loopnode.hpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25class CmpNode;
26class CountedLoopEndNode;
27class CountedLoopNode;
28class IdealLoopTree;
29class LoopNode;
30class Node;
31class PhaseIdealLoop;
32class VectorSet;
33class Invariance;
34struct small_cache;
35
36//
37//                  I D E A L I Z E D   L O O P S
38//
39// Idealized loops are the set of loops I perform more interesting
40// transformations on, beyond simple hoisting.
41
42//------------------------------LoopNode---------------------------------------
43// Simple loop header.  Fall in path on left, loop-back path on right.
44class LoopNode : public RegionNode {
45  // Size is bigger to hold the flags.  However, the flags do not change
46  // the semantics so it does not appear in the hash & cmp functions.
47  virtual uint size_of() const { return sizeof(*this); }
48protected:
49  short _loop_flags;
50  // Names for flag bitfields
51  enum { pre_post_main=0, inner_loop=8, partial_peel_loop=16, partial_peel_failed=32  };
52  char _unswitch_count;
53  enum { _unswitch_max=3 };
54
55public:
56  // Names for edge indices
57  enum { Self=0, EntryControl, LoopBackControl };
58
59  int is_inner_loop() const { return _loop_flags & inner_loop; }
60  void set_inner_loop() { _loop_flags |= inner_loop; }
61
62  int is_partial_peel_loop() const { return _loop_flags & partial_peel_loop; }
63  void set_partial_peel_loop() { _loop_flags |= partial_peel_loop; }
64  int partial_peel_has_failed() const { return _loop_flags & partial_peel_failed; }
65  void mark_partial_peel_failed() { _loop_flags |= partial_peel_failed; }
66
67  int unswitch_max() { return _unswitch_max; }
68  int unswitch_count() { return _unswitch_count; }
69  void set_unswitch_count(int val) {
70    assert (val <= unswitch_max(), "too many unswitches");
71    _unswitch_count = val;
72  }
73
74  LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
75    init_class_id(Class_Loop);
76    init_req(EntryControl, entry);
77    init_req(LoopBackControl, backedge);
78  }
79
80  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
81  virtual int Opcode() const;
82  bool can_be_counted_loop(PhaseTransform* phase) const {
83    return req() == 3 && in(0) != NULL &&
84      in(1) != NULL && phase->type(in(1)) != Type::TOP &&
85      in(2) != NULL && phase->type(in(2)) != Type::TOP;
86  }
87#ifndef PRODUCT
88  virtual void dump_spec(outputStream *st) const;
89#endif
90};
91
92//------------------------------Counted Loops----------------------------------
93// Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
94// path (and maybe some other exit paths).  The trip-counter exit is always
95// last in the loop.  The trip-counter does not have to stride by a constant,
96// but it does have to stride by a loop-invariant amount; the exit value is
97// also loop invariant.
98
99// CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
100// CountedLoopNode has the incoming loop control and the loop-back-control
101// which is always the IfTrue before the matching CountedLoopEndNode.  The
102// CountedLoopEndNode has an incoming control (possibly not the
103// CountedLoopNode if there is control flow in the loop), the post-increment
104// trip-counter value, and the limit.  The trip-counter value is always of
105// the form (Op old-trip-counter stride).  The old-trip-counter is produced
106// by a Phi connected to the CountedLoopNode.  The stride is loop invariant.
107// The Op is any commutable opcode, including Add, Mul, Xor.  The
108// CountedLoopEndNode also takes in the loop-invariant limit value.
109
110// From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
111// loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
112// via the old-trip-counter from the Op node.
113
114//------------------------------CountedLoopNode--------------------------------
115// CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
116// inputs the incoming loop-start control and the loop-back control, so they
117// act like RegionNodes.  They also take in the initial trip counter, the
118// loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
119// produce a loop-body control and the trip counter value.  Since
120// CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
121
122class CountedLoopNode : public LoopNode {
123  // Size is bigger to hold _main_idx.  However, _main_idx does not change
124  // the semantics so it does not appear in the hash & cmp functions.
125  virtual uint size_of() const { return sizeof(*this); }
126
127  // For Pre- and Post-loops during debugging ONLY, this holds the index of
128  // the Main CountedLoop.  Used to assert that we understand the graph shape.
129  node_idx_t _main_idx;
130
131  // Known trip count calculated by policy_maximally_unroll
132  int   _trip_count;
133
134  // Expected trip count from profile data
135  float _profile_trip_cnt;
136
137  // Log2 of original loop bodies in unrolled loop
138  int _unrolled_count_log2;
139
140  // Node count prior to last unrolling - used to decide if
141  // unroll,optimize,unroll,optimize,... is making progress
142  int _node_count_before_unroll;
143
144public:
145  CountedLoopNode( Node *entry, Node *backedge )
146    : LoopNode(entry, backedge), _trip_count(max_jint),
147      _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
148      _node_count_before_unroll(0) {
149    init_class_id(Class_CountedLoop);
150    // Initialize _trip_count to the largest possible value.
151    // Will be reset (lower) if the loop's trip count is known.
152  }
153
154  virtual int Opcode() const;
155  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
156
157  Node *init_control() const { return in(EntryControl); }
158  Node *back_control() const { return in(LoopBackControl); }
159  CountedLoopEndNode *loopexit() const;
160  Node *init_trip() const;
161  Node *stride() const;
162  int   stride_con() const;
163  bool  stride_is_con() const;
164  Node *limit() const;
165  Node *incr() const;
166  Node *phi() const;
167
168  // Match increment with optional truncation
169  static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
170
171  // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
172  // can run short a few iterations and may start a few iterations in.
173  // It will be RCE'd and unrolled and aligned.
174
175  // A following 'post' loop will run any remaining iterations.  Used
176  // during Range Check Elimination, the 'post' loop will do any final
177  // iterations with full checks.  Also used by Loop Unrolling, where
178  // the 'post' loop will do any epilog iterations needed.  Basically,
179  // a 'post' loop can not profitably be further unrolled or RCE'd.
180
181  // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
182  // it may do under-flow checks for RCE and may do alignment iterations
183  // so the following main loop 'knows' that it is striding down cache
184  // lines.
185
186  // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
187  // Aligned, may be missing it's pre-loop.
188  enum { Normal=0, Pre=1, Main=2, Post=3, PrePostFlagsMask=3, Main_Has_No_Pre_Loop=4 };
189  int is_normal_loop() const { return (_loop_flags&PrePostFlagsMask) == Normal; }
190  int is_pre_loop   () const { return (_loop_flags&PrePostFlagsMask) == Pre;    }
191  int is_main_loop  () const { return (_loop_flags&PrePostFlagsMask) == Main;   }
192  int is_post_loop  () const { return (_loop_flags&PrePostFlagsMask) == Post;   }
193  int is_main_no_pre_loop() const { return _loop_flags & Main_Has_No_Pre_Loop; }
194  void set_main_no_pre_loop() { _loop_flags |= Main_Has_No_Pre_Loop; }
195
196  int main_idx() const { return _main_idx; }
197
198
199  void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
200  void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
201  void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
202  void set_normal_loop(                    ) { _loop_flags &= ~PrePostFlagsMask; }
203
204  void set_trip_count(int tc) { _trip_count = tc; }
205  int trip_count()            { return _trip_count; }
206
207  void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
208  float profile_trip_cnt()             { return _profile_trip_cnt; }
209
210  void double_unrolled_count() { _unrolled_count_log2++; }
211  int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
212
213  void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
214  int  node_count_before_unroll()           { return _node_count_before_unroll; }
215
216#ifndef PRODUCT
217  virtual void dump_spec(outputStream *st) const;
218#endif
219};
220
221//------------------------------CountedLoopEndNode-----------------------------
222// CountedLoopEndNodes end simple trip counted loops.  They act much like
223// IfNodes.
224class CountedLoopEndNode : public IfNode {
225public:
226  enum { TestControl, TestValue };
227
228  CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
229    : IfNode( control, test, prob, cnt) {
230    init_class_id(Class_CountedLoopEnd);
231  }
232  virtual int Opcode() const;
233
234  Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
235  Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
236  Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
237  Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
238  Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
239  Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
240  int stride_con() const;
241  bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
242  BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
243  CountedLoopNode *loopnode() const {
244    Node *ln = phi()->in(0);
245    assert( ln->Opcode() == Op_CountedLoop, "malformed loop" );
246    return (CountedLoopNode*)ln; }
247
248#ifndef PRODUCT
249  virtual void dump_spec(outputStream *st) const;
250#endif
251};
252
253
254inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
255  Node *bc = back_control();
256  if( bc == NULL ) return NULL;
257  Node *le = bc->in(0);
258  if( le->Opcode() != Op_CountedLoopEnd )
259    return NULL;
260  return (CountedLoopEndNode*)le;
261}
262inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
263inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
264inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
265inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
266inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
267inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
268inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
269
270
271// -----------------------------IdealLoopTree----------------------------------
272class IdealLoopTree : public ResourceObj {
273public:
274  IdealLoopTree *_parent;       // Parent in loop tree
275  IdealLoopTree *_next;         // Next sibling in loop tree
276  IdealLoopTree *_child;        // First child in loop tree
277
278  // The head-tail backedge defines the loop.
279  // If tail is NULL then this loop has multiple backedges as part of the
280  // same loop.  During cleanup I'll peel off the multiple backedges; merge
281  // them at the loop bottom and flow 1 real backedge into the loop.
282  Node *_head;                  // Head of loop
283  Node *_tail;                  // Tail of loop
284  inline Node *tail();          // Handle lazy update of _tail field
285  PhaseIdealLoop* _phase;
286
287  Node_List _body;              // Loop body for inner loops
288
289  uint8 _nest;                  // Nesting depth
290  uint8 _irreducible:1,         // True if irreducible
291        _has_call:1,            // True if has call safepoint
292        _has_sfpt:1,            // True if has non-call safepoint
293        _rce_candidate:1;       // True if candidate for range check elimination
294
295  Node_List* _required_safept;  // A inner loop cannot delete these safepts;
296  bool  _allow_optimizations;   // Allow loop optimizations
297
298  IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
299    : _parent(0), _next(0), _child(0),
300      _head(head), _tail(tail),
301      _phase(phase),
302      _required_safept(NULL),
303      _allow_optimizations(true),
304      _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
305  { }
306
307  // Is 'l' a member of 'this'?
308  int is_member( const IdealLoopTree *l ) const; // Test for nested membership
309
310  // Set loop nesting depth.  Accumulate has_call bits.
311  int set_nest( uint depth );
312
313  // Split out multiple fall-in edges from the loop header.  Move them to a
314  // private RegionNode before the loop.  This becomes the loop landing pad.
315  void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
316
317  // Split out the outermost loop from this shared header.
318  void split_outer_loop( PhaseIdealLoop *phase );
319
320  // Merge all the backedges from the shared header into a private Region.
321  // Feed that region as the one backedge to this loop.
322  void merge_many_backedges( PhaseIdealLoop *phase );
323
324  // Split shared headers and insert loop landing pads.
325  // Insert a LoopNode to replace the RegionNode.
326  // Returns TRUE if loop tree is structurally changed.
327  bool beautify_loops( PhaseIdealLoop *phase );
328
329  // Perform optimization to use the loop predicates for null checks and range checks.
330  // Applies to any loop level (not just the innermost one)
331  bool loop_predication( PhaseIdealLoop *phase);
332
333  // Perform iteration-splitting on inner loops.  Split iterations to
334  // avoid range checks or one-shot null checks.  Returns false if the
335  // current round of loop opts should stop.
336  bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
337
338  // Driver for various flavors of iteration splitting.  Returns false
339  // if the current round of loop opts should stop.
340  bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
341
342  // Given dominators, try to find loops with calls that must always be
343  // executed (call dominates loop tail).  These loops do not need non-call
344  // safepoints (ncsfpt).
345  void check_safepts(VectorSet &visited, Node_List &stack);
346
347  // Allpaths backwards scan from loop tail, terminating each path at first safepoint
348  // encountered.
349  void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
350
351  // Convert to counted loops where possible
352  void counted_loop( PhaseIdealLoop *phase );
353
354  // Check for Node being a loop-breaking test
355  Node *is_loop_exit(Node *iff) const;
356
357  // Returns true if ctrl is executed on every complete iteration
358  bool dominates_backedge(Node* ctrl);
359
360  // Remove simplistic dead code from loop body
361  void DCE_loop_body();
362
363  // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
364  // Replace with a 1-in-10 exit guess.
365  void adjust_loop_exit_prob( PhaseIdealLoop *phase );
366
367  // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
368  // Useful for unrolling loops with NO array accesses.
369  bool policy_peel_only( PhaseIdealLoop *phase ) const;
370
371  // Return TRUE or FALSE if the loop should be unswitched -- clone
372  // loop with an invariant test
373  bool policy_unswitching( PhaseIdealLoop *phase ) const;
374
375  // Micro-benchmark spamming.  Remove empty loops.
376  bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
377
378  // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
379  // make some loop-invariant test (usually a null-check) happen before the
380  // loop.
381  bool policy_peeling( PhaseIdealLoop *phase ) const;
382
383  // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
384  // known trip count in the counted loop node.
385  bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
386
387  // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
388  // the loop is a CountedLoop and the body is small enough.
389  bool policy_unroll( PhaseIdealLoop *phase ) const;
390
391  // Return TRUE or FALSE if the loop should be range-check-eliminated.
392  // Gather a list of IF tests that are dominated by iteration splitting;
393  // also gather the end of the first split and the start of the 2nd split.
394  bool policy_range_check( PhaseIdealLoop *phase ) const;
395
396  // Return TRUE or FALSE if the loop should be cache-line aligned.
397  // Gather the expression that does the alignment.  Note that only
398  // one array base can be aligned in a loop (unless the VM guarantees
399  // mutual alignment).  Note that if we vectorize short memory ops
400  // into longer memory ops, we may want to increase alignment.
401  bool policy_align( PhaseIdealLoop *phase ) const;
402
403  // Return TRUE if "iff" is a range check.
404  bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
405
406  // Compute loop trip count from profile data
407  void compute_profile_trip_cnt( PhaseIdealLoop *phase );
408
409  // Reassociate invariant expressions.
410  void reassociate_invariants(PhaseIdealLoop *phase);
411  // Reassociate invariant add and subtract expressions.
412  Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
413  // Return nonzero index of invariant operand if invariant and variant
414  // are combined with an Add or Sub. Helper for reassociate_invariants.
415  int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
416
417  // Return true if n is invariant
418  bool is_invariant(Node* n) const;
419
420  // Put loop body on igvn work list
421  void record_for_igvn();
422
423  bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
424  bool is_inner()   { return is_loop() && _child == NULL; }
425  bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
426
427#ifndef PRODUCT
428  void dump_head( ) const;      // Dump loop head only
429  void dump() const;            // Dump this loop recursively
430  void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
431#endif
432
433};
434
435// -----------------------------PhaseIdealLoop---------------------------------
436// Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
437// loop tree.  Drives the loop-based transformations on the ideal graph.
438class PhaseIdealLoop : public PhaseTransform {
439  friend class IdealLoopTree;
440  friend class SuperWord;
441  // Pre-computed def-use info
442  PhaseIterGVN &_igvn;
443
444  // Head of loop tree
445  IdealLoopTree *_ltree_root;
446
447  // Array of pre-order numbers, plus post-visited bit.
448  // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
449  // ODD for post-visited.  Other bits are the pre-order number.
450  uint *_preorders;
451  uint _max_preorder;
452
453  const PhaseIdealLoop* _verify_me;
454  bool _verify_only;
455
456  // Allocate _preorders[] array
457  void allocate_preorders() {
458    _max_preorder = C->unique()+8;
459    _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
460    memset(_preorders, 0, sizeof(uint) * _max_preorder);
461  }
462
463  // Allocate _preorders[] array
464  void reallocate_preorders() {
465    if ( _max_preorder < C->unique() ) {
466      _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
467      _max_preorder = C->unique();
468    }
469    memset(_preorders, 0, sizeof(uint) * _max_preorder);
470  }
471
472  // Check to grow _preorders[] array for the case when build_loop_tree_impl()
473  // adds new nodes.
474  void check_grow_preorders( ) {
475    if ( _max_preorder < C->unique() ) {
476      uint newsize = _max_preorder<<1;  // double size of array
477      _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
478      memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
479      _max_preorder = newsize;
480    }
481  }
482  // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
483  int is_visited( Node *n ) const { return _preorders[n->_idx]; }
484  // Pre-order numbers are written to the Nodes array as low-bit-set values.
485  void set_preorder_visited( Node *n, int pre_order ) {
486    assert( !is_visited( n ), "already set" );
487    _preorders[n->_idx] = (pre_order<<1);
488  };
489  // Return pre-order number.
490  int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
491
492  // Check for being post-visited.
493  // Should be previsited already (checked with assert(is_visited(n))).
494  int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
495
496  // Mark as post visited
497  void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
498
499  // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
500  // Returns true if "n" is a data node, false if it's a control node.
501  bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
502
503  // clear out dead code after build_loop_late
504  Node_List _deadlist;
505
506  // Support for faster execution of get_late_ctrl()/dom_lca()
507  // when a node has many uses and dominator depth is deep.
508  Node_Array _dom_lca_tags;
509  void   init_dom_lca_tags();
510  void   clear_dom_lca_tags();
511
512  // Helper for debugging bad dominance relationships
513  bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
514
515  Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
516
517  // Inline wrapper for frequent cases:
518  // 1) only one use
519  // 2) a use is the same as the current LCA passed as 'n1'
520  Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
521    assert( n->is_CFG(), "" );
522    // Fast-path NULL lca
523    if( lca != NULL && lca != n ) {
524      assert( lca->is_CFG(), "" );
525      // find LCA of all uses
526      n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
527    }
528    return find_non_split_ctrl(n);
529  }
530  Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
531
532  // Helper function for directing control inputs away from CFG split
533  // points.
534  Node *find_non_split_ctrl( Node *ctrl ) const {
535    if (ctrl != NULL) {
536      if (ctrl->is_MultiBranch()) {
537        ctrl = ctrl->in(0);
538      }
539      assert(ctrl->is_CFG(), "CFG");
540    }
541    return ctrl;
542  }
543
544public:
545  bool has_node( Node* n ) const { return _nodes[n->_idx] != NULL; }
546  // check if transform created new nodes that need _ctrl recorded
547  Node *get_late_ctrl( Node *n, Node *early );
548  Node *get_early_ctrl( Node *n );
549  void set_early_ctrl( Node *n );
550  void set_subtree_ctrl( Node *root );
551  void set_ctrl( Node *n, Node *ctrl ) {
552    assert( !has_node(n) || has_ctrl(n), "" );
553    assert( ctrl->in(0), "cannot set dead control node" );
554    assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
555    _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
556  }
557  // Set control and update loop membership
558  void set_ctrl_and_loop(Node* n, Node* ctrl) {
559    IdealLoopTree* old_loop = get_loop(get_ctrl(n));
560    IdealLoopTree* new_loop = get_loop(ctrl);
561    if (old_loop != new_loop) {
562      if (old_loop->_child == NULL) old_loop->_body.yank(n);
563      if (new_loop->_child == NULL) new_loop->_body.push(n);
564    }
565    set_ctrl(n, ctrl);
566  }
567  // Control nodes can be replaced or subsumed.  During this pass they
568  // get their replacement Node in slot 1.  Instead of updating the block
569  // location of all Nodes in the subsumed block, we lazily do it.  As we
570  // pull such a subsumed block out of the array, we write back the final
571  // correct block.
572  Node *get_ctrl( Node *i ) {
573    assert(has_node(i), "");
574    Node *n = get_ctrl_no_update(i);
575    _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
576    assert(has_node(i) && has_ctrl(i), "");
577    assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
578    return n;
579  }
580  // true if CFG node d dominates CFG node n
581  bool is_dominator(Node *d, Node *n);
582  // return get_ctrl for a data node and self(n) for a CFG node
583  Node* ctrl_or_self(Node* n) {
584    if (has_ctrl(n))
585      return get_ctrl(n);
586    else {
587      assert (n->is_CFG(), "must be a CFG node");
588      return n;
589    }
590  }
591
592private:
593  Node *get_ctrl_no_update( Node *i ) const {
594    assert( has_ctrl(i), "" );
595    Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
596    if (!n->in(0)) {
597      // Skip dead CFG nodes
598      do {
599        n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
600      } while (!n->in(0));
601      n = find_non_split_ctrl(n);
602    }
603    return n;
604  }
605
606  // Check for loop being set
607  // "n" must be a control node. Returns true if "n" is known to be in a loop.
608  bool has_loop( Node *n ) const {
609    assert(!has_node(n) || !has_ctrl(n), "");
610    return has_node(n);
611  }
612  // Set loop
613  void set_loop( Node *n, IdealLoopTree *loop ) {
614    _nodes.map(n->_idx, (Node*)loop);
615  }
616  // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
617  // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
618  // from old_node to new_node to support the lazy update.  Reference
619  // replaces loop reference, since that is not needed for dead node.
620public:
621  void lazy_update( Node *old_node, Node *new_node ) {
622    assert( old_node != new_node, "no cycles please" );
623    //old_node->set_req( 1, new_node /*NO DU INFO*/ );
624    // Nodes always have DU info now, so re-use the side array slot
625    // for this node to provide the forwarding pointer.
626    _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
627  }
628  void lazy_replace( Node *old_node, Node *new_node ) {
629    _igvn.hash_delete(old_node);
630    _igvn.subsume_node( old_node, new_node );
631    lazy_update( old_node, new_node );
632  }
633  void lazy_replace_proj( Node *old_node, Node *new_node ) {
634    assert( old_node->req() == 1, "use this for Projs" );
635    _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
636    old_node->add_req( NULL );
637    lazy_replace( old_node, new_node );
638  }
639
640private:
641
642  // Place 'n' in some loop nest, where 'n' is a CFG node
643  void build_loop_tree();
644  int build_loop_tree_impl( Node *n, int pre_order );
645  // Insert loop into the existing loop tree.  'innermost' is a leaf of the
646  // loop tree, not the root.
647  IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
648
649  // Place Data nodes in some loop nest
650  void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
651  void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
652  void build_loop_late_post ( Node* n );
653
654  // Array of immediate dominance info for each CFG node indexed by node idx
655private:
656  uint _idom_size;
657  Node **_idom;                 // Array of immediate dominators
658  uint *_dom_depth;           // Used for fast LCA test
659  GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
660
661  Node* idom_no_update(Node* d) const {
662    assert(d->_idx < _idom_size, "oob");
663    Node* n = _idom[d->_idx];
664    assert(n != NULL,"Bad immediate dominator info.");
665    while (n->in(0) == NULL) {  // Skip dead CFG nodes
666      //n = n->in(1);
667      n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
668      assert(n != NULL,"Bad immediate dominator info.");
669    }
670    return n;
671  }
672  Node *idom(Node* d) const {
673    uint didx = d->_idx;
674    Node *n = idom_no_update(d);
675    _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
676    return n;
677  }
678  uint dom_depth(Node* d) const {
679    assert(d->_idx < _idom_size, "");
680    return _dom_depth[d->_idx];
681  }
682  void set_idom(Node* d, Node* n, uint dom_depth);
683  // Locally compute IDOM using dom_lca call
684  Node *compute_idom( Node *region ) const;
685  // Recompute dom_depth
686  void recompute_dom_depth();
687
688  // Is safept not required by an outer loop?
689  bool is_deleteable_safept(Node* sfpt);
690
691  // Perform verification that the graph is valid.
692  PhaseIdealLoop( PhaseIterGVN &igvn) :
693    PhaseTransform(Ideal_Loop),
694    _igvn(igvn),
695    _dom_lca_tags(C->comp_arena()),
696    _verify_me(NULL),
697    _verify_only(true) {
698    build_and_optimize(false, false);
699  }
700
701  // build the loop tree and perform any requested optimizations
702  void build_and_optimize(bool do_split_if, bool do_loop_pred);
703
704public:
705  // Dominators for the sea of nodes
706  void Dominators();
707  Node *dom_lca( Node *n1, Node *n2 ) const {
708    return find_non_split_ctrl(dom_lca_internal(n1, n2));
709  }
710  Node *dom_lca_internal( Node *n1, Node *n2 ) const;
711
712  // Compute the Ideal Node to Loop mapping
713  PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool do_loop_pred) :
714    PhaseTransform(Ideal_Loop),
715    _igvn(igvn),
716    _dom_lca_tags(C->comp_arena()),
717    _verify_me(NULL),
718    _verify_only(false) {
719    build_and_optimize(do_split_ifs, do_loop_pred);
720  }
721
722  // Verify that verify_me made the same decisions as a fresh run.
723  PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
724    PhaseTransform(Ideal_Loop),
725    _igvn(igvn),
726    _dom_lca_tags(C->comp_arena()),
727    _verify_me(verify_me),
728    _verify_only(false) {
729    build_and_optimize(false, false);
730  }
731
732  // Build and verify the loop tree without modifying the graph.  This
733  // is useful to verify that all inputs properly dominate their uses.
734  static void verify(PhaseIterGVN& igvn) {
735#ifdef ASSERT
736    PhaseIdealLoop v(igvn);
737#endif
738  }
739
740  // True if the method has at least 1 irreducible loop
741  bool _has_irreducible_loops;
742
743  // Per-Node transform
744  virtual Node *transform( Node *a_node ) { return 0; }
745
746  Node *is_counted_loop( Node *x, IdealLoopTree *loop );
747
748  // Return a post-walked LoopNode
749  IdealLoopTree *get_loop( Node *n ) const {
750    // Dead nodes have no loop, so return the top level loop instead
751    if (!has_node(n))  return _ltree_root;
752    assert(!has_ctrl(n), "");
753    return (IdealLoopTree*)_nodes[n->_idx];
754  }
755
756  // Is 'n' a (nested) member of 'loop'?
757  int is_member( const IdealLoopTree *loop, Node *n ) const {
758    return loop->is_member(get_loop(n)); }
759
760  // This is the basic building block of the loop optimizations.  It clones an
761  // entire loop body.  It makes an old_new loop body mapping; with this
762  // mapping you can find the new-loop equivalent to an old-loop node.  All
763  // new-loop nodes are exactly equal to their old-loop counterparts, all
764  // edges are the same.  All exits from the old-loop now have a RegionNode
765  // that merges the equivalent new-loop path.  This is true even for the
766  // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
767  // now come from (one or more) Phis that merge their new-loop equivalents.
768  // Parameter side_by_side_idom:
769  //   When side_by_size_idom is NULL, the dominator tree is constructed for
770  //      the clone loop to dominate the original.  Used in construction of
771  //      pre-main-post loop sequence.
772  //   When nonnull, the clone and original are side-by-side, both are
773  //      dominated by the passed in side_by_side_idom node.  Used in
774  //      construction of unswitched loops.
775  void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
776                   Node* side_by_side_idom = NULL);
777
778  // If we got the effect of peeling, either by actually peeling or by
779  // making a pre-loop which must execute at least once, we can remove
780  // all loop-invariant dominated tests in the main body.
781  void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
782
783  // Generate code to do a loop peel for the given loop (and body).
784  // old_new is a temp array.
785  void do_peeling( IdealLoopTree *loop, Node_List &old_new );
786
787  // Add pre and post loops around the given loop.  These loops are used
788  // during RCE, unrolling and aligning loops.
789  void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
790  // If Node n lives in the back_ctrl block, we clone a private version of n
791  // in preheader_ctrl block and return that, otherwise return n.
792  Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n );
793
794  // Take steps to maximally unroll the loop.  Peel any odd iterations, then
795  // unroll to do double iterations.  The next round of major loop transforms
796  // will repeat till the doubled loop body does all remaining iterations in 1
797  // pass.
798  void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
799
800  // Unroll the loop body one step - make each trip do 2 iterations.
801  void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
802
803  // Return true if exp is a constant times an induction var
804  bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
805
806  // Return true if exp is a scaled induction var plus (or minus) constant
807  bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
808
809  // Return true if proj is for "proj->[region->..]call_uct"
810  bool is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate = false);
811  // Return true for    "if(test)-> proj -> ...
812  //                          |
813  //                          V
814  //                      other_proj->[region->..]call_uct"
815  bool is_uncommon_trap_if_pattern(ProjNode* proj, bool must_reason_predicate = false);
816  // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
817  ProjNode* create_new_if_for_predicate(ProjNode* cont_proj);
818  // Find a good location to insert a predicate
819  ProjNode* find_predicate_insertion_point(Node* start_c);
820  // Construct a range check for a predicate if
821  BoolNode* rc_predicate(Node* ctrl,
822                         int scale, Node* offset,
823                         Node* init, Node* limit, Node* stride,
824                         Node* range, bool upper);
825
826  // Implementation of the loop predication to promote checks outside the loop
827  bool loop_predication_impl(IdealLoopTree *loop);
828
829  // Helper function to collect predicate for eliminating the useless ones
830  void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
831  void eliminate_useless_predicates();
832
833  // Eliminate range-checks and other trip-counter vs loop-invariant tests.
834  void do_range_check( IdealLoopTree *loop, Node_List &old_new );
835
836  // Create a slow version of the loop by cloning the loop
837  // and inserting an if to select fast-slow versions.
838  ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
839                                        Node_List &old_new);
840
841  // Clone loop with an invariant test (that does not exit) and
842  // insert a clone of the test that selects which version to
843  // execute.
844  void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
845
846  // Find candidate "if" for unswitching
847  IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
848
849  // Range Check Elimination uses this function!
850  // Constrain the main loop iterations so the affine function:
851  //    scale_con * I + offset  <  limit
852  // always holds true.  That is, either increase the number of iterations in
853  // the pre-loop or the post-loop until the condition holds true in the main
854  // loop.  Scale_con, offset and limit are all loop invariant.
855  void add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
856
857  // Partially peel loop up through last_peel node.
858  bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
859
860  // Create a scheduled list of nodes control dependent on ctrl set.
861  void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
862  // Has a use in the vector set
863  bool has_use_in_set( Node* n, VectorSet& vset );
864  // Has use internal to the vector set (ie. not in a phi at the loop head)
865  bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
866  // clone "n" for uses that are outside of loop
867  void clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
868  // clone "n" for special uses that are in the not_peeled region
869  void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
870                                          VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
871  // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
872  void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
873#ifdef ASSERT
874  // Validate the loop partition sets: peel and not_peel
875  bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
876  // Ensure that uses outside of loop are of the right form
877  bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
878                                 uint orig_exit_idx, uint clone_exit_idx);
879  bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
880#endif
881
882  // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
883  int stride_of_possible_iv( Node* iff );
884  bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
885  // Return the (unique) control output node that's in the loop (if it exists.)
886  Node* stay_in_loop( Node* n, IdealLoopTree *loop);
887  // Insert a signed compare loop exit cloned from an unsigned compare.
888  IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
889  void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
890  // Utility to register node "n" with PhaseIdealLoop
891  void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
892  // Utility to create an if-projection
893  ProjNode* proj_clone(ProjNode* p, IfNode* iff);
894  // Force the iff control output to be the live_proj
895  Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
896  // Insert a region before an if projection
897  RegionNode* insert_region_before_proj(ProjNode* proj);
898  // Insert a new if before an if projection
899  ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
900
901  // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
902  // "Nearly" because all Nodes have been cloned from the original in the loop,
903  // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
904  // through the Phi recursively, and return a Bool.
905  BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
906  CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
907
908
909  // Rework addressing expressions to get the most loop-invariant stuff
910  // moved out.  We'd like to do all associative operators, but it's especially
911  // important (common) to do address expressions.
912  Node *remix_address_expressions( Node *n );
913
914  // Attempt to use a conditional move instead of a phi/branch
915  Node *conditional_move( Node *n );
916
917  // Reorganize offset computations to lower register pressure.
918  // Mostly prevent loop-fallout uses of the pre-incremented trip counter
919  // (which are then alive with the post-incremented trip counter
920  // forcing an extra register move)
921  void reorg_offsets( IdealLoopTree *loop );
922
923  // Check for aggressive application of 'split-if' optimization,
924  // using basic block level info.
925  void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
926  Node *split_if_with_blocks_pre ( Node *n );
927  void  split_if_with_blocks_post( Node *n );
928  Node *has_local_phi_input( Node *n );
929  // Mark an IfNode as being dominated by a prior test,
930  // without actually altering the CFG (and hence IDOM info).
931  void dominated_by( Node *prevdom, Node *iff );
932
933  // Split Node 'n' through merge point
934  Node *split_thru_region( Node *n, Node *region );
935  // Split Node 'n' through merge point if there is enough win.
936  Node *split_thru_phi( Node *n, Node *region, int policy );
937  // Found an If getting its condition-code input from a Phi in the
938  // same block.  Split thru the Region.
939  void do_split_if( Node *iff );
940
941private:
942  // Return a type based on condition control flow
943  const TypeInt* filtered_type( Node *n, Node* n_ctrl);
944  const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
945 // Helpers for filtered type
946  const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
947
948  // Helper functions
949  Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
950  Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
951  void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
952  bool split_up( Node *n, Node *blk1, Node *blk2 );
953  void sink_use( Node *use, Node *post_loop );
954  Node *place_near_use( Node *useblock ) const;
955
956  bool _created_loop_node;
957public:
958  void set_created_loop_node() { _created_loop_node = true; }
959  bool created_loop_node()     { return _created_loop_node; }
960  void register_new_node( Node *n, Node *blk );
961
962#ifndef PRODUCT
963  void dump( ) const;
964  void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
965  void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
966  void verify() const;          // Major slow  :-)
967  void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
968  IdealLoopTree *get_loop_idx(Node* n) const {
969    // Dead nodes have no loop, so return the top level loop instead
970    return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
971  }
972  // Print some stats
973  static void print_statistics();
974  static int _loop_invokes;     // Count of PhaseIdealLoop invokes
975  static int _loop_work;        // Sum of PhaseIdealLoop x _unique
976#endif
977};
978
979inline Node* IdealLoopTree::tail() {
980// Handle lazy update of _tail field
981  Node *n = _tail;
982  //while( !n->in(0) )  // Skip dead CFG nodes
983    //n = n->in(1);
984  if (n->in(0) == NULL)
985    n = _phase->get_ctrl(n);
986  _tail = n;
987  return n;
988}
989
990
991// Iterate over the loop tree using a preorder, left-to-right traversal.
992//
993// Example that visits all counted loops from within PhaseIdealLoop
994//
995//  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
996//   IdealLoopTree* lpt = iter.current();
997//   if (!lpt->is_counted()) continue;
998//   ...
999class LoopTreeIterator : public StackObj {
1000private:
1001  IdealLoopTree* _root;
1002  IdealLoopTree* _curnt;
1003
1004public:
1005  LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1006
1007  bool done() { return _curnt == NULL; }       // Finished iterating?
1008
1009  void next();                                 // Advance to next loop tree
1010
1011  IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1012};
1013