproj_fallthrough != NULL) {
1333    for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1334      Node *use = _memproj_fallthrough->fast_out(i);
1335      _igvn.hash_delete(use);
1336      imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1337      _igvn._worklist.push(use);
1338      // back up iterator
1339      --i;
1340    }
1341  }
1342  // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
1343  // we end up with a call that has only 1 memory projection
1344  if (_memproj_catchall != NULL ) {
1345    if (_memproj_fallthrough == NULL) {
1346      _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
1347      transform_later(_memproj_fallthrough);
1348    }
1349    for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1350      Node *use = _memproj_catchall->fast_out(i);
1351      _igvn.hash_delete(use);
1352      imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1353      _igvn._worklist.push(use);
1354      // back up iterator
1355      --i;
1356    }
1357  }
1358
1359  // An allocate node has separate i_o projections for the uses on the control and i_o paths
1360  // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
1361  if (_ioproj_fallthrough == NULL) {
1362    _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
1363    transform_later(_ioproj_fallthrough);
1364  } else if (!always_slow) {
1365    for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1366      Node *use = _ioproj_fallthrough->fast_out(i);
1367
1368      _igvn.hash_delete(use);
1369      imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1370      _igvn._worklist.push(use);
1371      // back up iterator
1372      --i;
1373    }
1374  }
1375  // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
1376  // we end up with a call that has only 1 control projection
1377  if (_ioproj_catchall != NULL ) {
1378    for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1379      Node *use = _ioproj_catchall->fast_out(i);
1380      _igvn.hash_delete(use);
1381      imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1382      _igvn._worklist.push(use);
1383      // back up iterator
1384      --i;
1385    }
1386  }
1387
1388  // if we generated only a slow call, we are done
1389  if (always_slow)
1390    return;
1391
1392
1393  if (_fallthroughcatchproj != NULL) {
1394    ctrl = _fallthroughcatchproj->clone();
1395    transform_later(ctrl);
1396    _igvn.replace_node(_fallthroughcatchproj, result_region);
1397  } else {
1398    ctrl = top();
1399  }
1400  Node *slow_result;
1401  if (_resproj == NULL) {
1402    // no uses of the allocation result
1403    slow_result = top();
1404  } else {
1405    slow_result = _resproj->clone();
1406    transform_later(slow_result);
1407    _igvn.replace_node(_resproj, result_phi_rawoop);
1408  }
1409
1410  // Plug slow-path into result merge point
1411  result_region    ->init_req( slow_result_path, ctrl );
1412  result_phi_rawoop->init_req( slow_result_path, slow_result);
1413  result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1414  transform_later(result_region);
1415  transform_later(result_phi_rawoop);
1416  transform_later(result_phi_rawmem);
1417  transform_later(result_phi_i_o);
1418  // This completes all paths into the result merge point
1419}
1420
1421
1422// Helper for PhaseMacroExpand::expand_allocate_common.
1423// Initializes the newly-allocated storage.
1424Node*
1425PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1426                                    Node* control, Node* rawmem, Node* object,
1427                                    Node* klass_node, Node* length,
1428                                    Node* size_in_bytes) {
1429  InitializeNode* init = alloc->initialization();
1430  // Store the klass & mark bits
1431  Node* mark_node = NULL;
1432  // For now only enable fast locking for non-array types
1433  if (UseBiasedLocking && (length == NULL)) {
1434    mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
1435  } else {
1436    mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1437  }
1438  rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1439
1440  rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
1441  int header_size = alloc->minimum_header_size();  // conservatively small
1442
1443  // Array length
1444  if (length != NULL) {         // Arrays need length field
1445    rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1446    // conservatively small header size:
1447    header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1448    ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1449    if (k->is_array_klass())    // we know the exact header size in most cases:
1450      header_size = Klass::layout_helper_header_size(k->layout_helper());
1451  }
1452
1453  // Clear the object body, if necessary.
1454  if (init == NULL) {
1455    // The init has somehow disappeared; be cautious and clear everything.
1456    //
1457    // This can happen if a node is allocated but an uncommon trap occurs
1458    // immediately.  In this case, the Initialize gets associated with the
1459    // trap, and may be placed in a different (outer) loop, if the Allocate
1460    // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1461    // there can be two Allocates to one Initialize.  The answer in all these
1462    // edge cases is safety first.  It is always safe to clear immediately
1463    // within an Allocate, and then (maybe or maybe not) clear some more later.
1464    if (!ZeroTLAB)
1465      rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1466                                            header_size, size_in_bytes,
1467                                            &_igvn);
1468  } else {
1469    if (!init->is_complete()) {
1470      // Try to win by zeroing only what the init does not store.
1471      // We can also try to do some peephole optimizations,
1472      // such as combining some adjacent subword stores.
1473      rawmem = init->complete_stores(control, rawmem, object,
1474                                     header_size, size_in_bytes, &_igvn);
1475    }
1476    // We have no more use for this link, since the AllocateNode goes away:
1477    init->set_req(InitializeNode::RawAddress, top());
1478    // (If we keep the link, it just confuses the register allocator,
1479    // who thinks he sees a real use of the address by the membar.)
1480  }
1481
1482  return rawmem;
1483}
1484
1485// Generate prefetch instructions for next allocations.
1486Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1487                                        Node*& contended_phi_rawmem,
1488                                        Node* old_eden_top, Node* new_eden_top,
1489                                        Node* length) {
1490   enum { fall_in_path = 1, pf_path = 2 };
1491   if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1492      // Generate prefetch allocation with watermark check.
1493      // As an allocation hits the watermark, we will prefetch starting
1494      // at a "distance" away from watermark.
1495
1496      Node *pf_region = new (C, 3) RegionNode(3);
1497      Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1498                                                TypeRawPtr::BOTTOM );
1499      // I/O is used for Prefetch
1500      Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
1501
1502      Node *thread = new (C, 1) ThreadLocalNode();
1503      transform_later(thread);
1504
1505      Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
1506                   _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1507      transform_later(eden_pf_adr);
1508
1509      Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
1510                                   contended_phi_rawmem, eden_pf_adr,
1511                                   TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1512      transform_later(old_pf_wm);
1513
1514      // check against new_eden_top
1515      Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
1516      transform_later(need_pf_cmp);
1517      Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
1518      transform_later(need_pf_bol);
1519      IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
1520                                       PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1521      transform_later(need_pf_iff);
1522
1523      // true node, add prefetchdistance
1524      Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
1525      transform_later(need_pf_true);
1526
1527      Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
1528      transform_later(need_pf_false);
1529
1530      Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
1531                                    _igvn.MakeConX(AllocatePrefetchDistance) );
1532      transform_later(new_pf_wmt );
1533      new_pf_wmt->set_req(0, need_pf_true);
1534
1535      Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
1536                                       contended_phi_rawmem, eden_pf_adr,
1537                                       TypeRawPtr::BOTTOM, new_pf_wmt );
1538      transform_later(store_new_wmt);
1539
1540      // adding prefetches
1541      pf_phi_abio->init_req( fall_in_path, i_o );
1542
1543      Node *prefetch_adr;
1544      Node *prefetch;
1545      uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1546      uint step_size = AllocatePrefetchStepSize;
1547      uint distance = 0;
1548
1549      for ( uint i = 0; i < lines; i++ ) {
1550        prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
1551                                            _igvn.MakeConX(distance) );
1552        transform_later(prefetch_adr);
1553        prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1554        transform_later(prefetch);
1555        distance += step_size;
1556        i_o = prefetch;
1557      }
1558      pf_phi_abio->set_req( pf_path, i_o );
1559
1560      pf_region->init_req( fall_in_path, need_pf_false );
1561      pf_region->init_req( pf_path, need_pf_true );
1562
1563      pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1564      pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1565
1566      transform_later(pf_region);
1567      transform_later(pf_phi_rawmem);
1568      transform_later(pf_phi_abio);
1569
1570      needgc_false = pf_region;
1571      contended_phi_rawmem = pf_phi_rawmem;
1572      i_o = pf_phi_abio;
1573   } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1574      // Insert a prefetch for each allocation only on the fast-path
1575      Node *pf_region = new (C, 3) RegionNode(3);
1576      Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1577                                                TypeRawPtr::BOTTOM );
1578
1579      // Generate several prefetch instructions only for arrays.
1580      uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1581      uint step_size = AllocatePrefetchStepSize;
1582      uint distance = AllocatePrefetchDistance;
1583
1584      // Next cache address.
1585      Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
1586                                            _igvn.MakeConX(distance));
1587      transform_later(cache_adr);
1588      cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
1589      transform_later(cache_adr);
1590      Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1591      cache_adr = new (C, 3) AndXNode(cache_adr, mask);
1592      transform_later(cache_adr);
1593      cache_adr = new (C, 2) CastX2PNode(cache_adr);
1594      transform_later(cache_adr);
1595
1596      // Prefetch
1597      Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
1598      prefetch->set_req(0, needgc_false);
1599      transform_later(prefetch);
1600      contended_phi_rawmem = prefetch;
1601      Node *prefetch_adr;
1602      distance = step_size;
1603      for ( uint i = 1; i < lines; i++ ) {
1604        prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
1605                                            _igvn.MakeConX(distance) );
1606        transform_later(prefetch_adr);
1607        prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
1608        transform_later(prefetch);
1609        distance += step_size;
1610        contended_phi_rawmem = prefetch;
1611      }
1612   } else if( AllocatePrefetchStyle > 0 ) {
1613      // Insert a prefetch for each allocation only on the fast-path
1614      Node *prefetch_adr;
1615      Node *prefetch;
1616      // Generate several prefetch instructions only for arrays.
1617      uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1618      uint step_size = AllocatePrefetchStepSize;
1619      uint distance = AllocatePrefetchDistance;
1620      for ( uint i = 0; i < lines; i++ ) {
1621        prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
1622                                            _igvn.MakeConX(distance) );
1623        transform_later(prefetch_adr);
1624        prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1625        // Do not let it float too high, since if eden_top == eden_end,
1626        // both might be null.
1627        if( i == 0 ) { // Set control for first prefetch, next follows it
1628          prefetch->init_req(0, needgc_false);
1629        }
1630        transform_later(prefetch);
1631        distance += step_size;
1632        i_o = prefetch;
1633      }
1634   }
1635   return i_o;
1636}
1637
1638
1639void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1640  expand_allocate_common(alloc, NULL,
1641                         OptoRuntime::new_instance_Type(),
1642                         OptoRuntime::new_instance_Java());
1643}
1644
1645void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1646  Node* length = alloc->in(AllocateNode::ALength);
1647  expand_allocate_common(alloc, length,
1648                         OptoRuntime::new_array_Type(),
1649                         OptoRuntime::new_array_Java());
1650}
1651
1652
1653// we have determined that this lock/unlock can be eliminated, we simply
1654// eliminate the node without expanding it.
1655//
1656// Note:  The membar's associated with the lock/unlock are currently not
1657//        eliminated.  This should be investigated as a future enhancement.
1658//
1659bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1660
1661  if (!alock->is_eliminated()) {
1662    return false;
1663  }
1664  if (alock->is_Lock() && !alock->is_coarsened()) {
1665      // Create new "eliminated" BoxLock node and use it
1666      // in monitor debug info for the same object.
1667      BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1668      Node* obj = alock->obj_node();
1669      if (!oldbox->is_eliminated()) {
1670        BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1671        newbox->set_eliminated();
1672        transform_later(newbox);
1673        // Replace old box node with new box for all users
1674        // of the same object.
1675        for (uint i = 0; i < oldbox->outcnt();) {
1676
1677          bool next_edge = true;
1678          Node* u = oldbox->raw_out(i);
1679          if (u == alock) {
1680            i++;
1681            continue; // It will be removed below
1682          }
1683          if (u->is_Lock() &&
1684              u->as_Lock()->obj_node() == obj &&
1685              // oldbox could be referenced in debug info also
1686              u->as_Lock()->box_node() == oldbox) {
1687            assert(u->as_Lock()->is_eliminated(), "sanity");
1688            _igvn.hash_delete(u);
1689            u->set_req(TypeFunc::Parms + 1, newbox);
1690            next_edge = false;
1691#ifdef ASSERT
1692          } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
1693            assert(u->as_Unlock()->is_eliminated(), "sanity");
1694#endif
1695          }
1696          // Replace old box in monitor debug info.
1697          if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1698            SafePointNode* sfn = u->as_SafePoint();
1699            JVMState* youngest_jvms = sfn->jvms();
1700            int max_depth = youngest_jvms->depth();
1701            for (int depth = 1; depth <= max_depth; depth++) {
1702              JVMState* jvms = youngest_jvms->of_depth(depth);
1703              int num_mon  = jvms->nof_monitors();
1704              // Loop over monitors
1705              for (int idx = 0; idx < num_mon; idx++) {
1706                Node* obj_node = sfn->monitor_obj(jvms, idx);
1707                Node* box_node = sfn->monitor_box(jvms, idx);
1708                if (box_node == oldbox && obj_node == obj) {
1709                  int j = jvms->monitor_box_offset(idx);
1710                  _igvn.hash_delete(u);
1711                  u->set_req(j, newbox);
1712                  next_edge = false;
1713                }
1714              } // for (int idx = 0;
1715            } // for (int depth = 1;
1716          } // if (u->is_SafePoint()
1717          if (next_edge) i++;
1718        } // for (uint i = 0; i < oldbox->outcnt();)
1719      } // if (!oldbox->is_eliminated())
1720  } // if (alock->is_Lock() && !lock->is_coarsened())
1721
1722  CompileLog* log = C->log();
1723  if (log != NULL) {
1724    log->head("eliminate_lock lock='%d'",
1725              alock->is_Lock());
1726    JVMState* p = alock->jvms();
1727    while (p != NULL) {
1728      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1729      p = p->caller();
1730    }
1731    log->tail("eliminate_lock");
1732  }
1733
1734  #ifndef PRODUCT
1735  if (PrintEliminateLocks) {
1736    if (alock->is_Lock()) {
1737      tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
1738    } else {
1739      tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
1740    }
1741  }
1742  #endif
1743
1744  Node* mem  = alock->in(TypeFunc::Memory);
1745  Node* ctrl = alock->in(TypeFunc::Control);
1746
1747  extract_call_projections(alock);
1748  // There are 2 projections from the lock.  The lock node will
1749  // be deleted when its last use is subsumed below.
1750  assert(alock->outcnt() == 2 &&
1751         _fallthroughproj != NULL &&
1752         _memproj_fallthrough != NULL,
1753         "Unexpected projections from Lock/Unlock");
1754
1755  Node* fallthroughproj = _fallthroughproj;
1756  Node* memproj_fallthrough = _memproj_fallthrough;
1757
1758  // The memory projection from a lock/unlock is RawMem
1759  // The input to a Lock is merged memory, so extract its RawMem input
1760  // (unless the MergeMem has been optimized away.)
1761  if (alock->is_Lock()) {
1762    // Seach for MemBarAcquire node and delete it also.
1763    MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
1764    assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
1765    Node* ctrlproj = membar->proj_out(TypeFunc::Control);
1766    Node* memproj = membar->proj_out(TypeFunc::Memory);
1767    _igvn.replace_node(ctrlproj, fallthroughproj);
1768    _igvn.replace_node(memproj, memproj_fallthrough);
1769
1770    // Delete FastLock node also if this Lock node is unique user
1771    // (a loop peeling may clone a Lock node).
1772    Node* flock = alock->as_Lock()->fastlock_node();
1773    if (flock->outcnt() == 1) {
1774      assert(flock->unique_out() == alock, "sanity");
1775      _igvn.replace_node(flock, top());
1776    }
1777  }
1778
1779  // Seach for MemBarRelease node and delete it also.
1780  if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
1781      ctrl->in(0)->is_MemBar()) {
1782    MemBarNode* membar = ctrl->in(0)->as_MemBar();
1783    assert(membar->Opcode() == Op_MemBarRelease &&
1784           mem->is_Proj() && membar == mem->in(0), "");
1785    _igvn.replace_node(fallthroughproj, ctrl);
1786    _igvn.replace_node(memproj_fallthrough, mem);
1787    fallthroughproj = ctrl;
1788    memproj_fallthrough = mem;
1789    ctrl = membar->in(TypeFunc::Control);
1790    mem  = membar->in(TypeFunc::Memory);
1791  }
1792
1793  _igvn.replace_node(fallthroughproj, ctrl);
1794  _igvn.replace_node(memproj_fallthrough, mem);
1795  return true;
1796}
1797
1798
1799//------------------------------expand_lock_node----------------------
1800void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
1801
1802  Node* ctrl = lock->in(TypeFunc::Control);
1803  Node* mem = lock->in(TypeFunc::Memory);
1804  Node* obj = lock->obj_node();
1805  Node* box = lock->box_node();
1806  Node* flock = lock->fastlock_node();
1807
1808  // Make the merge point
1809  Node *region;
1810  Node *mem_phi;
1811  Node *slow_path;
1812
1813  if (UseOptoBiasInlining) {
1814    /*
1815     *  See the full description in MacroAssembler::biased_locking_enter().
1816     *
1817     *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
1818     *    // The object is biased.
1819     *    proto_node = klass->prototype_header;
1820     *    o_node = thread | proto_node;
1821     *    x_node = o_node ^ mark_word;
1822     *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
1823     *      // Done.
1824     *    } else {
1825     *      if( (x_node & biased_lock_mask) != 0 ) {
1826     *        // The klass's prototype header is no longer biased.
1827     *        cas(&mark_word, mark_word, proto_node)
1828     *        goto cas_lock;
1829     *      } else {
1830     *        // The klass's prototype header is still biased.
1831     *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
1832     *          old = mark_word;
1833     *          new = o_node;
1834     *        } else {
1835     *          // Different thread or anonymous biased.
1836     *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
1837     *          new = thread | old;
1838     *        }
1839     *        // Try to rebias.
1840     *        if( cas(&mark_word, old, new) == 0 ) {
1841     *          // Done.
1842     *        } else {
1843     *          goto slow_path; // Failed.
1844     *        }
1845     *      }
1846     *    }
1847     *  } else {
1848     *    // The object is not biased.
1849     *    cas_lock:
1850     *    if( FastLock(obj) == 0 ) {
1851     *      // Done.
1852     *    } else {
1853     *      slow_path:
1854     *      OptoRuntime::complete_monitor_locking_Java(obj);
1855     *    }
1856     *  }
1857     */
1858
1859    region  = new (C, 5) RegionNode(5);
1860    // create a Phi for the memory state
1861    mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1862
1863    Node* fast_lock_region  = new (C, 3) RegionNode(3);
1864    Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1865
1866    // First, check mark word for the biased lock pattern.
1867    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1868
1869    // Get fast path - mark word has the biased lock pattern.
1870    ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
1871                         markOopDesc::biased_lock_mask_in_place,
1872                         markOopDesc::biased_lock_pattern, true);
1873    // fast_lock_region->in(1) is set to slow path.
1874    fast_lock_mem_phi->init_req(1, mem);
1875
1876    // Now check that the lock is biased to the current thread and has
1877    // the same epoch and bias as Klass::_prototype_header.
1878
1879    // Special-case a fresh allocation to avoid building nodes:
1880    Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
1881    if (klass_node == NULL) {
1882      Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1883      klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
1884#ifdef _LP64
1885      if (UseCompressedOops && klass_node->is_DecodeN()) {
1886        assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
1887        klass_node->in(1)->init_req(0, ctrl);
1888      } else
1889#endif
1890      klass_node->init_req(0, ctrl);
1891    }
1892    Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
1893
1894    Node* thread = transform_later(new (C, 1) ThreadLocalNode());
1895    Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1896    Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
1897    Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
1898
1899    // Get slow path - mark word does NOT match the value.
1900    Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
1901                                      (~markOopDesc::age_mask_in_place), 0);
1902    // region->in(3) is set to fast path - the object is biased to the current thread.
1903    mem_phi->init_req(3, mem);
1904
1905
1906    // Mark word does NOT match the value (thread | Klass::_prototype_header).
1907
1908
1909    // First, check biased pattern.
1910    // Get fast path - _prototype_header has the same biased lock pattern.
1911    ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
1912                          markOopDesc::biased_lock_mask_in_place, 0, true);
1913
1914    not_biased_ctrl = fast_lock_region->in(2); // Slow path
1915    // fast_lock_region->in(2) - the prototype header is no longer biased
1916    // and we have to revoke the bias on this object.
1917    // We are going to try to reset the mark of this object to the prototype
1918    // value and fall through to the CAS-based locking scheme.
1919    Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
1920    Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
1921                                                 proto_node, mark_node);
1922    transform_later(cas);
1923    Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
1924    fast_lock_mem_phi->init_req(2, proj);
1925
1926
1927    // Second, check epoch bits.
1928    Node* rebiased_region  = new (C, 3) RegionNode(3);
1929    Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1930    Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1931
1932    // Get slow path - mark word does NOT match epoch bits.
1933    Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
1934                                      markOopDesc::epoch_mask_in_place, 0);
1935    // The epoch of the current bias is not valid, attempt to rebias the object
1936    // toward the current thread.
1937    rebiased_region->init_req(2, epoch_ctrl);
1938    old_phi->init_req(2, mark_node);
1939    new_phi->init_req(2, o_node);
1940
1941    // rebiased_region->in(1) is set to fast path.
1942    // The epoch of the current bias is still valid but we know
1943    // nothing about the owner; it might be set or it might be clear.
1944    Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
1945                             markOopDesc::age_mask_in_place |
1946                             markOopDesc::epoch_mask_in_place);
1947    Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
1948    cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1949    Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
1950    old_phi->init_req(1, old);
1951    new_phi->init_req(1, new_mark);
1952
1953    transform_later(rebiased_region);
1954    transform_later(old_phi);
1955    transform_later(new_phi);
1956
1957    // Try to acquire the bias of the object using an atomic operation.
1958    // If this fails we will go in to the runtime to revoke the object's bias.
1959    cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
1960                                           new_phi, old_phi);
1961    transform_later(cas);
1962    proj = transform_later( new (C, 1) SCMemProjNode(cas));
1963
1964    // Get slow path - Failed to CAS.
1965    not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
1966    mem_phi->init_req(4, proj);
1967    // region->in(4) is set to fast path - the object is rebiased to the current thread.
1968
1969    // Failed to CAS.
1970    slow_path  = new (C, 3) RegionNode(3);
1971    Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
1972
1973    slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
1974    slow_mem->init_req(1, proj);
1975
1976    // Call CAS-based locking scheme (FastLock node).
1977
1978    transform_later(fast_lock_region);
1979    transform_later(fast_lock_mem_phi);
1980
1981    // Get slow path - FastLock failed to lock the object.
1982    ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
1983    mem_phi->init_req(2, fast_lock_mem_phi);
1984    // region->in(2) is set to fast path - the object is locked to the current thread.
1985
1986    slow_path->init_req(2, ctrl); // Capture slow-control
1987    slow_mem->init_req(2, fast_lock_mem_phi);
1988
1989    transform_later(slow_path);
1990    transform_later(slow_mem);
1991    // Reset lock's memory edge.
1992    lock->set_req(TypeFunc::Memory, slow_mem);
1993
1994  } else {
1995    region  = new (C, 3) RegionNode(3);
1996    // create a Phi for the memory state
1997    mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1998
1999    // Optimize test; set region slot 2
2000    slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2001    mem_phi->init_req(2, mem);
2002  }
2003
2004  // Make slow path call
2005  CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
2006
2007  extract_call_projections(call);
2008
2009  // Slow path can only throw asynchronous exceptions, which are always
2010  // de-opted.  So the compiler thinks the slow-call can never throw an
2011  // exception.  If it DOES throw an exception we would need the debug
2012  // info removed first (since if it throws there is no monitor).
2013  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2014           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2015
2016  // Capture slow path
2017  // disconnect fall-through projection from call and create a new one
2018  // hook up users of fall-through projection to region
2019  Node *slow_ctrl = _fallthroughproj->clone();
2020  transform_later(slow_ctrl);
2021  _igvn.hash_delete(_fallthroughproj);
2022  _fallthroughproj->disconnect_inputs(NULL);
2023  region->init_req(1, slow_ctrl);
2024  // region inputs are now complete
2025  transform_later(region);
2026  _igvn.replace_node(_fallthroughproj, region);
2027
2028  Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2029  mem_phi->init_req(1, memproj );
2030  transform_later(mem_phi);
2031  _igvn.replace_node(_memproj_fallthrough, mem_phi);
2032}
2033
2034//------------------------------expand_unlock_node----------------------
2035void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2036
2037  Node* ctrl = unlock->in(TypeFunc::Control);
2038  Node* mem = unlock->in(TypeFunc::Memory);
2039  Node* obj = unlock->obj_node();
2040  Node* box = unlock->box_node();
2041
2042  // No need for a null check on unlock
2043
2044  // Make the merge point
2045  Node *region;
2046  Node *mem_phi;
2047
2048  if (UseOptoBiasInlining) {
2049    // Check for biased locking unlock case, which is a no-op.
2050    // See the full description in MacroAssembler::biased_locking_exit().
2051    region  = new (C, 4) RegionNode(4);
2052    // create a Phi for the memory state
2053    mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2054    mem_phi->init_req(3, mem);
2055
2056    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2057    ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2058                         markOopDesc::biased_lock_mask_in_place,
2059                         markOopDesc::biased_lock_pattern);
2060  } else {
2061    region  = new (C, 3) RegionNode(3);
2062    // create a Phi for the memory state
2063    mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2064  }
2065
2066  FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
2067  funlock = transform_later( funlock )->as_FastUnlock();
2068  // Optimize test; set region slot 2
2069  Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2070
2071  CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
2072
2073  extract_call_projections(call);
2074
2075  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2076           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2077
2078  // No exceptions for unlocking
2079  // Capture slow path
2080  // disconnect fall-through projection from call and create a new one
2081  // hook up users of fall-through projection to region
2082  Node *slow_ctrl = _fallthroughproj->clone();
2083  transform_later(slow_ctrl);
2084  _igvn.hash_delete(_fallthroughproj);
2085  _fallthroughproj->disconnect_inputs(NULL);
2086  region->init_req(1, slow_ctrl);
2087  // region inputs are now complete
2088  transform_later(region);
2089  _igvn.replace_node(_fallthroughproj, region);
2090
2091  Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2092  mem_phi->init_req(1, memproj );
2093  mem_phi->init_req(2, mem);
2094  transform_later(mem_phi);
2095  _igvn.replace_node(_memproj_fallthrough, mem_phi);
2096}
2097
2098//------------------------------expand_macro_nodes----------------------
2099//  Returns true if a failure occurred.
2100bool PhaseMacroExpand::expand_macro_nodes() {
2101  if (C->macro_count() == 0)
2102    return false;
2103  // First, attempt to eliminate locks
2104  bool progress = true;
2105  while (progress) {
2106    progress = false;
2107    for (int i = C->macro_count(); i > 0; i--) {
2108      Node * n = C->macro_node(i-1);
2109      bool success = false;
2110      debug_only(int old_macro_count = C->macro_count(););
2111      if (n->is_AbstractLock()) {
2112        success = eliminate_locking_node(n->as_AbstractLock());
2113      } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2114        _igvn.replace_node(n, n->in(1));
2115        success = true;
2116      }
2117      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2118      progress = progress || success;
2119    }
2120  }
2121  // Next, attempt to eliminate allocations
2122  progress = true;
2123  while (progress) {
2124    progress = false;
2125    for (int i = C->macro_count(); i > 0; i--) {
2126      Node * n = C->macro_node(i-1);
2127      bool success = false;
2128      debug_only(int old_macro_count = C->macro_count(););
2129      switch (n->class_id()) {
2130      case Node::Class_Allocate:
2131      case Node::Class_AllocateArray:
2132        success = eliminate_allocate_node(n->as_Allocate());
2133        break;
2134      case Node::Class_Lock:
2135      case Node::Class_Unlock:
2136        assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2137        break;
2138      default:
2139        assert(false, "unknown node type in macro list");
2140      }
2141      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2142      progress = progress || success;
2143    }
2144  }
2145  // Make sure expansion will not cause node limit to be exceeded.
2146  // Worst case is a macro node gets expanded into about 50 nodes.
2147  // Allow 50% more for optimization.
2148  if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2149    return true;
2150
2151  // expand "macro" nodes
2152  // nodes are removed from the macro list as they are processed
2153  while (C->macro_count() > 0) {
2154    int macro_count = C->macro_count();
2155    Node * n = C->macro_node(macro_count-1);
2156    assert(n->is_macro(), "only macro nodes expected here");
2157    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2158      // node is unreachable, so don't try to expand it
2159      C->remove_macro_node(n);
2160      continue;
2161    }
2162    switch (n->class_id()) {
2163    case Node::Class_Allocate:
2164      expand_allocate(n->as_Allocate());
2165      break;
2166    case Node::Class_AllocateArray:
2167      expand_allocate_array(n->as_AllocateArray());
2168      break;
2169    case Node::Class_Lock:
2170      expand_lock_node(n->as_Lock());
2171      break;
2172    case Node::Class_Unlock:
2173      expand_unlock_node(n->as_Unlock());
2174      break;
2175    default:
2176      assert(false, "unknown node type in macro list");
2177    }
2178    assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2179    if (C->failing())  return true;
2180  }
2181
2182  _igvn.set_delay_transform(false);
2183  _igvn.optimize();
2184  return false;
2185}
2186