library_call.cpp revision 12787:5242609b8088
1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "compiler/compileBroker.hpp"
30#include "compiler/compileLog.hpp"
31#include "memory/resourceArea.hpp"
32#include "oops/objArrayKlass.hpp"
33#include "opto/addnode.hpp"
34#include "opto/arraycopynode.hpp"
35#include "opto/c2compiler.hpp"
36#include "opto/callGenerator.hpp"
37#include "opto/castnode.hpp"
38#include "opto/cfgnode.hpp"
39#include "opto/convertnode.hpp"
40#include "opto/countbitsnode.hpp"
41#include "opto/intrinsicnode.hpp"
42#include "opto/idealKit.hpp"
43#include "opto/mathexactnode.hpp"
44#include "opto/movenode.hpp"
45#include "opto/mulnode.hpp"
46#include "opto/narrowptrnode.hpp"
47#include "opto/opaquenode.hpp"
48#include "opto/parse.hpp"
49#include "opto/runtime.hpp"
50#include "opto/subnode.hpp"
51#include "prims/nativeLookup.hpp"
52#include "prims/unsafe.hpp"
53#include "runtime/sharedRuntime.hpp"
54#ifdef TRACE_HAVE_INTRINSICS
55#include "trace/traceMacros.hpp"
56#endif
57
58class LibraryIntrinsic : public InlineCallGenerator {
59  // Extend the set of intrinsics known to the runtime:
60 public:
61 private:
62  bool             _is_virtual;
63  bool             _does_virtual_dispatch;
64  int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
65  int8_t           _last_predicate; // Last generated predicate
66  vmIntrinsics::ID _intrinsic_id;
67
68 public:
69  LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
70    : InlineCallGenerator(m),
71      _is_virtual(is_virtual),
72      _does_virtual_dispatch(does_virtual_dispatch),
73      _predicates_count((int8_t)predicates_count),
74      _last_predicate((int8_t)-1),
75      _intrinsic_id(id)
76  {
77  }
78  virtual bool is_intrinsic() const { return true; }
79  virtual bool is_virtual()   const { return _is_virtual; }
80  virtual bool is_predicated() const { return _predicates_count > 0; }
81  virtual int  predicates_count() const { return _predicates_count; }
82  virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
83  virtual JVMState* generate(JVMState* jvms);
84  virtual Node* generate_predicate(JVMState* jvms, int predicate);
85  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
86};
87
88
89// Local helper class for LibraryIntrinsic:
90class LibraryCallKit : public GraphKit {
91 private:
92  LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
93  Node*             _result;        // the result node, if any
94  int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
95
96  const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
97
98 public:
99  LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
100    : GraphKit(jvms),
101      _intrinsic(intrinsic),
102      _result(NULL)
103  {
104    // Check if this is a root compile.  In that case we don't have a caller.
105    if (!jvms->has_method()) {
106      _reexecute_sp = sp();
107    } else {
108      // Find out how many arguments the interpreter needs when deoptimizing
109      // and save the stack pointer value so it can used by uncommon_trap.
110      // We find the argument count by looking at the declared signature.
111      bool ignored_will_link;
112      ciSignature* declared_signature = NULL;
113      ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
114      const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
115      _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
116    }
117  }
118
119  virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
120
121  ciMethod*         caller()    const    { return jvms()->method(); }
122  int               bci()       const    { return jvms()->bci(); }
123  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
124  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
125  ciMethod*         callee()    const    { return _intrinsic->method(); }
126
127  bool  try_to_inline(int predicate);
128  Node* try_to_predicate(int predicate);
129
130  void push_result() {
131    // Push the result onto the stack.
132    if (!stopped() && result() != NULL) {
133      BasicType bt = result()->bottom_type()->basic_type();
134      push_node(bt, result());
135    }
136  }
137
138 private:
139  void fatal_unexpected_iid(vmIntrinsics::ID iid) {
140    fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
141  }
142
143  void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
144  void  set_result(RegionNode* region, PhiNode* value);
145  Node*     result() { return _result; }
146
147  virtual int reexecute_sp() { return _reexecute_sp; }
148
149  // Helper functions to inline natives
150  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
151  Node* generate_slow_guard(Node* test, RegionNode* region);
152  Node* generate_fair_guard(Node* test, RegionNode* region);
153  Node* generate_negative_guard(Node* index, RegionNode* region,
154                                // resulting CastII of index:
155                                Node* *pos_index = NULL);
156  Node* generate_limit_guard(Node* offset, Node* subseq_length,
157                             Node* array_length,
158                             RegionNode* region);
159  void  generate_string_range_check(Node* array, Node* offset,
160                                    Node* length, bool char_count);
161  Node* generate_current_thread(Node* &tls_output);
162  Node* load_mirror_from_klass(Node* klass);
163  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
164                                      RegionNode* region, int null_path,
165                                      int offset);
166  Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
167                               RegionNode* region, int null_path) {
168    int offset = java_lang_Class::klass_offset_in_bytes();
169    return load_klass_from_mirror_common(mirror, never_see_null,
170                                         region, null_path,
171                                         offset);
172  }
173  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
174                                     RegionNode* region, int null_path) {
175    int offset = java_lang_Class::array_klass_offset_in_bytes();
176    return load_klass_from_mirror_common(mirror, never_see_null,
177                                         region, null_path,
178                                         offset);
179  }
180  Node* generate_access_flags_guard(Node* kls,
181                                    int modifier_mask, int modifier_bits,
182                                    RegionNode* region);
183  Node* generate_interface_guard(Node* kls, RegionNode* region);
184  Node* generate_array_guard(Node* kls, RegionNode* region) {
185    return generate_array_guard_common(kls, region, false, false);
186  }
187  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
188    return generate_array_guard_common(kls, region, false, true);
189  }
190  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
191    return generate_array_guard_common(kls, region, true, false);
192  }
193  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
194    return generate_array_guard_common(kls, region, true, true);
195  }
196  Node* generate_array_guard_common(Node* kls, RegionNode* region,
197                                    bool obj_array, bool not_array);
198  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
199  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
200                                     bool is_virtual = false, bool is_static = false);
201  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
202    return generate_method_call(method_id, false, true);
203  }
204  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
205    return generate_method_call(method_id, true, false);
206  }
207  Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
208  Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
209
210  Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
211  bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
212  bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
213  bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
214  Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
215                          RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
216  bool inline_string_indexOfChar();
217  bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
218  bool inline_string_toBytesU();
219  bool inline_string_getCharsU();
220  bool inline_string_copy(bool compress);
221  bool inline_string_char_access(bool is_store);
222  Node* round_double_node(Node* n);
223  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
224  bool inline_math_native(vmIntrinsics::ID id);
225  bool inline_math(vmIntrinsics::ID id);
226  template <typename OverflowOp>
227  bool inline_math_overflow(Node* arg1, Node* arg2);
228  void inline_math_mathExact(Node* math, Node* test);
229  bool inline_math_addExactI(bool is_increment);
230  bool inline_math_addExactL(bool is_increment);
231  bool inline_math_multiplyExactI();
232  bool inline_math_multiplyExactL();
233  bool inline_math_negateExactI();
234  bool inline_math_negateExactL();
235  bool inline_math_subtractExactI(bool is_decrement);
236  bool inline_math_subtractExactL(bool is_decrement);
237  bool inline_min_max(vmIntrinsics::ID id);
238  bool inline_notify(vmIntrinsics::ID id);
239  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
240  // This returns Type::AnyPtr, RawPtr, or OopPtr.
241  int classify_unsafe_addr(Node* &base, Node* &offset);
242  Node* make_unsafe_address(Node* base, Node* offset);
243  // Helper for inline_unsafe_access.
244  // Generates the guards that check whether the result of
245  // Unsafe.getObject should be recorded in an SATB log buffer.
246  void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
247
248  typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
249  bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
250  static bool klass_needs_init_guard(Node* kls);
251  bool inline_unsafe_allocate();
252  bool inline_unsafe_newArray(bool uninitialized);
253  bool inline_unsafe_copyMemory();
254  bool inline_native_currentThread();
255
256  bool inline_native_time_funcs(address method, const char* funcName);
257#ifdef TRACE_HAVE_INTRINSICS
258  bool inline_native_classID();
259  bool inline_native_getBufferWriter();
260#endif
261  bool inline_native_isInterrupted();
262  bool inline_native_Class_query(vmIntrinsics::ID id);
263  bool inline_native_subtype_check();
264  bool inline_native_getLength();
265  bool inline_array_copyOf(bool is_copyOfRange);
266  bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
267  bool inline_preconditions_checkIndex();
268  void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
269  bool inline_native_clone(bool is_virtual);
270  bool inline_native_Reflection_getCallerClass();
271  // Helper function for inlining native object hash method
272  bool inline_native_hashcode(bool is_virtual, bool is_static);
273  bool inline_native_getClass();
274
275  // Helper functions for inlining arraycopy
276  bool inline_arraycopy();
277  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
278                                                RegionNode* slow_region);
279  JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
280  void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
281                                      uint new_idx);
282
283  typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
284  MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
285  MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
286  bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
287  bool inline_unsafe_fence(vmIntrinsics::ID id);
288  bool inline_onspinwait();
289  bool inline_fp_conversions(vmIntrinsics::ID id);
290  bool inline_number_methods(vmIntrinsics::ID id);
291  bool inline_reference_get();
292  bool inline_Class_cast();
293  bool inline_aescrypt_Block(vmIntrinsics::ID id);
294  bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
295  bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
296  Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
297  Node* inline_counterMode_AESCrypt_predicate();
298  Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
299  Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
300  bool inline_ghash_processBlocks();
301  bool inline_sha_implCompress(vmIntrinsics::ID id);
302  bool inline_digestBase_implCompressMB(int predicate);
303  bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
304                                 bool long_state, address stubAddr, const char *stubName,
305                                 Node* src_start, Node* ofs, Node* limit);
306  Node* get_state_from_sha_object(Node *sha_object);
307  Node* get_state_from_sha5_object(Node *sha_object);
308  Node* inline_digestBase_implCompressMB_predicate(int predicate);
309  bool inline_encodeISOArray();
310  bool inline_updateCRC32();
311  bool inline_updateBytesCRC32();
312  bool inline_updateByteBufferCRC32();
313  Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
314  bool inline_updateBytesCRC32C();
315  bool inline_updateDirectByteBufferCRC32C();
316  bool inline_updateBytesAdler32();
317  bool inline_updateByteBufferAdler32();
318  bool inline_multiplyToLen();
319  bool inline_hasNegatives();
320  bool inline_squareToLen();
321  bool inline_mulAdd();
322  bool inline_montgomeryMultiply();
323  bool inline_montgomerySquare();
324  bool inline_vectorizedMismatch();
325  bool inline_fma(vmIntrinsics::ID id);
326
327  bool inline_profileBoolean();
328  bool inline_isCompileConstant();
329};
330
331//---------------------------make_vm_intrinsic----------------------------
332CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
333  vmIntrinsics::ID id = m->intrinsic_id();
334  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
335
336  if (!m->is_loaded()) {
337    // Do not attempt to inline unloaded methods.
338    return NULL;
339  }
340
341  C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
342  bool is_available = false;
343
344  {
345    // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
346    // the compiler must transition to '_thread_in_vm' state because both
347    // methods access VM-internal data.
348    VM_ENTRY_MARK;
349    methodHandle mh(THREAD, m->get_Method());
350    is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
351                   !C->directive()->is_intrinsic_disabled(mh) &&
352                   !vmIntrinsics::is_disabled_by_flags(mh);
353
354  }
355
356  if (is_available) {
357    assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
358    assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
359    return new LibraryIntrinsic(m, is_virtual,
360                                vmIntrinsics::predicates_needed(id),
361                                vmIntrinsics::does_virtual_dispatch(id),
362                                (vmIntrinsics::ID) id);
363  } else {
364    return NULL;
365  }
366}
367
368//----------------------register_library_intrinsics-----------------------
369// Initialize this file's data structures, for each Compile instance.
370void Compile::register_library_intrinsics() {
371  // Nothing to do here.
372}
373
374JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
375  LibraryCallKit kit(jvms, this);
376  Compile* C = kit.C;
377  int nodes = C->unique();
378#ifndef PRODUCT
379  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
380    char buf[1000];
381    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
382    tty->print_cr("Intrinsic %s", str);
383  }
384#endif
385  ciMethod* callee = kit.callee();
386  const int bci    = kit.bci();
387
388  // Try to inline the intrinsic.
389  if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
390      kit.try_to_inline(_last_predicate)) {
391    if (C->print_intrinsics() || C->print_inlining()) {
392      C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
393    }
394    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
395    if (C->log()) {
396      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
397                     vmIntrinsics::name_at(intrinsic_id()),
398                     (is_virtual() ? " virtual='1'" : ""),
399                     C->unique() - nodes);
400    }
401    // Push the result from the inlined method onto the stack.
402    kit.push_result();
403    C->print_inlining_update(this);
404    return kit.transfer_exceptions_into_jvms();
405  }
406
407  // The intrinsic bailed out
408  if (C->print_intrinsics() || C->print_inlining()) {
409    if (jvms->has_method()) {
410      // Not a root compile.
411      const char* msg;
412      if (callee->intrinsic_candidate()) {
413        msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
414      } else {
415        msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
416                           : "failed to inline (intrinsic), method not annotated";
417      }
418      C->print_inlining(callee, jvms->depth() - 1, bci, msg);
419    } else {
420      // Root compile
421      tty->print("Did not generate intrinsic %s%s at bci:%d in",
422               vmIntrinsics::name_at(intrinsic_id()),
423               (is_virtual() ? " (virtual)" : ""), bci);
424    }
425  }
426  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
427  C->print_inlining_update(this);
428  return NULL;
429}
430
431Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
432  LibraryCallKit kit(jvms, this);
433  Compile* C = kit.C;
434  int nodes = C->unique();
435  _last_predicate = predicate;
436#ifndef PRODUCT
437  assert(is_predicated() && predicate < predicates_count(), "sanity");
438  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
439    char buf[1000];
440    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
441    tty->print_cr("Predicate for intrinsic %s", str);
442  }
443#endif
444  ciMethod* callee = kit.callee();
445  const int bci    = kit.bci();
446
447  Node* slow_ctl = kit.try_to_predicate(predicate);
448  if (!kit.failing()) {
449    if (C->print_intrinsics() || C->print_inlining()) {
450      C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
451    }
452    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
453    if (C->log()) {
454      C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
455                     vmIntrinsics::name_at(intrinsic_id()),
456                     (is_virtual() ? " virtual='1'" : ""),
457                     C->unique() - nodes);
458    }
459    return slow_ctl; // Could be NULL if the check folds.
460  }
461
462  // The intrinsic bailed out
463  if (C->print_intrinsics() || C->print_inlining()) {
464    if (jvms->has_method()) {
465      // Not a root compile.
466      const char* msg = "failed to generate predicate for intrinsic";
467      C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
468    } else {
469      // Root compile
470      C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
471                                        vmIntrinsics::name_at(intrinsic_id()),
472                                        (is_virtual() ? " (virtual)" : ""), bci);
473    }
474  }
475  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
476  return NULL;
477}
478
479bool LibraryCallKit::try_to_inline(int predicate) {
480  // Handle symbolic names for otherwise undistinguished boolean switches:
481  const bool is_store       = true;
482  const bool is_compress    = true;
483  const bool is_static      = true;
484  const bool is_volatile    = true;
485
486  if (!jvms()->has_method()) {
487    // Root JVMState has a null method.
488    assert(map()->memory()->Opcode() == Op_Parm, "");
489    // Insert the memory aliasing node
490    set_all_memory(reset_memory());
491  }
492  assert(merged_memory(), "");
493
494
495  switch (intrinsic_id()) {
496  case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
497  case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
498  case vmIntrinsics::_getClass:                 return inline_native_getClass();
499
500  case vmIntrinsics::_dsin:
501  case vmIntrinsics::_dcos:
502  case vmIntrinsics::_dtan:
503  case vmIntrinsics::_dabs:
504  case vmIntrinsics::_datan2:
505  case vmIntrinsics::_dsqrt:
506  case vmIntrinsics::_dexp:
507  case vmIntrinsics::_dlog:
508  case vmIntrinsics::_dlog10:
509  case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
510
511  case vmIntrinsics::_min:
512  case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
513
514  case vmIntrinsics::_notify:
515  case vmIntrinsics::_notifyAll:
516    if (InlineNotify) {
517      return inline_notify(intrinsic_id());
518    }
519    return false;
520
521  case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
522  case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
523  case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
524  case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
525  case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
526  case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
527  case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
528  case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
529  case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
530  case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
531  case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
532  case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
533
534  case vmIntrinsics::_arraycopy:                return inline_arraycopy();
535
536  case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
537  case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
538  case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
539  case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
540
541  case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
542  case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
543  case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
544  case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
545  case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
546  case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
547  case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
548
549  case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
550  case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
551
552  case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
553  case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
554  case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
555  case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
556
557  case vmIntrinsics::_compressStringC:
558  case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
559  case vmIntrinsics::_inflateStringC:
560  case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
561
562  case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
563  case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
564  case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
565  case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
566  case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
567  case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
568  case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
569  case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
570  case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
571
572  case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
573  case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
574  case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
575  case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
576  case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
577  case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
578  case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
579  case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
580  case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
581
582  case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
583  case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
584  case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
585  case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
586  case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
587  case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
588  case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
589  case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
590  case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
591
592  case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
593  case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
594  case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
595  case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
596  case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
597  case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
598  case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
599  case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
600  case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
601
602  case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
603  case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
604  case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
605  case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
606
607  case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
608  case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
609  case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
610  case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
611
612  case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
613  case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
614  case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
615  case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
616  case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
617  case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
618  case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
619  case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
620  case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
621
622  case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
623  case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
624  case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
625  case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
626  case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
627  case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
628  case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
629  case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
630  case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
631
632  case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
633  case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
634  case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
635  case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
636  case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
637  case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
638  case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
639  case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
640  case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
641
642  case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
643  case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
644  case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
645  case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
646  case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
647  case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
648  case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
649  case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
650  case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
651
652  case vmIntrinsics::_compareAndSetObject:              return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
653  case vmIntrinsics::_compareAndSetByte:                return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
654  case vmIntrinsics::_compareAndSetShort:               return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
655  case vmIntrinsics::_compareAndSetInt:                 return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
656  case vmIntrinsics::_compareAndSetLong:                return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
657
658  case vmIntrinsics::_weakCompareAndSetObjectPlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
659  case vmIntrinsics::_weakCompareAndSetObjectAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
660  case vmIntrinsics::_weakCompareAndSetObjectRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
661  case vmIntrinsics::_weakCompareAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
662  case vmIntrinsics::_weakCompareAndSetBytePlain:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
663  case vmIntrinsics::_weakCompareAndSetByteAcquire:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
664  case vmIntrinsics::_weakCompareAndSetByteRelease:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
665  case vmIntrinsics::_weakCompareAndSetByte:            return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
666  case vmIntrinsics::_weakCompareAndSetShortPlain:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
667  case vmIntrinsics::_weakCompareAndSetShortAcquire:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
668  case vmIntrinsics::_weakCompareAndSetShortRelease:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
669  case vmIntrinsics::_weakCompareAndSetShort:           return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
670  case vmIntrinsics::_weakCompareAndSetIntPlain:        return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
671  case vmIntrinsics::_weakCompareAndSetIntAcquire:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
672  case vmIntrinsics::_weakCompareAndSetIntRelease:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
673  case vmIntrinsics::_weakCompareAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
674  case vmIntrinsics::_weakCompareAndSetLongPlain:       return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
675  case vmIntrinsics::_weakCompareAndSetLongAcquire:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
676  case vmIntrinsics::_weakCompareAndSetLongRelease:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
677  case vmIntrinsics::_weakCompareAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
678
679  case vmIntrinsics::_compareAndExchangeObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
680  case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
681  case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
682  case vmIntrinsics::_compareAndExchangeByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
683  case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
684  case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
685  case vmIntrinsics::_compareAndExchangeShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
686  case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
687  case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
688  case vmIntrinsics::_compareAndExchangeInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
689  case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
690  case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
691  case vmIntrinsics::_compareAndExchangeLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
692  case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
693  case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
694
695  case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
696  case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
697  case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
698  case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
699
700  case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
701  case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
702  case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
703  case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
704  case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
705
706  case vmIntrinsics::_loadFence:
707  case vmIntrinsics::_storeFence:
708  case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
709
710  case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
711
712  case vmIntrinsics::_currentThread:            return inline_native_currentThread();
713  case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
714
715#ifdef TRACE_HAVE_INTRINSICS
716  case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
717  case vmIntrinsics::_getClassId:               return inline_native_classID();
718  case vmIntrinsics::_getBufferWriter:          return inline_native_getBufferWriter();
719#endif
720  case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
721  case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
722  case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
723  case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
724  case vmIntrinsics::_getLength:                return inline_native_getLength();
725  case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
726  case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
727  case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
728  case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
729  case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
730  case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
731
732  case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
733  case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
734
735  case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
736
737  case vmIntrinsics::_isInstance:
738  case vmIntrinsics::_getModifiers:
739  case vmIntrinsics::_isInterface:
740  case vmIntrinsics::_isArray:
741  case vmIntrinsics::_isPrimitive:
742  case vmIntrinsics::_getSuperclass:
743  case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
744
745  case vmIntrinsics::_floatToRawIntBits:
746  case vmIntrinsics::_floatToIntBits:
747  case vmIntrinsics::_intBitsToFloat:
748  case vmIntrinsics::_doubleToRawLongBits:
749  case vmIntrinsics::_doubleToLongBits:
750  case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
751
752  case vmIntrinsics::_numberOfLeadingZeros_i:
753  case vmIntrinsics::_numberOfLeadingZeros_l:
754  case vmIntrinsics::_numberOfTrailingZeros_i:
755  case vmIntrinsics::_numberOfTrailingZeros_l:
756  case vmIntrinsics::_bitCount_i:
757  case vmIntrinsics::_bitCount_l:
758  case vmIntrinsics::_reverseBytes_i:
759  case vmIntrinsics::_reverseBytes_l:
760  case vmIntrinsics::_reverseBytes_s:
761  case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
762
763  case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
764
765  case vmIntrinsics::_Reference_get:            return inline_reference_get();
766
767  case vmIntrinsics::_Class_cast:               return inline_Class_cast();
768
769  case vmIntrinsics::_aescrypt_encryptBlock:
770  case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
771
772  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
773  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
774    return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
775
776  case vmIntrinsics::_counterMode_AESCrypt:
777    return inline_counterMode_AESCrypt(intrinsic_id());
778
779  case vmIntrinsics::_sha_implCompress:
780  case vmIntrinsics::_sha2_implCompress:
781  case vmIntrinsics::_sha5_implCompress:
782    return inline_sha_implCompress(intrinsic_id());
783
784  case vmIntrinsics::_digestBase_implCompressMB:
785    return inline_digestBase_implCompressMB(predicate);
786
787  case vmIntrinsics::_multiplyToLen:
788    return inline_multiplyToLen();
789
790  case vmIntrinsics::_squareToLen:
791    return inline_squareToLen();
792
793  case vmIntrinsics::_mulAdd:
794    return inline_mulAdd();
795
796  case vmIntrinsics::_montgomeryMultiply:
797    return inline_montgomeryMultiply();
798  case vmIntrinsics::_montgomerySquare:
799    return inline_montgomerySquare();
800
801  case vmIntrinsics::_vectorizedMismatch:
802    return inline_vectorizedMismatch();
803
804  case vmIntrinsics::_ghash_processBlocks:
805    return inline_ghash_processBlocks();
806
807  case vmIntrinsics::_encodeISOArray:
808  case vmIntrinsics::_encodeByteISOArray:
809    return inline_encodeISOArray();
810
811  case vmIntrinsics::_updateCRC32:
812    return inline_updateCRC32();
813  case vmIntrinsics::_updateBytesCRC32:
814    return inline_updateBytesCRC32();
815  case vmIntrinsics::_updateByteBufferCRC32:
816    return inline_updateByteBufferCRC32();
817
818  case vmIntrinsics::_updateBytesCRC32C:
819    return inline_updateBytesCRC32C();
820  case vmIntrinsics::_updateDirectByteBufferCRC32C:
821    return inline_updateDirectByteBufferCRC32C();
822
823  case vmIntrinsics::_updateBytesAdler32:
824    return inline_updateBytesAdler32();
825  case vmIntrinsics::_updateByteBufferAdler32:
826    return inline_updateByteBufferAdler32();
827
828  case vmIntrinsics::_profileBoolean:
829    return inline_profileBoolean();
830  case vmIntrinsics::_isCompileConstant:
831    return inline_isCompileConstant();
832
833  case vmIntrinsics::_hasNegatives:
834    return inline_hasNegatives();
835
836  case vmIntrinsics::_fmaD:
837  case vmIntrinsics::_fmaF:
838    return inline_fma(intrinsic_id());
839
840  default:
841    // If you get here, it may be that someone has added a new intrinsic
842    // to the list in vmSymbols.hpp without implementing it here.
843#ifndef PRODUCT
844    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
845      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
846                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
847    }
848#endif
849    return false;
850  }
851}
852
853Node* LibraryCallKit::try_to_predicate(int predicate) {
854  if (!jvms()->has_method()) {
855    // Root JVMState has a null method.
856    assert(map()->memory()->Opcode() == Op_Parm, "");
857    // Insert the memory aliasing node
858    set_all_memory(reset_memory());
859  }
860  assert(merged_memory(), "");
861
862  switch (intrinsic_id()) {
863  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
864    return inline_cipherBlockChaining_AESCrypt_predicate(false);
865  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
866    return inline_cipherBlockChaining_AESCrypt_predicate(true);
867  case vmIntrinsics::_counterMode_AESCrypt:
868    return inline_counterMode_AESCrypt_predicate();
869  case vmIntrinsics::_digestBase_implCompressMB:
870    return inline_digestBase_implCompressMB_predicate(predicate);
871
872  default:
873    // If you get here, it may be that someone has added a new intrinsic
874    // to the list in vmSymbols.hpp without implementing it here.
875#ifndef PRODUCT
876    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
877      tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
878                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
879    }
880#endif
881    Node* slow_ctl = control();
882    set_control(top()); // No fast path instrinsic
883    return slow_ctl;
884  }
885}
886
887//------------------------------set_result-------------------------------
888// Helper function for finishing intrinsics.
889void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
890  record_for_igvn(region);
891  set_control(_gvn.transform(region));
892  set_result( _gvn.transform(value));
893  assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
894}
895
896//------------------------------generate_guard---------------------------
897// Helper function for generating guarded fast-slow graph structures.
898// The given 'test', if true, guards a slow path.  If the test fails
899// then a fast path can be taken.  (We generally hope it fails.)
900// In all cases, GraphKit::control() is updated to the fast path.
901// The returned value represents the control for the slow path.
902// The return value is never 'top'; it is either a valid control
903// or NULL if it is obvious that the slow path can never be taken.
904// Also, if region and the slow control are not NULL, the slow edge
905// is appended to the region.
906Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
907  if (stopped()) {
908    // Already short circuited.
909    return NULL;
910  }
911
912  // Build an if node and its projections.
913  // If test is true we take the slow path, which we assume is uncommon.
914  if (_gvn.type(test) == TypeInt::ZERO) {
915    // The slow branch is never taken.  No need to build this guard.
916    return NULL;
917  }
918
919  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
920
921  Node* if_slow = _gvn.transform(new IfTrueNode(iff));
922  if (if_slow == top()) {
923    // The slow branch is never taken.  No need to build this guard.
924    return NULL;
925  }
926
927  if (region != NULL)
928    region->add_req(if_slow);
929
930  Node* if_fast = _gvn.transform(new IfFalseNode(iff));
931  set_control(if_fast);
932
933  return if_slow;
934}
935
936inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
937  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
938}
939inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
940  return generate_guard(test, region, PROB_FAIR);
941}
942
943inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
944                                                     Node* *pos_index) {
945  if (stopped())
946    return NULL;                // already stopped
947  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
948    return NULL;                // index is already adequately typed
949  Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
950  Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
951  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
952  if (is_neg != NULL && pos_index != NULL) {
953    // Emulate effect of Parse::adjust_map_after_if.
954    Node* ccast = new CastIINode(index, TypeInt::POS);
955    ccast->set_req(0, control());
956    (*pos_index) = _gvn.transform(ccast);
957  }
958  return is_neg;
959}
960
961// Make sure that 'position' is a valid limit index, in [0..length].
962// There are two equivalent plans for checking this:
963//   A. (offset + copyLength)  unsigned<=  arrayLength
964//   B. offset  <=  (arrayLength - copyLength)
965// We require that all of the values above, except for the sum and
966// difference, are already known to be non-negative.
967// Plan A is robust in the face of overflow, if offset and copyLength
968// are both hugely positive.
969//
970// Plan B is less direct and intuitive, but it does not overflow at
971// all, since the difference of two non-negatives is always
972// representable.  Whenever Java methods must perform the equivalent
973// check they generally use Plan B instead of Plan A.
974// For the moment we use Plan A.
975inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
976                                                  Node* subseq_length,
977                                                  Node* array_length,
978                                                  RegionNode* region) {
979  if (stopped())
980    return NULL;                // already stopped
981  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
982  if (zero_offset && subseq_length->eqv_uncast(array_length))
983    return NULL;                // common case of whole-array copy
984  Node* last = subseq_length;
985  if (!zero_offset)             // last += offset
986    last = _gvn.transform(new AddINode(last, offset));
987  Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
988  Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
989  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
990  return is_over;
991}
992
993// Emit range checks for the given String.value byte array
994void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
995  if (stopped()) {
996    return; // already stopped
997  }
998  RegionNode* bailout = new RegionNode(1);
999  record_for_igvn(bailout);
1000  if (char_count) {
1001    // Convert char count to byte count
1002    count = _gvn.transform(new LShiftINode(count, intcon(1)));
1003  }
1004
1005  // Offset and count must not be negative
1006  generate_negative_guard(offset, bailout);
1007  generate_negative_guard(count, bailout);
1008  // Offset + count must not exceed length of array
1009  generate_limit_guard(offset, count, load_array_length(array), bailout);
1010
1011  if (bailout->req() > 1) {
1012    PreserveJVMState pjvms(this);
1013    set_control(_gvn.transform(bailout));
1014    uncommon_trap(Deoptimization::Reason_intrinsic,
1015                  Deoptimization::Action_maybe_recompile);
1016  }
1017}
1018
1019//--------------------------generate_current_thread--------------------
1020Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1021  ciKlass*    thread_klass = env()->Thread_klass();
1022  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1023  Node* thread = _gvn.transform(new ThreadLocalNode());
1024  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1025  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1026  tls_output = thread;
1027  return threadObj;
1028}
1029
1030
1031//------------------------------make_string_method_node------------------------
1032// Helper method for String intrinsic functions. This version is called with
1033// str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1034// characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1035// containing the lengths of str1 and str2.
1036Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1037  Node* result = NULL;
1038  switch (opcode) {
1039  case Op_StrIndexOf:
1040    result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1041                                str1_start, cnt1, str2_start, cnt2, ae);
1042    break;
1043  case Op_StrComp:
1044    result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1045                             str1_start, cnt1, str2_start, cnt2, ae);
1046    break;
1047  case Op_StrEquals:
1048    // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1049    // Use the constant length if there is one because optimized match rule may exist.
1050    result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1051                               str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1052    break;
1053  default:
1054    ShouldNotReachHere();
1055    return NULL;
1056  }
1057
1058  // All these intrinsics have checks.
1059  C->set_has_split_ifs(true); // Has chance for split-if optimization
1060
1061  return _gvn.transform(result);
1062}
1063
1064//------------------------------inline_string_compareTo------------------------
1065bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1066  Node* arg1 = argument(0);
1067  Node* arg2 = argument(1);
1068
1069  // Get start addr and length of first argument
1070  Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1071  Node* arg1_cnt    = load_array_length(arg1);
1072
1073  // Get start addr and length of second argument
1074  Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1075  Node* arg2_cnt    = load_array_length(arg2);
1076
1077  Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1078  set_result(result);
1079  return true;
1080}
1081
1082//------------------------------inline_string_equals------------------------
1083bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1084  Node* arg1 = argument(0);
1085  Node* arg2 = argument(1);
1086
1087  // paths (plus control) merge
1088  RegionNode* region = new RegionNode(3);
1089  Node* phi = new PhiNode(region, TypeInt::BOOL);
1090
1091  if (!stopped()) {
1092    // Get start addr and length of first argument
1093    Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1094    Node* arg1_cnt    = load_array_length(arg1);
1095
1096    // Get start addr and length of second argument
1097    Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1098    Node* arg2_cnt    = load_array_length(arg2);
1099
1100    // Check for arg1_cnt != arg2_cnt
1101    Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1102    Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1103    Node* if_ne = generate_slow_guard(bol, NULL);
1104    if (if_ne != NULL) {
1105      phi->init_req(2, intcon(0));
1106      region->init_req(2, if_ne);
1107    }
1108
1109    // Check for count == 0 is done by assembler code for StrEquals.
1110
1111    if (!stopped()) {
1112      Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1113      phi->init_req(1, equals);
1114      region->init_req(1, control());
1115    }
1116  }
1117
1118  // post merge
1119  set_control(_gvn.transform(region));
1120  record_for_igvn(region);
1121
1122  set_result(_gvn.transform(phi));
1123  return true;
1124}
1125
1126//------------------------------inline_array_equals----------------------------
1127bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1128  assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1129  Node* arg1 = argument(0);
1130  Node* arg2 = argument(1);
1131
1132  const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1133  set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1134  return true;
1135}
1136
1137//------------------------------inline_hasNegatives------------------------------
1138bool LibraryCallKit::inline_hasNegatives() {
1139  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1140    return false;
1141  }
1142
1143  assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1144  // no receiver since it is static method
1145  Node* ba         = argument(0);
1146  Node* offset     = argument(1);
1147  Node* len        = argument(2);
1148
1149  // Range checks
1150  generate_string_range_check(ba, offset, len, false);
1151  if (stopped()) {
1152    return true;
1153  }
1154  Node* ba_start = array_element_address(ba, offset, T_BYTE);
1155  Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1156  set_result(_gvn.transform(result));
1157  return true;
1158}
1159
1160bool LibraryCallKit::inline_preconditions_checkIndex() {
1161  Node* index = argument(0);
1162  Node* length = argument(1);
1163  if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1164    return false;
1165  }
1166
1167  Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1168  Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1169
1170  {
1171    BuildCutout unless(this, len_pos_bol, PROB_MAX);
1172    uncommon_trap(Deoptimization::Reason_intrinsic,
1173                  Deoptimization::Action_make_not_entrant);
1174  }
1175
1176  if (stopped()) {
1177    return false;
1178  }
1179
1180  Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1181  BoolTest::mask btest = BoolTest::lt;
1182  Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1183  RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1184  _gvn.set_type(rc, rc->Value(&_gvn));
1185  if (!rc_bool->is_Con()) {
1186    record_for_igvn(rc);
1187  }
1188  set_control(_gvn.transform(new IfTrueNode(rc)));
1189  {
1190    PreserveJVMState pjvms(this);
1191    set_control(_gvn.transform(new IfFalseNode(rc)));
1192    uncommon_trap(Deoptimization::Reason_range_check,
1193                  Deoptimization::Action_make_not_entrant);
1194  }
1195
1196  if (stopped()) {
1197    return false;
1198  }
1199
1200  Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1201  result->set_req(0, control());
1202  result = _gvn.transform(result);
1203  set_result(result);
1204  replace_in_map(index, result);
1205  return true;
1206}
1207
1208//------------------------------inline_string_indexOf------------------------
1209bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1210  if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1211    return false;
1212  }
1213  Node* src = argument(0);
1214  Node* tgt = argument(1);
1215
1216  // Make the merge point
1217  RegionNode* result_rgn = new RegionNode(4);
1218  Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1219
1220  // Get start addr and length of source string
1221  Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1222  Node* src_count = load_array_length(src);
1223
1224  // Get start addr and length of substring
1225  Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1226  Node* tgt_count = load_array_length(tgt);
1227
1228  if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1229    // Divide src size by 2 if String is UTF16 encoded
1230    src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1231  }
1232  if (ae == StrIntrinsicNode::UU) {
1233    // Divide substring size by 2 if String is UTF16 encoded
1234    tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1235  }
1236
1237  Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1238  if (result != NULL) {
1239    result_phi->init_req(3, result);
1240    result_rgn->init_req(3, control());
1241  }
1242  set_control(_gvn.transform(result_rgn));
1243  record_for_igvn(result_rgn);
1244  set_result(_gvn.transform(result_phi));
1245
1246  return true;
1247}
1248
1249//-----------------------------inline_string_indexOf-----------------------
1250bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1251  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1252    return false;
1253  }
1254  if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1255    return false;
1256  }
1257  assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1258  Node* src         = argument(0); // byte[]
1259  Node* src_count   = argument(1); // char count
1260  Node* tgt         = argument(2); // byte[]
1261  Node* tgt_count   = argument(3); // char count
1262  Node* from_index  = argument(4); // char index
1263
1264  // Multiply byte array index by 2 if String is UTF16 encoded
1265  Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1266  src_count = _gvn.transform(new SubINode(src_count, from_index));
1267  Node* src_start = array_element_address(src, src_offset, T_BYTE);
1268  Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1269
1270  // Range checks
1271  generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1272  generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1273  if (stopped()) {
1274    return true;
1275  }
1276
1277  RegionNode* region = new RegionNode(5);
1278  Node* phi = new PhiNode(region, TypeInt::INT);
1279
1280  Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1281  if (result != NULL) {
1282    // The result is index relative to from_index if substring was found, -1 otherwise.
1283    // Generate code which will fold into cmove.
1284    Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1285    Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1286
1287    Node* if_lt = generate_slow_guard(bol, NULL);
1288    if (if_lt != NULL) {
1289      // result == -1
1290      phi->init_req(3, result);
1291      region->init_req(3, if_lt);
1292    }
1293    if (!stopped()) {
1294      result = _gvn.transform(new AddINode(result, from_index));
1295      phi->init_req(4, result);
1296      region->init_req(4, control());
1297    }
1298  }
1299
1300  set_control(_gvn.transform(region));
1301  record_for_igvn(region);
1302  set_result(_gvn.transform(phi));
1303
1304  return true;
1305}
1306
1307// Create StrIndexOfNode with fast path checks
1308Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1309                                        RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1310  // Check for substr count > string count
1311  Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1312  Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1313  Node* if_gt = generate_slow_guard(bol, NULL);
1314  if (if_gt != NULL) {
1315    phi->init_req(1, intcon(-1));
1316    region->init_req(1, if_gt);
1317  }
1318  if (!stopped()) {
1319    // Check for substr count == 0
1320    cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1321    bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1322    Node* if_zero = generate_slow_guard(bol, NULL);
1323    if (if_zero != NULL) {
1324      phi->init_req(2, intcon(0));
1325      region->init_req(2, if_zero);
1326    }
1327  }
1328  if (!stopped()) {
1329    return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1330  }
1331  return NULL;
1332}
1333
1334//-----------------------------inline_string_indexOfChar-----------------------
1335bool LibraryCallKit::inline_string_indexOfChar() {
1336  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1337    return false;
1338  }
1339  if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1340    return false;
1341  }
1342  assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1343  Node* src         = argument(0); // byte[]
1344  Node* tgt         = argument(1); // tgt is int ch
1345  Node* from_index  = argument(2);
1346  Node* max         = argument(3);
1347
1348  Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1349  Node* src_start = array_element_address(src, src_offset, T_BYTE);
1350  Node* src_count = _gvn.transform(new SubINode(max, from_index));
1351
1352  // Range checks
1353  generate_string_range_check(src, src_offset, src_count, true);
1354  if (stopped()) {
1355    return true;
1356  }
1357
1358  RegionNode* region = new RegionNode(3);
1359  Node* phi = new PhiNode(region, TypeInt::INT);
1360
1361  Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1362  C->set_has_split_ifs(true); // Has chance for split-if optimization
1363  _gvn.transform(result);
1364
1365  Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1366  Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1367
1368  Node* if_lt = generate_slow_guard(bol, NULL);
1369  if (if_lt != NULL) {
1370    // result == -1
1371    phi->init_req(2, result);
1372    region->init_req(2, if_lt);
1373  }
1374  if (!stopped()) {
1375    result = _gvn.transform(new AddINode(result, from_index));
1376    phi->init_req(1, result);
1377    region->init_req(1, control());
1378  }
1379  set_control(_gvn.transform(region));
1380  record_for_igvn(region);
1381  set_result(_gvn.transform(phi));
1382
1383  return true;
1384}
1385//---------------------------inline_string_copy---------------------
1386// compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1387//   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1388//   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1389// compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1390//   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1391//   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1392bool LibraryCallKit::inline_string_copy(bool compress) {
1393  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1394    return false;
1395  }
1396  int nargs = 5;  // 2 oops, 3 ints
1397  assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1398
1399  Node* src         = argument(0);
1400  Node* src_offset  = argument(1);
1401  Node* dst         = argument(2);
1402  Node* dst_offset  = argument(3);
1403  Node* length      = argument(4);
1404
1405  // Check for allocation before we add nodes that would confuse
1406  // tightly_coupled_allocation()
1407  AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1408
1409  // Figure out the size and type of the elements we will be copying.
1410  const Type* src_type = src->Value(&_gvn);
1411  const Type* dst_type = dst->Value(&_gvn);
1412  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1413  BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1414  assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1415         (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1416         "Unsupported array types for inline_string_copy");
1417
1418  // Convert char[] offsets to byte[] offsets
1419  bool convert_src = (compress && src_elem == T_BYTE);
1420  bool convert_dst = (!compress && dst_elem == T_BYTE);
1421  if (convert_src) {
1422    src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1423  } else if (convert_dst) {
1424    dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1425  }
1426
1427  // Range checks
1428  generate_string_range_check(src, src_offset, length, convert_src);
1429  generate_string_range_check(dst, dst_offset, length, convert_dst);
1430  if (stopped()) {
1431    return true;
1432  }
1433
1434  Node* src_start = array_element_address(src, src_offset, src_elem);
1435  Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1436  // 'src_start' points to src array + scaled offset
1437  // 'dst_start' points to dst array + scaled offset
1438  Node* count = NULL;
1439  if (compress) {
1440    count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1441  } else {
1442    inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1443  }
1444
1445  if (alloc != NULL) {
1446    if (alloc->maybe_set_complete(&_gvn)) {
1447      // "You break it, you buy it."
1448      InitializeNode* init = alloc->initialization();
1449      assert(init->is_complete(), "we just did this");
1450      init->set_complete_with_arraycopy();
1451      assert(dst->is_CheckCastPP(), "sanity");
1452      assert(dst->in(0)->in(0) == init, "dest pinned");
1453    }
1454    // Do not let stores that initialize this object be reordered with
1455    // a subsequent store that would make this object accessible by
1456    // other threads.
1457    // Record what AllocateNode this StoreStore protects so that
1458    // escape analysis can go from the MemBarStoreStoreNode to the
1459    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1460    // based on the escape status of the AllocateNode.
1461    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1462  }
1463  if (compress) {
1464    set_result(_gvn.transform(count));
1465  }
1466  return true;
1467}
1468
1469#ifdef _LP64
1470#define XTOP ,top() /*additional argument*/
1471#else  //_LP64
1472#define XTOP        /*no additional argument*/
1473#endif //_LP64
1474
1475//------------------------inline_string_toBytesU--------------------------
1476// public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1477bool LibraryCallKit::inline_string_toBytesU() {
1478  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1479    return false;
1480  }
1481  // Get the arguments.
1482  Node* value     = argument(0);
1483  Node* offset    = argument(1);
1484  Node* length    = argument(2);
1485
1486  Node* newcopy = NULL;
1487
1488  // Set the original stack and the reexecute bit for the interpreter to reexecute
1489  // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1490  { PreserveReexecuteState preexecs(this);
1491    jvms()->set_should_reexecute(true);
1492
1493    // Check if a null path was taken unconditionally.
1494    value = null_check(value);
1495
1496    RegionNode* bailout = new RegionNode(1);
1497    record_for_igvn(bailout);
1498
1499    // Range checks
1500    generate_negative_guard(offset, bailout);
1501    generate_negative_guard(length, bailout);
1502    generate_limit_guard(offset, length, load_array_length(value), bailout);
1503    // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1504    generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1505
1506    if (bailout->req() > 1) {
1507      PreserveJVMState pjvms(this);
1508      set_control(_gvn.transform(bailout));
1509      uncommon_trap(Deoptimization::Reason_intrinsic,
1510                    Deoptimization::Action_maybe_recompile);
1511    }
1512    if (stopped()) {
1513      return true;
1514    }
1515
1516    Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1517    Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1518    newcopy = new_array(klass_node, size, 0);  // no arguments to push
1519    AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1520
1521    // Calculate starting addresses.
1522    Node* src_start = array_element_address(value, offset, T_CHAR);
1523    Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1524
1525    // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1526    const TypeInt* toffset = gvn().type(offset)->is_int();
1527    bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1528
1529    // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1530    const char* copyfunc_name = "arraycopy";
1531    address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1532    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1533                      OptoRuntime::fast_arraycopy_Type(),
1534                      copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1535                      src_start, dst_start, ConvI2X(length) XTOP);
1536    // Do not let reads from the cloned object float above the arraycopy.
1537    if (alloc != NULL) {
1538      if (alloc->maybe_set_complete(&_gvn)) {
1539        // "You break it, you buy it."
1540        InitializeNode* init = alloc->initialization();
1541        assert(init->is_complete(), "we just did this");
1542        init->set_complete_with_arraycopy();
1543        assert(newcopy->is_CheckCastPP(), "sanity");
1544        assert(newcopy->in(0)->in(0) == init, "dest pinned");
1545      }
1546      // Do not let stores that initialize this object be reordered with
1547      // a subsequent store that would make this object accessible by
1548      // other threads.
1549      // Record what AllocateNode this StoreStore protects so that
1550      // escape analysis can go from the MemBarStoreStoreNode to the
1551      // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1552      // based on the escape status of the AllocateNode.
1553      insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1554    } else {
1555      insert_mem_bar(Op_MemBarCPUOrder);
1556    }
1557  } // original reexecute is set back here
1558
1559  C->set_has_split_ifs(true); // Has chance for split-if optimization
1560  if (!stopped()) {
1561    set_result(newcopy);
1562  }
1563  return true;
1564}
1565
1566//------------------------inline_string_getCharsU--------------------------
1567// public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1568bool LibraryCallKit::inline_string_getCharsU() {
1569  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1570    return false;
1571  }
1572
1573  // Get the arguments.
1574  Node* src       = argument(0);
1575  Node* src_begin = argument(1);
1576  Node* src_end   = argument(2); // exclusive offset (i < src_end)
1577  Node* dst       = argument(3);
1578  Node* dst_begin = argument(4);
1579
1580  // Check for allocation before we add nodes that would confuse
1581  // tightly_coupled_allocation()
1582  AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1583
1584  // Check if a null path was taken unconditionally.
1585  src = null_check(src);
1586  dst = null_check(dst);
1587  if (stopped()) {
1588    return true;
1589  }
1590
1591  // Get length and convert char[] offset to byte[] offset
1592  Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1593  src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1594
1595  // Range checks
1596  generate_string_range_check(src, src_begin, length, true);
1597  generate_string_range_check(dst, dst_begin, length, false);
1598  if (stopped()) {
1599    return true;
1600  }
1601
1602  if (!stopped()) {
1603    // Calculate starting addresses.
1604    Node* src_start = array_element_address(src, src_begin, T_BYTE);
1605    Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1606
1607    // Check if array addresses are aligned to HeapWordSize
1608    const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1609    const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1610    bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1611                   tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1612
1613    // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1614    const char* copyfunc_name = "arraycopy";
1615    address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1616    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1617                      OptoRuntime::fast_arraycopy_Type(),
1618                      copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1619                      src_start, dst_start, ConvI2X(length) XTOP);
1620    // Do not let reads from the cloned object float above the arraycopy.
1621    if (alloc != NULL) {
1622      if (alloc->maybe_set_complete(&_gvn)) {
1623        // "You break it, you buy it."
1624        InitializeNode* init = alloc->initialization();
1625        assert(init->is_complete(), "we just did this");
1626        init->set_complete_with_arraycopy();
1627        assert(dst->is_CheckCastPP(), "sanity");
1628        assert(dst->in(0)->in(0) == init, "dest pinned");
1629      }
1630      // Do not let stores that initialize this object be reordered with
1631      // a subsequent store that would make this object accessible by
1632      // other threads.
1633      // Record what AllocateNode this StoreStore protects so that
1634      // escape analysis can go from the MemBarStoreStoreNode to the
1635      // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1636      // based on the escape status of the AllocateNode.
1637      insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1638    } else {
1639      insert_mem_bar(Op_MemBarCPUOrder);
1640    }
1641  }
1642
1643  C->set_has_split_ifs(true); // Has chance for split-if optimization
1644  return true;
1645}
1646
1647//----------------------inline_string_char_access----------------------------
1648// Store/Load char to/from byte[] array.
1649// static void StringUTF16.putChar(byte[] val, int index, int c)
1650// static char StringUTF16.getChar(byte[] val, int index)
1651bool LibraryCallKit::inline_string_char_access(bool is_store) {
1652  Node* value  = argument(0);
1653  Node* index  = argument(1);
1654  Node* ch = is_store ? argument(2) : NULL;
1655
1656  // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1657  // correctly requires matched array shapes.
1658  assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1659          "sanity: byte[] and char[] bases agree");
1660  assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1661          "sanity: byte[] and char[] scales agree");
1662
1663  // Bail when getChar over constants is requested: constant folding would
1664  // reject folding mismatched char access over byte[]. A normal inlining for getChar
1665  // Java method would constant fold nicely instead.
1666  if (!is_store && value->is_Con() && index->is_Con()) {
1667    return false;
1668  }
1669
1670  Node* adr = array_element_address(value, index, T_CHAR);
1671  if (adr->is_top()) {
1672    return false;
1673  }
1674  if (is_store) {
1675    (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1676                           false, false, true /* mismatched */);
1677  } else {
1678    ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1679                   LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1680    set_result(ch);
1681  }
1682  return true;
1683}
1684
1685//--------------------------round_double_node--------------------------------
1686// Round a double node if necessary.
1687Node* LibraryCallKit::round_double_node(Node* n) {
1688  if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1689    n = _gvn.transform(new RoundDoubleNode(0, n));
1690  return n;
1691}
1692
1693//------------------------------inline_math-----------------------------------
1694// public static double Math.abs(double)
1695// public static double Math.sqrt(double)
1696// public static double Math.log(double)
1697// public static double Math.log10(double)
1698bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1699  Node* arg = round_double_node(argument(0));
1700  Node* n = NULL;
1701  switch (id) {
1702  case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1703  case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1704  default:  fatal_unexpected_iid(id);  break;
1705  }
1706  set_result(_gvn.transform(n));
1707  return true;
1708}
1709
1710//------------------------------runtime_math-----------------------------
1711bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1712  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1713         "must be (DD)D or (D)D type");
1714
1715  // Inputs
1716  Node* a = round_double_node(argument(0));
1717  Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1718
1719  const TypePtr* no_memory_effects = NULL;
1720  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1721                                 no_memory_effects,
1722                                 a, top(), b, b ? top() : NULL);
1723  Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1724#ifdef ASSERT
1725  Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1726  assert(value_top == top(), "second value must be top");
1727#endif
1728
1729  set_result(value);
1730  return true;
1731}
1732
1733//------------------------------inline_math_native-----------------------------
1734bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1735#define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1736  switch (id) {
1737    // These intrinsics are not properly supported on all hardware
1738  case vmIntrinsics::_dsin:
1739    return StubRoutines::dsin() != NULL ?
1740      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1741      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1742  case vmIntrinsics::_dcos:
1743    return StubRoutines::dcos() != NULL ?
1744      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1745      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1746  case vmIntrinsics::_dtan:
1747    return StubRoutines::dtan() != NULL ?
1748      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1749      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1750  case vmIntrinsics::_dlog:
1751    return StubRoutines::dlog() != NULL ?
1752      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1753      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1754  case vmIntrinsics::_dlog10:
1755    return StubRoutines::dlog10() != NULL ?
1756      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1757      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1758
1759    // These intrinsics are supported on all hardware
1760  case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1761  case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1762
1763  case vmIntrinsics::_dexp:
1764    return StubRoutines::dexp() != NULL ?
1765      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1766      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1767  case vmIntrinsics::_dpow:
1768    return StubRoutines::dpow() != NULL ?
1769      runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1770      runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1771#undef FN_PTR
1772
1773   // These intrinsics are not yet correctly implemented
1774  case vmIntrinsics::_datan2:
1775    return false;
1776
1777  default:
1778    fatal_unexpected_iid(id);
1779    return false;
1780  }
1781}
1782
1783static bool is_simple_name(Node* n) {
1784  return (n->req() == 1         // constant
1785          || (n->is_Type() && n->as_Type()->type()->singleton())
1786          || n->is_Proj()       // parameter or return value
1787          || n->is_Phi()        // local of some sort
1788          );
1789}
1790
1791//----------------------------inline_notify-----------------------------------*
1792bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1793  const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1794  address func;
1795  if (id == vmIntrinsics::_notify) {
1796    func = OptoRuntime::monitor_notify_Java();
1797  } else {
1798    func = OptoRuntime::monitor_notifyAll_Java();
1799  }
1800  Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1801  make_slow_call_ex(call, env()->Throwable_klass(), false);
1802  return true;
1803}
1804
1805
1806//----------------------------inline_min_max-----------------------------------
1807bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1808  set_result(generate_min_max(id, argument(0), argument(1)));
1809  return true;
1810}
1811
1812void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1813  Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1814  IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1815  Node* fast_path = _gvn.transform( new IfFalseNode(check));
1816  Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1817
1818  {
1819    PreserveJVMState pjvms(this);
1820    PreserveReexecuteState preexecs(this);
1821    jvms()->set_should_reexecute(true);
1822
1823    set_control(slow_path);
1824    set_i_o(i_o());
1825
1826    uncommon_trap(Deoptimization::Reason_intrinsic,
1827                  Deoptimization::Action_none);
1828  }
1829
1830  set_control(fast_path);
1831  set_result(math);
1832}
1833
1834template <typename OverflowOp>
1835bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1836  typedef typename OverflowOp::MathOp MathOp;
1837
1838  MathOp* mathOp = new MathOp(arg1, arg2);
1839  Node* operation = _gvn.transform( mathOp );
1840  Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1841  inline_math_mathExact(operation, ofcheck);
1842  return true;
1843}
1844
1845bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1846  return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1847}
1848
1849bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1850  return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1851}
1852
1853bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1854  return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1855}
1856
1857bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1858  return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1859}
1860
1861bool LibraryCallKit::inline_math_negateExactI() {
1862  return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1863}
1864
1865bool LibraryCallKit::inline_math_negateExactL() {
1866  return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1867}
1868
1869bool LibraryCallKit::inline_math_multiplyExactI() {
1870  return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1871}
1872
1873bool LibraryCallKit::inline_math_multiplyExactL() {
1874  return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1875}
1876
1877Node*
1878LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1879  // These are the candidate return value:
1880  Node* xvalue = x0;
1881  Node* yvalue = y0;
1882
1883  if (xvalue == yvalue) {
1884    return xvalue;
1885  }
1886
1887  bool want_max = (id == vmIntrinsics::_max);
1888
1889  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1890  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1891  if (txvalue == NULL || tyvalue == NULL)  return top();
1892  // This is not really necessary, but it is consistent with a
1893  // hypothetical MaxINode::Value method:
1894  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1895
1896  // %%% This folding logic should (ideally) be in a different place.
1897  // Some should be inside IfNode, and there to be a more reliable
1898  // transformation of ?: style patterns into cmoves.  We also want
1899  // more powerful optimizations around cmove and min/max.
1900
1901  // Try to find a dominating comparison of these guys.
1902  // It can simplify the index computation for Arrays.copyOf
1903  // and similar uses of System.arraycopy.
1904  // First, compute the normalized version of CmpI(x, y).
1905  int   cmp_op = Op_CmpI;
1906  Node* xkey = xvalue;
1907  Node* ykey = yvalue;
1908  Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1909  if (ideal_cmpxy->is_Cmp()) {
1910    // E.g., if we have CmpI(length - offset, count),
1911    // it might idealize to CmpI(length, count + offset)
1912    cmp_op = ideal_cmpxy->Opcode();
1913    xkey = ideal_cmpxy->in(1);
1914    ykey = ideal_cmpxy->in(2);
1915  }
1916
1917  // Start by locating any relevant comparisons.
1918  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1919  Node* cmpxy = NULL;
1920  Node* cmpyx = NULL;
1921  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1922    Node* cmp = start_from->fast_out(k);
1923    if (cmp->outcnt() > 0 &&            // must have prior uses
1924        cmp->in(0) == NULL &&           // must be context-independent
1925        cmp->Opcode() == cmp_op) {      // right kind of compare
1926      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1927      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1928    }
1929  }
1930
1931  const int NCMPS = 2;
1932  Node* cmps[NCMPS] = { cmpxy, cmpyx };
1933  int cmpn;
1934  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1935    if (cmps[cmpn] != NULL)  break;     // find a result
1936  }
1937  if (cmpn < NCMPS) {
1938    // Look for a dominating test that tells us the min and max.
1939    int depth = 0;                // Limit search depth for speed
1940    Node* dom = control();
1941    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1942      if (++depth >= 100)  break;
1943      Node* ifproj = dom;
1944      if (!ifproj->is_Proj())  continue;
1945      Node* iff = ifproj->in(0);
1946      if (!iff->is_If())  continue;
1947      Node* bol = iff->in(1);
1948      if (!bol->is_Bool())  continue;
1949      Node* cmp = bol->in(1);
1950      if (cmp == NULL)  continue;
1951      for (cmpn = 0; cmpn < NCMPS; cmpn++)
1952        if (cmps[cmpn] == cmp)  break;
1953      if (cmpn == NCMPS)  continue;
1954      BoolTest::mask btest = bol->as_Bool()->_test._test;
1955      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1956      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1957      // At this point, we know that 'x btest y' is true.
1958      switch (btest) {
1959      case BoolTest::eq:
1960        // They are proven equal, so we can collapse the min/max.
1961        // Either value is the answer.  Choose the simpler.
1962        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1963          return yvalue;
1964        return xvalue;
1965      case BoolTest::lt:          // x < y
1966      case BoolTest::le:          // x <= y
1967        return (want_max ? yvalue : xvalue);
1968      case BoolTest::gt:          // x > y
1969      case BoolTest::ge:          // x >= y
1970        return (want_max ? xvalue : yvalue);
1971      }
1972    }
1973  }
1974
1975  // We failed to find a dominating test.
1976  // Let's pick a test that might GVN with prior tests.
1977  Node*          best_bol   = NULL;
1978  BoolTest::mask best_btest = BoolTest::illegal;
1979  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1980    Node* cmp = cmps[cmpn];
1981    if (cmp == NULL)  continue;
1982    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1983      Node* bol = cmp->fast_out(j);
1984      if (!bol->is_Bool())  continue;
1985      BoolTest::mask btest = bol->as_Bool()->_test._test;
1986      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1987      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1988      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1989        best_bol   = bol->as_Bool();
1990        best_btest = btest;
1991      }
1992    }
1993  }
1994
1995  Node* answer_if_true  = NULL;
1996  Node* answer_if_false = NULL;
1997  switch (best_btest) {
1998  default:
1999    if (cmpxy == NULL)
2000      cmpxy = ideal_cmpxy;
2001    best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2002    // and fall through:
2003  case BoolTest::lt:          // x < y
2004  case BoolTest::le:          // x <= y
2005    answer_if_true  = (want_max ? yvalue : xvalue);
2006    answer_if_false = (want_max ? xvalue : yvalue);
2007    break;
2008  case BoolTest::gt:          // x > y
2009  case BoolTest::ge:          // x >= y
2010    answer_if_true  = (want_max ? xvalue : yvalue);
2011    answer_if_false = (want_max ? yvalue : xvalue);
2012    break;
2013  }
2014
2015  jint hi, lo;
2016  if (want_max) {
2017    // We can sharpen the minimum.
2018    hi = MAX2(txvalue->_hi, tyvalue->_hi);
2019    lo = MAX2(txvalue->_lo, tyvalue->_lo);
2020  } else {
2021    // We can sharpen the maximum.
2022    hi = MIN2(txvalue->_hi, tyvalue->_hi);
2023    lo = MIN2(txvalue->_lo, tyvalue->_lo);
2024  }
2025
2026  // Use a flow-free graph structure, to avoid creating excess control edges
2027  // which could hinder other optimizations.
2028  // Since Math.min/max is often used with arraycopy, we want
2029  // tightly_coupled_allocation to be able to see beyond min/max expressions.
2030  Node* cmov = CMoveNode::make(NULL, best_bol,
2031                               answer_if_false, answer_if_true,
2032                               TypeInt::make(lo, hi, widen));
2033
2034  return _gvn.transform(cmov);
2035
2036  /*
2037  // This is not as desirable as it may seem, since Min and Max
2038  // nodes do not have a full set of optimizations.
2039  // And they would interfere, anyway, with 'if' optimizations
2040  // and with CMoveI canonical forms.
2041  switch (id) {
2042  case vmIntrinsics::_min:
2043    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2044  case vmIntrinsics::_max:
2045    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2046  default:
2047    ShouldNotReachHere();
2048  }
2049  */
2050}
2051
2052inline int
2053LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2054  const TypePtr* base_type = TypePtr::NULL_PTR;
2055  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2056  if (base_type == NULL) {
2057    // Unknown type.
2058    return Type::AnyPtr;
2059  } else if (base_type == TypePtr::NULL_PTR) {
2060    // Since this is a NULL+long form, we have to switch to a rawptr.
2061    base   = _gvn.transform(new CastX2PNode(offset));
2062    offset = MakeConX(0);
2063    return Type::RawPtr;
2064  } else if (base_type->base() == Type::RawPtr) {
2065    return Type::RawPtr;
2066  } else if (base_type->isa_oopptr()) {
2067    // Base is never null => always a heap address.
2068    if (base_type->ptr() == TypePtr::NotNull) {
2069      return Type::OopPtr;
2070    }
2071    // Offset is small => always a heap address.
2072    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2073    if (offset_type != NULL &&
2074        base_type->offset() == 0 &&     // (should always be?)
2075        offset_type->_lo >= 0 &&
2076        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2077      return Type::OopPtr;
2078    }
2079    // Otherwise, it might either be oop+off or NULL+addr.
2080    return Type::AnyPtr;
2081  } else {
2082    // No information:
2083    return Type::AnyPtr;
2084  }
2085}
2086
2087inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2088  int kind = classify_unsafe_addr(base, offset);
2089  if (kind == Type::RawPtr) {
2090    return basic_plus_adr(top(), base, offset);
2091  } else {
2092    return basic_plus_adr(base, offset);
2093  }
2094}
2095
2096//--------------------------inline_number_methods-----------------------------
2097// inline int     Integer.numberOfLeadingZeros(int)
2098// inline int        Long.numberOfLeadingZeros(long)
2099//
2100// inline int     Integer.numberOfTrailingZeros(int)
2101// inline int        Long.numberOfTrailingZeros(long)
2102//
2103// inline int     Integer.bitCount(int)
2104// inline int        Long.bitCount(long)
2105//
2106// inline char  Character.reverseBytes(char)
2107// inline short     Short.reverseBytes(short)
2108// inline int     Integer.reverseBytes(int)
2109// inline long       Long.reverseBytes(long)
2110bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2111  Node* arg = argument(0);
2112  Node* n = NULL;
2113  switch (id) {
2114  case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2115  case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2116  case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2117  case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2118  case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2119  case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2120  case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2121  case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2122  case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2123  case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2124  default:  fatal_unexpected_iid(id);  break;
2125  }
2126  set_result(_gvn.transform(n));
2127  return true;
2128}
2129
2130//----------------------------inline_unsafe_access----------------------------
2131
2132// Helper that guards and inserts a pre-barrier.
2133void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2134                                        Node* pre_val, bool need_mem_bar) {
2135  // We could be accessing the referent field of a reference object. If so, when G1
2136  // is enabled, we need to log the value in the referent field in an SATB buffer.
2137  // This routine performs some compile time filters and generates suitable
2138  // runtime filters that guard the pre-barrier code.
2139  // Also add memory barrier for non volatile load from the referent field
2140  // to prevent commoning of loads across safepoint.
2141  if (!UseG1GC && !need_mem_bar)
2142    return;
2143
2144  // Some compile time checks.
2145
2146  // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2147  const TypeX* otype = offset->find_intptr_t_type();
2148  if (otype != NULL && otype->is_con() &&
2149      otype->get_con() != java_lang_ref_Reference::referent_offset) {
2150    // Constant offset but not the reference_offset so just return
2151    return;
2152  }
2153
2154  // We only need to generate the runtime guards for instances.
2155  const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2156  if (btype != NULL) {
2157    if (btype->isa_aryptr()) {
2158      // Array type so nothing to do
2159      return;
2160    }
2161
2162    const TypeInstPtr* itype = btype->isa_instptr();
2163    if (itype != NULL) {
2164      // Can the klass of base_oop be statically determined to be
2165      // _not_ a sub-class of Reference and _not_ Object?
2166      ciKlass* klass = itype->klass();
2167      if ( klass->is_loaded() &&
2168          !klass->is_subtype_of(env()->Reference_klass()) &&
2169          !env()->Object_klass()->is_subtype_of(klass)) {
2170        return;
2171      }
2172    }
2173  }
2174
2175  // The compile time filters did not reject base_oop/offset so
2176  // we need to generate the following runtime filters
2177  //
2178  // if (offset == java_lang_ref_Reference::_reference_offset) {
2179  //   if (instance_of(base, java.lang.ref.Reference)) {
2180  //     pre_barrier(_, pre_val, ...);
2181  //   }
2182  // }
2183
2184  float likely   = PROB_LIKELY(  0.999);
2185  float unlikely = PROB_UNLIKELY(0.999);
2186
2187  IdealKit ideal(this);
2188#define __ ideal.
2189
2190  Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2191
2192  __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2193      // Update graphKit memory and control from IdealKit.
2194      sync_kit(ideal);
2195
2196      Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2197      Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2198
2199      // Update IdealKit memory and control from graphKit.
2200      __ sync_kit(this);
2201
2202      Node* one = __ ConI(1);
2203      // is_instof == 0 if base_oop == NULL
2204      __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2205
2206        // Update graphKit from IdeakKit.
2207        sync_kit(ideal);
2208
2209        // Use the pre-barrier to record the value in the referent field
2210        pre_barrier(false /* do_load */,
2211                    __ ctrl(),
2212                    NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2213                    pre_val /* pre_val */,
2214                    T_OBJECT);
2215        if (need_mem_bar) {
2216          // Add memory barrier to prevent commoning reads from this field
2217          // across safepoint since GC can change its value.
2218          insert_mem_bar(Op_MemBarCPUOrder);
2219        }
2220        // Update IdealKit from graphKit.
2221        __ sync_kit(this);
2222
2223      } __ end_if(); // _ref_type != ref_none
2224  } __ end_if(); // offset == referent_offset
2225
2226  // Final sync IdealKit and GraphKit.
2227  final_sync(ideal);
2228#undef __
2229}
2230
2231
2232const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2233  // Attempt to infer a sharper value type from the offset and base type.
2234  ciKlass* sharpened_klass = NULL;
2235
2236  // See if it is an instance field, with an object type.
2237  if (alias_type->field() != NULL) {
2238    if (alias_type->field()->type()->is_klass()) {
2239      sharpened_klass = alias_type->field()->type()->as_klass();
2240    }
2241  }
2242
2243  // See if it is a narrow oop array.
2244  if (adr_type->isa_aryptr()) {
2245    if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2246      const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2247      if (elem_type != NULL) {
2248        sharpened_klass = elem_type->klass();
2249      }
2250    }
2251  }
2252
2253  // The sharpened class might be unloaded if there is no class loader
2254  // contraint in place.
2255  if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2256    const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2257
2258#ifndef PRODUCT
2259    if (C->print_intrinsics() || C->print_inlining()) {
2260      tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2261      tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2262    }
2263#endif
2264    // Sharpen the value type.
2265    return tjp;
2266  }
2267  return NULL;
2268}
2269
2270bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2271  if (callee()->is_static())  return false;  // caller must have the capability!
2272  guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2273  guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2274  assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2275
2276#ifndef PRODUCT
2277  {
2278    ResourceMark rm;
2279    // Check the signatures.
2280    ciSignature* sig = callee()->signature();
2281#ifdef ASSERT
2282    if (!is_store) {
2283      // Object getObject(Object base, int/long offset), etc.
2284      BasicType rtype = sig->return_type()->basic_type();
2285      assert(rtype == type, "getter must return the expected value");
2286      assert(sig->count() == 2, "oop getter has 2 arguments");
2287      assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2288      assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2289    } else {
2290      // void putObject(Object base, int/long offset, Object x), etc.
2291      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2292      assert(sig->count() == 3, "oop putter has 3 arguments");
2293      assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2294      assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2295      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2296      assert(vtype == type, "putter must accept the expected value");
2297    }
2298#endif // ASSERT
2299 }
2300#endif //PRODUCT
2301
2302  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2303
2304  Node* receiver = argument(0);  // type: oop
2305
2306  // Build address expression.
2307  Node* adr;
2308  Node* heap_base_oop = top();
2309  Node* offset = top();
2310  Node* val;
2311
2312  // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2313  Node* base = argument(1);  // type: oop
2314  // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2315  offset = argument(2);  // type: long
2316  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2317  // to be plain byte offsets, which are also the same as those accepted
2318  // by oopDesc::field_base.
2319  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2320         "fieldOffset must be byte-scaled");
2321  // 32-bit machines ignore the high half!
2322  offset = ConvL2X(offset);
2323  adr = make_unsafe_address(base, offset);
2324  if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2325    heap_base_oop = base;
2326  } else if (type == T_OBJECT) {
2327    return false; // off-heap oop accesses are not supported
2328  }
2329
2330  // Can base be NULL? Otherwise, always on-heap access.
2331  bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2332
2333  val = is_store ? argument(4) : NULL;
2334
2335  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2336
2337  // Try to categorize the address.
2338  Compile::AliasType* alias_type = C->alias_type(adr_type);
2339  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2340
2341  if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2342      alias_type->adr_type() == TypeAryPtr::RANGE) {
2343    return false; // not supported
2344  }
2345
2346  bool mismatched = false;
2347  BasicType bt = alias_type->basic_type();
2348  if (bt != T_ILLEGAL) {
2349    assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2350    if (bt == T_BYTE && adr_type->isa_aryptr()) {
2351      // Alias type doesn't differentiate between byte[] and boolean[]).
2352      // Use address type to get the element type.
2353      bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2354    }
2355    if (bt == T_ARRAY || bt == T_NARROWOOP) {
2356      // accessing an array field with getObject is not a mismatch
2357      bt = T_OBJECT;
2358    }
2359    if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2360      // Don't intrinsify mismatched object accesses
2361      return false;
2362    }
2363    mismatched = (bt != type);
2364  } else if (alias_type->adr_type()->isa_oopptr()) {
2365    mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2366  }
2367
2368  assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2369
2370  // First guess at the value type.
2371  const Type *value_type = Type::get_const_basic_type(type);
2372
2373  // We will need memory barriers unless we can determine a unique
2374  // alias category for this reference.  (Note:  If for some reason
2375  // the barriers get omitted and the unsafe reference begins to "pollute"
2376  // the alias analysis of the rest of the graph, either Compile::can_alias
2377  // or Compile::must_alias will throw a diagnostic assert.)
2378  bool need_mem_bar = false;
2379  switch (kind) {
2380      case Relaxed:
2381          need_mem_bar = mismatched && !adr_type->isa_aryptr();
2382          break;
2383      case Opaque:
2384          // Opaque uses CPUOrder membars for protection against code movement.
2385      case Acquire:
2386      case Release:
2387      case Volatile:
2388          need_mem_bar = true;
2389          break;
2390      default:
2391          ShouldNotReachHere();
2392  }
2393
2394  // Some accesses require access atomicity for all types, notably longs and doubles.
2395  // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2396  bool requires_atomic_access = false;
2397  switch (kind) {
2398      case Relaxed:
2399          requires_atomic_access = AlwaysAtomicAccesses;
2400          break;
2401      case Opaque:
2402          // Opaque accesses are atomic.
2403      case Acquire:
2404      case Release:
2405      case Volatile:
2406          requires_atomic_access = true;
2407          break;
2408      default:
2409          ShouldNotReachHere();
2410  }
2411
2412  // Figure out the memory ordering.
2413  // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2414  MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2415
2416  // If we are reading the value of the referent field of a Reference
2417  // object (either by using Unsafe directly or through reflection)
2418  // then, if G1 is enabled, we need to record the referent in an
2419  // SATB log buffer using the pre-barrier mechanism.
2420  // Also we need to add memory barrier to prevent commoning reads
2421  // from this field across safepoint since GC can change its value.
2422  bool need_read_barrier = !is_store &&
2423                           offset != top() && heap_base_oop != top();
2424
2425  if (!is_store && type == T_OBJECT) {
2426    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2427    if (tjp != NULL) {
2428      value_type = tjp;
2429    }
2430  }
2431
2432  receiver = null_check(receiver);
2433  if (stopped()) {
2434    return true;
2435  }
2436  // Heap pointers get a null-check from the interpreter,
2437  // as a courtesy.  However, this is not guaranteed by Unsafe,
2438  // and it is not possible to fully distinguish unintended nulls
2439  // from intended ones in this API.
2440
2441  // We need to emit leading and trailing CPU membars (see below) in
2442  // addition to memory membars for special access modes. This is a little
2443  // too strong, but avoids the need to insert per-alias-type
2444  // volatile membars (for stores; compare Parse::do_put_xxx), which
2445  // we cannot do effectively here because we probably only have a
2446  // rough approximation of type.
2447
2448  switch(kind) {
2449    case Relaxed:
2450    case Opaque:
2451    case Acquire:
2452      break;
2453    case Release:
2454    case Volatile:
2455      if (is_store) {
2456        insert_mem_bar(Op_MemBarRelease);
2457      } else {
2458        if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2459          insert_mem_bar(Op_MemBarVolatile);
2460        }
2461      }
2462      break;
2463    default:
2464      ShouldNotReachHere();
2465  }
2466
2467  // Memory barrier to prevent normal and 'unsafe' accesses from
2468  // bypassing each other.  Happens after null checks, so the
2469  // exception paths do not take memory state from the memory barrier,
2470  // so there's no problems making a strong assert about mixing users
2471  // of safe & unsafe memory.
2472  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2473
2474  if (!is_store) {
2475    Node* p = NULL;
2476    // Try to constant fold a load from a constant field
2477    ciField* field = alias_type->field();
2478    if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2479      // final or stable field
2480      p = make_constant_from_field(field, heap_base_oop);
2481    }
2482    if (p == NULL) {
2483      // To be valid, unsafe loads may depend on other conditions than
2484      // the one that guards them: pin the Load node
2485      p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
2486      // load value
2487      switch (type) {
2488      case T_BOOLEAN:
2489      {
2490        // Normalize the value returned by getBoolean in the following cases
2491        if (mismatched ||
2492            heap_base_oop == top() ||                            // - heap_base_oop is NULL or
2493            (can_access_non_heap && alias_type->field() == NULL) // - heap_base_oop is potentially NULL
2494                                                                 //   and the unsafe access is made to large offset
2495                                                                 //   (i.e., larger than the maximum offset necessary for any
2496                                                                 //   field access)
2497            ) {
2498          IdealKit ideal = IdealKit(this);
2499#define __ ideal.
2500          IdealVariable normalized_result(ideal);
2501          __ declarations_done();
2502          __ set(normalized_result, p);
2503          __ if_then(p, BoolTest::ne, ideal.ConI(0));
2504          __ set(normalized_result, ideal.ConI(1));
2505          ideal.end_if();
2506          final_sync(ideal);
2507          p = __ value(normalized_result);
2508#undef __
2509        }
2510      }
2511      case T_CHAR:
2512      case T_BYTE:
2513      case T_SHORT:
2514      case T_INT:
2515      case T_LONG:
2516      case T_FLOAT:
2517      case T_DOUBLE:
2518        break;
2519      case T_OBJECT:
2520        if (need_read_barrier) {
2521          // We do not require a mem bar inside pre_barrier if need_mem_bar
2522          // is set: the barriers would be emitted by us.
2523          insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2524        }
2525        break;
2526      case T_ADDRESS:
2527        // Cast to an int type.
2528        p = _gvn.transform(new CastP2XNode(NULL, p));
2529        p = ConvX2UL(p);
2530        break;
2531      default:
2532        fatal("unexpected type %d: %s", type, type2name(type));
2533        break;
2534      }
2535    }
2536    // The load node has the control of the preceding MemBarCPUOrder.  All
2537    // following nodes will have the control of the MemBarCPUOrder inserted at
2538    // the end of this method.  So, pushing the load onto the stack at a later
2539    // point is fine.
2540    set_result(p);
2541  } else {
2542    // place effect of store into memory
2543    switch (type) {
2544    case T_DOUBLE:
2545      val = dstore_rounding(val);
2546      break;
2547    case T_ADDRESS:
2548      // Repackage the long as a pointer.
2549      val = ConvL2X(val);
2550      val = _gvn.transform(new CastX2PNode(val));
2551      break;
2552    }
2553
2554    if (type == T_OBJECT) {
2555      store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2556    } else {
2557      store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2558    }
2559  }
2560
2561  switch(kind) {
2562    case Relaxed:
2563    case Opaque:
2564    case Release:
2565      break;
2566    case Acquire:
2567    case Volatile:
2568      if (!is_store) {
2569        insert_mem_bar(Op_MemBarAcquire);
2570      } else {
2571        if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2572          insert_mem_bar(Op_MemBarVolatile);
2573        }
2574      }
2575      break;
2576    default:
2577      ShouldNotReachHere();
2578  }
2579
2580  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2581
2582  return true;
2583}
2584
2585//----------------------------inline_unsafe_load_store----------------------------
2586// This method serves a couple of different customers (depending on LoadStoreKind):
2587//
2588// LS_cmp_swap:
2589//
2590//   boolean compareAndSetObject(Object o, long offset, Object expected, Object x);
2591//   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2592//   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2593//
2594// LS_cmp_swap_weak:
2595//
2596//   boolean weakCompareAndSetObject(       Object o, long offset, Object expected, Object x);
2597//   boolean weakCompareAndSetObjectPlain(  Object o, long offset, Object expected, Object x);
2598//   boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x);
2599//   boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x);
2600//
2601//   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2602//   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2603//   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2604//   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2605//
2606//   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2607//   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2608//   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2609//   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2610//
2611// LS_cmp_exchange:
2612//
2613//   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2614//   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2615//   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2616//
2617//   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2618//   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2619//   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2620//
2621//   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2622//   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2623//   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2624//
2625// LS_get_add:
2626//
2627//   int  getAndAddInt( Object o, long offset, int  delta)
2628//   long getAndAddLong(Object o, long offset, long delta)
2629//
2630// LS_get_set:
2631//
2632//   int    getAndSet(Object o, long offset, int    newValue)
2633//   long   getAndSet(Object o, long offset, long   newValue)
2634//   Object getAndSet(Object o, long offset, Object newValue)
2635//
2636bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2637  // This basic scheme here is the same as inline_unsafe_access, but
2638  // differs in enough details that combining them would make the code
2639  // overly confusing.  (This is a true fact! I originally combined
2640  // them, but even I was confused by it!) As much code/comments as
2641  // possible are retained from inline_unsafe_access though to make
2642  // the correspondences clearer. - dl
2643
2644  if (callee()->is_static())  return false;  // caller must have the capability!
2645
2646#ifndef PRODUCT
2647  BasicType rtype;
2648  {
2649    ResourceMark rm;
2650    // Check the signatures.
2651    ciSignature* sig = callee()->signature();
2652    rtype = sig->return_type()->basic_type();
2653    switch(kind) {
2654      case LS_get_add:
2655      case LS_get_set: {
2656      // Check the signatures.
2657#ifdef ASSERT
2658      assert(rtype == type, "get and set must return the expected type");
2659      assert(sig->count() == 3, "get and set has 3 arguments");
2660      assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2661      assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2662      assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2663      assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2664#endif // ASSERT
2665        break;
2666      }
2667      case LS_cmp_swap:
2668      case LS_cmp_swap_weak: {
2669      // Check the signatures.
2670#ifdef ASSERT
2671      assert(rtype == T_BOOLEAN, "CAS must return boolean");
2672      assert(sig->count() == 4, "CAS has 4 arguments");
2673      assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2674      assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2675#endif // ASSERT
2676        break;
2677      }
2678      case LS_cmp_exchange: {
2679      // Check the signatures.
2680#ifdef ASSERT
2681      assert(rtype == type, "CAS must return the expected type");
2682      assert(sig->count() == 4, "CAS has 4 arguments");
2683      assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2684      assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2685#endif // ASSERT
2686        break;
2687      }
2688      default:
2689        ShouldNotReachHere();
2690    }
2691  }
2692#endif //PRODUCT
2693
2694  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2695
2696  // Get arguments:
2697  Node* receiver = NULL;
2698  Node* base     = NULL;
2699  Node* offset   = NULL;
2700  Node* oldval   = NULL;
2701  Node* newval   = NULL;
2702  switch(kind) {
2703    case LS_cmp_swap:
2704    case LS_cmp_swap_weak:
2705    case LS_cmp_exchange: {
2706      const bool two_slot_type = type2size[type] == 2;
2707      receiver = argument(0);  // type: oop
2708      base     = argument(1);  // type: oop
2709      offset   = argument(2);  // type: long
2710      oldval   = argument(4);  // type: oop, int, or long
2711      newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2712      break;
2713    }
2714    case LS_get_add:
2715    case LS_get_set: {
2716      receiver = argument(0);  // type: oop
2717      base     = argument(1);  // type: oop
2718      offset   = argument(2);  // type: long
2719      oldval   = NULL;
2720      newval   = argument(4);  // type: oop, int, or long
2721      break;
2722    }
2723    default:
2724      ShouldNotReachHere();
2725  }
2726
2727  // Build field offset expression.
2728  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2729  // to be plain byte offsets, which are also the same as those accepted
2730  // by oopDesc::field_base.
2731  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2732  // 32-bit machines ignore the high half of long offsets
2733  offset = ConvL2X(offset);
2734  Node* adr = make_unsafe_address(base, offset);
2735  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2736
2737  Compile::AliasType* alias_type = C->alias_type(adr_type);
2738  BasicType bt = alias_type->basic_type();
2739  if (bt != T_ILLEGAL &&
2740      ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2741    // Don't intrinsify mismatched object accesses.
2742    return false;
2743  }
2744
2745  // For CAS, unlike inline_unsafe_access, there seems no point in
2746  // trying to refine types. Just use the coarse types here.
2747  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2748  const Type *value_type = Type::get_const_basic_type(type);
2749
2750  switch (kind) {
2751    case LS_get_set:
2752    case LS_cmp_exchange: {
2753      if (type == T_OBJECT) {
2754        const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2755        if (tjp != NULL) {
2756          value_type = tjp;
2757        }
2758      }
2759      break;
2760    }
2761    case LS_cmp_swap:
2762    case LS_cmp_swap_weak:
2763    case LS_get_add:
2764      break;
2765    default:
2766      ShouldNotReachHere();
2767  }
2768
2769  // Null check receiver.
2770  receiver = null_check(receiver);
2771  if (stopped()) {
2772    return true;
2773  }
2774
2775  int alias_idx = C->get_alias_index(adr_type);
2776
2777  // Memory-model-wise, a LoadStore acts like a little synchronized
2778  // block, so needs barriers on each side.  These don't translate
2779  // into actual barriers on most machines, but we still need rest of
2780  // compiler to respect ordering.
2781
2782  switch (access_kind) {
2783    case Relaxed:
2784    case Acquire:
2785      break;
2786    case Release:
2787      insert_mem_bar(Op_MemBarRelease);
2788      break;
2789    case Volatile:
2790      if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2791        insert_mem_bar(Op_MemBarVolatile);
2792      } else {
2793        insert_mem_bar(Op_MemBarRelease);
2794      }
2795      break;
2796    default:
2797      ShouldNotReachHere();
2798  }
2799  insert_mem_bar(Op_MemBarCPUOrder);
2800
2801  // Figure out the memory ordering.
2802  MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2803
2804  // 4984716: MemBars must be inserted before this
2805  //          memory node in order to avoid a false
2806  //          dependency which will confuse the scheduler.
2807  Node *mem = memory(alias_idx);
2808
2809  // For now, we handle only those cases that actually exist: ints,
2810  // longs, and Object. Adding others should be straightforward.
2811  Node* load_store = NULL;
2812  switch(type) {
2813  case T_BYTE:
2814    switch(kind) {
2815      case LS_get_add:
2816        load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2817        break;
2818      case LS_get_set:
2819        load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2820        break;
2821      case LS_cmp_swap_weak:
2822        load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2823        break;
2824      case LS_cmp_swap:
2825        load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2826        break;
2827      case LS_cmp_exchange:
2828        load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2829        break;
2830      default:
2831        ShouldNotReachHere();
2832    }
2833    break;
2834  case T_SHORT:
2835    switch(kind) {
2836      case LS_get_add:
2837        load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2838        break;
2839      case LS_get_set:
2840        load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2841        break;
2842      case LS_cmp_swap_weak:
2843        load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2844        break;
2845      case LS_cmp_swap:
2846        load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2847        break;
2848      case LS_cmp_exchange:
2849        load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2850        break;
2851      default:
2852        ShouldNotReachHere();
2853    }
2854    break;
2855  case T_INT:
2856    switch(kind) {
2857      case LS_get_add:
2858        load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2859        break;
2860      case LS_get_set:
2861        load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2862        break;
2863      case LS_cmp_swap_weak:
2864        load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2865        break;
2866      case LS_cmp_swap:
2867        load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2868        break;
2869      case LS_cmp_exchange:
2870        load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2871        break;
2872      default:
2873        ShouldNotReachHere();
2874    }
2875    break;
2876  case T_LONG:
2877    switch(kind) {
2878      case LS_get_add:
2879        load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2880        break;
2881      case LS_get_set:
2882        load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2883        break;
2884      case LS_cmp_swap_weak:
2885        load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2886        break;
2887      case LS_cmp_swap:
2888        load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2889        break;
2890      case LS_cmp_exchange:
2891        load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2892        break;
2893      default:
2894        ShouldNotReachHere();
2895    }
2896    break;
2897  case T_OBJECT:
2898    // Transformation of a value which could be NULL pointer (CastPP #NULL)
2899    // could be delayed during Parse (for example, in adjust_map_after_if()).
2900    // Execute transformation here to avoid barrier generation in such case.
2901    if (_gvn.type(newval) == TypePtr::NULL_PTR)
2902      newval = _gvn.makecon(TypePtr::NULL_PTR);
2903
2904    // Reference stores need a store barrier.
2905    switch(kind) {
2906      case LS_get_set: {
2907        // If pre-barrier must execute before the oop store, old value will require do_load here.
2908        if (!can_move_pre_barrier()) {
2909          pre_barrier(true /* do_load*/,
2910                      control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2911                      NULL /* pre_val*/,
2912                      T_OBJECT);
2913        } // Else move pre_barrier to use load_store value, see below.
2914        break;
2915      }
2916      case LS_cmp_swap_weak:
2917      case LS_cmp_swap:
2918      case LS_cmp_exchange: {
2919        // Same as for newval above:
2920        if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2921          oldval = _gvn.makecon(TypePtr::NULL_PTR);
2922        }
2923        // The only known value which might get overwritten is oldval.
2924        pre_barrier(false /* do_load */,
2925                    control(), NULL, NULL, max_juint, NULL, NULL,
2926                    oldval /* pre_val */,
2927                    T_OBJECT);
2928        break;
2929      }
2930      default:
2931        ShouldNotReachHere();
2932    }
2933
2934#ifdef _LP64
2935    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2936      Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2937
2938      switch(kind) {
2939        case LS_get_set:
2940          load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
2941          break;
2942        case LS_cmp_swap_weak: {
2943          Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2944          load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2945          break;
2946        }
2947        case LS_cmp_swap: {
2948          Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2949          load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2950          break;
2951        }
2952        case LS_cmp_exchange: {
2953          Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2954          load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
2955          break;
2956        }
2957        default:
2958          ShouldNotReachHere();
2959      }
2960    } else
2961#endif
2962    switch (kind) {
2963      case LS_get_set:
2964        load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2965        break;
2966      case LS_cmp_swap_weak:
2967        load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2968        break;
2969      case LS_cmp_swap:
2970        load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2971        break;
2972      case LS_cmp_exchange:
2973        load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
2974        break;
2975      default:
2976        ShouldNotReachHere();
2977    }
2978
2979    // Emit the post barrier only when the actual store happened. This makes sense
2980    // to check only for LS_cmp_* that can fail to set the value.
2981    // LS_cmp_exchange does not produce any branches by default, so there is no
2982    // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
2983    // CompareAndExchange and move branches here, it would make sense to conditionalize
2984    // post_barriers for LS_cmp_exchange as well.
2985    //
2986    // CAS success path is marked more likely since we anticipate this is a performance
2987    // critical path, while CAS failure path can use the penalty for going through unlikely
2988    // path as backoff. Which is still better than doing a store barrier there.
2989    switch (kind) {
2990      case LS_get_set:
2991      case LS_cmp_exchange: {
2992        post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2993        break;
2994      }
2995      case LS_cmp_swap_weak:
2996      case LS_cmp_swap: {
2997        IdealKit ideal(this);
2998        ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2999          sync_kit(ideal);
3000          post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3001          ideal.sync_kit(this);
3002        } ideal.end_if();
3003        final_sync(ideal);
3004        break;
3005      }
3006      default:
3007        ShouldNotReachHere();
3008    }
3009    break;
3010  default:
3011    fatal("unexpected type %d: %s", type, type2name(type));
3012    break;
3013  }
3014
3015  // SCMemProjNodes represent the memory state of a LoadStore. Their
3016  // main role is to prevent LoadStore nodes from being optimized away
3017  // when their results aren't used.
3018  Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3019  set_memory(proj, alias_idx);
3020
3021  if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3022#ifdef _LP64
3023    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3024      load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3025    }
3026#endif
3027    if (can_move_pre_barrier() && kind == LS_get_set) {
3028      // Don't need to load pre_val. The old value is returned by load_store.
3029      // The pre_barrier can execute after the xchg as long as no safepoint
3030      // gets inserted between them.
3031      pre_barrier(false /* do_load */,
3032                  control(), NULL, NULL, max_juint, NULL, NULL,
3033                  load_store /* pre_val */,
3034                  T_OBJECT);
3035    }
3036  }
3037
3038  // Add the trailing membar surrounding the access
3039  insert_mem_bar(Op_MemBarCPUOrder);
3040
3041  switch (access_kind) {
3042    case Relaxed:
3043    case Release:
3044      break; // do nothing
3045    case Acquire:
3046    case Volatile:
3047      insert_mem_bar(Op_MemBarAcquire);
3048      // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3049      break;
3050    default:
3051      ShouldNotReachHere();
3052  }
3053
3054  assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3055  set_result(load_store);
3056  return true;
3057}
3058
3059MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3060  MemNode::MemOrd mo = MemNode::unset;
3061  switch(kind) {
3062    case Opaque:
3063    case Relaxed:  mo = MemNode::unordered; break;
3064    case Acquire:  mo = MemNode::acquire;   break;
3065    case Release:  mo = MemNode::release;   break;
3066    case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3067    default:
3068      ShouldNotReachHere();
3069  }
3070  guarantee(mo != MemNode::unset, "Should select memory ordering");
3071  return mo;
3072}
3073
3074MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3075  MemNode::MemOrd mo = MemNode::unset;
3076  switch(kind) {
3077    case Opaque:
3078    case Relaxed:  mo = MemNode::unordered; break;
3079    case Acquire:  mo = MemNode::acquire;   break;
3080    case Release:  mo = MemNode::release;   break;
3081    case Volatile: mo = MemNode::seqcst;    break;
3082    default:
3083      ShouldNotReachHere();
3084  }
3085  guarantee(mo != MemNode::unset, "Should select memory ordering");
3086  return mo;
3087}
3088
3089bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3090  // Regardless of form, don't allow previous ld/st to move down,
3091  // then issue acquire, release, or volatile mem_bar.
3092  insert_mem_bar(Op_MemBarCPUOrder);
3093  switch(id) {
3094    case vmIntrinsics::_loadFence:
3095      insert_mem_bar(Op_LoadFence);
3096      return true;
3097    case vmIntrinsics::_storeFence:
3098      insert_mem_bar(Op_StoreFence);
3099      return true;
3100    case vmIntrinsics::_fullFence:
3101      insert_mem_bar(Op_MemBarVolatile);
3102      return true;
3103    default:
3104      fatal_unexpected_iid(id);
3105      return false;
3106  }
3107}
3108
3109bool LibraryCallKit::inline_onspinwait() {
3110  insert_mem_bar(Op_OnSpinWait);
3111  return true;
3112}
3113
3114bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3115  if (!kls->is_Con()) {
3116    return true;
3117  }
3118  const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3119  if (klsptr == NULL) {
3120    return true;
3121  }
3122  ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3123  // don't need a guard for a klass that is already initialized
3124  return !ik->is_initialized();
3125}
3126
3127//----------------------------inline_unsafe_allocate---------------------------
3128// public native Object Unsafe.allocateInstance(Class<?> cls);
3129bool LibraryCallKit::inline_unsafe_allocate() {
3130  if (callee()->is_static())  return false;  // caller must have the capability!
3131
3132  null_check_receiver();  // null-check, then ignore
3133  Node* cls = null_check(argument(1));
3134  if (stopped())  return true;
3135
3136  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3137  kls = null_check(kls);
3138  if (stopped())  return true;  // argument was like int.class
3139
3140  Node* test = NULL;
3141  if (LibraryCallKit::klass_needs_init_guard(kls)) {
3142    // Note:  The argument might still be an illegal value like
3143    // Serializable.class or Object[].class.   The runtime will handle it.
3144    // But we must make an explicit check for initialization.
3145    Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3146    // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3147    // can generate code to load it as unsigned byte.
3148    Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3149    Node* bits = intcon(InstanceKlass::fully_initialized);
3150    test = _gvn.transform(new SubINode(inst, bits));
3151    // The 'test' is non-zero if we need to take a slow path.
3152  }
3153
3154  Node* obj = new_instance(kls, test);
3155  set_result(obj);
3156  return true;
3157}
3158
3159//------------------------inline_native_time_funcs--------------
3160// inline code for System.currentTimeMillis() and System.nanoTime()
3161// these have the same type and signature
3162bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3163  const TypeFunc* tf = OptoRuntime::void_long_Type();
3164  const TypePtr* no_memory_effects = NULL;
3165  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3166  Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3167#ifdef ASSERT
3168  Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3169  assert(value_top == top(), "second value must be top");
3170#endif
3171  set_result(value);
3172  return true;
3173}
3174
3175#ifdef TRACE_HAVE_INTRINSICS
3176
3177/*
3178* oop -> myklass
3179* myklass->trace_id |= USED
3180* return myklass->trace_id & ~0x3
3181*/
3182bool LibraryCallKit::inline_native_classID() {
3183  Node* cls = null_check(argument(0), T_OBJECT);
3184  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3185  kls = null_check(kls, T_OBJECT);
3186
3187  ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3188  Node* insp = basic_plus_adr(kls, in_bytes(offset));
3189  Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3190
3191  Node* clsused = longcon(0x01l); // set the class bit
3192  Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3193  const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3194  store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3195
3196#ifdef TRACE_ID_META_BITS
3197  Node* mbits = longcon(~TRACE_ID_META_BITS);
3198  tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
3199#endif
3200#ifdef TRACE_ID_CLASS_SHIFT
3201  Node* cbits = intcon(TRACE_ID_CLASS_SHIFT);
3202  tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
3203#endif
3204
3205  set_result(tvalue);
3206  return true;
3207
3208}
3209
3210bool LibraryCallKit::inline_native_getBufferWriter() {
3211  Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3212
3213  Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3214                                  in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET)
3215                                  );
3216
3217  Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3218
3219  Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
3220  Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
3221
3222  IfNode* iff_jobj_null =
3223    create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3224
3225  enum { _normal_path = 1,
3226         _null_path = 2,
3227         PATH_LIMIT };
3228
3229  RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3230  PhiNode*    result_val = new PhiNode(result_rgn, TypePtr::BOTTOM);
3231
3232  Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
3233  result_rgn->init_req(_null_path, jobj_is_null);
3234  result_val->init_req(_null_path, null());
3235
3236  Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3237  result_rgn->init_req(_normal_path, jobj_is_not_null);
3238
3239  Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
3240  result_val->init_req(_normal_path, res);
3241
3242  set_result(result_rgn, result_val);
3243
3244  return true;
3245}
3246
3247#endif
3248
3249//------------------------inline_native_currentThread------------------
3250bool LibraryCallKit::inline_native_currentThread() {
3251  Node* junk = NULL;
3252  set_result(generate_current_thread(junk));
3253  return true;
3254}
3255
3256//------------------------inline_native_isInterrupted------------------
3257// private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3258bool LibraryCallKit::inline_native_isInterrupted() {
3259  // Add a fast path to t.isInterrupted(clear_int):
3260  //   (t == Thread.current() &&
3261  //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3262  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3263  // So, in the common case that the interrupt bit is false,
3264  // we avoid making a call into the VM.  Even if the interrupt bit
3265  // is true, if the clear_int argument is false, we avoid the VM call.
3266  // However, if the receiver is not currentThread, we must call the VM,
3267  // because there must be some locking done around the operation.
3268
3269  // We only go to the fast case code if we pass two guards.
3270  // Paths which do not pass are accumulated in the slow_region.
3271
3272  enum {
3273    no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3274    no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3275    slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3276    PATH_LIMIT
3277  };
3278
3279  // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3280  // out of the function.
3281  insert_mem_bar(Op_MemBarCPUOrder);
3282
3283  RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3284  PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3285
3286  RegionNode* slow_region = new RegionNode(1);
3287  record_for_igvn(slow_region);
3288
3289  // (a) Receiving thread must be the current thread.
3290  Node* rec_thr = argument(0);
3291  Node* tls_ptr = NULL;
3292  Node* cur_thr = generate_current_thread(tls_ptr);
3293  Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3294  Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3295
3296  generate_slow_guard(bol_thr, slow_region);
3297
3298  // (b) Interrupt bit on TLS must be false.
3299  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3300  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3301  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3302
3303  // Set the control input on the field _interrupted read to prevent it floating up.
3304  Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3305  Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3306  Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3307
3308  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3309
3310  // First fast path:  if (!TLS._interrupted) return false;
3311  Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3312  result_rgn->init_req(no_int_result_path, false_bit);
3313  result_val->init_req(no_int_result_path, intcon(0));
3314
3315  // drop through to next case
3316  set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3317
3318#ifndef _WINDOWS
3319  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3320  Node* clr_arg = argument(1);
3321  Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3322  Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3323  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3324
3325  // Second fast path:  ... else if (!clear_int) return true;
3326  Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3327  result_rgn->init_req(no_clear_result_path, false_arg);
3328  result_val->init_req(no_clear_result_path, intcon(1));
3329
3330  // drop through to next case
3331  set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3332#else
3333  // To return true on Windows you must read the _interrupted field
3334  // and check the event state i.e. take the slow path.
3335#endif // _WINDOWS
3336
3337  // (d) Otherwise, go to the slow path.
3338  slow_region->add_req(control());
3339  set_control( _gvn.transform(slow_region));
3340
3341  if (stopped()) {
3342    // There is no slow path.
3343    result_rgn->init_req(slow_result_path, top());
3344    result_val->init_req(slow_result_path, top());
3345  } else {
3346    // non-virtual because it is a private non-static
3347    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3348
3349    Node* slow_val = set_results_for_java_call(slow_call);
3350    // this->control() comes from set_results_for_java_call
3351
3352    Node* fast_io  = slow_call->in(TypeFunc::I_O);
3353    Node* fast_mem = slow_call->in(TypeFunc::Memory);
3354
3355    // These two phis are pre-filled with copies of of the fast IO and Memory
3356    PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3357    PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3358
3359    result_rgn->init_req(slow_result_path, control());
3360    result_io ->init_req(slow_result_path, i_o());
3361    result_mem->init_req(slow_result_path, reset_memory());
3362    result_val->init_req(slow_result_path, slow_val);
3363
3364    set_all_memory(_gvn.transform(result_mem));
3365    set_i_o(       _gvn.transform(result_io));
3366  }
3367
3368  C->set_has_split_ifs(true); // Has chance for split-if optimization
3369  set_result(result_rgn, result_val);
3370  return true;
3371}
3372
3373//---------------------------load_mirror_from_klass----------------------------
3374// Given a klass oop, load its java mirror (a java.lang.Class oop).
3375Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3376  Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3377  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3378}
3379
3380//-----------------------load_klass_from_mirror_common-------------------------
3381// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3382// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3383// and branch to the given path on the region.
3384// If never_see_null, take an uncommon trap on null, so we can optimistically
3385// compile for the non-null case.
3386// If the region is NULL, force never_see_null = true.
3387Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3388                                                    bool never_see_null,
3389                                                    RegionNode* region,
3390                                                    int null_path,
3391                                                    int offset) {
3392  if (region == NULL)  never_see_null = true;
3393  Node* p = basic_plus_adr(mirror, offset);
3394  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3395  Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3396  Node* null_ctl = top();
3397  kls = null_check_oop(kls, &null_ctl, never_see_null);
3398  if (region != NULL) {
3399    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3400    region->init_req(null_path, null_ctl);
3401  } else {
3402    assert(null_ctl == top(), "no loose ends");
3403  }
3404  return kls;
3405}
3406
3407//--------------------(inline_native_Class_query helpers)---------------------
3408// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3409// Fall through if (mods & mask) == bits, take the guard otherwise.
3410Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3411  // Branch around if the given klass has the given modifier bit set.
3412  // Like generate_guard, adds a new path onto the region.
3413  Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3414  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3415  Node* mask = intcon(modifier_mask);
3416  Node* bits = intcon(modifier_bits);
3417  Node* mbit = _gvn.transform(new AndINode(mods, mask));
3418  Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3419  Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3420  return generate_fair_guard(bol, region);
3421}
3422Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3423  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3424}
3425
3426//-------------------------inline_native_Class_query-------------------
3427bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3428  const Type* return_type = TypeInt::BOOL;
3429  Node* prim_return_value = top();  // what happens if it's a primitive class?
3430  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3431  bool expect_prim = false;     // most of these guys expect to work on refs
3432
3433  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3434
3435  Node* mirror = argument(0);
3436  Node* obj    = top();
3437
3438  switch (id) {
3439  case vmIntrinsics::_isInstance:
3440    // nothing is an instance of a primitive type
3441    prim_return_value = intcon(0);
3442    obj = argument(1);
3443    break;
3444  case vmIntrinsics::_getModifiers:
3445    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3446    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3447    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3448    break;
3449  case vmIntrinsics::_isInterface:
3450    prim_return_value = intcon(0);
3451    break;
3452  case vmIntrinsics::_isArray:
3453    prim_return_value = intcon(0);
3454    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3455    break;
3456  case vmIntrinsics::_isPrimitive:
3457    prim_return_value = intcon(1);
3458    expect_prim = true;  // obviously
3459    break;
3460  case vmIntrinsics::_getSuperclass:
3461    prim_return_value = null();
3462    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3463    break;
3464  case vmIntrinsics::_getClassAccessFlags:
3465    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3466    return_type = TypeInt::INT;  // not bool!  6297094
3467    break;
3468  default:
3469    fatal_unexpected_iid(id);
3470    break;
3471  }
3472
3473  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3474  if (mirror_con == NULL)  return false;  // cannot happen?
3475
3476#ifndef PRODUCT
3477  if (C->print_intrinsics() || C->print_inlining()) {
3478    ciType* k = mirror_con->java_mirror_type();
3479    if (k) {
3480      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3481      k->print_name();
3482      tty->cr();
3483    }
3484  }
3485#endif
3486
3487  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3488  RegionNode* region = new RegionNode(PATH_LIMIT);
3489  record_for_igvn(region);
3490  PhiNode* phi = new PhiNode(region, return_type);
3491
3492  // The mirror will never be null of Reflection.getClassAccessFlags, however
3493  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3494  // if it is. See bug 4774291.
3495
3496  // For Reflection.getClassAccessFlags(), the null check occurs in
3497  // the wrong place; see inline_unsafe_access(), above, for a similar
3498  // situation.
3499  mirror = null_check(mirror);
3500  // If mirror or obj is dead, only null-path is taken.
3501  if (stopped())  return true;
3502
3503  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3504
3505  // Now load the mirror's klass metaobject, and null-check it.
3506  // Side-effects region with the control path if the klass is null.
3507  Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3508  // If kls is null, we have a primitive mirror.
3509  phi->init_req(_prim_path, prim_return_value);
3510  if (stopped()) { set_result(region, phi); return true; }
3511  bool safe_for_replace = (region->in(_prim_path) == top());
3512
3513  Node* p;  // handy temp
3514  Node* null_ctl;
3515
3516  // Now that we have the non-null klass, we can perform the real query.
3517  // For constant classes, the query will constant-fold in LoadNode::Value.
3518  Node* query_value = top();
3519  switch (id) {
3520  case vmIntrinsics::_isInstance:
3521    // nothing is an instance of a primitive type
3522    query_value = gen_instanceof(obj, kls, safe_for_replace);
3523    break;
3524
3525  case vmIntrinsics::_getModifiers:
3526    p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3527    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3528    break;
3529
3530  case vmIntrinsics::_isInterface:
3531    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3532    if (generate_interface_guard(kls, region) != NULL)
3533      // A guard was added.  If the guard is taken, it was an interface.
3534      phi->add_req(intcon(1));
3535    // If we fall through, it's a plain class.
3536    query_value = intcon(0);
3537    break;
3538
3539  case vmIntrinsics::_isArray:
3540    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3541    if (generate_array_guard(kls, region) != NULL)
3542      // A guard was added.  If the guard is taken, it was an array.
3543      phi->add_req(intcon(1));
3544    // If we fall through, it's a plain class.
3545    query_value = intcon(0);
3546    break;
3547
3548  case vmIntrinsics::_isPrimitive:
3549    query_value = intcon(0); // "normal" path produces false
3550    break;
3551
3552  case vmIntrinsics::_getSuperclass:
3553    // The rules here are somewhat unfortunate, but we can still do better
3554    // with random logic than with a JNI call.
3555    // Interfaces store null or Object as _super, but must report null.
3556    // Arrays store an intermediate super as _super, but must report Object.
3557    // Other types can report the actual _super.
3558    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3559    if (generate_interface_guard(kls, region) != NULL)
3560      // A guard was added.  If the guard is taken, it was an interface.
3561      phi->add_req(null());
3562    if (generate_array_guard(kls, region) != NULL)
3563      // A guard was added.  If the guard is taken, it was an array.
3564      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3565    // If we fall through, it's a plain class.  Get its _super.
3566    p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3567    kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3568    null_ctl = top();
3569    kls = null_check_oop(kls, &null_ctl);
3570    if (null_ctl != top()) {
3571      // If the guard is taken, Object.superClass is null (both klass and mirror).
3572      region->add_req(null_ctl);
3573      phi   ->add_req(null());
3574    }
3575    if (!stopped()) {
3576      query_value = load_mirror_from_klass(kls);
3577    }
3578    break;
3579
3580  case vmIntrinsics::_getClassAccessFlags:
3581    p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3582    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3583    break;
3584
3585  default:
3586    fatal_unexpected_iid(id);
3587    break;
3588  }
3589
3590  // Fall-through is the normal case of a query to a real class.
3591  phi->init_req(1, query_value);
3592  region->init_req(1, control());
3593
3594  C->set_has_split_ifs(true); // Has chance for split-if optimization
3595  set_result(region, phi);
3596  return true;
3597}
3598
3599//-------------------------inline_Class_cast-------------------
3600bool LibraryCallKit::inline_Class_cast() {
3601  Node* mirror = argument(0); // Class
3602  Node* obj    = argument(1);
3603  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3604  if (mirror_con == NULL) {
3605    return false;  // dead path (mirror->is_top()).
3606  }
3607  if (obj == NULL || obj->is_top()) {
3608    return false;  // dead path
3609  }
3610  const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3611
3612  // First, see if Class.cast() can be folded statically.
3613  // java_mirror_type() returns non-null for compile-time Class constants.
3614  ciType* tm = mirror_con->java_mirror_type();
3615  if (tm != NULL && tm->is_klass() &&
3616      tp != NULL && tp->klass() != NULL) {
3617    if (!tp->klass()->is_loaded()) {
3618      // Don't use intrinsic when class is not loaded.
3619      return false;
3620    } else {
3621      int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3622      if (static_res == Compile::SSC_always_true) {
3623        // isInstance() is true - fold the code.
3624        set_result(obj);
3625        return true;
3626      } else if (static_res == Compile::SSC_always_false) {
3627        // Don't use intrinsic, have to throw ClassCastException.
3628        // If the reference is null, the non-intrinsic bytecode will
3629        // be optimized appropriately.
3630        return false;
3631      }
3632    }
3633  }
3634
3635  // Bailout intrinsic and do normal inlining if exception path is frequent.
3636  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3637    return false;
3638  }
3639
3640  // Generate dynamic checks.
3641  // Class.cast() is java implementation of _checkcast bytecode.
3642  // Do checkcast (Parse::do_checkcast()) optimizations here.
3643
3644  mirror = null_check(mirror);
3645  // If mirror is dead, only null-path is taken.
3646  if (stopped()) {
3647    return true;
3648  }
3649
3650  // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3651  enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3652  RegionNode* region = new RegionNode(PATH_LIMIT);
3653  record_for_igvn(region);
3654
3655  // Now load the mirror's klass metaobject, and null-check it.
3656  // If kls is null, we have a primitive mirror and
3657  // nothing is an instance of a primitive type.
3658  Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3659
3660  Node* res = top();
3661  if (!stopped()) {
3662    Node* bad_type_ctrl = top();
3663    // Do checkcast optimizations.
3664    res = gen_checkcast(obj, kls, &bad_type_ctrl);
3665    region->init_req(_bad_type_path, bad_type_ctrl);
3666  }
3667  if (region->in(_prim_path) != top() ||
3668      region->in(_bad_type_path) != top()) {
3669    // Let Interpreter throw ClassCastException.
3670    PreserveJVMState pjvms(this);
3671    set_control(_gvn.transform(region));
3672    uncommon_trap(Deoptimization::Reason_intrinsic,
3673                  Deoptimization::Action_maybe_recompile);
3674  }
3675  if (!stopped()) {
3676    set_result(res);
3677  }
3678  return true;
3679}
3680
3681
3682//--------------------------inline_native_subtype_check------------------------
3683// This intrinsic takes the JNI calls out of the heart of
3684// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3685bool LibraryCallKit::inline_native_subtype_check() {
3686  // Pull both arguments off the stack.
3687  Node* args[2];                // two java.lang.Class mirrors: superc, subc
3688  args[0] = argument(0);
3689  args[1] = argument(1);
3690  Node* klasses[2];             // corresponding Klasses: superk, subk
3691  klasses[0] = klasses[1] = top();
3692
3693  enum {
3694    // A full decision tree on {superc is prim, subc is prim}:
3695    _prim_0_path = 1,           // {P,N} => false
3696                                // {P,P} & superc!=subc => false
3697    _prim_same_path,            // {P,P} & superc==subc => true
3698    _prim_1_path,               // {N,P} => false
3699    _ref_subtype_path,          // {N,N} & subtype check wins => true
3700    _both_ref_path,             // {N,N} & subtype check loses => false
3701    PATH_LIMIT
3702  };
3703
3704  RegionNode* region = new RegionNode(PATH_LIMIT);
3705  Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3706  record_for_igvn(region);
3707
3708  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3709  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3710  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3711
3712  // First null-check both mirrors and load each mirror's klass metaobject.
3713  int which_arg;
3714  for (which_arg = 0; which_arg <= 1; which_arg++) {
3715    Node* arg = args[which_arg];
3716    arg = null_check(arg);
3717    if (stopped())  break;
3718    args[which_arg] = arg;
3719
3720    Node* p = basic_plus_adr(arg, class_klass_offset);
3721    Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3722    klasses[which_arg] = _gvn.transform(kls);
3723  }
3724
3725  // Having loaded both klasses, test each for null.
3726  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3727  for (which_arg = 0; which_arg <= 1; which_arg++) {
3728    Node* kls = klasses[which_arg];
3729    Node* null_ctl = top();
3730    kls = null_check_oop(kls, &null_ctl, never_see_null);
3731    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3732    region->init_req(prim_path, null_ctl);
3733    if (stopped())  break;
3734    klasses[which_arg] = kls;
3735  }
3736
3737  if (!stopped()) {
3738    // now we have two reference types, in klasses[0..1]
3739    Node* subk   = klasses[1];  // the argument to isAssignableFrom
3740    Node* superk = klasses[0];  // the receiver
3741    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3742    // now we have a successful reference subtype check
3743    region->set_req(_ref_subtype_path, control());
3744  }
3745
3746  // If both operands are primitive (both klasses null), then
3747  // we must return true when they are identical primitives.
3748  // It is convenient to test this after the first null klass check.
3749  set_control(region->in(_prim_0_path)); // go back to first null check
3750  if (!stopped()) {
3751    // Since superc is primitive, make a guard for the superc==subc case.
3752    Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3753    Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3754    generate_guard(bol_eq, region, PROB_FAIR);
3755    if (region->req() == PATH_LIMIT+1) {
3756      // A guard was added.  If the added guard is taken, superc==subc.
3757      region->swap_edges(PATH_LIMIT, _prim_same_path);
3758      region->del_req(PATH_LIMIT);
3759    }
3760    region->set_req(_prim_0_path, control()); // Not equal after all.
3761  }
3762
3763  // these are the only paths that produce 'true':
3764  phi->set_req(_prim_same_path,   intcon(1));
3765  phi->set_req(_ref_subtype_path, intcon(1));
3766
3767  // pull together the cases:
3768  assert(region->req() == PATH_LIMIT, "sane region");
3769  for (uint i = 1; i < region->req(); i++) {
3770    Node* ctl = region->in(i);
3771    if (ctl == NULL || ctl == top()) {
3772      region->set_req(i, top());
3773      phi   ->set_req(i, top());
3774    } else if (phi->in(i) == NULL) {
3775      phi->set_req(i, intcon(0)); // all other paths produce 'false'
3776    }
3777  }
3778
3779  set_control(_gvn.transform(region));
3780  set_result(_gvn.transform(phi));
3781  return true;
3782}
3783
3784//---------------------generate_array_guard_common------------------------
3785Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3786                                                  bool obj_array, bool not_array) {
3787
3788  if (stopped()) {
3789    return NULL;
3790  }
3791
3792  // If obj_array/non_array==false/false:
3793  // Branch around if the given klass is in fact an array (either obj or prim).
3794  // If obj_array/non_array==false/true:
3795  // Branch around if the given klass is not an array klass of any kind.
3796  // If obj_array/non_array==true/true:
3797  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3798  // If obj_array/non_array==true/false:
3799  // Branch around if the kls is an oop array (Object[] or subtype)
3800  //
3801  // Like generate_guard, adds a new path onto the region.
3802  jint  layout_con = 0;
3803  Node* layout_val = get_layout_helper(kls, layout_con);
3804  if (layout_val == NULL) {
3805    bool query = (obj_array
3806                  ? Klass::layout_helper_is_objArray(layout_con)
3807                  : Klass::layout_helper_is_array(layout_con));
3808    if (query == not_array) {
3809      return NULL;                       // never a branch
3810    } else {                             // always a branch
3811      Node* always_branch = control();
3812      if (region != NULL)
3813        region->add_req(always_branch);
3814      set_control(top());
3815      return always_branch;
3816    }
3817  }
3818  // Now test the correct condition.
3819  jint  nval = (obj_array
3820                ? (jint)(Klass::_lh_array_tag_type_value
3821                   <<    Klass::_lh_array_tag_shift)
3822                : Klass::_lh_neutral_value);
3823  Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3824  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3825  // invert the test if we are looking for a non-array
3826  if (not_array)  btest = BoolTest(btest).negate();
3827  Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3828  return generate_fair_guard(bol, region);
3829}
3830
3831
3832//-----------------------inline_native_newArray--------------------------
3833// private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3834// private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3835bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3836  Node* mirror;
3837  Node* count_val;
3838  if (uninitialized) {
3839    mirror    = argument(1);
3840    count_val = argument(2);
3841  } else {
3842    mirror    = argument(0);
3843    count_val = argument(1);
3844  }
3845
3846  mirror = null_check(mirror);
3847  // If mirror or obj is dead, only null-path is taken.
3848  if (stopped())  return true;
3849
3850  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3851  RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3852  PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3853  PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3854  PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3855
3856  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3857  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3858                                                  result_reg, _slow_path);
3859  Node* normal_ctl   = control();
3860  Node* no_array_ctl = result_reg->in(_slow_path);
3861
3862  // Generate code for the slow case.  We make a call to newArray().
3863  set_control(no_array_ctl);
3864  if (!stopped()) {
3865    // Either the input type is void.class, or else the
3866    // array klass has not yet been cached.  Either the
3867    // ensuing call will throw an exception, or else it
3868    // will cache the array klass for next time.
3869    PreserveJVMState pjvms(this);
3870    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3871    Node* slow_result = set_results_for_java_call(slow_call);
3872    // this->control() comes from set_results_for_java_call
3873    result_reg->set_req(_slow_path, control());
3874    result_val->set_req(_slow_path, slow_result);
3875    result_io ->set_req(_slow_path, i_o());
3876    result_mem->set_req(_slow_path, reset_memory());
3877  }
3878
3879  set_control(normal_ctl);
3880  if (!stopped()) {
3881    // Normal case:  The array type has been cached in the java.lang.Class.
3882    // The following call works fine even if the array type is polymorphic.
3883    // It could be a dynamic mix of int[], boolean[], Object[], etc.
3884    Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3885    result_reg->init_req(_normal_path, control());
3886    result_val->init_req(_normal_path, obj);
3887    result_io ->init_req(_normal_path, i_o());
3888    result_mem->init_req(_normal_path, reset_memory());
3889
3890    if (uninitialized) {
3891      // Mark the allocation so that zeroing is skipped
3892      AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3893      alloc->maybe_set_complete(&_gvn);
3894    }
3895  }
3896
3897  // Return the combined state.
3898  set_i_o(        _gvn.transform(result_io)  );
3899  set_all_memory( _gvn.transform(result_mem));
3900
3901  C->set_has_split_ifs(true); // Has chance for split-if optimization
3902  set_result(result_reg, result_val);
3903  return true;
3904}
3905
3906//----------------------inline_native_getLength--------------------------
3907// public static native int java.lang.reflect.Array.getLength(Object array);
3908bool LibraryCallKit::inline_native_getLength() {
3909  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3910
3911  Node* array = null_check(argument(0));
3912  // If array is dead, only null-path is taken.
3913  if (stopped())  return true;
3914
3915  // Deoptimize if it is a non-array.
3916  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3917
3918  if (non_array != NULL) {
3919    PreserveJVMState pjvms(this);
3920    set_control(non_array);
3921    uncommon_trap(Deoptimization::Reason_intrinsic,
3922                  Deoptimization::Action_maybe_recompile);
3923  }
3924
3925  // If control is dead, only non-array-path is taken.
3926  if (stopped())  return true;
3927
3928  // The works fine even if the array type is polymorphic.
3929  // It could be a dynamic mix of int[], boolean[], Object[], etc.
3930  Node* result = load_array_length(array);
3931
3932  C->set_has_split_ifs(true);  // Has chance for split-if optimization
3933  set_result(result);
3934  return true;
3935}
3936
3937//------------------------inline_array_copyOf----------------------------
3938// public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3939// public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3940bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3941  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3942
3943  // Get the arguments.
3944  Node* original          = argument(0);
3945  Node* start             = is_copyOfRange? argument(1): intcon(0);
3946  Node* end               = is_copyOfRange? argument(2): argument(1);
3947  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3948
3949  Node* newcopy = NULL;
3950
3951  // Set the original stack and the reexecute bit for the interpreter to reexecute
3952  // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3953  { PreserveReexecuteState preexecs(this);
3954    jvms()->set_should_reexecute(true);
3955
3956    array_type_mirror = null_check(array_type_mirror);
3957    original          = null_check(original);
3958
3959    // Check if a null path was taken unconditionally.
3960    if (stopped())  return true;
3961
3962    Node* orig_length = load_array_length(original);
3963
3964    Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3965    klass_node = null_check(klass_node);
3966
3967    RegionNode* bailout = new RegionNode(1);
3968    record_for_igvn(bailout);
3969
3970    // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3971    // Bail out if that is so.
3972    Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3973    if (not_objArray != NULL) {
3974      // Improve the klass node's type from the new optimistic assumption:
3975      ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3976      const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3977      Node* cast = new CastPPNode(klass_node, akls);
3978      cast->init_req(0, control());
3979      klass_node = _gvn.transform(cast);
3980    }
3981
3982    // Bail out if either start or end is negative.
3983    generate_negative_guard(start, bailout, &start);
3984    generate_negative_guard(end,   bailout, &end);
3985
3986    Node* length = end;
3987    if (_gvn.type(start) != TypeInt::ZERO) {
3988      length = _gvn.transform(new SubINode(end, start));
3989    }
3990
3991    // Bail out if length is negative.
3992    // Without this the new_array would throw
3993    // NegativeArraySizeException but IllegalArgumentException is what
3994    // should be thrown
3995    generate_negative_guard(length, bailout, &length);
3996
3997    if (bailout->req() > 1) {
3998      PreserveJVMState pjvms(this);
3999      set_control(_gvn.transform(bailout));
4000      uncommon_trap(Deoptimization::Reason_intrinsic,
4001                    Deoptimization::Action_maybe_recompile);
4002    }
4003
4004    if (!stopped()) {
4005      // How many elements will we copy from the original?
4006      // The answer is MinI(orig_length - start, length).
4007      Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4008      Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4009
4010      // Generate a direct call to the right arraycopy function(s).
4011      // We know the copy is disjoint but we might not know if the
4012      // oop stores need checking.
4013      // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4014      // This will fail a store-check if x contains any non-nulls.
4015
4016      // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4017      // loads/stores but it is legal only if we're sure the
4018      // Arrays.copyOf would succeed. So we need all input arguments
4019      // to the copyOf to be validated, including that the copy to the
4020      // new array won't trigger an ArrayStoreException. That subtype
4021      // check can be optimized if we know something on the type of
4022      // the input array from type speculation.
4023      if (_gvn.type(klass_node)->singleton()) {
4024        ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
4025        ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
4026
4027        int test = C->static_subtype_check(superk, subk);
4028        if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4029          const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4030          if (t_original->speculative_type() != NULL) {
4031            original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4032          }
4033        }
4034      }
4035
4036      bool validated = false;
4037      // Reason_class_check rather than Reason_intrinsic because we
4038      // want to intrinsify even if this traps.
4039      if (!too_many_traps(Deoptimization::Reason_class_check)) {
4040        Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
4041                                                   klass_node);
4042
4043        if (not_subtype_ctrl != top()) {
4044          PreserveJVMState pjvms(this);
4045          set_control(not_subtype_ctrl);
4046          uncommon_trap(Deoptimization::Reason_class_check,
4047                        Deoptimization::Action_make_not_entrant);
4048          assert(stopped(), "Should be stopped");
4049        }
4050        validated = true;
4051      }
4052
4053      if (!stopped()) {
4054        newcopy = new_array(klass_node, length, 0);  // no arguments to push
4055
4056        ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4057                                                load_object_klass(original), klass_node);
4058        if (!is_copyOfRange) {
4059          ac->set_copyof(validated);
4060        } else {
4061          ac->set_copyofrange(validated);
4062        }
4063        Node* n = _gvn.transform(ac);
4064        if (n == ac) {
4065          ac->connect_outputs(this);
4066        } else {
4067          assert(validated, "shouldn't transform if all arguments not validated");
4068          set_all_memory(n);
4069        }
4070      }
4071    }
4072  } // original reexecute is set back here
4073
4074  C->set_has_split_ifs(true); // Has chance for split-if optimization
4075  if (!stopped()) {
4076    set_result(newcopy);
4077  }
4078  return true;
4079}
4080
4081
4082//----------------------generate_virtual_guard---------------------------
4083// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4084Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4085                                             RegionNode* slow_region) {
4086  ciMethod* method = callee();
4087  int vtable_index = method->vtable_index();
4088  assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4089         "bad index %d", vtable_index);
4090  // Get the Method* out of the appropriate vtable entry.
4091  int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4092                     vtable_index*vtableEntry::size_in_bytes() +
4093                     vtableEntry::method_offset_in_bytes();
4094  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4095  Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4096
4097  // Compare the target method with the expected method (e.g., Object.hashCode).
4098  const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4099
4100  Node* native_call = makecon(native_call_addr);
4101  Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4102  Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4103
4104  return generate_slow_guard(test_native, slow_region);
4105}
4106
4107//-----------------------generate_method_call----------------------------
4108// Use generate_method_call to make a slow-call to the real
4109// method if the fast path fails.  An alternative would be to
4110// use a stub like OptoRuntime::slow_arraycopy_Java.
4111// This only works for expanding the current library call,
4112// not another intrinsic.  (E.g., don't use this for making an
4113// arraycopy call inside of the copyOf intrinsic.)
4114CallJavaNode*
4115LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4116  // When compiling the intrinsic method itself, do not use this technique.
4117  guarantee(callee() != C->method(), "cannot make slow-call to self");
4118
4119  ciMethod* method = callee();
4120  // ensure the JVMS we have will be correct for this call
4121  guarantee(method_id == method->intrinsic_id(), "must match");
4122
4123  const TypeFunc* tf = TypeFunc::make(method);
4124  CallJavaNode* slow_call;
4125  if (is_static) {
4126    assert(!is_virtual, "");
4127    slow_call = new CallStaticJavaNode(C, tf,
4128                           SharedRuntime::get_resolve_static_call_stub(),
4129                           method, bci());
4130  } else if (is_virtual) {
4131    null_check_receiver();
4132    int vtable_index = Method::invalid_vtable_index;
4133    if (UseInlineCaches) {
4134      // Suppress the vtable call
4135    } else {
4136      // hashCode and clone are not a miranda methods,
4137      // so the vtable index is fixed.
4138      // No need to use the linkResolver to get it.
4139       vtable_index = method->vtable_index();
4140       assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4141              "bad index %d", vtable_index);
4142    }
4143    slow_call = new CallDynamicJavaNode(tf,
4144                          SharedRuntime::get_resolve_virtual_call_stub(),
4145                          method, vtable_index, bci());
4146  } else {  // neither virtual nor static:  opt_virtual
4147    null_check_receiver();
4148    slow_call = new CallStaticJavaNode(C, tf,
4149                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
4150                                method, bci());
4151    slow_call->set_optimized_virtual(true);
4152  }
4153  set_arguments_for_java_call(slow_call);
4154  set_edges_for_java_call(slow_call);
4155  return slow_call;
4156}
4157
4158
4159/**
4160 * Build special case code for calls to hashCode on an object. This call may
4161 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4162 * slightly different code.
4163 */
4164bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4165  assert(is_static == callee()->is_static(), "correct intrinsic selection");
4166  assert(!(is_virtual && is_static), "either virtual, special, or static");
4167
4168  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4169
4170  RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4171  PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4172  PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4173  PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4174  Node* obj = NULL;
4175  if (!is_static) {
4176    // Check for hashing null object
4177    obj = null_check_receiver();
4178    if (stopped())  return true;        // unconditionally null
4179    result_reg->init_req(_null_path, top());
4180    result_val->init_req(_null_path, top());
4181  } else {
4182    // Do a null check, and return zero if null.
4183    // System.identityHashCode(null) == 0
4184    obj = argument(0);
4185    Node* null_ctl = top();
4186    obj = null_check_oop(obj, &null_ctl);
4187    result_reg->init_req(_null_path, null_ctl);
4188    result_val->init_req(_null_path, _gvn.intcon(0));
4189  }
4190
4191  // Unconditionally null?  Then return right away.
4192  if (stopped()) {
4193    set_control( result_reg->in(_null_path));
4194    if (!stopped())
4195      set_result(result_val->in(_null_path));
4196    return true;
4197  }
4198
4199  // We only go to the fast case code if we pass a number of guards.  The
4200  // paths which do not pass are accumulated in the slow_region.
4201  RegionNode* slow_region = new RegionNode(1);
4202  record_for_igvn(slow_region);
4203
4204  // If this is a virtual call, we generate a funny guard.  We pull out
4205  // the vtable entry corresponding to hashCode() from the target object.
4206  // If the target method which we are calling happens to be the native
4207  // Object hashCode() method, we pass the guard.  We do not need this
4208  // guard for non-virtual calls -- the caller is known to be the native
4209  // Object hashCode().
4210  if (is_virtual) {
4211    // After null check, get the object's klass.
4212    Node* obj_klass = load_object_klass(obj);
4213    generate_virtual_guard(obj_klass, slow_region);
4214  }
4215
4216  // Get the header out of the object, use LoadMarkNode when available
4217  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4218  // The control of the load must be NULL. Otherwise, the load can move before
4219  // the null check after castPP removal.
4220  Node* no_ctrl = NULL;
4221  Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4222
4223  // Test the header to see if it is unlocked.
4224  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4225  Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4226  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4227  Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4228  Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4229
4230  generate_slow_guard(test_unlocked, slow_region);
4231
4232  // Get the hash value and check to see that it has been properly assigned.
4233  // We depend on hash_mask being at most 32 bits and avoid the use of
4234  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4235  // vm: see markOop.hpp.
4236  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4237  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4238  Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4239  // This hack lets the hash bits live anywhere in the mark object now, as long
4240  // as the shift drops the relevant bits into the low 32 bits.  Note that
4241  // Java spec says that HashCode is an int so there's no point in capturing
4242  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4243  hshifted_header      = ConvX2I(hshifted_header);
4244  Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4245
4246  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4247  Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4248  Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4249
4250  generate_slow_guard(test_assigned, slow_region);
4251
4252  Node* init_mem = reset_memory();
4253  // fill in the rest of the null path:
4254  result_io ->init_req(_null_path, i_o());
4255  result_mem->init_req(_null_path, init_mem);
4256
4257  result_val->init_req(_fast_path, hash_val);
4258  result_reg->init_req(_fast_path, control());
4259  result_io ->init_req(_fast_path, i_o());
4260  result_mem->init_req(_fast_path, init_mem);
4261
4262  // Generate code for the slow case.  We make a call to hashCode().
4263  set_control(_gvn.transform(slow_region));
4264  if (!stopped()) {
4265    // No need for PreserveJVMState, because we're using up the present state.
4266    set_all_memory(init_mem);
4267    vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4268    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4269    Node* slow_result = set_results_for_java_call(slow_call);
4270    // this->control() comes from set_results_for_java_call
4271    result_reg->init_req(_slow_path, control());
4272    result_val->init_req(_slow_path, slow_result);
4273    result_io  ->set_req(_slow_path, i_o());
4274    result_mem ->set_req(_slow_path, reset_memory());
4275  }
4276
4277  // Return the combined state.
4278  set_i_o(        _gvn.transform(result_io)  );
4279  set_all_memory( _gvn.transform(result_mem));
4280
4281  set_result(result_reg, result_val);
4282  return true;
4283}
4284
4285//---------------------------inline_native_getClass----------------------------
4286// public final native Class<?> java.lang.Object.getClass();
4287//
4288// Build special case code for calls to getClass on an object.
4289bool LibraryCallKit::inline_native_getClass() {
4290  Node* obj = null_check_receiver();
4291  if (stopped())  return true;
4292  set_result(load_mirror_from_klass(load_object_klass(obj)));
4293  return true;
4294}
4295
4296//-----------------inline_native_Reflection_getCallerClass---------------------
4297// public static native Class<?> sun.reflect.Reflection.getCallerClass();
4298//
4299// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4300//
4301// NOTE: This code must perform the same logic as JVM_GetCallerClass
4302// in that it must skip particular security frames and checks for
4303// caller sensitive methods.
4304bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4305#ifndef PRODUCT
4306  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4307    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4308  }
4309#endif
4310
4311  if (!jvms()->has_method()) {
4312#ifndef PRODUCT
4313    if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4314      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4315    }
4316#endif
4317    return false;
4318  }
4319
4320  // Walk back up the JVM state to find the caller at the required
4321  // depth.
4322  JVMState* caller_jvms = jvms();
4323
4324  // Cf. JVM_GetCallerClass
4325  // NOTE: Start the loop at depth 1 because the current JVM state does
4326  // not include the Reflection.getCallerClass() frame.
4327  for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4328    ciMethod* m = caller_jvms->method();
4329    switch (n) {
4330    case 0:
4331      fatal("current JVM state does not include the Reflection.getCallerClass frame");
4332      break;
4333    case 1:
4334      // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4335      if (!m->caller_sensitive()) {
4336#ifndef PRODUCT
4337        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4338          tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4339        }
4340#endif
4341        return false;  // bail-out; let JVM_GetCallerClass do the work
4342      }
4343      break;
4344    default:
4345      if (!m->is_ignored_by_security_stack_walk()) {
4346        // We have reached the desired frame; return the holder class.
4347        // Acquire method holder as java.lang.Class and push as constant.
4348        ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4349        ciInstance* caller_mirror = caller_klass->java_mirror();
4350        set_result(makecon(TypeInstPtr::make(caller_mirror)));
4351
4352#ifndef PRODUCT
4353        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4354          tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4355          tty->print_cr("  JVM state at this point:");
4356          for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4357            ciMethod* m = jvms()->of_depth(i)->method();
4358            tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4359          }
4360        }
4361#endif
4362        return true;
4363      }
4364      break;
4365    }
4366  }
4367
4368#ifndef PRODUCT
4369  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4370    tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4371    tty->print_cr("  JVM state at this point:");
4372    for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4373      ciMethod* m = jvms()->of_depth(i)->method();
4374      tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4375    }
4376  }
4377#endif
4378
4379  return false;  // bail-out; let JVM_GetCallerClass do the work
4380}
4381
4382bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4383  Node* arg = argument(0);
4384  Node* result = NULL;
4385
4386  switch (id) {
4387  case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4388  case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4389  case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4390  case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4391
4392  case vmIntrinsics::_doubleToLongBits: {
4393    // two paths (plus control) merge in a wood
4394    RegionNode *r = new RegionNode(3);
4395    Node *phi = new PhiNode(r, TypeLong::LONG);
4396
4397    Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4398    // Build the boolean node
4399    Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4400
4401    // Branch either way.
4402    // NaN case is less traveled, which makes all the difference.
4403    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4404    Node *opt_isnan = _gvn.transform(ifisnan);
4405    assert( opt_isnan->is_If(), "Expect an IfNode");
4406    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4407    Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4408
4409    set_control(iftrue);
4410
4411    static const jlong nan_bits = CONST64(0x7ff8000000000000);
4412    Node *slow_result = longcon(nan_bits); // return NaN
4413    phi->init_req(1, _gvn.transform( slow_result ));
4414    r->init_req(1, iftrue);
4415
4416    // Else fall through
4417    Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4418    set_control(iffalse);
4419
4420    phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4421    r->init_req(2, iffalse);
4422
4423    // Post merge
4424    set_control(_gvn.transform(r));
4425    record_for_igvn(r);
4426
4427    C->set_has_split_ifs(true); // Has chance for split-if optimization
4428    result = phi;
4429    assert(result->bottom_type()->isa_long(), "must be");
4430    break;
4431  }
4432
4433  case vmIntrinsics::_floatToIntBits: {
4434    // two paths (plus control) merge in a wood
4435    RegionNode *r = new RegionNode(3);
4436    Node *phi = new PhiNode(r, TypeInt::INT);
4437
4438    Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4439    // Build the boolean node
4440    Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4441
4442    // Branch either way.
4443    // NaN case is less traveled, which makes all the difference.
4444    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4445    Node *opt_isnan = _gvn.transform(ifisnan);
4446    assert( opt_isnan->is_If(), "Expect an IfNode");
4447    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4448    Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4449
4450    set_control(iftrue);
4451
4452    static const jint nan_bits = 0x7fc00000;
4453    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4454    phi->init_req(1, _gvn.transform( slow_result ));
4455    r->init_req(1, iftrue);
4456
4457    // Else fall through
4458    Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4459    set_control(iffalse);
4460
4461    phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4462    r->init_req(2, iffalse);
4463
4464    // Post merge
4465    set_control(_gvn.transform(r));
4466    record_for_igvn(r);
4467
4468    C->set_has_split_ifs(true); // Has chance for split-if optimization
4469    result = phi;
4470    assert(result->bottom_type()->isa_int(), "must be");
4471    break;
4472  }
4473
4474  default:
4475    fatal_unexpected_iid(id);
4476    break;
4477  }
4478  set_result(_gvn.transform(result));
4479  return true;
4480}
4481
4482//----------------------inline_unsafe_copyMemory-------------------------
4483// public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4484bool LibraryCallKit::inline_unsafe_copyMemory() {
4485  if (callee()->is_static())  return false;  // caller must have the capability!
4486  null_check_receiver();  // null-check receiver
4487  if (stopped())  return true;
4488
4489  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4490
4491  Node* src_ptr =         argument(1);   // type: oop
4492  Node* src_off = ConvL2X(argument(2));  // type: long
4493  Node* dst_ptr =         argument(4);   // type: oop
4494  Node* dst_off = ConvL2X(argument(5));  // type: long
4495  Node* size    = ConvL2X(argument(7));  // type: long
4496
4497  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4498         "fieldOffset must be byte-scaled");
4499
4500  Node* src = make_unsafe_address(src_ptr, src_off);
4501  Node* dst = make_unsafe_address(dst_ptr, dst_off);
4502
4503  // Conservatively insert a memory barrier on all memory slices.
4504  // Do not let writes of the copy source or destination float below the copy.
4505  insert_mem_bar(Op_MemBarCPUOrder);
4506
4507  // Call it.  Note that the length argument is not scaled.
4508  make_runtime_call(RC_LEAF|RC_NO_FP,
4509                    OptoRuntime::fast_arraycopy_Type(),
4510                    StubRoutines::unsafe_arraycopy(),
4511                    "unsafe_arraycopy",
4512                    TypeRawPtr::BOTTOM,
4513                    src, dst, size XTOP);
4514
4515  // Do not let reads of the copy destination float above the copy.
4516  insert_mem_bar(Op_MemBarCPUOrder);
4517
4518  return true;
4519}
4520
4521//------------------------clone_coping-----------------------------------
4522// Helper function for inline_native_clone.
4523void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4524  assert(obj_size != NULL, "");
4525  Node* raw_obj = alloc_obj->in(1);
4526  assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4527
4528  AllocateNode* alloc = NULL;
4529  if (ReduceBulkZeroing) {
4530    // We will be completely responsible for initializing this object -
4531    // mark Initialize node as complete.
4532    alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4533    // The object was just allocated - there should be no any stores!
4534    guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4535    // Mark as complete_with_arraycopy so that on AllocateNode
4536    // expansion, we know this AllocateNode is initialized by an array
4537    // copy and a StoreStore barrier exists after the array copy.
4538    alloc->initialization()->set_complete_with_arraycopy();
4539  }
4540
4541  // Copy the fastest available way.
4542  // TODO: generate fields copies for small objects instead.
4543  Node* src  = obj;
4544  Node* dest = alloc_obj;
4545  Node* size = _gvn.transform(obj_size);
4546
4547  // Exclude the header but include array length to copy by 8 bytes words.
4548  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4549  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4550                            instanceOopDesc::base_offset_in_bytes();
4551  // base_off:
4552  // 8  - 32-bit VM
4553  // 12 - 64-bit VM, compressed klass
4554  // 16 - 64-bit VM, normal klass
4555  if (base_off % BytesPerLong != 0) {
4556    assert(UseCompressedClassPointers, "");
4557    if (is_array) {
4558      // Exclude length to copy by 8 bytes words.
4559      base_off += sizeof(int);
4560    } else {
4561      // Include klass to copy by 8 bytes words.
4562      base_off = instanceOopDesc::klass_offset_in_bytes();
4563    }
4564    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4565  }
4566  src  = basic_plus_adr(src,  base_off);
4567  dest = basic_plus_adr(dest, base_off);
4568
4569  // Compute the length also, if needed:
4570  Node* countx = size;
4571  countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4572  countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4573
4574  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4575
4576  ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false, false);
4577  ac->set_clonebasic();
4578  Node* n = _gvn.transform(ac);
4579  if (n == ac) {
4580    set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4581  } else {
4582    set_all_memory(n);
4583  }
4584
4585  // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4586  if (card_mark) {
4587    assert(!is_array, "");
4588    // Put in store barrier for any and all oops we are sticking
4589    // into this object.  (We could avoid this if we could prove
4590    // that the object type contains no oop fields at all.)
4591    Node* no_particular_value = NULL;
4592    Node* no_particular_field = NULL;
4593    int raw_adr_idx = Compile::AliasIdxRaw;
4594    post_barrier(control(),
4595                 memory(raw_adr_type),
4596                 alloc_obj,
4597                 no_particular_field,
4598                 raw_adr_idx,
4599                 no_particular_value,
4600                 T_OBJECT,
4601                 false);
4602  }
4603
4604  // Do not let reads from the cloned object float above the arraycopy.
4605  if (alloc != NULL) {
4606    // Do not let stores that initialize this object be reordered with
4607    // a subsequent store that would make this object accessible by
4608    // other threads.
4609    // Record what AllocateNode this StoreStore protects so that
4610    // escape analysis can go from the MemBarStoreStoreNode to the
4611    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4612    // based on the escape status of the AllocateNode.
4613    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4614  } else {
4615    insert_mem_bar(Op_MemBarCPUOrder);
4616  }
4617}
4618
4619//------------------------inline_native_clone----------------------------
4620// protected native Object java.lang.Object.clone();
4621//
4622// Here are the simple edge cases:
4623//  null receiver => normal trap
4624//  virtual and clone was overridden => slow path to out-of-line clone
4625//  not cloneable or finalizer => slow path to out-of-line Object.clone
4626//
4627// The general case has two steps, allocation and copying.
4628// Allocation has two cases, and uses GraphKit::new_instance or new_array.
4629//
4630// Copying also has two cases, oop arrays and everything else.
4631// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4632// Everything else uses the tight inline loop supplied by CopyArrayNode.
4633//
4634// These steps fold up nicely if and when the cloned object's klass
4635// can be sharply typed as an object array, a type array, or an instance.
4636//
4637bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4638  PhiNode* result_val;
4639
4640  // Set the reexecute bit for the interpreter to reexecute
4641  // the bytecode that invokes Object.clone if deoptimization happens.
4642  { PreserveReexecuteState preexecs(this);
4643    jvms()->set_should_reexecute(true);
4644
4645    Node* obj = null_check_receiver();
4646    if (stopped())  return true;
4647
4648    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4649
4650    // If we are going to clone an instance, we need its exact type to
4651    // know the number and types of fields to convert the clone to
4652    // loads/stores. Maybe a speculative type can help us.
4653    if (!obj_type->klass_is_exact() &&
4654        obj_type->speculative_type() != NULL &&
4655        obj_type->speculative_type()->is_instance_klass()) {
4656      ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4657      if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4658          !spec_ik->has_injected_fields()) {
4659        ciKlass* k = obj_type->klass();
4660        if (!k->is_instance_klass() ||
4661            k->as_instance_klass()->is_interface() ||
4662            k->as_instance_klass()->has_subklass()) {
4663          obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4664        }
4665      }
4666    }
4667
4668    Node* obj_klass = load_object_klass(obj);
4669    const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4670    const TypeOopPtr*   toop   = ((tklass != NULL)
4671                                ? tklass->as_instance_type()
4672                                : TypeInstPtr::NOTNULL);
4673
4674    // Conservatively insert a memory barrier on all memory slices.
4675    // Do not let writes into the original float below the clone.
4676    insert_mem_bar(Op_MemBarCPUOrder);
4677
4678    // paths into result_reg:
4679    enum {
4680      _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4681      _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4682      _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4683      _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4684      PATH_LIMIT
4685    };
4686    RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4687    result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4688    PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4689    PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4690    record_for_igvn(result_reg);
4691
4692    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4693    int raw_adr_idx = Compile::AliasIdxRaw;
4694
4695    Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4696    if (array_ctl != NULL) {
4697      // It's an array.
4698      PreserveJVMState pjvms(this);
4699      set_control(array_ctl);
4700      Node* obj_length = load_array_length(obj);
4701      Node* obj_size  = NULL;
4702      Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4703
4704      if (!use_ReduceInitialCardMarks()) {
4705        // If it is an oop array, it requires very special treatment,
4706        // because card marking is required on each card of the array.
4707        Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4708        if (is_obja != NULL) {
4709          PreserveJVMState pjvms2(this);
4710          set_control(is_obja);
4711          // Generate a direct call to the right arraycopy function(s).
4712          Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4713          ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4714          ac->set_cloneoop();
4715          Node* n = _gvn.transform(ac);
4716          assert(n == ac, "cannot disappear");
4717          ac->connect_outputs(this);
4718
4719          result_reg->init_req(_objArray_path, control());
4720          result_val->init_req(_objArray_path, alloc_obj);
4721          result_i_o ->set_req(_objArray_path, i_o());
4722          result_mem ->set_req(_objArray_path, reset_memory());
4723        }
4724      }
4725      // Otherwise, there are no card marks to worry about.
4726      // (We can dispense with card marks if we know the allocation
4727      //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4728      //  causes the non-eden paths to take compensating steps to
4729      //  simulate a fresh allocation, so that no further
4730      //  card marks are required in compiled code to initialize
4731      //  the object.)
4732
4733      if (!stopped()) {
4734        copy_to_clone(obj, alloc_obj, obj_size, true, false);
4735
4736        // Present the results of the copy.
4737        result_reg->init_req(_array_path, control());
4738        result_val->init_req(_array_path, alloc_obj);
4739        result_i_o ->set_req(_array_path, i_o());
4740        result_mem ->set_req(_array_path, reset_memory());
4741      }
4742    }
4743
4744    // We only go to the instance fast case code if we pass a number of guards.
4745    // The paths which do not pass are accumulated in the slow_region.
4746    RegionNode* slow_region = new RegionNode(1);
4747    record_for_igvn(slow_region);
4748    if (!stopped()) {
4749      // It's an instance (we did array above).  Make the slow-path tests.
4750      // If this is a virtual call, we generate a funny guard.  We grab
4751      // the vtable entry corresponding to clone() from the target object.
4752      // If the target method which we are calling happens to be the
4753      // Object clone() method, we pass the guard.  We do not need this
4754      // guard for non-virtual calls; the caller is known to be the native
4755      // Object clone().
4756      if (is_virtual) {
4757        generate_virtual_guard(obj_klass, slow_region);
4758      }
4759
4760      // The object must be easily cloneable and must not have a finalizer.
4761      // Both of these conditions may be checked in a single test.
4762      // We could optimize the test further, but we don't care.
4763      generate_access_flags_guard(obj_klass,
4764                                  // Test both conditions:
4765                                  JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4766                                  // Must be cloneable but not finalizer:
4767                                  JVM_ACC_IS_CLONEABLE_FAST,
4768                                  slow_region);
4769    }
4770
4771    if (!stopped()) {
4772      // It's an instance, and it passed the slow-path tests.
4773      PreserveJVMState pjvms(this);
4774      Node* obj_size  = NULL;
4775      // Need to deoptimize on exception from allocation since Object.clone intrinsic
4776      // is reexecuted if deoptimization occurs and there could be problems when merging
4777      // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4778      Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4779
4780      copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4781
4782      // Present the results of the slow call.
4783      result_reg->init_req(_instance_path, control());
4784      result_val->init_req(_instance_path, alloc_obj);
4785      result_i_o ->set_req(_instance_path, i_o());
4786      result_mem ->set_req(_instance_path, reset_memory());
4787    }
4788
4789    // Generate code for the slow case.  We make a call to clone().
4790    set_control(_gvn.transform(slow_region));
4791    if (!stopped()) {
4792      PreserveJVMState pjvms(this);
4793      CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4794      Node* slow_result = set_results_for_java_call(slow_call);
4795      // this->control() comes from set_results_for_java_call
4796      result_reg->init_req(_slow_path, control());
4797      result_val->init_req(_slow_path, slow_result);
4798      result_i_o ->set_req(_slow_path, i_o());
4799      result_mem ->set_req(_slow_path, reset_memory());
4800    }
4801
4802    // Return the combined state.
4803    set_control(    _gvn.transform(result_reg));
4804    set_i_o(        _gvn.transform(result_i_o));
4805    set_all_memory( _gvn.transform(result_mem));
4806  } // original reexecute is set back here
4807
4808  set_result(_gvn.transform(result_val));
4809  return true;
4810}
4811
4812// If we have a tighly coupled allocation, the arraycopy may take care
4813// of the array initialization. If one of the guards we insert between
4814// the allocation and the arraycopy causes a deoptimization, an
4815// unitialized array will escape the compiled method. To prevent that
4816// we set the JVM state for uncommon traps between the allocation and
4817// the arraycopy to the state before the allocation so, in case of
4818// deoptimization, we'll reexecute the allocation and the
4819// initialization.
4820JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4821  if (alloc != NULL) {
4822    ciMethod* trap_method = alloc->jvms()->method();
4823    int trap_bci = alloc->jvms()->bci();
4824
4825    if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4826          !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4827      // Make sure there's no store between the allocation and the
4828      // arraycopy otherwise visible side effects could be rexecuted
4829      // in case of deoptimization and cause incorrect execution.
4830      bool no_interfering_store = true;
4831      Node* mem = alloc->in(TypeFunc::Memory);
4832      if (mem->is_MergeMem()) {
4833        for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4834          Node* n = mms.memory();
4835          if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4836            assert(n->is_Store(), "what else?");
4837            no_interfering_store = false;
4838            break;
4839          }
4840        }
4841      } else {
4842        for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4843          Node* n = mms.memory();
4844          if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4845            assert(n->is_Store(), "what else?");
4846            no_interfering_store = false;
4847            break;
4848          }
4849        }
4850      }
4851
4852      if (no_interfering_store) {
4853        JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4854        uint size = alloc->req();
4855        SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4856        old_jvms->set_map(sfpt);
4857        for (uint i = 0; i < size; i++) {
4858          sfpt->init_req(i, alloc->in(i));
4859        }
4860        // re-push array length for deoptimization
4861        sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4862        old_jvms->set_sp(old_jvms->sp()+1);
4863        old_jvms->set_monoff(old_jvms->monoff()+1);
4864        old_jvms->set_scloff(old_jvms->scloff()+1);
4865        old_jvms->set_endoff(old_jvms->endoff()+1);
4866        old_jvms->set_should_reexecute(true);
4867
4868        sfpt->set_i_o(map()->i_o());
4869        sfpt->set_memory(map()->memory());
4870        sfpt->set_control(map()->control());
4871
4872        JVMState* saved_jvms = jvms();
4873        saved_reexecute_sp = _reexecute_sp;
4874
4875        set_jvms(sfpt->jvms());
4876        _reexecute_sp = jvms()->sp();
4877
4878        return saved_jvms;
4879      }
4880    }
4881  }
4882  return NULL;
4883}
4884
4885// In case of a deoptimization, we restart execution at the
4886// allocation, allocating a new array. We would leave an uninitialized
4887// array in the heap that GCs wouldn't expect. Move the allocation
4888// after the traps so we don't allocate the array if we
4889// deoptimize. This is possible because tightly_coupled_allocation()
4890// guarantees there's no observer of the allocated array at this point
4891// and the control flow is simple enough.
4892void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4893                                                    int saved_reexecute_sp, uint new_idx) {
4894  if (saved_jvms != NULL && !stopped()) {
4895    assert(alloc != NULL, "only with a tightly coupled allocation");
4896    // restore JVM state to the state at the arraycopy
4897    saved_jvms->map()->set_control(map()->control());
4898    assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4899    assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4900    // If we've improved the types of some nodes (null check) while
4901    // emitting the guards, propagate them to the current state
4902    map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4903    set_jvms(saved_jvms);
4904    _reexecute_sp = saved_reexecute_sp;
4905
4906    // Remove the allocation from above the guards
4907    CallProjections callprojs;
4908    alloc->extract_projections(&callprojs, true);
4909    InitializeNode* init = alloc->initialization();
4910    Node* alloc_mem = alloc->in(TypeFunc::Memory);
4911    C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4912    C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4913    C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4914
4915    // move the allocation here (after the guards)
4916    _gvn.hash_delete(alloc);
4917    alloc->set_req(TypeFunc::Control, control());
4918    alloc->set_req(TypeFunc::I_O, i_o());
4919    Node *mem = reset_memory();
4920    set_all_memory(mem);
4921    alloc->set_req(TypeFunc::Memory, mem);
4922    set_control(init->proj_out(TypeFunc::Control));
4923    set_i_o(callprojs.fallthrough_ioproj);
4924
4925    // Update memory as done in GraphKit::set_output_for_allocation()
4926    const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4927    const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4928    if (ary_type->isa_aryptr() && length_type != NULL) {
4929      ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4930    }
4931    const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4932    int            elemidx  = C->get_alias_index(telemref);
4933    set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4934    set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4935
4936    Node* allocx = _gvn.transform(alloc);
4937    assert(allocx == alloc, "where has the allocation gone?");
4938    assert(dest->is_CheckCastPP(), "not an allocation result?");
4939
4940    _gvn.hash_delete(dest);
4941    dest->set_req(0, control());
4942    Node* destx = _gvn.transform(dest);
4943    assert(destx == dest, "where has the allocation result gone?");
4944  }
4945}
4946
4947
4948//------------------------------inline_arraycopy-----------------------
4949// public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4950//                                                      Object dest, int destPos,
4951//                                                      int length);
4952bool LibraryCallKit::inline_arraycopy() {
4953  // Get the arguments.
4954  Node* src         = argument(0);  // type: oop
4955  Node* src_offset  = argument(1);  // type: int
4956  Node* dest        = argument(2);  // type: oop
4957  Node* dest_offset = argument(3);  // type: int
4958  Node* length      = argument(4);  // type: int
4959
4960  uint new_idx = C->unique();
4961
4962  // Check for allocation before we add nodes that would confuse
4963  // tightly_coupled_allocation()
4964  AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4965
4966  int saved_reexecute_sp = -1;
4967  JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4968  // See arraycopy_restore_alloc_state() comment
4969  // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4970  // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4971  // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
4972  bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4973
4974  // The following tests must be performed
4975  // (1) src and dest are arrays.
4976  // (2) src and dest arrays must have elements of the same BasicType
4977  // (3) src and dest must not be null.
4978  // (4) src_offset must not be negative.
4979  // (5) dest_offset must not be negative.
4980  // (6) length must not be negative.
4981  // (7) src_offset + length must not exceed length of src.
4982  // (8) dest_offset + length must not exceed length of dest.
4983  // (9) each element of an oop array must be assignable
4984
4985  // (3) src and dest must not be null.
4986  // always do this here because we need the JVM state for uncommon traps
4987  Node* null_ctl = top();
4988  src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4989  assert(null_ctl->is_top(), "no null control here");
4990  dest = null_check(dest, T_ARRAY);
4991
4992  if (!can_emit_guards) {
4993    // if saved_jvms == NULL and alloc != NULL, we don't emit any
4994    // guards but the arraycopy node could still take advantage of a
4995    // tightly allocated allocation. tightly_coupled_allocation() is
4996    // called again to make sure it takes the null check above into
4997    // account: the null check is mandatory and if it caused an
4998    // uncommon trap to be emitted then the allocation can't be
4999    // considered tightly coupled in this context.
5000    alloc = tightly_coupled_allocation(dest, NULL);
5001  }
5002
5003  bool validated = false;
5004
5005  const Type* src_type  = _gvn.type(src);
5006  const Type* dest_type = _gvn.type(dest);
5007  const TypeAryPtr* top_src  = src_type->isa_aryptr();
5008  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5009
5010  // Do we have the type of src?
5011  bool has_src = (top_src != NULL && top_src->klass() != NULL);
5012  // Do we have the type of dest?
5013  bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5014  // Is the type for src from speculation?
5015  bool src_spec = false;
5016  // Is the type for dest from speculation?
5017  bool dest_spec = false;
5018
5019  if ((!has_src || !has_dest) && can_emit_guards) {
5020    // We don't have sufficient type information, let's see if
5021    // speculative types can help. We need to have types for both src
5022    // and dest so that it pays off.
5023
5024    // Do we already have or could we have type information for src
5025    bool could_have_src = has_src;
5026    // Do we already have or could we have type information for dest
5027    bool could_have_dest = has_dest;
5028
5029    ciKlass* src_k = NULL;
5030    if (!has_src) {
5031      src_k = src_type->speculative_type_not_null();
5032      if (src_k != NULL && src_k->is_array_klass()) {
5033        could_have_src = true;
5034      }
5035    }
5036
5037    ciKlass* dest_k = NULL;
5038    if (!has_dest) {
5039      dest_k = dest_type->speculative_type_not_null();
5040      if (dest_k != NULL && dest_k->is_array_klass()) {
5041        could_have_dest = true;
5042      }
5043    }
5044
5045    if (could_have_src && could_have_dest) {
5046      // This is going to pay off so emit the required guards
5047      if (!has_src) {
5048        src = maybe_cast_profiled_obj(src, src_k, true);
5049        src_type  = _gvn.type(src);
5050        top_src  = src_type->isa_aryptr();
5051        has_src = (top_src != NULL && top_src->klass() != NULL);
5052        src_spec = true;
5053      }
5054      if (!has_dest) {
5055        dest = maybe_cast_profiled_obj(dest, dest_k, true);
5056        dest_type  = _gvn.type(dest);
5057        top_dest  = dest_type->isa_aryptr();
5058        has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5059        dest_spec = true;
5060      }
5061    }
5062  }
5063
5064  if (has_src && has_dest && can_emit_guards) {
5065    BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5066    BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5067    if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5068    if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5069
5070    if (src_elem == dest_elem && src_elem == T_OBJECT) {
5071      // If both arrays are object arrays then having the exact types
5072      // for both will remove the need for a subtype check at runtime
5073      // before the call and may make it possible to pick a faster copy
5074      // routine (without a subtype check on every element)
5075      // Do we have the exact type of src?
5076      bool could_have_src = src_spec;
5077      // Do we have the exact type of dest?
5078      bool could_have_dest = dest_spec;
5079      ciKlass* src_k = top_src->klass();
5080      ciKlass* dest_k = top_dest->klass();
5081      if (!src_spec) {
5082        src_k = src_type->speculative_type_not_null();
5083        if (src_k != NULL && src_k->is_array_klass()) {
5084          could_have_src = true;
5085        }
5086      }
5087      if (!dest_spec) {
5088        dest_k = dest_type->speculative_type_not_null();
5089        if (dest_k != NULL && dest_k->is_array_klass()) {
5090          could_have_dest = true;
5091        }
5092      }
5093      if (could_have_src && could_have_dest) {
5094        // If we can have both exact types, emit the missing guards
5095        if (could_have_src && !src_spec) {
5096          src = maybe_cast_profiled_obj(src, src_k, true);
5097        }
5098        if (could_have_dest && !dest_spec) {
5099          dest = maybe_cast_profiled_obj(dest, dest_k, true);
5100        }
5101      }
5102    }
5103  }
5104
5105  ciMethod* trap_method = method();
5106  int trap_bci = bci();
5107  if (saved_jvms != NULL) {
5108    trap_method = alloc->jvms()->method();
5109    trap_bci = alloc->jvms()->bci();
5110  }
5111
5112  bool negative_length_guard_generated = false;
5113
5114  if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5115      can_emit_guards &&
5116      !src->is_top() && !dest->is_top()) {
5117    // validate arguments: enables transformation the ArrayCopyNode
5118    validated = true;
5119
5120    RegionNode* slow_region = new RegionNode(1);
5121    record_for_igvn(slow_region);
5122
5123    // (1) src and dest are arrays.
5124    generate_non_array_guard(load_object_klass(src), slow_region);
5125    generate_non_array_guard(load_object_klass(dest), slow_region);
5126
5127    // (2) src and dest arrays must have elements of the same BasicType
5128    // done at macro expansion or at Ideal transformation time
5129
5130    // (4) src_offset must not be negative.
5131    generate_negative_guard(src_offset, slow_region);
5132
5133    // (5) dest_offset must not be negative.
5134    generate_negative_guard(dest_offset, slow_region);
5135
5136    // (7) src_offset + length must not exceed length of src.
5137    generate_limit_guard(src_offset, length,
5138                         load_array_length(src),
5139                         slow_region);
5140
5141    // (8) dest_offset + length must not exceed length of dest.
5142    generate_limit_guard(dest_offset, length,
5143                         load_array_length(dest),
5144                         slow_region);
5145
5146    // (6) length must not be negative.
5147    // This is also checked in generate_arraycopy() during macro expansion, but
5148    // we also have to check it here for the case where the ArrayCopyNode will
5149    // be eliminated by Escape Analysis.
5150    if (EliminateAllocations) {
5151      generate_negative_guard(length, slow_region);
5152      negative_length_guard_generated = true;
5153    }
5154
5155    // (9) each element of an oop array must be assignable
5156    Node* src_klass  = load_object_klass(src);
5157    Node* dest_klass = load_object_klass(dest);
5158    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5159
5160    if (not_subtype_ctrl != top()) {
5161      PreserveJVMState pjvms(this);
5162      set_control(not_subtype_ctrl);
5163      uncommon_trap(Deoptimization::Reason_intrinsic,
5164                    Deoptimization::Action_make_not_entrant);
5165      assert(stopped(), "Should be stopped");
5166    }
5167    {
5168      PreserveJVMState pjvms(this);
5169      set_control(_gvn.transform(slow_region));
5170      uncommon_trap(Deoptimization::Reason_intrinsic,
5171                    Deoptimization::Action_make_not_entrant);
5172      assert(stopped(), "Should be stopped");
5173    }
5174  }
5175
5176  arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
5177
5178  if (stopped()) {
5179    return true;
5180  }
5181
5182  ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
5183                                          // Create LoadRange and LoadKlass nodes for use during macro expansion here
5184                                          // so the compiler has a chance to eliminate them: during macro expansion,
5185                                          // we have to set their control (CastPP nodes are eliminated).
5186                                          load_object_klass(src), load_object_klass(dest),
5187                                          load_array_length(src), load_array_length(dest));
5188
5189  ac->set_arraycopy(validated);
5190
5191  Node* n = _gvn.transform(ac);
5192  if (n == ac) {
5193    ac->connect_outputs(this);
5194  } else {
5195    assert(validated, "shouldn't transform if all arguments not validated");
5196    set_all_memory(n);
5197  }
5198
5199  return true;
5200}
5201
5202
5203// Helper function which determines if an arraycopy immediately follows
5204// an allocation, with no intervening tests or other escapes for the object.
5205AllocateArrayNode*
5206LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5207                                           RegionNode* slow_region) {
5208  if (stopped())             return NULL;  // no fast path
5209  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5210
5211  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5212  if (alloc == NULL)  return NULL;
5213
5214  Node* rawmem = memory(Compile::AliasIdxRaw);
5215  // Is the allocation's memory state untouched?
5216  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5217    // Bail out if there have been raw-memory effects since the allocation.
5218    // (Example:  There might have been a call or safepoint.)
5219    return NULL;
5220  }
5221  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5222  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5223    return NULL;
5224  }
5225
5226  // There must be no unexpected observers of this allocation.
5227  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5228    Node* obs = ptr->fast_out(i);
5229    if (obs != this->map()) {
5230      return NULL;
5231    }
5232  }
5233
5234  // This arraycopy must unconditionally follow the allocation of the ptr.
5235  Node* alloc_ctl = ptr->in(0);
5236  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5237
5238  Node* ctl = control();
5239  while (ctl != alloc_ctl) {
5240    // There may be guards which feed into the slow_region.
5241    // Any other control flow means that we might not get a chance
5242    // to finish initializing the allocated object.
5243    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5244      IfNode* iff = ctl->in(0)->as_If();
5245      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5246      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5247      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5248        ctl = iff->in(0);       // This test feeds the known slow_region.
5249        continue;
5250      }
5251      // One more try:  Various low-level checks bottom out in
5252      // uncommon traps.  If the debug-info of the trap omits
5253      // any reference to the allocation, as we've already
5254      // observed, then there can be no objection to the trap.
5255      bool found_trap = false;
5256      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5257        Node* obs = not_ctl->fast_out(j);
5258        if (obs->in(0) == not_ctl && obs->is_Call() &&
5259            (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5260          found_trap = true; break;
5261        }
5262      }
5263      if (found_trap) {
5264        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5265        continue;
5266      }
5267    }
5268    return NULL;
5269  }
5270
5271  // If we get this far, we have an allocation which immediately
5272  // precedes the arraycopy, and we can take over zeroing the new object.
5273  // The arraycopy will finish the initialization, and provide
5274  // a new control state to which we will anchor the destination pointer.
5275
5276  return alloc;
5277}
5278
5279//-------------inline_encodeISOArray-----------------------------------
5280// encode char[] to byte[] in ISO_8859_1
5281bool LibraryCallKit::inline_encodeISOArray() {
5282  assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5283  // no receiver since it is static method
5284  Node *src         = argument(0);
5285  Node *src_offset  = argument(1);
5286  Node *dst         = argument(2);
5287  Node *dst_offset  = argument(3);
5288  Node *length      = argument(4);
5289
5290  const Type* src_type = src->Value(&_gvn);
5291  const Type* dst_type = dst->Value(&_gvn);
5292  const TypeAryPtr* top_src = src_type->isa_aryptr();
5293  const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5294  if (top_src  == NULL || top_src->klass()  == NULL ||
5295      top_dest == NULL || top_dest->klass() == NULL) {
5296    // failed array check
5297    return false;
5298  }
5299
5300  // Figure out the size and type of the elements we will be copying.
5301  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5302  BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5303  if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5304    return false;
5305  }
5306
5307  Node* src_start = array_element_address(src, src_offset, T_CHAR);
5308  Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5309  // 'src_start' points to src array + scaled offset
5310  // 'dst_start' points to dst array + scaled offset
5311
5312  const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5313  Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5314  enc = _gvn.transform(enc);
5315  Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5316  set_memory(res_mem, mtype);
5317  set_result(enc);
5318  return true;
5319}
5320
5321//-------------inline_multiplyToLen-----------------------------------
5322bool LibraryCallKit::inline_multiplyToLen() {
5323  assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5324
5325  address stubAddr = StubRoutines::multiplyToLen();
5326  if (stubAddr == NULL) {
5327    return false; // Intrinsic's stub is not implemented on this platform
5328  }
5329  const char* stubName = "multiplyToLen";
5330
5331  assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5332
5333  // no receiver because it is a static method
5334  Node* x    = argument(0);
5335  Node* xlen = argument(1);
5336  Node* y    = argument(2);
5337  Node* ylen = argument(3);
5338  Node* z    = argument(4);
5339
5340  const Type* x_type = x->Value(&_gvn);
5341  const Type* y_type = y->Value(&_gvn);
5342  const TypeAryPtr* top_x = x_type->isa_aryptr();
5343  const TypeAryPtr* top_y = y_type->isa_aryptr();
5344  if (top_x  == NULL || top_x->klass()  == NULL ||
5345      top_y == NULL || top_y->klass() == NULL) {
5346    // failed array check
5347    return false;
5348  }
5349
5350  BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5351  BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5352  if (x_elem != T_INT || y_elem != T_INT) {
5353    return false;
5354  }
5355
5356  // Set the original stack and the reexecute bit for the interpreter to reexecute
5357  // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5358  // on the return from z array allocation in runtime.
5359  { PreserveReexecuteState preexecs(this);
5360    jvms()->set_should_reexecute(true);
5361
5362    Node* x_start = array_element_address(x, intcon(0), x_elem);
5363    Node* y_start = array_element_address(y, intcon(0), y_elem);
5364    // 'x_start' points to x array + scaled xlen
5365    // 'y_start' points to y array + scaled ylen
5366
5367    // Allocate the result array
5368    Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5369    ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5370    Node* klass_node = makecon(TypeKlassPtr::make(klass));
5371
5372    IdealKit ideal(this);
5373
5374#define __ ideal.
5375     Node* one = __ ConI(1);
5376     Node* zero = __ ConI(0);
5377     IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5378     __ set(need_alloc, zero);
5379     __ set(z_alloc, z);
5380     __ if_then(z, BoolTest::eq, null()); {
5381       __ increment (need_alloc, one);
5382     } __ else_(); {
5383       // Update graphKit memory and control from IdealKit.
5384       sync_kit(ideal);
5385       Node* zlen_arg = load_array_length(z);
5386       // Update IdealKit memory and control from graphKit.
5387       __ sync_kit(this);
5388       __ if_then(zlen_arg, BoolTest::lt, zlen); {
5389         __ increment (need_alloc, one);
5390       } __ end_if();
5391     } __ end_if();
5392
5393     __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5394       // Update graphKit memory and control from IdealKit.
5395       sync_kit(ideal);
5396       Node * narr = new_array(klass_node, zlen, 1);
5397       // Update IdealKit memory and control from graphKit.
5398       __ sync_kit(this);
5399       __ set(z_alloc, narr);
5400     } __ end_if();
5401
5402     sync_kit(ideal);
5403     z = __ value(z_alloc);
5404     // Can't use TypeAryPtr::INTS which uses Bottom offset.
5405     _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5406     // Final sync IdealKit and GraphKit.
5407     final_sync(ideal);
5408#undef __
5409
5410    Node* z_start = array_element_address(z, intcon(0), T_INT);
5411
5412    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5413                                   OptoRuntime::multiplyToLen_Type(),
5414                                   stubAddr, stubName, TypePtr::BOTTOM,
5415                                   x_start, xlen, y_start, ylen, z_start, zlen);
5416  } // original reexecute is set back here
5417
5418  C->set_has_split_ifs(true); // Has chance for split-if optimization
5419  set_result(z);
5420  return true;
5421}
5422
5423//-------------inline_squareToLen------------------------------------
5424bool LibraryCallKit::inline_squareToLen() {
5425  assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5426
5427  address stubAddr = StubRoutines::squareToLen();
5428  if (stubAddr == NULL) {
5429    return false; // Intrinsic's stub is not implemented on this platform
5430  }
5431  const char* stubName = "squareToLen";
5432
5433  assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5434
5435  Node* x    = argument(0);
5436  Node* len  = argument(1);
5437  Node* z    = argument(2);
5438  Node* zlen = argument(3);
5439
5440  const Type* x_type = x->Value(&_gvn);
5441  const Type* z_type = z->Value(&_gvn);
5442  const TypeAryPtr* top_x = x_type->isa_aryptr();
5443  const TypeAryPtr* top_z = z_type->isa_aryptr();
5444  if (top_x  == NULL || top_x->klass()  == NULL ||
5445      top_z  == NULL || top_z->klass()  == NULL) {
5446    // failed array check
5447    return false;
5448  }
5449
5450  BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5451  BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5452  if (x_elem != T_INT || z_elem != T_INT) {
5453    return false;
5454  }
5455
5456
5457  Node* x_start = array_element_address(x, intcon(0), x_elem);
5458  Node* z_start = array_element_address(z, intcon(0), z_elem);
5459
5460  Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5461                                  OptoRuntime::squareToLen_Type(),
5462                                  stubAddr, stubName, TypePtr::BOTTOM,
5463                                  x_start, len, z_start, zlen);
5464
5465  set_result(z);
5466  return true;
5467}
5468
5469//-------------inline_mulAdd------------------------------------------
5470bool LibraryCallKit::inline_mulAdd() {
5471  assert(UseMulAddIntrinsic, "not implemented on this platform");
5472
5473  address stubAddr = StubRoutines::mulAdd();
5474  if (stubAddr == NULL) {
5475    return false; // Intrinsic's stub is not implemented on this platform
5476  }
5477  const char* stubName = "mulAdd";
5478
5479  assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5480
5481  Node* out      = argument(0);
5482  Node* in       = argument(1);
5483  Node* offset   = argument(2);
5484  Node* len      = argument(3);
5485  Node* k        = argument(4);
5486
5487  const Type* out_type = out->Value(&_gvn);
5488  const Type* in_type = in->Value(&_gvn);
5489  const TypeAryPtr* top_out = out_type->isa_aryptr();
5490  const TypeAryPtr* top_in = in_type->isa_aryptr();
5491  if (top_out  == NULL || top_out->klass()  == NULL ||
5492      top_in == NULL || top_in->klass() == NULL) {
5493    // failed array check
5494    return false;
5495  }
5496
5497  BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5498  BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5499  if (out_elem != T_INT || in_elem != T_INT) {
5500    return false;
5501  }
5502
5503  Node* outlen = load_array_length(out);
5504  Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5505  Node* out_start = array_element_address(out, intcon(0), out_elem);
5506  Node* in_start = array_element_address(in, intcon(0), in_elem);
5507
5508  Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5509                                  OptoRuntime::mulAdd_Type(),
5510                                  stubAddr, stubName, TypePtr::BOTTOM,
5511                                  out_start,in_start, new_offset, len, k);
5512  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5513  set_result(result);
5514  return true;
5515}
5516
5517//-------------inline_montgomeryMultiply-----------------------------------
5518bool LibraryCallKit::inline_montgomeryMultiply() {
5519  address stubAddr = StubRoutines::montgomeryMultiply();
5520  if (stubAddr == NULL) {
5521    return false; // Intrinsic's stub is not implemented on this platform
5522  }
5523
5524  assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5525  const char* stubName = "montgomery_multiply";
5526
5527  assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5528
5529  Node* a    = argument(0);
5530  Node* b    = argument(1);
5531  Node* n    = argument(2);
5532  Node* len  = argument(3);
5533  Node* inv  = argument(4);
5534  Node* m    = argument(6);
5535
5536  const Type* a_type = a->Value(&_gvn);
5537  const TypeAryPtr* top_a = a_type->isa_aryptr();
5538  const Type* b_type = b->Value(&_gvn);
5539  const TypeAryPtr* top_b = b_type->isa_aryptr();
5540  const Type* n_type = a->Value(&_gvn);
5541  const TypeAryPtr* top_n = n_type->isa_aryptr();
5542  const Type* m_type = a->Value(&_gvn);
5543  const TypeAryPtr* top_m = m_type->isa_aryptr();
5544  if (top_a  == NULL || top_a->klass()  == NULL ||
5545      top_b == NULL || top_b->klass()  == NULL ||
5546      top_n == NULL || top_n->klass()  == NULL ||
5547      top_m == NULL || top_m->klass()  == NULL) {
5548    // failed array check
5549    return false;
5550  }
5551
5552  BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5553  BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5554  BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5555  BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5556  if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5557    return false;
5558  }
5559
5560  // Make the call
5561  {
5562    Node* a_start = array_element_address(a, intcon(0), a_elem);
5563    Node* b_start = array_element_address(b, intcon(0), b_elem);
5564    Node* n_start = array_element_address(n, intcon(0), n_elem);
5565    Node* m_start = array_element_address(m, intcon(0), m_elem);
5566
5567    Node* call = make_runtime_call(RC_LEAF,
5568                                   OptoRuntime::montgomeryMultiply_Type(),
5569                                   stubAddr, stubName, TypePtr::BOTTOM,
5570                                   a_start, b_start, n_start, len, inv, top(),
5571                                   m_start);
5572    set_result(m);
5573  }
5574
5575  return true;
5576}
5577
5578bool LibraryCallKit::inline_montgomerySquare() {
5579  address stubAddr = StubRoutines::montgomerySquare();
5580  if (stubAddr == NULL) {
5581    return false; // Intrinsic's stub is not implemented on this platform
5582  }
5583
5584  assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5585  const char* stubName = "montgomery_square";
5586
5587  assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5588
5589  Node* a    = argument(0);
5590  Node* n    = argument(1);
5591  Node* len  = argument(2);
5592  Node* inv  = argument(3);
5593  Node* m    = argument(5);
5594
5595  const Type* a_type = a->Value(&_gvn);
5596  const TypeAryPtr* top_a = a_type->isa_aryptr();
5597  const Type* n_type = a->Value(&_gvn);
5598  const TypeAryPtr* top_n = n_type->isa_aryptr();
5599  const Type* m_type = a->Value(&_gvn);
5600  const TypeAryPtr* top_m = m_type->isa_aryptr();
5601  if (top_a  == NULL || top_a->klass()  == NULL ||
5602      top_n == NULL || top_n->klass()  == NULL ||
5603      top_m == NULL || top_m->klass()  == NULL) {
5604    // failed array check
5605    return false;
5606  }
5607
5608  BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5609  BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5610  BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5611  if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5612    return false;
5613  }
5614
5615  // Make the call
5616  {
5617    Node* a_start = array_element_address(a, intcon(0), a_elem);
5618    Node* n_start = array_element_address(n, intcon(0), n_elem);
5619    Node* m_start = array_element_address(m, intcon(0), m_elem);
5620
5621    Node* call = make_runtime_call(RC_LEAF,
5622                                   OptoRuntime::montgomerySquare_Type(),
5623                                   stubAddr, stubName, TypePtr::BOTTOM,
5624                                   a_start, n_start, len, inv, top(),
5625                                   m_start);
5626    set_result(m);
5627  }
5628
5629  return true;
5630}
5631
5632//-------------inline_vectorizedMismatch------------------------------
5633bool LibraryCallKit::inline_vectorizedMismatch() {
5634  assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5635
5636  address stubAddr = StubRoutines::vectorizedMismatch();
5637  if (stubAddr == NULL) {
5638    return false; // Intrinsic's stub is not implemented on this platform
5639  }
5640  const char* stubName = "vectorizedMismatch";
5641  int size_l = callee()->signature()->size();
5642  assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5643
5644  Node* obja = argument(0);
5645  Node* aoffset = argument(1);
5646  Node* objb = argument(3);
5647  Node* boffset = argument(4);
5648  Node* length = argument(6);
5649  Node* scale = argument(7);
5650
5651  const Type* a_type = obja->Value(&_gvn);
5652  const Type* b_type = objb->Value(&_gvn);
5653  const TypeAryPtr* top_a = a_type->isa_aryptr();
5654  const TypeAryPtr* top_b = b_type->isa_aryptr();
5655  if (top_a == NULL || top_a->klass() == NULL ||
5656    top_b == NULL || top_b->klass() == NULL) {
5657    // failed array check
5658    return false;
5659  }
5660
5661  Node* call;
5662  jvms()->set_should_reexecute(true);
5663
5664  Node* obja_adr = make_unsafe_address(obja, aoffset);
5665  Node* objb_adr = make_unsafe_address(objb, boffset);
5666
5667  call = make_runtime_call(RC_LEAF,
5668    OptoRuntime::vectorizedMismatch_Type(),
5669    stubAddr, stubName, TypePtr::BOTTOM,
5670    obja_adr, objb_adr, length, scale);
5671
5672  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5673  set_result(result);
5674  return true;
5675}
5676
5677/**
5678 * Calculate CRC32 for byte.
5679 * int java.util.zip.CRC32.update(int crc, int b)
5680 */
5681bool LibraryCallKit::inline_updateCRC32() {
5682  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5683  assert(callee()->signature()->size() == 2, "update has 2 parameters");
5684  // no receiver since it is static method
5685  Node* crc  = argument(0); // type: int
5686  Node* b    = argument(1); // type: int
5687
5688  /*
5689   *    int c = ~ crc;
5690   *    b = timesXtoThe32[(b ^ c) & 0xFF];
5691   *    b = b ^ (c >>> 8);
5692   *    crc = ~b;
5693   */
5694
5695  Node* M1 = intcon(-1);
5696  crc = _gvn.transform(new XorINode(crc, M1));
5697  Node* result = _gvn.transform(new XorINode(crc, b));
5698  result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5699
5700  Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5701  Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5702  Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5703  result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5704
5705  crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5706  result = _gvn.transform(new XorINode(crc, result));
5707  result = _gvn.transform(new XorINode(result, M1));
5708  set_result(result);
5709  return true;
5710}
5711
5712/**
5713 * Calculate CRC32 for byte[] array.
5714 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5715 */
5716bool LibraryCallKit::inline_updateBytesCRC32() {
5717  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5718  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5719  // no receiver since it is static method
5720  Node* crc     = argument(0); // type: int
5721  Node* src     = argument(1); // type: oop
5722  Node* offset  = argument(2); // type: int
5723  Node* length  = argument(3); // type: int
5724
5725  const Type* src_type = src->Value(&_gvn);
5726  const TypeAryPtr* top_src = src_type->isa_aryptr();
5727  if (top_src  == NULL || top_src->klass()  == NULL) {
5728    // failed array check
5729    return false;
5730  }
5731
5732  // Figure out the size and type of the elements we will be copying.
5733  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5734  if (src_elem != T_BYTE) {
5735    return false;
5736  }
5737
5738  // 'src_start' points to src array + scaled offset
5739  Node* src_start = array_element_address(src, offset, src_elem);
5740
5741  // We assume that range check is done by caller.
5742  // TODO: generate range check (offset+length < src.length) in debug VM.
5743
5744  // Call the stub.
5745  address stubAddr = StubRoutines::updateBytesCRC32();
5746  const char *stubName = "updateBytesCRC32";
5747
5748  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5749                                 stubAddr, stubName, TypePtr::BOTTOM,
5750                                 crc, src_start, length);
5751  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5752  set_result(result);
5753  return true;
5754}
5755
5756/**
5757 * Calculate CRC32 for ByteBuffer.
5758 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5759 */
5760bool LibraryCallKit::inline_updateByteBufferCRC32() {
5761  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5762  assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5763  // no receiver since it is static method
5764  Node* crc     = argument(0); // type: int
5765  Node* src     = argument(1); // type: long
5766  Node* offset  = argument(3); // type: int
5767  Node* length  = argument(4); // type: int
5768
5769  src = ConvL2X(src);  // adjust Java long to machine word
5770  Node* base = _gvn.transform(new CastX2PNode(src));
5771  offset = ConvI2X(offset);
5772
5773  // 'src_start' points to src array + scaled offset
5774  Node* src_start = basic_plus_adr(top(), base, offset);
5775
5776  // Call the stub.
5777  address stubAddr = StubRoutines::updateBytesCRC32();
5778  const char *stubName = "updateBytesCRC32";
5779
5780  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5781                                 stubAddr, stubName, TypePtr::BOTTOM,
5782                                 crc, src_start, length);
5783  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5784  set_result(result);
5785  return true;
5786}
5787
5788//------------------------------get_table_from_crc32c_class-----------------------
5789Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5790  Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5791  assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5792
5793  return table;
5794}
5795
5796//------------------------------inline_updateBytesCRC32C-----------------------
5797//
5798// Calculate CRC32C for byte[] array.
5799// int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5800//
5801bool LibraryCallKit::inline_updateBytesCRC32C() {
5802  assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5803  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5804  assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5805  // no receiver since it is a static method
5806  Node* crc     = argument(0); // type: int
5807  Node* src     = argument(1); // type: oop
5808  Node* offset  = argument(2); // type: int
5809  Node* end     = argument(3); // type: int
5810
5811  Node* length = _gvn.transform(new SubINode(end, offset));
5812
5813  const Type* src_type = src->Value(&_gvn);
5814  const TypeAryPtr* top_src = src_type->isa_aryptr();
5815  if (top_src  == NULL || top_src->klass()  == NULL) {
5816    // failed array check
5817    return false;
5818  }
5819
5820  // Figure out the size and type of the elements we will be copying.
5821  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5822  if (src_elem != T_BYTE) {
5823    return false;
5824  }
5825
5826  // 'src_start' points to src array + scaled offset
5827  Node* src_start = array_element_address(src, offset, src_elem);
5828
5829  // static final int[] byteTable in class CRC32C
5830  Node* table = get_table_from_crc32c_class(callee()->holder());
5831  Node* table_start = array_element_address(table, intcon(0), T_INT);
5832
5833  // We assume that range check is done by caller.
5834  // TODO: generate range check (offset+length < src.length) in debug VM.
5835
5836  // Call the stub.
5837  address stubAddr = StubRoutines::updateBytesCRC32C();
5838  const char *stubName = "updateBytesCRC32C";
5839
5840  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5841                                 stubAddr, stubName, TypePtr::BOTTOM,
5842                                 crc, src_start, length, table_start);
5843  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5844  set_result(result);
5845  return true;
5846}
5847
5848//------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5849//
5850// Calculate CRC32C for DirectByteBuffer.
5851// int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5852//
5853bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5854  assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5855  assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5856  assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5857  // no receiver since it is a static method
5858  Node* crc     = argument(0); // type: int
5859  Node* src     = argument(1); // type: long
5860  Node* offset  = argument(3); // type: int
5861  Node* end     = argument(4); // type: int
5862
5863  Node* length = _gvn.transform(new SubINode(end, offset));
5864
5865  src = ConvL2X(src);  // adjust Java long to machine word
5866  Node* base = _gvn.transform(new CastX2PNode(src));
5867  offset = ConvI2X(offset);
5868
5869  // 'src_start' points to src array + scaled offset
5870  Node* src_start = basic_plus_adr(top(), base, offset);
5871
5872  // static final int[] byteTable in class CRC32C
5873  Node* table = get_table_from_crc32c_class(callee()->holder());
5874  Node* table_start = array_element_address(table, intcon(0), T_INT);
5875
5876  // Call the stub.
5877  address stubAddr = StubRoutines::updateBytesCRC32C();
5878  const char *stubName = "updateBytesCRC32C";
5879
5880  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5881                                 stubAddr, stubName, TypePtr::BOTTOM,
5882                                 crc, src_start, length, table_start);
5883  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5884  set_result(result);
5885  return true;
5886}
5887
5888//------------------------------inline_updateBytesAdler32----------------------
5889//
5890// Calculate Adler32 checksum for byte[] array.
5891// int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5892//
5893bool LibraryCallKit::inline_updateBytesAdler32() {
5894  assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5895  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5896  assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5897  // no receiver since it is static method
5898  Node* crc     = argument(0); // type: int
5899  Node* src     = argument(1); // type: oop
5900  Node* offset  = argument(2); // type: int
5901  Node* length  = argument(3); // type: int
5902
5903  const Type* src_type = src->Value(&_gvn);
5904  const TypeAryPtr* top_src = src_type->isa_aryptr();
5905  if (top_src  == NULL || top_src->klass()  == NULL) {
5906    // failed array check
5907    return false;
5908  }
5909
5910  // Figure out the size and type of the elements we will be copying.
5911  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5912  if (src_elem != T_BYTE) {
5913    return false;
5914  }
5915
5916  // 'src_start' points to src array + scaled offset
5917  Node* src_start = array_element_address(src, offset, src_elem);
5918
5919  // We assume that range check is done by caller.
5920  // TODO: generate range check (offset+length < src.length) in debug VM.
5921
5922  // Call the stub.
5923  address stubAddr = StubRoutines::updateBytesAdler32();
5924  const char *stubName = "updateBytesAdler32";
5925
5926  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5927                                 stubAddr, stubName, TypePtr::BOTTOM,
5928                                 crc, src_start, length);
5929  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5930  set_result(result);
5931  return true;
5932}
5933
5934//------------------------------inline_updateByteBufferAdler32---------------
5935//
5936// Calculate Adler32 checksum for DirectByteBuffer.
5937// int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5938//
5939bool LibraryCallKit::inline_updateByteBufferAdler32() {
5940  assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5941  assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5942  assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5943  // no receiver since it is static method
5944  Node* crc     = argument(0); // type: int
5945  Node* src     = argument(1); // type: long
5946  Node* offset  = argument(3); // type: int
5947  Node* length  = argument(4); // type: int
5948
5949  src = ConvL2X(src);  // adjust Java long to machine word
5950  Node* base = _gvn.transform(new CastX2PNode(src));
5951  offset = ConvI2X(offset);
5952
5953  // 'src_start' points to src array + scaled offset
5954  Node* src_start = basic_plus_adr(top(), base, offset);
5955
5956  // Call the stub.
5957  address stubAddr = StubRoutines::updateBytesAdler32();
5958  const char *stubName = "updateBytesAdler32";
5959
5960  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5961                                 stubAddr, stubName, TypePtr::BOTTOM,
5962                                 crc, src_start, length);
5963
5964  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5965  set_result(result);
5966  return true;
5967}
5968
5969//----------------------------inline_reference_get----------------------------
5970// public T java.lang.ref.Reference.get();
5971bool LibraryCallKit::inline_reference_get() {
5972  const int referent_offset = java_lang_ref_Reference::referent_offset;
5973  guarantee(referent_offset > 0, "should have already been set");
5974
5975  // Get the argument:
5976  Node* reference_obj = null_check_receiver();
5977  if (stopped()) return true;
5978
5979  Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5980
5981  ciInstanceKlass* klass = env()->Object_klass();
5982  const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5983
5984  Node* no_ctrl = NULL;
5985  Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5986
5987  // Use the pre-barrier to record the value in the referent field
5988  pre_barrier(false /* do_load */,
5989              control(),
5990              NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5991              result /* pre_val */,
5992              T_OBJECT);
5993
5994  // Add memory barrier to prevent commoning reads from this field
5995  // across safepoint since GC can change its value.
5996  insert_mem_bar(Op_MemBarCPUOrder);
5997
5998  set_result(result);
5999  return true;
6000}
6001
6002
6003Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6004                                              bool is_exact=true, bool is_static=false,
6005                                              ciInstanceKlass * fromKls=NULL) {
6006  if (fromKls == NULL) {
6007    const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6008    assert(tinst != NULL, "obj is null");
6009    assert(tinst->klass()->is_loaded(), "obj is not loaded");
6010    assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6011    fromKls = tinst->klass()->as_instance_klass();
6012  } else {
6013    assert(is_static, "only for static field access");
6014  }
6015  ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6016                                              ciSymbol::make(fieldTypeString),
6017                                              is_static);
6018
6019  assert (field != NULL, "undefined field");
6020  if (field == NULL) return (Node *) NULL;
6021
6022  if (is_static) {
6023    const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6024    fromObj = makecon(tip);
6025  }
6026
6027  // Next code  copied from Parse::do_get_xxx():
6028
6029  // Compute address and memory type.
6030  int offset  = field->offset_in_bytes();
6031  bool is_vol = field->is_volatile();
6032  ciType* field_klass = field->type();
6033  assert(field_klass->is_loaded(), "should be loaded");
6034  const TypePtr* adr_type = C->alias_type(field)->adr_type();
6035  Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6036  BasicType bt = field->layout_type();
6037
6038  // Build the resultant type of the load
6039  const Type *type;
6040  if (bt == T_OBJECT) {
6041    type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6042  } else {
6043    type = Type::get_const_basic_type(bt);
6044  }
6045
6046  if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6047    insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6048  }
6049  // Build the load.
6050  MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6051  Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6052  // If reference is volatile, prevent following memory ops from
6053  // floating up past the volatile read.  Also prevents commoning
6054  // another volatile read.
6055  if (is_vol) {
6056    // Memory barrier includes bogus read of value to force load BEFORE membar
6057    insert_mem_bar(Op_MemBarAcquire, loadedField);
6058  }
6059  return loadedField;
6060}
6061
6062Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6063                                                 bool is_exact = true, bool is_static = false,
6064                                                 ciInstanceKlass * fromKls = NULL) {
6065  if (fromKls == NULL) {
6066    const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6067    assert(tinst != NULL, "obj is null");
6068    assert(tinst->klass()->is_loaded(), "obj is not loaded");
6069    assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6070    fromKls = tinst->klass()->as_instance_klass();
6071  }
6072  else {
6073    assert(is_static, "only for static field access");
6074  }
6075  ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6076    ciSymbol::make(fieldTypeString),
6077    is_static);
6078
6079  assert(field != NULL, "undefined field");
6080  assert(!field->is_volatile(), "not defined for volatile fields");
6081
6082  if (is_static) {
6083    const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6084    fromObj = makecon(tip);
6085  }
6086
6087  // Next code  copied from Parse::do_get_xxx():
6088
6089  // Compute address and memory type.
6090  int offset = field->offset_in_bytes();
6091  Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6092
6093  return adr;
6094}
6095
6096//------------------------------inline_aescrypt_Block-----------------------
6097bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6098  address stubAddr = NULL;
6099  const char *stubName;
6100  assert(UseAES, "need AES instruction support");
6101
6102  switch(id) {
6103  case vmIntrinsics::_aescrypt_encryptBlock:
6104    stubAddr = StubRoutines::aescrypt_encryptBlock();
6105    stubName = "aescrypt_encryptBlock";
6106    break;
6107  case vmIntrinsics::_aescrypt_decryptBlock:
6108    stubAddr = StubRoutines::aescrypt_decryptBlock();
6109    stubName = "aescrypt_decryptBlock";
6110    break;
6111  }
6112  if (stubAddr == NULL) return false;
6113
6114  Node* aescrypt_object = argument(0);
6115  Node* src             = argument(1);
6116  Node* src_offset      = argument(2);
6117  Node* dest            = argument(3);
6118  Node* dest_offset     = argument(4);
6119
6120  // (1) src and dest are arrays.
6121  const Type* src_type = src->Value(&_gvn);
6122  const Type* dest_type = dest->Value(&_gvn);
6123  const TypeAryPtr* top_src = src_type->isa_aryptr();
6124  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6125  assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6126
6127  // for the quick and dirty code we will skip all the checks.
6128  // we are just trying to get the call to be generated.
6129  Node* src_start  = src;
6130  Node* dest_start = dest;
6131  if (src_offset != NULL || dest_offset != NULL) {
6132    assert(src_offset != NULL && dest_offset != NULL, "");
6133    src_start  = array_element_address(src,  src_offset,  T_BYTE);
6134    dest_start = array_element_address(dest, dest_offset, T_BYTE);
6135  }
6136
6137  // now need to get the start of its expanded key array
6138  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6139  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6140  if (k_start == NULL) return false;
6141
6142  if (Matcher::pass_original_key_for_aes()) {
6143    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6144    // compatibility issues between Java key expansion and SPARC crypto instructions
6145    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6146    if (original_k_start == NULL) return false;
6147
6148    // Call the stub.
6149    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6150                      stubAddr, stubName, TypePtr::BOTTOM,
6151                      src_start, dest_start, k_start, original_k_start);
6152  } else {
6153    // Call the stub.
6154    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6155                      stubAddr, stubName, TypePtr::BOTTOM,
6156                      src_start, dest_start, k_start);
6157  }
6158
6159  return true;
6160}
6161
6162//------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6163bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6164  address stubAddr = NULL;
6165  const char *stubName = NULL;
6166
6167  assert(UseAES, "need AES instruction support");
6168
6169  switch(id) {
6170  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6171    stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6172    stubName = "cipherBlockChaining_encryptAESCrypt";
6173    break;
6174  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6175    stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6176    stubName = "cipherBlockChaining_decryptAESCrypt";
6177    break;
6178  }
6179  if (stubAddr == NULL) return false;
6180
6181  Node* cipherBlockChaining_object = argument(0);
6182  Node* src                        = argument(1);
6183  Node* src_offset                 = argument(2);
6184  Node* len                        = argument(3);
6185  Node* dest                       = argument(4);
6186  Node* dest_offset                = argument(5);
6187
6188  // (1) src and dest are arrays.
6189  const Type* src_type = src->Value(&_gvn);
6190  const Type* dest_type = dest->Value(&_gvn);
6191  const TypeAryPtr* top_src = src_type->isa_aryptr();
6192  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6193  assert (top_src  != NULL && top_src->klass()  != NULL
6194          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6195
6196  // checks are the responsibility of the caller
6197  Node* src_start  = src;
6198  Node* dest_start = dest;
6199  if (src_offset != NULL || dest_offset != NULL) {
6200    assert(src_offset != NULL && dest_offset != NULL, "");
6201    src_start  = array_element_address(src,  src_offset,  T_BYTE);
6202    dest_start = array_element_address(dest, dest_offset, T_BYTE);
6203  }
6204
6205  // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6206  // (because of the predicated logic executed earlier).
6207  // so we cast it here safely.
6208  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6209
6210  Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6211  if (embeddedCipherObj == NULL) return false;
6212
6213  // cast it to what we know it will be at runtime
6214  const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6215  assert(tinst != NULL, "CBC obj is null");
6216  assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6217  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6218  assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6219
6220  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6221  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6222  const TypeOopPtr* xtype = aklass->as_instance_type();
6223  Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6224  aescrypt_object = _gvn.transform(aescrypt_object);
6225
6226  // we need to get the start of the aescrypt_object's expanded key array
6227  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6228  if (k_start == NULL) return false;
6229
6230  // similarly, get the start address of the r vector
6231  Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6232  if (objRvec == NULL) return false;
6233  Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6234
6235  Node* cbcCrypt;
6236  if (Matcher::pass_original_key_for_aes()) {
6237    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6238    // compatibility issues between Java key expansion and SPARC crypto instructions
6239    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6240    if (original_k_start == NULL) return false;
6241
6242    // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6243    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6244                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6245                                 stubAddr, stubName, TypePtr::BOTTOM,
6246                                 src_start, dest_start, k_start, r_start, len, original_k_start);
6247  } else {
6248    // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6249    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6250                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6251                                 stubAddr, stubName, TypePtr::BOTTOM,
6252                                 src_start, dest_start, k_start, r_start, len);
6253  }
6254
6255  // return cipher length (int)
6256  Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6257  set_result(retvalue);
6258  return true;
6259}
6260
6261//------------------------------inline_counterMode_AESCrypt-----------------------
6262bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6263  assert(UseAES, "need AES instruction support");
6264  if (!UseAESCTRIntrinsics) return false;
6265
6266  address stubAddr = NULL;
6267  const char *stubName = NULL;
6268  if (id == vmIntrinsics::_counterMode_AESCrypt) {
6269    stubAddr = StubRoutines::counterMode_AESCrypt();
6270    stubName = "counterMode_AESCrypt";
6271  }
6272  if (stubAddr == NULL) return false;
6273
6274  Node* counterMode_object = argument(0);
6275  Node* src = argument(1);
6276  Node* src_offset = argument(2);
6277  Node* len = argument(3);
6278  Node* dest = argument(4);
6279  Node* dest_offset = argument(5);
6280
6281  // (1) src and dest are arrays.
6282  const Type* src_type = src->Value(&_gvn);
6283  const Type* dest_type = dest->Value(&_gvn);
6284  const TypeAryPtr* top_src = src_type->isa_aryptr();
6285  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6286  assert(top_src != NULL && top_src->klass() != NULL &&
6287         top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6288
6289  // checks are the responsibility of the caller
6290  Node* src_start = src;
6291  Node* dest_start = dest;
6292  if (src_offset != NULL || dest_offset != NULL) {
6293    assert(src_offset != NULL && dest_offset != NULL, "");
6294    src_start = array_element_address(src, src_offset, T_BYTE);
6295    dest_start = array_element_address(dest, dest_offset, T_BYTE);
6296  }
6297
6298  // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6299  // (because of the predicated logic executed earlier).
6300  // so we cast it here safely.
6301  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6302  Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6303  if (embeddedCipherObj == NULL) return false;
6304  // cast it to what we know it will be at runtime
6305  const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6306  assert(tinst != NULL, "CTR obj is null");
6307  assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6308  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6309  assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6310  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6311  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6312  const TypeOopPtr* xtype = aklass->as_instance_type();
6313  Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6314  aescrypt_object = _gvn.transform(aescrypt_object);
6315  // we need to get the start of the aescrypt_object's expanded key array
6316  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6317  if (k_start == NULL) return false;
6318  // similarly, get the start address of the r vector
6319  Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6320  if (obj_counter == NULL) return false;
6321  Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6322
6323  Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6324  if (saved_encCounter == NULL) return false;
6325  Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6326  Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6327
6328  Node* ctrCrypt;
6329  if (Matcher::pass_original_key_for_aes()) {
6330    // no SPARC version for AES/CTR intrinsics now.
6331    return false;
6332  }
6333  // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6334  ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6335                               OptoRuntime::counterMode_aescrypt_Type(),
6336                               stubAddr, stubName, TypePtr::BOTTOM,
6337                               src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6338
6339  // return cipher length (int)
6340  Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6341  set_result(retvalue);
6342  return true;
6343}
6344
6345//------------------------------get_key_start_from_aescrypt_object-----------------------
6346Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6347#if defined(PPC64) || defined(S390)
6348  // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6349  // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6350  // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6351  // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6352  Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6353  assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6354  if (objSessionK == NULL) {
6355    return (Node *) NULL;
6356  }
6357  Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6358#else
6359  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6360#endif // PPC64
6361  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6362  if (objAESCryptKey == NULL) return (Node *) NULL;
6363
6364  // now have the array, need to get the start address of the K array
6365  Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6366  return k_start;
6367}
6368
6369//------------------------------get_original_key_start_from_aescrypt_object-----------------------
6370Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6371  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6372  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6373  if (objAESCryptKey == NULL) return (Node *) NULL;
6374
6375  // now have the array, need to get the start address of the lastKey array
6376  Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6377  return original_k_start;
6378}
6379
6380//----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6381// Return node representing slow path of predicate check.
6382// the pseudo code we want to emulate with this predicate is:
6383// for encryption:
6384//    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6385// for decryption:
6386//    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6387//    note cipher==plain is more conservative than the original java code but that's OK
6388//
6389Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6390  // The receiver was checked for NULL already.
6391  Node* objCBC = argument(0);
6392
6393  // Load embeddedCipher field of CipherBlockChaining object.
6394  Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6395
6396  // get AESCrypt klass for instanceOf check
6397  // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6398  // will have same classloader as CipherBlockChaining object
6399  const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6400  assert(tinst != NULL, "CBCobj is null");
6401  assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6402
6403  // we want to do an instanceof comparison against the AESCrypt class
6404  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6405  if (!klass_AESCrypt->is_loaded()) {
6406    // if AESCrypt is not even loaded, we never take the intrinsic fast path
6407    Node* ctrl = control();
6408    set_control(top()); // no regular fast path
6409    return ctrl;
6410  }
6411  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6412
6413  Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6414  Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6415  Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6416
6417  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6418
6419  // for encryption, we are done
6420  if (!decrypting)
6421    return instof_false;  // even if it is NULL
6422
6423  // for decryption, we need to add a further check to avoid
6424  // taking the intrinsic path when cipher and plain are the same
6425  // see the original java code for why.
6426  RegionNode* region = new RegionNode(3);
6427  region->init_req(1, instof_false);
6428  Node* src = argument(1);
6429  Node* dest = argument(4);
6430  Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6431  Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6432  Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6433  region->init_req(2, src_dest_conjoint);
6434
6435  record_for_igvn(region);
6436  return _gvn.transform(region);
6437}
6438
6439//----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6440// Return node representing slow path of predicate check.
6441// the pseudo code we want to emulate with this predicate is:
6442// for encryption:
6443//    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6444// for decryption:
6445//    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6446//    note cipher==plain is more conservative than the original java code but that's OK
6447//
6448
6449Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6450  // The receiver was checked for NULL already.
6451  Node* objCTR = argument(0);
6452
6453  // Load embeddedCipher field of CipherBlockChaining object.
6454  Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6455
6456  // get AESCrypt klass for instanceOf check
6457  // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6458  // will have same classloader as CipherBlockChaining object
6459  const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6460  assert(tinst != NULL, "CTRobj is null");
6461  assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6462
6463  // we want to do an instanceof comparison against the AESCrypt class
6464  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6465  if (!klass_AESCrypt->is_loaded()) {
6466    // if AESCrypt is not even loaded, we never take the intrinsic fast path
6467    Node* ctrl = control();
6468    set_control(top()); // no regular fast path
6469    return ctrl;
6470  }
6471
6472  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6473  Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6474  Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6475  Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6476  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6477
6478  return instof_false; // even if it is NULL
6479}
6480
6481//------------------------------inline_ghash_processBlocks
6482bool LibraryCallKit::inline_ghash_processBlocks() {
6483  address stubAddr;
6484  const char *stubName;
6485  assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6486
6487  stubAddr = StubRoutines::ghash_processBlocks();
6488  stubName = "ghash_processBlocks";
6489
6490  Node* data           = argument(0);
6491  Node* offset         = argument(1);
6492  Node* len            = argument(2);
6493  Node* state          = argument(3);
6494  Node* subkeyH        = argument(4);
6495
6496  Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6497  assert(state_start, "state is NULL");
6498  Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6499  assert(subkeyH_start, "subkeyH is NULL");
6500  Node* data_start  = array_element_address(data, offset, T_BYTE);
6501  assert(data_start, "data is NULL");
6502
6503  Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6504                                  OptoRuntime::ghash_processBlocks_Type(),
6505                                  stubAddr, stubName, TypePtr::BOTTOM,
6506                                  state_start, subkeyH_start, data_start, len);
6507  return true;
6508}
6509
6510//------------------------------inline_sha_implCompress-----------------------
6511//
6512// Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6513// void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6514//
6515// Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6516// void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6517//
6518// Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6519// void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6520//
6521bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6522  assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6523
6524  Node* sha_obj = argument(0);
6525  Node* src     = argument(1); // type oop
6526  Node* ofs     = argument(2); // type int
6527
6528  const Type* src_type = src->Value(&_gvn);
6529  const TypeAryPtr* top_src = src_type->isa_aryptr();
6530  if (top_src  == NULL || top_src->klass()  == NULL) {
6531    // failed array check
6532    return false;
6533  }
6534  // Figure out the size and type of the elements we will be copying.
6535  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6536  if (src_elem != T_BYTE) {
6537    return false;
6538  }
6539  // 'src_start' points to src array + offset
6540  Node* src_start = array_element_address(src, ofs, src_elem);
6541  Node* state = NULL;
6542  address stubAddr;
6543  const char *stubName;
6544
6545  switch(id) {
6546  case vmIntrinsics::_sha_implCompress:
6547    assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6548    state = get_state_from_sha_object(sha_obj);
6549    stubAddr = StubRoutines::sha1_implCompress();
6550    stubName = "sha1_implCompress";
6551    break;
6552  case vmIntrinsics::_sha2_implCompress:
6553    assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6554    state = get_state_from_sha_object(sha_obj);
6555    stubAddr = StubRoutines::sha256_implCompress();
6556    stubName = "sha256_implCompress";
6557    break;
6558  case vmIntrinsics::_sha5_implCompress:
6559    assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6560    state = get_state_from_sha5_object(sha_obj);
6561    stubAddr = StubRoutines::sha512_implCompress();
6562    stubName = "sha512_implCompress";
6563    break;
6564  default:
6565    fatal_unexpected_iid(id);
6566    return false;
6567  }
6568  if (state == NULL) return false;
6569
6570  // Call the stub.
6571  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6572                                 stubAddr, stubName, TypePtr::BOTTOM,
6573                                 src_start, state);
6574
6575  return true;
6576}
6577
6578//------------------------------inline_digestBase_implCompressMB-----------------------
6579//
6580// Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6581// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6582//
6583bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6584  assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6585         "need SHA1/SHA256/SHA512 instruction support");
6586  assert((uint)predicate < 3, "sanity");
6587  assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6588
6589  Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6590  Node* src            = argument(1); // byte[] array
6591  Node* ofs            = argument(2); // type int
6592  Node* limit          = argument(3); // type int
6593
6594  const Type* src_type = src->Value(&_gvn);
6595  const TypeAryPtr* top_src = src_type->isa_aryptr();
6596  if (top_src  == NULL || top_src->klass()  == NULL) {
6597    // failed array check
6598    return false;
6599  }
6600  // Figure out the size and type of the elements we will be copying.
6601  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6602  if (src_elem != T_BYTE) {
6603    return false;
6604  }
6605  // 'src_start' points to src array + offset
6606  Node* src_start = array_element_address(src, ofs, src_elem);
6607
6608  const char* klass_SHA_name = NULL;
6609  const char* stub_name = NULL;
6610  address     stub_addr = NULL;
6611  bool        long_state = false;
6612
6613  switch (predicate) {
6614  case 0:
6615    if (UseSHA1Intrinsics) {
6616      klass_SHA_name = "sun/security/provider/SHA";
6617      stub_name = "sha1_implCompressMB";
6618      stub_addr = StubRoutines::sha1_implCompressMB();
6619    }
6620    break;
6621  case 1:
6622    if (UseSHA256Intrinsics) {
6623      klass_SHA_name = "sun/security/provider/SHA2";
6624      stub_name = "sha256_implCompressMB";
6625      stub_addr = StubRoutines::sha256_implCompressMB();
6626    }
6627    break;
6628  case 2:
6629    if (UseSHA512Intrinsics) {
6630      klass_SHA_name = "sun/security/provider/SHA5";
6631      stub_name = "sha512_implCompressMB";
6632      stub_addr = StubRoutines::sha512_implCompressMB();
6633      long_state = true;
6634    }
6635    break;
6636  default:
6637    fatal("unknown SHA intrinsic predicate: %d", predicate);
6638  }
6639  if (klass_SHA_name != NULL) {
6640    // get DigestBase klass to lookup for SHA klass
6641    const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6642    assert(tinst != NULL, "digestBase_obj is not instance???");
6643    assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6644
6645    ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6646    assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6647    ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6648    return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6649  }
6650  return false;
6651}
6652//------------------------------inline_sha_implCompressMB-----------------------
6653bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6654                                               bool long_state, address stubAddr, const char *stubName,
6655                                               Node* src_start, Node* ofs, Node* limit) {
6656  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6657  const TypeOopPtr* xtype = aklass->as_instance_type();
6658  Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6659  sha_obj = _gvn.transform(sha_obj);
6660
6661  Node* state;
6662  if (long_state) {
6663    state = get_state_from_sha5_object(sha_obj);
6664  } else {
6665    state = get_state_from_sha_object(sha_obj);
6666  }
6667  if (state == NULL) return false;
6668
6669  // Call the stub.
6670  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6671                                 OptoRuntime::digestBase_implCompressMB_Type(),
6672                                 stubAddr, stubName, TypePtr::BOTTOM,
6673                                 src_start, state, ofs, limit);
6674  // return ofs (int)
6675  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6676  set_result(result);
6677
6678  return true;
6679}
6680
6681//------------------------------get_state_from_sha_object-----------------------
6682Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6683  Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6684  assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6685  if (sha_state == NULL) return (Node *) NULL;
6686
6687  // now have the array, need to get the start address of the state array
6688  Node* state = array_element_address(sha_state, intcon(0), T_INT);
6689  return state;
6690}
6691
6692//------------------------------get_state_from_sha5_object-----------------------
6693Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6694  Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6695  assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6696  if (sha_state == NULL) return (Node *) NULL;
6697
6698  // now have the array, need to get the start address of the state array
6699  Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6700  return state;
6701}
6702
6703//----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6704// Return node representing slow path of predicate check.
6705// the pseudo code we want to emulate with this predicate is:
6706//    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6707//
6708Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6709  assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6710         "need SHA1/SHA256/SHA512 instruction support");
6711  assert((uint)predicate < 3, "sanity");
6712
6713  // The receiver was checked for NULL already.
6714  Node* digestBaseObj = argument(0);
6715
6716  // get DigestBase klass for instanceOf check
6717  const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6718  assert(tinst != NULL, "digestBaseObj is null");
6719  assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6720
6721  const char* klass_SHA_name = NULL;
6722  switch (predicate) {
6723  case 0:
6724    if (UseSHA1Intrinsics) {
6725      // we want to do an instanceof comparison against the SHA class
6726      klass_SHA_name = "sun/security/provider/SHA";
6727    }
6728    break;
6729  case 1:
6730    if (UseSHA256Intrinsics) {
6731      // we want to do an instanceof comparison against the SHA2 class
6732      klass_SHA_name = "sun/security/provider/SHA2";
6733    }
6734    break;
6735  case 2:
6736    if (UseSHA512Intrinsics) {
6737      // we want to do an instanceof comparison against the SHA5 class
6738      klass_SHA_name = "sun/security/provider/SHA5";
6739    }
6740    break;
6741  default:
6742    fatal("unknown SHA intrinsic predicate: %d", predicate);
6743  }
6744
6745  ciKlass* klass_SHA = NULL;
6746  if (klass_SHA_name != NULL) {
6747    klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6748  }
6749  if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6750    // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6751    Node* ctrl = control();
6752    set_control(top()); // no intrinsic path
6753    return ctrl;
6754  }
6755  ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6756
6757  Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6758  Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6759  Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6760  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6761
6762  return instof_false;  // even if it is NULL
6763}
6764
6765//-------------inline_fma-----------------------------------
6766bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6767  Node *a = NULL;
6768  Node *b = NULL;
6769  Node *c = NULL;
6770  Node* result = NULL;
6771  switch (id) {
6772  case vmIntrinsics::_fmaD:
6773    assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6774    // no receiver since it is static method
6775    a = round_double_node(argument(0));
6776    b = round_double_node(argument(2));
6777    c = round_double_node(argument(4));
6778    result = _gvn.transform(new FmaDNode(control(), a, b, c));
6779    break;
6780  case vmIntrinsics::_fmaF:
6781    assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6782    a = argument(0);
6783    b = argument(1);
6784    c = argument(2);
6785    result = _gvn.transform(new FmaFNode(control(), a, b, c));
6786    break;
6787  default:
6788    fatal_unexpected_iid(id);  break;
6789  }
6790  set_result(result);
6791  return true;
6792}
6793
6794bool LibraryCallKit::inline_profileBoolean() {
6795  Node* counts = argument(1);
6796  const TypeAryPtr* ary = NULL;
6797  ciArray* aobj = NULL;
6798  if (counts->is_Con()
6799      && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6800      && (aobj = ary->const_oop()->as_array()) != NULL
6801      && (aobj->length() == 2)) {
6802    // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6803    jint false_cnt = aobj->element_value(0).as_int();
6804    jint  true_cnt = aobj->element_value(1).as_int();
6805
6806    if (C->log() != NULL) {
6807      C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6808                     false_cnt, true_cnt);
6809    }
6810
6811    if (false_cnt + true_cnt == 0) {
6812      // According to profile, never executed.
6813      uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6814                          Deoptimization::Action_reinterpret);
6815      return true;
6816    }
6817
6818    // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6819    // is a number of each value occurrences.
6820    Node* result = argument(0);
6821    if (false_cnt == 0 || true_cnt == 0) {
6822      // According to profile, one value has been never seen.
6823      int expected_val = (false_cnt == 0) ? 1 : 0;
6824
6825      Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6826      Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6827
6828      IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6829      Node* fast_path = _gvn.transform(new IfTrueNode(check));
6830      Node* slow_path = _gvn.transform(new IfFalseNode(check));
6831
6832      { // Slow path: uncommon trap for never seen value and then reexecute
6833        // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6834        // the value has been seen at least once.
6835        PreserveJVMState pjvms(this);
6836        PreserveReexecuteState preexecs(this);
6837        jvms()->set_should_reexecute(true);
6838
6839        set_control(slow_path);
6840        set_i_o(i_o());
6841
6842        uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6843                            Deoptimization::Action_reinterpret);
6844      }
6845      // The guard for never seen value enables sharpening of the result and
6846      // returning a constant. It allows to eliminate branches on the same value
6847      // later on.
6848      set_control(fast_path);
6849      result = intcon(expected_val);
6850    }
6851    // Stop profiling.
6852    // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6853    // By replacing method body with profile data (represented as ProfileBooleanNode
6854    // on IR level) we effectively disable profiling.
6855    // It enables full speed execution once optimized code is generated.
6856    Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6857    C->record_for_igvn(profile);
6858    set_result(profile);
6859    return true;
6860  } else {
6861    // Continue profiling.
6862    // Profile data isn't available at the moment. So, execute method's bytecode version.
6863    // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6864    // is compiled and counters aren't available since corresponding MethodHandle
6865    // isn't a compile-time constant.
6866    return false;
6867  }
6868}
6869
6870bool LibraryCallKit::inline_isCompileConstant() {
6871  Node* n = argument(0);
6872  set_result(n->is_Con() ? intcon(1) : intcon(0));
6873  return true;
6874}
6875