library_call.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_library_call.cpp.incl"
27
28class LibraryIntrinsic : public InlineCallGenerator {
29  // Extend the set of intrinsics known to the runtime:
30 public:
31 private:
32  bool             _is_virtual;
33  vmIntrinsics::ID _intrinsic_id;
34
35 public:
36  LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
37    : InlineCallGenerator(m),
38      _is_virtual(is_virtual),
39      _intrinsic_id(id)
40  {
41  }
42  virtual bool is_intrinsic() const { return true; }
43  virtual bool is_virtual()   const { return _is_virtual; }
44  virtual JVMState* generate(JVMState* jvms);
45  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
46};
47
48
49// Local helper class for LibraryIntrinsic:
50class LibraryCallKit : public GraphKit {
51 private:
52  LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
53
54 public:
55  LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
56    : GraphKit(caller),
57      _intrinsic(intrinsic)
58  {
59  }
60
61  ciMethod*         caller()    const    { return jvms()->method(); }
62  int               bci()       const    { return jvms()->bci(); }
63  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
64  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
65  ciMethod*         callee()    const    { return _intrinsic->method(); }
66  ciSignature*      signature() const    { return callee()->signature(); }
67  int               arg_size()  const    { return callee()->arg_size(); }
68
69  bool try_to_inline();
70
71  // Helper functions to inline natives
72  void push_result(RegionNode* region, PhiNode* value);
73  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
74  Node* generate_slow_guard(Node* test, RegionNode* region);
75  Node* generate_fair_guard(Node* test, RegionNode* region);
76  Node* generate_negative_guard(Node* index, RegionNode* region,
77                                // resulting CastII of index:
78                                Node* *pos_index = NULL);
79  Node* generate_nonpositive_guard(Node* index, bool never_negative,
80                                   // resulting CastII of index:
81                                   Node* *pos_index = NULL);
82  Node* generate_limit_guard(Node* offset, Node* subseq_length,
83                             Node* array_length,
84                             RegionNode* region);
85  Node* generate_current_thread(Node* &tls_output);
86  address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
87                              bool disjoint_bases, const char* &name);
88  Node* load_mirror_from_klass(Node* klass);
89  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
90                                      int nargs,
91                                      RegionNode* region, int null_path,
92                                      int offset);
93  Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
94                               RegionNode* region, int null_path) {
95    int offset = java_lang_Class::klass_offset_in_bytes();
96    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
97                                         region, null_path,
98                                         offset);
99  }
100  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
101                                     int nargs,
102                                     RegionNode* region, int null_path) {
103    int offset = java_lang_Class::array_klass_offset_in_bytes();
104    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
105                                         region, null_path,
106                                         offset);
107  }
108  Node* generate_access_flags_guard(Node* kls,
109                                    int modifier_mask, int modifier_bits,
110                                    RegionNode* region);
111  Node* generate_interface_guard(Node* kls, RegionNode* region);
112  Node* generate_array_guard(Node* kls, RegionNode* region) {
113    return generate_array_guard_common(kls, region, false, false);
114  }
115  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
116    return generate_array_guard_common(kls, region, false, true);
117  }
118  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
119    return generate_array_guard_common(kls, region, true, false);
120  }
121  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
122    return generate_array_guard_common(kls, region, true, true);
123  }
124  Node* generate_array_guard_common(Node* kls, RegionNode* region,
125                                    bool obj_array, bool not_array);
126  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
127  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
128                                     bool is_virtual = false, bool is_static = false);
129  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
130    return generate_method_call(method_id, false, true);
131  }
132  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
133    return generate_method_call(method_id, true, false);
134  }
135
136  Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
137  bool inline_string_compareTo();
138  bool inline_string_indexOf();
139  Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
140  bool inline_string_equals();
141  Node* pop_math_arg();
142  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
143  bool inline_math_native(vmIntrinsics::ID id);
144  bool inline_trig(vmIntrinsics::ID id);
145  bool inline_trans(vmIntrinsics::ID id);
146  bool inline_abs(vmIntrinsics::ID id);
147  bool inline_sqrt(vmIntrinsics::ID id);
148  bool inline_pow(vmIntrinsics::ID id);
149  bool inline_exp(vmIntrinsics::ID id);
150  bool inline_min_max(vmIntrinsics::ID id);
151  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
152  // This returns Type::AnyPtr, RawPtr, or OopPtr.
153  int classify_unsafe_addr(Node* &base, Node* &offset);
154  Node* make_unsafe_address(Node* base, Node* offset);
155  bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
156  bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
157  bool inline_unsafe_allocate();
158  bool inline_unsafe_copyMemory();
159  bool inline_native_currentThread();
160  bool inline_native_time_funcs(bool isNano);
161  bool inline_native_isInterrupted();
162  bool inline_native_Class_query(vmIntrinsics::ID id);
163  bool inline_native_subtype_check();
164
165  bool inline_native_newArray();
166  bool inline_native_getLength();
167  bool inline_array_copyOf(bool is_copyOfRange);
168  bool inline_array_equals();
169  void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
170  bool inline_native_clone(bool is_virtual);
171  bool inline_native_Reflection_getCallerClass();
172  bool inline_native_AtomicLong_get();
173  bool inline_native_AtomicLong_attemptUpdate();
174  bool is_method_invoke_or_aux_frame(JVMState* jvms);
175  // Helper function for inlining native object hash method
176  bool inline_native_hashcode(bool is_virtual, bool is_static);
177  bool inline_native_getClass();
178
179  // Helper functions for inlining arraycopy
180  bool inline_arraycopy();
181  void generate_arraycopy(const TypePtr* adr_type,
182                          BasicType basic_elem_type,
183                          Node* src,  Node* src_offset,
184                          Node* dest, Node* dest_offset,
185                          Node* copy_length,
186                          bool disjoint_bases = false,
187                          bool length_never_negative = false,
188                          RegionNode* slow_region = NULL);
189  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
190                                                RegionNode* slow_region);
191  void generate_clear_array(const TypePtr* adr_type,
192                            Node* dest,
193                            BasicType basic_elem_type,
194                            Node* slice_off,
195                            Node* slice_len,
196                            Node* slice_end);
197  bool generate_block_arraycopy(const TypePtr* adr_type,
198                                BasicType basic_elem_type,
199                                AllocateNode* alloc,
200                                Node* src,  Node* src_offset,
201                                Node* dest, Node* dest_offset,
202                                Node* dest_size);
203  void generate_slow_arraycopy(const TypePtr* adr_type,
204                               Node* src,  Node* src_offset,
205                               Node* dest, Node* dest_offset,
206                               Node* copy_length);
207  Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
208                                     Node* dest_elem_klass,
209                                     Node* src,  Node* src_offset,
210                                     Node* dest, Node* dest_offset,
211                                     Node* copy_length);
212  Node* generate_generic_arraycopy(const TypePtr* adr_type,
213                                   Node* src,  Node* src_offset,
214                                   Node* dest, Node* dest_offset,
215                                   Node* copy_length);
216  void generate_unchecked_arraycopy(const TypePtr* adr_type,
217                                    BasicType basic_elem_type,
218                                    bool disjoint_bases,
219                                    Node* src,  Node* src_offset,
220                                    Node* dest, Node* dest_offset,
221                                    Node* copy_length);
222  bool inline_unsafe_CAS(BasicType type);
223  bool inline_unsafe_ordered_store(BasicType type);
224  bool inline_fp_conversions(vmIntrinsics::ID id);
225  bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
226  bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
227  bool inline_bitCount(vmIntrinsics::ID id);
228  bool inline_reverseBytes(vmIntrinsics::ID id);
229};
230
231
232//---------------------------make_vm_intrinsic----------------------------
233CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
234  vmIntrinsics::ID id = m->intrinsic_id();
235  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
236
237  if (DisableIntrinsic[0] != '\0'
238      && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
239    // disabled by a user request on the command line:
240    // example: -XX:DisableIntrinsic=_hashCode,_getClass
241    return NULL;
242  }
243
244  if (!m->is_loaded()) {
245    // do not attempt to inline unloaded methods
246    return NULL;
247  }
248
249  // Only a few intrinsics implement a virtual dispatch.
250  // They are expensive calls which are also frequently overridden.
251  if (is_virtual) {
252    switch (id) {
253    case vmIntrinsics::_hashCode:
254    case vmIntrinsics::_clone:
255      // OK, Object.hashCode and Object.clone intrinsics come in both flavors
256      break;
257    default:
258      return NULL;
259    }
260  }
261
262  // -XX:-InlineNatives disables nearly all intrinsics:
263  if (!InlineNatives) {
264    switch (id) {
265    case vmIntrinsics::_indexOf:
266    case vmIntrinsics::_compareTo:
267    case vmIntrinsics::_equals:
268    case vmIntrinsics::_equalsC:
269      break;  // InlineNatives does not control String.compareTo
270    default:
271      return NULL;
272    }
273  }
274
275  switch (id) {
276  case vmIntrinsics::_compareTo:
277    if (!SpecialStringCompareTo)  return NULL;
278    break;
279  case vmIntrinsics::_indexOf:
280    if (!SpecialStringIndexOf)  return NULL;
281    break;
282  case vmIntrinsics::_equals:
283    if (!SpecialStringEquals)  return NULL;
284    break;
285  case vmIntrinsics::_equalsC:
286    if (!SpecialArraysEquals)  return NULL;
287    break;
288  case vmIntrinsics::_arraycopy:
289    if (!InlineArrayCopy)  return NULL;
290    break;
291  case vmIntrinsics::_copyMemory:
292    if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
293    if (!InlineArrayCopy)  return NULL;
294    break;
295  case vmIntrinsics::_hashCode:
296    if (!InlineObjectHash)  return NULL;
297    break;
298  case vmIntrinsics::_clone:
299  case vmIntrinsics::_copyOf:
300  case vmIntrinsics::_copyOfRange:
301    if (!InlineObjectCopy)  return NULL;
302    // These also use the arraycopy intrinsic mechanism:
303    if (!InlineArrayCopy)  return NULL;
304    break;
305  case vmIntrinsics::_checkIndex:
306    // We do not intrinsify this.  The optimizer does fine with it.
307    return NULL;
308
309  case vmIntrinsics::_get_AtomicLong:
310  case vmIntrinsics::_attemptUpdate:
311    if (!InlineAtomicLong)  return NULL;
312    break;
313
314  case vmIntrinsics::_getCallerClass:
315    if (!UseNewReflection)  return NULL;
316    if (!InlineReflectionGetCallerClass)  return NULL;
317    if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
318    break;
319
320  case vmIntrinsics::_bitCount_i:
321  case vmIntrinsics::_bitCount_l:
322    if (!UsePopCountInstruction)  return NULL;
323    break;
324
325 default:
326    assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
327    assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
328    break;
329  }
330
331  // -XX:-InlineClassNatives disables natives from the Class class.
332  // The flag applies to all reflective calls, notably Array.newArray
333  // (visible to Java programmers as Array.newInstance).
334  if (m->holder()->name() == ciSymbol::java_lang_Class() ||
335      m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
336    if (!InlineClassNatives)  return NULL;
337  }
338
339  // -XX:-InlineThreadNatives disables natives from the Thread class.
340  if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
341    if (!InlineThreadNatives)  return NULL;
342  }
343
344  // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
345  if (m->holder()->name() == ciSymbol::java_lang_Math() ||
346      m->holder()->name() == ciSymbol::java_lang_Float() ||
347      m->holder()->name() == ciSymbol::java_lang_Double()) {
348    if (!InlineMathNatives)  return NULL;
349  }
350
351  // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
352  if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
353    if (!InlineUnsafeOps)  return NULL;
354  }
355
356  return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
357}
358
359//----------------------register_library_intrinsics-----------------------
360// Initialize this file's data structures, for each Compile instance.
361void Compile::register_library_intrinsics() {
362  // Nothing to do here.
363}
364
365JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
366  LibraryCallKit kit(jvms, this);
367  Compile* C = kit.C;
368  int nodes = C->unique();
369#ifndef PRODUCT
370  if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
371    char buf[1000];
372    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
373    tty->print_cr("Intrinsic %s", str);
374  }
375#endif
376  if (kit.try_to_inline()) {
377    if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
378      tty->print("Inlining intrinsic %s%s at bci:%d in",
379                 vmIntrinsics::name_at(intrinsic_id()),
380                 (is_virtual() ? " (virtual)" : ""), kit.bci());
381      kit.caller()->print_short_name(tty);
382      tty->print_cr(" (%d bytes)", kit.caller()->code_size());
383    }
384    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
385    if (C->log()) {
386      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
387                     vmIntrinsics::name_at(intrinsic_id()),
388                     (is_virtual() ? " virtual='1'" : ""),
389                     C->unique() - nodes);
390    }
391    return kit.transfer_exceptions_into_jvms();
392  }
393
394  if (PrintIntrinsics) {
395    tty->print("Did not inline intrinsic %s%s at bci:%d in",
396               vmIntrinsics::name_at(intrinsic_id()),
397               (is_virtual() ? " (virtual)" : ""), kit.bci());
398    kit.caller()->print_short_name(tty);
399    tty->print_cr(" (%d bytes)", kit.caller()->code_size());
400  }
401  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
402  return NULL;
403}
404
405bool LibraryCallKit::try_to_inline() {
406  // Handle symbolic names for otherwise undistinguished boolean switches:
407  const bool is_store       = true;
408  const bool is_native_ptr  = true;
409  const bool is_static      = true;
410
411  switch (intrinsic_id()) {
412  case vmIntrinsics::_hashCode:
413    return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
414  case vmIntrinsics::_identityHashCode:
415    return inline_native_hashcode(/*!virtual*/ false, is_static);
416  case vmIntrinsics::_getClass:
417    return inline_native_getClass();
418
419  case vmIntrinsics::_dsin:
420  case vmIntrinsics::_dcos:
421  case vmIntrinsics::_dtan:
422  case vmIntrinsics::_dabs:
423  case vmIntrinsics::_datan2:
424  case vmIntrinsics::_dsqrt:
425  case vmIntrinsics::_dexp:
426  case vmIntrinsics::_dlog:
427  case vmIntrinsics::_dlog10:
428  case vmIntrinsics::_dpow:
429    return inline_math_native(intrinsic_id());
430
431  case vmIntrinsics::_min:
432  case vmIntrinsics::_max:
433    return inline_min_max(intrinsic_id());
434
435  case vmIntrinsics::_arraycopy:
436    return inline_arraycopy();
437
438  case vmIntrinsics::_compareTo:
439    return inline_string_compareTo();
440  case vmIntrinsics::_indexOf:
441    return inline_string_indexOf();
442  case vmIntrinsics::_equals:
443    return inline_string_equals();
444
445  case vmIntrinsics::_getObject:
446    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
447  case vmIntrinsics::_getBoolean:
448    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
449  case vmIntrinsics::_getByte:
450    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
451  case vmIntrinsics::_getShort:
452    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
453  case vmIntrinsics::_getChar:
454    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
455  case vmIntrinsics::_getInt:
456    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
457  case vmIntrinsics::_getLong:
458    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
459  case vmIntrinsics::_getFloat:
460    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
461  case vmIntrinsics::_getDouble:
462    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
463
464  case vmIntrinsics::_putObject:
465    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
466  case vmIntrinsics::_putBoolean:
467    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
468  case vmIntrinsics::_putByte:
469    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
470  case vmIntrinsics::_putShort:
471    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
472  case vmIntrinsics::_putChar:
473    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
474  case vmIntrinsics::_putInt:
475    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
476  case vmIntrinsics::_putLong:
477    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
478  case vmIntrinsics::_putFloat:
479    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
480  case vmIntrinsics::_putDouble:
481    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
482
483  case vmIntrinsics::_getByte_raw:
484    return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
485  case vmIntrinsics::_getShort_raw:
486    return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
487  case vmIntrinsics::_getChar_raw:
488    return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
489  case vmIntrinsics::_getInt_raw:
490    return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
491  case vmIntrinsics::_getLong_raw:
492    return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
493  case vmIntrinsics::_getFloat_raw:
494    return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
495  case vmIntrinsics::_getDouble_raw:
496    return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
497  case vmIntrinsics::_getAddress_raw:
498    return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
499
500  case vmIntrinsics::_putByte_raw:
501    return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
502  case vmIntrinsics::_putShort_raw:
503    return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
504  case vmIntrinsics::_putChar_raw:
505    return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
506  case vmIntrinsics::_putInt_raw:
507    return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
508  case vmIntrinsics::_putLong_raw:
509    return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
510  case vmIntrinsics::_putFloat_raw:
511    return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
512  case vmIntrinsics::_putDouble_raw:
513    return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
514  case vmIntrinsics::_putAddress_raw:
515    return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
516
517  case vmIntrinsics::_getObjectVolatile:
518    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
519  case vmIntrinsics::_getBooleanVolatile:
520    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
521  case vmIntrinsics::_getByteVolatile:
522    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
523  case vmIntrinsics::_getShortVolatile:
524    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
525  case vmIntrinsics::_getCharVolatile:
526    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
527  case vmIntrinsics::_getIntVolatile:
528    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
529  case vmIntrinsics::_getLongVolatile:
530    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
531  case vmIntrinsics::_getFloatVolatile:
532    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
533  case vmIntrinsics::_getDoubleVolatile:
534    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
535
536  case vmIntrinsics::_putObjectVolatile:
537    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
538  case vmIntrinsics::_putBooleanVolatile:
539    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
540  case vmIntrinsics::_putByteVolatile:
541    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
542  case vmIntrinsics::_putShortVolatile:
543    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
544  case vmIntrinsics::_putCharVolatile:
545    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
546  case vmIntrinsics::_putIntVolatile:
547    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
548  case vmIntrinsics::_putLongVolatile:
549    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
550  case vmIntrinsics::_putFloatVolatile:
551    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
552  case vmIntrinsics::_putDoubleVolatile:
553    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
554
555  case vmIntrinsics::_prefetchRead:
556    return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
557  case vmIntrinsics::_prefetchWrite:
558    return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
559  case vmIntrinsics::_prefetchReadStatic:
560    return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
561  case vmIntrinsics::_prefetchWriteStatic:
562    return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
563
564  case vmIntrinsics::_compareAndSwapObject:
565    return inline_unsafe_CAS(T_OBJECT);
566  case vmIntrinsics::_compareAndSwapInt:
567    return inline_unsafe_CAS(T_INT);
568  case vmIntrinsics::_compareAndSwapLong:
569    return inline_unsafe_CAS(T_LONG);
570
571  case vmIntrinsics::_putOrderedObject:
572    return inline_unsafe_ordered_store(T_OBJECT);
573  case vmIntrinsics::_putOrderedInt:
574    return inline_unsafe_ordered_store(T_INT);
575  case vmIntrinsics::_putOrderedLong:
576    return inline_unsafe_ordered_store(T_LONG);
577
578  case vmIntrinsics::_currentThread:
579    return inline_native_currentThread();
580  case vmIntrinsics::_isInterrupted:
581    return inline_native_isInterrupted();
582
583  case vmIntrinsics::_currentTimeMillis:
584    return inline_native_time_funcs(false);
585  case vmIntrinsics::_nanoTime:
586    return inline_native_time_funcs(true);
587  case vmIntrinsics::_allocateInstance:
588    return inline_unsafe_allocate();
589  case vmIntrinsics::_copyMemory:
590    return inline_unsafe_copyMemory();
591  case vmIntrinsics::_newArray:
592    return inline_native_newArray();
593  case vmIntrinsics::_getLength:
594    return inline_native_getLength();
595  case vmIntrinsics::_copyOf:
596    return inline_array_copyOf(false);
597  case vmIntrinsics::_copyOfRange:
598    return inline_array_copyOf(true);
599  case vmIntrinsics::_equalsC:
600    return inline_array_equals();
601  case vmIntrinsics::_clone:
602    return inline_native_clone(intrinsic()->is_virtual());
603
604  case vmIntrinsics::_isAssignableFrom:
605    return inline_native_subtype_check();
606
607  case vmIntrinsics::_isInstance:
608  case vmIntrinsics::_getModifiers:
609  case vmIntrinsics::_isInterface:
610  case vmIntrinsics::_isArray:
611  case vmIntrinsics::_isPrimitive:
612  case vmIntrinsics::_getSuperclass:
613  case vmIntrinsics::_getComponentType:
614  case vmIntrinsics::_getClassAccessFlags:
615    return inline_native_Class_query(intrinsic_id());
616
617  case vmIntrinsics::_floatToRawIntBits:
618  case vmIntrinsics::_floatToIntBits:
619  case vmIntrinsics::_intBitsToFloat:
620  case vmIntrinsics::_doubleToRawLongBits:
621  case vmIntrinsics::_doubleToLongBits:
622  case vmIntrinsics::_longBitsToDouble:
623    return inline_fp_conversions(intrinsic_id());
624
625  case vmIntrinsics::_numberOfLeadingZeros_i:
626  case vmIntrinsics::_numberOfLeadingZeros_l:
627    return inline_numberOfLeadingZeros(intrinsic_id());
628
629  case vmIntrinsics::_numberOfTrailingZeros_i:
630  case vmIntrinsics::_numberOfTrailingZeros_l:
631    return inline_numberOfTrailingZeros(intrinsic_id());
632
633  case vmIntrinsics::_bitCount_i:
634  case vmIntrinsics::_bitCount_l:
635    return inline_bitCount(intrinsic_id());
636
637  case vmIntrinsics::_reverseBytes_i:
638  case vmIntrinsics::_reverseBytes_l:
639  case vmIntrinsics::_reverseBytes_s:
640  case vmIntrinsics::_reverseBytes_c:
641    return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
642
643  case vmIntrinsics::_get_AtomicLong:
644    return inline_native_AtomicLong_get();
645  case vmIntrinsics::_attemptUpdate:
646    return inline_native_AtomicLong_attemptUpdate();
647
648  case vmIntrinsics::_getCallerClass:
649    return inline_native_Reflection_getCallerClass();
650
651  default:
652    // If you get here, it may be that someone has added a new intrinsic
653    // to the list in vmSymbols.hpp without implementing it here.
654#ifndef PRODUCT
655    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
656      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
657                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
658    }
659#endif
660    return false;
661  }
662}
663
664//------------------------------push_result------------------------------
665// Helper function for finishing intrinsics.
666void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
667  record_for_igvn(region);
668  set_control(_gvn.transform(region));
669  BasicType value_type = value->type()->basic_type();
670  push_node(value_type, _gvn.transform(value));
671}
672
673//------------------------------generate_guard---------------------------
674// Helper function for generating guarded fast-slow graph structures.
675// The given 'test', if true, guards a slow path.  If the test fails
676// then a fast path can be taken.  (We generally hope it fails.)
677// In all cases, GraphKit::control() is updated to the fast path.
678// The returned value represents the control for the slow path.
679// The return value is never 'top'; it is either a valid control
680// or NULL if it is obvious that the slow path can never be taken.
681// Also, if region and the slow control are not NULL, the slow edge
682// is appended to the region.
683Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
684  if (stopped()) {
685    // Already short circuited.
686    return NULL;
687  }
688
689  // Build an if node and its projections.
690  // If test is true we take the slow path, which we assume is uncommon.
691  if (_gvn.type(test) == TypeInt::ZERO) {
692    // The slow branch is never taken.  No need to build this guard.
693    return NULL;
694  }
695
696  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
697
698  Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
699  if (if_slow == top()) {
700    // The slow branch is never taken.  No need to build this guard.
701    return NULL;
702  }
703
704  if (region != NULL)
705    region->add_req(if_slow);
706
707  Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
708  set_control(if_fast);
709
710  return if_slow;
711}
712
713inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
714  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
715}
716inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
717  return generate_guard(test, region, PROB_FAIR);
718}
719
720inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
721                                                     Node* *pos_index) {
722  if (stopped())
723    return NULL;                // already stopped
724  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
725    return NULL;                // index is already adequately typed
726  Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
727  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
728  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
729  if (is_neg != NULL && pos_index != NULL) {
730    // Emulate effect of Parse::adjust_map_after_if.
731    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
732    ccast->set_req(0, control());
733    (*pos_index) = _gvn.transform(ccast);
734  }
735  return is_neg;
736}
737
738inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
739                                                        Node* *pos_index) {
740  if (stopped())
741    return NULL;                // already stopped
742  if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
743    return NULL;                // index is already adequately typed
744  Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
745  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
746  Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
747  Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
748  if (is_notp != NULL && pos_index != NULL) {
749    // Emulate effect of Parse::adjust_map_after_if.
750    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
751    ccast->set_req(0, control());
752    (*pos_index) = _gvn.transform(ccast);
753  }
754  return is_notp;
755}
756
757// Make sure that 'position' is a valid limit index, in [0..length].
758// There are two equivalent plans for checking this:
759//   A. (offset + copyLength)  unsigned<=  arrayLength
760//   B. offset  <=  (arrayLength - copyLength)
761// We require that all of the values above, except for the sum and
762// difference, are already known to be non-negative.
763// Plan A is robust in the face of overflow, if offset and copyLength
764// are both hugely positive.
765//
766// Plan B is less direct and intuitive, but it does not overflow at
767// all, since the difference of two non-negatives is always
768// representable.  Whenever Java methods must perform the equivalent
769// check they generally use Plan B instead of Plan A.
770// For the moment we use Plan A.
771inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
772                                                  Node* subseq_length,
773                                                  Node* array_length,
774                                                  RegionNode* region) {
775  if (stopped())
776    return NULL;                // already stopped
777  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
778  if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
779    return NULL;                // common case of whole-array copy
780  Node* last = subseq_length;
781  if (!zero_offset)             // last += offset
782    last = _gvn.transform( new (C, 3) AddINode(last, offset));
783  Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
784  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
785  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
786  return is_over;
787}
788
789
790//--------------------------generate_current_thread--------------------
791Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
792  ciKlass*    thread_klass = env()->Thread_klass();
793  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
794  Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
795  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
796  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
797  tls_output = thread;
798  return threadObj;
799}
800
801
802//------------------------------make_string_method_node------------------------
803// Helper method for String intrinsic finctions.
804Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
805  const int value_offset  = java_lang_String::value_offset_in_bytes();
806  const int count_offset  = java_lang_String::count_offset_in_bytes();
807  const int offset_offset = java_lang_String::offset_offset_in_bytes();
808
809  Node* no_ctrl = NULL;
810
811  ciInstanceKlass* klass = env()->String_klass();
812  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
813
814  const TypeAryPtr* value_type =
815        TypeAryPtr::make(TypePtr::NotNull,
816                         TypeAry::make(TypeInt::CHAR,TypeInt::POS),
817                         ciTypeArrayKlass::make(T_CHAR), true, 0);
818
819  // Get start addr of string and substring
820  Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
821  Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
822  Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
823  Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
824  Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
825
826  // Pin loads from String::equals() argument since it could be NULL.
827  Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
828  Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
829  Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
830  Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
831  Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
832  Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
833
834  Node* result = NULL;
835  switch (opcode) {
836  case Op_StrIndexOf:
837    result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
838                                       str1_start, cnt1, str2_start, cnt2);
839    break;
840  case Op_StrComp:
841    result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
842                                    str1_start, cnt1, str2_start, cnt2);
843    break;
844  case Op_StrEquals:
845    result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
846                                      str1_start, str2_start, cnt1);
847    break;
848  default:
849    ShouldNotReachHere();
850    return NULL;
851  }
852
853  // All these intrinsics have checks.
854  C->set_has_split_ifs(true); // Has chance for split-if optimization
855
856  return _gvn.transform(result);
857}
858
859//------------------------------inline_string_compareTo------------------------
860bool LibraryCallKit::inline_string_compareTo() {
861
862  if (!Matcher::has_match_rule(Op_StrComp)) return false;
863
864  const int value_offset = java_lang_String::value_offset_in_bytes();
865  const int count_offset = java_lang_String::count_offset_in_bytes();
866  const int offset_offset = java_lang_String::offset_offset_in_bytes();
867
868  _sp += 2;
869  Node *argument = pop();  // pop non-receiver first:  it was pushed second
870  Node *receiver = pop();
871
872  // Null check on self without removing any arguments.  The argument
873  // null check technically happens in the wrong place, which can lead to
874  // invalid stack traces when string compare is inlined into a method
875  // which handles NullPointerExceptions.
876  _sp += 2;
877  receiver = do_null_check(receiver, T_OBJECT);
878  argument = do_null_check(argument, T_OBJECT);
879  _sp -= 2;
880  if (stopped()) {
881    return true;
882  }
883
884  ciInstanceKlass* klass = env()->String_klass();
885  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
886  Node* no_ctrl = NULL;
887
888  // Get counts for string and argument
889  Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
890  Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
891
892  Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
893  Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
894
895  Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
896  push(compare);
897  return true;
898}
899
900//------------------------------inline_string_equals------------------------
901bool LibraryCallKit::inline_string_equals() {
902
903  if (!Matcher::has_match_rule(Op_StrEquals)) return false;
904
905  const int value_offset = java_lang_String::value_offset_in_bytes();
906  const int count_offset = java_lang_String::count_offset_in_bytes();
907  const int offset_offset = java_lang_String::offset_offset_in_bytes();
908
909  _sp += 2;
910  Node* argument = pop();  // pop non-receiver first:  it was pushed second
911  Node* receiver = pop();
912
913  // Null check on self without removing any arguments.  The argument
914  // null check technically happens in the wrong place, which can lead to
915  // invalid stack traces when string compare is inlined into a method
916  // which handles NullPointerExceptions.
917  _sp += 2;
918  receiver = do_null_check(receiver, T_OBJECT);
919  //should not do null check for argument for String.equals(), because spec
920  //allows to specify NULL as argument.
921  _sp -= 2;
922
923  if (stopped()) {
924    return true;
925  }
926
927  // paths (plus control) merge
928  RegionNode* region = new (C, 5) RegionNode(5);
929  Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
930
931  // does source == target string?
932  Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
933  Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
934
935  Node* if_eq = generate_slow_guard(bol, NULL);
936  if (if_eq != NULL) {
937    // receiver == argument
938    phi->init_req(2, intcon(1));
939    region->init_req(2, if_eq);
940  }
941
942  // get String klass for instanceOf
943  ciInstanceKlass* klass = env()->String_klass();
944
945  if (!stopped()) {
946    Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
947    Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
948    Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
949
950    Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
951    //instanceOf == true, fallthrough
952
953    if (inst_false != NULL) {
954      phi->init_req(3, intcon(0));
955      region->init_req(3, inst_false);
956    }
957  }
958
959  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
960
961  Node* no_ctrl = NULL;
962  Node* receiver_cnt;
963  Node* argument_cnt;
964
965  if (!stopped()) {
966    // Properly cast the argument to String
967    argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
968
969    // Get counts for string and argument
970    Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
971    receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
972
973    // Pin load from argument string since it could be NULL.
974    Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
975    argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
976
977    // Check for receiver count != argument count
978    Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
979    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
980    Node* if_ne = generate_slow_guard(bol, NULL);
981    if (if_ne != NULL) {
982      phi->init_req(4, intcon(0));
983      region->init_req(4, if_ne);
984    }
985  }
986
987  // Check for count == 0 is done by mach node StrEquals.
988
989  if (!stopped()) {
990    Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
991    phi->init_req(1, equals);
992    region->init_req(1, control());
993  }
994
995  // post merge
996  set_control(_gvn.transform(region));
997  record_for_igvn(region);
998
999  push(_gvn.transform(phi));
1000
1001  return true;
1002}
1003
1004//------------------------------inline_array_equals----------------------------
1005bool LibraryCallKit::inline_array_equals() {
1006
1007  if (!Matcher::has_match_rule(Op_AryEq)) return false;
1008
1009  _sp += 2;
1010  Node *argument2 = pop();
1011  Node *argument1 = pop();
1012
1013  Node* equals =
1014    _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
1015                                        argument1, argument2) );
1016  push(equals);
1017  return true;
1018}
1019
1020// Java version of String.indexOf(constant string)
1021// class StringDecl {
1022//   StringDecl(char[] ca) {
1023//     offset = 0;
1024//     count = ca.length;
1025//     value = ca;
1026//   }
1027//   int offset;
1028//   int count;
1029//   char[] value;
1030// }
1031//
1032// static int string_indexOf_J(StringDecl string_object, char[] target_object,
1033//                             int targetOffset, int cache_i, int md2) {
1034//   int cache = cache_i;
1035//   int sourceOffset = string_object.offset;
1036//   int sourceCount = string_object.count;
1037//   int targetCount = target_object.length;
1038//
1039//   int targetCountLess1 = targetCount - 1;
1040//   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1041//
1042//   char[] source = string_object.value;
1043//   char[] target = target_object;
1044//   int lastChar = target[targetCountLess1];
1045//
1046//  outer_loop:
1047//   for (int i = sourceOffset; i < sourceEnd; ) {
1048//     int src = source[i + targetCountLess1];
1049//     if (src == lastChar) {
1050//       // With random strings and a 4-character alphabet,
1051//       // reverse matching at this point sets up 0.8% fewer
1052//       // frames, but (paradoxically) makes 0.3% more probes.
1053//       // Since those probes are nearer the lastChar probe,
1054//       // there is may be a net D$ win with reverse matching.
1055//       // But, reversing loop inhibits unroll of inner loop
1056//       // for unknown reason.  So, does running outer loop from
1057//       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1058//       for (int j = 0; j < targetCountLess1; j++) {
1059//         if (target[targetOffset + j] != source[i+j]) {
1060//           if ((cache & (1 << source[i+j])) == 0) {
1061//             if (md2 < j+1) {
1062//               i += j+1;
1063//               continue outer_loop;
1064//             }
1065//           }
1066//           i += md2;
1067//           continue outer_loop;
1068//         }
1069//       }
1070//       return i - sourceOffset;
1071//     }
1072//     if ((cache & (1 << src)) == 0) {
1073//       i += targetCountLess1;
1074//     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1075//     i++;
1076//   }
1077//   return -1;
1078// }
1079
1080//------------------------------string_indexOf------------------------
1081Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1082                                     jint cache_i, jint md2_i) {
1083
1084  Node* no_ctrl  = NULL;
1085  float likely   = PROB_LIKELY(0.9);
1086  float unlikely = PROB_UNLIKELY(0.9);
1087
1088  const int value_offset  = java_lang_String::value_offset_in_bytes();
1089  const int count_offset  = java_lang_String::count_offset_in_bytes();
1090  const int offset_offset = java_lang_String::offset_offset_in_bytes();
1091
1092  ciInstanceKlass* klass = env()->String_klass();
1093  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1094  const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1095
1096  Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1097  Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1098  Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1099  Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1100  Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1101  Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1102
1103  Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
1104  jint target_length = target_array->length();
1105  const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1106  const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1107
1108  IdealKit kit(gvn(), control(), merged_memory(), false, true);
1109#define __ kit.
1110  Node* zero             = __ ConI(0);
1111  Node* one              = __ ConI(1);
1112  Node* cache            = __ ConI(cache_i);
1113  Node* md2              = __ ConI(md2_i);
1114  Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1115  Node* targetCount      = __ ConI(target_length);
1116  Node* targetCountLess1 = __ ConI(target_length - 1);
1117  Node* targetOffset     = __ ConI(targetOffset_i);
1118  Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1119
1120  IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1121  Node* outer_loop = __ make_label(2 /* goto */);
1122  Node* return_    = __ make_label(1);
1123
1124  __ set(rtn,__ ConI(-1));
1125  __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
1126       Node* i2  = __ AddI(__ value(i), targetCountLess1);
1127       // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1128       Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1129       __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1130         __ loop(j, zero, BoolTest::lt, targetCountLess1); {
1131              Node* tpj = __ AddI(targetOffset, __ value(j));
1132              Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1133              Node* ipj  = __ AddI(__ value(i), __ value(j));
1134              Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1135              __ if_then(targ, BoolTest::ne, src2); {
1136                __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1137                  __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1138                    __ increment(i, __ AddI(__ value(j), one));
1139                    __ goto_(outer_loop);
1140                  } __ end_if(); __ dead(j);
1141                }__ end_if(); __ dead(j);
1142                __ increment(i, md2);
1143                __ goto_(outer_loop);
1144              }__ end_if();
1145              __ increment(j, one);
1146         }__ end_loop(); __ dead(j);
1147         __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1148         __ goto_(return_);
1149       }__ end_if();
1150       __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1151         __ increment(i, targetCountLess1);
1152       }__ end_if();
1153       __ increment(i, one);
1154       __ bind(outer_loop);
1155  }__ end_loop(); __ dead(i);
1156  __ bind(return_);
1157
1158  // Final sync IdealKit and GraphKit.
1159  sync_kit(kit);
1160  Node* result = __ value(rtn);
1161#undef __
1162  C->set_has_loops(true);
1163  return result;
1164}
1165
1166//------------------------------inline_string_indexOf------------------------
1167bool LibraryCallKit::inline_string_indexOf() {
1168
1169  const int value_offset  = java_lang_String::value_offset_in_bytes();
1170  const int count_offset  = java_lang_String::count_offset_in_bytes();
1171  const int offset_offset = java_lang_String::offset_offset_in_bytes();
1172
1173  _sp += 2;
1174  Node *argument = pop();  // pop non-receiver first:  it was pushed second
1175  Node *receiver = pop();
1176
1177  Node* result;
1178  // Disable the use of pcmpestri until it can be guaranteed that
1179  // the load doesn't cross into the uncommited space.
1180  if (false && Matcher::has_match_rule(Op_StrIndexOf) &&
1181      UseSSE42Intrinsics) {
1182    // Generate SSE4.2 version of indexOf
1183    // We currently only have match rules that use SSE4.2
1184
1185    // Null check on self without removing any arguments.  The argument
1186    // null check technically happens in the wrong place, which can lead to
1187    // invalid stack traces when string compare is inlined into a method
1188    // which handles NullPointerExceptions.
1189    _sp += 2;
1190    receiver = do_null_check(receiver, T_OBJECT);
1191    argument = do_null_check(argument, T_OBJECT);
1192    _sp -= 2;
1193
1194    if (stopped()) {
1195      return true;
1196    }
1197
1198    // Make the merge point
1199    RegionNode* result_rgn = new (C, 3) RegionNode(3);
1200    Node*       result_phi = new (C, 3) PhiNode(result_rgn, TypeInt::INT);
1201    Node* no_ctrl  = NULL;
1202
1203    ciInstanceKlass* klass = env()->String_klass();
1204    const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1205
1206    // Get counts for string and substr
1207    Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
1208    Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1209
1210    Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
1211    Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1212
1213    // Check for substr count > string count
1214    Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
1215    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
1216    Node* if_gt = generate_slow_guard(bol, NULL);
1217    if (if_gt != NULL) {
1218      result_phi->init_req(2, intcon(-1));
1219      result_rgn->init_req(2, if_gt);
1220    }
1221
1222    if (!stopped()) {
1223      result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
1224      result_phi->init_req(1, result);
1225      result_rgn->init_req(1, control());
1226    }
1227    set_control(_gvn.transform(result_rgn));
1228    record_for_igvn(result_rgn);
1229    result = _gvn.transform(result_phi);
1230
1231  } else { //Use LibraryCallKit::string_indexOf
1232    // don't intrinsify is argument isn't a constant string.
1233    if (!argument->is_Con()) {
1234     return false;
1235    }
1236    const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1237    if (str_type == NULL) {
1238      return false;
1239    }
1240    ciInstanceKlass* klass = env()->String_klass();
1241    ciObject* str_const = str_type->const_oop();
1242    if (str_const == NULL || str_const->klass() != klass) {
1243      return false;
1244    }
1245    ciInstance* str = str_const->as_instance();
1246    assert(str != NULL, "must be instance");
1247
1248    ciObject* v = str->field_value_by_offset(value_offset).as_object();
1249    int       o = str->field_value_by_offset(offset_offset).as_int();
1250    int       c = str->field_value_by_offset(count_offset).as_int();
1251    ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1252
1253    // constant strings have no offset and count == length which
1254    // simplifies the resulting code somewhat so lets optimize for that.
1255    if (o != 0 || c != pat->length()) {
1256     return false;
1257    }
1258
1259    // Null check on self without removing any arguments.  The argument
1260    // null check technically happens in the wrong place, which can lead to
1261    // invalid stack traces when string compare is inlined into a method
1262    // which handles NullPointerExceptions.
1263    _sp += 2;
1264    receiver = do_null_check(receiver, T_OBJECT);
1265    // No null check on the argument is needed since it's a constant String oop.
1266    _sp -= 2;
1267    if (stopped()) {
1268     return true;
1269    }
1270
1271    // The null string as a pattern always returns 0 (match at beginning of string)
1272    if (c == 0) {
1273      push(intcon(0));
1274      return true;
1275    }
1276
1277    // Generate default indexOf
1278    jchar lastChar = pat->char_at(o + (c - 1));
1279    int cache = 0;
1280    int i;
1281    for (i = 0; i < c - 1; i++) {
1282      assert(i < pat->length(), "out of range");
1283      cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1284    }
1285
1286    int md2 = c;
1287    for (i = 0; i < c - 1; i++) {
1288      assert(i < pat->length(), "out of range");
1289      if (pat->char_at(o + i) == lastChar) {
1290        md2 = (c - 1) - i;
1291      }
1292    }
1293
1294    result = string_indexOf(receiver, pat, o, cache, md2);
1295  }
1296
1297  push(result);
1298  return true;
1299}
1300
1301//--------------------------pop_math_arg--------------------------------
1302// Pop a double argument to a math function from the stack
1303// rounding it if necessary.
1304Node * LibraryCallKit::pop_math_arg() {
1305  Node *arg = pop_pair();
1306  if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1307    arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1308  return arg;
1309}
1310
1311//------------------------------inline_trig----------------------------------
1312// Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1313// argument reduction which will turn into a fast/slow diamond.
1314bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1315  _sp += arg_size();            // restore stack pointer
1316  Node* arg = pop_math_arg();
1317  Node* trig = NULL;
1318
1319  switch (id) {
1320  case vmIntrinsics::_dsin:
1321    trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1322    break;
1323  case vmIntrinsics::_dcos:
1324    trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1325    break;
1326  case vmIntrinsics::_dtan:
1327    trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1328    break;
1329  default:
1330    assert(false, "bad intrinsic was passed in");
1331    return false;
1332  }
1333
1334  // Rounding required?  Check for argument reduction!
1335  if( Matcher::strict_fp_requires_explicit_rounding ) {
1336
1337    static const double     pi_4 =  0.7853981633974483;
1338    static const double neg_pi_4 = -0.7853981633974483;
1339    // pi/2 in 80-bit extended precision
1340    // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1341    // -pi/2 in 80-bit extended precision
1342    // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1343    // Cutoff value for using this argument reduction technique
1344    //static const double    pi_2_minus_epsilon =  1.564660403643354;
1345    //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1346
1347    // Pseudocode for sin:
1348    // if (x <= Math.PI / 4.0) {
1349    //   if (x >= -Math.PI / 4.0) return  fsin(x);
1350    //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1351    // } else {
1352    //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1353    // }
1354    // return StrictMath.sin(x);
1355
1356    // Pseudocode for cos:
1357    // if (x <= Math.PI / 4.0) {
1358    //   if (x >= -Math.PI / 4.0) return  fcos(x);
1359    //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1360    // } else {
1361    //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1362    // }
1363    // return StrictMath.cos(x);
1364
1365    // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1366    // requires a special machine instruction to load it.  Instead we'll try
1367    // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1368    // probably do the math inside the SIN encoding.
1369
1370    // Make the merge point
1371    RegionNode *r = new (C, 3) RegionNode(3);
1372    Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1373
1374    // Flatten arg so we need only 1 test
1375    Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1376    // Node for PI/4 constant
1377    Node *pi4 = makecon(TypeD::make(pi_4));
1378    // Check PI/4 : abs(arg)
1379    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1380    // Check: If PI/4 < abs(arg) then go slow
1381    Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1382    // Branch either way
1383    IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1384    set_control(opt_iff(r,iff));
1385
1386    // Set fast path result
1387    phi->init_req(2,trig);
1388
1389    // Slow path - non-blocking leaf call
1390    Node* call = NULL;
1391    switch (id) {
1392    case vmIntrinsics::_dsin:
1393      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1394                               CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1395                               "Sin", NULL, arg, top());
1396      break;
1397    case vmIntrinsics::_dcos:
1398      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1399                               CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1400                               "Cos", NULL, arg, top());
1401      break;
1402    case vmIntrinsics::_dtan:
1403      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1404                               CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1405                               "Tan", NULL, arg, top());
1406      break;
1407    }
1408    assert(control()->in(0) == call, "");
1409    Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1410    r->init_req(1,control());
1411    phi->init_req(1,slow_result);
1412
1413    // Post-merge
1414    set_control(_gvn.transform(r));
1415    record_for_igvn(r);
1416    trig = _gvn.transform(phi);
1417
1418    C->set_has_split_ifs(true); // Has chance for split-if optimization
1419  }
1420  // Push result back on JVM stack
1421  push_pair(trig);
1422  return true;
1423}
1424
1425//------------------------------inline_sqrt-------------------------------------
1426// Inline square root instruction, if possible.
1427bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1428  assert(id == vmIntrinsics::_dsqrt, "Not square root");
1429  _sp += arg_size();        // restore stack pointer
1430  push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1431  return true;
1432}
1433
1434//------------------------------inline_abs-------------------------------------
1435// Inline absolute value instruction, if possible.
1436bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1437  assert(id == vmIntrinsics::_dabs, "Not absolute value");
1438  _sp += arg_size();        // restore stack pointer
1439  push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1440  return true;
1441}
1442
1443//------------------------------inline_exp-------------------------------------
1444// Inline exp instructions, if possible.  The Intel hardware only misses
1445// really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1446bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1447  assert(id == vmIntrinsics::_dexp, "Not exp");
1448
1449  // If this inlining ever returned NaN in the past, we do not intrinsify it
1450  // every again.  NaN results requires StrictMath.exp handling.
1451  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1452
1453  // Do not intrinsify on older platforms which lack cmove.
1454  if (ConditionalMoveLimit == 0)  return false;
1455
1456  _sp += arg_size();        // restore stack pointer
1457  Node *x = pop_math_arg();
1458  Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1459
1460  //-------------------
1461  //result=(result.isNaN())? StrictMath::exp():result;
1462  // Check: If isNaN() by checking result!=result? then go to Strict Math
1463  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1464  // Build the boolean node
1465  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1466
1467  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1468    // End the current control-flow path
1469    push_pair(x);
1470    // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1471    // to handle.  Recompile without intrinsifying Math.exp
1472    uncommon_trap(Deoptimization::Reason_intrinsic,
1473                  Deoptimization::Action_make_not_entrant);
1474  }
1475
1476  C->set_has_split_ifs(true); // Has chance for split-if optimization
1477
1478  push_pair(result);
1479
1480  return true;
1481}
1482
1483//------------------------------inline_pow-------------------------------------
1484// Inline power instructions, if possible.
1485bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1486  assert(id == vmIntrinsics::_dpow, "Not pow");
1487
1488  // If this inlining ever returned NaN in the past, we do not intrinsify it
1489  // every again.  NaN results requires StrictMath.pow handling.
1490  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1491
1492  // Do not intrinsify on older platforms which lack cmove.
1493  if (ConditionalMoveLimit == 0)  return false;
1494
1495  // Pseudocode for pow
1496  // if (x <= 0.0) {
1497  //   if ((double)((int)y)==y) { // if y is int
1498  //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1499  //   } else {
1500  //     result = NaN;
1501  //   }
1502  // } else {
1503  //   result = DPow(x,y);
1504  // }
1505  // if (result != result)?  {
1506  //   uncommon_trap();
1507  // }
1508  // return result;
1509
1510  _sp += arg_size();        // restore stack pointer
1511  Node* y = pop_math_arg();
1512  Node* x = pop_math_arg();
1513
1514  Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1515
1516  // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1517  // inside of something) then skip the fancy tests and just check for
1518  // NaN result.
1519  Node *result = NULL;
1520  if( jvms()->depth() >= 1 ) {
1521    result = fast_result;
1522  } else {
1523
1524    // Set the merge point for If node with condition of (x <= 0.0)
1525    // There are four possible paths to region node and phi node
1526    RegionNode *r = new (C, 4) RegionNode(4);
1527    Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1528
1529    // Build the first if node: if (x <= 0.0)
1530    // Node for 0 constant
1531    Node *zeronode = makecon(TypeD::ZERO);
1532    // Check x:0
1533    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1534    // Check: If (x<=0) then go complex path
1535    Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1536    // Branch either way
1537    IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1538    Node *opt_test = _gvn.transform(if1);
1539    //assert( opt_test->is_If(), "Expect an IfNode");
1540    IfNode *opt_if1 = (IfNode*)opt_test;
1541    // Fast path taken; set region slot 3
1542    Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1543    r->init_req(3,fast_taken); // Capture fast-control
1544
1545    // Fast path not-taken, i.e. slow path
1546    Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1547
1548    // Set fast path result
1549    Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1550    phi->init_req(3, fast_result);
1551
1552    // Complex path
1553    // Build the second if node (if y is int)
1554    // Node for (int)y
1555    Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1556    // Node for (double)((int) y)
1557    Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1558    // Check (double)((int) y) : y
1559    Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1560    // Check if (y isn't int) then go to slow path
1561
1562    Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1563    // Branch either way
1564    IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1565    Node *slow_path = opt_iff(r,if2); // Set region path 2
1566
1567    // Calculate DPow(abs(x), y)*(1 & (int)y)
1568    // Node for constant 1
1569    Node *conone = intcon(1);
1570    // 1& (int)y
1571    Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1572    // zero node
1573    Node *conzero = intcon(0);
1574    // Check (1&(int)y)==0?
1575    Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1576    // Check if (1&(int)y)!=0?, if so the result is negative
1577    Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1578    // abs(x)
1579    Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1580    // abs(x)^y
1581    Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1582    // -abs(x)^y
1583    Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1584    // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1585    Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1586    // Set complex path fast result
1587    phi->init_req(2, signresult);
1588
1589    static const jlong nan_bits = CONST64(0x7ff8000000000000);
1590    Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1591    r->init_req(1,slow_path);
1592    phi->init_req(1,slow_result);
1593
1594    // Post merge
1595    set_control(_gvn.transform(r));
1596    record_for_igvn(r);
1597    result=_gvn.transform(phi);
1598  }
1599
1600  //-------------------
1601  //result=(result.isNaN())? uncommon_trap():result;
1602  // Check: If isNaN() by checking result!=result? then go to Strict Math
1603  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1604  // Build the boolean node
1605  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1606
1607  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1608    // End the current control-flow path
1609    push_pair(x);
1610    push_pair(y);
1611    // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1612    // to handle.  Recompile without intrinsifying Math.pow.
1613    uncommon_trap(Deoptimization::Reason_intrinsic,
1614                  Deoptimization::Action_make_not_entrant);
1615  }
1616
1617  C->set_has_split_ifs(true); // Has chance for split-if optimization
1618
1619  push_pair(result);
1620
1621  return true;
1622}
1623
1624//------------------------------inline_trans-------------------------------------
1625// Inline transcendental instructions, if possible.  The Intel hardware gets
1626// these right, no funny corner cases missed.
1627bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1628  _sp += arg_size();        // restore stack pointer
1629  Node* arg = pop_math_arg();
1630  Node* trans = NULL;
1631
1632  switch (id) {
1633  case vmIntrinsics::_dlog:
1634    trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1635    break;
1636  case vmIntrinsics::_dlog10:
1637    trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1638    break;
1639  default:
1640    assert(false, "bad intrinsic was passed in");
1641    return false;
1642  }
1643
1644  // Push result back on JVM stack
1645  push_pair(trans);
1646  return true;
1647}
1648
1649//------------------------------runtime_math-----------------------------
1650bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1651  Node* a = NULL;
1652  Node* b = NULL;
1653
1654  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1655         "must be (DD)D or (D)D type");
1656
1657  // Inputs
1658  _sp += arg_size();        // restore stack pointer
1659  if (call_type == OptoRuntime::Math_DD_D_Type()) {
1660    b = pop_math_arg();
1661  }
1662  a = pop_math_arg();
1663
1664  const TypePtr* no_memory_effects = NULL;
1665  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1666                                 no_memory_effects,
1667                                 a, top(), b, b ? top() : NULL);
1668  Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1669#ifdef ASSERT
1670  Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1671  assert(value_top == top(), "second value must be top");
1672#endif
1673
1674  push_pair(value);
1675  return true;
1676}
1677
1678//------------------------------inline_math_native-----------------------------
1679bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1680  switch (id) {
1681    // These intrinsics are not properly supported on all hardware
1682  case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1683    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1684  case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1685    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1686  case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1687    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1688
1689  case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1690    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1691  case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1692    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1693
1694    // These intrinsics are supported on all hardware
1695  case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1696  case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1697
1698    // These intrinsics don't work on X86.  The ad implementation doesn't
1699    // handle NaN's properly.  Instead of returning infinity, the ad
1700    // implementation returns a NaN on overflow. See bug: 6304089
1701    // Once the ad implementations are fixed, change the code below
1702    // to match the intrinsics above
1703
1704  case vmIntrinsics::_dexp:  return
1705    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1706  case vmIntrinsics::_dpow:  return
1707    runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1708
1709   // These intrinsics are not yet correctly implemented
1710  case vmIntrinsics::_datan2:
1711    return false;
1712
1713  default:
1714    ShouldNotReachHere();
1715    return false;
1716  }
1717}
1718
1719static bool is_simple_name(Node* n) {
1720  return (n->req() == 1         // constant
1721          || (n->is_Type() && n->as_Type()->type()->singleton())
1722          || n->is_Proj()       // parameter or return value
1723          || n->is_Phi()        // local of some sort
1724          );
1725}
1726
1727//----------------------------inline_min_max-----------------------------------
1728bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1729  push(generate_min_max(id, argument(0), argument(1)));
1730
1731  return true;
1732}
1733
1734Node*
1735LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1736  // These are the candidate return value:
1737  Node* xvalue = x0;
1738  Node* yvalue = y0;
1739
1740  if (xvalue == yvalue) {
1741    return xvalue;
1742  }
1743
1744  bool want_max = (id == vmIntrinsics::_max);
1745
1746  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1747  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1748  if (txvalue == NULL || tyvalue == NULL)  return top();
1749  // This is not really necessary, but it is consistent with a
1750  // hypothetical MaxINode::Value method:
1751  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1752
1753  // %%% This folding logic should (ideally) be in a different place.
1754  // Some should be inside IfNode, and there to be a more reliable
1755  // transformation of ?: style patterns into cmoves.  We also want
1756  // more powerful optimizations around cmove and min/max.
1757
1758  // Try to find a dominating comparison of these guys.
1759  // It can simplify the index computation for Arrays.copyOf
1760  // and similar uses of System.arraycopy.
1761  // First, compute the normalized version of CmpI(x, y).
1762  int   cmp_op = Op_CmpI;
1763  Node* xkey = xvalue;
1764  Node* ykey = yvalue;
1765  Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1766  if (ideal_cmpxy->is_Cmp()) {
1767    // E.g., if we have CmpI(length - offset, count),
1768    // it might idealize to CmpI(length, count + offset)
1769    cmp_op = ideal_cmpxy->Opcode();
1770    xkey = ideal_cmpxy->in(1);
1771    ykey = ideal_cmpxy->in(2);
1772  }
1773
1774  // Start by locating any relevant comparisons.
1775  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1776  Node* cmpxy = NULL;
1777  Node* cmpyx = NULL;
1778  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1779    Node* cmp = start_from->fast_out(k);
1780    if (cmp->outcnt() > 0 &&            // must have prior uses
1781        cmp->in(0) == NULL &&           // must be context-independent
1782        cmp->Opcode() == cmp_op) {      // right kind of compare
1783      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1784      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1785    }
1786  }
1787
1788  const int NCMPS = 2;
1789  Node* cmps[NCMPS] = { cmpxy, cmpyx };
1790  int cmpn;
1791  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1792    if (cmps[cmpn] != NULL)  break;     // find a result
1793  }
1794  if (cmpn < NCMPS) {
1795    // Look for a dominating test that tells us the min and max.
1796    int depth = 0;                // Limit search depth for speed
1797    Node* dom = control();
1798    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1799      if (++depth >= 100)  break;
1800      Node* ifproj = dom;
1801      if (!ifproj->is_Proj())  continue;
1802      Node* iff = ifproj->in(0);
1803      if (!iff->is_If())  continue;
1804      Node* bol = iff->in(1);
1805      if (!bol->is_Bool())  continue;
1806      Node* cmp = bol->in(1);
1807      if (cmp == NULL)  continue;
1808      for (cmpn = 0; cmpn < NCMPS; cmpn++)
1809        if (cmps[cmpn] == cmp)  break;
1810      if (cmpn == NCMPS)  continue;
1811      BoolTest::mask btest = bol->as_Bool()->_test._test;
1812      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1813      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1814      // At this point, we know that 'x btest y' is true.
1815      switch (btest) {
1816      case BoolTest::eq:
1817        // They are proven equal, so we can collapse the min/max.
1818        // Either value is the answer.  Choose the simpler.
1819        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1820          return yvalue;
1821        return xvalue;
1822      case BoolTest::lt:          // x < y
1823      case BoolTest::le:          // x <= y
1824        return (want_max ? yvalue : xvalue);
1825      case BoolTest::gt:          // x > y
1826      case BoolTest::ge:          // x >= y
1827        return (want_max ? xvalue : yvalue);
1828      }
1829    }
1830  }
1831
1832  // We failed to find a dominating test.
1833  // Let's pick a test that might GVN with prior tests.
1834  Node*          best_bol   = NULL;
1835  BoolTest::mask best_btest = BoolTest::illegal;
1836  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1837    Node* cmp = cmps[cmpn];
1838    if (cmp == NULL)  continue;
1839    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1840      Node* bol = cmp->fast_out(j);
1841      if (!bol->is_Bool())  continue;
1842      BoolTest::mask btest = bol->as_Bool()->_test._test;
1843      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1844      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1845      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1846        best_bol   = bol->as_Bool();
1847        best_btest = btest;
1848      }
1849    }
1850  }
1851
1852  Node* answer_if_true  = NULL;
1853  Node* answer_if_false = NULL;
1854  switch (best_btest) {
1855  default:
1856    if (cmpxy == NULL)
1857      cmpxy = ideal_cmpxy;
1858    best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1859    // and fall through:
1860  case BoolTest::lt:          // x < y
1861  case BoolTest::le:          // x <= y
1862    answer_if_true  = (want_max ? yvalue : xvalue);
1863    answer_if_false = (want_max ? xvalue : yvalue);
1864    break;
1865  case BoolTest::gt:          // x > y
1866  case BoolTest::ge:          // x >= y
1867    answer_if_true  = (want_max ? xvalue : yvalue);
1868    answer_if_false = (want_max ? yvalue : xvalue);
1869    break;
1870  }
1871
1872  jint hi, lo;
1873  if (want_max) {
1874    // We can sharpen the minimum.
1875    hi = MAX2(txvalue->_hi, tyvalue->_hi);
1876    lo = MAX2(txvalue->_lo, tyvalue->_lo);
1877  } else {
1878    // We can sharpen the maximum.
1879    hi = MIN2(txvalue->_hi, tyvalue->_hi);
1880    lo = MIN2(txvalue->_lo, tyvalue->_lo);
1881  }
1882
1883  // Use a flow-free graph structure, to avoid creating excess control edges
1884  // which could hinder other optimizations.
1885  // Since Math.min/max is often used with arraycopy, we want
1886  // tightly_coupled_allocation to be able to see beyond min/max expressions.
1887  Node* cmov = CMoveNode::make(C, NULL, best_bol,
1888                               answer_if_false, answer_if_true,
1889                               TypeInt::make(lo, hi, widen));
1890
1891  return _gvn.transform(cmov);
1892
1893  /*
1894  // This is not as desirable as it may seem, since Min and Max
1895  // nodes do not have a full set of optimizations.
1896  // And they would interfere, anyway, with 'if' optimizations
1897  // and with CMoveI canonical forms.
1898  switch (id) {
1899  case vmIntrinsics::_min:
1900    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1901  case vmIntrinsics::_max:
1902    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1903  default:
1904    ShouldNotReachHere();
1905  }
1906  */
1907}
1908
1909inline int
1910LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1911  const TypePtr* base_type = TypePtr::NULL_PTR;
1912  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1913  if (base_type == NULL) {
1914    // Unknown type.
1915    return Type::AnyPtr;
1916  } else if (base_type == TypePtr::NULL_PTR) {
1917    // Since this is a NULL+long form, we have to switch to a rawptr.
1918    base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1919    offset = MakeConX(0);
1920    return Type::RawPtr;
1921  } else if (base_type->base() == Type::RawPtr) {
1922    return Type::RawPtr;
1923  } else if (base_type->isa_oopptr()) {
1924    // Base is never null => always a heap address.
1925    if (base_type->ptr() == TypePtr::NotNull) {
1926      return Type::OopPtr;
1927    }
1928    // Offset is small => always a heap address.
1929    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1930    if (offset_type != NULL &&
1931        base_type->offset() == 0 &&     // (should always be?)
1932        offset_type->_lo >= 0 &&
1933        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1934      return Type::OopPtr;
1935    }
1936    // Otherwise, it might either be oop+off or NULL+addr.
1937    return Type::AnyPtr;
1938  } else {
1939    // No information:
1940    return Type::AnyPtr;
1941  }
1942}
1943
1944inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
1945  int kind = classify_unsafe_addr(base, offset);
1946  if (kind == Type::RawPtr) {
1947    return basic_plus_adr(top(), base, offset);
1948  } else {
1949    return basic_plus_adr(base, offset);
1950  }
1951}
1952
1953//-------------------inline_numberOfLeadingZeros_int/long-----------------------
1954// inline int Integer.numberOfLeadingZeros(int)
1955// inline int Long.numberOfLeadingZeros(long)
1956bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
1957  assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
1958  if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
1959  if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
1960  _sp += arg_size();  // restore stack pointer
1961  switch (id) {
1962  case vmIntrinsics::_numberOfLeadingZeros_i:
1963    push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
1964    break;
1965  case vmIntrinsics::_numberOfLeadingZeros_l:
1966    push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
1967    break;
1968  default:
1969    ShouldNotReachHere();
1970  }
1971  return true;
1972}
1973
1974//-------------------inline_numberOfTrailingZeros_int/long----------------------
1975// inline int Integer.numberOfTrailingZeros(int)
1976// inline int Long.numberOfTrailingZeros(long)
1977bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
1978  assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
1979  if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
1980  if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
1981  _sp += arg_size();  // restore stack pointer
1982  switch (id) {
1983  case vmIntrinsics::_numberOfTrailingZeros_i:
1984    push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
1985    break;
1986  case vmIntrinsics::_numberOfTrailingZeros_l:
1987    push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
1988    break;
1989  default:
1990    ShouldNotReachHere();
1991  }
1992  return true;
1993}
1994
1995//----------------------------inline_bitCount_int/long-----------------------
1996// inline int Integer.bitCount(int)
1997// inline int Long.bitCount(long)
1998bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
1999  assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
2000  if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
2001  if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
2002  _sp += arg_size();  // restore stack pointer
2003  switch (id) {
2004  case vmIntrinsics::_bitCount_i:
2005    push(_gvn.transform(new (C, 2) PopCountINode(pop())));
2006    break;
2007  case vmIntrinsics::_bitCount_l:
2008    push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
2009    break;
2010  default:
2011    ShouldNotReachHere();
2012  }
2013  return true;
2014}
2015
2016//----------------------------inline_reverseBytes_int/long/char/short-------------------
2017// inline Integer.reverseBytes(int)
2018// inline Long.reverseBytes(long)
2019// inline Character.reverseBytes(char)
2020// inline Short.reverseBytes(short)
2021bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
2022  assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
2023         id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
2024         "not reverse Bytes");
2025  if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
2026  if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
2027  if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
2028  if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
2029  _sp += arg_size();        // restore stack pointer
2030  switch (id) {
2031  case vmIntrinsics::_reverseBytes_i:
2032    push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
2033    break;
2034  case vmIntrinsics::_reverseBytes_l:
2035    push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
2036    break;
2037  case vmIntrinsics::_reverseBytes_c:
2038    push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
2039    break;
2040  case vmIntrinsics::_reverseBytes_s:
2041    push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
2042    break;
2043  default:
2044    ;
2045  }
2046  return true;
2047}
2048
2049//----------------------------inline_unsafe_access----------------------------
2050
2051const static BasicType T_ADDRESS_HOLDER = T_LONG;
2052
2053// Interpret Unsafe.fieldOffset cookies correctly:
2054extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2055
2056bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2057  if (callee()->is_static())  return false;  // caller must have the capability!
2058
2059#ifndef PRODUCT
2060  {
2061    ResourceMark rm;
2062    // Check the signatures.
2063    ciSignature* sig = signature();
2064#ifdef ASSERT
2065    if (!is_store) {
2066      // Object getObject(Object base, int/long offset), etc.
2067      BasicType rtype = sig->return_type()->basic_type();
2068      if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2069          rtype = T_ADDRESS;  // it is really a C void*
2070      assert(rtype == type, "getter must return the expected value");
2071      if (!is_native_ptr) {
2072        assert(sig->count() == 2, "oop getter has 2 arguments");
2073        assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2074        assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2075      } else {
2076        assert(sig->count() == 1, "native getter has 1 argument");
2077        assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2078      }
2079    } else {
2080      // void putObject(Object base, int/long offset, Object x), etc.
2081      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2082      if (!is_native_ptr) {
2083        assert(sig->count() == 3, "oop putter has 3 arguments");
2084        assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2085        assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2086      } else {
2087        assert(sig->count() == 2, "native putter has 2 arguments");
2088        assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2089      }
2090      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2091      if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2092        vtype = T_ADDRESS;  // it is really a C void*
2093      assert(vtype == type, "putter must accept the expected value");
2094    }
2095#endif // ASSERT
2096 }
2097#endif //PRODUCT
2098
2099  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2100
2101  int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
2102
2103  // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
2104  int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
2105
2106  debug_only(int saved_sp = _sp);
2107  _sp += nargs;
2108
2109  Node* val;
2110  debug_only(val = (Node*)(uintptr_t)-1);
2111
2112
2113  if (is_store) {
2114    // Get the value being stored.  (Pop it first; it was pushed last.)
2115    switch (type) {
2116    case T_DOUBLE:
2117    case T_LONG:
2118    case T_ADDRESS:
2119      val = pop_pair();
2120      break;
2121    default:
2122      val = pop();
2123    }
2124  }
2125
2126  // Build address expression.  See the code in inline_unsafe_prefetch.
2127  Node *adr;
2128  Node *heap_base_oop = top();
2129  if (!is_native_ptr) {
2130    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2131    Node* offset = pop_pair();
2132    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2133    Node* base   = pop();
2134    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2135    // to be plain byte offsets, which are also the same as those accepted
2136    // by oopDesc::field_base.
2137    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2138           "fieldOffset must be byte-scaled");
2139    // 32-bit machines ignore the high half!
2140    offset = ConvL2X(offset);
2141    adr = make_unsafe_address(base, offset);
2142    heap_base_oop = base;
2143  } else {
2144    Node* ptr = pop_pair();
2145    // Adjust Java long to machine word:
2146    ptr = ConvL2X(ptr);
2147    adr = make_unsafe_address(NULL, ptr);
2148  }
2149
2150  // Pop receiver last:  it was pushed first.
2151  Node *receiver = pop();
2152
2153  assert(saved_sp == _sp, "must have correct argument count");
2154
2155  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2156
2157  // First guess at the value type.
2158  const Type *value_type = Type::get_const_basic_type(type);
2159
2160  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2161  // there was not enough information to nail it down.
2162  Compile::AliasType* alias_type = C->alias_type(adr_type);
2163  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2164
2165  // We will need memory barriers unless we can determine a unique
2166  // alias category for this reference.  (Note:  If for some reason
2167  // the barriers get omitted and the unsafe reference begins to "pollute"
2168  // the alias analysis of the rest of the graph, either Compile::can_alias
2169  // or Compile::must_alias will throw a diagnostic assert.)
2170  bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2171
2172  if (!is_store && type == T_OBJECT) {
2173    // Attempt to infer a sharper value type from the offset and base type.
2174    ciKlass* sharpened_klass = NULL;
2175
2176    // See if it is an instance field, with an object type.
2177    if (alias_type->field() != NULL) {
2178      assert(!is_native_ptr, "native pointer op cannot use a java address");
2179      if (alias_type->field()->type()->is_klass()) {
2180        sharpened_klass = alias_type->field()->type()->as_klass();
2181      }
2182    }
2183
2184    // See if it is a narrow oop array.
2185    if (adr_type->isa_aryptr()) {
2186      if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2187        const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2188        if (elem_type != NULL) {
2189          sharpened_klass = elem_type->klass();
2190        }
2191      }
2192    }
2193
2194    if (sharpened_klass != NULL) {
2195      const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2196
2197      // Sharpen the value type.
2198      value_type = tjp;
2199
2200#ifndef PRODUCT
2201      if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2202        tty->print("  from base type:  ");   adr_type->dump();
2203        tty->print("  sharpened value: "); value_type->dump();
2204      }
2205#endif
2206    }
2207  }
2208
2209  // Null check on self without removing any arguments.  The argument
2210  // null check technically happens in the wrong place, which can lead to
2211  // invalid stack traces when the primitive is inlined into a method
2212  // which handles NullPointerExceptions.
2213  _sp += nargs;
2214  do_null_check(receiver, T_OBJECT);
2215  _sp -= nargs;
2216  if (stopped()) {
2217    return true;
2218  }
2219  // Heap pointers get a null-check from the interpreter,
2220  // as a courtesy.  However, this is not guaranteed by Unsafe,
2221  // and it is not possible to fully distinguish unintended nulls
2222  // from intended ones in this API.
2223
2224  if (is_volatile) {
2225    // We need to emit leading and trailing CPU membars (see below) in
2226    // addition to memory membars when is_volatile. This is a little
2227    // too strong, but avoids the need to insert per-alias-type
2228    // volatile membars (for stores; compare Parse::do_put_xxx), which
2229    // we cannot do effectively here because we probably only have a
2230    // rough approximation of type.
2231    need_mem_bar = true;
2232    // For Stores, place a memory ordering barrier now.
2233    if (is_store)
2234      insert_mem_bar(Op_MemBarRelease);
2235  }
2236
2237  // Memory barrier to prevent normal and 'unsafe' accesses from
2238  // bypassing each other.  Happens after null checks, so the
2239  // exception paths do not take memory state from the memory barrier,
2240  // so there's no problems making a strong assert about mixing users
2241  // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2242  // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2243  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2244
2245  if (!is_store) {
2246    Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2247    // load value and push onto stack
2248    switch (type) {
2249    case T_BOOLEAN:
2250    case T_CHAR:
2251    case T_BYTE:
2252    case T_SHORT:
2253    case T_INT:
2254    case T_FLOAT:
2255    case T_OBJECT:
2256      push( p );
2257      break;
2258    case T_ADDRESS:
2259      // Cast to an int type.
2260      p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2261      p = ConvX2L(p);
2262      push_pair(p);
2263      break;
2264    case T_DOUBLE:
2265    case T_LONG:
2266      push_pair( p );
2267      break;
2268    default: ShouldNotReachHere();
2269    }
2270  } else {
2271    // place effect of store into memory
2272    switch (type) {
2273    case T_DOUBLE:
2274      val = dstore_rounding(val);
2275      break;
2276    case T_ADDRESS:
2277      // Repackage the long as a pointer.
2278      val = ConvL2X(val);
2279      val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2280      break;
2281    }
2282
2283    if (type != T_OBJECT ) {
2284      (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2285    } else {
2286      // Possibly an oop being stored to Java heap or native memory
2287      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2288        // oop to Java heap.
2289        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2290      } else {
2291        // We can't tell at compile time if we are storing in the Java heap or outside
2292        // of it. So we need to emit code to conditionally do the proper type of
2293        // store.
2294
2295        IdealKit ideal(gvn(), control(),  merged_memory());
2296#define __ ideal.
2297        // QQQ who knows what probability is here??
2298        __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2299          // Sync IdealKit and graphKit.
2300          set_all_memory( __ merged_memory());
2301          set_control(__ ctrl());
2302          Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2303          // Update IdealKit memory.
2304          __ set_all_memory(merged_memory());
2305          __ set_ctrl(control());
2306        } __ else_(); {
2307          __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2308        } __ end_if();
2309        // Final sync IdealKit and GraphKit.
2310        sync_kit(ideal);
2311#undef __
2312      }
2313    }
2314  }
2315
2316  if (is_volatile) {
2317    if (!is_store)
2318      insert_mem_bar(Op_MemBarAcquire);
2319    else
2320      insert_mem_bar(Op_MemBarVolatile);
2321  }
2322
2323  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2324
2325  return true;
2326}
2327
2328//----------------------------inline_unsafe_prefetch----------------------------
2329
2330bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2331#ifndef PRODUCT
2332  {
2333    ResourceMark rm;
2334    // Check the signatures.
2335    ciSignature* sig = signature();
2336#ifdef ASSERT
2337    // Object getObject(Object base, int/long offset), etc.
2338    BasicType rtype = sig->return_type()->basic_type();
2339    if (!is_native_ptr) {
2340      assert(sig->count() == 2, "oop prefetch has 2 arguments");
2341      assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2342      assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2343    } else {
2344      assert(sig->count() == 1, "native prefetch has 1 argument");
2345      assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2346    }
2347#endif // ASSERT
2348  }
2349#endif // !PRODUCT
2350
2351  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2352
2353  // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2354  int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2355
2356  debug_only(int saved_sp = _sp);
2357  _sp += nargs;
2358
2359  // Build address expression.  See the code in inline_unsafe_access.
2360  Node *adr;
2361  if (!is_native_ptr) {
2362    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2363    Node* offset = pop_pair();
2364    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2365    Node* base   = pop();
2366    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2367    // to be plain byte offsets, which are also the same as those accepted
2368    // by oopDesc::field_base.
2369    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2370           "fieldOffset must be byte-scaled");
2371    // 32-bit machines ignore the high half!
2372    offset = ConvL2X(offset);
2373    adr = make_unsafe_address(base, offset);
2374  } else {
2375    Node* ptr = pop_pair();
2376    // Adjust Java long to machine word:
2377    ptr = ConvL2X(ptr);
2378    adr = make_unsafe_address(NULL, ptr);
2379  }
2380
2381  if (is_static) {
2382    assert(saved_sp == _sp, "must have correct argument count");
2383  } else {
2384    // Pop receiver last:  it was pushed first.
2385    Node *receiver = pop();
2386    assert(saved_sp == _sp, "must have correct argument count");
2387
2388    // Null check on self without removing any arguments.  The argument
2389    // null check technically happens in the wrong place, which can lead to
2390    // invalid stack traces when the primitive is inlined into a method
2391    // which handles NullPointerExceptions.
2392    _sp += nargs;
2393    do_null_check(receiver, T_OBJECT);
2394    _sp -= nargs;
2395    if (stopped()) {
2396      return true;
2397    }
2398  }
2399
2400  // Generate the read or write prefetch
2401  Node *prefetch;
2402  if (is_store) {
2403    prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2404  } else {
2405    prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2406  }
2407  prefetch->init_req(0, control());
2408  set_i_o(_gvn.transform(prefetch));
2409
2410  return true;
2411}
2412
2413//----------------------------inline_unsafe_CAS----------------------------
2414
2415bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2416  // This basic scheme here is the same as inline_unsafe_access, but
2417  // differs in enough details that combining them would make the code
2418  // overly confusing.  (This is a true fact! I originally combined
2419  // them, but even I was confused by it!) As much code/comments as
2420  // possible are retained from inline_unsafe_access though to make
2421  // the correspondences clearer. - dl
2422
2423  if (callee()->is_static())  return false;  // caller must have the capability!
2424
2425#ifndef PRODUCT
2426  {
2427    ResourceMark rm;
2428    // Check the signatures.
2429    ciSignature* sig = signature();
2430#ifdef ASSERT
2431    BasicType rtype = sig->return_type()->basic_type();
2432    assert(rtype == T_BOOLEAN, "CAS must return boolean");
2433    assert(sig->count() == 4, "CAS has 4 arguments");
2434    assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2435    assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2436#endif // ASSERT
2437  }
2438#endif //PRODUCT
2439
2440  // number of stack slots per value argument (1 or 2)
2441  int type_words = type2size[type];
2442
2443  // Cannot inline wide CAS on machines that don't support it natively
2444  if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2445    return false;
2446
2447  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2448
2449  // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2450  int nargs = 1 + 1 + 2  + type_words + type_words;
2451
2452  // pop arguments: newval, oldval, offset, base, and receiver
2453  debug_only(int saved_sp = _sp);
2454  _sp += nargs;
2455  Node* newval   = (type_words == 1) ? pop() : pop_pair();
2456  Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2457  Node *offset   = pop_pair();
2458  Node *base     = pop();
2459  Node *receiver = pop();
2460  assert(saved_sp == _sp, "must have correct argument count");
2461
2462  //  Null check receiver.
2463  _sp += nargs;
2464  do_null_check(receiver, T_OBJECT);
2465  _sp -= nargs;
2466  if (stopped()) {
2467    return true;
2468  }
2469
2470  // Build field offset expression.
2471  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2472  // to be plain byte offsets, which are also the same as those accepted
2473  // by oopDesc::field_base.
2474  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2475  // 32-bit machines ignore the high half of long offsets
2476  offset = ConvL2X(offset);
2477  Node* adr = make_unsafe_address(base, offset);
2478  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2479
2480  // (Unlike inline_unsafe_access, there seems no point in trying
2481  // to refine types. Just use the coarse types here.
2482  const Type *value_type = Type::get_const_basic_type(type);
2483  Compile::AliasType* alias_type = C->alias_type(adr_type);
2484  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2485  int alias_idx = C->get_alias_index(adr_type);
2486
2487  // Memory-model-wise, a CAS acts like a little synchronized block,
2488  // so needs barriers on each side.  These don't translate into
2489  // actual barriers on most machines, but we still need rest of
2490  // compiler to respect ordering.
2491
2492  insert_mem_bar(Op_MemBarRelease);
2493  insert_mem_bar(Op_MemBarCPUOrder);
2494
2495  // 4984716: MemBars must be inserted before this
2496  //          memory node in order to avoid a false
2497  //          dependency which will confuse the scheduler.
2498  Node *mem = memory(alias_idx);
2499
2500  // For now, we handle only those cases that actually exist: ints,
2501  // longs, and Object. Adding others should be straightforward.
2502  Node* cas;
2503  switch(type) {
2504  case T_INT:
2505    cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2506    break;
2507  case T_LONG:
2508    cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2509    break;
2510  case T_OBJECT:
2511     // reference stores need a store barrier.
2512    // (They don't if CAS fails, but it isn't worth checking.)
2513    pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
2514#ifdef _LP64
2515    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2516      Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2517      Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2518      cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2519                                                          newval_enc, oldval_enc));
2520    } else
2521#endif
2522    {
2523      cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2524    }
2525    post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2526    break;
2527  default:
2528    ShouldNotReachHere();
2529    break;
2530  }
2531
2532  // SCMemProjNodes represent the memory state of CAS. Their main
2533  // role is to prevent CAS nodes from being optimized away when their
2534  // results aren't used.
2535  Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2536  set_memory(proj, alias_idx);
2537
2538  // Add the trailing membar surrounding the access
2539  insert_mem_bar(Op_MemBarCPUOrder);
2540  insert_mem_bar(Op_MemBarAcquire);
2541
2542  push(cas);
2543  return true;
2544}
2545
2546bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2547  // This is another variant of inline_unsafe_access, differing in
2548  // that it always issues store-store ("release") barrier and ensures
2549  // store-atomicity (which only matters for "long").
2550
2551  if (callee()->is_static())  return false;  // caller must have the capability!
2552
2553#ifndef PRODUCT
2554  {
2555    ResourceMark rm;
2556    // Check the signatures.
2557    ciSignature* sig = signature();
2558#ifdef ASSERT
2559    BasicType rtype = sig->return_type()->basic_type();
2560    assert(rtype == T_VOID, "must return void");
2561    assert(sig->count() == 3, "has 3 arguments");
2562    assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2563    assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2564#endif // ASSERT
2565  }
2566#endif //PRODUCT
2567
2568  // number of stack slots per value argument (1 or 2)
2569  int type_words = type2size[type];
2570
2571  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2572
2573  // Argument words:  "this" plus oop plus offset plus value;
2574  int nargs = 1 + 1 + 2 + type_words;
2575
2576  // pop arguments: val, offset, base, and receiver
2577  debug_only(int saved_sp = _sp);
2578  _sp += nargs;
2579  Node* val      = (type_words == 1) ? pop() : pop_pair();
2580  Node *offset   = pop_pair();
2581  Node *base     = pop();
2582  Node *receiver = pop();
2583  assert(saved_sp == _sp, "must have correct argument count");
2584
2585  //  Null check receiver.
2586  _sp += nargs;
2587  do_null_check(receiver, T_OBJECT);
2588  _sp -= nargs;
2589  if (stopped()) {
2590    return true;
2591  }
2592
2593  // Build field offset expression.
2594  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2595  // 32-bit machines ignore the high half of long offsets
2596  offset = ConvL2X(offset);
2597  Node* adr = make_unsafe_address(base, offset);
2598  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2599  const Type *value_type = Type::get_const_basic_type(type);
2600  Compile::AliasType* alias_type = C->alias_type(adr_type);
2601
2602  insert_mem_bar(Op_MemBarRelease);
2603  insert_mem_bar(Op_MemBarCPUOrder);
2604  // Ensure that the store is atomic for longs:
2605  bool require_atomic_access = true;
2606  Node* store;
2607  if (type == T_OBJECT) // reference stores need a store barrier.
2608    store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2609  else {
2610    store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2611  }
2612  insert_mem_bar(Op_MemBarCPUOrder);
2613  return true;
2614}
2615
2616bool LibraryCallKit::inline_unsafe_allocate() {
2617  if (callee()->is_static())  return false;  // caller must have the capability!
2618  int nargs = 1 + 1;
2619  assert(signature()->size() == nargs-1, "alloc has 1 argument");
2620  null_check_receiver(callee());  // check then ignore argument(0)
2621  _sp += nargs;  // set original stack for use by uncommon_trap
2622  Node* cls = do_null_check(argument(1), T_OBJECT);
2623  _sp -= nargs;
2624  if (stopped())  return true;
2625
2626  Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2627  _sp += nargs;  // set original stack for use by uncommon_trap
2628  kls = do_null_check(kls, T_OBJECT);
2629  _sp -= nargs;
2630  if (stopped())  return true;  // argument was like int.class
2631
2632  // Note:  The argument might still be an illegal value like
2633  // Serializable.class or Object[].class.   The runtime will handle it.
2634  // But we must make an explicit check for initialization.
2635  Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2636  Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2637  Node* bits = intcon(instanceKlass::fully_initialized);
2638  Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2639  // The 'test' is non-zero if we need to take a slow path.
2640
2641  Node* obj = new_instance(kls, test);
2642  push(obj);
2643
2644  return true;
2645}
2646
2647//------------------------inline_native_time_funcs--------------
2648// inline code for System.currentTimeMillis() and System.nanoTime()
2649// these have the same type and signature
2650bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2651  address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2652                              CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2653  const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2654  const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2655  const TypePtr* no_memory_effects = NULL;
2656  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2657  Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2658#ifdef ASSERT
2659  Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2660  assert(value_top == top(), "second value must be top");
2661#endif
2662  push_pair(value);
2663  return true;
2664}
2665
2666//------------------------inline_native_currentThread------------------
2667bool LibraryCallKit::inline_native_currentThread() {
2668  Node* junk = NULL;
2669  push(generate_current_thread(junk));
2670  return true;
2671}
2672
2673//------------------------inline_native_isInterrupted------------------
2674bool LibraryCallKit::inline_native_isInterrupted() {
2675  const int nargs = 1+1;  // receiver + boolean
2676  assert(nargs == arg_size(), "sanity");
2677  // Add a fast path to t.isInterrupted(clear_int):
2678  //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2679  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2680  // So, in the common case that the interrupt bit is false,
2681  // we avoid making a call into the VM.  Even if the interrupt bit
2682  // is true, if the clear_int argument is false, we avoid the VM call.
2683  // However, if the receiver is not currentThread, we must call the VM,
2684  // because there must be some locking done around the operation.
2685
2686  // We only go to the fast case code if we pass two guards.
2687  // Paths which do not pass are accumulated in the slow_region.
2688  RegionNode* slow_region = new (C, 1) RegionNode(1);
2689  record_for_igvn(slow_region);
2690  RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2691  PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2692  enum { no_int_result_path   = 1,
2693         no_clear_result_path = 2,
2694         slow_result_path     = 3
2695  };
2696
2697  // (a) Receiving thread must be the current thread.
2698  Node* rec_thr = argument(0);
2699  Node* tls_ptr = NULL;
2700  Node* cur_thr = generate_current_thread(tls_ptr);
2701  Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2702  Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2703
2704  bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2705  if (!known_current_thread)
2706    generate_slow_guard(bol_thr, slow_region);
2707
2708  // (b) Interrupt bit on TLS must be false.
2709  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2710  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2711  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2712  // Set the control input on the field _interrupted read to prevent it floating up.
2713  Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2714  Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2715  Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2716
2717  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2718
2719  // First fast path:  if (!TLS._interrupted) return false;
2720  Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2721  result_rgn->init_req(no_int_result_path, false_bit);
2722  result_val->init_req(no_int_result_path, intcon(0));
2723
2724  // drop through to next case
2725  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2726
2727  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2728  Node* clr_arg = argument(1);
2729  Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2730  Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2731  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2732
2733  // Second fast path:  ... else if (!clear_int) return true;
2734  Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2735  result_rgn->init_req(no_clear_result_path, false_arg);
2736  result_val->init_req(no_clear_result_path, intcon(1));
2737
2738  // drop through to next case
2739  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2740
2741  // (d) Otherwise, go to the slow path.
2742  slow_region->add_req(control());
2743  set_control( _gvn.transform(slow_region) );
2744
2745  if (stopped()) {
2746    // There is no slow path.
2747    result_rgn->init_req(slow_result_path, top());
2748    result_val->init_req(slow_result_path, top());
2749  } else {
2750    // non-virtual because it is a private non-static
2751    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2752
2753    Node* slow_val = set_results_for_java_call(slow_call);
2754    // this->control() comes from set_results_for_java_call
2755
2756    // If we know that the result of the slow call will be true, tell the optimizer!
2757    if (known_current_thread)  slow_val = intcon(1);
2758
2759    Node* fast_io  = slow_call->in(TypeFunc::I_O);
2760    Node* fast_mem = slow_call->in(TypeFunc::Memory);
2761    // These two phis are pre-filled with copies of of the fast IO and Memory
2762    Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2763    Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2764
2765    result_rgn->init_req(slow_result_path, control());
2766    io_phi    ->init_req(slow_result_path, i_o());
2767    mem_phi   ->init_req(slow_result_path, reset_memory());
2768    result_val->init_req(slow_result_path, slow_val);
2769
2770    set_all_memory( _gvn.transform(mem_phi) );
2771    set_i_o(        _gvn.transform(io_phi) );
2772  }
2773
2774  push_result(result_rgn, result_val);
2775  C->set_has_split_ifs(true); // Has chance for split-if optimization
2776
2777  return true;
2778}
2779
2780//---------------------------load_mirror_from_klass----------------------------
2781// Given a klass oop, load its java mirror (a java.lang.Class oop).
2782Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2783  Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2784  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2785}
2786
2787//-----------------------load_klass_from_mirror_common-------------------------
2788// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2789// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2790// and branch to the given path on the region.
2791// If never_see_null, take an uncommon trap on null, so we can optimistically
2792// compile for the non-null case.
2793// If the region is NULL, force never_see_null = true.
2794Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2795                                                    bool never_see_null,
2796                                                    int nargs,
2797                                                    RegionNode* region,
2798                                                    int null_path,
2799                                                    int offset) {
2800  if (region == NULL)  never_see_null = true;
2801  Node* p = basic_plus_adr(mirror, offset);
2802  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2803  Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2804  _sp += nargs; // any deopt will start just before call to enclosing method
2805  Node* null_ctl = top();
2806  kls = null_check_oop(kls, &null_ctl, never_see_null);
2807  if (region != NULL) {
2808    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2809    region->init_req(null_path, null_ctl);
2810  } else {
2811    assert(null_ctl == top(), "no loose ends");
2812  }
2813  _sp -= nargs;
2814  return kls;
2815}
2816
2817//--------------------(inline_native_Class_query helpers)---------------------
2818// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2819// Fall through if (mods & mask) == bits, take the guard otherwise.
2820Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2821  // Branch around if the given klass has the given modifier bit set.
2822  // Like generate_guard, adds a new path onto the region.
2823  Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2824  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2825  Node* mask = intcon(modifier_mask);
2826  Node* bits = intcon(modifier_bits);
2827  Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
2828  Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
2829  Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
2830  return generate_fair_guard(bol, region);
2831}
2832Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2833  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2834}
2835
2836//-------------------------inline_native_Class_query-------------------
2837bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2838  int nargs = 1+0;  // just the Class mirror, in most cases
2839  const Type* return_type = TypeInt::BOOL;
2840  Node* prim_return_value = top();  // what happens if it's a primitive class?
2841  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2842  bool expect_prim = false;     // most of these guys expect to work on refs
2843
2844  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2845
2846  switch (id) {
2847  case vmIntrinsics::_isInstance:
2848    nargs = 1+1;  // the Class mirror, plus the object getting queried about
2849    // nothing is an instance of a primitive type
2850    prim_return_value = intcon(0);
2851    break;
2852  case vmIntrinsics::_getModifiers:
2853    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2854    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2855    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2856    break;
2857  case vmIntrinsics::_isInterface:
2858    prim_return_value = intcon(0);
2859    break;
2860  case vmIntrinsics::_isArray:
2861    prim_return_value = intcon(0);
2862    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
2863    break;
2864  case vmIntrinsics::_isPrimitive:
2865    prim_return_value = intcon(1);
2866    expect_prim = true;  // obviously
2867    break;
2868  case vmIntrinsics::_getSuperclass:
2869    prim_return_value = null();
2870    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2871    break;
2872  case vmIntrinsics::_getComponentType:
2873    prim_return_value = null();
2874    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2875    break;
2876  case vmIntrinsics::_getClassAccessFlags:
2877    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2878    return_type = TypeInt::INT;  // not bool!  6297094
2879    break;
2880  default:
2881    ShouldNotReachHere();
2882  }
2883
2884  Node* mirror =                      argument(0);
2885  Node* obj    = (nargs <= 1)? top(): argument(1);
2886
2887  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2888  if (mirror_con == NULL)  return false;  // cannot happen?
2889
2890#ifndef PRODUCT
2891  if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2892    ciType* k = mirror_con->java_mirror_type();
2893    if (k) {
2894      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2895      k->print_name();
2896      tty->cr();
2897    }
2898  }
2899#endif
2900
2901  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2902  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2903  record_for_igvn(region);
2904  PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
2905
2906  // The mirror will never be null of Reflection.getClassAccessFlags, however
2907  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2908  // if it is. See bug 4774291.
2909
2910  // For Reflection.getClassAccessFlags(), the null check occurs in
2911  // the wrong place; see inline_unsafe_access(), above, for a similar
2912  // situation.
2913  _sp += nargs;  // set original stack for use by uncommon_trap
2914  mirror = do_null_check(mirror, T_OBJECT);
2915  _sp -= nargs;
2916  // If mirror or obj is dead, only null-path is taken.
2917  if (stopped())  return true;
2918
2919  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
2920
2921  // Now load the mirror's klass metaobject, and null-check it.
2922  // Side-effects region with the control path if the klass is null.
2923  Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
2924                                     region, _prim_path);
2925  // If kls is null, we have a primitive mirror.
2926  phi->init_req(_prim_path, prim_return_value);
2927  if (stopped()) { push_result(region, phi); return true; }
2928
2929  Node* p;  // handy temp
2930  Node* null_ctl;
2931
2932  // Now that we have the non-null klass, we can perform the real query.
2933  // For constant classes, the query will constant-fold in LoadNode::Value.
2934  Node* query_value = top();
2935  switch (id) {
2936  case vmIntrinsics::_isInstance:
2937    // nothing is an instance of a primitive type
2938    query_value = gen_instanceof(obj, kls);
2939    break;
2940
2941  case vmIntrinsics::_getModifiers:
2942    p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
2943    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2944    break;
2945
2946  case vmIntrinsics::_isInterface:
2947    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2948    if (generate_interface_guard(kls, region) != NULL)
2949      // A guard was added.  If the guard is taken, it was an interface.
2950      phi->add_req(intcon(1));
2951    // If we fall through, it's a plain class.
2952    query_value = intcon(0);
2953    break;
2954
2955  case vmIntrinsics::_isArray:
2956    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2957    if (generate_array_guard(kls, region) != NULL)
2958      // A guard was added.  If the guard is taken, it was an array.
2959      phi->add_req(intcon(1));
2960    // If we fall through, it's a plain class.
2961    query_value = intcon(0);
2962    break;
2963
2964  case vmIntrinsics::_isPrimitive:
2965    query_value = intcon(0); // "normal" path produces false
2966    break;
2967
2968  case vmIntrinsics::_getSuperclass:
2969    // The rules here are somewhat unfortunate, but we can still do better
2970    // with random logic than with a JNI call.
2971    // Interfaces store null or Object as _super, but must report null.
2972    // Arrays store an intermediate super as _super, but must report Object.
2973    // Other types can report the actual _super.
2974    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2975    if (generate_interface_guard(kls, region) != NULL)
2976      // A guard was added.  If the guard is taken, it was an interface.
2977      phi->add_req(null());
2978    if (generate_array_guard(kls, region) != NULL)
2979      // A guard was added.  If the guard is taken, it was an array.
2980      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
2981    // If we fall through, it's a plain class.  Get its _super.
2982    p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
2983    kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
2984    null_ctl = top();
2985    kls = null_check_oop(kls, &null_ctl);
2986    if (null_ctl != top()) {
2987      // If the guard is taken, Object.superClass is null (both klass and mirror).
2988      region->add_req(null_ctl);
2989      phi   ->add_req(null());
2990    }
2991    if (!stopped()) {
2992      query_value = load_mirror_from_klass(kls);
2993    }
2994    break;
2995
2996  case vmIntrinsics::_getComponentType:
2997    if (generate_array_guard(kls, region) != NULL) {
2998      // Be sure to pin the oop load to the guard edge just created:
2999      Node* is_array_ctrl = region->in(region->req()-1);
3000      Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
3001      Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3002      phi->add_req(cmo);
3003    }
3004    query_value = null();  // non-array case is null
3005    break;
3006
3007  case vmIntrinsics::_getClassAccessFlags:
3008    p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
3009    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3010    break;
3011
3012  default:
3013    ShouldNotReachHere();
3014  }
3015
3016  // Fall-through is the normal case of a query to a real class.
3017  phi->init_req(1, query_value);
3018  region->init_req(1, control());
3019
3020  push_result(region, phi);
3021  C->set_has_split_ifs(true); // Has chance for split-if optimization
3022
3023  return true;
3024}
3025
3026//--------------------------inline_native_subtype_check------------------------
3027// This intrinsic takes the JNI calls out of the heart of
3028// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3029bool LibraryCallKit::inline_native_subtype_check() {
3030  int nargs = 1+1;  // the Class mirror, plus the other class getting examined
3031
3032  // Pull both arguments off the stack.
3033  Node* args[2];                // two java.lang.Class mirrors: superc, subc
3034  args[0] = argument(0);
3035  args[1] = argument(1);
3036  Node* klasses[2];             // corresponding Klasses: superk, subk
3037  klasses[0] = klasses[1] = top();
3038
3039  enum {
3040    // A full decision tree on {superc is prim, subc is prim}:
3041    _prim_0_path = 1,           // {P,N} => false
3042                                // {P,P} & superc!=subc => false
3043    _prim_same_path,            // {P,P} & superc==subc => true
3044    _prim_1_path,               // {N,P} => false
3045    _ref_subtype_path,          // {N,N} & subtype check wins => true
3046    _both_ref_path,             // {N,N} & subtype check loses => false
3047    PATH_LIMIT
3048  };
3049
3050  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3051  Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
3052  record_for_igvn(region);
3053
3054  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3055  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3056  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3057
3058  // First null-check both mirrors and load each mirror's klass metaobject.
3059  int which_arg;
3060  for (which_arg = 0; which_arg <= 1; which_arg++) {
3061    Node* arg = args[which_arg];
3062    _sp += nargs;  // set original stack for use by uncommon_trap
3063    arg = do_null_check(arg, T_OBJECT);
3064    _sp -= nargs;
3065    if (stopped())  break;
3066    args[which_arg] = _gvn.transform(arg);
3067
3068    Node* p = basic_plus_adr(arg, class_klass_offset);
3069    Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3070    klasses[which_arg] = _gvn.transform(kls);
3071  }
3072
3073  // Having loaded both klasses, test each for null.
3074  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3075  for (which_arg = 0; which_arg <= 1; which_arg++) {
3076    Node* kls = klasses[which_arg];
3077    Node* null_ctl = top();
3078    _sp += nargs;  // set original stack for use by uncommon_trap
3079    kls = null_check_oop(kls, &null_ctl, never_see_null);
3080    _sp -= nargs;
3081    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3082    region->init_req(prim_path, null_ctl);
3083    if (stopped())  break;
3084    klasses[which_arg] = kls;
3085  }
3086
3087  if (!stopped()) {
3088    // now we have two reference types, in klasses[0..1]
3089    Node* subk   = klasses[1];  // the argument to isAssignableFrom
3090    Node* superk = klasses[0];  // the receiver
3091    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3092    // now we have a successful reference subtype check
3093    region->set_req(_ref_subtype_path, control());
3094  }
3095
3096  // If both operands are primitive (both klasses null), then
3097  // we must return true when they are identical primitives.
3098  // It is convenient to test this after the first null klass check.
3099  set_control(region->in(_prim_0_path)); // go back to first null check
3100  if (!stopped()) {
3101    // Since superc is primitive, make a guard for the superc==subc case.
3102    Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
3103    Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
3104    generate_guard(bol_eq, region, PROB_FAIR);
3105    if (region->req() == PATH_LIMIT+1) {
3106      // A guard was added.  If the added guard is taken, superc==subc.
3107      region->swap_edges(PATH_LIMIT, _prim_same_path);
3108      region->del_req(PATH_LIMIT);
3109    }
3110    region->set_req(_prim_0_path, control()); // Not equal after all.
3111  }
3112
3113  // these are the only paths that produce 'true':
3114  phi->set_req(_prim_same_path,   intcon(1));
3115  phi->set_req(_ref_subtype_path, intcon(1));
3116
3117  // pull together the cases:
3118  assert(region->req() == PATH_LIMIT, "sane region");
3119  for (uint i = 1; i < region->req(); i++) {
3120    Node* ctl = region->in(i);
3121    if (ctl == NULL || ctl == top()) {
3122      region->set_req(i, top());
3123      phi   ->set_req(i, top());
3124    } else if (phi->in(i) == NULL) {
3125      phi->set_req(i, intcon(0)); // all other paths produce 'false'
3126    }
3127  }
3128
3129  set_control(_gvn.transform(region));
3130  push(_gvn.transform(phi));
3131
3132  return true;
3133}
3134
3135//---------------------generate_array_guard_common------------------------
3136Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3137                                                  bool obj_array, bool not_array) {
3138  // If obj_array/non_array==false/false:
3139  // Branch around if the given klass is in fact an array (either obj or prim).
3140  // If obj_array/non_array==false/true:
3141  // Branch around if the given klass is not an array klass of any kind.
3142  // If obj_array/non_array==true/true:
3143  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3144  // If obj_array/non_array==true/false:
3145  // Branch around if the kls is an oop array (Object[] or subtype)
3146  //
3147  // Like generate_guard, adds a new path onto the region.
3148  jint  layout_con = 0;
3149  Node* layout_val = get_layout_helper(kls, layout_con);
3150  if (layout_val == NULL) {
3151    bool query = (obj_array
3152                  ? Klass::layout_helper_is_objArray(layout_con)
3153                  : Klass::layout_helper_is_javaArray(layout_con));
3154    if (query == not_array) {
3155      return NULL;                       // never a branch
3156    } else {                             // always a branch
3157      Node* always_branch = control();
3158      if (region != NULL)
3159        region->add_req(always_branch);
3160      set_control(top());
3161      return always_branch;
3162    }
3163  }
3164  // Now test the correct condition.
3165  jint  nval = (obj_array
3166                ? ((jint)Klass::_lh_array_tag_type_value
3167                   <<    Klass::_lh_array_tag_shift)
3168                : Klass::_lh_neutral_value);
3169  Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3170  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3171  // invert the test if we are looking for a non-array
3172  if (not_array)  btest = BoolTest(btest).negate();
3173  Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3174  return generate_fair_guard(bol, region);
3175}
3176
3177
3178//-----------------------inline_native_newArray--------------------------
3179bool LibraryCallKit::inline_native_newArray() {
3180  int nargs = 2;
3181  Node* mirror    = argument(0);
3182  Node* count_val = argument(1);
3183
3184  _sp += nargs;  // set original stack for use by uncommon_trap
3185  mirror = do_null_check(mirror, T_OBJECT);
3186  _sp -= nargs;
3187  // If mirror or obj is dead, only null-path is taken.
3188  if (stopped())  return true;
3189
3190  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3191  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3192  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3193                                                      TypeInstPtr::NOTNULL);
3194  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3195  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3196                                                      TypePtr::BOTTOM);
3197
3198  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3199  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3200                                                  nargs,
3201                                                  result_reg, _slow_path);
3202  Node* normal_ctl   = control();
3203  Node* no_array_ctl = result_reg->in(_slow_path);
3204
3205  // Generate code for the slow case.  We make a call to newArray().
3206  set_control(no_array_ctl);
3207  if (!stopped()) {
3208    // Either the input type is void.class, or else the
3209    // array klass has not yet been cached.  Either the
3210    // ensuing call will throw an exception, or else it
3211    // will cache the array klass for next time.
3212    PreserveJVMState pjvms(this);
3213    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3214    Node* slow_result = set_results_for_java_call(slow_call);
3215    // this->control() comes from set_results_for_java_call
3216    result_reg->set_req(_slow_path, control());
3217    result_val->set_req(_slow_path, slow_result);
3218    result_io ->set_req(_slow_path, i_o());
3219    result_mem->set_req(_slow_path, reset_memory());
3220  }
3221
3222  set_control(normal_ctl);
3223  if (!stopped()) {
3224    // Normal case:  The array type has been cached in the java.lang.Class.
3225    // The following call works fine even if the array type is polymorphic.
3226    // It could be a dynamic mix of int[], boolean[], Object[], etc.
3227    Node* obj = new_array(klass_node, count_val, nargs);
3228    result_reg->init_req(_normal_path, control());
3229    result_val->init_req(_normal_path, obj);
3230    result_io ->init_req(_normal_path, i_o());
3231    result_mem->init_req(_normal_path, reset_memory());
3232  }
3233
3234  // Return the combined state.
3235  set_i_o(        _gvn.transform(result_io)  );
3236  set_all_memory( _gvn.transform(result_mem) );
3237  push_result(result_reg, result_val);
3238  C->set_has_split_ifs(true); // Has chance for split-if optimization
3239
3240  return true;
3241}
3242
3243//----------------------inline_native_getLength--------------------------
3244bool LibraryCallKit::inline_native_getLength() {
3245  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3246
3247  int nargs = 1;
3248  Node* array = argument(0);
3249
3250  _sp += nargs;  // set original stack for use by uncommon_trap
3251  array = do_null_check(array, T_OBJECT);
3252  _sp -= nargs;
3253
3254  // If array is dead, only null-path is taken.
3255  if (stopped())  return true;
3256
3257  // Deoptimize if it is a non-array.
3258  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3259
3260  if (non_array != NULL) {
3261    PreserveJVMState pjvms(this);
3262    set_control(non_array);
3263    _sp += nargs;  // push the arguments back on the stack
3264    uncommon_trap(Deoptimization::Reason_intrinsic,
3265                  Deoptimization::Action_maybe_recompile);
3266  }
3267
3268  // If control is dead, only non-array-path is taken.
3269  if (stopped())  return true;
3270
3271  // The works fine even if the array type is polymorphic.
3272  // It could be a dynamic mix of int[], boolean[], Object[], etc.
3273  push( load_array_length(array) );
3274
3275  C->set_has_split_ifs(true); // Has chance for split-if optimization
3276
3277  return true;
3278}
3279
3280//------------------------inline_array_copyOf----------------------------
3281bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3282  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3283
3284  // Restore the stack and pop off the arguments.
3285  int nargs = 3 + (is_copyOfRange? 1: 0);
3286  Node* original          = argument(0);
3287  Node* start             = is_copyOfRange? argument(1): intcon(0);
3288  Node* end               = is_copyOfRange? argument(2): argument(1);
3289  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3290
3291  Node* newcopy;
3292
3293  //set the original stack and the reexecute bit for the interpreter to reexecute
3294  //the bytecode that invokes Arrays.copyOf if deoptimization happens
3295  { PreserveReexecuteState preexecs(this);
3296    _sp += nargs;
3297    jvms()->set_should_reexecute(true);
3298
3299    array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3300    original          = do_null_check(original, T_OBJECT);
3301
3302    // Check if a null path was taken unconditionally.
3303    if (stopped())  return true;
3304
3305    Node* orig_length = load_array_length(original);
3306
3307    Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3308                                              NULL, 0);
3309    klass_node = do_null_check(klass_node, T_OBJECT);
3310
3311    RegionNode* bailout = new (C, 1) RegionNode(1);
3312    record_for_igvn(bailout);
3313
3314    // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3315    // Bail out if that is so.
3316    Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3317    if (not_objArray != NULL) {
3318      // Improve the klass node's type from the new optimistic assumption:
3319      ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3320      const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3321      Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3322      cast->init_req(0, control());
3323      klass_node = _gvn.transform(cast);
3324    }
3325
3326    // Bail out if either start or end is negative.
3327    generate_negative_guard(start, bailout, &start);
3328    generate_negative_guard(end,   bailout, &end);
3329
3330    Node* length = end;
3331    if (_gvn.type(start) != TypeInt::ZERO) {
3332      length = _gvn.transform( new (C, 3) SubINode(end, start) );
3333    }
3334
3335    // Bail out if length is negative.
3336    // ...Not needed, since the new_array will throw the right exception.
3337    //generate_negative_guard(length, bailout, &length);
3338
3339    if (bailout->req() > 1) {
3340      PreserveJVMState pjvms(this);
3341      set_control( _gvn.transform(bailout) );
3342      uncommon_trap(Deoptimization::Reason_intrinsic,
3343                    Deoptimization::Action_maybe_recompile);
3344    }
3345
3346    if (!stopped()) {
3347
3348      // How many elements will we copy from the original?
3349      // The answer is MinI(orig_length - start, length).
3350      Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3351      Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3352
3353      const bool raw_mem_only = true;
3354      newcopy = new_array(klass_node, length, 0, raw_mem_only);
3355
3356      // Generate a direct call to the right arraycopy function(s).
3357      // We know the copy is disjoint but we might not know if the
3358      // oop stores need checking.
3359      // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3360      // This will fail a store-check if x contains any non-nulls.
3361      bool disjoint_bases = true;
3362      bool length_never_negative = true;
3363      generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3364                         original, start, newcopy, intcon(0), moved,
3365                         disjoint_bases, length_never_negative);
3366    }
3367  } //original reexecute and sp are set back here
3368
3369  if(!stopped()) {
3370    push(newcopy);
3371  }
3372
3373  C->set_has_split_ifs(true); // Has chance for split-if optimization
3374
3375  return true;
3376}
3377
3378
3379//----------------------generate_virtual_guard---------------------------
3380// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3381Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3382                                             RegionNode* slow_region) {
3383  ciMethod* method = callee();
3384  int vtable_index = method->vtable_index();
3385  // Get the methodOop out of the appropriate vtable entry.
3386  int entry_offset  = (instanceKlass::vtable_start_offset() +
3387                     vtable_index*vtableEntry::size()) * wordSize +
3388                     vtableEntry::method_offset_in_bytes();
3389  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3390  Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3391
3392  // Compare the target method with the expected method (e.g., Object.hashCode).
3393  const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3394
3395  Node* native_call = makecon(native_call_addr);
3396  Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3397  Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3398
3399  return generate_slow_guard(test_native, slow_region);
3400}
3401
3402//-----------------------generate_method_call----------------------------
3403// Use generate_method_call to make a slow-call to the real
3404// method if the fast path fails.  An alternative would be to
3405// use a stub like OptoRuntime::slow_arraycopy_Java.
3406// This only works for expanding the current library call,
3407// not another intrinsic.  (E.g., don't use this for making an
3408// arraycopy call inside of the copyOf intrinsic.)
3409CallJavaNode*
3410LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3411  // When compiling the intrinsic method itself, do not use this technique.
3412  guarantee(callee() != C->method(), "cannot make slow-call to self");
3413
3414  ciMethod* method = callee();
3415  // ensure the JVMS we have will be correct for this call
3416  guarantee(method_id == method->intrinsic_id(), "must match");
3417
3418  const TypeFunc* tf = TypeFunc::make(method);
3419  int tfdc = tf->domain()->cnt();
3420  CallJavaNode* slow_call;
3421  if (is_static) {
3422    assert(!is_virtual, "");
3423    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3424                                SharedRuntime::get_resolve_static_call_stub(),
3425                                method, bci());
3426  } else if (is_virtual) {
3427    null_check_receiver(method);
3428    int vtable_index = methodOopDesc::invalid_vtable_index;
3429    if (UseInlineCaches) {
3430      // Suppress the vtable call
3431    } else {
3432      // hashCode and clone are not a miranda methods,
3433      // so the vtable index is fixed.
3434      // No need to use the linkResolver to get it.
3435       vtable_index = method->vtable_index();
3436    }
3437    slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3438                                SharedRuntime::get_resolve_virtual_call_stub(),
3439                                method, vtable_index, bci());
3440  } else {  // neither virtual nor static:  opt_virtual
3441    null_check_receiver(method);
3442    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3443                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
3444                                method, bci());
3445    slow_call->set_optimized_virtual(true);
3446  }
3447  set_arguments_for_java_call(slow_call);
3448  set_edges_for_java_call(slow_call);
3449  return slow_call;
3450}
3451
3452
3453//------------------------------inline_native_hashcode--------------------
3454// Build special case code for calls to hashCode on an object.
3455bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3456  assert(is_static == callee()->is_static(), "correct intrinsic selection");
3457  assert(!(is_virtual && is_static), "either virtual, special, or static");
3458
3459  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3460
3461  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3462  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3463                                                      TypeInt::INT);
3464  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3465  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3466                                                      TypePtr::BOTTOM);
3467  Node* obj = NULL;
3468  if (!is_static) {
3469    // Check for hashing null object
3470    obj = null_check_receiver(callee());
3471    if (stopped())  return true;        // unconditionally null
3472    result_reg->init_req(_null_path, top());
3473    result_val->init_req(_null_path, top());
3474  } else {
3475    // Do a null check, and return zero if null.
3476    // System.identityHashCode(null) == 0
3477    obj = argument(0);
3478    Node* null_ctl = top();
3479    obj = null_check_oop(obj, &null_ctl);
3480    result_reg->init_req(_null_path, null_ctl);
3481    result_val->init_req(_null_path, _gvn.intcon(0));
3482  }
3483
3484  // Unconditionally null?  Then return right away.
3485  if (stopped()) {
3486    set_control( result_reg->in(_null_path) );
3487    if (!stopped())
3488      push(      result_val ->in(_null_path) );
3489    return true;
3490  }
3491
3492  // After null check, get the object's klass.
3493  Node* obj_klass = load_object_klass(obj);
3494
3495  // This call may be virtual (invokevirtual) or bound (invokespecial).
3496  // For each case we generate slightly different code.
3497
3498  // We only go to the fast case code if we pass a number of guards.  The
3499  // paths which do not pass are accumulated in the slow_region.
3500  RegionNode* slow_region = new (C, 1) RegionNode(1);
3501  record_for_igvn(slow_region);
3502
3503  // If this is a virtual call, we generate a funny guard.  We pull out
3504  // the vtable entry corresponding to hashCode() from the target object.
3505  // If the target method which we are calling happens to be the native
3506  // Object hashCode() method, we pass the guard.  We do not need this
3507  // guard for non-virtual calls -- the caller is known to be the native
3508  // Object hashCode().
3509  if (is_virtual) {
3510    generate_virtual_guard(obj_klass, slow_region);
3511  }
3512
3513  // Get the header out of the object, use LoadMarkNode when available
3514  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3515  Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
3516  header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
3517
3518  // Test the header to see if it is unlocked.
3519  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3520  Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3521  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3522  Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3523  Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3524
3525  generate_slow_guard(test_unlocked, slow_region);
3526
3527  // Get the hash value and check to see that it has been properly assigned.
3528  // We depend on hash_mask being at most 32 bits and avoid the use of
3529  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3530  // vm: see markOop.hpp.
3531  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3532  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3533  Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3534  // This hack lets the hash bits live anywhere in the mark object now, as long
3535  // as the shift drops the relevant bits into the low 32 bits.  Note that
3536  // Java spec says that HashCode is an int so there's no point in capturing
3537  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3538  hshifted_header      = ConvX2I(hshifted_header);
3539  Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3540
3541  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3542  Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3543  Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3544
3545  generate_slow_guard(test_assigned, slow_region);
3546
3547  Node* init_mem = reset_memory();
3548  // fill in the rest of the null path:
3549  result_io ->init_req(_null_path, i_o());
3550  result_mem->init_req(_null_path, init_mem);
3551
3552  result_val->init_req(_fast_path, hash_val);
3553  result_reg->init_req(_fast_path, control());
3554  result_io ->init_req(_fast_path, i_o());
3555  result_mem->init_req(_fast_path, init_mem);
3556
3557  // Generate code for the slow case.  We make a call to hashCode().
3558  set_control(_gvn.transform(slow_region));
3559  if (!stopped()) {
3560    // No need for PreserveJVMState, because we're using up the present state.
3561    set_all_memory(init_mem);
3562    vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3563    if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3564    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3565    Node* slow_result = set_results_for_java_call(slow_call);
3566    // this->control() comes from set_results_for_java_call
3567    result_reg->init_req(_slow_path, control());
3568    result_val->init_req(_slow_path, slow_result);
3569    result_io  ->set_req(_slow_path, i_o());
3570    result_mem ->set_req(_slow_path, reset_memory());
3571  }
3572
3573  // Return the combined state.
3574  set_i_o(        _gvn.transform(result_io)  );
3575  set_all_memory( _gvn.transform(result_mem) );
3576  push_result(result_reg, result_val);
3577
3578  return true;
3579}
3580
3581//---------------------------inline_native_getClass----------------------------
3582// Build special case code for calls to getClass on an object.
3583bool LibraryCallKit::inline_native_getClass() {
3584  Node* obj = null_check_receiver(callee());
3585  if (stopped())  return true;
3586  push( load_mirror_from_klass(load_object_klass(obj)) );
3587  return true;
3588}
3589
3590//-----------------inline_native_Reflection_getCallerClass---------------------
3591// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3592//
3593// NOTE that this code must perform the same logic as
3594// vframeStream::security_get_caller_frame in that it must skip
3595// Method.invoke() and auxiliary frames.
3596
3597
3598
3599
3600bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3601  ciMethod*       method = callee();
3602
3603#ifndef PRODUCT
3604  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3605    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3606  }
3607#endif
3608
3609  debug_only(int saved_sp = _sp);
3610
3611  // Argument words:  (int depth)
3612  int nargs = 1;
3613
3614  _sp += nargs;
3615  Node* caller_depth_node = pop();
3616
3617  assert(saved_sp == _sp, "must have correct argument count");
3618
3619  // The depth value must be a constant in order for the runtime call
3620  // to be eliminated.
3621  const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3622  if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3623#ifndef PRODUCT
3624    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3625      tty->print_cr("  Bailing out because caller depth was not a constant");
3626    }
3627#endif
3628    return false;
3629  }
3630  // Note that the JVM state at this point does not include the
3631  // getCallerClass() frame which we are trying to inline. The
3632  // semantics of getCallerClass(), however, are that the "first"
3633  // frame is the getCallerClass() frame, so we subtract one from the
3634  // requested depth before continuing. We don't inline requests of
3635  // getCallerClass(0).
3636  int caller_depth = caller_depth_type->get_con() - 1;
3637  if (caller_depth < 0) {
3638#ifndef PRODUCT
3639    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3640      tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3641    }
3642#endif
3643    return false;
3644  }
3645
3646  if (!jvms()->has_method()) {
3647#ifndef PRODUCT
3648    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3649      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3650    }
3651#endif
3652    return false;
3653  }
3654  int _depth = jvms()->depth();  // cache call chain depth
3655
3656  // Walk back up the JVM state to find the caller at the required
3657  // depth. NOTE that this code must perform the same logic as
3658  // vframeStream::security_get_caller_frame in that it must skip
3659  // Method.invoke() and auxiliary frames. Note also that depth is
3660  // 1-based (1 is the bottom of the inlining).
3661  int inlining_depth = _depth;
3662  JVMState* caller_jvms = NULL;
3663
3664  if (inlining_depth > 0) {
3665    caller_jvms = jvms();
3666    assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3667    do {
3668      // The following if-tests should be performed in this order
3669      if (is_method_invoke_or_aux_frame(caller_jvms)) {
3670        // Skip a Method.invoke() or auxiliary frame
3671      } else if (caller_depth > 0) {
3672        // Skip real frame
3673        --caller_depth;
3674      } else {
3675        // We're done: reached desired caller after skipping.
3676        break;
3677      }
3678      caller_jvms = caller_jvms->caller();
3679      --inlining_depth;
3680    } while (inlining_depth > 0);
3681  }
3682
3683  if (inlining_depth == 0) {
3684#ifndef PRODUCT
3685    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3686      tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3687      tty->print_cr("  JVM state at this point:");
3688      for (int i = _depth; i >= 1; i--) {
3689        tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3690      }
3691    }
3692#endif
3693    return false; // Reached end of inlining
3694  }
3695
3696  // Acquire method holder as java.lang.Class
3697  ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3698  ciInstance*      caller_mirror = caller_klass->java_mirror();
3699  // Push this as a constant
3700  push(makecon(TypeInstPtr::make(caller_mirror)));
3701#ifndef PRODUCT
3702  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3703    tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3704    tty->print_cr("  JVM state at this point:");
3705    for (int i = _depth; i >= 1; i--) {
3706      tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3707    }
3708  }
3709#endif
3710  return true;
3711}
3712
3713// Helper routine for above
3714bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3715  ciMethod* method = jvms->method();
3716
3717  // Is this the Method.invoke method itself?
3718  if (method->intrinsic_id() == vmIntrinsics::_invoke)
3719    return true;
3720
3721  // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3722  ciKlass* k = method->holder();
3723  if (k->is_instance_klass()) {
3724    ciInstanceKlass* ik = k->as_instance_klass();
3725    for (; ik != NULL; ik = ik->super()) {
3726      if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3727          ik == env()->find_system_klass(ik->name())) {
3728        return true;
3729      }
3730    }
3731  }
3732  else if (method->is_method_handle_adapter()) {
3733    // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3734    return true;
3735  }
3736
3737  return false;
3738}
3739
3740static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3741                                     // inline_native_AtomicLong_attemptUpdate() but it has no way of
3742                                     // computing it since there is no lookup field by name function in the
3743                                     // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3744                                     // Using a static variable here is safe even if we have multiple compilation
3745                                     // threads because the offset is constant.  At worst the same offset will be
3746                                     // computed and  stored multiple
3747
3748bool LibraryCallKit::inline_native_AtomicLong_get() {
3749  // Restore the stack and pop off the argument
3750  _sp+=1;
3751  Node *obj = pop();
3752
3753  // get the offset of the "value" field. Since the CI interfaces
3754  // does not provide a way to look up a field by name, we scan the bytecodes
3755  // to get the field index.  We expect the first 2 instructions of the method
3756  // to be:
3757  //    0 aload_0
3758  //    1 getfield "value"
3759  ciMethod* method = callee();
3760  if (value_field_offset == -1)
3761  {
3762    ciField* value_field;
3763    ciBytecodeStream iter(method);
3764    Bytecodes::Code bc = iter.next();
3765
3766    if ((bc != Bytecodes::_aload_0) &&
3767              ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3768      return false;
3769    bc = iter.next();
3770    if (bc != Bytecodes::_getfield)
3771      return false;
3772    bool ignore;
3773    value_field = iter.get_field(ignore);
3774    value_field_offset = value_field->offset_in_bytes();
3775  }
3776
3777  // Null check without removing any arguments.
3778  _sp++;
3779  obj = do_null_check(obj, T_OBJECT);
3780  _sp--;
3781  // Check for locking null object
3782  if (stopped()) return true;
3783
3784  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3785  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3786  int alias_idx = C->get_alias_index(adr_type);
3787
3788  Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3789
3790  push_pair(result);
3791
3792  return true;
3793}
3794
3795bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3796  // Restore the stack and pop off the arguments
3797  _sp+=5;
3798  Node *newVal = pop_pair();
3799  Node *oldVal = pop_pair();
3800  Node *obj = pop();
3801
3802  // we need the offset of the "value" field which was computed when
3803  // inlining the get() method.  Give up if we don't have it.
3804  if (value_field_offset == -1)
3805    return false;
3806
3807  // Null check without removing any arguments.
3808  _sp+=5;
3809  obj = do_null_check(obj, T_OBJECT);
3810  _sp-=5;
3811  // Check for locking null object
3812  if (stopped()) return true;
3813
3814  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3815  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3816  int alias_idx = C->get_alias_index(adr_type);
3817
3818  Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3819  Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
3820  set_memory(store_proj, alias_idx);
3821  Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
3822
3823  Node *result;
3824  // CMove node is not used to be able fold a possible check code
3825  // after attemptUpdate() call. This code could be transformed
3826  // into CMove node by loop optimizations.
3827  {
3828    RegionNode *r = new (C, 3) RegionNode(3);
3829    result = new (C, 3) PhiNode(r, TypeInt::BOOL);
3830
3831    Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
3832    Node *iftrue = opt_iff(r, iff);
3833    r->init_req(1, iftrue);
3834    result->init_req(1, intcon(1));
3835    result->init_req(2, intcon(0));
3836
3837    set_control(_gvn.transform(r));
3838    record_for_igvn(r);
3839
3840    C->set_has_split_ifs(true); // Has chance for split-if optimization
3841  }
3842
3843  push(_gvn.transform(result));
3844  return true;
3845}
3846
3847bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3848  // restore the arguments
3849  _sp += arg_size();
3850
3851  switch (id) {
3852  case vmIntrinsics::_floatToRawIntBits:
3853    push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
3854    break;
3855
3856  case vmIntrinsics::_intBitsToFloat:
3857    push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
3858    break;
3859
3860  case vmIntrinsics::_doubleToRawLongBits:
3861    push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
3862    break;
3863
3864  case vmIntrinsics::_longBitsToDouble:
3865    push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
3866    break;
3867
3868  case vmIntrinsics::_doubleToLongBits: {
3869    Node* value = pop_pair();
3870
3871    // two paths (plus control) merge in a wood
3872    RegionNode *r = new (C, 3) RegionNode(3);
3873    Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
3874
3875    Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
3876    // Build the boolean node
3877    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3878
3879    // Branch either way.
3880    // NaN case is less traveled, which makes all the difference.
3881    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3882    Node *opt_isnan = _gvn.transform(ifisnan);
3883    assert( opt_isnan->is_If(), "Expect an IfNode");
3884    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3885    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3886
3887    set_control(iftrue);
3888
3889    static const jlong nan_bits = CONST64(0x7ff8000000000000);
3890    Node *slow_result = longcon(nan_bits); // return NaN
3891    phi->init_req(1, _gvn.transform( slow_result ));
3892    r->init_req(1, iftrue);
3893
3894    // Else fall through
3895    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3896    set_control(iffalse);
3897
3898    phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
3899    r->init_req(2, iffalse);
3900
3901    // Post merge
3902    set_control(_gvn.transform(r));
3903    record_for_igvn(r);
3904
3905    Node* result = _gvn.transform(phi);
3906    assert(result->bottom_type()->isa_long(), "must be");
3907    push_pair(result);
3908
3909    C->set_has_split_ifs(true); // Has chance for split-if optimization
3910
3911    break;
3912  }
3913
3914  case vmIntrinsics::_floatToIntBits: {
3915    Node* value = pop();
3916
3917    // two paths (plus control) merge in a wood
3918    RegionNode *r = new (C, 3) RegionNode(3);
3919    Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
3920
3921    Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
3922    // Build the boolean node
3923    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3924
3925    // Branch either way.
3926    // NaN case is less traveled, which makes all the difference.
3927    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3928    Node *opt_isnan = _gvn.transform(ifisnan);
3929    assert( opt_isnan->is_If(), "Expect an IfNode");
3930    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3931    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3932
3933    set_control(iftrue);
3934
3935    static const jint nan_bits = 0x7fc00000;
3936    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3937    phi->init_req(1, _gvn.transform( slow_result ));
3938    r->init_req(1, iftrue);
3939
3940    // Else fall through
3941    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3942    set_control(iffalse);
3943
3944    phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
3945    r->init_req(2, iffalse);
3946
3947    // Post merge
3948    set_control(_gvn.transform(r));
3949    record_for_igvn(r);
3950
3951    Node* result = _gvn.transform(phi);
3952    assert(result->bottom_type()->isa_int(), "must be");
3953    push(result);
3954
3955    C->set_has_split_ifs(true); // Has chance for split-if optimization
3956
3957    break;
3958  }
3959
3960  default:
3961    ShouldNotReachHere();
3962  }
3963
3964  return true;
3965}
3966
3967#ifdef _LP64
3968#define XTOP ,top() /*additional argument*/
3969#else  //_LP64
3970#define XTOP        /*no additional argument*/
3971#endif //_LP64
3972
3973//----------------------inline_unsafe_copyMemory-------------------------
3974bool LibraryCallKit::inline_unsafe_copyMemory() {
3975  if (callee()->is_static())  return false;  // caller must have the capability!
3976  int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
3977  assert(signature()->size() == nargs-1, "copy has 5 arguments");
3978  null_check_receiver(callee());  // check then ignore argument(0)
3979  if (stopped())  return true;
3980
3981  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3982
3983  Node* src_ptr = argument(1);
3984  Node* src_off = ConvL2X(argument(2));
3985  assert(argument(3)->is_top(), "2nd half of long");
3986  Node* dst_ptr = argument(4);
3987  Node* dst_off = ConvL2X(argument(5));
3988  assert(argument(6)->is_top(), "2nd half of long");
3989  Node* size    = ConvL2X(argument(7));
3990  assert(argument(8)->is_top(), "2nd half of long");
3991
3992  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
3993         "fieldOffset must be byte-scaled");
3994
3995  Node* src = make_unsafe_address(src_ptr, src_off);
3996  Node* dst = make_unsafe_address(dst_ptr, dst_off);
3997
3998  // Conservatively insert a memory barrier on all memory slices.
3999  // Do not let writes of the copy source or destination float below the copy.
4000  insert_mem_bar(Op_MemBarCPUOrder);
4001
4002  // Call it.  Note that the length argument is not scaled.
4003  make_runtime_call(RC_LEAF|RC_NO_FP,
4004                    OptoRuntime::fast_arraycopy_Type(),
4005                    StubRoutines::unsafe_arraycopy(),
4006                    "unsafe_arraycopy",
4007                    TypeRawPtr::BOTTOM,
4008                    src, dst, size XTOP);
4009
4010  // Do not let reads of the copy destination float above the copy.
4011  insert_mem_bar(Op_MemBarCPUOrder);
4012
4013  return true;
4014}
4015
4016//------------------------clone_coping-----------------------------------
4017// Helper function for inline_native_clone.
4018void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4019  assert(obj_size != NULL, "");
4020  Node* raw_obj = alloc_obj->in(1);
4021  assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4022
4023  if (ReduceBulkZeroing) {
4024    // We will be completely responsible for initializing this object -
4025    // mark Initialize node as complete.
4026    AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4027    // The object was just allocated - there should be no any stores!
4028    guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4029  }
4030
4031  // Copy the fastest available way.
4032  // TODO: generate fields copies for small objects instead.
4033  Node* src  = obj;
4034  Node* dest = alloc_obj;
4035  Node* size = _gvn.transform(obj_size);
4036
4037  // Exclude the header but include array length to copy by 8 bytes words.
4038  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4039  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4040                            instanceOopDesc::base_offset_in_bytes();
4041  // base_off:
4042  // 8  - 32-bit VM
4043  // 12 - 64-bit VM, compressed oops
4044  // 16 - 64-bit VM, normal oops
4045  if (base_off % BytesPerLong != 0) {
4046    assert(UseCompressedOops, "");
4047    if (is_array) {
4048      // Exclude length to copy by 8 bytes words.
4049      base_off += sizeof(int);
4050    } else {
4051      // Include klass to copy by 8 bytes words.
4052      base_off = instanceOopDesc::klass_offset_in_bytes();
4053    }
4054    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4055  }
4056  src  = basic_plus_adr(src,  base_off);
4057  dest = basic_plus_adr(dest, base_off);
4058
4059  // Compute the length also, if needed:
4060  Node* countx = size;
4061  countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
4062  countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4063
4064  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4065  bool disjoint_bases = true;
4066  generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4067                               src, NULL, dest, NULL, countx);
4068
4069  // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4070  if (card_mark) {
4071    assert(!is_array, "");
4072    // Put in store barrier for any and all oops we are sticking
4073    // into this object.  (We could avoid this if we could prove
4074    // that the object type contains no oop fields at all.)
4075    Node* no_particular_value = NULL;
4076    Node* no_particular_field = NULL;
4077    int raw_adr_idx = Compile::AliasIdxRaw;
4078    post_barrier(control(),
4079                 memory(raw_adr_type),
4080                 alloc_obj,
4081                 no_particular_field,
4082                 raw_adr_idx,
4083                 no_particular_value,
4084                 T_OBJECT,
4085                 false);
4086  }
4087
4088  // Do not let reads from the cloned object float above the arraycopy.
4089  insert_mem_bar(Op_MemBarCPUOrder);
4090}
4091
4092//------------------------inline_native_clone----------------------------
4093// Here are the simple edge cases:
4094//  null receiver => normal trap
4095//  virtual and clone was overridden => slow path to out-of-line clone
4096//  not cloneable or finalizer => slow path to out-of-line Object.clone
4097//
4098// The general case has two steps, allocation and copying.
4099// Allocation has two cases, and uses GraphKit::new_instance or new_array.
4100//
4101// Copying also has two cases, oop arrays and everything else.
4102// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4103// Everything else uses the tight inline loop supplied by CopyArrayNode.
4104//
4105// These steps fold up nicely if and when the cloned object's klass
4106// can be sharply typed as an object array, a type array, or an instance.
4107//
4108bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4109  int nargs = 1;
4110  PhiNode* result_val;
4111
4112  //set the original stack and the reexecute bit for the interpreter to reexecute
4113  //the bytecode that invokes Object.clone if deoptimization happens
4114  { PreserveReexecuteState preexecs(this);
4115    jvms()->set_should_reexecute(true);
4116
4117    //null_check_receiver will adjust _sp (push and pop)
4118    Node* obj = null_check_receiver(callee());
4119    if (stopped())  return true;
4120
4121    _sp += nargs;
4122
4123    Node* obj_klass = load_object_klass(obj);
4124    const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4125    const TypeOopPtr*   toop   = ((tklass != NULL)
4126                                ? tklass->as_instance_type()
4127                                : TypeInstPtr::NOTNULL);
4128
4129    // Conservatively insert a memory barrier on all memory slices.
4130    // Do not let writes into the original float below the clone.
4131    insert_mem_bar(Op_MemBarCPUOrder);
4132
4133    // paths into result_reg:
4134    enum {
4135      _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4136      _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4137      _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4138      _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4139      PATH_LIMIT
4140    };
4141    RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4142    result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
4143                                                        TypeInstPtr::NOTNULL);
4144    PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4145    PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4146                                                        TypePtr::BOTTOM);
4147    record_for_igvn(result_reg);
4148
4149    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4150    int raw_adr_idx = Compile::AliasIdxRaw;
4151    const bool raw_mem_only = true;
4152
4153
4154    Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4155    if (array_ctl != NULL) {
4156      // It's an array.
4157      PreserveJVMState pjvms(this);
4158      set_control(array_ctl);
4159      Node* obj_length = load_array_length(obj);
4160      Node* obj_size  = NULL;
4161      Node* alloc_obj = new_array(obj_klass, obj_length, 0,
4162                                  raw_mem_only, &obj_size);
4163
4164      if (!use_ReduceInitialCardMarks()) {
4165        // If it is an oop array, it requires very special treatment,
4166        // because card marking is required on each card of the array.
4167        Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4168        if (is_obja != NULL) {
4169          PreserveJVMState pjvms2(this);
4170          set_control(is_obja);
4171          // Generate a direct call to the right arraycopy function(s).
4172          bool disjoint_bases = true;
4173          bool length_never_negative = true;
4174          generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4175                             obj, intcon(0), alloc_obj, intcon(0),
4176                             obj_length,
4177                             disjoint_bases, length_never_negative);
4178          result_reg->init_req(_objArray_path, control());
4179          result_val->init_req(_objArray_path, alloc_obj);
4180          result_i_o ->set_req(_objArray_path, i_o());
4181          result_mem ->set_req(_objArray_path, reset_memory());
4182        }
4183      }
4184      // Otherwise, there are no card marks to worry about.
4185      // (We can dispense with card marks if we know the allocation
4186      //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4187      //  causes the non-eden paths to take compensating steps to
4188      //  simulate a fresh allocation, so that no further
4189      //  card marks are required in compiled code to initialize
4190      //  the object.)
4191
4192      if (!stopped()) {
4193        copy_to_clone(obj, alloc_obj, obj_size, true, false);
4194
4195        // Present the results of the copy.
4196        result_reg->init_req(_array_path, control());
4197        result_val->init_req(_array_path, alloc_obj);
4198        result_i_o ->set_req(_array_path, i_o());
4199        result_mem ->set_req(_array_path, reset_memory());
4200      }
4201    }
4202
4203    // We only go to the instance fast case code if we pass a number of guards.
4204    // The paths which do not pass are accumulated in the slow_region.
4205    RegionNode* slow_region = new (C, 1) RegionNode(1);
4206    record_for_igvn(slow_region);
4207    if (!stopped()) {
4208      // It's an instance (we did array above).  Make the slow-path tests.
4209      // If this is a virtual call, we generate a funny guard.  We grab
4210      // the vtable entry corresponding to clone() from the target object.
4211      // If the target method which we are calling happens to be the
4212      // Object clone() method, we pass the guard.  We do not need this
4213      // guard for non-virtual calls; the caller is known to be the native
4214      // Object clone().
4215      if (is_virtual) {
4216        generate_virtual_guard(obj_klass, slow_region);
4217      }
4218
4219      // The object must be cloneable and must not have a finalizer.
4220      // Both of these conditions may be checked in a single test.
4221      // We could optimize the cloneable test further, but we don't care.
4222      generate_access_flags_guard(obj_klass,
4223                                  // Test both conditions:
4224                                  JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4225                                  // Must be cloneable but not finalizer:
4226                                  JVM_ACC_IS_CLONEABLE,
4227                                  slow_region);
4228    }
4229
4230    if (!stopped()) {
4231      // It's an instance, and it passed the slow-path tests.
4232      PreserveJVMState pjvms(this);
4233      Node* obj_size  = NULL;
4234      Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
4235
4236      copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4237
4238      // Present the results of the slow call.
4239      result_reg->init_req(_instance_path, control());
4240      result_val->init_req(_instance_path, alloc_obj);
4241      result_i_o ->set_req(_instance_path, i_o());
4242      result_mem ->set_req(_instance_path, reset_memory());
4243    }
4244
4245    // Generate code for the slow case.  We make a call to clone().
4246    set_control(_gvn.transform(slow_region));
4247    if (!stopped()) {
4248      PreserveJVMState pjvms(this);
4249      CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4250      Node* slow_result = set_results_for_java_call(slow_call);
4251      // this->control() comes from set_results_for_java_call
4252      result_reg->init_req(_slow_path, control());
4253      result_val->init_req(_slow_path, slow_result);
4254      result_i_o ->set_req(_slow_path, i_o());
4255      result_mem ->set_req(_slow_path, reset_memory());
4256    }
4257
4258    // Return the combined state.
4259    set_control(    _gvn.transform(result_reg) );
4260    set_i_o(        _gvn.transform(result_i_o) );
4261    set_all_memory( _gvn.transform(result_mem) );
4262  } //original reexecute and sp are set back here
4263
4264  push(_gvn.transform(result_val));
4265
4266  return true;
4267}
4268
4269
4270// constants for computing the copy function
4271enum {
4272  COPYFUNC_UNALIGNED = 0,
4273  COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
4274  COPYFUNC_CONJOINT = 0,
4275  COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
4276};
4277
4278// Note:  The condition "disjoint" applies also for overlapping copies
4279// where an descending copy is permitted (i.e., dest_offset <= src_offset).
4280static address
4281select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
4282  int selector =
4283    (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
4284    (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
4285
4286#define RETURN_STUB(xxx_arraycopy) { \
4287  name = #xxx_arraycopy; \
4288  return StubRoutines::xxx_arraycopy(); }
4289
4290  switch (t) {
4291  case T_BYTE:
4292  case T_BOOLEAN:
4293    switch (selector) {
4294    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
4295    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
4296    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
4297    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
4298    }
4299  case T_CHAR:
4300  case T_SHORT:
4301    switch (selector) {
4302    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
4303    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
4304    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
4305    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
4306    }
4307  case T_INT:
4308  case T_FLOAT:
4309    switch (selector) {
4310    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
4311    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
4312    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
4313    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
4314    }
4315  case T_DOUBLE:
4316  case T_LONG:
4317    switch (selector) {
4318    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
4319    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
4320    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
4321    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
4322    }
4323  case T_ARRAY:
4324  case T_OBJECT:
4325    switch (selector) {
4326    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
4327    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
4328    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
4329    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
4330    }
4331  default:
4332    ShouldNotReachHere();
4333    return NULL;
4334  }
4335
4336#undef RETURN_STUB
4337}
4338
4339//------------------------------basictype2arraycopy----------------------------
4340address LibraryCallKit::basictype2arraycopy(BasicType t,
4341                                            Node* src_offset,
4342                                            Node* dest_offset,
4343                                            bool disjoint_bases,
4344                                            const char* &name) {
4345  const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4346  const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4347
4348  bool aligned = false;
4349  bool disjoint = disjoint_bases;
4350
4351  // if the offsets are the same, we can treat the memory regions as
4352  // disjoint, because either the memory regions are in different arrays,
4353  // or they are identical (which we can treat as disjoint.)  We can also
4354  // treat a copy with a destination index  less that the source index
4355  // as disjoint since a low->high copy will work correctly in this case.
4356  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4357      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4358    // both indices are constants
4359    int s_offs = src_offset_inttype->get_con();
4360    int d_offs = dest_offset_inttype->get_con();
4361    int element_size = type2aelembytes(t);
4362    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4363              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4364    if (s_offs >= d_offs)  disjoint = true;
4365  } else if (src_offset == dest_offset && src_offset != NULL) {
4366    // This can occur if the offsets are identical non-constants.
4367    disjoint = true;
4368  }
4369
4370  return select_arraycopy_function(t, aligned, disjoint, name);
4371}
4372
4373
4374//------------------------------inline_arraycopy-----------------------
4375bool LibraryCallKit::inline_arraycopy() {
4376  // Restore the stack and pop off the arguments.
4377  int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4378  assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4379
4380  Node *src         = argument(0);
4381  Node *src_offset  = argument(1);
4382  Node *dest        = argument(2);
4383  Node *dest_offset = argument(3);
4384  Node *length      = argument(4);
4385
4386  // Compile time checks.  If any of these checks cannot be verified at compile time,
4387  // we do not make a fast path for this call.  Instead, we let the call remain as it
4388  // is.  The checks we choose to mandate at compile time are:
4389  //
4390  // (1) src and dest are arrays.
4391  const Type* src_type = src->Value(&_gvn);
4392  const Type* dest_type = dest->Value(&_gvn);
4393  const TypeAryPtr* top_src = src_type->isa_aryptr();
4394  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4395  if (top_src  == NULL || top_src->klass()  == NULL ||
4396      top_dest == NULL || top_dest->klass() == NULL) {
4397    // Conservatively insert a memory barrier on all memory slices.
4398    // Do not let writes into the source float below the arraycopy.
4399    insert_mem_bar(Op_MemBarCPUOrder);
4400
4401    // Call StubRoutines::generic_arraycopy stub.
4402    generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4403                       src, src_offset, dest, dest_offset, length);
4404
4405    // Do not let reads from the destination float above the arraycopy.
4406    // Since we cannot type the arrays, we don't know which slices
4407    // might be affected.  We could restrict this barrier only to those
4408    // memory slices which pertain to array elements--but don't bother.
4409    if (!InsertMemBarAfterArraycopy)
4410      // (If InsertMemBarAfterArraycopy, there is already one in place.)
4411      insert_mem_bar(Op_MemBarCPUOrder);
4412    return true;
4413  }
4414
4415  // (2) src and dest arrays must have elements of the same BasicType
4416  // Figure out the size and type of the elements we will be copying.
4417  BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4418  BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4419  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4420  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4421
4422  if (src_elem != dest_elem || dest_elem == T_VOID) {
4423    // The component types are not the same or are not recognized.  Punt.
4424    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4425    generate_slow_arraycopy(TypePtr::BOTTOM,
4426                            src, src_offset, dest, dest_offset, length);
4427    return true;
4428  }
4429
4430  //---------------------------------------------------------------------------
4431  // We will make a fast path for this call to arraycopy.
4432
4433  // We have the following tests left to perform:
4434  //
4435  // (3) src and dest must not be null.
4436  // (4) src_offset must not be negative.
4437  // (5) dest_offset must not be negative.
4438  // (6) length must not be negative.
4439  // (7) src_offset + length must not exceed length of src.
4440  // (8) dest_offset + length must not exceed length of dest.
4441  // (9) each element of an oop array must be assignable
4442
4443  RegionNode* slow_region = new (C, 1) RegionNode(1);
4444  record_for_igvn(slow_region);
4445
4446  // (3) operands must not be null
4447  // We currently perform our null checks with the do_null_check routine.
4448  // This means that the null exceptions will be reported in the caller
4449  // rather than (correctly) reported inside of the native arraycopy call.
4450  // This should be corrected, given time.  We do our null check with the
4451  // stack pointer restored.
4452  _sp += nargs;
4453  src  = do_null_check(src,  T_ARRAY);
4454  dest = do_null_check(dest, T_ARRAY);
4455  _sp -= nargs;
4456
4457  // (4) src_offset must not be negative.
4458  generate_negative_guard(src_offset, slow_region);
4459
4460  // (5) dest_offset must not be negative.
4461  generate_negative_guard(dest_offset, slow_region);
4462
4463  // (6) length must not be negative (moved to generate_arraycopy()).
4464  // generate_negative_guard(length, slow_region);
4465
4466  // (7) src_offset + length must not exceed length of src.
4467  generate_limit_guard(src_offset, length,
4468                       load_array_length(src),
4469                       slow_region);
4470
4471  // (8) dest_offset + length must not exceed length of dest.
4472  generate_limit_guard(dest_offset, length,
4473                       load_array_length(dest),
4474                       slow_region);
4475
4476  // (9) each element of an oop array must be assignable
4477  // The generate_arraycopy subroutine checks this.
4478
4479  // This is where the memory effects are placed:
4480  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4481  generate_arraycopy(adr_type, dest_elem,
4482                     src, src_offset, dest, dest_offset, length,
4483                     false, false, slow_region);
4484
4485  return true;
4486}
4487
4488//-----------------------------generate_arraycopy----------------------
4489// Generate an optimized call to arraycopy.
4490// Caller must guard against non-arrays.
4491// Caller must determine a common array basic-type for both arrays.
4492// Caller must validate offsets against array bounds.
4493// The slow_region has already collected guard failure paths
4494// (such as out of bounds length or non-conformable array types).
4495// The generated code has this shape, in general:
4496//
4497//     if (length == 0)  return   // via zero_path
4498//     slowval = -1
4499//     if (types unknown) {
4500//       slowval = call generic copy loop
4501//       if (slowval == 0)  return  // via checked_path
4502//     } else if (indexes in bounds) {
4503//       if ((is object array) && !(array type check)) {
4504//         slowval = call checked copy loop
4505//         if (slowval == 0)  return  // via checked_path
4506//       } else {
4507//         call bulk copy loop
4508//         return  // via fast_path
4509//       }
4510//     }
4511//     // adjust params for remaining work:
4512//     if (slowval != -1) {
4513//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4514//     }
4515//   slow_region:
4516//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4517//     return  // via slow_call_path
4518//
4519// This routine is used from several intrinsics:  System.arraycopy,
4520// Object.clone (the array subcase), and Arrays.copyOf[Range].
4521//
4522void
4523LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4524                                   BasicType basic_elem_type,
4525                                   Node* src,  Node* src_offset,
4526                                   Node* dest, Node* dest_offset,
4527                                   Node* copy_length,
4528                                   bool disjoint_bases,
4529                                   bool length_never_negative,
4530                                   RegionNode* slow_region) {
4531
4532  if (slow_region == NULL) {
4533    slow_region = new(C,1) RegionNode(1);
4534    record_for_igvn(slow_region);
4535  }
4536
4537  Node* original_dest      = dest;
4538  AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4539  bool  must_clear_dest    = false;
4540
4541  // See if this is the initialization of a newly-allocated array.
4542  // If so, we will take responsibility here for initializing it to zero.
4543  // (Note:  Because tightly_coupled_allocation performs checks on the
4544  // out-edges of the dest, we need to avoid making derived pointers
4545  // from it until we have checked its uses.)
4546  if (ReduceBulkZeroing
4547      && !ZeroTLAB              // pointless if already zeroed
4548      && basic_elem_type != T_CONFLICT // avoid corner case
4549      && !_gvn.eqv_uncast(src, dest)
4550      && ((alloc = tightly_coupled_allocation(dest, slow_region))
4551          != NULL)
4552      && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4553      && alloc->maybe_set_complete(&_gvn)) {
4554    // "You break it, you buy it."
4555    InitializeNode* init = alloc->initialization();
4556    assert(init->is_complete(), "we just did this");
4557    assert(dest->is_CheckCastPP(), "sanity");
4558    assert(dest->in(0)->in(0) == init, "dest pinned");
4559    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4560    // From this point on, every exit path is responsible for
4561    // initializing any non-copied parts of the object to zero.
4562    must_clear_dest = true;
4563  } else {
4564    // No zeroing elimination here.
4565    alloc             = NULL;
4566    //original_dest   = dest;
4567    //must_clear_dest = false;
4568  }
4569
4570  // Results are placed here:
4571  enum { fast_path        = 1,  // normal void-returning assembly stub
4572         checked_path     = 2,  // special assembly stub with cleanup
4573         slow_call_path   = 3,  // something went wrong; call the VM
4574         zero_path        = 4,  // bypass when length of copy is zero
4575         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4576         PATH_LIMIT       = 6
4577  };
4578  RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4579  PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4580  PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4581  record_for_igvn(result_region);
4582  _gvn.set_type_bottom(result_i_o);
4583  _gvn.set_type_bottom(result_memory);
4584  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4585
4586  // The slow_control path:
4587  Node* slow_control;
4588  Node* slow_i_o = i_o();
4589  Node* slow_mem = memory(adr_type);
4590  debug_only(slow_control = (Node*) badAddress);
4591
4592  // Checked control path:
4593  Node* checked_control = top();
4594  Node* checked_mem     = NULL;
4595  Node* checked_i_o     = NULL;
4596  Node* checked_value   = NULL;
4597
4598  if (basic_elem_type == T_CONFLICT) {
4599    assert(!must_clear_dest, "");
4600    Node* cv = generate_generic_arraycopy(adr_type,
4601                                          src, src_offset, dest, dest_offset,
4602                                          copy_length);
4603    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4604    checked_control = control();
4605    checked_i_o     = i_o();
4606    checked_mem     = memory(adr_type);
4607    checked_value   = cv;
4608    set_control(top());         // no fast path
4609  }
4610
4611  Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4612  if (not_pos != NULL) {
4613    PreserveJVMState pjvms(this);
4614    set_control(not_pos);
4615
4616    // (6) length must not be negative.
4617    if (!length_never_negative) {
4618      generate_negative_guard(copy_length, slow_region);
4619    }
4620
4621    // copy_length is 0.
4622    if (!stopped() && must_clear_dest) {
4623      Node* dest_length = alloc->in(AllocateNode::ALength);
4624      if (_gvn.eqv_uncast(copy_length, dest_length)
4625          || _gvn.find_int_con(dest_length, 1) <= 0) {
4626        // There is no zeroing to do. No need for a secondary raw memory barrier.
4627      } else {
4628        // Clear the whole thing since there are no source elements to copy.
4629        generate_clear_array(adr_type, dest, basic_elem_type,
4630                             intcon(0), NULL,
4631                             alloc->in(AllocateNode::AllocSize));
4632        // Use a secondary InitializeNode as raw memory barrier.
4633        // Currently it is needed only on this path since other
4634        // paths have stub or runtime calls as raw memory barriers.
4635        InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4636                                                       Compile::AliasIdxRaw,
4637                                                       top())->as_Initialize();
4638        init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4639      }
4640    }
4641
4642    // Present the results of the fast call.
4643    result_region->init_req(zero_path, control());
4644    result_i_o   ->init_req(zero_path, i_o());
4645    result_memory->init_req(zero_path, memory(adr_type));
4646  }
4647
4648  if (!stopped() && must_clear_dest) {
4649    // We have to initialize the *uncopied* part of the array to zero.
4650    // The copy destination is the slice dest[off..off+len].  The other slices
4651    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4652    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4653    Node* dest_length = alloc->in(AllocateNode::ALength);
4654    Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4655                                                          copy_length) );
4656
4657    // If there is a head section that needs zeroing, do it now.
4658    if (find_int_con(dest_offset, -1) != 0) {
4659      generate_clear_array(adr_type, dest, basic_elem_type,
4660                           intcon(0), dest_offset,
4661                           NULL);
4662    }
4663
4664    // Next, perform a dynamic check on the tail length.
4665    // It is often zero, and we can win big if we prove this.
4666    // There are two wins:  Avoid generating the ClearArray
4667    // with its attendant messy index arithmetic, and upgrade
4668    // the copy to a more hardware-friendly word size of 64 bits.
4669    Node* tail_ctl = NULL;
4670    if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4671      Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4672      Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4673      tail_ctl = generate_slow_guard(bol_lt, NULL);
4674      assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4675    }
4676
4677    // At this point, let's assume there is no tail.
4678    if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4679      // There is no tail.  Try an upgrade to a 64-bit copy.
4680      bool didit = false;
4681      { PreserveJVMState pjvms(this);
4682        didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4683                                         src, src_offset, dest, dest_offset,
4684                                         dest_size);
4685        if (didit) {
4686          // Present the results of the block-copying fast call.
4687          result_region->init_req(bcopy_path, control());
4688          result_i_o   ->init_req(bcopy_path, i_o());
4689          result_memory->init_req(bcopy_path, memory(adr_type));
4690        }
4691      }
4692      if (didit)
4693        set_control(top());     // no regular fast path
4694    }
4695
4696    // Clear the tail, if any.
4697    if (tail_ctl != NULL) {
4698      Node* notail_ctl = stopped() ? NULL : control();
4699      set_control(tail_ctl);
4700      if (notail_ctl == NULL) {
4701        generate_clear_array(adr_type, dest, basic_elem_type,
4702                             dest_tail, NULL,
4703                             dest_size);
4704      } else {
4705        // Make a local merge.
4706        Node* done_ctl = new(C,3) RegionNode(3);
4707        Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4708        done_ctl->init_req(1, notail_ctl);
4709        done_mem->init_req(1, memory(adr_type));
4710        generate_clear_array(adr_type, dest, basic_elem_type,
4711                             dest_tail, NULL,
4712                             dest_size);
4713        done_ctl->init_req(2, control());
4714        done_mem->init_req(2, memory(adr_type));
4715        set_control( _gvn.transform(done_ctl) );
4716        set_memory(  _gvn.transform(done_mem), adr_type );
4717      }
4718    }
4719  }
4720
4721  BasicType copy_type = basic_elem_type;
4722  assert(basic_elem_type != T_ARRAY, "caller must fix this");
4723  if (!stopped() && copy_type == T_OBJECT) {
4724    // If src and dest have compatible element types, we can copy bits.
4725    // Types S[] and D[] are compatible if D is a supertype of S.
4726    //
4727    // If they are not, we will use checked_oop_disjoint_arraycopy,
4728    // which performs a fast optimistic per-oop check, and backs off
4729    // further to JVM_ArrayCopy on the first per-oop check that fails.
4730    // (Actually, we don't move raw bits only; the GC requires card marks.)
4731
4732    // Get the klassOop for both src and dest
4733    Node* src_klass  = load_object_klass(src);
4734    Node* dest_klass = load_object_klass(dest);
4735
4736    // Generate the subtype check.
4737    // This might fold up statically, or then again it might not.
4738    //
4739    // Non-static example:  Copying List<String>.elements to a new String[].
4740    // The backing store for a List<String> is always an Object[],
4741    // but its elements are always type String, if the generic types
4742    // are correct at the source level.
4743    //
4744    // Test S[] against D[], not S against D, because (probably)
4745    // the secondary supertype cache is less busy for S[] than S.
4746    // This usually only matters when D is an interface.
4747    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4748    // Plug failing path into checked_oop_disjoint_arraycopy
4749    if (not_subtype_ctrl != top()) {
4750      PreserveJVMState pjvms(this);
4751      set_control(not_subtype_ctrl);
4752      // (At this point we can assume disjoint_bases, since types differ.)
4753      int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4754      Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4755      Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4756      Node* dest_elem_klass = _gvn.transform(n1);
4757      Node* cv = generate_checkcast_arraycopy(adr_type,
4758                                              dest_elem_klass,
4759                                              src, src_offset, dest, dest_offset,
4760                                              copy_length);
4761      if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4762      checked_control = control();
4763      checked_i_o     = i_o();
4764      checked_mem     = memory(adr_type);
4765      checked_value   = cv;
4766    }
4767    // At this point we know we do not need type checks on oop stores.
4768
4769    // Let's see if we need card marks:
4770    if (alloc != NULL && use_ReduceInitialCardMarks()) {
4771      // If we do not need card marks, copy using the jint or jlong stub.
4772      copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4773      assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4774             "sizes agree");
4775    }
4776  }
4777
4778  if (!stopped()) {
4779    // Generate the fast path, if possible.
4780    PreserveJVMState pjvms(this);
4781    generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4782                                 src, src_offset, dest, dest_offset,
4783                                 ConvI2X(copy_length));
4784
4785    // Present the results of the fast call.
4786    result_region->init_req(fast_path, control());
4787    result_i_o   ->init_req(fast_path, i_o());
4788    result_memory->init_req(fast_path, memory(adr_type));
4789  }
4790
4791  // Here are all the slow paths up to this point, in one bundle:
4792  slow_control = top();
4793  if (slow_region != NULL)
4794    slow_control = _gvn.transform(slow_region);
4795  debug_only(slow_region = (RegionNode*)badAddress);
4796
4797  set_control(checked_control);
4798  if (!stopped()) {
4799    // Clean up after the checked call.
4800    // The returned value is either 0 or -1^K,
4801    // where K = number of partially transferred array elements.
4802    Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4803    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4804    IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4805
4806    // If it is 0, we are done, so transfer to the end.
4807    Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4808    result_region->init_req(checked_path, checks_done);
4809    result_i_o   ->init_req(checked_path, checked_i_o);
4810    result_memory->init_req(checked_path, checked_mem);
4811
4812    // If it is not zero, merge into the slow call.
4813    set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4814    RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4815    PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4816    PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4817    record_for_igvn(slow_reg2);
4818    slow_reg2  ->init_req(1, slow_control);
4819    slow_i_o2  ->init_req(1, slow_i_o);
4820    slow_mem2  ->init_req(1, slow_mem);
4821    slow_reg2  ->init_req(2, control());
4822    slow_i_o2  ->init_req(2, checked_i_o);
4823    slow_mem2  ->init_req(2, checked_mem);
4824
4825    slow_control = _gvn.transform(slow_reg2);
4826    slow_i_o     = _gvn.transform(slow_i_o2);
4827    slow_mem     = _gvn.transform(slow_mem2);
4828
4829    if (alloc != NULL) {
4830      // We'll restart from the very beginning, after zeroing the whole thing.
4831      // This can cause double writes, but that's OK since dest is brand new.
4832      // So we ignore the low 31 bits of the value returned from the stub.
4833    } else {
4834      // We must continue the copy exactly where it failed, or else
4835      // another thread might see the wrong number of writes to dest.
4836      Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4837      Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4838      slow_offset->init_req(1, intcon(0));
4839      slow_offset->init_req(2, checked_offset);
4840      slow_offset  = _gvn.transform(slow_offset);
4841
4842      // Adjust the arguments by the conditionally incoming offset.
4843      Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4844      Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4845      Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4846
4847      // Tweak the node variables to adjust the code produced below:
4848      src_offset  = src_off_plus;
4849      dest_offset = dest_off_plus;
4850      copy_length = length_minus;
4851    }
4852  }
4853
4854  set_control(slow_control);
4855  if (!stopped()) {
4856    // Generate the slow path, if needed.
4857    PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4858
4859    set_memory(slow_mem, adr_type);
4860    set_i_o(slow_i_o);
4861
4862    if (must_clear_dest) {
4863      generate_clear_array(adr_type, dest, basic_elem_type,
4864                           intcon(0), NULL,
4865                           alloc->in(AllocateNode::AllocSize));
4866    }
4867
4868    generate_slow_arraycopy(adr_type,
4869                            src, src_offset, dest, dest_offset,
4870                            copy_length);
4871
4872    result_region->init_req(slow_call_path, control());
4873    result_i_o   ->init_req(slow_call_path, i_o());
4874    result_memory->init_req(slow_call_path, memory(adr_type));
4875  }
4876
4877  // Remove unused edges.
4878  for (uint i = 1; i < result_region->req(); i++) {
4879    if (result_region->in(i) == NULL)
4880      result_region->init_req(i, top());
4881  }
4882
4883  // Finished; return the combined state.
4884  set_control( _gvn.transform(result_region) );
4885  set_i_o(     _gvn.transform(result_i_o)    );
4886  set_memory(  _gvn.transform(result_memory), adr_type );
4887
4888  // The memory edges above are precise in order to model effects around
4889  // array copies accurately to allow value numbering of field loads around
4890  // arraycopy.  Such field loads, both before and after, are common in Java
4891  // collections and similar classes involving header/array data structures.
4892  //
4893  // But with low number of register or when some registers are used or killed
4894  // by arraycopy calls it causes registers spilling on stack. See 6544710.
4895  // The next memory barrier is added to avoid it. If the arraycopy can be
4896  // optimized away (which it can, sometimes) then we can manually remove
4897  // the membar also.
4898  //
4899  // Do not let reads from the cloned object float above the arraycopy.
4900  if (InsertMemBarAfterArraycopy || alloc != NULL)
4901    insert_mem_bar(Op_MemBarCPUOrder);
4902}
4903
4904
4905// Helper function which determines if an arraycopy immediately follows
4906// an allocation, with no intervening tests or other escapes for the object.
4907AllocateArrayNode*
4908LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4909                                           RegionNode* slow_region) {
4910  if (stopped())             return NULL;  // no fast path
4911  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4912
4913  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4914  if (alloc == NULL)  return NULL;
4915
4916  Node* rawmem = memory(Compile::AliasIdxRaw);
4917  // Is the allocation's memory state untouched?
4918  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4919    // Bail out if there have been raw-memory effects since the allocation.
4920    // (Example:  There might have been a call or safepoint.)
4921    return NULL;
4922  }
4923  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4924  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4925    return NULL;
4926  }
4927
4928  // There must be no unexpected observers of this allocation.
4929  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4930    Node* obs = ptr->fast_out(i);
4931    if (obs != this->map()) {
4932      return NULL;
4933    }
4934  }
4935
4936  // This arraycopy must unconditionally follow the allocation of the ptr.
4937  Node* alloc_ctl = ptr->in(0);
4938  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4939
4940  Node* ctl = control();
4941  while (ctl != alloc_ctl) {
4942    // There may be guards which feed into the slow_region.
4943    // Any other control flow means that we might not get a chance
4944    // to finish initializing the allocated object.
4945    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4946      IfNode* iff = ctl->in(0)->as_If();
4947      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4948      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4949      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4950        ctl = iff->in(0);       // This test feeds the known slow_region.
4951        continue;
4952      }
4953      // One more try:  Various low-level checks bottom out in
4954      // uncommon traps.  If the debug-info of the trap omits
4955      // any reference to the allocation, as we've already
4956      // observed, then there can be no objection to the trap.
4957      bool found_trap = false;
4958      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4959        Node* obs = not_ctl->fast_out(j);
4960        if (obs->in(0) == not_ctl && obs->is_Call() &&
4961            (obs->as_Call()->entry_point() ==
4962             SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
4963          found_trap = true; break;
4964        }
4965      }
4966      if (found_trap) {
4967        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4968        continue;
4969      }
4970    }
4971    return NULL;
4972  }
4973
4974  // If we get this far, we have an allocation which immediately
4975  // precedes the arraycopy, and we can take over zeroing the new object.
4976  // The arraycopy will finish the initialization, and provide
4977  // a new control state to which we will anchor the destination pointer.
4978
4979  return alloc;
4980}
4981
4982// Helper for initialization of arrays, creating a ClearArray.
4983// It writes zero bits in [start..end), within the body of an array object.
4984// The memory effects are all chained onto the 'adr_type' alias category.
4985//
4986// Since the object is otherwise uninitialized, we are free
4987// to put a little "slop" around the edges of the cleared area,
4988// as long as it does not go back into the array's header,
4989// or beyond the array end within the heap.
4990//
4991// The lower edge can be rounded down to the nearest jint and the
4992// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
4993//
4994// Arguments:
4995//   adr_type           memory slice where writes are generated
4996//   dest               oop of the destination array
4997//   basic_elem_type    element type of the destination
4998//   slice_idx          array index of first element to store
4999//   slice_len          number of elements to store (or NULL)
5000//   dest_size          total size in bytes of the array object
5001//
5002// Exactly one of slice_len or dest_size must be non-NULL.
5003// If dest_size is non-NULL, zeroing extends to the end of the object.
5004// If slice_len is non-NULL, the slice_idx value must be a constant.
5005void
5006LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5007                                     Node* dest,
5008                                     BasicType basic_elem_type,
5009                                     Node* slice_idx,
5010                                     Node* slice_len,
5011                                     Node* dest_size) {
5012  // one or the other but not both of slice_len and dest_size:
5013  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5014  if (slice_len == NULL)  slice_len = top();
5015  if (dest_size == NULL)  dest_size = top();
5016
5017  // operate on this memory slice:
5018  Node* mem = memory(adr_type); // memory slice to operate on
5019
5020  // scaling and rounding of indexes:
5021  int scale = exact_log2(type2aelembytes(basic_elem_type));
5022  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5023  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5024  int bump_bit  = (-1 << scale) & BytesPerInt;
5025
5026  // determine constant starts and ends
5027  const intptr_t BIG_NEG = -128;
5028  assert(BIG_NEG + 2*abase < 0, "neg enough");
5029  intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5030  intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5031  if (slice_len_con == 0) {
5032    return;                     // nothing to do here
5033  }
5034  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5035  intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5036  if (slice_idx_con >= 0 && slice_len_con >= 0) {
5037    assert(end_con < 0, "not two cons");
5038    end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5039                       BytesPerLong);
5040  }
5041
5042  if (start_con >= 0 && end_con >= 0) {
5043    // Constant start and end.  Simple.
5044    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5045                                       start_con, end_con, &_gvn);
5046  } else if (start_con >= 0 && dest_size != top()) {
5047    // Constant start, pre-rounded end after the tail of the array.
5048    Node* end = dest_size;
5049    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5050                                       start_con, end, &_gvn);
5051  } else if (start_con >= 0 && slice_len != top()) {
5052    // Constant start, non-constant end.  End needs rounding up.
5053    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5054    intptr_t end_base  = abase + (slice_idx_con << scale);
5055    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5056    Node*    end       = ConvI2X(slice_len);
5057    if (scale != 0)
5058      end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
5059    end_base += end_round;
5060    end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
5061    end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
5062    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5063                                       start_con, end, &_gvn);
5064  } else if (start_con < 0 && dest_size != top()) {
5065    // Non-constant start, pre-rounded end after the tail of the array.
5066    // This is almost certainly a "round-to-end" operation.
5067    Node* start = slice_idx;
5068    start = ConvI2X(start);
5069    if (scale != 0)
5070      start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
5071    start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
5072    if ((bump_bit | clear_low) != 0) {
5073      int to_clear = (bump_bit | clear_low);
5074      // Align up mod 8, then store a jint zero unconditionally
5075      // just before the mod-8 boundary.
5076      if (((abase + bump_bit) & ~to_clear) - bump_bit
5077          < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5078        bump_bit = 0;
5079        assert((abase & to_clear) == 0, "array base must be long-aligned");
5080      } else {
5081        // Bump 'start' up to (or past) the next jint boundary:
5082        start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
5083        assert((abase & clear_low) == 0, "array base must be int-aligned");
5084      }
5085      // Round bumped 'start' down to jlong boundary in body of array.
5086      start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
5087      if (bump_bit != 0) {
5088        // Store a zero to the immediately preceding jint:
5089        Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
5090        Node* p1 = basic_plus_adr(dest, x1);
5091        mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5092        mem = _gvn.transform(mem);
5093      }
5094    }
5095    Node* end = dest_size; // pre-rounded
5096    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5097                                       start, end, &_gvn);
5098  } else {
5099    // Non-constant start, unrounded non-constant end.
5100    // (Nobody zeroes a random midsection of an array using this routine.)
5101    ShouldNotReachHere();       // fix caller
5102  }
5103
5104  // Done.
5105  set_memory(mem, adr_type);
5106}
5107
5108
5109bool
5110LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5111                                         BasicType basic_elem_type,
5112                                         AllocateNode* alloc,
5113                                         Node* src,  Node* src_offset,
5114                                         Node* dest, Node* dest_offset,
5115                                         Node* dest_size) {
5116  // See if there is an advantage from block transfer.
5117  int scale = exact_log2(type2aelembytes(basic_elem_type));
5118  if (scale >= LogBytesPerLong)
5119    return false;               // it is already a block transfer
5120
5121  // Look at the alignment of the starting offsets.
5122  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5123  const intptr_t BIG_NEG = -128;
5124  assert(BIG_NEG + 2*abase < 0, "neg enough");
5125
5126  intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
5127  intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
5128  if (src_off < 0 || dest_off < 0)
5129    // At present, we can only understand constants.
5130    return false;
5131
5132  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5133    // Non-aligned; too bad.
5134    // One more chance:  Pick off an initial 32-bit word.
5135    // This is a common case, since abase can be odd mod 8.
5136    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5137        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5138      Node* sptr = basic_plus_adr(src,  src_off);
5139      Node* dptr = basic_plus_adr(dest, dest_off);
5140      Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5141      store_to_memory(control(), dptr, sval, T_INT, adr_type);
5142      src_off += BytesPerInt;
5143      dest_off += BytesPerInt;
5144    } else {
5145      return false;
5146    }
5147  }
5148  assert(src_off % BytesPerLong == 0, "");
5149  assert(dest_off % BytesPerLong == 0, "");
5150
5151  // Do this copy by giant steps.
5152  Node* sptr  = basic_plus_adr(src,  src_off);
5153  Node* dptr  = basic_plus_adr(dest, dest_off);
5154  Node* countx = dest_size;
5155  countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5156  countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5157
5158  bool disjoint_bases = true;   // since alloc != NULL
5159  generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5160                               sptr, NULL, dptr, NULL, countx);
5161
5162  return true;
5163}
5164
5165
5166// Helper function; generates code for the slow case.
5167// We make a call to a runtime method which emulates the native method,
5168// but without the native wrapper overhead.
5169void
5170LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5171                                        Node* src,  Node* src_offset,
5172                                        Node* dest, Node* dest_offset,
5173                                        Node* copy_length) {
5174  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5175                                 OptoRuntime::slow_arraycopy_Type(),
5176                                 OptoRuntime::slow_arraycopy_Java(),
5177                                 "slow_arraycopy", adr_type,
5178                                 src, src_offset, dest, dest_offset,
5179                                 copy_length);
5180
5181  // Handle exceptions thrown by this fellow:
5182  make_slow_call_ex(call, env()->Throwable_klass(), false);
5183}
5184
5185// Helper function; generates code for cases requiring runtime checks.
5186Node*
5187LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5188                                             Node* dest_elem_klass,
5189                                             Node* src,  Node* src_offset,
5190                                             Node* dest, Node* dest_offset,
5191                                             Node* copy_length) {
5192  if (stopped())  return NULL;
5193
5194  address copyfunc_addr = StubRoutines::checkcast_arraycopy();
5195  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5196    return NULL;
5197  }
5198
5199  // Pick out the parameters required to perform a store-check
5200  // for the target array.  This is an optimistic check.  It will
5201  // look in each non-null element's class, at the desired klass's
5202  // super_check_offset, for the desired klass.
5203  int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
5204  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5205  Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
5206  Node* check_offset = _gvn.transform(n3);
5207  Node* check_value  = dest_elem_klass;
5208
5209  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5210  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5211
5212  // (We know the arrays are never conjoint, because their types differ.)
5213  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5214                                 OptoRuntime::checkcast_arraycopy_Type(),
5215                                 copyfunc_addr, "checkcast_arraycopy", adr_type,
5216                                 // five arguments, of which two are
5217                                 // intptr_t (jlong in LP64)
5218                                 src_start, dest_start,
5219                                 copy_length XTOP,
5220                                 check_offset XTOP,
5221                                 check_value);
5222
5223  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5224}
5225
5226
5227// Helper function; generates code for cases requiring runtime checks.
5228Node*
5229LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5230                                           Node* src,  Node* src_offset,
5231                                           Node* dest, Node* dest_offset,
5232                                           Node* copy_length) {
5233  if (stopped())  return NULL;
5234
5235  address copyfunc_addr = StubRoutines::generic_arraycopy();
5236  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5237    return NULL;
5238  }
5239
5240  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5241                    OptoRuntime::generic_arraycopy_Type(),
5242                    copyfunc_addr, "generic_arraycopy", adr_type,
5243                    src, src_offset, dest, dest_offset, copy_length);
5244
5245  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5246}
5247
5248// Helper function; generates the fast out-of-line call to an arraycopy stub.
5249void
5250LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5251                                             BasicType basic_elem_type,
5252                                             bool disjoint_bases,
5253                                             Node* src,  Node* src_offset,
5254                                             Node* dest, Node* dest_offset,
5255                                             Node* copy_length) {
5256  if (stopped())  return;               // nothing to do
5257
5258  Node* src_start  = src;
5259  Node* dest_start = dest;
5260  if (src_offset != NULL || dest_offset != NULL) {
5261    assert(src_offset != NULL && dest_offset != NULL, "");
5262    src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5263    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5264  }
5265
5266  // Figure out which arraycopy runtime method to call.
5267  const char* copyfunc_name = "arraycopy";
5268  address     copyfunc_addr =
5269      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5270                          disjoint_bases, copyfunc_name);
5271
5272  // Call it.  Note that the count_ix value is not scaled to a byte-size.
5273  make_runtime_call(RC_LEAF|RC_NO_FP,
5274                    OptoRuntime::fast_arraycopy_Type(),
5275                    copyfunc_addr, copyfunc_name, adr_type,
5276                    src_start, dest_start, copy_length XTOP);
5277}
5278